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Abstract

The growing development of electronic devices and the need for sustainable energy
solutions have stimulated research into alternatives to traditional batteries. In this con-
text, piezoelectric energy harvesters (PEHs) represent a promising technology, capable of
converting environmental vibrations into electrical energy to supply low-power devices.
However, PEH performance significantly depends on geometry and electrical parameters,
and since traditional optimization based on Finite Element (FE) models involves very
high computational costs, more efficient strategies are developed. To address this, the
thesis proposes a hybrid approach combining machine learning models with genetic algo-
rithms for the optimization of the geometric and electrical parameters of a Quad-Finger
multimodal energy harvester. Both single-output and multi-output datasets, generated
by an experimentally validated FE model, are used to train three supervised regression
models: Random Forest Regression (RFR), Gradient Boosting Regression Tree (GBRT),
and Extreme Gradient Boosting Regression (XGBR). After validation, the ML models are
integrated with a genetic algorithm to develop a fully data-driven optimization process.
Among the models evaluated, GBRT shows the highest predictive accuracy. Overall, the
proposed methodology not only ensures reliable response prediction for different harvester
configurations, but also refines the design parameters to enhance power extraction.
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Chapter 1

Introduction

In recent decades, there has been a rapid and constant evolution in electronic devices,
which have now become essential tools in many areas: from everyday use to industrial
applications and scientific research. The growing spread of these technologies has led
to an increase in demand for power supply systems, particularly batteries, for portable
devices, applications in hard-to-reach areas, or other situations where a direct connection
to the power grid is not feasible.

In parallel with the growing use of electronic devices, there has also been a rise in con-
cern over serious environmental issues caused by the production and disposal of batteries.
Alongside these significant drawbacks, there are also other inherent limitations, such as
limited life span, the need for periodic replacement or recharging, and size constraints.
In critical applications, these conditions can even compromise the functionality of the
device itself [30,55].

For these reasons, interest in energy harvesting devices has grown in recent years.
These are systems capable of converting energy from the surrounding environment into
electrical energy, reducing or even eliminating the use of traditional batteries.

Several natural energy sources can be exploited for electricity generation. An imme-
diate and well-known example is sunlight, which is the basis for the functioning of photo-
voltaic panels. In addition to light radiation, thermal gradients and mechanical vibrations
are also potentially feasible energy sources. In particular, the extraction of energy from
environmental vibrations aims to collect and transform into electricity phenomena that
would otherwise be dispersed. For this purpose, piezoelectric energy harvesters (PEHs)
have become a well-established technique. Unlike solar or thermal systems, PEHs can
operate continuously in environments where ambient vibrations are always present, such
as near industrial machinery or structural components.

These devices exploit piezoelectric materials, which are capable of converting mechan-
ical deformations into electrical charge thanks to their crystalline structure. A typical
configuration of these systems consists of a cantilever beam coated with piezoelectric
material: when the beam is placed in a vibrating body, it deforms, generating electrical
energy.

PEHs are mainly suited for low-power applications typically in the microwatt to mil-
liwatt range, which is sufficient to supply small-scale devices such as sensors [30, 55].
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Introduction

Nevertheless, they can be integrated into vibrating systems of very different scales, rang-
ing from pacemakers or motors, up to large infrastructures such as bridges or buildings,
where environmental vibrations would otherwise be wasted.

The variety of possible fields of applications has driven research towards the devel-
opment of different structural configurations, with particular attention to the geometry,
the dimensions, and the electrical parameters of the device, which directly influence per-
formance and versatility. The simplest PEHs, based on a single cantilever, exploit only
the first vibration mode and are mainly efficient when the environmental vibration fre-
quency matches the resonance frequency of the device. However, since environmental
vibrations are often random and distributed over a wide spectrum, these configurations
are limited. To overcome these constraints, multimodal geometries have been developed
that can exploit multiple modes of vibration of the structure, thus expanding the range
of frequencies from which energy can be extracted [48].

Given the critical role of structural and electrical parameters, researchers have studied
and proposed several configurations, both for single-modal and multimodal piezoelectric
energy harvesters, by using analytical, numerical methods and, increasingly, finite ele-
ment (FE) simulations, often conducted using commercial software such as COMSOL
Multiphysics or ANSYS [30,55]. These software tools allow PEH models to be recreated
and validated through experiments in order to reliably predict the electromechanical re-
sponses of the devices. In this way, it is also possible to use FE simulations to perform
an optimization process with the aim of adjusting the design parameters and maximizing
electrical performance, such as the power extracted or the voltage generated [41].

Although the electromechanical response of arbitrarily shaped piezoelectric devices
can be reliably predicted using FE simulations, the latter are not always the most practical
solution if optimization is the final goal. In fact, even if they provide accurate results, FE
simulations are extremely computationally expensive. In optimization processes, where
parametric sweeps or a large number of iterative simulations need to be carried out to
find the optimal configurations, computation times and memory requirements become
very high. This makes large-scale application difficult and limits their competitiveness
in industrial contexts, where it may be necessary to identify the optimal parameters for
specific operating conditions quickly.

To tackle these critical issues associated with the high computational times and costs
of numerical simulations, research in recent years has been focused on using data-driven
approaches for response predictions and optimizations. These methods are particularly
suitable in systems characterized by non-linearity and multi-variable interactions that
are difficult to model analytically. In this context, Machine Learning (ML) models are
emerging as tools of great interest because, after being trained on a limited amount of
data, they are able to provide reliable predictions on previously unseen data [23,24,43]

For vibration-based piezoelectric energy harvesters, performance of the device is a
function of numerous parameters. These include geometric and operating parameters,
material properties, and excitation frequency. Accurately describing the relationships
between the variables using analytical models or FEM simulations can be extremely time-
consuming and computationally expensive, and can also result in poor generalization over
large design spaces. Therefore, ML models represent a promising alternative to traditional

2



Introduction

methods, as they allow to predict the electromechanical response of PEHs in never-
before-studied configurations while significantly reducing computational costs. Models
are trained from initial datasets, which can be derived from experimental measurements
or numerical simulations, which in any case require less effort than the whole optimization
process from FEM alone [18].

In the context of optimization, once ML models are trained to predict outputs of
interest, such as output power or voltage, those quantities can be taken as objective func-
tions to be maximized (or minimized). However, due to the large number of variables
involved, PEHs’ objective function typically does not have a single maximum (or mini-
mum) but rather multiple local minima and maxima. This makes traditional optimization
algorithms ineffective, since they risk converging to suboptimal solutions. To avoid this
limitation, more and more studies are turning to evolutionary algorithms, namely Genetic
Algorithms (GAs). These algorithms, founded on the principles of natural selection, are
distinguished by their ability to discover global maxima and minima and not get stuck
in local optima [10].

This thesis fits into this background and focuses on the analysis of a Quad-Finger
multimodal piezoelectric energy harvester developed and built by Askari et al. [6]. The
harvester had previously been simulated with COMSOL Multiphysics and experimentally
validated. The present work aims to further explore the system by developing a reliable
data-driven framework to optimize the device parameters. The model is based on a hybrid
approach, where a dataset is initially constructed using FE simulations and then used to
train Machine Learning models, specifically Random Forest Regressor (RFR), Gradient
Boosting Regression Trees (GBRT) and Extreme Gradient Boosting Regressor (XGBR),
both in single-output and multi-output configurations for the final goal of predicting the
power output of the device as a function of geometric and operational parameters. The
most reliable trained ML model is then integrated as an objective function in a genetic
algorithm (GA) whose goal is to determine the best configuration to achieve maximum
extracted power.

Since no specific field of application for the device is selected, the focus of the thesis
is not limited to efficiency in a particular frequency range, but rather to the general
maximization of the system’s energy performance with significantly less time required
than optimization conducted solely through FE simulations.

To develop the hybrid model for the optimization of the Quad-Finger energy harvester,
a methodological process is followed, which is described in detail in the following chapters.
Briefly, the process consists of three consecutive phases: a first approach based on a
simplified, single-output dataset, characterized by a reduced number of input parameters
to be optimized; a second one, single-output again but considering different parameters
with respect to the previous analysis; and finally, a third approach based on a multi-output
dataset, with all the input parameters involved. This last step represents the overall
analysis that is the subject of this work, where is taken into account the multimodal
nature of the structure.

This thesis is organized as follows. Chapter 2 has the goal of presenting the starting
structure for the proposed hybrid optimization process, the Quad-Finger PEH. For this
purpose, the chapter provides the essential theoretical background to fully understand the
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alternative approach for the optimization, first introducing the fundamental concepts re-
lated to energy harvesting and piezoelectric devices, and then discussing machine learning
methodologies and genetic algorithms in greater depth. In this way, all the preliminary
knowledge needed to fully understand the designed work and optimization process is pro-
vided. Finally, the chapter concludes with a review of the main related scientific works,
highlighting the contributions made, the contexts of application, and the differences with
respect to the approach developed in this thesis.

Chapter 3 outlines the original contribution of this thesis, presenting the methodolog-
ical process followed to develop the hybrid optimization method. In particular, the three
progressive approaches needed to reach the final framework are described, starting from a
simplified configuration and ending with a complete multimodal analysis. Finally, a val-
idation phase is introduced, where the reliability of the results obtained by the proposed
approaches is compared to the ones obtained using traditional methods.

Chapter 4 is dedicated to the numerical and experimental evaluation of the proposed
hybrid optimization framework. Each of the three approaches is presented in detail,
including both the methodology and the numerical results. In particular, the methodology
section details all the steps involved in creating the datasets and building the algorithms,
both machine learning and genetic algorithms. In addition, an in-depth description of the
validation is provided at the end of the chapter, with the aim of confirming the reliability
and effectiveness of the framework developed.

Chapter 5, which concludes the thesis, summarizes the key findings and presents
possible directions for future research and implementation.

4



Chapter 2

System Modeling

This chapter aims to provide the necessary background for an in-depth understanding of
the energy harvesting design optimization process developed in this thesis. The structure
of this chapter is as follows. Section 2.1 provides a general overview of smart structures
and smart materials with a particular focus on piezoelectric materials in Section 2.2.
Subsequently, Sections 2.3 and 2.4 explore specific types of smart structure, namely en-
ergy harvesters and, more specifically, piezoelectric energy harvesters. Section 2.5 focuses
on the description of the starting piezoelectric harvester used in this study. The chap-
ter follows with Sections 2.6, 2.7 and 2.8, respectively, introduce machine learning and
the optimization problem, with a particular emphasis on the genetic algorithm. Finally,
Section 2.9 presents and analyzes the scientific researches on which the alternative opti-
mization algorithm design is based, that combine numerical simulations, machine learning
techniques, and genetic algorithms in an integrated manner.

2.1 Smart Structures and Smart Materials

A smart structure (or intelligent structure) is an engineering system based on sensors,
actuators, and smart materials capable of performing sensing, actuation, and signal pro-
cessing in order to adapt its properties and states to environmental stimuli and changes
in operational conditions [16].

Smart structures can be categorized using a set-based diagram, as shown in Fig-
ure 2.1 [31] where:

• Sensory structures have sensors distributed throughout them

• Adaptive structures have distributed actuators

• Controlled structures have both actuators and sensors and a closed-loop system
linking them, so that properties or states can be modified

• Active structures are characterized by highly distributed actuators that provide
structural functionality and support to the system, as they are integrated into the
load-bearing system
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• Smart structures are an advanced subset of active structures that not only have
highly distributed actuator and sensor systems with structural functionality, but
also integrate distributed control functions and computing architecture to process
data, analyze environmental conditions, and autonomously adapt to changing op-
erational demands [31].

Figure 2.1: Smart Structures in a set-based diagram [31].

Since smart structures highly rely on smart materials, it is essential to provide a brief
overview of these materials. Smart materials can change their composition, structure,
or electrical or mechanical properties in response to various environmental conditions
like temperature, magnetic fields, vibrations and so on. These materials can be used as
actuators or sensors generating a certain response. Examples of such materials and the
related inputs and output are provided in Table 2.1.

Smart materials offer several advantages, making them a field of increasing interest
and attraction in the last few years. The advantages are the following: high energy
density, fast response times, compact size and fewer moving parts. However, some lim-
itations must be mentioned such as limited strain outputs and limited blocking forces,
making them prone to damage. In addition, these materials are characterized by high
cost, sensitivity to harsh environments and finally, nonlinear behavior. The latter draw-
back complicates the design and the control of systems, making it harder to manage and
predict their responses.

Furthermore, smart materials can be categorized based on the type of coupling be-
tween mechanical and non-mechanical fields (such as electric or magnetic fields). In fact,
it is possible to distinguish materials which exhibit direct or indirect coupling. Mate-
rials like piezoelectric materials, shape memory alloys, magnetostrictive ceramics, and
magnetic shape memory alloys are examples of materials that demonstrate direct cou-
pling. In these materials, either the mechanical or non-mechanical field is the input,
while the other is the output. While materials such as electro-rheological fluids (ERF)
and magneto-rheological fluids (MRF) demonstrate indirect coupling because there is an

6
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intermediate link between the mechanical and non-mechanical field. In the case of ERF
and MRF the variation of the electric or magnetic field leads to a changing viscosity,
altering the mechanical behavior of the material.

In this overview of smart materials, piezoelectric materials play a central role due to
their ability to convert mechanical strain into electrical polarization and vice versa. This
property has made them particularly suitable for energy harvesting applications.

Material Class Excitation Response

Se
ns

or
s

Pyroelectrics Temperature change Electric polarization
Piezoelectrics Mechanical strain Electric polarization

Electrostrictors Mechanical strain Electric polarization
Magnetostrictors Mechanical strain Change in magnetic field

Electroactive polymers Mechanical strain Electric polarization
Electroluminescent Electric field Light emission
Photoluminescent Incident light Light emission

Electrochromic Electric field Color change

A
ct

ua
to

rs

Piezoelectrics Electric current Mechanical strain
Electrostrictors Electric current Mechanical strain

Magnetostrictors Magnetic field Mechanicl strain
Shape memory alloys Temperature change Mechanical strain

Electroactive polymers Electric field Mechanical strain
Electrorheological fluids Electric field Viscosity change

Magnetorheological fluids Magnetic field Viscosity change

Table 2.1: Smart materials [22]
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2.2 Piezoelectric Materials
The term piezoelectricity originates from the Greek word for “pressure”. This is based on
the fact that, in 1880, Jacques and Pierre Curie discovered that certain materials such
as quartz and tourmaline generate electrical charge if subjected to pressure. This is the
so-called piezoelectric effect. Shortly after, it was also discovered that applying an electric
field to these materials induces mechanical deformation, a phenomenon now known as
inverse piezoelectric effect.

Nowadays, the piezoelectric effect is widely used in various technological applications.
The direct piezoelectric effect, also known as the generator or sensor effect, converts
mechanical energy into electrical energy and is exploited in sensors and energy harvesting
systems. Conversely, the inverse piezoelectric effect causes a change in length when an
electric field is applied, allowing actuators to convert electrical energy into mechanical
motion.

Piezoelectric materials can be classified based on their crystal structure, origin or char-
acteristic. Firstly, piezoelectric materials can be classified based on their crystal structure
into two main categories: (i) mono-crystalline materials, which are characterized by an
asymmetric structure formed by a single, continuous crystal lattice. In these materi-
als, a polar axis forms, leading to the piezoelectric effect, which occurs below the Curie
temperature (TC). And (ii) polycrystalline materials made of many small crystals (the
“grains”) [28]. The piezoelectric effect in these materials is more pronounced compared
to mono-crystalline materials. The crystals, once poled, display a strong piezoelectric
response [37]. In addition, piezoelectric materials can be distinguished into natural and
artificial types as highlighted by Table 2.2 [11]. Natural materials, such as quartz, am-
monium, bone, and even wood, exhibit the piezoelectric effect without the need for any
external treatment. On the other hand, synthetic materials are artificially fabricated
through complex processes to enhance their piezoelectric properties [7].

Piezoelectric Materials
Natural Manmade - Inorganic (ceramics) Manmade

Lead based Lead free Organic (polymers) Polymer composites
Quartz Crystals Lead titanate (PT) Barium titanate (BT) PVDF PVDF/PZT
Rochelle Salt PZT KNbO3 P(VDF-TrFE) PVDF/ZnO
Topaz PLZT LiNbO3 P(VDF-TeFE) PVDF/KNN
Tourmaline PMN-PT LiTaO3 Nylon 11 PVDF/AgNWs
Wood KNN Urea PVDF/MWCNTs
Silk MoS2 PLA PVDF/BT NPs
Rubber ZnSnO3 PP PVDF-TrFE/PZT
Dentin Fe3O2 Cellulose acetate PVDF/MoS2

Bone ZnFe2O4 Cellulose PVDF/ZnSnO3

Hair ZnO PAN PVDF/Fe2O3

Enamel

Table 2.2: Different piezoelectric materials [11].
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Naturally, piezoelectric materials are generally isotropic and do not exhibit the dipole
effect necessary for generating piezoelectricity as it is shown in Figure 2.2.(a). To make
these materials macroscopically piezoelectric, a process called poling is used. This process
consists of applying a strong electric field, typically several kV/mm, which causes the
crystals to align their polarization direction with the external field Figure 2.2.(b). As a
result, domains with a favorable orientation to the polarity field grow, while those with
an unfavorable orientation shrink. After the poling process, most of the re-orientations
remain even without the application of an electric field (Figure 2.2.(c)). However, a
small number of domain walls may return to their original position, often due to internal
mechanical stresses [37].

(a) (b) (c)

Figure 2.2: Poling process: (a) randomly oriented dipoles, (b) alignment under an external
electric field, (c) stable orientation of dipoles after poling. [37]

This phenomenon results from the ferroelectric nature of piezoelectric materials.
These materials are characterized by non-uniform stressed and presence of impurities
that lead to limited domain wall movement, causing an hysteretic behavior when they
are subjected to an electric field (shown in Figure 2.3). Indeed, if a weak field is applied,
bending properties of domain walls allow a reversible movement. On the other hand,
applying a stronger electric field the domain walls exhibit an irreversible translation and
a permanent polarization is obtained [44]. So, once the external field is removed and an
electric field, weaker than the original polarization field, is applied, the material expands
and this expansion is partly caused by the piezoelectric displacement of ions within the
crystal lattice, known as the intrinsic effect. The extrinsic effect, on the other hand, re-
sults from the reversible ferroelectric reorientation of the unit cells. As the strength of the
applied field increases, this effect becomes more pronounced and is primarily responsible
for the non-linear hysteresis [37].

Analyzing Figure 2.3, point O represent the initial isotropic condition of the material,
corresponding also to the configuration of 2.2.(a). Point B, coinciding with the configu-
ration of 2.2.(b), is the state of full polarization. Subsequently, starting diminishing the
external electric field, the polarization decreases in a non-linear manner ending up with
a remaining polarization at zero applied field Ps, also called saturation (or spontaneous)
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polarization. Only inverting field direction is possible to remove the remaining polariza-
tion (point corresponding to the intersection between curve C-D and the horizontal axis).
If negative electric field continues to increase its absolute value, symmetric behavior is
shown, reaching point D (symmetric to point B in 1st quadrant).

Figure 2.3: Resulting polarization versus electric field: typical hysteretic cycle of a piezo-
electric material [46].

Piezoelectric materials are also characterized by a butterfly shaped diagram showing
the relationship between the longitudinal strain and the electric field (shown in Fig-
ure 2.4). In that figure, the piezoelectric material linear behavior from point B to C
is described. This portion describes the pure piezoelectric behavior, easily predictable
and defined by a specific coefficient named the piezoelectric coefficient. The intersection
between vertical axis and the curve identifies point Ls, which stands for the residual
deformation at zero applied external field, also referred as remnant state. Subsequently,
point C ′ represents the coercive field where the material shows the minimum linear defor-
mation. After that point, as the polarization becomes negative, the strain starts growing
until point D is reached. Finally, inverting the field direction again, a symmetric curve
with its center of symmetry coinciding with Ls is obtained [46].

Figure 2.4: Longitudinal strain versus electric field diagram of piezoelectric materials
[46].
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Both direct and indirect piezoelectric effects, caused by polarized piezoelectric ma-
terials, are described by a set of constitutive equations [6]. The piezoelectric relations
described by the constitutive equations and the associated symbols follow the 176-1978
- IEEE Standard on Piezoelectricity [1]. Equations 2.1 and 2.2 describe the electrome-
chanical coupling of the indirect piezoelectric effect, specifically in the case of actuators.

{ε} = [s]E{σ} − [d]T {E} (2.1)

{D} = [d] {σ} + [ϵ]σ {E} (2.2)
Where ε stands for the strain field, σ for the stress field, D for the electric displacement
field, and E for the electric field. The matrix s represents the compliance matrix under
constant electric field conditions, while d and dT are the electromechanical coupling co-
efficient matrices, accounting respectively for the direct and inverse piezoelectric effects.
Finally, ϵ is the dielectric permittivity matrix under constant stress conditions.

In the case of sensing mechanism and so direct piezoelectric effect, constitutional
equation changes (see Equation 2.3 and Equation 2.4).

{σ} = [c]{ε} − [e]T {E} (2.3)
{D} = [e] {ε} + [Θ] {E} (2.4)

Where:

[c] = [s]−1 (2.5)
[e] = [s]−1[d] (2.6)
[θ] = [s]−1[d] (2.7)

In which, matrices [c], [e] and [θ] represents respectively the stiffness, piezoelectricity and
permittivity of the material.

The most produced piezoelectric materials are listed below.
Lead Zirconate Titanate (PZT) is one of the most commonly used piezoceramic mate-

rials. It is a synthetic perovskite ceramic material primarily made of lead (Pb), Zirconium
(Zr) and Titanium (Ti). The addition of various dopants to the material, such as nio-
bium (Nb), lanthanum (La), and bismuth (Bi), allows for further optimization [37]. The
most common types are PZT-4, PZT-8, PZT-5A and PZT-5H and the properties are
shown in Table 2.3. PZT materials offer several advantages that make them highly suit-
able for engineering applications. They are widely used in different range of applications
such as in actuators, sensors, and energy harvesting systems [7]. Another key benefit is
their customizable property, which means that they can be optimized by adjusting the
zirconate-titanate ratio for specific applications. This is due to the presence of a mor-
photropic phase boundary (MPB) at a composition of 52% lead zirconate (as it is shown
in Figure 2.5) which allows for a broad range of domain states to exist across a wide
temperature spectrum [27]. In addition, PZT materials are characterized by hard and
dense materials so that they can withstand high mechanical stress and environmental
conditions [31], enhancing their durability. Finally, chemical inertness and relatively low
manufacturing cost give to PZT materials high applicability.
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However, PZT materials also exhibit certain limitations. One main drawback is their
brittleness, which makes them prone to fracture under tensile strain. This limits its use
in applications that involve large deformations or cyclical loads [6].

Figure 2.5: Phase diagram of lead zirconate - lead titanate compounds [27].

In addition, environmental impact due to the toxicity of lead [30] is another weak
point, raising problems related to safety and disposal. Finally, above the Curie temper-
ature, PZT loses its piezoelectric properties, which restricts its use in high-temperature
applications. For many PZT-based materials, it is crucial to operate them below the
Curie temperature to maintain their functionality.

Constitutive equations for PZT materials can be simplified and in particular, if they
are characterized by a polarization along the z-axis, the following form is obtained [7]:⎡⎢⎢⎢⎢⎢⎢⎢⎣
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When polarization is oriented along the x-direction(Equations 2.10 and 2.11) or y-
direction (Equations 2.12 and 2.13), the constitutive equations are modified accordingly.
These can be obtained by applying appropriate transformations, such as a 90◦ rotation
around the y-axis, followed by a 180◦ rotation about the z-axis for the x-polarized case [7].
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Barium Titanate (BaTiO3) is another common piezoceramic material characterized
by spontaneous polarization and high piezoelectric sensitivity. Like PZT, it is a ceramic
material used in various actuator and sensor applications and its piezoelectric properties
are enhanced when it is poled [7].

Polyvinylidene Fluoride (PVDF), differently from the other materials described, is
a polymeric material and is one of the most well-known piezo polymers. These materi-
als are characterized by high piezoelectric coefficient (d33 = 49.6 pm/V ), low modulus,
lightweight properties, excellent stability, and desirable flexibility [26], making them par-
ticularly suitable for applications where flexibility is required and piezo ceramic materials
are not so desirable.

Macro Fiber Composites (MFC) are a class of piezoelectric composite materials devel-
oped by NASA in 1999. They are composed of rectangular piezoceramic rods embedded
between adhesive layers, electrodes, and a polyimide film in a way to enhance durabil-
ity (Figure 2.6). MFCs are categorized into different types based on their piezoelectric
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coupling mechanism: (i) P1-type, which uses the electromechanical coupling effect in
the same direction obtaining high effective strain sensing, (ii) P2 and P3-type, based on
the coupling effect between two orthogonal directions, suitable for energy harvesting and
strain sensing [6].

Figure 2.6: MFC composition [6].

BaTiO3 PZT-4 PZT-5A PZT-5H PZT-8 PVDF

d31(10−12C/N) -78 -123 -171 -275 -97 -23

d33 149 289 374 593 225 33

d15 496 584 741 330

g31(10−3V m/N) 5 -11.1 -11.4 -9.1 -11 216

g33 14.1 26.1 24.8 19.7 25.4 330

g15 39.4 38.2 26.8 28.9

k33 0.48 0.7 0.71 0.75 0.64 0.15

Mechanical QM 300 500 75 65 1,000 3-10

Dielectric loss 0.4% 2% 0.4%
Curie tempera-

ture (◦C)
115 328 365 193 300 100

Table 2.3: Piezoelectric materials and their properties [55]

In conclusion, piezoelectric materials stand out for their particularly promising prop-
erties, making them a topic of interest for the scientific community. Indeed, they represent
the key components for piezoelectric energy harvesters, which have increasingly become
the focus of attention for their potential applications. However, before discussing the
specific case of piezoelectric harvesters, it is essential to outline the general principles of
energy harvesting systems.
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2.3 Energy Harvesters
Energy harvesting is the process of capturing and converting energy from the environ-
ment and transforming it into electrical energy through a device called energy harvester,
which can be used to operate various electronic devices (particularly small and low-power
applications). These devices, exploiting energy which would otherwise be lost as heat
or dissipated, provide a sustainable and cost-effective alternative to traditional energy
sources, reducing dependence on batteries and wired power supplies. Unlike conventional
renewable energy sources, energy harvesting focuses on collecting locally available energy
for immediate use in localized systems. The power levels typically range from nanowatts
to hundreds of milliwatts [29] [27].

The emergence of advanced wireless networks, such as 6G, and the rapid expansion
of the Internet of Things (IoT) have increased the need for sustainable and efficient
power solutions. Traditional battery-powered devices suffer from limited lifespan, fre-
quent recharging needs, and environmental disposal concerns. Energy harvesting provides
an alternative by extending the operational life of electronic devices, reducing reliance on
batteries, and minimizing electronic waste. It is particularly beneficial for remote, hard-
to-reach, or inaccessible locations where battery replacement is impractical. Additionally,
energy harvesting plays a crucial role in environmental sustainability by exploiting ambi-
ent energy sources, addressing the growing concern over ecological impact. The increasing
reliance on batteries to power IoT devices has raised serious issues regarding their dis-
posal, as millions end up in landfills, where heavy metals pose a risk of groundwater
contamination. By reducing dependence on conventional batteries, energy harvesters
offer a sustainable and eco-friendly solution to these challenges [29] [7].

Figure 2.7: Classification of energy harvesting [27].

The classification of energy harvesters is based on the type of energy harvesting source
they use. The main sources of energy for harvesting include relative motion (wind, waves,
mechanical vibrations), heat (temperature gradient), electromagnetic radiation (radio
frequency), light (Photovoltaic) and chemical reactions [29] [27].

Energy harvesters based on heat sources are devices with thermocouples or ther-
mopiles which grasp waste heat from industrial processes or body heat for self-powered
electronics. [14] Power density for thermal harvesting from body heat ranges from
10 µW/cm3 to 60 µW/cm3, depending on temperature differences, while from indus-
trial applications ranges from 1 to 10 mW/cm2. The efficiency of these systems covers a
range from 0.1 to 3% [29] [12].

Light-based energy harvesters are constituted by photovoltaic (PV) cells, that convert
light energy into electrical energy. This method is commonly used in solar panels and
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small scales applications like powering sensors in IoT devices. These devices are charac-
terized by a power density which ranges from 0.006 to 15 mW/cm2 with an efficiency of
10 − 24% [29] [12].

An example of electromagnetic-based energy harvesters are devices based on RF (radio
frequency) sources. RF energy harvesting converts electromagnetic waves from Wi-Fi,
cellular networks, and broadcasts into electricity. It enables wireless power for remote or
hard-to-reach devices, for its low energy output limits are mainly used for small sensors
and IoT applications. In fact, power density goes from 1.2 · 10−5 to 12 mW/cm2 and an
efficiency of ∼ 50% [29] [12].

Regarding mechanical motion, there are different ways to exploit it and a broad
number of mechanisms including ocean wave energy harvesting (1a, 1b, 1c in Figure 2.7),
tidal energy harvesting (2a, 2b, 2c in Figure 2.7), wind energy harvesting (3a, 3b, 3c in
Figure 2.7), and vibration energy harvesting.

Figure 2.8: Energy harvesters based on mechanical motion. Reproduced from [5, 7, 12,
14,15,19,20].

Among these, the vibration-based energy harvesting are the most promising one, using
different transduction mechanisms such as piezoelectric (4a in Figure 2.7), electrostatic
(4b in Figure 2.7) and electromagnetic conversion (4c in Figure 2.7).

Electrostatic vibration energy harvesting utilizes the relative motion of an oscillat-
ing mass to induce variations in overlapping comb structures, leading to a change in
capacitance, which generates voltage at a constant charge. The governing equation is:

C = ϵ0A/d, Q = C · V (2.14)

Where capacitance (C) depends on permittivity (ϵ0), area (A), and distance (d) [12].
Electromagnetic vibration energy harvesting operates through the movement of a

magnetic field relative to a static coil, inducing a current according to Faraday law of
electromagnetic induction [12].
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Piezoelectric vibration energy harvesting relies on the bending of a beam under me-
chanical strain, where a piezoelectric material converts mechanical deformation into elec-
trical energy [12].

Piezoelectric transduction has become one of the most popular methods for low-power
energy harvesting, particularly for small, autonomous electronics used in healthcare, au-
tomotive, and environmental monitoring thanks to its high-power density, simplicity, and
scalability. Additionally, piezoelectric harvesters can be produced at both macro and mi-
cro scales. This versatility makes them ideal for powering low-energy devices, especially
in applications where conventional power sources are impractical or infeasible.
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2.4 Piezoelectric-Based Energy Harvesters
Piezoelectric energy harvesters (PEH), as previously introduced, convert mechanical
strain into electrical energy through the piezoelectric effect. The process typically in-
volves piezoelectric materials placed on cantilever beams, where bending due to vibrations
induces strain in the material, generating voltage that can be harvested [18] [6].

These devices require a consistent vibration source and, thanks to well-established
fabrication techniques such as thick-film and thin-film methods, can be produced in both
macro and micro scales. This versatility makes them suitable for a wide range of applica-
tions, particularly in situations where frequent battery replacement is either impractical
or impossible, such as in hard-to-reach areas. Applications include, but are not limited to,
wireless sensor networks, implantable medical devices (such as pacemakers), tire pressure
monitoring systems, and bridge and building monitoring (see Figure 2.9) [7] [6] [38].

Figure 2.9: PEH applications. Reproduced from [7].

As mentioned earlier, PEH depends on the properties of piezoelectric materials that
generate electrical charge when subjected to mechanical stress. The materials commonly
used in PEH systems include PZT (Lead Zirconate Titanate), PVDF (Polyvinylidene
fluoride), and Macro Fiber Composites (MFCs). These materials are selected for their
high electromechanical coupling coefficients, which enable efficient energy conversion.
Among these, PZT is the most widely used due to its strong electromechanical response,
while PVDF is valued for its flexibility and is typically employed in low-power applications
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[7] [6]. Also, devices with porous piezoelectric materials are a field of interest for their
suitability in lightweight applications [7].

Since piezoelectric energy harvesting has become a central field of interest in recent
years, many configurations have been explored with the aim of maximizing power output
and expanding the range of excitation frequencies that lead to significant power extrac-
tion, in order to achieve devices that are practically useful in real applications.

Different classifications are defined to distinguish various types of piezoelectric energy
harvesting systems. One of these classifications is based on the predominant value of the
electromechanical coupling coefficients d15, d33 and d13, resulting in three main operation
modes.

The d13 mode, also known as the transverse mode, is characterized by a polarization
direction (which corresponds to the electric field direction) that is perpendicular to the
direction of the applied mechanical stress, as illustrated in Figure 2.10.(a).

In contrast, the d33 mode or the axial mode, occurs when the polarization direction
is aligned with the applied mechanical stress, as shown in Figure 2.10.(b).

(a)

(b)

Figure 2.10: Comparison between d31 and d33 modes [7].

Finally, d15 mode, commonly referred to as the shear mode, features a polarization
direction perpendicular to the applied electric field. Unlike the d13 and d33 modes, where
the electrodes are positioned perpendicularly to the poling direction, in the d15 mode,
they are arranged parallel to it.

Another classification is based on the number of piezoelectric layers used to design a
single generator. A simple but effective design is the unimorph beam, which consists of
a metallic substrate with a piezoelectric layer attached to it. Electrodes, with negligible
thickness, are fixed to the piezoelectric layer to allow the electrical charge generated by
the strain induced during the beam’s vibration to create an electric field between them.
In Figure 2.11 a scheme of a unimorph scheme is reported where it is assumed that the
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upper and lower electrodes connected to the piezoelectric layer are linked to a resistive
electrical load (RL) to develop a simple model for predicting the electrical outputs [8].

Figure 2.11: Unimorph cantilever energy harvester [8].

An equivalent electrical circuit model can be used to describe that energy harvester
(Figure 2.12). The model is represented by two parts coupled. In the left part, the induc-
tor Lm, the capacitor Ck and the resistor Rb are depicted that corresponds respectively
to the mass, the stiffness of the piezoelectric beam and the parasitic damping. The AC
voltage generator Vm stands for the vibration of the base that acts as an alternating
input force. In the right part there is a capacitor C0 in parallel to the resistive load which
represents the capacitance of the piezoelectric layer. V (t) denotes the voltage across the
resistive load, while I(t) indicates the current flowing through the piezoelectric layer [7].

Figure 2.12: Unimorph energy harvester electrical circuit model [7].

For thin beams where the thickness is much smaller with respect to its length, that
is the case of piezoelectric unimorph energy harvesters, Euler-Bernoulli beam theory
is sufficient to describe the analytical model. In addition, as soon as the electrodes
have a negligible thickness perfectly covering the top and bottom piezoelectric surfaces,
the electric potential function ϕ is assumed to vary linearly on z direction and has no
dependency on x and y coordinates. This assumption implies that the electric field can
be represented as in Equation 2.15 [7].

Ex = Ey = 0, Ez = −V (t)
hp

(2.15)

According to Euler-Bernoulli beam theory, the displacement field within the beam
can be expressed as in Equation 2.16 [7].

Ux = −z
∂w

∂x
, Uy = 0, Uz = w(x, t) (2.16)
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Where Ux, Uy and Uz are the total displacement, and w(x, t) is the relative deflection of
the beam with respect to the base.

From the linear strain-displacement relationship, the strain field is obtained thanks
to Equation 2.17 [7].

εxx = −z
∂2

∂x2 , εyy = εzz = γxy = γxz = γyz = 0 (2.17)

Furthermore, there are more complex models of energy harvesters known as multi-
morph energy harvesters. These devices are characterized by multiple layers of piezo-
electric materials with the aim of increasing the power generated per unit scavenger
volume [7].

In particular, one of the widely used examples of these devices is the bimorph harvester
composed of two layers of piezoelectric. Figure 2.13 is a schematic representation of a
bimorph PZT cantilever beam [4].

Figure 2.13: Bimorph PZT cantilever beam.

For these types of energy harvesters, the Euler-Bernoulli beam theory alone is no
longer sufficient for analytical modeling. The aforementioned classic theory indeed as-
sumes that the beam behavior is governed only by the bending moment, hypothesizing
that the cross sections stay orthogonal to the neutral axis and without accounting for
the influence of shear. This is valid only in the case of long and slender beams. On the
other hand, in piezoelectric bimorphs, the slenderness ratio (beam length to its height) is
reduced, and the shear stresses can no longer be neglected. For this reason, Timoshenko
beam theory is introduced, which takes into account an angular variable that describes
the rotation of the cross-section due to shear deformation [21]. Therefore, a combination
of Timoshenko beam equations and Euler-Bernoulli theory has been developed to more
accurately describe their real behavior. Piezoelectric bimorphs can be classified based
on their manufacturing methods and electrode configurations and the main types are
introduced in Figure 2.14.

Series bimorphs, type (a) and (b), have no intermediate electrodes and so the electric
field is generated between the top and bottom electrodes. The polarization of the piezo-
electric layers is antiparallel, leading to the alternative name antiparallel bimorph. The
field strength is determined by the applied voltage V divided by the total thickness 2t.
The difference between type (a) and type (b) is a minus sign in the piezoelectric coeffi-
cient, while all other parameters remain unchanged. Parallel bimorph, type (c), includes
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an intermediate electrode connected to one of the poles of the voltage source leading to
a stronger electric field as it is equal to V/t which is twice of that of the previous types.
Heterogeneous bimorph, type (d), consists of a single piezoelectric element bonded to a
non-piezoelectric material (e.g., metal or dielectric materials like glass). The structural
behavior is more complex so that requires different analytical models [4].

Figure 2.14: Piezoelectric bimorphs configurations: (a) Inward series bimorph, (b) out-
ward series bimorph, (c) parallel bimorph, (d) heterogeneous bimorph [45]

Several models have been developed to enhance the power output of both unimorph
and multimorph structures. One common approach is the addition of proof masses at the
free end of the cantilever, which increases deformation and improves energy conversion.
Another strategy involves modifying the geometry of both the beam or the proof masses
to optimize mechanical response and achieve higher performance.

Figure 2.15: Geometrical improvements [38] [8].

An important aspect that must be taken into consideration when designing a piezo-
electric energy harvester is the goal of making the first resonance frequencies as close as
possible between each other and of falling within the excitation frequency range, typical
of the given application. The reason why having the resonance frequencies within the
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excitation frequency range is that when the excitation frequency coincides with one of
the harvester’s resonance frequencies, the structure is in resonance condition and the
highest possible mechanical strain for that structure at that excitation is achieved. This
strain leads to the highest possible electrical charge and so voltage output, improving the
overall energy conversion efficiency [6]. In addition, especially in the case of multimodal
energy harvesters, it is important to have the resonance peaks close to each other in order
to obtain an output voltage, and thus output power, as flat and constant as possible at
reasonable values. This enhances also the feasibility and usefulness of the harvester in
practical applications, where stable electrical power is required.

2.4.1 Energy Condition Circuits

Piezoelectric energy harvesters generate an AC voltage when subjected to mechanical
vibrations. The aim of these structures is to exploit this electrical energy in different
applications, that’s why a circuit is implemented. The simplest approach is to connect
directly the piezoelectric electrodes directly to a simple resistive load to simulate any
electronic components that consume electrical energy generating electrical power, as it is
shown in Figure 2.16 [8].

Figure 2.16: Piezoelectric energy harvester with a simple resistor [6].

Nevertheless, as soon as the harvester produces AC voltage, it is necessary to store
this energy in practical applications, for example, using a chemical battery that needs
a DC voltage. That is why, to improve applicability and optimize energy management,
more advanced read-out circuits are implemented, which include different devices (see
Figure 2.17).

Rectifier aims to convert the alternate current into direct current to store both positive
and negative charges. The simplest one is a diode bridge (D1 and D4) and is shown
in Figure 2.17. Capacitance (C) acts like an intermediate storage capacity preventing
excessive charge accumulation. DC/DC converter regulates the output voltage preventing
overcharging or discharging of the battery. Battery stores energy and power the connected
devices [6].

In the case of having more than one generator, an important factor for the final
performance is how the different generators are connected to each other. There are two
possible basic ways to connect the generators, series and parallel configurations.
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Figure 2.17: Read-out circuit for a single generator [6].

The series configuration is implemented by assigning the ground node to the bottom
electrode of the first generator. Then, the top electrode of that generator is connected to
the bottom electrode of the second generator, forming the first terminal. Subsequently,
the second terminal is assigned to the top electrode of the second generator and the
bottom electrode of the third one, and so on until all the generators are connected [8].
Finally, the ground node and the last terminal of the last generator will generate the over-
all voltage of the entire system so that the total output voltage is the sum of the voltages
generated by each piezoelectric element [6]. However, this arrangement is sensitive to
failures, in fact if one generator malfunctions, the entire system’s voltage output may be
compromised. In addition, the problem of voltage cancellation can occur, a phenomenon
in which output voltage is nullified due to phase differences between each generator. A
way to solve this problem is implementing a rectification stage for each piezoelectric ele-
ment [6]. On the other hand, the parallel connection consists of having a shared ground
node which is connected to the bottom electrode of each generator, and a shared termi-
nal connected to the top electrode of each generator. In this case, the output current is
the sum of the currents generated by each piezoelectric element, enhancing the charging
process of the storage system. Moreover, this configuration does not suffer from overall
failure if only one generator fails, increasing the system’s reliability. However, unlike the
previous case, the voltage output will be lower [6] [8].

Figure 2.18: Series and Parallel connections [36].
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Also mixed parallel-series connection are possible types of configurations to merge the
main advantages of both the configurations explained before.

2.4.2 Experimental Setup

To experimentally evaluate the electrical output of the energy harvester subjected to base
excitation, and also to validate the results obtained from the FEM analysis performed in
specific software such as COMSOL, an experimental setup is required.

Firstly, as is shown in Figure 2.19, a function generator produces a signal, which
can be sinusoidal, square, random or many other types. The signal generated must be
amplified by a power amplifier, which is then connected to the shaker, providing the base
excitation to the piezoelectric device. The electrodes of piezoelectric harvester can be
wired in different configurations, and the wires are then connected to a resistance box,
where the resistance value of the resistive load can be adjusted according to the desired
extraction. Additionally, accelerometers can be placed in the harvester to measure the
base excitation and record the acceleration response. These accelerometers are connected
to a sensor signal conditioner. Finally, all the outputs coming from the resistance box and
the sensor signal conditioner can be displayed on the workstation using a DAQ System [6].

Figure 2.19: Schematic diagram of the experimental setup [6].
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2.5 Starting Piezoelectric Harvesting Structure
The aim of this study is to geometrically optimize an existing structure in order to
maximize the extracted electrical power. For this reason, it is crucial to introduce and
describe the initial structure used to start the optimization process.

The starting configuration is a validated MFC-based Quad-Finger multi-modal energy
harvester. From a geometrical point of view, the structure consists of a central plate with
a x b x t as main dimensions, which are respectively the length, the width and the
thickness. One of the four edges of the structure is characterized by four cantilevered
beams, each equipped with a proof mass at its free end, with a length Lm, width w and
height hm . Each of the four cantilevered beams has the same width w, coinciding with
the one of the proof masses, and is equally spaced by a distance d. Furthermore, the
lengths of the beams L1, L2, L3 and L4 are inspired by the proportions of a human hand.
Additionally, parameters d1, d2 and d3. Finally, the distance between the first beam and
the nearest edge of the central plate is equal to the distance between the last beam and
the opposite edge, both denoted by s.

From Figure 2.21.(b), it is clear that the width b can be expressed as the function
given in Equation 2.18 as follows:

b = 2s + 4w + d1 + d2 + d3 (2.18)

The overall substructure (also called substrate layer), composed of the central plate
and the cantilever beams, is made of aluminum, while the proof masses are made of
stainless steel. Mechanical properties of these materials are reported in Table 2.5.

This configuration is referred to as “multi-modal” because the presence of four beams
enables multiple resonance modes at relatively low frequencies [50]. This characteristic al-
lows the device to operate efficiently over a wider frequency range, which is advantageous
in real-world applications where vibrations often occur over a spectrum of frequencies
rather than at a single specific value. This avoids the need for precise tuning to one fre-
quency and reduces performance losses due to frequency shifts, typical of real vibrations.

Each beam includes a piezoelectric patch made of Macro Fiber Composite (MFC),
which is responsible for converting mechanical vibrations into electrical energy.These
MFC patches are composed of two layers: an inactive layer, with Li x Wi x ti dimensions,
made of polyimide film bonded to the beam, and an active layer, with La x Wa x ta

dimensions, made of piezoceramic rods (PZT-5A) embedded between electrodes, adhesive
layers and polyimide film (see Figure 2.20).

All geometrical values previously named are listed in Table 2.4.
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Figure 2.20: MFC microstructure [6].

As for boundary conditions, the device is clamped along three edges corresponding to
those of the substructure, while the side with the cantilever beams is left free to vibrate
under the effect of a base excitation along z-direction (see Figure 2.21.(a)).

(a)

(b)

Figure 2.21: MFC-based Quad-Finger multi-modal energy harvester [6].

Focusing on the Macro Fiber Composite (MFC) materials, in order to fully describe
the piezoelectric effects, all the components of the constitutive equation (Equations 2.1
and 2.2) has to be defined [6]. Materials data are provided by the manufacturer (listed in
Table 2.5 [17] ), however, not all the components of the previously mentioned equations
are directly available from the data sheet. In particular, the matrix [S]E is not known
apriori, but is retrieved by using standard stress-strain relations for orthotropic materials
(Equations 2.19 and 2.20), that rely on the linear elastic engineering constant provided
and listed in Table 2.5.

SE
11 = 1

E1
, SE

22 = 1
E2

, SE
33 = 1

E2
, SE

44 = 2(1 + ν21)
E2

, SE
55 = 1

G12
, (2.19)

SE
66 = 1

G12
, SE

12 = SE
21 = −ν12

E1 , SE
13 = SE

31 = −ν12
E1 , SE

23 = SE
32 = −ν21

E2 (2.20)
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Component Geometrical parameter Value (mm)

Substrate

a 40
b 130
t 1
w 18
d 10
s 14

L1 80
L2 90
L3 100
L4 85
d1 10
d2 10
d3 10

MFC

Li 37
Wi 18
ti 0.15
La 28
Wa 14
ta 0.3
p 7.5

Proof masses
Lm 15
hm 10

Table 2.4: Geometrical parameters of the starting structure [6]

Therefore, the final simplified compliance matrix for the MFC piezoelectric material
can be expressed in the following way [6].

[S]E =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

3.30 −1.02 −1.02 0 0 0
−1.02 6.31 −1.01 0 0 0
−1.02 −1.01 6.31 0 0 0

0 0 0 14.63 0 0
0 0 0 0 18.13 0
0 0 0 0 0 18.13

⎤⎥⎥⎥⎥⎥⎥⎥⎦
× 10−11 m2N−1 (2.21)

Concerning the electromechanical coefficients matrix, the simplified matrix shown in
Equation 2.22 is retrieved for two principal reasons. Firstly, the piezoelectric materials
are polarized in z-direction and so the only non-null components are d31, d32, d33, d24 and
d15. In addition, another simplification can be performed which consist on considering d24
and d15, known as shear coefficients, negligible in composite materials such as MFC [6].

[d] =

⎡⎢⎣ 0 0 0 0 0 0
0 0 0 0 0 0

d31 d32 d33 0 0 0

⎤⎥⎦ (2.22)

Finally, the dielectric permittivity matrix is simplified to a diagonal matrix (Equa-
tion 2.23) [6].
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[ϵσ] =

⎡⎢⎣ϵσ
11 0 0
0 ϵσ

22 0
0 0 ϵσ

33

⎤⎥⎦ (2.23)

Component Material property Unit Value

Active part

Tensile modulus in rod direction, E1 GPa 30.336
Tensile modulus in electrode direction, E2 GPa 15.857
Shear modulus, G12 GPa 5.515
Poisson’s ratio, ν12 1 0.31
Poisson’s ratio, ν12 1 0.16
Volume density, ρ kg/m3 5440
d31=d32 pC/N -170
d33 pC/N 400
ϵσ
11 1 712

ϵσ
22 1 1.7

ϵσ
33 1 737

Inactive part (Polyimide film)
Young modulus, E GPa 1.85
Volume density, ρ kg/m3 1440
Poisson’s ratio, ν 1 0.34

Substructure (Aluminum)
Young modulus, E GPa 70
Mass density, ρ kg/m3 2700
Poisson’s ratio, ν 1 0.3

Proof masses (Stainless steel)
Young modulus, E GPa 193
Mass density, ρ kg/m3 8000
Poisson’s ratio, ν 1 0.3

Table 2.5: Mechanical and electrical properties of components’ materials [6] [17]

Once the geometry and materials of the harvester are defined, it is crucial to describe
the power management circuit implemented in this study.

As previously discussed, the structure is placed into a shaker, clamped along three
edges, and subjected to harmonic base excitation. This vibration induces mechanical
strain in the MFC patches, resulting in an alternating voltage output. To collect this
voltage and evaluate the electrical power generated, the four piezoelectric patches must
be electrically connected between each other and with an external load. For simplicity,
a single resistor is selected as external load. Regarding the electrical connection between
the MFC layers, a parallel configuration is adopted 2.22. This choice is based on prior
study of the substructure [6], which reports that a parallel connection leads to higher
output voltage due to the previously described advantages, discussed in Subsection 2.4.1.
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Figure 2.22: Power management circuit of the structure under study.

This initial design of the Quad-Finger energy harvester was simulated in COMSOL
Multiphysics and validated through experimental testing by Askari et al. [6], thanks to a
fabricated prototype of the starting structure of the harvester shown in Figure 2.23.

In the FE simulations, Aluminum (Young’s modulus: 70 GPa, density: 2700 kg/m3,
Poisson’s ratio: 0.3) was assigned to the substrate, MFC material to the piezoelectric
layers, and Stainless Steel (Young’s modulus: 193 GPa, density: 8000 kg/m3, Poisson’s
ratio: 0.3) to the proof masses. The FE model was discretized using fine tetrahedral
elements, and eigenfrequency and frequency-domain studies were then conducted.

Figure 2.23: Fabricated prototype of the starting structure.

In conclusion, the harvesting structure just described, whose FE model has been
experimentally validated, represents the starting point for the hybrid optimization process
proposed in this thesis, which is based on the combination of Machine Learning and
Genetic Algorithms. It is therefore fundamental to introduce the theoretical background
related to Machine Learning models and general optimization principles.
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2.6 Machine Learning

Nowadays, Machine learning is increasingly discussed and widely applied in a lot of
fields, becoming an essential tool that opens the door to new ways to see things and
solve problems. Current applications of machine learning range from personalized search
and recommender systems (such as Netflix) to transportation, medical diagnosis, and,
particularly relevant to this project, the optimization of energy harvesters. By enhancing
their output, machine learning can contribute to making these devices more viable for
practical applications.

Nowadays, Machine learning is increasingly discussed and widely applied in a lot of
fields, becoming an essential tool that opens the door to new ways to see things and solve
problems. Current applications of machine learning range from personalized search and
recommender systems (such as Netflix) to transportation, medical diagnosis, and, partic-
ularly relevant to this project, the optimization of energy harvesters. By enhancing their
output, machine learning can contribute to making these devices more viable for practical
applications. Machine learning is a subset of artificial intelligence which is defined by Nils
J. Nilsson in «The quest for Artificial intelligence» as «[..] artificial intelligence is that
activity devoted to making machines intelligent, and intelligence is that which enables an
entity to function appropriately and with foresight in its environment.» [33].

It is important to introduce the concept of “deductive” and “inductive” reasoning.
Deductive reasoning (commonly associated with Good old-fashioned AI) consists of

explicitly defining rules to make decisions. For example, in a chess game, it defines what
a good chess position is by means of if-then clauses.

Inductive reasoning, on the other hand, is the key feature of machine learning and it
gathers a large, labeled data set and the system learns. For instance, in a chess game,
the system might learn to associate certain positions with the label “win”.

«Most machine learning methods construct hypotheses from data. [..] Such an infer-
ence is rather “inductive” than “deductive”» [33]

Figure 2.24: AI classification [52].
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Machine learning can be classified into three categories, as it is shown in Figure 2.24,
which are unsupervised learning, supervised learning and reinforcement learning, each
characterized by different subcategories listed in Figure 2.25.

Figure 2.25: ML classification [52].

Unsupervised learning is used to draw interferences from input datasets without any
output (targets) to be followed. It can be distinguished in two categories: (i) Clustering,
the most common unsupervised learning technique, where different clusters are created
based on similar features, and (ii) Dimensionality reduction, technique used to reduce
the dimension of a problem, representing the dataset with less variables so that a simpler
and faster technique is achieved at the cost of sacrificing some information.

Supervised learning, on the other hand, uses a known set of input data and known
outputs to train a model to make reliable predictions. The goal of the model is to make
accurate predictions for the output when presented with new, unseen data. This type
of model can be additionally divided into: (i) Classification technique which predicts
discrete responses (e.g. image recognition, tumor recognition, spam detection etc.) and
(ii) Regression technique which predicts continuous responses (e.g. algorithmic trading,
power outputs of energy harvesting systems etc.).

Reinforcement learning (RL) «is learning what to do, how to map situations to actions,
so as to maximize a numerical reward signal. The learner is not told which actions to
take, but instead must discover which actions yield the most reward by trying them» [49].
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The RL, differently from the unsupervised and supervised learning that are characterized
by a static dataset, has dynamic dataset and has the aim of finding the best sequence of
outputs that will generate the optimal outcome. The basics of RL can be summarized in
Figure 2.26.

Figure 2.26: RL scheme [52].

Within the agent, there is a function that takes all state observations as inputs and
maps them to actions as outputs. In reinforcement learning terminology, this function is
referred to as the policy. Based on the set of observations, the policy determines which
action to take. Once the action is taken, the environment generates a reward, which is a
function that returns a scalar value indicating the desirability of the action taken. The
main limitation of RL is the challenging and time-consuming process that requires careful
tuning of the so-called hyperparameters and of the reward function [52].

2.6.1 Data Preparation for Machine Learning Models

Before focusing on specific machine learning models to analyze in detail how they work,
it is crucial to pay attention to the dataset used to build these ML models.

The first step to create the dataset is data collection based on the expected output
of the machine learning model [32]. In the case of supervised learning with regression
techniques, this consist of gathering output values corresponding to a a given set of inputs.
These data can be collected from various sources, such as physical sensors, numerical
simulations performed with dedicated software tools, or many other suitable methods.

The second step consists of identifying the presence of outliers, that are unexpected or
abnormal data points within the dataset. They are defined by Hawkins in the following
way: «An outlier is an observation which deviates so much from the other observations
as to arouse suspicions that it was generated by a different mechanism» [3]. This is a
crucial aspect of data preparation, as outliers can significantly affect the reliability of
machine learning models. In particular, the presence of outliers can mislead the training
process, causing the formation of patterns that do not reflect the general trend of the data
and so generating inaccuracies [3]. To identify the presence of outliers Exploratory Data
Analysis (EDA) is performed. This analysis has the aim of understanding and identifying
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the main features of the collected dataset. EDA consists of analyzing the distribution of
variables of the gathered data. In particular, graphical are the most used and intuitive
ones to identify the presence of outliers [32] [53]. Histograms, box-plots and scatter-plots
are only few examples of graphical way to perform EDA.

Once the anomalous points are identified, the next steps involve data cleaning and
data preparing. First, the detected outliers are removed from the dataset to avoid the
aforementioned issues. Then, the data are further analyzed to identify common patterns.
Based on this analysis, new features are created from the input variables in the raw
dataset to later help ML models capturing the significant relationship and improve them.
This process, known as Feature engineering, is not mandatory but can be really helpful
to improve prediction ability of machine learning models [58].

Finally, in order to train and test machine learning models, it is necessary to split the
obtained dataset in two parts: the training dataset and the test dataset. The training
dataset is a part of the dataset, usually the 60-70 % of it, used to train and fit the
model. The remaining part of the dataset is the test dataset and it is used to provide an
evaluation of a model.

Figure 2.27: Train/Test split [52].
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2.7 Ensemble Supervised Algorithms

Ensemble algorithms are a particular type of supervised learning. Differently from simpler
algorithms that use only one model to predict the output, such as one decision tree, mul-
tiple models are used in ensemble algorithms. The combination of these models has the
main objective of obtaining more reliable and accurate predictions and this combination
is only effective if there is disagreement between the models. Combining different models
leads to effectively reducing the variance-error and in some cases also bias-errors [40].

Since the output to be analyzed in this study is continuous, particular attention
is given to the three main regression ensemble models, chosen for their reliability and
widespread use: Random Forest Regression (RFR), Gradient Boosting Regression Tree
(GBRT), and Extreme Gradient Boosting Regression (XGBR) [18].

Before introducing these algorithms, is important to define what a decision tree is. A
decision tree is composed of: (i) root nodes that contain the dataset, (ii) internal nodes
where each of them corresponds to an attribute, and (iii) leaf nodes that correspond to
the results.

Figure 2.28: Decision tree scheme.

The decision tree splits the dataset recursively using decision nodes until only pure
leaf nodes remain, selecting the optimal splits by maximizing the entropy gain. If a data
sample meets the condition at a decision node, it moves to the left; otherwise, it moves
to the right. Eventually, it reaches a leaf node where a class label is assigned [57].

2.7.1 Random Forest Regression RFR

RFR model, since it is an ensemble algorithm, uses more than one decision tree because
the drawback of using a single decision tree is that, slightly changing the dataset, the
decision tree changes completely showing a high sensitivity to the training data. In
particular, this model is characterized by 5 main steps.

First, multiple training subsets are generated from the original training data. This is
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achieved by using the “bagging idea” (also referred as bootstrap aggregating), where ran-
dom rows from the original dataset are selected to generate new subsets, each containing
the same number of rows as the original. Some data may be selected multiple times due
to the random sampling process.

In the second step, rather than utilizing all available inputs, only a part of them
,for each subset, is used to train each tree, reducing overfitting and improving model
robustness. The procedure of selecting random features for the splitting procedure is
called CART algorithm [13].

Once the subsets and the random inputs to consider within each of them are chosen,
decision trees are built accordingly.

After the creation of the decision trees, the RFR model is trained and the following
phase consist of feeding the algorithm with the test dataset to predict the output. The
result would be the average between all the decision trees build.

Finally, the predicted results are compared with the real outputs to have an assessment
of the accuracy of the model.

Figure 2.29: RFR flowchart [47].
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2.7.2 Gradient Boosting Regression Tree GBRT

Gradient Boosting Regression Tree (GBRT) is composed of two primary components: the
Regression Tree (RT) and Gradient Boosting (GB). In GBRT, multiple regression trees
are used, where each tree learns the residual error from the cumulative predictions of
all previous trees. These residuals represent the difference between the predicted values
and the actual values. The final output of GBRT is the sum of the predictions made by
each individual tree. The key concept behind GBRT is to identify the right decision tree
function that minimizes the loss function during each iteration [18]. The steps followed
by the GBRT are listed below.

First, a weak initial model is created but the outcomes from that model have non-
optimal accuracy.

Then, A boosting method is used to train the model so that the previous predic-
tions are continuously improved. To do so, the differences between the predicted values
from the weak model (y) and the actual values (fm(x)) are retrieved, as it is shown in
Equation 2.24, and named residuals.

R(y, fm(x)) = y − fm (2.24)

The negative gradient approximation is applied in the loss function, following the
Equation 2.25, to find the correct direction in order to minimize it.

gm = −δR(y, fm(x))
δfm(x) (2.25)

The next step consist of obtaining the subsequent prediction model by adding the
residuals to the weak model. In Equation 2.26 the “m + 1” prediction model is derived,
where a weight α is considered to prevent overfitting. The latter is a common issue
in supervised machine learning, where the model memorizes the entire training dataset,
including noise, without capturing the main patterns, leading to a poor generalization [56].

fm+1(x) = fm(x) + αR(y, fm(x)) (2.26)

This procedure is repeated iteratively, obtaining at the end the results that will be
the sum of the conclusions of all the previous trees.

Figure 2.30: GBRT scheme [18].
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2.7.3 Extreme Gradient Boosting Regression XGBR

Extreme gradient boosting regression is an evolution of the GBRT model, indeed it-
eratively improves itself through boosting methods following a similar process of the
previously described model. However, XGBR differs in that it continuously adjusts the
parameters of the next decision tree by minimizing structural risk. To achieve this,
XGBR incorporates a regularization term into the loss function, which helps smooth the
final learning weight and prevents overfitting. The regularization function is expressed
in Equation 2.27, where T represents the leaf nodes, wn is the output value of each leaf
node and values α and β are coefficients of control of specific gravity.

Ω(hm(x)) = αT + β
∑︁T

n=1 w2
n

2 (2.27)

This model is fast and efficient, making it well-suited for handling large datasets. How-
ever, due to its numerous parameters, it is difficult to tune and may not be ideal for
high-dimensional data. In the XGBR model, the sum of the predicted values at each step
constitutes the final predicted value [18].
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2.8 Optimization Problem

The main goal for the design of an energy harvester is maximizing power extraction in
order to be competitive in real world applications. Consequently, an important issue to
be addressed is a constrained optimization problem. The objective function f(x) lies at
the core of that problem, and the process consists in the minimization or maximization
of that function. The decision variables x can be more than one and their values are
constrained.

The objective function can represent several types of functions coming from different
fields of interest such as thermodynamic, economic, environmental field, and so on. For
the energy harvesting field one typical objective function could be power extraction or
output voltage. In addition, multi-objective optimization could be performed to find an
optimal trade-off between the outputs considered. In the field of energy systems there
are three levels of optimization.

The first one is the optimal synthesis that aims of searching the optimal system
configuration such as the components to be installed.

The second one is the optimal design, where the system configuration is defined and
the focus is on the optimization of the design parameters.

Finally, optimal operation consist of optimizing off-design conditions while the con-
figuration and the design are fixed [54].

In this specific case, the level explored is the optimal design since the main config-
uration of the piezo-harvester has already been defined. The objective is to change the
design parameters, such as the length of the beams, in order to maximize the energy
extraction. However, finding the maximum power extraction traditionally solving ana-
lytical equation is not possible because of non-linear governing equations that require the
use of Finite Element Method (FEM) [10]. As a matter of fact, the need of the objective
function evaluation through system simulation using COMSOL leads to what is called
“Simulation-based optimization” [10].

2.8.1 Optimal Design

Considering the methods used to find the optimal design, the first distinction is between
the deterministic and the heuristic methods. Deterministic methods can be further di-
vided into graphical methods, where the objective function is evaluated at several values
of the decision variables so that the maximum or the minimum can be graphically de-
tected; direct methods, which consist of iteratively evaluating the objective function; and
indirect methods that take advantage of the derivative [54].

These ways of evaluating the best design could not be the best solution high com-
plexity and predominantly stochastic nature problems, much like most real-world phe-
nomena [10]. For this reason, heuristic methods are the most suitable option to tackle
this type of problems. Indeed, heuristic methods are particularly well-suited in case of
complex, non-convex objective functions, as they avoid being stuck in local maxima or
minima. These methods are capable of evaluating the global optimum and, also in this
case, it is possible to further divide this category into other sub-categories like Evolution-
ary Algorithms (EAs) or Simulated Annealing and others [54]. Evolutionary algorithms
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are so called because they find the optimal solution by simulating the natural process of
evolution. One of the most used is the Genetic Algorithm (GA) [10].

2.8.2 Genetic Algorithm

Genetic Algorithm simulates the selection mechanism of natural genetics to optimize a
given problem and is characterized by four main steps.

The first step is called initialization. In this phase, an initial population of N individ-
uals is generated. Each individual can be characterized by λ decision variables and each
decision variable is described by n number of genes. Therefore, each individual consist of
a set of λ binary strings of n bits. For each individual, the objective function is evaluated.
Next, a certain percentage of individuals is selected from the initial population according
to the value of the objective function. This process is known as selection. The third step is
cross-over (or combination). In this phase, from the selected population two individuals
are chosen, calling them parents, which are combined to generate two children. Finally,
the mutation step is performed, in which, with a certain probability, a single gene can be
modified from 0 to 1 or vice-versa. After these steps, the objective function is evaluated
and then all the steps are repeated iteratively until the cycle is stopped. Several types of
criteria to stop the algorithm can be performed depending on the application [54].

Figure 2.31: Genetic Algorithm flow-chart [54].
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Focusing on the selection step, several methods are used to retrieve the selected pop-
ulation in order to generate a new population.

Among these methods, the steady state selection is a possible choice to perform the
genetic algorithm. This method consists of taking only a part Ω of the population but
at the end, only one individual or only a small part of the population are replaced in a
time step [2].

Another technique consists of ranking the population on their fitness value, giving
the name of rank selection. If an individual has the best fitness, it is placed in the first
place. Then, depending on the specific variant of the method is used, parents can either
be randomly selected from the top ranked individuals or selected based on a probability
function (Equation 2.28). The latter is a function of the individual’s rank position N [34].

Pi = 1
N

(n− + (n+ − n−) i − 1
N − 1); i ∈ {1, ..., N} (2.28)

Where Pi is the selection probability, n+ is the best individual and n− the worst one.
Moreover, a simpler selection mechanism is the random selection, where the parents

are randomly selected from the population [25].
One of the most used methods is the Tournament Selection and it consists of taking

several individuals from the population defined by the tournament size. The individual
with the best fitness is subsequently chosen [34].

Furthermore, Roulette wheel selection is another well-known technique. Each individ-
ual of the population has its own slice of the roulette wheel, but the angle of the sector
depends on the fitness value in order to establish the probability of selection that can be
calculated with Equation 2.29.

PS(Ii) = f(Ii)∑︁n
i=1 f(Ij) ; j = 1,2, ..., n. (2.29)

Where n is the population size and f is the fitness value of the specific individual [34].
Focus is subsequently placed on the crossover step. Likewise, in this case, there is

more than one method to combine the selected parents generating the new population
and some of them are listed below [25].

One of the most commonly used is the single point crossover, where a point is ran-
domly chosen and at that point, crossover takes place between two parents.

Another method is the two points crossover, which is similar to the first method but
crossover is performed between the two points.

Alternatively, the uniform crossover selects genes randomly from each parent with
the same probability for each gene of the single child.

Finally, also for the mutation step multiple methods are available [25].
The most common is the swap mutation, in which the values of two randomly selected

genes are mutated.
Another approach is to select and mutate only a part of genes, named as inversion

mutation.
Adaptive mutation is a particular method where the percentage of genes to mutate

depends on the fitness value of the solution.
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2.9 Related Work

The aim of this study is to optimize the structure of the previously described piezoelectric
energy harvester using machine learning and genetic algorithms, with the goal of increas-
ing electrical power output. The methodological approach is based on insights from three
research papers, which are discussed in Subsections 2.9.1, 2.9.2 and 2.9.3. For each work,
similarities and differences with respect to the present work are highlighted.

2.9.1 Structural Validation of the Energy Harvester

One of the main references is the research paper titled «Design, fabrication and evaluation
of a Quad-Finger multimodal vibration energy harvester utilizing MFC generators» [6].
This study proposes and validates a novel energy harvester structure based on four fingers,
designed to exploit multimodal excitation, maximizing the harvested energy thanks to
higher tunability with real world vibrations. This structure serves as the starting point
for the optimization performed in the present work.

While the original project focused on the mechanical and electrical characterization
of a precise configuration of the scavenger, through finite element simulations and exper-
imental measurements, this thesis continues the investigation of the quad finger energy
harvester with the specific goal of optimizing the design. The aim of the thesis differs
from the original study in which the geometric structure of the scavenger was not opti-
mized. Instead, the current goal is to optimize the multimodal design configuration in
order to maximize the extractable electrical power.

2.9.2 Machine Learning for Energy Harvester Optimization

The research paper «Optimize output of a piezoelectric cantilever by machine learning
ensemble models» [18] investigates the application of supervised ensemble machine learn-
ing models in the field of energy harvesting, specifically focusing on a piezoelectric can-
tilever beam. The machine learning models analyzed in the study are Random Forest
Regression (RFR), Gradient Boosting Regression Tree (GBRT), and Extreme Gradient
Boosting (XGBR). These models are used to capture the nonlinear relationships between
the electrical output (voltage and power) and various geometrical, electrical and dynamic
parameters of the system. The lengths of the piezoelectric layer, the weight of the loading
mass, the vibration frequency of the shaker and the load resistance are the considered
parameters. Ultimately, the three mentioned models are compared to determine which
one provides the best fit.

The study demonstrates that ensemble machine learning models can achieve high re-
liability in capturing the relationships between different parameters and electric outputs,
highlighting their potential in energy harvesting field.

Due to the promising results obtained, this paper inspired the approach adopted in
the present work, which uses supervised ensemble machine learning models to make reli-
able prediction for different structure configurations, significantly reducing computational
costs. In fact, once the machine learning model is properly trained, it can provide instant
predictions without the need of further finite elements simulations.
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However, while the mentioned study is based on a simple cantilever structure, this the-
sis applies the models to the more complex quad-finger harvester discussed in Section 2.5.
Additionally, the parameters adopted as inputs for the machine learning models enables
a deeper and more realistic analysis of the structure with the final aim of optimizing the
structure.

Moreover, unlike the reference paper, which focuses solely on understanding the rela-
tionships between inputs and outputs, the present work goes a step further by employing
machine learning models not only for prediction, but also as the objective function in the
optimization problem.

2.9.3 Genetic Algorithms Combined with Machine Learning Techniques

Finally, the third relevant work is «Application of artificial intelligence and evolutionary
algorithms in simulation-based optimal design of a piezoelectric energy harvester» [10]
which studies the use of machine learning and genetic algorithms to optimize harvester
designs.

This approach of mixing machine learning models and evolutionary algorithms has
inspired the present work but distinguishes itself for some key features.

First of all, the starting structure is a fully validated complex harvester model which
presents different parameters to consider for an optimization. In addition, the goal is
not only to simulate or predict but to guide the optimization process toward maximizing
generated power of a real harvester structure.
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Chapter 3

Main Contribution of the Thesis

The present thesis, as previously discussed, further develops the structure proposed in
the research paper «Design, fabrication and evaluation of a Quad-Finger multimodal
vibration energy harvester utilizing MFC generators» [6]. The reference study proposes
and validates a novel multimodal energy vibration energy harvester, whose design is
discussed in detail in Section 2.5.

The aim of this thesis is to take the energy harvester developed in the original research
paper, featuring a parallel connection between the four electrodes of the MFC layers
electrically connected to a resistive load, as a starting point, and to optimize its design in
order to maximize the electrical output. The optimization focuses on several design and
operational parameters: the load resistance R, the excitation frequency f , the individual
lengths of the four beams L1, L2, L3, L4, and the distances between the distance between
them d1, d2, d3.

To avoid the time-consuming process of running COMSOL simulations for all possible
combinations of the aforementioned parameters in search of the optimal one, a hybrid
methodology is adopted. The idea is to combine supervised ensemble machine learning
models with a genetic algorithm to guide the design optimization process.

More specifically, the strategy consists on training supervised ensemble machine learn-
ing models using only a limited set of combinations. In that way, the requirement of
computing COMSOL simulations is extremely reduced, and it is possible to obtain pre-
dictions of any given parameter configuration. Once the most suitable machine learn-
ing model is trained obtaining an acceptable reliability, genetic algorithm optimization
can be implemented to find the combination which maximizes the electrical output. A
scheme of the full methodology is reported in the the flowchart shown in Figure 3.1.
The proposed optimization strategy has been progressively refined through three main
approaches. Each step introduces modifications and improvements over the previous one
in terms of dataset structure, model prediction capabilities, and optimization efficiency.
This step-wise methodology leads to the identification of an optimal configuration the
proposed hybrid approach against traditional optimization in COMSOL.
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Figure 3.1: Optimization procedure flowchart adapted from [10].

3.1 First Approach: Optimization of beam lengths only
with excitation frequencies sweep

The first phase of the study focuses on the optimization of a limited set of parameters. In
particular, only the lengths of the four beams and the excitation frequency are considered.

To carry out this preliminary optimization, a dataset is generated through finite ele-
ment simulations using COMSOL Multiphysics. Each simulation provides electrical out-
puts (voltage and power) corresponding to several combinations of beam lengths under
a frequency sweep. The excitation frequency varies within a defined range for each con-
figuration. All other aforementioned parameters are kept constant, such as the resistive
load that is set to 109Ω to simulate open-circuit conditions.

Once the dataset is defined, it is exploited to train the ensemble machine learning
models with the goal of predicting the electrical outputs for any given configuration.
These trained models are then adopted as the objective function of the genetic algorithm,
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which aims to identify the combination that maximizes the electrical output.
However, this initial strategy turns out to have a critical limitation. The power and

voltage outputs exhibit sharp resonance peaks when the excitation frequency coincides
with the structure’s eigenfrequencies. These huge variations are challenging for the ma-
chine learning models to accurately predict. Therefore, the optimization process that
looks for these peaks, struggles to reliably identify the optimal configuration.

This issue motivates a shift to a different approach. The frequency sweep is abandoned
in favor of a new approach based on discrete and precomputed excitation frequencies.

3.2 Second Approach: Optimization with discrete excita-
tion frequencies and load resistance sweep

In light of the main limitation emerged in the first approach, a new strategy is developed
in which the frequency sweep for each configuration of the dataset is no longer performed.
In the present approach, the frequency domain study is performed with the excitation
frequency that matches the first eigenfrequency of the corresponding analyzed structure.
In this way, it is possible to obtain the electric output peak, ensuring a more efficient
analysis.

The strategy of this method consists of calculating, through the eigenfrequency study
on COMSOL, the first four eigenfrequencies for each given combination of beam lengths.
Then, the first of the obtained eigenfrequencies is adopted as the excitation frequency in
the subsequent frequency domain study.

A further addition of this approach is the adoption of a new parameter to be optimized:
the load resistance. In the first approach, indeed, a high value of load resistance is
considered to approximate an open circuit condition, only focusing on the output voltage.
Nevertheless, in real world applications, evaluating the extracted power from the structure
is more meaningful. For this purpose, in this stage, a sweep of load resistance values is
performed for any given configuration, so that it is possible to maximize the output
power, which represents the most relevant parameter for practical application of energy
harvesting.

This approach effectively solves the first method’s issue related to the huge difference
between the voltage peaks and the average value of the output. Thanks to the use of the
first eigenfrequency as the excitation frequency, the optimization algorithm result turns
out to be more reliable and consistent.

However, a limitation cannot go unnoticed: the analysis is incomplete since the ob-
jective function employed in the genetic algorithm is the electrical output associated with
the first eigenfrequency. In this way, one loses sight of the structure’s multimodal nature.
In a multimodal energy harvester, the other vibration modes are significant as they can
extend the device’s field of application. It is precisely for this reason that in the following
strategy, the electrical output is considered for all the first four principal eigenfrequen-
cies. Moreover, in the third approach, additional project parameters are included in the
optimization study: the distances between each beam.

Nonetheless, the results of this second approach are not useless. In fact, they can
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be useful to appropriately delimit the range of lengths to be considered in the subse-
quent step, thus avoiding the generation of an overly heavy dataset due to the additional
optimization parameters.

3.3 Third Approach: Multimodal optimization with the in-
troduction of beam distances and all modes

The third approach represents the innovative core of this thesis work and the main original
contribution made. Differently from the previously introduced strategies, which focus on
a single resonance condition, this method is designed to fully exploit the multimodal
nature of the studied energy harvesting structure.

The key idea is to consider, for each geometric configuration, the behavior of the
system not only at the first eigenfrequency, but also at the second, third and fourth. For
each of these excitation frequencies the extracted power is calculated, and the goal of the
genetic algorithm becomes to maximize the overall sum of the four powers, thus ensuring
high performance not only in a specific condition, but over an entire range of resonant
frequencies.

In addition, once explored the role of beam lengths only as geometrical input variables,
the distances between beams (d1, d2, d3) are also missing to be added to assess how the
combination of lengths and distances can affect performance in order to identify the
optimal configuration to maximize power extracted.

The introduction of these new features significantly increases the number of input
variables required for the dataset, therefore, it is decided to narrow the range of lengths
and reduce the number of resistance values to be considered decreasing the computational
effort.

With the evaluation of the four distinct power outputs to be summed, it also in-
troduced the possibility of using multi-output machine learning models, which can not
only predict the sum directly, but also estimate each individual power output and sub-
sequently combine them. This type of evaluation is presented as an alternative to the
ensemble machine learning models, characterized by only one output, described earlier.
The model that will be characterized by higher reliability will then be selected within the
genetic algorithm.

In parallel, an analysis is conducted to see whether comparable results could be ob-
tained by reducing the number of samples in the dataset in order to decrease the compu-
tational burden required for its generation.

In summary, this approach enables not only more realistic and robust power output
optimization, but also the identification of efficient, versatile, and exploitable geometric
configurations in real-world scenarios where environmental excitations are not limited to
a single frequency.

3.4 Validation of the Hybrid Optimization Model
As a last step, after obtaining the results of the hybrid approach based on ensemble
machine learning models and genetic algorithm, it is considered worthwhile to conduct a
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validation study using traditional optimization method.
This approach is based on the combined use of COMSOL Multiphysics and MATLAB,

via the LiveLink for MATLAB module, with the aim of verifying the robustness of the
obtained solutions and their actual reliability.

Again, to avoid convergence to local maxima, a genetic algorithm is used to guide
the global optimization. The objective function coincides with that adopted in the ma-
chine learning and genetic algorithm hybrid approach, which is the maximization of the
electrical power that can be extracted from the piezoelectric energy harvesting system.

However, unlike the hybrid approach in which the power value is estimated by predic-
tive models, here the objective function is evaluated by full FEM simulations performed
in the COMSOL environment, one for each individual generated by the genetic algorithm.

Since the first approach has a crucial reliability limit, it is decided to start directly
from the second approach as the basis for this validation study.

In a first exploratory step, to test the effectiveness of the optimization, three of the
four beam lengths are fixed at the values previously found from the second approach
optimization process, leaving the algorithm free to optimize the fourth length and the
resistive load value. This step allows to verify the accuracy of the method by analyzing
its computational time and evolutionary behavior.

Next, a full optimization is performed on all four beam lengths and resistive load in
order to directly compare the obtained configuration with the one identified through the
hybrid approach. With this comparison it is possible to assess the applicability of the
presented hybrid approach in real-world applications.
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Chapter 4

Experimental versus Numerical
Validation

This chapter provides the experimental and numerical results of the optimization strategy
presented in Chapter 3. For each introduced progressive approach, the adopted method-
ology is described in details, followed by the discussion and the interpretation on the
results. Finally, a comparison is made between the final outcome of the optimization
process with the hybrid strategy (Machine learning combined with genetic algorithm)
and the traditional optimization performed in COMSOL Multiphysics.

4.1 First Approach: Optimization of beam lengths only
with excitation frequencies sweep

4.1.1 Methodology

The first step to optimize the piezoelectric structure is to identify the optimal combination
of beam lengths which outputs the maximum electrical power. Considering the strain
limitations that the structure can withstand, a range from 45mm to 100mm is selected
for all beams. The parameters to set the COMSOL simulations are the following: the
frequency of the external excitation [Hz], the base excitation of the shaker [g] and the
resistance value [kΩ].

This first approach consist on considering a constant base acceleration equal to 0.5g,
a constant resistance of 106kΩ and variable frequency.

Varying the base acceleration is not meaningful for the optimization objective of this
project. It is well established and logical that increasing the base acceleration leads to
higher electrical output. In addition, in practical applications, base acceleration is not
something that can be controlled and depends on the specific environment or system in
which the harvester is used. Therefore, the goal is to find the geometry that, under a
given uncontrollable base acceleration, leads to the highest electrical output compared to
the other feasible geometric configurations.

Regarding the excitation frequency, to establish the appropriate range to consider
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for each geometrical configuration, two eigenfrequencies studies through COMSOL Mul-
tiphysics are performed considering the boundary values of the length range. The first
simulation involves a structure with all beam lengths equal to 45mm. The output of
that simulation is the identification of the first four eigenfrequencies. The same is carried
out for a structure with all beam lengths set to 100mm. The highest electrical output
is achieved when the excitation frequency matches the eigenfrequency of the structure.
Therefore, since the objective of the project is to find the design that maximizes that out-
put, it is necessary to ensure that, for every configuration in the dataset, the excitation
frequency leading to the peak power output is included. Following this line of reasoning,
the frequency range under study needs to include the lowest and the highest eigenfre-
quencies that appears from the previously explained eigenfrequency studies. Once the
range of excitation frequencies is defined, it is possible to create the dataset to train and
test the machine learning model.

The most important part to have a well-designed machine learning model is the def-
inition of the dataset. This dataset is composed of 20 randomly chosen combinations of
lengths within the defined range 45 - 100mm. COMSOL simulations are performed for
all these combinations, where the output Voltage (mV) and Power (mW) are evaluated
considering a sweep of frequency within the defined range. Consequently, following to the
dataset definition, the training and the evaluation of the supervised ensemble machine
learning models, as well as the implementation of the genetic algorithm are developed
through a Python code, whose structure is described in detail below.

Firstly, the dataset is uploaded and subsequently split into input features and output
targets. The input features include the four beam lengths (L1 - L4) and the excitation
frequency (f), while the output target is the voltage.

In this first approach, electrical power is not considered as the target output for the
optimization. This decision is due to the fact that the resistive load is set to a constant and
very high value, effectively simulating open-circuit conditions. Under such conditions, the
power output becomes negligible due to its inverse proportionality to resistance expressed
by Equation 4.1.

P = |V |2

R
(4.1)

As a result, voltage is chosen as the output target to optimize the structure in this phase,
since it remains a meaningful and representative measure of the harvester’s performance
in open-circuit conditions. In subsequent stages, when other resistance values are in-
troduced, the power output becomes a more meaningful quantity to optimize, as it is
the significant quantity in practical applications. The goal of the project is to identify
the optimal configuration that delivers the highest electrical power output to exploit the
energy harvester in real-world applications.

Once the dataset is uploaded and the input and output features are defined, the
train-test split is imposed at 70/30. This means that 70% of the dataset is used to train
Machine learning models, while the remaining 30% to test if the predictions made by the
models are able to well-approximate the real outputs given by COMSOL simulations.

The next step, after the preparation of the dataset and the division into training
and testing subset, involves training and evaluating the three selected ensemble machine
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learning models: Random Forest Regressor (RFR), Gradient Boosting Regression Tree
(GBRT) and eXtreme Gradient Boosting Regressor (XGBR).

To achieve more reliability, these three models need hyperparameter tuning. In order
to perform it, a k-fold randomized cross-validation strategy is adopted.

The procedure to perform this strategy, explained below, is the same for all the models
but the list of hyperparameters to tune is different depending on the model chosen.

Firstly, a list of detectable values for the hyperparameters is created. Later, a pre-
defined number of random combinations (e.g. 50) are considered. 3) For each random
combination K-fold cross-validation method is applied to train the model. This method
involves splitting the dataset into k equal-sized, non-overlapping subsets. Then, for each
iteration, k-1 subsets are used for training the model, while the remaining subset is used
for testing. This process is repeated k times, and the final result of the cross-validation is
the average of the k tests [51]. In particular, a 5-fold cross validation is adopted for this
study. Finally, Randomized Search CV ends up with the combination that has achieved
the best performance.

The way to assess the best performance and so to select the optimal hyperparameters
is the evaluation metric known as R-squared value (or R2 score), defined in Equation 4.2.

R2 = 1 −
∑︁n

i=1(yi − yp)2∑︁n
i=1(yi − y)2 (4.2)

Where n is the number of samples; yi is the actual value of the sample; yp is the predicted
value; and y is the average of all yi.

The R-squared value is a number that ranges from 0 to 1, and the more this value
approaches 1, the more accurately the model’s predicted values approximate the real
output values.

For each model, a dedicated set of hyperparameters is investigated with the 5-fold
cross-validation in order to identify the best combination with the highest R2 score.

The list of hyperparameters explored for each model with their corresponding descrip-
tion, is summarized in Table 4.1.
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Hyperparameter Description RFR GBRT XGBR
n_estimators Number of trees in the ensemble. Increas-

ing the number of trees, more stable error
estimates and more robustness of variable
importance measures are achieved. How-
ever, higher computational time is needed.

✓ ✓ ✓

criterion Metric to measure the quality of a
split. Options include "squared_error",
"absolute_error", etc.

✓

max_depth Maximum depth of the tree determines
how deep the tree can grow. If set to None,
the nodes will continue to expand until all
leaves are pure or contain fewer samples
than the specified min samples split but
can lead to overfitting.

✓ ✓ ✓

min_samples_split Minimum number of samples required to
split an internal node, so if the number of
samples is minor than the set value the in-
ternal node ends up as a leaf node. Having
a lower value leads to higher flexibility but
increases the risk of overfitting.

✓ ✓

min_samples_leaf Minimum number of samples required to
be at a leaf node.

✓ ✓

max_features maximum number of features to consider
during the splitting procedure to build the
decision trees in order to reduce overfit-
ting.

✓ ✓

learning_rate Weight α multiplied to the residuals to re-
duce overfitting. It’s a value which ranges
from 0 to 1 and the less is the more reduce
overfitting at the expense of computational
time.

✓ ✓

subsample Fraction of samples to train each tree. If
it is equal to 1, all the samples are used.
If it is lower than 1 the model is called
stochastic gradient boosting, where only
a stochastic subset of samples is used.
Choosing the latter approach, a reduc-
tion of variance and an increase in bias is
achieved.

✓ ✓

colsample_bytree Subsample ratio of features used when con-
structing each tree.

✓

gamma Minimum loss reduction required to make
a further partition on a leaf node of the
tree.

✓

reg_alpha α regularization term on weights ✓

reg_lambda β regularization term on weights ✓

Table 4.1: Summary of hyperparameters used for each model [39,42].

Once the 5-fold cross-validation is completed and the optimal set of hyperparameters is
selected for each of the supervised ensemble machine learning models, the three algorithms
are trained and tested.

To compare their performance and determine which one fits most the problem, and
therefore the most suitable to use within the genetic algorithm, two main evaluation
strategies are applied.

The first is based on the R2 score, previously introduced in Equation 4.2. This metric
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gives quantitative indication of how well the predicted values match the real ones, and
so a fair comparison of the models. In the formula, n is the number of test samples, yi is
the real voltage output obtained from the COMSOL simulations, and yp is the predicted
output from the machine learning model.

Together with the numerical comparison, a more intuitive and visual check is per-
formed by plotting the predicted voltage values against the real ones for each model.
This helps to quickly see how closely each model follows the actual simulation results.

The model that shows the highest R2 value and the best alignment in the visual plot is
finally selected as the most reliable model, and is used to evaluate the objective function
inside the genetic algorithm.

After having identified the optimal most accurate machine learning model, the genetic
algorithm can be implemented using the PyGAD Python library. Each individual in the
genetic algorithm population is defined by five genes, where four of these represents the
lengths of the beams (L1 to L4), and the remaining encodes the excitation frequency.

Following the same constraints used during the training of the machine learning mod-
els, the values of the beam lengths are bounded within a range between 45 mm and
100 mm. This range, as previously discussed, guarantees structural integrity. Similarly,
the excitation frequency is limited within the range preliminary established during the
eigenfrequency analysis. Moreover, the beam lengths are limited to either integer or half-
integer values. This constraint is due to the fact that arbitrary decimal values are not
practical from the fabrication point of view.

Once the constraints are defined, the fitness function is modeled. This function, as
previously introduced, corresponds to the output voltage of the harvester system pre-
dicted by the machine learning model with the highest reliability. This strategy allows
a fast evaluation of the population individuals without using expensive finite element
simulations on COMSOL.

To achieve a robust and efficient search process, the main features of the genetic
algorithm are carefully selected.

First of all, the population size is set to 500 individuals. For the selection method,
the steady state selection approach, described in Subsection 2.8.2, is adopted. Since this
method selects only a small portion of the population for the next generation, it helps
avoid being trapped in local optima. On the other hand, the algorithm is slower, requiring
more iterations to reach the convergence. Regarding the crossover, a single point crossover
type is selected. This strategy is computationally efficient and compensates for the choice
of the steady state selection method, which leads to higher evaluation effort. Additionally,
a random mutation with a probability of 5% is employed in order to introduce stochastic
variability in the population. This is crucial for avoiding the convergence toward local
maxima, while enhancing the convergence toward global optimum. The genetic algorithm
stops after reaching 300 iterations.

To evaluate the performance of the present algorithm, the fitness history is repre-
sented across all generations. With that representation is possible to assess the conver-
gence behavior and so the robustness of the optima research process. The final result of
the optimization is the configuration that achieves the highest predicted voltage output,
representing the optimal design within the defined constraints.
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4.1.2 Numerical Results

After having outlined the methodology adopted for the optimization process to find the
configuration that maximizes the voltage output, this Section presents and discusses the
results obtained from the previously described procedures.

The first part focuses on the preliminary eigenfrequency analysis through COMSOL
Multiphysics in order to define a suitable frequency range for the following evaluations.

As detailed in the methodology, the first four eigenfrequencies are computed for the
two extreme configurations: one with all beam lengths set to 45 mm, and the other with all
beam lengths corresponding to 100 mm. This approach allows to retrieve the boundaries
beyond which the eigenfrequencies of any possible beam configuration cannot fall. The
results of this analysis are summarized in Table 4.2.

Beam lengths (mm) λ1 (Hz) λ2 (Hz) λ3 (Hz) λ4 (Hz)
45 43.809 + 1.0518i 57.533 + 1.3438i 65.709 + 1.5021i 69.151 + 1.5664i
100 16.984 + 0.4002i 19.193 + 0.4465i 20.230 + 0.4666i 20.612 + 0.4743i

Table 4.2: First four eigenfrequencies for two extreme configurations of beam lengths.

From the results reported in the table, the range under study is decided to be from
15 Hz to 70 Hz, in order to include all the voltage peaks for any configuration. Summariz-
ing, the dataset used to train the machine learning models consists of 2,200 samples, each
composed of five input features and one output. The output is the voltage of the system,
obtained through a frequency domain study in COMSOL, using the following five inputs:
1. 20 randomly chosen values for the first beam length L1 within the 45-100 mm range.
2. 20 randomly chosen values for the second beam length L2 within the 45-100 mm range.
3. 20 randomly chosen values for the third beam length L3 within the 45-100 mm range.
4. 20 randomly chosen values for the fourth beam length L4 within the 45-100 mm range.
5. Excitation frequency ranging from 15 Hz to 70 Hz, with a step size of 0.5 Hz between
each evaluation.

With the dataset now fully defined, the performance of the selected machine learning
models, RFR, GBRT and XGBR, is assessed. As outlined in the methodology, the eval-
uation of the performance is based on the prediction accuracy, measured through the R2

score, and visually analyzed by comparing the predicted and actual voltage values of the
dataset portion used for testing. The following table reports the R2 scores obtained for
each model, while the accompanying figure illustrates how closely the predicted values
match those obtained from COMSOL.

Model RFR GBRT XGBR
R2 Score 0.88 0.91 0.86

Table 4.3: R2 scores for each ML models.
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(a)

(b)

(c)

Figure 4.1: Actual versus Predicted values comparison of a part of test set: (a) RFR
model, (b) GBRT model, (c) XGBR model.
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Table 4.3 highlights that the Gradient Boosting Regression Tree model shows the
highest reliability thanks to its previously explained self-improving method used to cre-
ate the decisional trees. However, even if the value of R2 seems really promising, a
crucial problem is hidden. For each configuration, the majority of the collected data
are characterized by really low voltage values, while only where the excitation frequency
matches the eigenfrequency, there is a peak of voltage. For this reason, the models can
approximate in a really accurate manner the lowest voltage values but for the peaks the
reliability drops, as soon as the quantity of peak values is too low to train properly. This
crucial problem is evident in Figure 4.1, where the well-suited predictions of the lowest
values and the unreliable predictions of the peaks can be easily observed.

This is a crucial problem for the goal of the project, because the aim is to look at
the peaks and to maximize them by changing the structure of the piezoelectric energy
harvester. However, if the model fails on predicting those peaks a good geometrical
optimization cannot be performed.

Consequently, a genetic algorithm, performed by a Python code, is applied to search
for the best combination of lengths to maximize the electrical output. For each gen-
eration, the electrical output of the combination of lengths and excitation frequency is
evaluated thanks to the trained GBRT model, since it is the one that shows the highest
reliability. The optimal configuration found by the genetic algorithm is the one described
by Table 4.4.

L1 (mm) L2 (mm) L3 (mm) L4 (mm) F (Hz) Predicted Voltage (mV) Simulated Voltage (mV)

98.1 75.7 48.9 95.8 19.3 123,074 104,400

Table 4.4: Comparison between predicted and simulated output voltage for the optimal
configuration.

Table 4.4 reports the optimal energy harvester configuration obtained through the
implemented genetic algorithm, with a predicted output voltage of 123,074 mV. This
value, after 50 generations, converged to the aforementioned voltage output as the best
fitness value, as shown in Figure 4.2.

A frequency domain study is performed on COMSOL using the obtained values for
beam lengths and the dataset frequency sweep to investigate the maximum output Volt-
age of the obtained configuration. The extracted maximum output Voltage from the
simulation corresponds to ≈ 104,400 mV at a frequency value of 19.995 Hz.

The prediction error of the Machine Learning model is approximately 15%. This
significant error does not allow the genetic algorithm to find the optimal configuration
because peaks predictions of ML model are not sufficiently reliable. The solution to this
problem could be to increase the number of combinations, but performing COMSOL
simulations for a huge number of samples is really time-consuming and consequently the
advantage of using machine learning models to save time for optimization is lost.
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Figure 4.2: First approach: Evolution of the best fitness value across genetic algorithm
iterations.

In addition, the machine learning models struggle to predict the peak voltage values, as
lowest voltage outputs as the given dataset contains much higher samples with low output.
This inaccuracy with peaks is due to the fact that, within the considered frequency range
(15-70 Hz) only one sample for each configuration experiences a peak output. At the
end, the dataset contains only 20 peak values in total, that are not sufficient to permit
ML models to learn how to capture peaks behavior. On the other hand, it is clearly
visible that the model can well-predict the frequency at which peaks occur for the specific
configuration, which corresponds to the match between the excitation frequency and the
first modal frequency of the structure. Other peaks certainly occur not only when the
excitation frequency corresponds to the first eigenfrequency but also when it matches the
second, the third and so on. In those other cases, peak values are lower than the first
case, and for the purpose of the project, the first eigenfrequency is the most significant
one.

Therefore, to better align with the goal of the project, it is more meaningful a shift
to the second approach, introduced in Chapter 3.2.
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4.2 Second Approach: Optimization with discrete excita-
tion frequencies and load resistance sweep

4.2.1 Methodology

As introduced in Chapter 3.2, this second approach modifies the method of dataset gen-
eration. In particular, a frequency sweep for each geometrical configuration is no longer
considered. Instead, the first eigenfrequency is set as the excitation frequency for each
simulation. The first eigenfrequency is determined through COMSOL for each geome-
try. Since these values depend solely on the geometry, the simulation time is significantly
reduced. Therefore, developing an additional machine learning model to predict these fre-
quencies would be unnecessary and could compromise the reliability of the process. This
choice ensures that each configuration is tested under resonance condition, maximizing
the output and avoiding the loss of accuracy of the machine learning models.

With this approach, it is possible to increase the number of simulated configurations
while keeping the overall computational time approximately unchanged. Indeed, it is no
longer necessary to perform a frequency sweep for each geometry, but a single simulation
at the first proper frequency is sufficient.

Following this line of reasoning, the final dataset is constructed by setting the listed
parameters on the frequency domain study in COMSOL : 1. Excitation frequency equal
to the first eigenfrequency of the specific geometric configuration. 2. Base acceleration
of the shaker equal to 0.5 g, according to the reason described in the first approach. 3.
A sweep of electrical load resistance values.

After setting the optimal frequency by performing the eigenfrequency study on COM-
SOL for each geometry, the next step is to define a meaningful range of resistance value
to explore, including values other than the open circuit condition. The goal is to identify
the resistance value that maximizes the electrical power generated. This value will then
be used as an input variable in ML models, as well as a reference to select the optimal
geometry by genetic algorithm.

To understand the range of resistance values over which the output power peak lies
for different beam lengths, two COMSOL simulations are performed using a finely spaced
resistance sweep. In the first simulation, all beam lengths are set to 45 mm and in the
other, they are set to 100 mm. For these two simulations, the resistance sweep ranges from
0 to 106 kΩ which corresponds to an open circuit configuration. For the simulation of the
configuration with all beam lengths equal to 45 mm an excitation frequency of 43.809 Hz
is used, which corresponds to the first eigenfrequency of the structure obtained from the
COMSOL results and showed in Table 4.2. Accordingly, for the second configuration an
excitation frequency of 16.984 Hz.

Once the appropriate range for the electrical load resistance is defined, it is possible
to create the dataset to train and test the machine learning model.

This dataset includes 12 randomly chosen combinations of lengths within the de-
fined range 45-100 mm. COMSOL simulations are performed for all these combinations,
where the output Voltage (mV) and Power (mW) are evaluated considering the sweep
of resistance obtained in the previous analysis. For the same reason of the first trial of
optimization where a frequency sweep is considered, in this improved case other than
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these 12 combinations with the entire resistance sweep, 28 more geometries are inserted
with a reduced selected set of resistance values. In this way the model can learn peaks
behavior more easily, which is the goal of the project, without significantly increasing
simulation time.

Before starting machine learning models training, a thorough analysis of the dataset
is performed, the results of which are detailed in the Chapter 4.2.2. A number of common
patterns emerged from this analysis that influence the electrical output, e.g. the effect of
the sum of the beams lengths and the symmetry of the structure.

On the basis of these observations, some features are defined to help the machine
learning models easily capturing the most relevant behavior of the structure. This step
is part of feature engineering process.

The created features are listed in Table 4.5.

Name Description
L_sum The sum of all four beam lengths.
Index 1 This index outputs a 1 when the length of the first beam L1, starting

from the left, is equal to the fourth beam L4, and contemporary the
second beam L2 coincides with L3. In all the other cases this index is
0. This kind of index identifies the central symmetry of beam lengths,
that is the symmetry with respect to an imaginary line that divides the
plate of the structure into two identical parts.

Index 2 Similar to Index 1 but outputs a 1 only when contemporary L1 coincides
with L3 and L2 matches with L4.

Index 3 Index that outputs 1 only when all beam lengths are identical otherwise
outputs 0.

Table 4.5: Description of the indexes introduced during the feature engineering process.

In conclusion, the final dataset is composed of the lengths of the four beams, the four
features described in Table 4.5. The output is the electrical power (mW) is considered,
since it is more meaningful with respect to the output voltage in the optimization context.
In fact, the main objective is to maximize the extractable power from the energy harvester.

The dataset is divided into training set (70%) and test set (30%), as in the first ap-
proach. Again, cross-validation (K-fold) is performed to optimize model hyperparameters
and improve reliability.

When the dataset is split into training and test set, some test samples have resistance
values very close to those present in the training set for the same geometric configuration.
As a consequence, the machine learning models find it relatively easy to predict the output
for the test set. This mechanism leads to really high R2 scores, also equal to the unit,
even if models lack real generalization.

For this reason, in order to have a fair comparison between different ensemble ma-
chine learning models and determine which is the one that will be used in the genetic
algorithm for optimal design selection, additional reliability evaluation metrics are used.
Particularly, mean absolute error (MAE) and mean squared error (MSE) are evaluated
using the Formulas 4.3 4.4, as well as R2 scores.
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MAE = 1
n

n∑︂
i=1

|yi − yp| (4.3)

MSE = 1
n

n∑︂
i=1

(yi − yp)2 (4.4)

Where yi is the real value, yp is the predicted value and n is the number of samples.
Once the training of the machine learning models is completed, a comparison pro-

cedure becomes necessary among the three ensemble-type models, in order to select the
most suitable one for the selection criterion within the genetic algorithm.

The evaluation of the performance of the machine learning models is not limited to
the numerical metrics alone, as introduced previously, but is extended to more in-depth
analysis.

In particular, the residual plot is employed to compare the quality of the machine
learning models. The residual graph is a diagram showing the prediction residuals as a
function of the actual output power. The residuals are defined as the absolute value of the
difference between the predicted power output and the real corresponding output. This
instrument turns out to be particularly helpful in assessing the models’ reliability for the
highest power values, which are also the most relevant from the optimization perspective.

Further analysis is conducted on feature importance. Evaluating feature importance
means calculating the percentage of contribution of input variables used to create the
decision trees that determine the prediction process of the models. With this approach,
it is possible to understand what are the input variables which have the most important
impact. This allows testing whether the models are indeed focusing their attention on
the most influential features in determining the power generated.

Overall, these evaluations are essential for selecting the most suitable model to be
used as an objective function within the genetic algorithm.

After these analysis, and the most reliable machine learning model is selected, it
is possible to move on to the implementation of the chosen model within the genetic
algorithm. The procedure follows the same pattern as described in the first approach,
with some improvements. The main steps of the genetic algorithm, already described in
Chapter 4.1.1, are summarized below.

The algorithm starts with the generation of a population of 500 combinations of
inputs. In particular, a matrix of 500 rows and 5 columns is created, where the columns
are represented by five inputs: L1, L2, L3, L4 and R.

Each individual of the generated population, so each row of the matrix, is encoded
into chromosomes containing five strings of binary codes representing the corresponding
input values.

Subsequently, for every individual of the population the fitness or objective function
is evaluated. For the goal of the project, the objective function is the power prediction
made by the previously selected ensemble machine learning model.

Once the fitness function is evaluated for all the population matrix the following steps
are performed: 1. Steady state selection with a number of mating parents equal to 500
elements. 2. Mate selected parents. 3. Single point crossover. 4. Random mutation type
with 5% of probability to avoid to be stuck in local minimum.
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A new population is generated from the results of these operations, and the whole
process is repeated iteratively.

The principal difference with respect to the genetic algorithm implemented in the
first approach lies in the stopping criterion. In this case, the genetic algorithm stops
after 300 iterations by default. However, early stopping is applied when saturation of the
fitness function is detected for more than 20 consecutive iterations. This means that if an
individual, with a specific predicted power output, remains the best among all generated
individuals for 20 iterations, the algorithm is forced to convergence at the 21st iteration.

As in the first approach, the fitness history graph is analyzed and the results of the
optimization in terms of the optimal configuration identified are examined.

4.2.2 Numerical Results

Having described in detail the methodology followed in the second approach (Chap-
ter 4.2.1), it is now possible to present the numerical results obtained. The process’
improvements allows to achieve greater reliability in this results, making the overall anal-
ysis more robust and effective.

Firstly, as it is described in the methodology part,to build the dataset it is nec-
essary to define a proper load resistance range. The importance of defining it, is to
ensure that the electric power peak falls within that range for any geometric combination
considered. Speaking of which, two frequency domain studies are performed in COMSOL
Multiphysics: the former with all beam lengths equal to 45 mm and the latter with
lengths equal to 100 mm. The goal of these studies is to identify, with a very fine sam-
pling step, the value of the resistance corresponding to the maximum power output. The
obtained results show that n the first configuration, the peak power lies at a resistance
value of approximately 130 kΩ, while in the second configuration, the maximum value is
reached at around 340 kΩ. These results are also represented graphically in Figure 4.3,
showing electrical power as a function of resistance.

Figure 4.3: Power peak versus electrical load for the two limit configurations.
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In light of these outcomes, it is decided to select a resistance range from 100 kΩ to
400 kΩ, which certainly includes peak power for all the feasible beam configurations.

Once this interval is established, it is possible to proceed with the generation of the
dataset needed for training and testing the machine learning models.

As previously explained, an initial part of the dataset consists of twelve randomly gen-
erated geometric configurations with beams lengths between the minimum and maximum
allowed values. An eigenfrequency study is conducted for each configuration in order to
identify the first natural frequency of the system, which is then used as the excitation
frequency in the frequency domain study. In the latter study, for each configuration, the
load resistance value is varied from 100 kΩ to 400 kΩ with a step of 2 kΩ. This first stage
yields 12 · 151 = 1,812 samples, each characterized by five input features (four beam
lengths and one resistance value) and the associated electrical power output value.

A second part is added to the first part of the dataset, consisting of twenty-eight
additional geometric configurations. A frequency domain study is performed also for these
new considered geometry but with a limited number of resistance values. Particularly,
four values of resistive load are randomly selected within the interval 100 kΩ - 400 kΩ
for each configuration. This choice allows the model to better learn the behavior near
the power peak, which is the main object of the optimization, without overburdening the
computational load. The total number of samples in the final dataset is thus 1,872.

Before proceeding with the three machine learning model trainings, a detailed analysis
of the obtained dataset is conducted. This analysis revealed some crucial observations.
As the beam lengths increase, the power output increases as well, however it is not the
only factor influencing the results. As a consequence, higher total beam length is not the
only requirement for achieving higher power output. This evidence is clearly visible from
the following example: an energy harvester configuration with beam lengths L1, L2, L3,
and L4 respectively 100 mm, 100 mm, 100 mm, and 82 mm, summing to 382 mm, outputs
a maximum power of 29.83 mW. On the other hand, a configuration with beam lengths
100 mm, 82 mm, 82 mm and 100 mm, so 364 mm overall, has 34.22 mW of maximum
output power. From that observation, it is clear that kind of central symmetry also has
a positive impact on the maximum power output. The presence of this symmetry affects
the strain distribution on the structure, making it more uniform and so leading to a more
efficient way to exploit all the piezo-harvesters mounted on the beams. Also, having high
asymmetries would lead to non-constructive vibrations wasting significant amounts of
energy.

Another important piece of evidence is observed by comparing the configuration with
all lengths equal to 100 mm, which generates a maximum power of 37.77 mW, with an
apparently less performing geometry (100 mm, 90 mm, 90 mm, 100 mm), which instead
produces 44 mW. The explanation lies in the vibration mode of the first configuration,
where the beams oscillate in phase opposition, causing voltage cancellation and thus
reducing the total power. This behavior is confirmed by observation of the first system
mode.
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Figure 4.4: Stress distribution and vibration pattern at first eigenfrequency for configu-
ration with all beam lengths equal to 100 mm.

In Figure 4.4, it is clearly visible that a system with all beam lengths equal to 100 mm
and excited at its first eigenfrequency exhibits a vibration pattern in which pairs of beams
oscillate in opposite directions. This antisymmetric behavior leads to voltage cancellation
and consequently to a lower output power.

As a result of these discussed observations on the dataset, the introduction of four
additional input features described in Table 4.5 in Chapter 4.2.1 is justified: the sum of
the lengths, and the three indices capturing the symmetries within the structure. These
additional features are fundamental for enabling the machine learning model to better
capture relevant correlations between the geometrical structure and the power output.

The final final dataset thus consists of 1,872 samples, each characterized by nine input
variables (the four, the three indices and the total length, as well as the resistance) and
one output variable represented by the generated power.

At this point it is possible to proceed to train three ensemble models: Random Forest
Regressor, Gradient Boosting Regression Tree, eXtreme Gradient Boosting Regressor.

The first criterion for comparing the models is represented by the evaluation metrics
described in Chapter 4.2.1: R2, MAE and MSE. The comparison between the three
models is reported in Table 4.6.
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Reliability Metric RFR GBRT XGBR

R2 Score 1.00 1.00 1.00
MAE (mW) 0.07 0.05 0.10
MSE (mW2) 0.08 0.01 0.02

Table 4.6: Comparison of reliability metrics for the three ensemble models: Random For-
est Regressor (RFR), Gradient Boosting Regression Tree (GBRT), and Extreme Gradient
Boosting Regressor (XGBR).

As can be observed from Table 4.6, all three models have a R2 score equal to unity.
This result is attributable to the fact that, for each geometric configuration, there are
multiple load resistance values leading to the generation of similar power output. Con-
sequently, some of these values are included in the train split while the the remainder in
the test set, thus facilitating extremely accurate prediction on the latter as well. Such be-
havior is a symptom of overfitting, as discussed in Chapter 4.2.1 within the methodology
section.

To mitigate this effect and make the model robust, the adopted strategy is to include
twenty-eight additional geometric configurations in the dataset, each with a reduced
number of resistance values. This increased the diversity of the data and improved the
generalization of the model.

For a more meaningful performance evaluation, it is therefore necessary to rely on
the alternative metrics such as MAE and MSE, from which it appears that Gradient
Boosting Regression Tree model shows the lowest mean and quadratic error compared to
the others.

However, this result, although indicative, is not sufficient by itself to determine which
model should be selected for the genetic algorithm. Therefore, additional qualitative
analysis, such as residual plot and feature importance, are considered.

Figure 4.5: Residual plot with Random Forest Regression.
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Figure 4.6: Residual plot with Gradient Boosting Regression Tree.

Figure 4.7: Residual plot with eXtreme Gradient Boosting Regressor.

Figures 4.5, 4.6 and 4.7 represent the residual plots of each ensemble machine learning
model, where the central red dashed line expresses zero error. It is clearly visible that,
especially for highest power output values (mW), the GBRT model shows the lowest
prediction error. It is really relevant to focus on the highest power values, as the machine
learning models will be used within the genetic algorithm and the goal of the genetic
algorithm is to find the optimal geometry that maximizes the output power.

Further analysis was conducted on the significance of the input variables through the
assessment of feature importance, the results of which are summarized in Figures 4.8, 4.9,
4.10, and Table 4.7.
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Figure 4.8: Histogram of feature importance of RFR model.

Figure 4.9: Histogram of feature importance of GBRT model.

Figure 4.10: Histogram of feature importance of XGBR model.
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Feature RFR GBRT XGBR
L1 6.72% 3.06% 3.49%
L2 18.26% 15.06% 5.30%
L3 5.54% 2.30% 2.26%
L4 19.23% 19.92% 35.13%
R 15.13% 4.17% 0.64%
L_sum 28.19% 46.97% 30.91%
Index 1 4.14% 8.07% 19.17%
Index 2 1.40% 0.24% 0.99%
Index 3 1.38% 0.21% 2.12%

Table 4.7: Relative feature importance for the three ensemble models: Random Forest
Regressor (RFR), Gradient Boosting Regression Trees (GBRT), and Extreme Gradient
Boosting Regression (XGBR).

From Figures 4.8, 4.9, 4.10 and Table 4.7 it is visible that two features, the sum of
beam lengths and L4, are relevant for all the machine learning models, while the other
inputs are treated quite differently by the chosen models. Considering that the Gradient
Boosting Regression Tree has the highest reliability and in addition gives quite high
importance to index 1, which by an analysis of the dataset is a meaningful feature, it is
chosen to be the machine learning model to use within the genetic algorithm.

At this point, it is finally possible to apply the genetic algorithm described in Chap-
ter 4.2.1, in which the fitness function is evaluated using the predictions of the GBRT
machine learning model, with the goal of maximizing just such a prediction. The out-
line of the genetic algorithm has already been explained above, however, it is important
to point out a fundamental addition to what has already been described: at the time
when the initial population, consisting of random combinations of the five input param-
eters (the four beam lengths and the resistance value), is generated, the four additional
features introduced in the feature engineering phase are also automatically calculated.
These features, as already explained, are essential to enable the GBRT model to make a
reliable prediction of the generated power value. In other words, for each individual in the
population, in addition to the main inputs, the fitness function generates the four derived
features (sum of lengths and the three symmetry indices) needed to correctly complete
the input vector of the GBRT model and thus obtain the estimated power output to be
maximized.

The optimized geometry resulting from the genetic algorithm is shown in Table 4.8,
while in Figure 4.11 the fitness history curve is illustrated, showing the evolution of the
value of the objective function over iterations.

Configuration L1 (mm) L2 (mm) L3 (mm) L4 (mm) R (kΩ) Predicted Power (mW) Simulated Power (mW)
Starting structure 80 90 100 85 318 17.600 17.603
Optimal configuration (GA) 100 92 92 100 340 45.584 45.560

Table 4.8: Comparison between the initial structure and the optimal configuration found
by the genetic algorithm, showing input parameters and both the predicted and simulated
output power.
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Once the result of optimization through genetic algorithm and machine learning is
obtained, a validation of the behavior of the optimal configuration through simulations
on COMSOL Multiphysics is performed. Specifically, an eigenfrequency study is initially
carried out to determine the first eigenfrequency of the optimized structure. Then, this
is used as the excitation frequency in the frequency domain study so that the extracted
power value predicted by the machine learning model can be compared with that obtained
by numerical simulation.

In Table 4.8 it is shown that the Gradient Boosting Regression Tree (GBRT), applied
to the optimized structure, predicts a power value of 45.584 mW, while COMSOL simulation
returns a value of 45.560 mW, with an extremely small relative percentage error of about
0.05%. This result confirms the high reliability of the supervised learning model employed.

Figure 4.11: Second approach: Evolution of the best fitness value across genetic algorithm
iterations.

In addition, comparison between the initial and optimized structure shows a significant
increase in extracted power. The initial configuration provided a simulated power of
17.603 mW, while the new configuration yields 45.560 mW, corresponding to a percentage
increase of about 158.8%.

Once the reliability of the power value obtained from the optimized structure is veri-
fied, the behavior of the optimized configuration can be analyzed in more detail.

In particular, Figures 4.12 and 4.13 represent respectively the geometrical configura-
tion of the optimized structure and the visualization of the structure optimized with the
Von Mises stress distribution, in the case where the excitation frequency coincides with
the first eigenfrequency.

In Figure 4.13 the modal behavior of the structure is clearly visible: the four beams
move in phase, which means they oscillate in the same direction, avoiding voltage cancella-
tion phenomena. This condition leads to efficient energy extraction from all piezoelectric
elements. This observation justifies the high extracted power from the resulting structure.
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Figure 4.12: Optimized geometry obtained with the second approach, corresponding to
the maximum predicted power output using the GBRT-based genetic algorithm.

Figure 4.13: Von Mises stress distribution of the optimized configuration (Second ap-
proach) when excited at its first eigenfrequency.
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Also from the stress distribution, it is observed that the maximum value of Von Mises
stress reaches about 1.4 · 108 N/m2 (140 MPa), located at the joints between the outer
beams and the support plate.

It is well known that aluminum can be used in various forms, from almost pure versions
to high-strength structural alloys. As reported by ASM international, aluminum can
exhibit great variability in its mechanical properties depending on its composition and
the treatments it has undergone. In particular, pure aluminum in the annealed state
shows a very low yield strength of about 10 MPa, while heat-treated commercial alloys
can reach values of about 550 MPa. Some high-performance alloys reach up to 690 MPa
or more [9].

Based on the reported data, it can be concluded that the maximum stress value
obtained for the optimized structure of 140 MPa falls within the yield strength limits of
common structural aluminum alloys. Therefore, it can be reasonably stated that, except
for the use of unalloyed or high-purity aluminum, the structure is able to withstand the
expected harmonic excitation while remaining in the elastic range, thus ensuring the
mechanical safety of the system.

Having now a more complete overview of the structural and functional effectiveness
of the optimized configuration, it is worth reflecting on a fundamental limitation of the
approach taken so far. The entire optimization process is conducted by assuming the
structure’s first eigenfrequency as the excitation frequency. This is a reductive way of
approaching the problem, neglecting the multimodal nature of the structure. In fact, the
structure with the presence of four beams was created to ensure complex and exploitable
dynamic behavior over a wide range of frequencies. This type of structure of the energy
harvester is indeed designed to extract power under multiple resonance conditions, corre-
sponding to the first four eigenfrequencies, which are in the lowest part of the spectrum,
given the geometry of the scavenger with four cantilevered beams.

Therefore, limiting the study to the first resonant frequency results in a partial view.
In fact, setting an optimization with an objective function based solely on power extracted
at the first eigenfrequency leads to neglect the starting nature of the structure, which is
designed to operate efficiently on a wider frequency range. In this way, there is the risk
of obtaining a configuration that can maximize performance at the first eigenfrequency,
but at the same time performance suddenly drops at higher frequencies, resulting in a
loss of the overall energy potential that the structure would theoretically be able to offer.

For this reason, it is necessary to introduce a third approach, already introduced in
Chapter 3.3 and detailed in the following part, which takes into account the multimodal
nature of the system. In this new step, for each geometric configuration, the extracted
power is calculated when the excitation frequency coincides with the structure’s first,
second, third and fourth eigenfrequencies. The goal of optimization then becomes the
maximization of the sum of these four powers, so as to select a geometry that guaran-
tees good performance over multiple modes and, consequently, stable, high-performance
behavior over a wider range of frequencies.

Despite the limitations highlighted, the present approach is nevertheless useful in
refining the search range of beam lengths. Indeed, analysis of the dataset shows that
low beam lengths lead to significantly lower extracted power since the structure has a
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higher stiffness and so lower beams’ displacement. For this reason, it is decided to narrow
the range of lengths to be explored in the following approach from the initial range of
45-100 mm to a narrower range of 80-100 mm. This choice makes it possible to lighten
the number of configurations required for the construction of the new dataset, being
particularly advantageous since new geometric variables, such as beam spacing, are also
introduced in this new phase.

4.3 Third Approach: Multimodal optimization with the in-
troduction of beam distances and all modes

4.3.1 Methodology

Downstream of the first analysis, it is decided to implement a significant change in the
optimization methodology. This choice is made from the construction of the dataset and
the definition of input and output variables, in order to increase optimization parameters
of the harvester structure and take into account its multimodal nature.

The first change introduced in this third approach is to include, as the last step of the
optimization, the relative distances between the beams, denoted by d1, d2 and d3. These
parameters, that were initially neglected, are now considered to allow a more complete
exploration of the potential of the structure in terms of extracted power.

Moreover, in previous approaches, the excitation of the system was imposed on the
first eigenfrequency, completely neglecting the multimodal nature of the structure. This
assumption can lead to optimizing structures that generate peak power only at the first
mode of vibration, but perform poorly for frequencies corresponding to the other modes.
This represents a substantial limitation, since in the real world, ambient vibrations are
neither constant nor perfectly stationary, but often exhibit frequency shifts or irregular
behavior. For this reason, it is crucial that the structure maintains high performance even
over multiple vibration modes, effectively widening the range of frequencies in which the
energy harvester is efficient.

In light of these considerations, the dataset construction strategy is modified together
with the characterization of the input and output variables.

As a first step, it is decided to reduce the range of lengths to be considered. Analysis
of the dataset generated in the previous approach showed that shorter lengths result in
higher stiffness, and consequently, lower vibration amplitude. As a consequence, lower
vibration intensity leads to lower power extraction by the piezoelectric patches in the
beams. Therefore, the range of beams lengths is limited from 80 mm to 100 mm. In
parallel, also the range of load resistances can be reduced, from 100-400 kΩ (previously
used) to 200-400 kΩ. This reduction in resistance range is based on previous results. In
fact, in Chapter 4.2.2 it is retrieved that in the harvester structure with all beam lengths
set to 45 mm the maximum power is reached at approximately at 130 kΩ. By eliminating
the shorter lengths, it no longer makes sense to explore very low resistances, and it is
therefore decided to completely exclude the range between 100 and 200 kΩ. In this way,
the computational cost required to generate the dataset can be contained. Furthermore,
it is also necessary to introduce the ranges for the new variables: the distances between
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the beams d1, d2 and d3. The distance between beams is constrained by the width of the
host platform. Therefore, a variable s is introduced, defined as the distance between the
extreme (first or last) beam and the nearest edge of the structure. This distance must
be strictly greater than zero to avoid beams protruding outside the platform, a condition
that would lead to irregular behavior and undesirable structural stresses. In addition, to
avoid structural asymmetries, the distance of the first beam from the left edge is required
to be the same as the distance of the last beam from the right edge. As a result, once the
values of d1, d2 and d3 are set, the value of s can be uniquely determined as a function
of beam distances and the width of the structure. Indeed, since the beams must not
laterally protrude from the hosting structure, the upper boundary for the values of d1,
d2 and d3 are automatically created. The lower boundary, on the other hand, is based on
the fact that the distance between the beams must be greater or equal to 5 mm, which is
considered as the minimum safety threshold to avoid lateral collisions between adjacent
beams.

Once the bounds for the considered variables are set, it is possible to proceed with
the construction of the dataset. Specifically, 8 random combinations of lengths between
80 mm and 100 mm are generated. For each of these configurations, 24 different combi-
nations of the distances between the beams (d1, d2 and d3) are considered. Then, a sweep
of electrical resistances is associated to each length-distance configuration, with values
that ranges from 200 to 400 kΩ with a step size of 8 kΩ.

This procedure resulted in a theoretical total of 8 × 24 × 26 = 4,992 configurations.
To these, additional samples are added obtained by taking advantage of the concept of
symmetry: for example, a configuration with beam lengths set to [80, 90, 100, 85] and dis-
tances symmetrical with respect to the center such as [10, 15, 10] has the same behavior as
the mirrored configuration [85, 100, 90, 80], keeping the distances unchanged. Therefore,
these mirrored configurations are also included in the dataset, bringing the total number
of samples to 5,460.

Once the input variables characterizing each sample in the dataset is defined, the
next step is to attribute to each configuration its corresponding set of outputs. These
are derived through numerical simulations carried out in the COMSOL Multiphysics en-
vironment, with the goal of fully capturing the multimodal nature of the structure.

For each geometric configuration and for each resistance value considered, a dual
analysis is performed. The first study is an eigenfrequency analysis, from which the first
four eigenfrequencies of the structure are extracted. Unlike previous approaches, in which
only the first mode was considered, at this stage it is crucial to consider the subsequent
modes as well, since each of them can contribute significantly to power generation.

Subsequently, a Frequency Domain Study is conducted, in which the structure is
excited separately at each of the just calculated four eigenfrequencies. For each excitation
frequency, a sweep of load resistance values is simulated in the range of 200 to 400 kΩ, with
a step size of 8 kΩ. This makes it possible to determine, for each geometric combination,
the maximum electrical power that can be extracted at each of the four frequencies.

At the end of this process, each sample in the dataset is described by an input set,
consisting of the four beam lengths (L1, L2, L3, L4), by the three distances between
beams (d1, d2, d3), by the resistance R, and by the auxiliary variable s which represents
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the distance between the extreme beams and the edges of the platform and which, as
mentioned above, is completely determined by the values of d1, d2 and d3. The associated
outputs, on the other hand, are denoted by P1, P2, P3 and P4, corresponding to the
power extracted from the structure when the excitation coincides respectively with the
first, second, third, and fourth eigenfrequencies.

Although the sum of these four values, named as Ptot does not directly represent the
power that can be extracted under real-world conditions, it is still calculated and taken
as the objective function for the genetic algorithm. The idea behind this choice is that a
structure that exhibits good performance over multiple vibrational modes is more likely
to have good performance even under conditions of varying and not perfectly resonant
excitation, as is frequently the case in real-world applications.

Once the dataset is constructed, following standard data preparation guidelines Ex-
ploratory Data Analysis (EDA) is performed. Specifically, for each input variable and
for the total power extracted, all the values taken within the dataset are graphically
represented and superimposed by three lines: the line representing the average value of
the considered variable, and the limits corresponding to ±3 times the standard devia-
tion (σ). This type of analysis is commonly used to detect potential outliers, defined
as samples that deviate anomalously from the rest of the distribution. However, in the
present case, EDA is not used to remove such values. Indeed, the available data are not
derived from experimental measurements, where the presence of noise or instrumental
errors could justify the removal of outliers. On the contrary, each configuration in the
dataset is obtained through numerical simulations and so all the values are physically
plausible. For this reason, samples that lie outside the ±3σ range are also kept.

Subsequently, before training the machine learning models, a feature engineering
phase is carried out. To relate the beam lengths and the power output, the total sum
and the symmetric indexes, already described in Table 4.5 and adopted in the second
approach, are evaluated. For beam distances, on the other hand, it is observed that no
obvious correlations emerge with the target variables. To enable the ML model to learn
any complex relationships, the following new features are introduced in Table 4.9.

After the dataset construction and analysis, the next step consist on the training of
the supervised machine learning models. In continuity with the approaches covered in
the present project, the same regression models are employed: Random Forest Regressor
(RFR), Gradient Boosting Regressor (GBRT) and XGBoost Regressor (XGBR). The
goal is to exploit the predictive ability of these models to estimate the power extracted
in configurations that have not yet been simulated.

Two different approaches are considered. The former consists of predicting a single
output, namely the sum of the powers associated with the first four eigenfrequencies of
the structure, denoted as Ptot. In this case, regression models are trained to directly
predict this aggregate quantity, which is the quantity chosen to be maximized in the
optimization. In the latter, on the other hand, the multi-output mode of the chosen
machine learning models is exploited, training them to simultaneously predict the four
values P1, P2, P3 and P4. These values are then summed within the objective function
of the genetic algorithm, still allowing for maximizing Ptot, , but with more detailed
modeling of the structural response.
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Feature Name Formula Description

Symmetry Pattern
f =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 if d1 = d3 and d2 > d1

2 if d1 = d3 and d2 < d1

3 if d1 = d2 = d3

0 otherwise

Function to detect symmetries. Value 0 denotes
asymmetry; 1 indicates symmetry with a larger cen-
tral gap; 2 indicates symmetry with a smaller central
gap; 3 denotes full symmetry.

Mean Distance d̄ = d1+d2+d3
3

Arithmetic mean of the three distances between adja-
cent beams. Useful to assess the overall compactness
or spread of the structure.

|d1 − d2| |d1 − d2|
Absolute difference between the first and second
beam distances. Helps capture local asymmetry be-
tween the left and center sections.

|d2 − d3| |d2 − d3|
Absolute difference between the second and third
beam distances. Highlights asymmetry between the
center and right sections.

|d1 − d3| |d1 − d3| Absolute difference between the first and third beam
distances.

Table 4.9: Engineered features derived from the beam distances.

Similarly to the previous approaches, all the models are tuned through k-fold cross-
validation with the same setting already explained.

Performance is measured using the metrics R2, Mean Absolute Error (MAE) and
Mean Squared Error (MSE), accompanied by feature importance analysis and residual
plots, which help the interpretation of accuracy and the selection of the model to be used
within the genetic algorithm.

The predictions of the machine learning models is then employed as the fitness function
within the genetic algorithm, with the goal of maximizing Ptot.

Again, two variants are developed.
The first is created to be used in the case where a single output machine learning

model is employed. In this case, the objective function directly coincides with the direct
prediction of Ptot. In the second variant, which takes advantage of multi-output predic-
tion, the four predicted values are summed within the genetic algorithm itself, so that
fitness is calculated with the same logic as in the single-output version.

In both approaches, physical constraints are imposed on the allowable configurations:
beam lengths must remain between 80 and 100 mm, while the three beam distances
must be such that their sum does not exceed the structure lateral width. The latter
constraint is necessary to meet the overall dimensions of the device. To ensure that
invalid configurations are automatically excluded during the search, a very severe penalty
is applied within the fitness function. Specifically, if the sum of the distances exceeds the
limit, a very low fitness value (−106 mW) is returned making that solution ineligible for
evolutionary selection.

To evaluate the behavior of the optimization over time, the fitness history, or the
trend of the maximum fitness value generation after generation, is plotted. This makes
it possible to analyze the speed of convergence of the algorithm and its ability to explore
the space of solutions.

Finally, given the high computational cost associated with generating more than 5,500
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configurations through FEM simulations, a second analysis is also performed on a reduced
dataset. In this case, 8 random combinations of lengths are selected, each of which is
associated with 20 different combinations of distances. For each obtained configurations,
only four resistance values are considered, randomly chosen within the previously defined
range. This process leads to the creation of 640 configurations, which, when completed
with the corresponding symmetric samples, bring the total to 700 samples. The entire
pipeline is repeated on this subset as well, allowing the performance and robustness of
the optimization to be compared with respect to the size of the dataset.

4.3.2 Numerical Results

Once the methodology of the third approach is outlined in Chapter 4.3.1, it is possible
to report and discuss its results. As previously explained, the dataset is generated by
combining different configurations of lengths and distances between beams, including
symmetric configuration obtained by reflection. From these geometric variables, along
with the value of electrical load resistance, numerical simulations are performed in COMSOL
Multiphysics to calculate the power extracted from the structure at each of the first four
resonant frequencies, named P1, P2, P3 and P4. At the end a dataset of 5,460 samples is
build, and in Table 4.10 are summarized all the considered input and output variables.

Type Variable Description

Inputs

L1 First beam length
L2 Second beam length
L3 Third beam length
L4 Fourth beam length

L_sum Sum of all four beam lengths
Index 1 Described in Table 4.5
Index 2 Described in Table 4.5
Index 3 Described in Table 4.5

d1 Spacing between the first and the second beam
d2 Spacing between the second and the third beam
d3 Spacing between the third and the fourth beam
R Resistive load

symmetry_pattern Described in Table 4.9
d̄ Average between the three beam distances

|d1 − d2| Absolute difference d1 e d2
|d2 − d3| Absolute difference d2 e d3
|d1 − d3| Absolute difference d1 e d3

Output

P1 Extracted power with an excitation frequency equal to the first
eigenfrequency

P2 Extracted power with an excitation frequency equal to the second
eigenfrequency

P3 Extracted power with an excitation frequency equal to the third
eigenfrequency

P4 Extracted power with an excitation frequency equal to the fourth
eigenfrequency

Ptot Sum of the previous power values: Ptot = P1 + P2 + P3 + P4

Table 4.10: Input and output variables of the dataset used in the third approach
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As previously described, an Exploratory data analysis (EDA) is conducted, which
can be useful for understanding the distribution of the data and the possible presence
of anomalous configurations. Specifically, all the independent input variables, that are
L1, L2, L3, L4, d1, d2, d3 and R, are analyzed along with the output quantity Ptot =
P1 + P2 + P3 + P4 corresponding to the target variable used for optimization. For each
of these variables, the mean value is reported, together with two bands corresponding to
±3σ, visually compared with the values of all the samples in the dataset.

This analysis shows that some samples fall outside the upper boundaries defined by
+3σ. Particularly, this behavior is detected for some values of the variable d2, shown in
Figure 4.15.(b). However, these values are still embedded within the physical constraints
imposed during dataset generation, as described in the methodology. In fact, the sum
of the three distances d1, d2 and d3 never exceeds the maximum allowable length of
the structure, ensuring the physical validity of the configurations. Therefore, it is not
considered appropriate to remove these samples, even if they were statistically far from
the center of the distribution.

Similar considerations apply to the output Ptot, where some samples show very high
powers. Again, these are not outliers in the classical sense, since the data do not come
from experimental measurements subject to noise or disturbances, but from controlled
numerical simulations. Removing such samples would result in a significant loss of in-
formation, potentially going to eliminate precisely those optimal configurations that the
optimization process aims to identify.

In light of these considerations, it is decided not to apply any kind of EDA based
filtering. The entire dataset, including the original and engineered features, is used to
train the machine learning models.

Once the data preparation step is completed, the dataset is subdivided into training
and test set. Given the size of the complete dataset, consisting of 5,460 samples, a 50-50
split between train and test set is chosen, in order to reduce the possible risk of overfitting
and allow for a more balanced comparison during validation.

Six different regression machine learning models are trained at this point. Three of
these are the previously employed supervised ensemble models RFR, GBRT, and XGBR,
each configured for direct prediction of the single output Ptot. The same models are then
used in the multi-output configuration, in such a way that the four outputs P1, P2, P3,
and P4 are simultaneously predicted.

In each case, the hyperparameters tuning process is performed by the previously
explained 5-fold cross-validation procedure, with the aim of ensuring robust estimation
of model performance

Once the models are trained and tested is important to perform a comparison based
on the performance, in terms of reliability of the machine learning model’s predictions.

First of all, for each model the main performance metrics are analyzed and compared:
the R-squared value R2, the mean absolute error MAE, and the mean square error MSE.
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(a)
Distribution of variable L1 with mean and thresholds ±3σ.

(b)
Distribution of variable L2 with mean and thresholds ±3σ.

(c)
Distribution of variable L3 with mean and thresholds ±3σ.

(d)

Distribution of variable L4 with mean and thresholds ±3σ.

Figure 4.14: Exploratory data analysis of beam length variables (L1 to L4), showing the
mean and thresholds at ±3σ.
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(a)
Distribution of variable d1 with mean and thresholds ±3σ.

(b)
Distribution of variable d2 with mean and thresholds ±3σ.

(c)
Distribution of variable d3 with mean and thresholds ±3σ.

Figure 4.15: Exploratory data analysis of inter-beam distance variables (d1, d2, d3),
highlighting the distribution with mean and ±3σ thresholds.
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Figure 4.16: Exploratory data analysis of resistive load values, highlighting the distribu-
tion with mean and ±3σ thresholds.

Figure 4.17: Exploratory data analysis of Ptot, highlighting the distribution with mean
and ±3σ thresholds.
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Model R2 MAE MSE
RFR (Single Output) 0.98 0.33 1.03
GBRT (Single Output) 0.98 0.26 0.95
XGBR (Single Output) 0.98 0.22 0.41
RFR (Multi Output) 0.99 0.11 0.16
GBRT (Multi Output) 0.99 0.08 0.14
XGBR (Multi Output) 0.99 0.10 0.25

Table 4.11: Performance metrics for single-output and multi-output regression models:
coefficient of determination (R2), Mean Absolute Error (MAE), and Mean Squared Error
(MSE).

In Table 4.11 it is possible to clearly observe the performance obtained by the different
models, both in single-output and multi-output configurations. In particular, it is noticed
the multi-output models generally report better metrics, with a R2 coefficient very close
to the unit and significantly lower MAE and MSE values than the respective single-
output versions. This suggests greater reliability of multi-output models in their ability
to capture and represent the relationship between input variables and different power
contributions, P1-P4.

In light of these results, the choice of the machine learning model to be used within the
genetic algorithm definitely falls on a multi-output model. However, since the numerical
performance reported by the three multi-output models are very close to each other,
further analysis needs to be conducted to more consciously guide the final selection of
the algorithm.

For this reason, the residual plots obtained for each multi-output model are compared.
The graphical analyses of the residuals, shown in Figures 4.18, 4.19, 4.20 and 4.21,

basically confirm what has already emerged from the numerical evaluation: all models
show good predictive ability, however the differences are small and not sufficient to dis-
criminate decisively between the three multi-output models. At this point, the feature
importance analysis is performed in order to definitely choose for the genetic algorithm.
This analysis is particularly useful in understanding whether and how each model was
able to identify the most influential variables in the predictive process.
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Figure 4.18: Residual plots for output P1
performed with all the ML models.

Figure 4.19: Residual plots for output P2
performed with all the ML models.
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Figure 4.20: Residual plots for output P3
performed with all the ML models.

Figure 4.21: Residual plots for output P4
performed with all the ML models.
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Figure 4.22: Feature importance for the Random Forest Regressor (multi-output).

Figure 4.23: Feature importance for the Gradient Boosting Regressor (multi-output).
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Figure 4.24: Feature importance for the XGBoost Regressor (multi-output).

Feature RFR GBRT XGBR
Index1 12.47% 18.13% 89.11%
mean distance d̄ 12.33% 17.10% 3.76%
L2 10.90% 22.83% 4.95%
L_sum 8.87% 9.93% 0.00%
d2 7.75% 6.81% 0.58%
L1 7.34% 5.29% 0.66%
L4 6.25% 3.40% 0.00%
L3 6.07% 2.44% 0.00%
R 4.53% 0.28% 0.01%
d1 3.97% 0.60% 0.09%
|d2 − d3| 3.76% 1.21% 0.11%
d3 3.59% 0.97% 0.01%
|d1 − d2| 3.46% 2.07% 0.32%
|d1 − d3| 3.18% 1.37% 0.03%
Index2 2.40% 2.38% 0.00%
Index3 2.04% 4.72% 0.00%
symmetry_pattern 1.09% 0.47% 0.37%

Table 4.12: Feature importance percentages (in %) for Random Forest Regressor (RFR),
Gradient Boosting Regressor (GBRT), and XGBoost Regressor (XGBR) multi-output
models, rounded to two significant figures.
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Table 4.12 and Figures 4.22 4.23 4.24 show how XGBR model assign almost all impor-
tance to the “Index1” feature, which represents the central symmetry in beam lengths,
while neglecting all other variables. This behavior indicates an oversimplification of the
problem, where the prediction of outputs is mainly associated with lengths, at the expense
of other potentially relevant features.

In contrast, both the RFR and GBRT model seem to more fully capture the expected
behavior, assigning importance to both geometric length variables and distances between
beams. This more balanced distribution of feature importance makes RFR and GBRT
models more consistent with physical knowledge of the system. Additionally, it is consis-
tent that the resistance value R has relatively low significance, since its range of variation
is limited (between 200 and 400 kΩ). In fact, varying the resistive load in this limited
range, the value of output powers have small relative variations for the same geometric
configuration.

Considering all the results, it is noticed that RFR and GBRT models exhibit similar
behavior in capturing the influence of variables on extracted powers, with a good ability
to value both beam lengths and distances between them. However, GBRT shows slightly
higher reliability metrics than RFR, especially in terms of predictive accuracy. For this
reason, the prediction of GBRT model is chosen to be used as the objective function
within the genetic algorithm, as it provides a good compromise between model predictive
performance.

At this point, the genetic algorithm can be run using the multi-output GBRT model,
selected for the previously explained reasons. Since the model can simultaneously predict
the four outputs P1, P2, P3 and P4, the adopted variant of the genetic algorithm is the
second one described in Chapter 4.3.1. In fact, using the prediction of GBRT multi-
output model, the sum of the four output powers needs to be performed within the
fitness function. Summarizing, the chosen genetic algorithm has to generate a population
with individuals characterized by a set of independent input variables (four beam lengths,
three beam distances, and the load resistance) as a first step. Then within the fitness
function, the derived input variables needed for prediction (e.g. average of distances,
absolute differences, etc.) are calculated. Later, P1, P2, P3 and P4 are obtained for each
individual through GBRT model prediction. Finally, the fitness function evaluates the
sum of P1, P2, P3 and P4 named as Ptot. In this way, for each individual the fitness
function returns its Ptot, which is the quantity to be maximized.

As discussed earlier, the goal of the process is to achieve a structural configuration
that maximizes peak power at the first four eigenfrequencies. This makes it possible to
take advantage of the multimodal nature of the system, extending its operational and
energy-efficient range.

At the end of the optimization, an optimal configuration is obtained, shown in Ta-
ble 4.13, accompanied by a fitness history graph (Figure 4.25) showing the evolution of
the solution during the genetic algorithm iterations.
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Parameter Starting structure Optimal configuration (GA)
L1 (mm) 80 100
L2 (mm) 90 92
L3 (mm) 100 92
L4 (mm) 85 100
d1 (mm) 10 5
d2 (mm) 10 44.5
d3 (mm) 10 6
R (kΩ) 302 278
Predicted Power (mW) 23.02 108.05
Simulated Power (mW) 20.99 105.59

Table 4.13: Comparison between the initial and the optimized configuration using the
third approach with the multi-output GBRT model. Power values refer to the sum of the
extracted powers over the first four eigenfrequencies.

Figure 4.25: Third approach: Evolution of the best fitness value across genetic algorithm
iterations.

From Table 4.13, it can be seen that once the optimized configuration is obtained
through the genetic algorithm based on the GBRT multi-output model, it is decided to
validate its performance through FEM simulations on COMSOL. In particular, the geo-
metrical parameters and the resistive load of the optimized structure are set in COMSOL
Multiphysics, and two consecutive studies are performed. The former, is an eigenfre-
quency study to find the first four eigenfrequencies of the structure. The latter, is a
frequency domain study in which the excitation frequency is set to the first four previ-
ously found eigenfrequencies, so as to calculate the energy output for each mode. This
numerical simulation is performed under a restricted resistance sweep to verify that the
optimal value suggested by the optimization model for the resistive load (278 kΩ) actually
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corresponds to one that maximizes Ptot for that specific geometrical structure.
From the simulation, it is observed that, for the optimized configuration and at the

resistance of 278 kΩ, the total power is 105.59 mW, compared with the GBRT model
prediction of 108.05 mW. The relative error between the predicted and simulated value
is equal to:

|108.05 − 105.59|
105.59 · 100 ≈ 2.33% (4.5)

In addition, the variation of the sum of P1, P2, P3 and P4, named as Ptot, with respect
to the variation of the resistive is analyzed and reported in Figure 4.26. The resulting
curve shows a maximum at 301 kΩ, with a sum of powers Ptot equal to 105.86 mW.
Therefore, the optimization process experiences an error in the placement of the maximum
of:

|301 − 278|
278 · 100 ≈ 8.27% (4.6)

Figure 4.26: Ptot versus Resistive load of the optimized structure : vertical axis is Ptot

expressed in mW and horizontal axis represents the resistive load R expressed in kΩ

Once the configuration optimized by the genetic algorithm is obtained and the errors
between predicted and simulated powers are evaluated, some relevant considerations can
be drawn.
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First of all, the obtained configuration is consistent with the feature importance anal-
ysis (Figure 4.23) discussed above. Indeed, the multi-output GBRT machine learning
model assigns greater importance to variables related to beam lengths (particularly In-
dex1) than to the distances between them. It is therefore not surprising that the optimal
configuration found with the third approach has the same lengths as the optimal structure
already identified in the second approach. The ability to modify the spacing between the
beams, enabled by the third approach, allows greater flexibility in further improving the
performance of the system. In fact, comparing the optimized configuration obtained with
the second approach and that obtained with the third approach, an increase in extracted
power is observed in all four cases where the excitation frequency coincides with one of
the first four eigenfrequencies, as shown in Table 4.14.

Variable Second approach optimal structure Third approach optimal structure

L1 (mm) 100 100
L2 (mm) 92 92
L3 (mm) 92 92
L4 (mm) 100 100
d1 (mm) 10 5
d2 (mm) 10 44.5
d3 (mm) 10 6
R (kΩ) 320 301
P1 (mW) 45.79 49.72
P2 (mW) 5.93 43.58
P3 (mW) 1.45 7.79
P4 (mW) 0.49 4.75
Ptot (mW) 53.66 105.86

Table 4.14: Output powers comparison (P1, P2, P3, P4, and Ptot) between the optimal
structure obtained with the Second Approach and the one obtained with the Third Ap-
proach.

However, when analyzing the relative prediction errors calculated in the Equations 4.5
and 4.6, although they are relatively small, a significant limitation of the model emerges.
In particular, considering that from the analysis of the feature importance the distance d2
turns out to be among the most influential parameters, it is decided to test a configuration
slightly modified from that proposed by the genetic algorithm. In this variant, the lengths
are kept the same (L1 = 100, L2 = 92, L3 = 92, L4 = 100), but the value of d2 is increased
to 46 mm, fixing instead d1 = d3 = 5 mm. In this way, a maximization of the distance
between the central beams d2 is imposed and, at the same time, a central symmetry is
also set for the spacing between the beams. This choice is consistent with the previously
identified correlation between symmetry in beam lengths and increased output power, and
it is therefore decided to test whether symmetry in spacing would also provide benefits.
Specifically it is decided to set d1 and d3 at the same length to ensure the symmetry of
the structure, and with a value corresponding the lower boundary value that is 5 mm.
This constraint allows d2 to reach the highest possible value. In fact, d2 is maximized up
to 46 mm, which is the maximum value compatible with the geometric constraint that
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requires the four beams to be entirely contained within the plate, while still maintaining
a space s of 1 mm between the extreme beams and the edges of the plate. This margin
is necessary to avoid constructional problems in the practical realization of the device.

The same simulation process is carried out for this configuration: eigenfrequency
study, followed by frequency domain study with sweep of the resistances. The maximum
powers extractable from the structure are reported in Table 4.15.

Variable Modified structure

L1 (mm) 100
L2 (mm) 92
L3 (mm) 92
L4 (mm) 100
d1 (mm) 5
d2 (mm) 46
d3 (mm) 5
R (kΩ) 300
P1 (mW) 49.82
P2 (mW) 45.22
P3 (mW) 7.89
P4 (mW) 5.03
Ptot (mW) 107.96

Table 4.15: Output powers (P1, P2, P3, P4, and Ptot) of the modified structure.

From Table 4.15, it can be seen that the modified configuration provides higher overall
power values than those obtained from the structure proposed by the genetic algorithm.
This result shows that the optimization process is not reliable enough to ensure that the
global optimal structure is found. This limitation can be attributed to the complexity
of the structural behavior with respect to the number and nature of variables involved,
which may not allow the model to fully learn the relationship between the geometry and
the extracted power.

However, the algorithm demonstrates a good ability to capture the overall trend,
leading toward a configuration capable of generating significantly more power than the
initial structure. Although the globally optimal solution is not obtained, the result can
still be considered extremely positive and useful in directing the design toward promising
configurations.

Having obtained the modified structure, derived from that proposed by the optimiza-
tion process using machine learning combined with genetic algorithm, a more in-depth
analysis of its dynamic characteristics is performed. In particular, this analysis is in re-
lation to the structure’s modes of vibrations, frequency response and stress distribution.
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Figure 4.27: Geometrical configuration of the energy harvester obtained by modifying
the structure obtained with the third approach optimization.

The first relevant observation concerns the first four eigenfrequencies of the structure,
shown in Table 4.16. As can be seen, these frequencies are very close between each other,
a characteristic that significantly affects the overall dynamic response of the system.

Variable Modified structure Starting structure

L1 (mm) 100 80
L2 (mm) 92 90
L3 (mm) 92 100
L4 (mm) 100 85
d1 (mm) 5 10
d2 (mm) 46 10
d3 (mm) 5 10
R (kΩ) 300 302
λ1 (Hz) 20.811 17.90
λ2 (Hz) 20.93 22.20
λ3 (Hz) 22.054 25.40
λ4 (Hz) 22.44 27.90

Table 4.16: First four resonance frequencies (eigenfrequencies) of the modified and start-
ing structure, namely λ1, λ2, λ3 and λ4.
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(a) Extracted power curve as a function of the excitation frequency of the modified final
structure.

(b) Extracted power curve as a function of the excitation frequency of the starting struc-
ture.

Figure 4.28: Comparison between extracted power curves of the modified final structure
(a) and the starting structure (b).
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In order to better analyze this aspect, a frequency domain study in COMSOL Multiphysics
is conducted, in which the harmonic excitation is varied from 15Hz to 25Hz with a very
fine step of 0.05Hz, so as to precisely cover the entire range of the first four eigenfrequen-
cies. Figure 4.28.(a) reports the extracted power curve as a function of the excitation
frequency.

The behavior of the modified structure is then compared with that one of the initial
structure (with lengths L = [80, 90, 100, 85] mm and distances d = [10, 10, 10] mm)
subjected to the same type of study. The corresponding response curve is shown in
Figure 4.28.(b). Comparing the two curves, substantial differences show up.

In particular, the starting structure shows four distinct peaks at the first four reso-
nance frequencies, showing a broader range of application in terms of excitation frequency.
However, only the first mode generates a significant amount of power, while the other
three have much smaller peaks, as also numerically reported in Table 4.17.

Variable Starting structure

L1 (mm) 80
L2 (mm) 90
L3 (mm) 100
L4 (mm) 85
d1 (mm) 10
d2 (mm) 10
d3 (mm) 10
R (kΩ) 302
P1 (mW) 17.67
P2 (mW) 0.79
P3 (mW) 1.30
P4 (mW) 1.22
Ptot (mW) 20.99

Table 4.17: Output powers (P1, P2, P3, P4, and Ptot) of the starting structure.

On the other hand, the modified structure exhibits a different behavior: the four
peaks associated with the vibration modes merge into a single continuous interval with
high efficiency, due to the close proximity of the four eigenfrequencies, as reported in
Table 4.16. Even though the multiple peaks are no longer found, the extracted power
markedly higher. This observation is also confirmed by analyzing the modal shapes of
the structure associated with the first four eigenfrequencies, shown in Figure ??.

Figure 4.29 and Figure 4.30 show that there are no radical differences as the excitation
frequency changes. However, it is observed that the beams move synchronously, with
coherent and coordinated oscillations. This synchronous behavior is particularly favorable
in terms of maximizing the electrical power generated, as it allows minimizing the effects
of voltage cancellation between the individual piezoelectric elements, thus maximizing
the net contribution to the external load.

Nevertheless, although the overall value of the extracted power is significantly higher
than in the initial structure, at first glance the frequency range of application appears to
be narrower.
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(a) Mode 1

(b) Mode 2

Figure 4.29: Mode shapes of the modified structure: first and second eigenfrequencies.

95



Experimental versus Numerical Validation

(a) Mode 3

(b) Mode 4

Figure 4.30: Mode shapes of the modified structure: third and fourth eigenfrequencies.
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To deepen the analysis, the spectral amplitude of the power peaks is evaluated using
the 3 dB criterion [35]. According to this method, the frequency range is defined as the
interval in which the extracted power curve is above half of the peak power in linear scale,
which corresponds to Pmax − 3 dB in logarithmic scale.

In the case of the initial structure, the first peak is considered, since the other three
are negligible in terms of output power. Instead, for the modified structure, the only
visible broad peak, given by the superposition of the four modes, is analyzed.

So, once the maximum extracted power is extracted for both the curves shown in
Figure 4.28, the threshold power is evaluated throw the following equation.

Pthreshold = Pmax/2 (4.7)

Subsequently, the frequencies f1 and f2 are evaluated. These frequencies are obtained
by intersecting the power versus excitation frequency curve with an horizontal line equal
to Pthreshold.

P (f1) = P (f2) = Pthreshold (4.8)

Finally the frequency range ∆f = f2 − f1 is evaluated for both the configuration, and
results are reported in Table 4.18.

Variable Starting structure Modified structure
L1 (mm) 80 100
L2 (mm) 90 92
L3 (mm) 100 92
L4 (mm) 85 100
d1 (mm) 10 5
d2 (mm) 10 45
d3 (mm) 10 5
R (kΩ) 320 300
f1 (Hz) 17.61 20.30
f2 (Hz) 18.2 21.10
∆f (Hz) 0.59 0.80

Table 4.18: Amplitude comparison of the power versus excitation frequency curves be-
tween the starting and the modified structure.

From these results it is clearly visible that, although the modified structure has a single
main peak, the value ∆f in which high efficiency is maintained is wider with respect to
the starting structure.

Moreover, although the starting structure has power peaks at frequency values as high
as 27.9 Hz, the output power at second, third and fourth peak is very low. In fact, by
analyzing the power extracted from the modified structure when the excitation frequency
is equal to the second, third and fourth eigenfrequencies of the initial structure, a direct
comparison can be made between the two configurations.

From the table 4.19 some important considerations can be drawn. First, it is evi-
dent that the modified structure has a narrower practically usable frequency range than
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Variable Starting structure Modified structure
L1 (mm) 80 100
L2 (mm) 90 92
L3 (mm) 100 92
L4 (mm) 85 100
d1 (mm) 10 5
d2 (mm) 10 46
d3 (mm) 10 5
R (kΩ) 302 300
P at 17.9 Hz (mW) 17.67 1.98
P at 22.2 Hz (mW) 0.79 6.59
P at 25.4 Hz (mW) 1.30 0.71
P at 27.9 Hz (mW) 1.22 0.29

Table 4.19: Comparison of the power extracted from the two configurations (starting
structure and modified structure) at the eigenfrequencies of the initial structure (17.9,
22.2, 25.4 and 27.9 Hz)

the initial structure. This is particularly evident at the excitation frequency of 17.9 Hz
(the first eigenfrequency of the starting structure), where the power extracted by the
modified structure is almost zero, while the initial structure reaches a maximum value of
17.67 mW. However, looking at the results at the subsequent frequencies (corresponding
to the second, third and fourth resonance frequencies of the initial structure), an inter-
esting behavior can be seen: even in the absence of a corresponding peak, the modified
structure manages to maintain competitive, and in some cases higher, values of extracted
power. Specifically, at 22.2 Hz (the second eigenfrequency of the initial structure), the
power extracted by the modified structure is 6.59 mW, a value significantly higher than
only 0.79 mW of the starting structure.

Overall, this comparison confirms that the optimization resulted in an increase in
overall power extracted around the main peak, but at the price of increased spectral
selectivity, with a less effective response away from the central range. Therefore, the ver-
satility of the final structure in applications where environmental vibrations are variable
in a larger range is reduced. However, since no precise application area has been defined in
the present thesis project for the analyzed energy harvester, it is not possible to determine
in absolute terms whether a more efficient but less versatile structure is preferable to one
with lower power but wider operating bandwidth. Indeed, the final assessment depends
on the specific context in which the device is used. Nevertheless, from a methodological
point of view, it is important to note that if an application domain is defined, the entire
optimization process can be adapted to take into account the desired operating range
as well. For example, the objective function of the genetic algorithm could be modified
by introducing a penalty for structures with narrow frequency ranges, thus improving
the model’s fit to real-world needs. Finally, the distribution of mechanical stresses in
the modified structure is analyzed, focusing on the most critical condition, which is the
one in which the excitation frequency coincides with the first eigenfrequency, since from
Table 4.15 it turns out to be the one at which the maximum power is extracted.
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Figure 4.31: Von Mises stress distribution of the modified configuration when excited at
its first eigenfrequency.

Figure 4.31 shows the stress map for that condition. It is observed that the maximum
value is concentrated, as expected, near the junction between the extreme beams and
the support plate, with a maximum value of about 200 MPa. As observed in the stress
analysis of the structure optimized with the second approach in Chapter 4.2.2, this stress
value is is within the yield strength limits of common structural aluminum alloy materials.
Therefore, it can be reasonably concluded that, unless pure or high-purity aluminum is
used, the structure is able to withstand the expected harmonic excitation while remaining
in the elastic range, thus ensuring the mechanical safety of the system.

At the end, the final step is to perform the optimization with a reduced dataset. As
already described in Chapter 4.3.1, the reduced dataset is obtained by randomly selecting
a subset of the samples generated in the full dataset. Specifically, 8 random combinations
of lengths are selected, each of which is associated with 20 different combinations of
distances. For each configuration thus obtained, only four resistance values are considered,
randomly chosen within the defined range. This process resulted in the generation of 640
configurations, which becomes 700 total samples by including symmetrical configurations.

Again, the reduced dataset is used to train the multi-output GBRT model directly,
maintaining the same training settings adopted in the previous phase. The model accu-
racy is evaluated through the same evaluation metrics (R2, MAE and MSE).

Model R2 MAE MSE
GBRT (Multi Output) 0.97 0.44 0.54

Table 4.20: Performance metrics for multi-output GBRT model trained with a reduced
dataset: coefficient of determination (R2), Mean Absolute Error (MAE), and Mean
Squared Error (MSE).
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The performance results of the model reported in table 4.20, show satisfactory per-
formance, with values of R2, MAE and MSE confirming the validity of the approach,
despite the significant reduction in the number of samples.

However, as discussed earlier, such metrics can be misleading. This is because, for
each geometric configuration, different values of the resistance R are considered, which
often result in low variations in the value of power extracted. As a result, there may be
configurations in the test set that are almost identical to those seen during training, but
with slightly different resistance. This facilitates model predictions, positively influenc-
ing the metrics without necessarily reflecting a real ability to generalize. For this reason,
rather than focusing exclusively on accuracy metrics, it is useful to analyze the distri-
bution of feature importance. This analysis allows to check whether the model, despite
using a reduced dataset, is still able to capture the same structural relationships learned
in the case of training with the full dataset.

Figure 4.32: Feature importance for the Gradient Boosting Regressor (multi-output)
trained with reduced dataset.

Figure 4.32 shows that the feature importance obtained during training is consistent
with that observed in the full dataset, confirming the stability of the information learned
by the model.

Subsequently, the genetic algorithm is applied using the GBRT model trained on
reduced dataset. The objective function of the genetic algorithm is the same as the one
previously described for the full dataset.

From Table 4.21 it can be observed that the optimized configuration using the machine
learning model trained on the reduced dataset gives significantly incorrect prediction
compared to the simulation of the same structure performed in COMSOL Multiphysics.
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Variable Optimal configuration with full dataset Optimal configuration with reduced dataset
L1 (mm) 100 100
L2 (mm) 92 91
L3 (mm) 92 91
L4 (mm) 100 100
d1 (mm) 5 18
d2 (mm) 44.5 21.5
d3 (mm) 6 18
R (kΩ) 278 286
Predicted Power (mW) 108.05 115.96
Simulated Power (mW) 105.59 60.99

Table 4.21: Comparison between the optimized configuration through the use of full
dataset and the one that uses the reduced dataset. Power values refer to the sum of the
extracted powers over the first four eigenfrequencies.

Nevertheless, it can be seen that the final identified configuration has structural sim-
ilarities with the one obtained through the full dataset. In particular, the beam lengths
are very similar, with only slight differences, a sign that the model still captured the
most effective geometric proportions. Regarding distances (d1, d2, d3), the model clearly
identified the structural trend that leads to higher power extraction: namely, the pres-
ence of well-defined central symmetry and a high value of d2. Although the optimized
configuration cannot actually be considered optimal in terms of absolute performance, it
is still a useful indication. Indeed, even with a severely reduced dataset, the model is
able to identify the design direction in which to move to achieve high efficiency config-
urations, significantly reducing the computational effort required in the initial phase of
data collection.

4.4 Validation of the Hybrid Optimization Model

4.4.1 Methodology

After obtaining the results of the optimization process proposed in the present thesis,
based on the joint use of ensemble machine learning models and genetic algorithms,
it is crucial to validate the actual reliability of the optimized geometric and electrical
configuration. The goal is to test the applicability of the proposed method in real-world
applications, in which a reduction in computational time is a key element for the adoption
of advanced optimization strategies.

As already concluded in Chapter 4.1.2, the first approach cannot provide sufficient
reliability. For this reason, the validation phase starts directly from the second approach.

For this purpose, a traditional optimization process based on the integration of COMSOL
Multiphysics and MATLAB is implemented through the use of the LiveLink for MATLAB
module. This integrated environment allows the FEM model to be automatically checked
and linked to the genetic algorithm implemented in MATLAB. Again, to avoid the risk of
converging to local maxima, a genetic algorithm is implemented through the ga() package
of the Global Optimization Toolbox on MATLAB.
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Firstly, a simplified version of the optimization is performed to verify the proper func-
tioning of the COMSOL-MATLAB environment and the link between the genetic algorithm
and FEM simulations. In this step, three of the four beam lengths are set at the values
obtained from the second approach shown in Chapter 4.2.2, leaving the last length and
the resistive load value as variables to be optimized.

The boundaries of these two variables are defined consistently with those used in the
hybrid optimization: 45 to 100 mm for the length and 100 to 400 kΩ for the resistance.
For each individual generated by the genetic algorithm, the MATLAB code modifies the
geometric and electrical parameters in the COMSOL model and two subsequent studies are
carried out: 1. An eigenfrequency study to identify the first eigenfrequency of the selected
geometric configuration. 2. A frequency domain study to evaluate the extracted power
when the excitation frequency matches the first eigenfrequency just evaluated.

The objective function is defined as the negative value of the extracted electrical
power, since MATLAB ga() function performs a minimization.

Once the objective function determined, it is necessary to set the main features of
the genetic algorithm such as the selection, cross-over and mutation type. Following the
line of reasoning explained in Chapter 4.2.1, the same features chosen for the previously
outlined genetic algorithm are also selected for this validation. The only difference is
in the size of the population, since it is reduced to 10 individuals because of the high
computational time required for each simulation. This value, although limiting the initial
variability, could be still sufficient in this simplified configuration to ensure good evolution
and acceptable convergence times.

At the end of the optimization process, the optimized configuration, the fitness history
of the genetic algorithm, and the total computation time are analyzed.

The match between the obtained structure with the simplified traditional method and
the one with the hybrid method confirms the correct functioning of the model presented
in this section.

Following validation of the simplified process, a full optimization is performed, consid-
ering the four beam lengths and electrical resistance as variables. The operating modes
remain the same: at each generation, individuals are simulated in COMSOL according to the
described procedure, and the extracted power is calculated with the excitation frequency
set to the first natural frequency.

In this case, to compensate for the increased complexity and number of variables, the
population is increased to 20 individuals in order to enhance the population variability.

Again, at the end of the optimization, the results obtained are analyzed and compared
with those of the hybrid approach both in terms of the efficiency of the configuration found
and in terms of computational time and quality of convergence.

Although the ultimate goal is to validate the third approach as well, the results
obtained at this stage and discussed in 4.3.2 do not yet have a level of reliability that
allows direct structural comparison. However, this approach has shown a good ability to
describe the general trend in structure behavior, proving useful for identifying promising
regions in the solution domain. Thus, validation of the second approach remains the main
benchmark for testing the effectiveness of the proposed hybrid method.
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4.4.2 Numerical Results

Once the methodology to carry out the validation on the project’s alternative optimiza-
tion method through a traditional optimization is outlined, it is possible to discuss the
obtained results. This analysis is essential to assess the effectiveness and the reliability
of the hybrid methodology proposed in the thesis.

The first step is to analyze the simplified optimization outlined in Chapter 4.4.1
Knowing from the results of the second approach that the obtained optimal configuration
through the hybrid method corresponds to lengths L1, L2, L3, and L4 respectively equal
to 100, 92, 92, 100 mm, it is initially decided to test the proper functioning of the genetic
algorithm coupled with COMSOL in a simplified scenario. In fact, in this analysis, variables
L1, L3, and L4 are kept fixed at the previously mentioned values, leaving as variables to
be optimized only L2 and the resistance R.

After a total computation time of 2 hours, 10 minutes and 6 seconds, the optimization
leads to the configuration shown in Table 4.22 and with a history of the objective function
with respect to the generations described in Figure 4.33.

Optimized Parameter Value
L2 92 mm
R 310 kΩ

Extracted Power 46.4271 mW

Table 4.22: Optimization results for the simplified validation case.

Figure 4.33: Fitness history of the simplified traditional optimization.
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It is observed that the optimal length found for L2 coincides with that identified by
the hybrid method, while the resistance differs slightly: the hybrid method had identified
R = 340 kΩ (shown in Table 4.8 in Chapter 4.2.2), with a relative error of about 8.82%.
As a consequence, the extracted power value is slightly higher than that obtained by the
hybrid method (45,584mW ), with a difference of about 1.85%.

To verify that the maximum extracted power for the 100-92-92-100 mm beam lengths
configuration truly falls at the resistance value of 310 kΩ, a COMSOL simulation is carried
out. A frequency domain study is performed with the excitation frequency coinciding
with the first eigenfrequency and with a sweep of resistance value from 250 to 350 kΩ.
The diagram showing how the extracted power varies with respect to the load resistance
value is represented in Figure 4.34.

Figure 4.34: Extracted power versus resistive load diagram of the optimized structure.

From Figure 4.34, the presence of the peak extracted power at 310 kΩ is confirmed.
Thanks to this, it can be concluded that the global optimization model implemented with
COMSOL with MATLAB works accurately.

Subsequently, the whole structure is optimized, considering all four beam lengths and
the resistive load as variables.

In a first attempt, the algorithm is run without providing as “injection” the structure
already obtained in the result of the second approach optimization method. As can be
observed in Figure 4.35, the optimization failed to converge naturally, but stopped when
the maximum number of iteration is reached with a computational time of 11 hours, 33
minutes and 19 seconds.
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Figure 4.35: Fitness history of the traditional optimization without “injection”.

The obtained result is shown in Table 4.23.

Optimized Parameter Value
L1 99 mm
L2 91 mm
L3 89 mm
L4 99 mm
R 300 kΩ

Extracted Power 45.3838 mW

Table 4.23: Optimization results without injection of the hybrid approach solution.

As noted from Table 4.23, the power value obtained is slightly lower than that obtained
from the simplified optimization and the hybrid method, confirming that the solution
found does not represent the global maximum.

Analyzing the populations generated by the genetic algorithm generation after gener-
ation, there is a clear trend toward configurations similar to the known optimum (100-92-
92-100). In fact, in the last few generations the individuals show central symmetry and
longer extreme beams, a sign that the algorithm has identified a trend that could lead to
the same solution of the hybrid approach, although without achieving convergence.
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Figure 4.36: Symmetry detection in genetic algorithm generations. Horizontal axis rep-
resents the number of generation within the genetic algorithm. Vertical axis represent
the percentage of symmetric individuals with respect to the total number of individuals
within the generation.

This trend is illustrated in Figure 4.36, which shows the evolution of the percentage
of symmetrical individuals within the population for each generation. In particular, a
distinction is made between two levels of symmetry: 1. Partial symmetry, in which
individuals have only the extreme beams of equal length and longer that the central
beams, which are not necessarily equal to each other. 2. Complete central symmetry, in
which both extreme and central beams are equal in pairs, maintaining the condition that
the extreme beams are longer.

From the first to the last generation there is a gradual increase in the presence of
both forms of symmetry, with a particularly marked increase in individuals showing
complete central symmetry. This trend suggests that the algorithm is converging toward
increasingly ordered and regular structures consistent with the solution identified by the
hybrid method. This convergence is an indirect indication of the validity of the evaluation
provided by the hybrid method itself.

To test whether the structure identified through the hybrid method, based on the
conjugate use of machine learning and genetic algorithm, actually corresponds to a con-
figuration close to the one that leads to the maximum extracted power, it is decided to
accelerate the genetic algorithm in the traditional optimization. The idea consist on the
“injection” of the solution obtained from the hybrid method at the 30th generation. In
addition, the maximum number of iterations is increased.
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After a total optimization time of 15 hours, 34 minutes and 14 seconds, the configu-
ration described in Table 4.24 is obtained.

Optimized Parameter Value
L1 100 mm
L2 92 mm
L3 92 mm
L4 100 mm
R 310 kΩ

Extracted Power 46.4271 mW

Table 4.24: Optimized parameters and output power from the final traditional optimiza-
tion.

This configuration exactly matches the one found through the hybrid method, ex-
cept for the resistance, which has a negligible error of about 1.18% for the maximum
extractable power compared to the one characterized by 340 kΩ obtained previously.

From Figure 4.37 that is the representation of the objective function versus the gener-
ations during the optimization process, it is possible to see that the maximum extracted
power remains stuck at the same value after the “injection” at the 30th generation. This
shows that the final solution does indeed represent a global optimum.

This result confirms the reliability of the hybrid methodology, which provided the
same optimal configuration in far less computational time (a few minutes on Python
versus over 15 hours with COMSOL).

Figure 4.37: Fitness history of the final traditional optimization algorithm.
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As discussed earlier, traditional optimization is not implemented to validate the third
approach because of two main limitations.

The first limitation lies on the high computational cost. In fact, the change from 2
to 5 variables has already resulted in an increase in time from 2 to more than 15 hours.
Increasing the number of variables to 8, including the distances d1 d2 d3 between the
beams, the computational time would be significantly higher. In fact, a proportional
estimate suggests a time of more than 40 hours, making the process impractical.

In addition, the increase of variables has resulted in a loss in predictive accuracy,
making the model more useful for identifying a general trend rather than a precise optimal
configuration. Therefore, it is useless to compare the result of the third approach of the
hybrid optimization with the one of the traditional optimization.
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Chapter 5

Conclusion

The research and work presented in this thesis fits into the context of growing interest in
energy harvesting systems, a field of study that has been gaining more and more relevance
in recent years due to the need to find alternative solutions to traditional batteries. The
increasing interest in this line of research is driven by two main factors. The first is
the growing awareness of environmental issues related to both battery production and
disposal, which is leading the scientific community to search for more sustainable and
durable power sources. The other important factor is the limited lifespan of batteries.
This limitation results in the constant need for periodic replacement, causing a reduction
in their practicality in many applications, particularly in contexts where maintenance is
costly or difficult.

Energy harvesters and piezoelectric energy harvesters (PEHs) in particular, perfectly
fit in this scenario, as they represent a promising and inspiring perspective.

Over the past few years, PEHs have been widely studied and discussed in the litera-
ture. Particularly, in-depth studies have been developed to explore how the performance
of such PEHs vary while changing piezoelectric materials, geometric or electric properties.
However, in order to effectively implement these devices in practical applications, it is
crucial to optimize them. Optimizing piezoelectric energy harvesting systems may consist
of maximizing the extracted power, adapting the geometrical or electrical configuration
to specific fields of application, or meeting other design requirements, depending on the
context. In this direction lies the original contribution of the present thesis, the aim of
which is to develop an optimization process to maximize the extracted power. The pro-
posed process offers an alternative to traditional approaches, with the goal of significantly
reducing the computational burden and time required, while maintaining a high degree
of reliability.

In particular, this work proposes a hybrid optimization framework which combines
machine learning techniques with genetic algorithms, applied to an experimentally vali-
dated Quad-Finger Piezoelectric Energy Harvester model. The basic idea of this approach
is to take advantage of the ML prediction capability in order to estimate the electrical
output as a function of geometric and operational parameters. In this way, it is possible
to reduce the number of Finite Element simulations required. The ML predictions are
subsequently integrated as the objective function explored by a Genetic Algorithm, with
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the aim of investigating the configuration space and identifying the design that maximizes
the electrical output.

The proposed process was organized into three progressive approaches, characterized
by an increasing level of complexity.

A simplified dataset was considered in the first approach, featuring a reduced number
of input parameters and only one output, the electrical voltage. In this case, the excita-
tion frequency was included among the input variables to be optimized, but this proved
unsuccessful. The obtained results actually indicated that the Machine Learning models
are unable to reliably predict the electrical output due to huge variability induced by the
frequency. The reason for this failure is that as the excitation frequency approaches the
resonance frequency of the device, the extracted voltage increases sharply, while when
it is far from it, the electrical output remains at low values. This enormous gap in the
output made it difficult for ML models to accurately predict peak values, which are of
primary interest. This highlighted a key point: it is not necessary to include frequency
among the parameters to be optimized, since the focus is not on determining the reso-
nance frequency, which is already intrinsically dependent on the geometry of the device,
but rather on identifying the geometric configuration that maximizes the electrical output
at its resonance.

From this awareness, the transition to the second approach was necessary. Here, the
excitation frequency was excluded from the input parameters and the analyzed config-
urations already took into account the match with the first resonance frequency. This
alternative way of creating the dataset has led the machine learning models to achieve
a satisfactory reliability, with R2 values approaching unity and extremely low MAE and
MSE values, as further confirmed by the residual plots. Among the machine learning
models used, Gradient Boosting Regression Trees (GBRT) emerged as the most reliable
one and was therefore selected for the implementation of the genetic algorithm. Feature
importance analysis also highlighted that structural symmetry (Index 1 ) was one of the
most influential factors in power generation. This finding confirms the effectiveness of the
optimization process, which led to an optimal configuration characterized by symmetri-
cal beam lengths with respect to the center. The resulting optimal structure achieved an
extracted power of 45.560 mW when subjected to an excitation frequency coinciding with
its first eigenfrequency, compared to 17.603 mW for the starting configuration. "There-
fore, the optimized structure delivered approximately 158% higher power output than
the initial harvester design under the same base excitation, showing excellent agreement
with FE-based results. To confirm the process reliability, the hybrid method optimized
solution was then validated using FE-based optimization, and it demonstrated a perfect
geometric match, with only one minor inconsistency related to the optimal resistance
value, equal to 1.18%.

The third approach represented the final analysis for the hybrid optimization process,
in which all the target input parameters and the multimodal nature of the harvester were
considered. From the results of this stage, it was observed that increasing the number
of input parameters to be optimized caused an exponential growth of data to provide a
satisfactory level of reliability for ML predictions. This implies a proportional increase in
data collection time and computation costs, which do not likewise translate to enhanced
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performance. In fact, even if the dataset approximately reached 5,500 individuals, the ob-
tained reliability was lower than in the second approach, although still at generally high
levels. Differently from the second approach, according to the evaluation metrics, the
multi-output ML models proved to be more reliable with respect to single-output ones.
Again, the most effective model was the multi-output GBRT, subsequently integrated
with the genetic algorithm. Feature importance analysis further revealed that structural
symmetry (Index 1 ) and the central gap between the second and the third beam (d2)
are the most influential factors in power generation of the Quad-Finger harvester, with
larger d2 leading to higher output power. The genetic algorithm confirmed this evidence,
identifying an optimal configuration with central symmetry and maximized gap. With
this final optimization process, the increase of complexity has led to less reliable results,
but nevertheless, this hybrid approach demonstrated to be capable of robustly capturing
the trend and direction towards the optimal configuration. The obtained numerical re-
sults are particularly relevant: the sum of the power generated at the first four resonance
frequencies of the optimized structure reached 105 mW, with a prediction error of 2.33%
compared to FE simulations. This final power output, compared to 53.66 mW for the
starting structure, corresponds to an increase of approximately 470%. However, as al-
ready discussed, the increase in the number of input parameters resulted in significantly
longer data collection times, which partially contradicts the initial objective of the thesis,
namely reducing the computational burden and time required compared to traditional
optimization processes. Despite this limitation, even with reduced datasets, although at
the expense of reliability, the feature importance analysis showed that machine learning
models are still able to correctly identify the most relevant features.

The latter result is significant for the practical application of the proposed hybrid
optimization process. In fact, it demonstrated that even at the cost of some accuracy
comparable to FEM-based optimizations, the proposed process yielded a considerable
time benefit, providing reliable indications on trends and promising design areas. In
other words, the hybrid framework can be seen as a kind of map that allows the region of
the solution space where the optimal configuration is located to be identified in a short
time. Once this area has been determined, it is possible to narrow down the field and, if
need be, use conventional techniques for a better analysis.

A further analysis was performed on the optimized configurations, leading to an inter-
esting outcome from a dynamic point of view. The final harvester structure, characterized
by a central symmetry and a huge central gap, is no longer characterized by four distinct
modes of vibration, one for each beam, like the starting structure. On the contrary, the
first four resonance frequencies turned out to be very close between each other, no longer
exhibiting strongly multimodal behavior. Therefore, the optimal configuration has led to
a significant increase in the extracted power, but, on the other hand, caused a reduction
in the range of applicability. In fact, having a narrower frequency range of efficiency
reduces the feasibility for real-world applications compared to the initial model.

This consideration opens the way for future investigations that could focus optimiza-
tion not only on maximizing power, as done in this thesis, but also on adaptability to
specific frequency ranges, depending on the environmental vibrations to which the device
is targeted.
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With a view to the future, several developments can be considered to broaden the
research. One possibility is to investigate how the hybrid optimization process reacts
by adding new design parameters of the Quad-Finger harvester to optimize, such as the
structure thickness.

Another direction for future research concerns not only from a geometric optimization
perspective but also from an electrical one, i.e., piezoelectric patch position, resistance
values, and circuit connections. In this case, data collection could take place not only
through FEM simulations but also experimentally, completely eliminating the compu-
tational burden or allowing a direct comparison between numerical and experimental
approaches.

Other developments could include the use of more advanced machine learning models,
like deep neural networks, which could further improve predictive capabilities, especially
in complex and multimodal scenarios.

Overall, the thesis showed how the combination of numerical simulations, machine
learning techniques, and genetic algorithms is a powerful strategy to find new optimization
methods. These methods have been shown to greatly reduce time of computation without
sacrificing much on reliability and providing insightful information on design trends. The
originality of the contribution of the research is in proposing and validating a hybrid
solution to the Quad-Finger PEH that forms an adequate basis for future investigations
and realizations in the engineering field of energy harvesting and generally in designing
complex electromechanical systems.
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