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Abstract 

Nonlinear vibration energy harvesting (VEH) offers distinct advantages over conventional 

linear harvesters, particularly in addressing the narrowband limitation inherent in resonance-

based systems. By intentionally introducing nonlinear mechanisms, these devices can achieve 

improved energy conversion efficiency, broader operational bandwidth, and greater adaptability 

to environmental variability. 

Among nonlinear approaches, stopper-based configurations—also referred to as motion 

limiters—provide a practical method to generate piecewise nonlinear stiffness. In theory, 

properly designed stoppers induce hardening effects, suppress excessive displacements, and 

enable energy harvesting across multiple frequency bands. However, practical realization 

remains challenging, as stopper dynamics themselves may contribute unintended resonances 

and energy exchanges not accounted for in simplified models. 

This thesis investigates stopper-integrated cantilever piezoelectric systems through numerical 

modelling and experimental testing. Initially, a nonlinear lumped-parameter model is 

established and solved using state-space and Newmark-β integration methods, with the stopper 

represented as a high-stiffness element. Simulations predicted clear hardening behavior and 

bandwidth enhancement. 

Experimental results, however, revealed discrepancies. The 3D-printed stoppers are 

significantly more flexible than predicted by CAD simulations, introducing their own resonance 

frequencies close to the cantilever’s first mode. This unexpected interaction suppressed the 

anticipated hardening effect and instead caused energy exchange between beam and stopper. 

These findings highlight the limitations of simplified stopper models and the need to account 

for the dynamic behavior of limiter structures. 

Building on this analysis, the thesis proposes directions for a redesigned test setup, including 

more rigid stopper geometries, alternative mounting orientations, and potential horizontal 

shaker implementation. The outcomes contribute both practical insight into stopper realization 

and theoretical refinement of nonlinear VEH modelling strategies. 
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1.Introduction 

1.1 Overview and Advantages of Vibration Energy Harvesting (VEH) 

With the development of technology, energy harvesting has found increasingly widespread 

applications. Vibration Energy Harvesting emerged as a highly promising method that converts 

ambient mechanical vibrations into electrical energy(1,2). This method has many unique 

advantages, especially for low-power electronic devices such as self-powered sensors(3). 

Compared with traditional chemical batteries, vibration energy harvesting offers a promising 

alternative in numerous applications, leading to significant cost savings and mitigating issues 

such as limited lifespan and the need for frequent charging or replacement associated with 

conventional power sources(1,4). Furthermore, this approach avoids the environmental 

contamination caused by battery disposal(5). Additionally, by harnessing ambient vibrations 

and converting mechanical energy into electricity, vibration energy harvesting enables 

operational independence from fixed power infrastructure, providing autonomous 

functionality(6). As a method utilizing ever-present environmental vibrations, it represents a 

renewable and sustainable energy strategy that not only reduces reliance on conventional 

batteries but also helps lower carbon emissions, contributing positively to environmental 

protection(4). 

Furthermore, ambient vibrations represent an abundant and readily available energy source, 

making vibration energy harvesting (VEH) exceptionally convenient for practical 

implementation(7). More significantly, VEH systems eliminate dependency on external power 

supplies while simultaneously enhancing data accessibility and connectivity(4). These unique 

characteristics enable reliable operation of electronic devices in challenging environments, 

particularly for self-powered sensors, Internet of Things (IoT) networks, and various low-power 

electronic applications(1,8). 

In IoT systems where sensors often operate in extreme conditions - such as ocean buoy sensors 

that convert wave vibrations into electricity - VEH technology provides a groundbreaking self-

sustaining solution(9). This innovative approach has transformed the energy landscape by 

offering an autonomous, sustainable power alternative for low-power devices and sensor 

networks, completely independent of traditional energy sources(10). This transformative 

potential positions VEH as a key enabler for the next generation of self-sustaining electronic 

systems(11). 
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1.2 Technical Challenges and Classification of VEH Systems 

Although Vibration Energy Harvesting (VEH) presents considerable advantages, its widespread 

practical application is challenged by the random and broadband nature of ambient 

vibrations(12). The main challenge is the limited working bandwidth - effective energy 

conversion requires environmental vibration to occur in a narrow band near the resonant 

frequency of the harvester. However, environmental vibrations usually exhibit wide-spectrum 

characteristics, which often exceed the optimal bandwidth, resulting in a significant reduction 

in energy extraction efficiency. 

Moreover, the random and wideband characteristics of most environmental vibrations often 

lead to poor harvester performance, and sometimes even cause the system to fail to meet 

operating requirements. Therefore, extending the effective working bandwidth has become a 

key research focus to improve VEH efficiency(3). 

Vibration energy harvesting technologies are primarily based on three working principles: 

• Piezoelectric (direct conversion of mechanical stress to charge), 

• Electromagnetic (induction via relative motion in magnetic fields), 

• Electrostatic (capacitance variation from moving electrodes). 

These methods have attracted significant attention due to their efficient energy conversion 

mechanisms and diverse application scenarios(1,2). 

In this study, the piezoelectric energy harvesting approach is adopted. This technology utilizes 

the direct piezoelectric effect of piezoelectric materials, which can directly generate electric 

potential under mechanical stress, thereby converting mechanical vibration energy into 

electrical energy. It is particularly suitable for environmental vibration energy harvesting 

applications. 
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1.3 State of the Art about VEH Systems 

To broaden the operating bandwidth of vibration energy harvesters (VEHs), researchers have 

proposed various strategies. Multimodal techniques achieve this by designing structures with 

multiple closely spaced resonant peaks (e.g., multi-degree-of-freedom (M-DOF) systems, L-

shaped beams, or "cut-out" beams)(12). Nonlinear techniques exploit magnetic coupling or 

geometric buckling to introduce monostable, bistable, or even multistable characteristics, 

enabling broadband responses through large-amplitude intra-well or inter-well nonlinear 

oscillations. Frequency up-conversion (FUC) techniques aim to transform low-frequency 

ambient vibrations into high-frequency localized strain in piezoelectric materials, typically via 

mechanical impacts, thereby enhancing conversion efficiency(8). 

However, these approaches face distinct challenges: Multimodal systems suffer 

from significant power attenuation in the "valleys" between resonant peaks, limiting overall 

efficiency across the intended bandwidth(12). Traditional nonlinear structures (e.g., bistable 

configurations) often require high excitation thresholds to trigger effective inter-well snap-

through motion. Conventional FUC mechanisms, relying predominantly on instantaneous 

impacts for energy transfer, exhibit limitations in achievable efficiency and bandwidth 

potential(8). 

To address these limitations, nonlinear piezoelectric systems for vibration energy harvesting 

utilizing impact-based 'stopper' mechanisms present a promising alternative. These systems 

leverage controlled physical collisions to introduce strong nonlinear dynamics, potentially 

enabling broadband responses at lower excitation levels while mitigating the inter-peak valley 

issue inherent in multimodal designs. 
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1.4 Nonlinear Piezoelectric System in Cantilever Beam with Mass 

This study develops a nonlinear piezoelectric energy harvesting system using stoppers in a tip-

mass cantilever beam. As shown in Fig. 1, The core structure integrates piezoelectric materials 

(PZT) onto a steel cantilever beam with a concentrated end mass. Two stoppers are 

symmetrically placed above and below the tip mass, with their stiffness optimally designed to 

enable compliant deformation. An adjustable gap between the stoppers and the mass allows 

systematic investigation of gap-dependent nonlinear dynamics and energy harvesting 

performance. Experiments include comparisons of cases with/without piezoelectric materials 

to decouple mechanical nonlinearity from electromechanical coupling effects. 

 

Figure 1.1. Tip-Mass Cantilever Beam with Stoppers and Piezoelectric 

The stoppers create piecewise-linear stiffness variations to enhance bandwidth: contact at the 

gap threshold induces nonlinear stiffness switching, enabling energy harvesting across multiple 

frequency bands. The adjustable gap simultaneously provides an amplitude management——

small gaps limit excessive displacements for device protection, while large gaps maintain 

sensitivity to minor vibrations. 

This analysis aims to optimize the performance and explain the mechanisms of nonlinear 

piezoelectric vibration energy harvesting systems through experimental investigations of 

stoppers, while evaluating their potential for real-world applications. The study focuses 

on piecewise nonlinear dynamics induced by stoppers in a tip-mass cantilever system, 

employing systematic tests with adjustable gap parameters and comparative 

experiments with/without piezoelectric materials to quantify the contribution of impact 

nonlinearity to bandwidth enhancement and power amplification.  

Building upon the research framework and motivations discussed above, the remainder of this 

thesis is structured as follows. 

Chapter 2 (Modelling) presents the theoretical formulation of a nonlinear piezoelectric 

cantilever equipped with adjustable stoppers, introducing the electromechanical coupling 

model and the piecewise stiffness behavior associated with contact interactions. 

Chapter 3 (Numerical Simulations) analyses the nonlinear dynamics through finite element and 

state-space approaches, identifying the influence of stopper stiffness and gap distance on 
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frequency response, energy transfer, and harvesting efficiency. 

Chapter 4 (Experimental Validation) describes the realization of the redesigned prototype and 

the corresponding testing procedures under both random and frequency-sweep excitations. The 

measured responses confirm the presence of hardening-type nonlinearity and validate the 

predicted energy-harvesting trends. 

Finally, Chapter 5 (Conclusions) summarizes the key findings, emphasizing the agreement 

between experimental and numerical results, the role of stopper compliance in shaping 

nonlinear behavior, and the practical insights gained for future optimization of vibration energy 

harvesting systems. 
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2. System Modelling and Methodology 

This chapter systematically details the modelling theory and methodology for a piezoelectric 

energy harvesting (PEH) system integrated with an adjustable mechanical stopper. It begins by 

defining the key structural parameters and assembly relationships of the cantilever beam, 

piezoelectric transducer, and the stopper, based on physical system design specifications. 

The core modelling effort focuses on establishing the system's nonlinear dynamic 

equations. The initial modelling approach employed the piecewise method to describe the 

cantilever's motion in both the linear vibration regime and the nonlinear regime where its 

motion is constrained by the stopper, intending to solve it using the state-space method. 

However, convergence issues arose due to discontinuities at the piecewise boundaries. To 

address this, the nonlinear contact force model is smoothed using a piecewise quadratic 

polynomial approximation, ensuring model validity without compromising experimental 

relevance. 

A numerical solution framework based on the Newmark-β integration method is developed to 

efficiently solve the resulting nonlinear equation by using MATLAB, and parametric analysis 

tasks are defined accordingly. For the stopper realization, SolidWorks is utilized for structural 

design and modelling, primarily to determine a geometric configuration achieving the desired 

stiffness characteristics. The final performance validation of the stopper is reserved for 

experimental testing. 

The 3D model of the energy harvester was designed using SolidWorks Student Edition 2024 

SP05. The dynamic equations were subsequently solved through numerical simulations 

performed in MATLAB R2024a. 

The models and methods established in this chapter provide a solid theoretical foundation for 

subsequent numerical simulation studies and experimental validation. 

2.1 Physical System Specifications 

The experimental setup integrates four core subsystems: 

⚫ Cantilever beam structure (base energy harvesting platform) 

⚫ Piezoelectric transducers (mechanical-to-electrical conversion) 

⚫ Data acquisition infrastructure (performance quantification). 

⚫ Adjustable stopper mechanism (nonlinearity device) 

System assembly ensures mechanical synchronization and parametric controllability for 

nonlinear dynamics investigation. 



7 

2.1.1 Harvesting Device Configuration 

The piezoelectric vibration energy harvesting system comprises the following key components: 

Cantilever Beam Structure: 

⚫ Materials: Harmonic steel (Density: 7800 [kg/m^3]; Young’s modulus E=200 [GPa]) 

⚫ Dimensions: 170 mm (L) × 30 mm (W) × 1 mm (T) 

⚫ Tip Mass: 56.7 g rigidly bonded to free end (see Figure 2.1) 

⚫ Clamping: Rigid fixture by bolted connections in workstation 

Piezoelectric Transducer: 

⚫ Materials: Ceramic with copper electrodes 

⚫ Dimensions: Ø27 mm (D) × 0.4 mm (T) 

⚫ Position: 25 mm from clamped end 

⚫ Piezo circuit: Resistance 1 𝑀𝛺  or 1 𝑘𝛺  adding Voltage follower with LM741 

operational amplifier (unity gain), powered by two 9V batteries to limit the output voltage 

between -9V and +9V. 

Data acquisition infrastructure: 

⚫ Sensor Configuration: 

Channel Sensor type Position Model Function 

1 Base Accelerometer 0 mm B&K 10423 Measure input excitation 

2 Beam Accelerometer 50 mm B&K 10545 Capture root vibrations 

3 Beam Accelerometer 150 mm B&K 10543 Capture free end vibrations 

4 Piezo Voltage Sensor 25 mm  Record harvested energy 

Table 1. Sensor Configuration 

 

Figure 2.1: Harvesting Device Configuration 
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2.1.2 Stopper Design and Parameterization 

The stopper mechanism is a critical component for introducing controlled nonlinearity into the 

vibration energy harvesting system. Three iterative designs are developed to optimize structural 

integrity, contact behavior, and manufacturability, each addressing specific mechanical 

constraints identified through experimental and simulation analysis. All designs are modeled in 

SolidWorks® and parameterized for stiffness characterization. 

Design Iteration 1: Bolted Rectangular Stopper with Semi-Cylindrical Tip 

 

Figure 2.2. Stopper version 1 

Mounting Interface: To maintain compatibility with the existing test rig configuration—where 

the cantilever beam is clamped between two thick plates secured by bolted connection—the 

stopper base is designed with four bolt holes. This allowed direct mounting onto the upper and 

lower surfaces of the clamping plates. The stopper base contour is precisely matched to the 

plate profile to ensure full-surface contact and eliminate mounting-induced stress. 

Contact Geometry: Initial contact geometry utilized a square protrusion. However, finite 

element analysis revealed potential multi-point contact instability during beam impact. To 

enforce deterministic single-point contact, the interface is redesigned with a semi-cylindrical 

profile, converting the contact mode from surface-to-surface to line contact. 

Structural Layout: A monolithic rectangular block (width = 100 mm, matching the clamping 

plates) with an integrated semi-cylindrical tip extending toward the beam. The oversized width 

relative to the beam (30 mm) provided torsional stability but incurred material redundancy. 

 

Figure 2.3. Assembly version 1 
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Design Iteration 2: L-Shaped Stopper Integrated Clamp 

 

Figure 2.4. Stopper version 2 

Mounting Revolution: Eliminating the separate clamping plates, this design integrated the 

clamping function directly into the stopper body. An L-shaped geometry is employed, where 

the horizontal leg bolted to the baseplate (two bolts D=13mm), and the vertical leg constrained 

the beam. 

Stress Concentration Mitigation: A 10 mm fillet radius is added at the internal L-junction (Fig. 

2.4) to reduce stress concentrations under impact loading. In this version, we keep the contact 

geometry constant. 

Structural Layout: Compared with the first version of the stopper, this L-shaped stopper reduces 

the use of materials, increases support and optimizes the structure. It can clamp the beam 

directly, but there may be a problem of insufficient force to clamp the beam. 

 

Figure 2.5. Assembly version 2 

Design Iteration 3: T-Shaped Stopper with Beam-Matched Width 
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Figure 2.6. Stopper version 3 

The final design evolution synthesizes the robustness of Version 1's plate-mounted interface 

with Version 2's space-efficient topology through a T-shaped structure which shows in figure 

2.6, material reduction while effectively addressing stress concentration concerns and 

maintaining precise gap control. 

In the mounting interface, the clamping plate integration is reintroduced to ensure rigid fixation 

of the cantilever beam. This configuration incorporates two Ø13 mm clearance holes for bolted 

connections, with optimized thickness dimensions which can be changed to adjust the gap 

between the beam and stopper contact surface while keep the thickness of connecting part of 

stopper constant. 

For the contact region, the semi-cylindrical profile is retained while the width is reduced to 

match the beam width, resulting in material savings. Stress analysis shows concentration area 

at both transition regions of the T-junction, it’s necessary to add structural reinforcements within 

these critical corners. The reinforcement geometry utilizes dual large-radius arc profiles 

precisely matching the stopper's effective length, maximizing structural integrity during impact 

loading scenarios. 

 

 

Figure 2.7. Assembly version 3 
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2.2 Mathematical Model 

2.2.1 Modelling of the Linear System (with Piezoelectric Coupling) 

The fundamental dynamics of the piezoelectric energy harvesting system are governed by a 

single-degree-of-freedom (SDOF) mass-spring-damper model coupled with a resistor-capacitor 

(RC) circuit. Under base excitation 𝑏(𝑡), the governing equations are(1,2): 

{

𝑚𝑧̈ + 𝑐𝑣𝑧̇ + 𝑘𝑧 + 𝜃𝑣 = −𝑚𝑏̈
𝑣

𝑅
+ 𝐶𝑝𝑣̇ = 𝜃𝑧̇

𝑧 = 𝑥 − 𝑏

 

where 

- 𝑧(𝑡) = 𝑥(𝑡) − 𝑏(𝑡) : the displacement of the tip mass relative to the base excitation 𝑏(𝑡), 

- 𝑣(𝑡) : Piezoelectric output voltage 

- 𝜃 : Electro-mechanical coupling coefficient, unit N/V. 

- 𝑚, 𝑐𝑣 , 𝑘 : Equivalent mass, viscous damping coefficient, linear stiffness of the beam 

The second equation represents the electrical behavior of the piezoelectric element, which can 

be modelled as a current source in parallel with a capacitance 𝐶𝑝. The current generated by the 

piezoelectric layer is proportional to the strain rate (or equivalently, to 𝑧̇ ) through the 

electromechanical coupling coefficient 𝜃 . This coefficient quantifies the bidirectional 

conversion between mechanical and electrical domains—specifically, the mechanical force 

generated per unit voltage or, equivalently, the electrical charge induced per unit displacement 

rate. Its SI unit is N/V, consistent with the term 𝜃𝑣 appearing as an equivalent restoring force 

in the mechanical equation. 

In the context of the present study, 𝜃 also determines how efficiently mechanical vibrations 

are converted into electrical energy and vice versa. As experimentally identified in Chapter 4, 

the average value of 𝜃 is approximately 0.11 N/mV , while the intrinsic capacitance of the 

piezoelectric element is about 14.7 nF. These experimentally derived parameters validate the 

physical assumptions adopted in this theoretical model and are later used for quantitative 

comparison between simulations and measurements. 
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Figure 2.8: mathematical model of a single degree of freedom system with base excitations. 

This model is valid only in the linear vibration regime where the cantilever does not contact the 

stoppers. 

 

2.2.2 Nonlinear Stopper Model 

The physics of stopper nonlinearity originates from: when the tip displacement 𝑧 is within the 

gaps 𝑔±, the system behaves as a linear beam; once 𝑧 > 𝑔+ or 𝑧 < 𝑔−, beam-stopper contact 

induces instantaneous stiffness surge.  

The introduction of mechanical stoppers induces strong nonlinearity. The initial piecewise-

linear restoring force model is 

𝑓𝑛𝑙(𝑧) = {

𝑘𝑠(𝑧 − 𝑔+)

𝜙

𝑘𝑠(𝑧 + 𝑔−)
      

   𝐼𝑓 𝑧 > 𝑔+

𝐼𝑓 𝑔− ≤ 𝑧 ≤ 𝑔+

  𝐼𝑓 𝑧 < 𝑔−

 

Arranged the nonlinear for function 𝑓𝑁𝐿: 

{
𝑓𝑁𝐿{1} = 𝑘𝑠 × (𝑧 − 𝑔+)

 
𝑓𝑁𝐿{2} = −𝑘𝑠 × (𝑧 + 𝑔−)

 

where 

- 𝑔+/𝑔− : gaps between stoppers and beam surface 

- 𝑘𝑠 : equivalent stoppers stiffness 
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Figure 2.9. mathematical model of a single degree of freedom system with stoppers 

 

Although capable of qualitatively capturing stiffness jumps and bandwidth enhancement, this 

model suffers from critical flaws: discontinuities in the restoring force and its derivative 

(equivalent stiffness) at contact points 𝑧 = 𝑔±  cause convergence failure, computational 

instability, and accuracy degradation in numerical solvers (particularly for continuity-based 

integrators like the State Space method).  

To address these issues, a piecewise smoothing technique is introduced. It constructs a smooth 

transition within an 𝜀-neighborhood of the contact points: 

𝑟𝐹𝑢𝑛(𝑥, 𝜀) = {

𝑥 − 𝜀
1

2𝜀
(𝑥 − 𝜀)2

0

      
   𝐼𝑓 𝑥 > 𝜀

𝐼𝑓 0 ≤ 𝑥 ≤ 𝜀
  𝐼𝑓 𝑥 < 𝜀

 

Where 𝜀 = 1 × 10−5 [𝑚] for negligible error 

Reformed restoring force: 

𝑓𝑛𝑙(𝑧) = 𝑘𝑠[𝑟𝐹𝑢𝑛(𝑧 − 𝑔+ , 𝜀) − 𝑟𝐹𝑢𝑛(𝑧 + 𝑔− , 𝜀)] 

Rectified the nonlinear force function 𝑓𝑛𝑙:  

{
𝑓𝑛𝑙{1} = 𝑘𝑠 ∗ 𝑟𝐹𝑢𝑛(𝑧 − 𝑔+ , 𝜀)

 
𝑓𝑛𝑙{2} = −𝑘𝑠 ∗ 𝑟𝐹𝑢𝑛(𝑧 + 𝑔− , 𝜀)
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2.2.3 Complete Nonlinear System Equations 

The complete nonlinear system integrates piezoelectric coupling with smoothed stopper model: 

{

𝑚𝑧̈ + 𝑐𝑣𝑧̇ + 𝑘𝑧 + 𝑓𝑛𝑙(𝑧) + 𝜃𝑣 = −𝑚𝑏̈
 

𝑣

𝑅
+ 𝐶𝑝𝑣̇ = 𝜃𝑧̇

 

where 

- 𝑚, 𝑐𝑣 , 𝑘 : equivalent mass, viscous damping coefficient, linear stiffness of the beam 

- 𝑓𝑛𝑙(𝑧) : Nonlinear restoring force from mechanical stoppers (N) 

This model captures three operational regimes: 

• Linear regime (𝑔− ≤ 𝑧 ≤ 𝑔+): Piezoelectric coupling dominant 

• Transition regime (|𝑧 ± 𝑔±| < 𝜀): Smooth force transition 

• Contact regime (|𝑧| > 𝑔± + 𝜀): Full stopper stiffness engaged 
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2.3 Numerical Solution Method 

The numerical solution strategy evolved from the State Space Method to the Newmark 

Integrator, addressing discontinuity issues induced by mechanical stoppers.  

2.3.1 Initial Approach: State Space Method 

The state space method transforms the piezoelectric energy harvesting system into a set of first-

order differential equations and describes the system evolution through state variables: 

{𝑥̇} = [𝐴]{𝑥} + [𝐵]{𝑢} 

where: 

State Vector {𝑥} = [
𝑧
𝑧̇
𝑣

]               Input Vector {𝑢} = [

−𝑚𝑦̈

𝑓𝑛𝑙{1}

𝑓𝑛𝑙{2}
] 

Nonlinear Function {
𝑓𝑛𝑙{1} = 𝑘𝑠 × (𝑧 − 𝑔+)

 
𝑓𝑛𝑙{2} = −𝑘𝑠 × (𝑧 + 𝑔−)

 

Dynamic Matrix [𝐴] = [

0 1 0
−𝑘/𝑚 −𝑐𝑣/𝑚 −𝜃/𝑚

0 𝜃/𝑐𝑝 −1/(𝑅 × 𝑐𝑝)
] 

Input Gain matrix [𝐵] = [
0 0 0

1/𝑚 𝑘𝑠/𝑚 𝑘𝑠/𝑚
0 0 0

] 

 

2.3.2 Enhanced Solution: Newmark Integrator 

The Newmark-β method is an implicit numerical integration scheme widely used for solving 

nonlinear structural dynamics equations. Its core concept discretizes continuous differential 

equations into stepwise algebraic equations via time domain decomposition. The method is 

built on two fundamental update equations: 

{
𝑢𝑡+∆𝑡 = 𝑢𝑡 + 𝑢̇𝑡∆𝑡 + [(

1

2
− 𝛽) 𝑢̈𝑡 + 𝛽𝑢̈𝑡+∆𝑡]∆𝑡2

 
𝑢𝑡+∆𝑡 = 𝑢̇𝑡 + [(1 − 𝛾)𝑢̈𝑡 + 𝛾𝑢̈𝑡+∆𝑡]∆𝑡

 

where 𝛽 = 0.25  and 𝛾 = 0.5  correspond to the unconditionally stable Constant Average 

Acceleration Method. 

In this formulation, 𝑢 represents the output vector {𝑧(𝑡);    𝑣(𝑡)}. The Newmark method then 

utilizes 𝑧, 𝑧̇, and 𝑧̈ to solve the coupled equations for time-domain response analysis. 
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For nonlinear systems: 

[𝑀]{𝑢̈} + [𝐶]{𝑢̇} + [𝐾]{𝑢} + 𝑓𝑛𝑙(𝑢, 𝑢̇) = {𝐹𝑒𝑥𝑡(𝑡)} 

Each timestep requires iterative solution: 

1. Prediction: Estimate displacement/velocity using previous acceleration 

2. Iteration: Compute nonlinear force residual, update acceleration 

3. Convergence Check: Repeat until ∥ 𝑅 ∥< 𝑡𝑜𝑙, 𝑡𝑜𝑙 = 1 × 10−6 

where ∥ 𝑅 ∥ is the absolute residual on displacements and velocities. 

In the study system, which is 2 degrees of freedom, there are one mechanical equation and one 

electrical equation: 

{

𝑚𝑧̈ + 𝑐𝑣𝑧̇ + 𝑘𝑧 + 𝑓𝑛𝑙(𝑧) + 𝜃𝑣 = −𝑚𝑦̈
 

𝑣

𝑅
+ 𝐶𝑝𝑣̇ = 𝜃𝑧̇

 

To use the Newmark-β method (a numerical integration method for second-order differential 

equations), we need to transform the electrical equation into second-order form. Here is a trick: 

introduce a very small mass term (1 × 10−6 𝑣̈) to turn the electrical equation into second order. 

1 × 10−6𝑣̈ + 𝑅𝐶𝑝𝑣̇ − 𝑅𝜃𝑧̇ + 𝑣 = 0 

In this way, the entire system can be written as a second-order differential equation in matrix 

form: 

[
𝑚 0
0 10−6] {

𝑧̈
𝑣̈

} + [
𝑐𝑣 0

−𝜃𝑅 𝑅𝐶𝑝
] {

𝑧̇
𝑣̇

} + [
𝑘 𝜃
0 1

] {
𝑧
𝑣

} + [
𝑓𝑛𝑙(𝑧)

0
] = [

−𝑚𝑦̈
0

] 

Where 

- Mass Matrix [𝑀]: 𝑚 is a mechanical mass, 1 × 10−6 is a dummy electrical mass 

- Damping Matrix [𝐶]: Combines the mechanical damping 𝑐𝑣 and the electrical damping 

term of piezoelectric coupling 𝑅𝐶𝑝 term 

- Stiffness Matrix [𝐾]: Integrates mechanical stiffness 𝑘 and electro-mechanical coupling 

coefficient 𝜃 

- External Force {𝐹𝑒𝑥𝑡(𝑡)}: Only mechanical excitation. 
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In the numerical solution process, the nonlinear forces induced by the stoppers are integrated 

into the system equations via a mapping mechanism. The nonlinear force function 𝑓𝑛𝑙  is 

decomposed into two independent components: the upper stopper force 𝑓𝑛𝑙{1} and the lower 

stopper force 𝑓𝑛𝑙{2}, each defined by a smoothed function of displacement: 

{
𝑓𝑛𝑙{1} = 𝑘𝑠 ∗ 𝑟𝐹𝑢𝑛(𝑧 − 𝑔+ , 𝜀)

 
𝑓𝑛𝑙{2} = −𝑘𝑠 ∗ 𝑟𝐹𝑢𝑛(𝑧 + 𝑔− , 𝜀)

 

where 𝑟𝐹𝑢𝑛( ) is a piecewise quadratic smoothing function and 𝜀 is the smoothing width. 

The total nonlinear force is: 

𝑓𝑛𝑙(𝑧) = 𝑓𝑛𝑙{1} + 𝑓𝑛𝑙{2} 

Through mapping vectors 𝑚{1} = [1,0]𝑇 and 𝑚{2} = [1,0]𝑇, the scalar nonlinear forces are 

projected onto the system degrees of freedom to form the nonlinear force vector: 

𝑓𝑛𝑙 = 𝑚{1} 𝑓𝑛𝑙{1} + 𝑚{2}𝑓𝑛𝑙{2} = [
𝑓𝑛𝑙(𝑧)

0
] 

This vector acts solely on the mechanical degree of freedom (displacement 𝑧 ), while no 

nonlinear force is applied to the electrical degree of freedom (voltage 𝑣). During the iterative 

solution, the nonlinear force vector is updated in real-time based on the current displacement 

prediction, ensuring accurate capture of contact dynamics. 
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2.4 Model Objectives 

The mathematical model aims to three aspects: 

Firstly, characterize system dynamics. Quantify the mechanical and electromechanical behavior 

of the cantilever system: 

- Without piezoelectric coupling: Analyze nonlinear stiffness effects induced by stoppers. 

- With piezoelectric coupling: Evaluate voltage/power output under stochastic and harmonic 

excitations. 

Secondly, optimize stopper parameters for maximum efficiency. Identify the best-

performing stopper configuration by: 

- Determining optimal stiffness 𝑘𝑠 and gap distances 𝑔+  and 𝑔−  that maximize 

piezoelectric efficiency (power density per unit excitation). 

- Balancing bandwidth expansion against power amplification across operational scenarios. 

Finally, correlate parameters with physical design rules. Establish quantitative relationships 

between: 

- Optimized parameters 𝑘𝑠, 𝑔±  and physical properties (stopper material, geometry, 

assembly tolerance). 

- Nonlinear dynamics (e.g., contact force, stiffness switching) and harvester performance 

metrics (e.g., RMS power, bandwidth gain). 
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3. Numerical Simulation 

3.1 Introduction 

This chapter details the numerical simulations conducted to analyze the models developed in 

the Modelling section. All models are implemented and solved within the MATLAB script. 

Prior to verifying the MATLAB code models, a stiffness analysis of the stopper components is 

performed. This analysis uses SolidWorks simulation study to determine displacement data 

under load, which is incorporated into the MATLAB code to calculate the stopper stiffness. 

The MATLAB simulation process begins with an analysis of the linear system to establish its 

baseline characteristics to provide a reference for subsequent nonlinear analysis. Following the 

modelling sequence, the state-space method is initially attempted to directly integrate the 

piecewise functions to simulate the nonlinear system. However, convergence issues occurred 

due to discontinuities at the transition points. To deal with this, a piecewise smoothing 

technique is applied to the nonlinear functions. Subsequently, the Newmark-Beta method is 

used for time-domain integration to optimize the integration method. Finally, simulations are 

performed under varying base excitation amplitudes to compare the responses of both the linear 

and nonlinear systems. 

3.2 Stopper Stiffness Estimation 

The stiffness analysis of the stoppers is primarily conducted using Static Study functionality in 

SolidWorks. In the static study, appropriate boundary conditions are applied into the stopper 

model which means the stoppers are fixed at an end through the clamping plate and then apply 

a static load at the designated contact area. The resulting displacement at the contact point is 

probed and used to calculate stiffness (𝑘_𝑠 =  𝐹 / 𝑥_𝑑𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡). 

This analysis is performed by varying the effective length and thickness of the stopper designs 

to determine their influence on stiffness. 

3.2.1 Material Properties and Boundary Conditions 

The stopper material is defined as Polylactic Acid (PLA) to reflect the properties of the 3D-

printed components intended for subsequent experimental validation. PLA is selected based on 

its economic viability for printing multiple design variations and its suitability, as the modelling 

phase focuses on optimizing the stopper geometry for both material efficiency and structural 

integrity. The key PLA material parameters used in the simulation are summarized in Table 3.1. 

Property Value Units 

Elastic Modulus 3500000000 𝑁/𝑚2 

Poisson's Ratio 0.35 𝑁/𝐴 
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Shear Modulus 2400000000 𝑁/𝑚2 

Mass Density 1250 𝑘𝑔/𝑚3 

Tensile Strength 50000000 𝑁/𝑚2 

Compressive Strength 17926368.97 𝑁/𝑚2 

Yield Strength 60000000 𝑁/𝑚2 

Thermal Conductivity 0.13 𝑊/(𝑚 · 𝐾) 

Specific Heat 1800 𝐽/(𝑘𝑔 · 𝐾) 

Table 3.1. PLA Material Properties 

Following material assignment, the boundary conditions for the study are established. Based 

on the stopper's mounting method, applying two Fixed Geometry fixtures to the surfaces of the 

two mounting holes and the base surface in contact with the clamping plate, as shown in Figure 

3.1. 

 

Figure 3.1. T-Shaped Stopper Boundary Conditions and External Load 

 

To simulate the maximum force the stopper might experience in experiment, a static load is 

applied at the contact point. Although the stopper would typically experience impact loads in 

practice, applying the maximum anticipated static force represents a worst-case scenario for 

stiffness estimation. For directly calculating stiffness of stopper via equation 𝑘_𝑠 =

 𝐹 / 𝛿_𝑑𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡, a nominal static force 1N is applied. The displacement is obtained by 

reading the results in the contact point. 

 

3.2.2 Stiffness estimation 

As discussed above, stopper stiffness values are derived from SolidWorks® finite element 

analysis (FEA) under static loading conditions. The FEA assumed perfectly rigid boundary 

conditions at the mounting holes and linear elastic behavior of the PLA material. Under these 

assumptions, the stoppers are treated as purely elastic elements with no dynamic contribution 

of their own. 
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The general results indicated that stopper stiffness is approximately 𝑘𝑠 ≈ 2.5 × 𝑘𝑏  where 𝑘𝑏 

is the equivalent stiffness of the cantilever beam. These estimated values are subsequently 

implemented in the MATLAB numerical model. It must be emphasized, however, that at this 

stage no experimental calibration is available; thus, the results should be regarded as theoretical 

predictions based on idealized conditions. 

In the stopper design process, several geometrical variations are considered by adjusting 

thickness and effective length, since these parameters strongly influence stiffness. The design 

objective is to select a stopper stiffer than the beam itself, thereby ensuring engagement 

sufficient to induce the expected hardening effect, but not so rigid as to behave like a rigid wall 

that would entirely suppress beam motion. 

After considering both mechanical performance and practical manufacturability via 3D printing, 

a design with 2 mm thickness and 90 mm effective length is selected as a balance between 

structural efficiency and material economy. The SolidWorks static study predicted a 

displacement of 1.729 ×  10−3 𝑚 under a nominal applied load of1 𝑁, corresponding to a 

stiffness of: 

𝑘𝑠 =  𝐹 / 𝛿 ≈ 578.37 𝑁/𝑚 

This value is slightly higher than the equivalent stiffness of the cantilever beam, which is 

considered optimal for generating hardening-type nonlinearities without fully constraining the 

system motion. The chosen stiffness therefore represents a suitable compromise, allowing the 

stopper to act as an effective nonlinear limiter for bandwidth expansion. Once established, this 

stiffness parameter is directly implemented in the MATLAB numerical model to evaluate the 

dynamic response under nonlinear conditions. 
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3.3 Linear System Benchmark Validation 

The linear benchmark simulation serves to validate the fundamental electromechanical model 

before introducing nonlinearities. This step is essential to ensure that the equivalent mass–

spring–damper representation of the cantilever and the piezoelectric coupling are correctly 

implemented.  

3.3.1 Natural Frequency and Damping Validation 

The natural frequency of the equivalent SDOF beam model is calculated based on beam 

geometry and material properties using:  

𝑘 =
3𝐸𝐼

𝑙3
 , 𝑚 = 𝑚𝑡𝑖𝑝 +

1

3
𝑚𝑏𝑒𝑎𝑚 

resulting in an estimated frequency 𝑓𝑁 =
1

2𝜋
√

𝑘

𝑚
= 10.514 𝐻𝑧 . 

The computed value is compared against the measured natural frequency from experimental 

modal testing (𝑓𝑁 = 10.5 𝐻𝑧). The discrepancy is found to be within acceptable limits (error < 

0.1332%), confirming that the simplified SDOF approximation reasonably captures the 

system’s dynamics. 

The damping ratio is taken from experimental measurements (𝜁𝑚 = 0.7%) and implemented 

as viscous damping. This parameter ensures that numerical predictions reflect realistic decay 

behavior near resonance. 

The restoring force–displacement and potential energy functions are also plotted, confirming 

the expected linear elastic behavior. These plots provide a baseline reference for subsequent 

comparisons with the nonlinear stopper system, where the restoring force deviates from 

linearity. 



23 

 

Figure 3.2 – Restoring force–displacement relation (left) and potential energy function (right) 

of the equivalent linear SDOF cantilever beam. These plots confirm the expected linear elastic 

behavior and provide the baseline reference for later nonlinear comparison. 

 

3.3.2 Frequency Response of the Linear System under Harmonic Excitation 

Harmonic base excitation is applied to the linear system, and analytical transfer functions are 

used to compute the frequency response. Both structural transmissibility and voltage output are 

examined: 

⚫ Transmissibility curves: The transfer function 𝐺𝑧𝑏 =  |𝑍0 𝐵0⁄ |  which, represents the 

output displacement (relative) compared to the input one, is calculated with and without 

piezoelectric coupling. Results confirmed the expected resonance amplification at the 

natural frequency, along with damping-induced bandwidth limitations. The inclusion of 

piezoelectric coupling slightly altered the transmissibility curve, reflecting the 

electromechanical interaction between mechanical energy and electrical energy. (see 

Figure 3.3 top left) 

⚫ Voltage response: The transfer function |𝐺𝑣𝑏 =  𝑉0 𝐵0⁄ | represents the voltage output per 

unit base displacement. A clear resonance peak is observed near 10.5 Hz, consistent with 

theoretical predictions. Similarly, the transfer function 𝐺𝑣𝑧 =  |𝑉0 𝑍0⁄ |  describes the 

electromechanical sensitivity to beam relative (see Figure 3.3 top right and 3.4). 

⚫ Phase response: The phase of both structural and voltage outputs displayed the 

characteristic second-order system behavior, with a π/2 shift around resonance. This 

confirmed that the implemented damping model correctly captured the dynamic lag 

between input excitation and system response. 
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Figure 3.3 – Frequency response of the linear piezoelectric cantilever under harmonic base 

excitation. Top row: magnitude of transmissibility (left) and voltage output per unit base 

displacement (right). Bottom row: corresponding phase responses. The characteristic π/2 

phase shift at resonance is evident, confirming the second-order system behavior. 

 

 

Figure 3.4 – Voltage response relative to the beam’s relative displacement.  

The magnitude (top) shows the electromechanical sensitivity of the piezoelectric disk. 

The phase response (bottom) highlights the dynamic lag between mechanical 

deformation and electrical output. 
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Overall, the benchmark simulations demonstrate that the linear piezoelectric cantilever model 

is correctly implemented and provides reliable predictions. These results serve as a reference 

baseline against which the nonlinear stopper system can later be evaluated, highlighting 

deviations introduced by piecewise stiffness and impact dynamics. 

 

3.4 State-Space Method: Discontinuity-Induced Divergence 

As introduced in Section 2.3.1, the state-space method provides a compact mathematical 

framework for representing the coupled electromechanical system in first-order form. While 

Chapter 2 outlined the theoretical formulation of this method, the present section focuses on its 

application to the nonlinear piezoelectric beam with mechanical stoppers. In particular, 

frequency sweep simulations are performed in order to evaluate whether the method could 

capture the expected nonlinear phenomena, namely resonance hardening and bandwidth 

broadening. 

Motivation and Expected Outcomes 

The objective of this stage is to exploit the state-space formulation to investigate the nonlinear 

response of the system under sweep excitation. Two specific outcomes are targeted: 

⚫ Hardening behavior, manifested as a resonance peak shift to higher frequencies compared 

with the linear system. 

⚫ Bandwidth broadening, observable in the voltage response and harvested power, which 

would demonstrate improved robustness of the harvester under variable excitations. 

If successfully captured, these effects would confirm the beneficial role of mechanical stoppers 

in enhancing vibration energy harvesting performance. 

Simulation and Representative Result 

The system is excited with a linear frequency sweep ranging from 0.9𝑓𝑁 to 1.5𝑓𝑁, with base 

displacement amplitude of 0.5 mm. Nonlinear restoring forces from the stoppers are 

incorporated into the formulation as displacement-dependent input terms, while the state-space 

matrices remained constant. 

A representative outcome is shown in Figure 3.5, which illustrates the restoring force 

decomposition into linear and nonlinear components. The nonlinear term becomes active once 

the displacement exceeds the stopper gap, thereby modifying the overall restoring force 

characteristic. This confirms that the state-space model formally accounts for the presence of 

the stopper nonlinearity. 
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Figure 3.5: Restoring force decomposition with linear and nonlinear contributions. 

Although the formulation is successful in embedding the nonlinear restoring force, the actual 

dynamic responses obtained under frequency sweep excitation did not reveal the expected 

phenomena. Specifically: 

The transmissibility curves produced by the state-space simulations closely resembled those of 

the linear system, without a clear rightward shift of the resonance peak. 

The voltage output spectra also failed to demonstrate consistent bandwidth broadening. 

Time-domain responses showed contact events, but these did not translate into significant 

nonlinear signatures in the frequency domain. 

Due to these issues, additional figures such as frequency response functions, voltage time 

histories, and spectral analyses are not presented here. They are found to be nearly 

indistinguishable from the linear benchmark and thus provided no meaningful insight into the 

nonlinear behavior. For clarity, only the restoring force representation is reported as evidence 

of the attempted formulation. 

In summary, the state-space method is tested as an initial numerical strategy for simulating the 

nonlinear piezoelectric system. While it demonstrated the ability to formally include nonlinear 

restoring forces, it failed to reproduce the essential nonlinear features of interest, namely 

resonance hardening and bandwidth broadening. The main limitations arose from the 

assumption of constant system matrices and the difficulty of handling discontinuous contact 

dynamics within the state-space framework. 

For these reasons, the study transitioned to the Newmark-β integration method (Section 3.4.2), 

which is more robust for directly solving second-order nonlinear differential equations with 

discontinuous restoring forces. 
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3.5 Newmark-β Method: Implementation and Convergence Analysis 

Following the limitations observed with the state-space formulation, where discontinuous 

nonlinearities associated with the stoppers induced divergence and prevented stable solutions, 

the analysis is advanced using the Newmark-β method. This direct time-domain integration 

scheme provided the stability and flexibility required to incorporate the piecewise nonlinear 

restoring forces of the stopper mechanism, while maintaining numerical convergence across a 

wide range of operating conditions. 

In contrast to the state-space model, the Newmark formulation allowed the system to be studied 

under more realistic excitation scenarios, including both harmonic sweeps and broadband 

random inputs. This flexibility is essential to capture the nonlinear dynamics of the system and 

to evaluate how different configurations of stopper stiffness 𝑘𝑠 influence harvesting efficiency. 

The chosen parameters ( 𝛽 = 0.25, 𝛾 = 0.5 ) ensured stability, while a pseudo-mass term is 

added to the electrical equation to unify the governing equations into a second-order system. 

To ensure smooth transitions across the contact boundaries, the piecewise nonlinear force is 

regularized using a quadratic smoothing function, which reduced numerical instabilities while 

retaining the essential hardening characteristics of the system. 

3.5.1 Stiffness Optimization after Experimental Limitations 

During the initial testing of the 3D-printed stopper designs, it became evident that the system 

did not achieve the expected hardening effect. Instead of broadening the frequency response, 

the stopper behavior is closer to a rigid constraint, limiting the dynamic range of the cantilever 

beam. This shortcoming motivated a redesign in the numerical domain, where the excitation is 

shifted from the vertical test setup to a lateral excitation model. Within this revised framework, 

the role of the stopper stiffness 𝑘𝑠 became central: rather than focusing on a single design, a 

systematic optimization is performed to identify a feasible range of stiffness values capable of 

inducing the desired nonlinear response. 

The optimization is carried out numerically by enumerating a series of stiffness values. Starting 

from the stiffness derived from SolidWorks simulations (approximately 5.78 × 102 𝑁/𝑚), the 

range is progressively extended up to 5 × 103 𝑁/𝑚 . For each candidate stiffness, the 

Newmark integration produced voltage and displacement responses, from which two 

performance metrics are extracted: the voltage per unit base displacement (𝑉/𝑚𝑚 𝑅𝑀𝑆) and 

the average electrical power (𝑊 𝑅𝑀𝑆).  

By comparing these results across successive sets of simulations, the optimal stiffness window 

is identified not as a single value but as a narrow range, approximately between 2600 and 2680 

N/m. Within this interval, both normalized voltage and harvested power achieved their peak 

values, confirming the suitability of moderately stiff stoppers to enhance system bandwidth 
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without inducing rigid constraints. 

 

Figure 3.6: Voltage per base displacement and electrical power as functions of stopper 

stiffness 𝑘𝑠. The shaded region highlights the identified optimal stiffness window. 

 

Although the numerical analysis identified an approximate optimal stiffness range, it is 

important to recognize that the actual stiffness of the fabricated stoppers inevitably differs from 

the idealized numerical values. For this reason, the stiffness range should be regarded primarily 

as a reference rather than a strict design target. Different stiffness values may lead to distinct 

system behaviors, and understanding this spectrum of responses is as relevant as locating the 

peak-performing configuration. The selected interval therefore provides guidance for design 

but does not replace the need for broader evaluation across feasible stiffness values. 

 

3.5.2 Random Excitation and Broadband Validation 

Building upon the stiffness optimization study in Section 3.5.1, the response of the system under 

random base excitation is further investigated to evaluate the effectiveness of the nonlinear 

stoppers in broadband energy harvesting. This step is particularly significant because most real-

world vibration sources—such as wind, traffic, or machinery—are inherently stochastic rather 

than purely harmonic. Validating performance under random excitation therefore provides a 

more realistic assessment of the system’s applicability for practical energy harvesting. 

To this end, simulations are conducted for both the linear and nonlinear configurations while 

progressively increasing the base excitation amplitude, 𝐵0 . For each case, the root-mean-

square (RMS) voltage normalized by the base displacement, 𝜂 = 𝑉𝑅𝑀𝑆 𝑉0⁄  , and the RMS 

electrical power, 𝑃𝑒, are calculated. The comparison is shown in Figure 3.7 and Figure 3.8. 
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Figure 3.7: Voltage per base displacement unit under random excitation at different base 

excitation amplitudes. (Linear 𝑘𝑠 = 0 𝑁/𝑚, 𝑘𝑠 = 578 𝑁/𝑚, 𝑘𝑠 = 2600 𝑁/𝑚) 

 

 

Figure 3.8: Electrical power vs. excitation amplitude for linear and nonlinear cases. 
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For the linear case, both 𝜂  and 𝑃𝑒 scale nearly proportionally with excitation amplitude, 

reflecting the narrowband and resonance-limited nature of the system. In contrast, the nonlinear 

cases exhibit a much steeper increase, with curves that progressively diverge from the linear 

baseline as 𝐵0 grows. Notably, when the stopper stiffness is optimized to 𝑘𝑠 = 2600 𝑁/𝑚, 

the nonlinear performance advantage is further amplified, yielding significantly higher 

efficiency at larger excitation amplitudes. These results highlight not only the fundamental role 

of nonlinear stoppers in enhancing energy capture under stochastic conditions, but also the 

sensitivity of the outcome to stopper design parameters. 

 

3.5.3 Numerical Outputs and Convergence Considerations 

While the random excitation analysis highlights the superior performance of the nonlinear 

harvester under broadband environmental inputs, these observations remain primarily at the 

level of global performance indices such as voltage-per-displacement and harvested power. To 

gain a deeper understanding of the underlying mechanisms, it is essential to complement these 

results with a spectral analysis. By examining the frequency-domain outputs of the Newmark-

β simulations, one can directly observe how nonlinear stoppers redistribute vibrational energy 

and alter the cumulative power characteristics compared with the linear configuration. This 

transition from random-input validation to frequency-domain evaluation also provides an 

opportunity to address the convergence limitations encountered with the state-space method 

and to confirm the robustness of the Newmark scheme in strongly nonlinear regimes. 

The Newmark-β simulations yield a series of outputs that provide critical insights into the 

performance of nonlinear harvesters. Among these, the most important indicators are the 

voltage power spectral density (PSD) and the cumulative electrical power spectrum, both of 

which highlight the redistribution of vibrational energy under nonlinear dynamics. 

For the linear configuration, the PSD exhibits a sharp and symmetric resonance peak centered 

at ≈ 10.5 𝐻𝑧, with a maximum amplitude of 30.85 𝑉2/𝐻𝑧 at 10.53 𝐻𝑧 (Figure 3.9). This 

narrowband behavior reflects the inherent limitation of linear harvesters, which can only 

operate efficiently when environmental vibrations coincide with the natural frequency of the 

cantilever. Correspondingly, the cumulative electrical power rises steeply around the resonance 

and then gradually levels off, reaching ≈ 1.11 × 10⁻⁵ 𝑊  at 11 𝐻𝑧  and continuing a slow 

increase until ≈ 1.27 × 10⁻⁵ 𝑊  at 30 𝐻𝑧  (Figure 3.10). The gradual saturation of the 

cumulative curve underscores that the energy contribution outside resonance is negligible in 

the linear case. 
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Figure 3.9: Voltage power spectral density (PSD) of the linear configuration, showing a 

symmetric peak at 10.5 𝐻𝑧 (30.85 𝑉²/𝐻𝑧). 

Figure 3.10: Cumulative electrical power of the linear configuration, rising sharply at 

resonance and gradually saturating at ≈ 1.27 × 10⁻⁵ 𝑊 by 30 𝐻𝑧. 

 

 

Figure 3.11: Voltage power spectral density (PSD) of the nonlinear configuration (𝑘𝑠 ≈

 2600 𝑁/𝑚), rising with fluctuations to a sharp maximum of 840.27 𝑉2/𝐻𝑧 at 29.14 𝐻𝑧, 

followed by a steep drop. 

Figure 3.12: Cumulative electrical power of the nonlinear configuration, increasing nearly 

linearly with frequency and reaching ≈ 0.002 𝑊 by 29.3 𝐻𝑧. 
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By contrast, the nonlinear configuration with optimized stopper stiffness (𝑘𝑠 ≈  2600 𝑁/𝑚) 

produces a markedly different spectral signature. Instead of a symmetric peak, the nonlinear 

PSD rises progressively from the resonance frequency, forming a fluctuating curve that 

culminates in a sharp maximum of 840.27 𝑉2/𝐻𝑧 at 29.14 𝐻𝑧. The subsequent steep drop 

suggests that nonlinear interactions effectively concentrate and then abruptly release spectral 

energy (Figure 3.11). This behavior is directly reflected in the cumulative power curve (Figure 

3.12), which increases almost parabolically with frequency and reaches ≈ 0.002 𝑊  by ≈

29.3 𝐻𝑧. Unlike the linear system, where energy continues to accumulate gradually beyond the 

resonance, the nonlinear case demonstrates that the bulk of the harvested energy is accumulated 

rapidly within the low-frequency band, leaving little contribution at higher frequencies. 

This comparison leads to an important conclusion: nonlinear stoppers do not merely broaden 

the frequency response by smearing out resonance but instead redistribute energy through 

successive off-resonance contributions, which build up until a sharp cutoff is reached. The 

cumulative power profile illustrates that nonlinear harvesters are able to capture energy more 

efficiently within a confined frequency band, transforming distributed excitations into 

concentrated electrical output. This mechanism explains why the nonlinear cumulative curve 

exhibits an almost monotonic rise up to the saturation point, as opposed to the more gradual 

and plateau-like trend of the linear case. 

From a numerical perspective, these outputs further validate the robustness of the Newmark-β 

integration scheme. Unlike the state-space approach discussed in §3.4, which often suffered 

divergence under strong nonlinearities, the implicit corrections in Newmark iterations ensured 

convergence across the tested stiffness values, including the highly nonlinear 𝑘𝑠 =

 2600 𝑁/𝑚 case. The ability to obtain stable PSD and power spectra under such conditions 

confirms that the solver captures nonlinear effects without introducing artificial instabilities. 

This convergence reliability lends strong confidence to the physical significance of the 

observed broadband redistribution and energy enhancement. 

Beyond the spectral analysis, additional outputs from the Newmark-β simulations provide 

further confirmation of the nonlinear effects. Figure 3.11-12 compared the PSD and cumulative 

power curves, illustrating how the nonlinear configuration redistributes vibrational energy over 

a broader range and accumulates nearly all of the harvested power below 30 Hz, in sharp 

contrast to the narrowband linear case. To complement these frequency-domain results, three 

further time- and input-domain perspectives are considered. 

Figure 3.13-14 presents the decomposition of restoring forces into total, linear, and nonlinear 

contributions as functions of time and displacement. In the linear system, the restoring force is 

strictly proportional to displacement, yielding a single, symmetric trend without discontinuities. 

By contrast, the nonlinear system shows an additional force component that becomes active 

when the beam reaches the stopper gaps. This contribution modifies the restoring force profile, 
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producing asymmetric loops and an increased effective stiffness during large deflections. Such 

behavior confirms the intended hardening-like mechanism of the stoppers and provides a direct 

physical interpretation of the bandwidth broadening observed in the PSD analysis. 

 

Figure 3.13 – Restoring force decomposition in linear system. 

 

Figure 3.14 – Restoring force decomposition in nonlinear system: total, linear, and nonlinear 

contributions. (𝑘𝑠 =  2600 𝑁/𝑚) 

 

Figure 3.15-16 shows the voltage and displacement responses over time. In the linear system, 

the voltage output closely follows the harmonic nature of the base excitation, with a nearly 

sinusoidal waveform synchronized to displacement. For the nonlinear case, the response 

exhibits richer harmonic content and intermittent modulation, reflecting the interaction between 



34 

the beam and the stoppers. Despite these nonlinearities, the Newmark method ensures 

numerical stability, with the solutions converging to bounded, periodic responses rather than 

diverging as observed with the state-space method. This robustness underscores the method’s 

suitability for analyzing strongly nonlinear harvesters. 

 

Figure 3.15 – Time histories of displacement and voltage for linear system. 

 

 

Figure 3.16 – Time histories of displacement and voltage for nonlinear system. 

(𝑘𝑠 =  2600 𝑁/𝑚) 

 

 

 



35 

Finally, Figure 3.17-18 compares the ratio between the output voltage amplitude 𝑉0 and the 

input excitation amplitude 𝑌0. The linear configuration shows a monotonic but limited 

amplification near resonance, whereas the nonlinear system achieves significantly higher 

voltage gain across a wider input range. This confirms that nonlinearity not only broadens the 

frequency bandwidth but also enhances the effective transduction from mechanical input to 

electrical output. 

 

Figure 3.17 – Voltage-to-input ratio 𝑉0 𝑌0⁄  for linear system. 

 

Figure 3.18 – Voltage-to-input ratio 𝑉0 𝑌0⁄  for nonlinear system. 

Taken together, these outputs demonstrate that the nonlinear stoppers fundamentally alter the 

dynamics of the system. They extend the operational bandwidth, enable more efficient energy 

transfer at off-resonance frequencies, and maintain stable convergence under challenging 

conditions where the state-space approach fails. This validates the adoption of the Newmark-β 

method as the principal numerical tool for analyzing nonlinear piezoelectric energy harvesters. 
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3.6 Error and Convergence Analysis 

The numerical analysis carried out in this chapter revealed critical differences between the two 

implemented approaches: the state-space formulation and the Newmark-β integration method. 

The state-space approach, although mathematically elegant, failed to converge when applied to 

the nonlinear system with mechanical stoppers. This failure is primarily due to the intrinsic 

discontinuities introduced by contact events: when the beam displacement exceeded the stopper 

gap, the effective stiffness suddenly increased, producing sharp transitions in the restoring force. 

In the state-space framework, these discontinuities are embedded directly in the system 

matrices, causing the dynamic matrix to lose smoothness and leading to unstable numerical 

integration. As a result, the simulations often terminated without producing meaningful 

frequency sweep outputs, or generated responses nearly indistinguishable from the linear case, 

thereby preventing the extraction of reliable nonlinear characteristics. 

By contrast, the Newmark-β method demonstrated a robust capability to handle nonlinearities, 

even under strong contact interactions. This stability arises from the implicit time-integration 

scheme, which evaluates displacement and velocity predictions iteratively within each time step, 

thereby allowing the nonlinear restoring forces to be consistently updated until convergence is 

achieved. As shown in the previous sections, the method successfully captured nonlinear 

features such as the broadening of the operational bandwidth, the redistribution of spectral 

energy in the PSD, and the amplification of voltage and power under random excitation. 

Importantly, convergence is maintained even when the stopper stiffness is varied over a wide 

range, and numerical instabilities could be controlled by adjusting the time step size. 

The comparison between the two methods highlights a key methodological insight: while the 

state-space formulation is effective for linear piezoelectric models, it is not well-suited for 

discontinuous nonlinearities, where abrupt stiffness transitions dominate the dynamics. The 

Newmark-β method, on the other hand, offers a general and reliable tool for nonlinear vibration 

energy harvesting analysis, capable of providing stable and physically consistent outputs across 

different excitation scenarios. This justifies its adoption as the main numerical approach for the 

nonlinear simulations presented in this thesis. 
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4. Experimental Tests 

Following the numerical analysis presented in Chapter 3, a series of experimental investigations 

are conducted to verify the model predictions and to explore the system behavior under 

increasing levels of mechanical nonlinearity. The experiments are performed on the same 

cantilever beam described in Chapter 2, equipped with a piezoelectric patch and a tip mass, and 

mounted on an electrodynamic shaker capable of generating controlled base excitations. 

Initially, the beam response is characterized under purely linear conditions, without any 

mechanical constraint, to validate the stiffness, damping, and electromechanical parameters 

identified through the numerical simulations. Subsequently, a nonlinear configuration is tested 

by introducing a pair of 3D-printed beam shaped stoppers designed to limit the beam’s vibration 

amplitude. However, as will be discussed later, the flexibility of the printed material and the 

vertical testing configuration introduced additional dynamic interactions not foreseen by the 

model. This observation led to a later redesign of the stopper geometry and test orientation, 

which are presented in the following sections of this chapter. 

4.1 Linear Experimental Setup and Measurement System 

The experimental rig consisted of a clamped–free steel beam instrumented with accelerometers 

and a bonded piezoelectric patch. The beam is mounted vertically on a rigid base plate 

connected to an electrodynamic shaker. The shaker provided controllable base excitation, while 

a 1 MΩ resistive load is used to measure the generated electrical voltage. The tip of the beam 

carried an added mass of 56.3 g to reproduce the same dynamic properties used in numerical 

simulations. The setup is shown in Figure 4.1. 

 

Figure 4.1. Linear experimental setup showing the beam, shaker, and sensors. 

 

A1    A2    
B    
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The linear configuration served as the fundamental validation step for both the mechanical and 

electromechanical aspects of the model. The beam is excited harmonically and randomly across 

a frequency range of 3–50 Hz, and acceleration and voltage responses are acquired 

simultaneously. The recorded signals are processed in MATLAB using the 𝑝𝑤𝑒𝑙𝑐ℎ  and 

𝑡𝑓𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒 functions to compute the power spectral densities (PSDs), transmissibilities, and 

transfer functions between the base excitation and the beam response. 

In the time domain, the base acceleration and the beam responses exhibit clean oscillations, 

with consistent phase and amplitude ratios among the measured signals, confirming the 

structural integrity of the setup and the absence of nonlinearities. The piezoelectric voltage 

follows the same trend, maintaining linear proportionality with the beam deformation. These 

results are presented in Figure 4.2, where the waveforms demonstrate that the beam operates 

stably in its first bending mode and behaves as a single-degree-of-freedom (SDOF) system. 

In the frequency domain, the power spectral densities (PSDs) of the accelerations and the 

piezoelectric voltage all exhibit a pronounced resonance peak centered at approximately 10.5 

Hz, as shown in Figure 4.3. This frequency coincides precisely with the numerically predicted 

first natural frequency reported in Chapter 3, validating the accuracy of the finite element model 

and the boundary conditions used therein. The sharp and symmetric resonance peak confirms 

that the system’s response remains strictly linear, with no evidence of stiffness or damping 

variations under the applied excitation levels. 

 

Figure 4.2 – Time-domain signals: base acceleration, relative accelerations at mid-span and 

tip, and piezoelectric voltage. 
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Figure 4.3 – Power spectral densities of base acceleration, beam tip acceleration, and 

piezoelectric voltage. A clear resonance peak appears at 10.5 Hz. 

 

 

The frequency-response functions (FRFs) between the base and beam accelerations, 𝐺𝐴1−𝐵(𝑓) 

and 𝐺𝐴2−𝐵(𝑓), together with the transfer function between base acceleration and piezoelectric 

voltage output, 𝐺𝑣𝑏(𝑓), are plotted in Figures 4.4.  

As described in Table 1 (Sensor Configuration) in Section 2.1.1, accelerometer A1 is positioned 

at mid-span of the beam to capture its intermediate dynamic response, A2 is mounted at the 

beam’s free tip to measure the maximum deflection amplitude, and B is fixed at the base to 

record the input excitation. This configuration allows for a detailed comparison between local 

beam motions and the global base input, ensuring accurate characterization of both mechanical 

and electromechanical transfer functions. 

All three magnitude curves show a distinct resonance at 10.5 Hz, and their corresponding phase 

plots reveal a −90° crossing typical of a lightly damped second-order system. The close 

correspondence between the mechanical transfer functions 𝐺𝐴2−𝐵(𝑓) and the 

electromechanical function 𝐺𝑣𝑏(𝑓), indicates that the piezoelectric output voltage is directly 

correlated to the beam’s vibration amplitude, confirming the electromechanical coupling 

assumptions adopted in the numerical model. 
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Figure 4.4 – Frequency-response functions of the beam and piezoelectric output.  

The magnitude and phase exhibit identical resonance behavior at 10.5 Hz. 

 

 

The electromechanical transfer functions 𝐺𝑣−𝑧2
(𝑓) and 𝐺𝑣−𝑧̇2

(𝑓) , shown in Figure 4.5, 

describe the voltage response of the piezoelectric patch as a function of the beam’s local 

displacement and velocity at the tip.  

 

Figure 4.5 – Electromechanical transfer functions Gv−𝑧2
(f) and Gv−𝑧̇2

(f) 
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The measured magnitude curves exhibit a smooth decay with increasing frequency, without any 

pronounced resonance peak, as expected for a first-order electromechanical system. At lower 

frequencies, the voltage output follows the beam velocity proportionally, while at higher 

frequencies it approaches an almost constant value determined by the capacitive nature of the 

piezoelectric element and the resistive load. A small irregularity appears near 31 Hz, which can 

be attributed to higher-mode effects or experimental noise rather than an actual resonance. 

Overall, the results confirm the validity of the linear electromechanical model introduced in 

Chapter 2, demonstrating that the piezoelectric transducer behaves consistently with the 

expected first order coupling dynamics. This provides a solid baseline for comparison with the 

nonlinear experiments discussed in the following sections. 
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4.2 First Nonlinear Experimental Setup and Measurement System 

Following the validation of the linear behavior described in Section 4.1, a second experimental 

configuration was implemented to investigate the nonlinear dynamic response of the 

piezoelectric cantilever system. In this setup, a pair of 3D-printed beam-shaped stoppers was 

mounted symmetrically around the beam tip, as illustrated in Figure 4.6. These stoppers were 

designed to introduce contact during large-amplitude motion, reproducing the nonlinear 

stiffness characteristics previously discussed in the modelling phase. 

 

Figure 4.6: Experimental setup showing the beam, shaker, stopper mount, and sensors. 

The purpose of this configuration was to experimentally verify the feasibility of the nonlinear 

contact mechanism and to assess the structural interaction between the beam and the stopper. A 

stopper geometry with a target stiffness of 578.37 N/m, as predicted by static finite-element 

simulation in SolidWorks, was adopted. This stiffness level was selected to introduce a 

moderate degree of nonlinearity without excessively constraining the beam’s motion, allowing 

for measurable deformations under base excitation. 

However, as later observed during testing, the actual stiffness of the printed resin material 

differed significantly from the nominal simulated value, resulting in unexpected dynamic 

interactions between the beam and the stopper. These discrepancies highlight the sensitivity of 

the system’s nonlinear response to material compliance and manufacturing tolerances. 

To better quantify this discrepancy, a prototype stopper was fabricated and experimentally 

tested to verify its actual stiffness characteristics. As shown in Figure 4.7 

During preliminary tests, the actual stiffness of the printed resin material was found to be 

considerably lower than the predicted value, leading to unexpected dynamic interactions 

between the beam and the stopper. This deviation emphasizes the influence of material 

compliance and manufacturing tolerance on the system’s nonlinear response, underlining the 

importance of accurately characterizing the real mechanical properties of the stoppers before 

further optimization. 
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Figure 4.7 —3D-printed Beam-shaped stopper 

 

The printed part exhibited a much higher flexibility than expected, mainly due to the anisotropic 

and layer-dependent mechanical properties inherent to FDM manufacturing. A subsequent 

static compression test on the printed stopper confirmed this deviation, revealing an effective 

stiffness of approximately 220 N/m — significantly lower than the predicted 578 N/m. 

During the test, the stopper’s compliance introduced several unexpected effects. Its low 

stiffness allowed noticeable deformation under dynamic loading, while gravitational effects 

further influenced its deflection, shifting the effective contact point with the cantilever beam. 

Moreover, due to its own flexibility, the stopper exhibited a resonant behavior close to the 

beam’s first natural frequency, causing an undesired energy exchange between the two 

components. Consequently, the system failed to exhibit the expected hardening effect, which is 

predicted in the numerical analysis. These results indicate that although the initial concept 

successfully demonstrated the mechanical interaction between beam and stopper, the actual 

implementation could not reproduce the intended nonlinear stiffening behavior. 

This preliminary attempt, however, is crucial in identifying the key limitations of the vertical 

setup. The excessive compliance of the printed stopper, combined with the influence of gravity, 

demonstrated that the vertical base excitation configuration is inherently unsuitable for 

achieving a stable and repeatable nonlinear contact condition.  

Consequently, in the subsequent phase, the experimental system is redesigned to operate with 

a horizontal base excitation, effectively eliminating the gravitational bias on the stopper and 

contact region. The new configuration maintained the same cantilever beam, tip mass, and 

piezoelectric elements, but incorporated a semi-cylindrical stopper geometry specifically 

developed to provide higher stiffness and a more controlled nonlinear interaction. 

The redesign and the optimization of this improved configuration are discussed in the following 

subsection. 
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4.2.1 Stiffness Optimization and Redesigned Stopper 

Following the limitations observed in the first nonlinear test, where the 3D-printed stoppers 

failed to induce the expected hardening effect, the experimental configuration is redesigned to 

obtain a controlled nonlinear response. 

In this stage, the test setup is modified to eliminate gravitational influence and improve the 

mechanical consistency of contact between the beam and the stopper. A new semi-cylindrical 

stopper geometry is designed and implemented, allowing more uniform lateral contact and a 

stable response under harmonic and random base excitation. 

The next section presents the rationale behind the redesign, the experimental configuration, and 

the theoretical framework adopted for evaluating the nonlinear behavior of the modified system. 
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4.3 Experimental Reconfiguration and Motivation 

In the initial nonlinear setup, the vertical orientation introduced additional static loads due to 

gravity, which affected the dynamic equilibrium of the beam–stopper system. These loads 

caused asymmetric contact conditions and led to unstable resonance responses. Additionally, 

the printed stopper structure exhibited greater flexibility than expected, making it unable to 

produce the desired hardening effect. As a result, the experimental response remained nearly 

linear, and the nonlinear phenomena predicted numerically could not be validated. 

To overcome these challenges, the test setup is completely reconfigured to operate under 

horizontal base excitation. In this arrangement, gravity no longer influenced the contact 

dynamics, allowing the beam to interact symmetrically with the stopper along its oscillation 

direction. A top-view schematic of this experimental configuration is presented in Figure 4.8. 

This configuration provided more reliable and repeatable results while maintaining the same 

beam–tip mass–piezoelectric assembly as in the previous linear analysis, ensuring that 

comparisons between linear and nonlinear behaviors remained meaningful. 

 

 

Figure 4.8: Top view of the experimental setup for horizontal vibration, featuring the 

cantilever beam, tip mass, and semi-cylindrical stopper. 
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An additional refinement is introduced in the installation and alignment of the stopper to 

address both geometric asymmetry and gap control. Because the mounting holes on the shaker 

table are not symmetrically positioned with respect to the beam, the beam could not be centered 

precisely between the available fixing points. At the same time, the originally designed 3 mm 

clearance between the beam and the stopper is found to be excessively large, allowing unwanted 

lateral motion and contact uncertainty. To minimize these effects, the gap is reduced to 

approximately 0.5–1 mm, and the stopper is relocated near the tip mass to act as a motion limiter 

with improved control of the contact region. A detailed close-up of this critical gap is provided 

in Figure 4.9. 

 

Figure 4.9: Close-up view detailing the gap between the beam tip mass and the semi-

cylindrical stopper. 

 

To achieve the desired alignment under the asymmetric mounting constraints, the stopper is 

installed with an approximately 45° rotation relative to the beam axis. This orientation 

effectively compensated for the hole offset while maintaining the optimized small gap. As a 

result, the actual contact line between the beam and the semi-cylindrical stopper is rotated by 

about 45° with respect to the configuration used in the numerical stiffness estimation. Although 

this geometric modification slightly changed the local contact direction, it did not affect the 

global nonlinear behavior of the system or the validity of the experimental results. Instead, it 

simply required the effective stiffness range to be re-evaluated in the numerical model to 

account for the new contact geometry, thereby maintaining consistency between experimental 

and simulated interpretations. 
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4.3.1 Design Concept of the Semi-Cylindrical Stopper 

The newly designed semi-cylindrical stopper evolved directly from the original beam-aligned 

configuration. In the first design, the stopper and the beam are arranged in parallel, and the 

contact occurred along a narrow line defined by a small rounded edge at the stopper’s tip. This 

configuration ensured a well-defined contact interface but is highly sensitive to deformation, 

especially under vertical loading. In the redesigned horizontal system, the same concept of line 

contact is maintained, but the rounded contact section is extended longitudinally, forming a 

semi-cylindrical surface that runs along the beam’s vibration direction. This geometry provided 

both smoother contact interaction and an improved stiffness distribution along the stopper’s 

length. 

The semi-cylindrical stopper functions as a motion limiter, governing the maximum allowable 

deflection of the beam and inducing the desired nonlinear hardening effect once contact occurs. 

The stopper’s base is reinforced with a flat positioning plane, allowing it to be firmly fixed to 

the horizontal shaker table. The design incorporated elongated mounting holes, enabling small 

but precise adjustments of the gap distance, now refined to 0.5–1 mm. This modification 

reduced unwanted free motion and enhanced the repeatability of the contact events across 

multiple tests. 

Moreover, the transition from vertical to horizontal excitation required a new mechanical 

arrangement of the stopper’s base. The elongated semi-cylindrical tip is supported by a short 

rectangular base plate, ensuring structural stability and allowing for the necessary torque 

resistance during vibration. To further strengthen the connection between the semi-cylindrical 

body and its mounting plane, a filleted triangular reinforcement is added, effectively 

redistributing stress concentrations observed in preliminary simulations. This ensured that the 

stopper retained its shape and stiffness properties throughout repeated impacts during the 

nonlinear tests. 

The complete 3D CAD model of the redesigned stopper is presented in Figure 4.10, showing 

the semi-cylindrical contact region, mounting plane, and elongated holes for adjustable 

alignment. Finite element analysis of this model estimated its stiffness to be approximately 

3261.58 N/m, a value derived by applying a 1 N static force at the contact point with the tip 

mass and calculating the resulting displacement. The physically realized stopper component, 

fabricated using PLA material, is shown in Figure 4.11. These refinements collectively ensure 

that the mechanical design is robust enough to maintain stable contact behavior while 

preserving the targeted nonlinear characteristics essential for validating the numerical 

predictions.  
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Figure 4.10: 3D CAD model and static simulation of the semi-cylindrical stopper. 

 The design features a semi-cylindrical contact region and a mounting plane with alignment 

constraints. The displacement field resulting from a 1 N static force applied at the 45° contact 

interface is shown, indicating the deformation used for stiffness estimation. 

 

 

Figure 4.11: Physically realized stopper component fabricated using PLA material. 
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4.4 Nonlinear Experimental Validation 

With the reconfigured setup and the redesigned semi-cylindrical stopper, the experimental 

campaign advanced toward validating the nonlinear response predicted by the numerical 

simulations in Chapter 3. The primary goal of this phase is to experimentally observe the 

transition from linear to nonlinear behavior under random and harmonic excitations, confirming 

the system’s hardening response and the broadband energy distribution induced by contact 

interactions. 

The theoretical framework guiding this validation is based on a detailed reference model that 

describes the coupled dynamics of the cantilever beam and the piezoelectric transducer under 

base excitation. 

In this configuration, three physical quantities are directly measured during the experiments: 

⚫ Base acceleration 𝑏̈(𝑡), representing the input motion of the shaker table. 

⚫ Tip acceleration 𝑦̈(𝑡), corresponding to the absolute acceleration close to the free end of 

the beam. 

⚫ Voltage output 𝑣(𝑡) generated by the piezoelectric disk. 

The piezoelectric element is connected to a voltage-follower circuit that constrained the 

measured voltage within a safe range of ±9 V, as previously introduced in Section 2.1.1. The 

electrical signal is extracted through a resistive load of 𝑅 = 1 MΩ, ensuring a stable and linear 

measurement of the voltage–current relationship within the RC circuit. The mechanical 

interface between the tip mass and the semi-cylindrical stopper is separated by a narrow 

clearance of approximately 0.5–1 mm, a critical parameter in defining the onset of nonlinear 

contact during the experiment. 

As discussed in Section 2.2, the coupled electromechanical system can be simplified, around 

its first vibration mode, to a single-degree-of-freedom (SDOF) mass–spring–damper model 

coupled with a resistor–capacitor (RC) electrical network. The electrical dynamics can be 

expressed through Kirchhoff’s law applied to the RC circuit: 

𝑣 + 𝑅𝐶𝑝𝑣̇ − 𝑅θ𝑧̇ = 0 

Considering the homogeneous equation and assuming 𝑣(𝑡) = 𝑉0𝑒𝑠𝑡, one obtains: 

𝑉0(1 + 𝑠𝑅Cp) = 0 

𝑠 = −
1

𝑅Cp
 

Indicating the presence of a single negative real pole, which defines the characteristic time 

constant of the RC network. 
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To derive the transfer function between the mechanical velocity 𝑧̇ and the generated voltage 

𝑣, let: 

𝑧 = 𝑧0𝑒𝑖Ω𝑡 , 𝑧̇ = 𝑖Ω𝑧0𝑒𝑖Ω𝑡 , 𝑣 = 𝑉0𝑒𝑖Ω𝑡 

Substituting into the RC equation yields: 

𝑉0 + 𝑖Ω𝑅𝐶𝑝𝑉0 = 𝑖θ𝑅Ω𝑧0 

which can be rearranged to give: 

𝐺𝑣𝑧 =
𝑉0

𝑧0
=

𝑖𝛺𝑅𝜃

1 + 𝑖𝑅𝐶𝑝𝛺
 

and therefore, the magnitude of the electromechanical transfer function is: 

|𝐺𝑣𝑧| =
Ω𝑅𝜃

√1 + (𝑅𝐶𝑝Ω)2

 

This relationship defines how the voltage output amplitude depends on the motion of the beam. 

As the excitation frequency Ω  increases, the transfer function magnitude approaches an 

asymptotic limit, see figure 4.12: 

lim
Ω→∞

|𝐺𝑣𝑧| =
θ

Cp
 

which represents the upper bound of the piezoelectric voltage response at high frequencies. 

 

Figure 4.12: Expected transfer function about the relationship defines how the voltage output 

amplitude depends on the vibration frequency. 
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Once the theoretical transfer function 𝐺𝑣𝑧  is established, the next step is to identify the 

piezoelectric parameters 𝐶𝑝  and 𝜃  directly from the measured data. In practice, both the 

voltage 𝑣(𝑡) and the acceleration response 𝑧̈(𝑡) are recorded during each test. The velocity 

𝑧̇(𝑡) is then obtained by numerical integration of the acceleration signal. From these quantities, 

the experimental transfer function between 𝑧̇ and 𝑣 — denoted as 𝐺𝑣𝑧 — is estimated using 

MATLAB’s “tfest” command, which performs a frequency-domain system identification based 

on input–output data. 

The identified transfer function allows the extraction of the circuit parameters. The single 

negative pole of 𝐺𝑣𝑧 corresponds to the RC time constant of the electrical subsystem, defined 

as 𝑠 = −1/(𝑅𝐶𝑝). From this relation, the piezoelectric capacitance can be estimated as 𝐶𝑝 =

−1/(𝑠𝑅) . Once 𝐶𝑝  is known, the coupling coefficient 𝜃  can be computed from the high-

frequency asymptotic value of the transfer function amplitude, ∣ 𝐺𝑣𝑧(Ω∗) ∣, which tends toward 

𝜃/𝐶𝑝 for sufficiently large excitation frequencies. Therefore, 𝜃 is obtained as: 

𝜃 = lim
Ω→∞

|𝐺𝑣𝑧| ⋅ 𝐶𝑝 ≅∣ 𝐺𝑣𝑧(Ω∗) ∣⋅ 𝐶𝑝 

This process provides an experimental identification of both electrical parameters, directly 

linking the measured electromechanical transfer to the analytical formulation introduced in 

Section 2.2. 

After characterizing the electrical properties, the nonlinear mechanical behavior induced by the 

stopper is evaluated using the restoring force surface method. Starting from the simplified 

equation of motion 

𝑚𝑧̈ + 𝑐𝑧̇ + 𝑘𝑧 + 𝑓𝑛𝑙(𝑧) + 𝜃𝑉 = −𝑚𝑏̈, 

All quantities except 𝑓𝑛𝑙(𝑧) are measurable from the experiments. Defining the total restoring 

force 𝐹(𝑧) = 𝑘𝑧 + 𝑓𝑛𝑙(𝑧) and the damping term 𝐷(𝑧̇) = 𝑐𝑧̇, the equation can be rewritten as: 

𝑚𝑧̈ + 𝐷(𝑧̇) + 𝐹(𝑧) = −𝑚𝑏̈ − 𝜃𝑉. 

By rearranging terms, an equivalent restoring force surface 𝑅(𝑧, 𝑧̇)  can be obtained as a 

function of time: 

𝑅(𝑧, 𝑧̇) = 𝐷(𝑧̇) + 𝐹(𝑧) = −𝑚(𝑏̈ + 𝑧̈) − 𝜃𝑉 = 𝑓𝑒𝑞(𝑡). 

Plotting 𝑓𝑒𝑞(𝑡) with respect to 𝑧 and 𝑧̇ allows the visualization of the restoring force surface 

𝑅(𝑧, 𝑧̇) . Under the assumption that the damping contribution 𝐷(𝑧̇) is negligible at low 

velocities, the elastic restoring force 𝐹(𝑧) — and thus the nonlinear term 𝑓𝑛𝑙(𝑧) — can be 

estimated. 

In the resulting 𝐹(𝑧) − 𝑧  relationship, a proportional increase of the restoring force is 

expected in the pre-contact region, corresponding to the purely linear response of the beam. 
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Considering for simplicity a symmetric gap of value equal to 𝑔, once the beam displacement 

reaches this value, the presence of the stopper introduces an additional contact force that causes 

the curve to deviate from linearity. Beyond this point, 𝐹(𝑧) increases at a significantly higher 

rate with displacement, forming an upward-bending segment that clearly indicates the onset of 

nonlinear hardening behavior. This anticipated trend is illustrated in Figure 4.13, which 

schematically represents the expected 𝐹(𝑧) − 𝑧  curve derived from the restoring force 

estimation method. 

 

Figure 4.13: Expected restoring force–displacement relationship, showing linear behavior up 

to the gap and hardening response beyond contact. 

 

 

From the restoring force distribution, the local equivalent stiffness can be defined as the 

derivative of the force with respect to displacement, which provides a more quantitative 

representation of the system’s transition from linear to nonlinear behavior. As depicted in Figure 

4.14 within the range −𝑔 ≤ 𝑧 ≤ 𝑔, the stiffness 𝐾(𝑧) remains nearly constant, corresponding 

to the linear stiffness of the beam. However, when the displacement exceeds the gap threshold 

and contact occurs, the stiffness exhibits a distinct jump to a higher plateau value, reflecting the 

increased rigidity introduced by the stopper. This discontinuity is a direct signature of the 

hardening effect, which the experiment aims to confirm through subsequent measurements. 
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Figure 4.14: Expected equivalent stiffness distribution showing a step increase beyond the 

contact region, characteristic of nonlinear hardening. 

 

These two theoretical profiles represent the anticipated mechanical response of the beam–

stopper system. In the forthcoming experimental analysis, the measured restoring force and 

stiffness distributions will be compared against these reference trends to verify the occurrence 

of contact-induced nonlinearity and to assess the accuracy of the proposed model. 

As mentioned above, the theoretical model identifies three measurable quantities that describe 

the coupled electromechanical response: the base acceleration 𝑏̈(𝑡), the tip acceleration 𝑦̈(𝑡), 

and the piezoelectric voltage output 𝑣(𝑡). These quantities are recorded simultaneously and 

used to compute the relative motion 𝑧 = 𝑦 − 𝑏, the transfer functions, and the restoring-force 

characteristics. 

Two different types of excitations are employed — random excitation and frequency-sweep 

excitation — to capture both broadband and amplitude-dependent nonlinear phenomena. The 

results are reported in the following subsections, together with the corresponding figures that 

illustrate the observed behavior and the parameters extracted from the data. 

4.4.1 Random Excitation Tests 

The random excitation tests were performed to investigate the broadband dynamic response of 

the system and evaluate how nonlinear contact interactions influence both the mechanical and 

electrical domains. 

The base excitation level was progressively varied from a gain of 0.5 down to 0.1, 

corresponding to a reduction in input base acceleration. This approach allowed a gradual 

transition from strong to weak excitation conditions, enabling the observation of nonlinear 

effects with different intensities. 
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Figure 4.15 displays the time-domain responses of the base acceleration, relative displacement, 

and piezoelectric voltage for all excitation levels. Because the base excitation is random, the 

three signals appear irregular and non-periodic, confirming that the applied excitation 

effectively excites a wide frequency band around the first natural frequency of the beam. This 

broadband nature ensures that nonlinear phenomena, such as intermittent contact and energy 

redistribution, are well represented. 

 

Figure 4.15 – Time-domain responses under random excitation 

 

The frequency-domain analysis is summarized in Figure 4.16. The first and second subplots 

show, respectively, the relative motion over base excitation and the voltage over base excitation 

transfer functions. As the excitation amplitude increases (gain 0.1 → 0.5), both transfer 

functions broaden and exhibit increased spectral noise, a signature of stronger contact-induced 

nonlinearities.  

The third subplot shows the voltage-over-relative-motion transfer function, ∣ 𝐺𝑣𝑧 ∣ , which 

increases with frequency and approaches the theoretical asymptote 𝜃/𝐶𝑝 , as predicted in 

Figure 4.12. 

This behavior confirms that the electrical coupling of the piezoelectric transducer remains 

stable across all input levels, and that the observed differences arise primarily from the 

mechanical nonlinearity of the stopper. 
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Figure 4.16 – Frequency-domain transfer functions under random excitation 

 

 

The parameters 𝐶𝑝 and 𝜃 were identified using the frequency-response estimation procedure 

introduced in Section 4.5. The obtained values are shown in Figure 4.17, yielding averages of 

𝐶𝑝 = 14.74 nF and 𝜃 = 0.11 N/mV, with only minor variations across different input levels. 

These constants are later used in the frequency-sweep analysis to calculate the restoring-force 

characteristics and validate the nonlinear model. 

 

Figure 4.17 – Identification of the electrical parameters 𝐶𝑝and 𝜃 
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The voltage and transfer-function characteristics are illustrated in Figure 4.18. The left subplot 

shows the ratio between voltage RMS and base acceleration RMS, indicating the efficiency of 

voltage generation under different excitation intensities. 

This trend exhibits a gradual decrease beginning from the second excitation level, suggesting 

that as nonlinear effects strengthen, the system redistributes energy and the effective voltage 

output slightly diminishes. 

The right subplot presents the area under the transfer function 𝐴𝑈𝐶[∣ 𝐺𝑣𝑏 ∣] , which first 

increases and then decreases with excitation amplitude, reaching its maximum at an input level 

of approximately 0.02 g. This specific amplitude corresponds to the optimal energy conversion 

condition for the designed stopper stiffness and gap configuration. 

 

Figure 4.18 – Voltage and transfer-function characteristics under random excitation 

 

 

 

The power analysis is summarized in Figure 4.19. The first subplot depicts the normalized 

instantaneous power spectrum, which shows the distribution of harvested power over frequency.  

Although its overall shape varies irregularly with input level, the second subplot—average 

harvested power versus base acceleration RMS—reveals a clear trend: the power increases from 

40 𝜇𝑊/𝑔  at the lowest excitation (near-linear regime) to 75 𝜇𝑊/𝑔  at 0.02 g, where the 

highest average power is obtained. Beyond this point, the power output decreases, indicating 

that excessive excitation leads to over-impact and additional losses. 
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This trend matches the behavior observed in Figure 4.18, reinforcing that the range between the 

second and third excitation levels provides the most efficient energy-harvesting condition for 

the designed nonlinear configuration. 

This confirms that the nonlinear contact mechanism enhances the harvesting efficiency within 

a specific amplitude range, where impacts effectively broaden the response while maintaining 

stable energy conversion. 

 

Figure 4.19 – Power generation characteristics under random excitation 

 

 

4.4.2 Frequency-Sweep Excitation Tests 

To complement the random excitation analysis, frequency-sweep tests were performed to 

evaluate the system response under controlled harmonic excitation. 

Both upward (sweep-up) and downward (sweep-down) sweeps were applied around the first 

resonance frequency, with multiple input levels to observe amplitude-dependent effects. 

Figure 4.20 show the time responses of base motion, relative displacement, and voltage during 

the upward frequency sweep. 

As the frequency increases, the beam response exhibits pronounced nonlinear features: at low 

amplitudes, the motion remains nearly sinusoidal, while at higher levels the amplitude 

modulation and asymmetric waveform indicate repeated contact between the beam and the 

stopper. 

The corresponding sweep-down results, shown in Figure 4.21, reveal a shift in resonance 

frequency typical of hardening-type nonlinearities. 
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Figure 4.20 – Frequency sweep-up responses 

 

Figure 4.21 – Frequency sweep-down responses 

 

 

Figure 4.22 compares the upward and downward sweeps on the same plot, showing that at small 

amplitudes both curves coincide, while at higher amplitudes the sweep-down curve decreases 

earlier than the sweep-up. Specifically, during the upward sweep, the amplitude jumps down at 

a certain frequency, whereas during the downward sweep, it jumps up at a different frequency—
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with both jump frequencies depending on the excitation level, as shown in Figure 4.21. In fact, 

if the system behaves linearly there is no difference between sweep-up and sweep-down tests 

in principle. 

This behavior confirms the hardening-type behavior predicted in the numerical simulations and 

demonstrates that the stopper effectively introduces the desired nonlinear contact dynamics. 

 

Figure 4.22 – Combined sweep-up and sweep-down responses 

 

 

Finally, Figure 4.23 shows the results obtained using the Restoring Force Surface Method. The 

first subplot illustrates the restoring force–displacement relationship 𝐹(𝑧), while the second 

shows the corresponding stiffness 𝐾(𝑧) = 𝑑𝐹(𝑧)/𝑑𝑧.  

The 𝐹(𝑧)–𝑧 plot clearly exhibits a linear region within ±0.4 mm, corresponding to the gap 

size, followed by a sharp increase beyond this range as the beam impacts the stopper. It should 

be noted that this measured gap is slightly less than the actual physical gap of approximately 

0.5 mm because the accelerometer was mounted prior to the tip mass. Importantly, this behavior 

matches the expected theoretical trend described in Figure 4.13. The stiffness curve confirms a 

nearly constant linear stiffness in the central range and a sudden increase beyond ±0.4 mm, 

indicating a transition to nonlinear contact stiffness. 

Although slight asymmetries can be seen between the positive and negative sides, likely due to 

geometric or installation imperfections, the general behavior agrees well with the theoretical 

predictions. 
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Figure 4.23 – Restoring Force Surface Method results 

Additionally, from the first subfigure, the equivalent stiffness can be estimated by evaluating 

the slope 𝑑𝐹/𝑑𝑧 in the post-impact region, yielding an approximate value of 3,500 N/m. This 

high stiffness arises from the substantial deformation of the stopper, particularly near 𝑧 =

0.6mm, where the contact force increases sharply. 

In the second subfigure, a representative value for the equivalent nonlinear system stiffness can 

be identified around 1,200 N/m, within a broader range of approximately 1,000–1,800 N/m. 

This range reflects the gradual stiffness transition of the beam–stopper assembly during 

intermittent contact, influenced by the semi-cylindrical geometry of the stopper and the 

distributed deformation in the contact zone. 

These quantitative estimations further illustrate the influence of the stopper geometry and 

deformation characteristics on the resulting nonlinear stiffness, providing a solid experimental 

basis for the subsequent discussion and comparison with numerical predictions. 

 

4.4.3 Discussion 

The results obtained from both random and frequency-sweep excitations provide consistent and 

conclusive evidence of the nonlinear dynamic behavior introduced by the semi-cylindrical 

stopper design. Through the controlled variation of the excitation amplitude, the system 

response was observed to transition smoothly from linear oscillations to strongly nonlinear 

regimes characterized by contact-induced hardening. 

In the random excitation tests, the transfer functions clearly revealed the amplitude dependence 
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of the response. At low excitation levels, the spectra remained narrow and well defined, 

consistent with a single-degree-of-freedom linear oscillator. As the excitation increased, the 

transfer functions broadened, the power spectrum expanded, and the voltage output began to 

exhibit saturation and mild irregularities—direct consequences of the beam intermittently 

impacting the stopper. 

The estimated parameters 𝐶𝑝  and 𝜃  remained essentially constant throughout the entire 

campaign, demonstrating that the nonlinear effects originate primarily from the mechanical 

subsystem, while the electromechanical coupling of the piezoelectric disk remains stable. 

Moreover, the observed power output behavior, with a clear maximum around 0.02 g of base 

acceleration, highlights an optimal operating range where the mechanical contact enhances 

rather than limits energy harvesting efficiency. 

The frequency-sweep results further confirmed these observations by providing a clearer 

picture of the system’s amplitude-dependent resonance behavior. The divergence between the 

sweep-up and sweep-down responses reveals a characteristic jump phenomenon, resulting from 

bifurcations induced by the nonlinear stiffness hardening. This phenomenon indicates the 

stiffness hardening and a shift of the resonance peak towards higher frequencies with increasing 

excitation. 

Finally, the restoring-force and stiffness plots provided direct experimental evidence of the 

intended nonlinear characteristics: within the ±0.4 mm gap range, the restoring force behaved 

linearly, while beyond this threshold, it increased sharply as the beam contacted the stopper. 

The corresponding stiffness 𝐾(𝑧) displayed a sharp discontinuous rise beyond the ±0.4 mm 

gap range. Within the linear region, its value remained close to theoretical linear stiffness, 

confirming consistent behavior of the cantilever. Once the beam contact with the stopper, 

however, local deformations at the contact interface caused a rapid increase in stiffness rather 

than a fixed constant value, as initially expected. This behavior—where 𝐾(𝑧) steeply rises 

after the contact threshold—reflects the progressive hardening effect induced by structural 

deformation. The stiffness values can be interpreted directly from the restoring-force plot, 

where the slope d𝐹/d𝑧 represents the equivalent stiffness of the nonlinear system. 

Overall, these results validate the redesigned stopper configuration and the theoretical 

framework developed earlier. The combination of experimental methods—random broadband 

excitation for global identification and frequency-sweep testing for local jumping analysis—

proved effective in characterizing the nonlinear dynamics of the system. The agreement 

between the observed responses and the model predictions confirms that the semi-cylindrical 

stopper design successfully achieved the intended motion-limiting and stiffness-enhancing 

effects without compromising the electromechanical performance of the piezoelectric 

transducer. 
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5. Conclusion 

This work presented a comprehensive investigation on the nonlinear dynamics and energy 

harvesting performance of a piezoelectric cantilever beam equipped with mechanical stoppers. 

The study combined theoretical modelling, numerical simulations, and experimental 

validations to explore how geometric and electromechanical nonlinearities affect the energy 

harvesting capability of piezoelectric systems. 

In the initial phase of this work, a single-degree-of-freedom (SDOF) lumped-parameter model 

was developed to describe the coupled electromechanical behavior of a piezoelectric cantilever 

equipped with motion limiters. The system dynamics were formulated in the state-space 

framework, enabling the inclusion of piecewise restoring forces to represent the nonlinear 

contact with the stoppers. However, due to the inherent discontinuities in the nonlinear terms, 

this approach failed to achieve convergence in some high-amplitude cases. To overcome this 

limitation, the Newmark–β integration method was subsequently implemented, providing a 

numerically stable solution for the strongly nonlinear response and allowing an accurate 

estimation of the system’s transient dynamics. Through this approach, the influence of stopper 

position and stiffness on the beam’s vibration response and energy conversion efficiency was 

systematically investigated. The simulations identified an optimal stopper stiffness of 

approximately 2,600 N/m, associated with enhanced power output and a frequency close to 30 

Hz, confirming the theoretical benefits of introducing controlled nonlinearity. 

The experimental campaign was then carried out to validate these numerical predictions and 

examine the nonlinear behavior under realistic operating conditions. The first prototype, 

equipped with vertically mounted 3D-printed stoppers, demonstrated the feasibility of the 

nonlinear contact mechanism but failed to reproduce the desired hardening effect due to 

excessive flexibility of the printed resin and gravitational misalignment. Learning from these 

limitations, the setup was redesigned into a horizontal configuration, featuring a semi-

cylindrical stopper with higher stiffness and improved contact consistency. The second 

experimental phase successfully confirmed the expected nonlinear characteristics—such as the 

amplitude-dependent frequency shift and the hardening-type restoring response once the beam 

engaged the stopper. Moreover, the restoring-force surface method effectively reconstructed the 

nonlinear stiffness evolution, revealing a sharp stiffness increase beyond the nominal gap, in 

close accordance with the theoretical model. 

The restoring-force analysis demonstrated that the experimentally derived stiffness values 

represent the global dynamic stiffness of the beam–stopper assembly rather than the intrinsic 

stiffness of the stopper alone. From the 𝐹 − 𝑧 curve, the post-impact slope yielded a local 

tangent stiffness of approximately 3,500 N/m, corresponding to the instantaneous contact 

stiffness of the entire system under full compression. By subtracting the linear beam stiffness 
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(≈ 305 N/m) from this combined response, the actual stiffness contribution of the stopper itself 

can be estimated at roughly 3,200 N/m. This value closely reflects the intrinsic nonlinear 

behavior of the limiter element, while the 𝐾 − 𝑧 curve provided a representative equivalent 

nonlinear stiffness of about 1,200 N/m (within 1,000–1,800 N/m), describing the averaged 

restoring properties during repeated contact and separation. The difference between these two 

values stems from the measurement conditions: the former captures the short-duration local 

stiffness at full impact, whereas the latter represents the effective steady-state stiffness of the 

oscillating system. 

The numerically optimized stopper stiffness from the simulation model was 2,600 N/m, while 

the FEA-based static analysis of the redesigned semi-cylindrical stopper predicted a stiffness 

of approximately 3,260 N/m, obtained by applying a 1 N static force at the contact point and 

measuring the resulting displacement. The strong correspondence between the experimental 

estimate (≈ 3,200 N/m) and the FEA prediction (≈ 3,260 N/m) confirms that the fabricated 

stopper operated near the targeted stiffness range. Minor deviations can be attributed to the 

beam’s compliance, assembly tolerances, and gradual contact transition introduced by the semi-

cylindrical geometry. Overall, these findings validate both the mechanical design and numerical 

modelling, demonstrating that the redesigned configuration successfully reproduced the desired 

nonlinear hardening behavior and maintained close consistency between simulation and 

experiment. 

In summary, the study demonstrated that incorporating mechanical stoppers can effectively 

induce controllable nonlinearities that enhance the broadband response of piezoelectric energy 

harvesters. The combination of numerical and experimental results confirmed that the nonlinear 

design approach is valid and predictable, providing a foundation for future optimization. 

Future work may focus on refining the mechanical tolerances of the stopper mechanism, 

introducing adjustable stiffness control, and integrating real-time feedback for adaptive tuning. 

Moreover, extending the model to include multi-mode coupling and damping nonlinearities 

could further improve the prediction accuracy and broaden the operational bandwidth of the 

system. 
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