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Abstract (English) 

 
 
This thesis investigates the development of an automatic monitoring system for patients in 
Intermediate Care Units (IMUs) at Karolinska University Hospital in Solna and Huddinge, 
Stockholm. The project aims to support nurses by reducing the burden of continuous visual 
supervision and ensuring the detection of patient agitation or risk-related behaviors. Two 
deep learning architectures were explored and compared: MoViNet-A5, a lightweight 3D 
convolutional neural network optimized for real-time video recognition, and PredFormer, a 
transformer-based model designed for capturing long-range spatiotemporal dependencies. 
The models were fine-tuned on a custom dataset, initially composed of simulation videos 
collected with a multi-camera Raspberry Pi setup, with the intention of later extending to 
real patient data under ethical approval. 
In addition to video recognition, preliminary work on multimodal integration of video, 
electrocardiogram (ECG), and audio signals was conducted through attention-based 
mechanisms, highlighting the potential benefits of combining heterogeneous data sources. A 
strong collaboration with nursing staff played a central role, ensuring that the system was 
aligned with clinical workflows and ethical requirements. 
The results demonstrate the feasibility of deploying lightweight models like MoViNet for 
real-time monitoring in hospital rooms. Although limited by the lack of real patient data 
during this thesis, the simulations validated the technical pipeline and prepared the ground 
for future research. The findings suggest that deep learning-based monitoring systems could 
significantly improve patient safety and reduce nurse workload, provided that ethical, 
technical, and clinical challenges are carefully addressed. 
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Abstract (Svenska) 

 
 
Denna avhandling undersöker utvecklingen av ett automatiskt övervakningssystem för 
patienter på intermediärvårdsavdelningar (IMU) vid Karolinska Universitetssjukhuset i 
Solna och Huddinge, Stockholm. Projektet syftar till att stödja sjuksköterskor genom att 
minska bördan av kontinuerlig visuell övervakning och säkerställa upptäckt av patienters 
agitation eller riskrelaterade beteenden. Två djupinlärningsarkitekturer undersöktes och 
jämfördes: MoViNet-A5, ett lättviktigt 3D-konvolutionsneuronätverk optimerat för 
videigenkänning i realtid, och PredFormer, en transformatorbaserad modell utformad för att 
fånga långväga rumsliga och tidsmässiga beroenden. Modellerna finjusterades på en 
anpassad dataset, som initialt bestod av simuleringsvideor insamlade med en Raspberry 
Pi-uppsättning med flera kameror, med avsikten att senare utvidga till verkliga patientdata 
under etiskt godkännande. 
Utöver videigenkänning genomfördes preliminärt arbete med multimodal integration av 
video, elektrokardiogram (EKG) och ljudsignaler genom uppmärksamhetsbaserade 
mekanismer, vilket belyste de potentiella fördelarna med att kombinera heterogena 
datakällor. Ett starkt samarbete med vårdpersonal spelade en central roll för att säkerställa 
att systemet var anpassat till kliniska arbetsflöden och etiska krav. 
Resultaten visar att det är möjligt att använda lätta modeller som MoViNet för 
realtidsövervakning på sjukhusrum. Även om simuleringarna begränsades av bristen på 
verkliga patientdata under arbetet med denna avhandling, validerade de den tekniska 
processen och banade väg för framtida forskning. Resultaten tyder på att 
övervakningssystem baserade på djupinlärning skulle kunna förbättra patientsäkerheten 
avsevärt och minska sjuksköterskornas arbetsbelastning, förutsatt att etiska, tekniska och 
kliniska utmaningar hanteras noggrant. 
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1.​Introduction 
​ 1.1. Clinical context and problem statement 
 
 
Continuous monitoring of hospitalized patients is essential to ensure patient safety and 
detect critical situations early. This is especially the case in IMUs, intermediary units 
between intensive care units (ICUs) and general hospitalization. IMUs welcome patients 
who need a significant level of monitoring and more frequent attention from the medical 
team than standard wards, but who do not require the same level of medical support as 
those in intensive care. In such units, health professionals must remain vigilant, as patients 
may present sudden changes in condition that require immediate intervention. 
Today, this observation is predominantly done manually and represents a large work-load 
for nurses and assistant nurses. Due to the high demand on personnel work and risk of 
delayed response, increasing attention is being paid to the development of automatic 
systems to assist clinical staff. This need can be filled in this project by constructing a 
video-based automatic monitoring system which will make use of AI and deep learning 
technologies. The system is intended to detect patient behaviors in real time, and to issue 
alerts when staff intervention may be required. Patients admitted to intermediate care 
generally suffer from conditions that cause episodes of delirium. It is difficult to give an 
exact definition, but certain signs are characteristic. During these episodes, patients may 
exhibit sudden, erratic, or violent movements that can pose a direct risk to their safety. Such 
behavior often leads to situations where patients attempt to disconnect catheters, 
intravenous lines, or other essential medical equipment, which can cause severe medical 
complications. In other cases, patients may strike surrounding objects, collide with the bed 
frame, or even fall out of bed, resulting in physical injury and additional suffering. 
These behaviours make working in this unit particularly challenging, since constant 
monitoring of patients is essential in order to instantly react, as delays can significantly 
increase both the physical and psychological harm experienced by the patient. By assisting 
medical personnel in identifying situations that require attention, such a system could 
improve patient outcomes, reduce staff workload, and enhance the overall quality of care in 
IMUs. 
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1.2. Motivation and relevance of the study 
 
 
The starting point of this thesis lies in the work of Benjamin Jefford-Baker, whose master’s 
project [1] provided the foundation for the current study. By leveraging transfer learning on 
the MoViNet-A2 architecture, and training on a dataset constructed from video extracts of 
medical TV shows that simulated patient behaviors, he demonstrated the feasibility of using 
deep learning for automatic monitoring in hospital care. Building upon this milestone and 
under the scope of an ethical approval, the present thesis intends to further develop and 
refine the monitoring system by fine-tuning a more advanced model, MoViNet-A5, and 
extending it toward a multimodal framework that integrates not only video, but also sound 
and electrocardiogram (ECG) signals. 
 
The use of such a tool is relevant in the daily reality of the IMUs. The units involved in the 
project are made up of teams of around 10 to 15 nurses and assistant nurses, who generally 
work in pairs during shifts. A single nurse is typically responsible for two patients, 
continuously monitoring their vital signs on a screen while maintaining direct visual contact 
with the patient in the room. Interventions are frequent, ranging from once per hour for 
calm patients to several times per minute for agitated ones.  
 
 

 
 
Figure 1 - Approximated intervention frequency per hour depending on the patient’s level of 

agitation 
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Maintaining concentration, especially during night shifts, is particularly difficult, often 
leading to headaches, fatigue, and stress. Moreover, depending on the patient’s level of 
agitation, nurses may spend between 10 and 47 minutes per hour walking to and from 
patient rooms. 
 
 

 
Figure 2 - Average time spent in patient rooms depending on agitation level 

 
 
 
 
 
 
Therefore, this constant vigilance is both physically and emotionally tiring: according to 
staff, 89% report feeling emotionally stressed and 63% physically exhausted at the end of 
their shifts. 
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Figure 3 - Nurses’ reported stress and exhaustion after shifts 

 
 
 
 

1.3. Objectives of the Thesis 
 
 
The objective of this thesis is twofold. First, it aims to explore and compare the performance 
of two state-of-the-art architectures for video action recognition: MoViNet, a lightweight 
convolutional model optimized for real-time inference, and PredFormer, a 
transformer-based model designed for accurate spatiotemporal sequence modeling. By 
comparing the performance of these two models, the aim is to determine their robustness, 
and respective ability to meet the needs of the intermediate care units. Furthermore, the 
addition of data channels such as sound and ECG signals and the ability of multimodal 
integration to enhance the model’s viability is explored, although secondary to video 
recognition.    
Beyond technical exploration, the human aspect is a central element of this thesis. By 
demonstrating the feasibility of a strong collaboration between technical and medical teams, 
this thesis not only seeks to ensure the technical compliance of the models in the reality of a 
hospital working environment, but also to make a meaningful contribution to improving 
patient safety and supporting healthcare professionals in their work. 
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1.4. Thesis structure 
 
 
This thesis is organized into five main chapters.  
The first one provides the clinical context of the project within the IMUs of Karolinska. It 
introduces the motivation behind developing an AI-based tool and its ethical delimitations. 
The state of the art is detailed in a second chapter, situating this work within the broader 
landscape of AI in healthcare. In a third chapter, the materials and methods used are being 
described. It presents the methodological aspects of the project, the architectures under 
investigation, the preprocessing strategies, the chosen pipeline, the setup for data collection 
and simulation, the technical infrastructure built on Raspberry Pi devices and multi-camera 
installations. It also highlights the collaboration with the nursing staff and the team 
organization that supported the project. Then, a fourth chapter is dedicated to the results 
and the discussion. It reports the results obtained with the simulation-based dataset and the 
fine-tuning experiments and emphasizes both the technical and practical challenges 
encountered during the project, the constraints related to the deployment of an AI in 
real-world hospital settings, and the ethical implications of our patient monitoring system. 
Finally, the last chapter summarizes the work and the contributions of this thesis. It 
highlights the key findings, and discusses both the limitations of the current study, and 
some directions for future research. 
 
 
 

​ 1.5. Working environment 
1.5.1. Karolinska University Hospitals 

 
 
This project was carried out in collaboration between KTH Royal Institute of Technology and 
the Intermediate Care Units (IMUs) of Karolinska University Hospital, located in Stockholm, 
Sweden. The latter is among the largest and most prestigious teaching hospitals in Europe, 
affiliated with Karolinska Institutet, the medical university known worldwide for awarding 
the Nobel Prize in Physiology or Medicine. The hospital's two main campuses are located in 
Solna and Huddinge, with approximately 1,600 patient beds and 15,800 employees in 2023 
[2]. This strong influence of innovation and research in the medical world makes it an ideal 
field for the development, testing and implementation of an artificial intelligence tool in the 
real-world healthcare context, such as the one developed in this project. 
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Figure 4 - Map of Stockholm 

 
 
IMUs are equipped with patient vital signs monitoring equipment, Patient Monitoring 
Systems (PMS), and medical staff work in shifts around the clock to monitor patients. These 
wards welcome patients who require special attention, but do not require the level of 
monitoring provided in intensive care. They typically stay for 24 to 48 hours before being 
transferred to other wards with lower levels of supervision. The IMUs host a diverse group 
of patients recovering from serious conditions, such as neurological surgeries or acute 
medical episodes, many of whom may experience confusion, agitation, or other behavioral 
and cognitive changes that increase their risk of falls or sudden deterioration. 
 
 
 

1.5.2. Patients admitted in the IMU 
 
The patients admitted in the Intermediate Care Unit are generally suffering from 
neurological conditions affecting the head, neck, and spine. This includes patients 
recovering from brain or spinal surgeries, those with brain trauma, and individuals with 
vascular abnormalities. 
The main pathology of individuals admitted to intermediate care in Karolinska is 
intracranial aneurysm. They correspond to localized dilations of blood vessels in the brain 
caused by a weakening of the arterial wall.  
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Figure 5 - Scheme of an intracranial aneurysm [46] 
 
 
 
 
These aneurysms may remain asymptomatic for years, but in case of a rupture, they can lead 
to a subarachnoid hemorrhage, a type of stroke that is often fatal or severely disabling. 
Treatment can be either surgical, through clipping, where a metal clip is placed at the base of 
the aneurysm to block blood flow, or endovascular, using coiling techniques to fill the 
aneurysm and promote clotting from within. 
 
 
 
 

 
Figure 6 - Scheme of the coiling and clipping technique for aneurysm treatment 
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Figure 7 - Aneurysm coiling - case illustration 

 
 
 
While these interventions are effective, they often require intensive post-operative 
monitoring, particularly due to the risk of complications such as rebleeding, vasospasm, 
hydrocephalus, or delayed ischemia. Manipulation of the brain during surgery can cause 
local inflammation in the area or disruption of cerebral circulation, thus provoking 
post-operative delirium, which can be exacerbated by certain factors such as age or 
significant psychological stress. Patients recovering from such procedures are frequently 
transferred to the intermediate care unit once their condition is stable enough to leave the 
intensive care, but still requires continuous observation. In this setting, patients may exhibit 
a range of neurocognitive symptoms, including confusion, reduced awareness, emotional 
instability, agitation, and cognitive fatigue, all of which can affect their behavior and 
increase their risk of sudden deterioration. These manifestations are often unpredictable and 
can vary greatly between individuals and over time. Pain is expressed in a variety of ways, 
ranging from subtle facial expressions to large, abrupt gestures, which makes real-time 
surveillance a critical and complex aspect of post-operative care.  
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1.5.3. Team organization 
 
 
The project was led by a team of four students, each of whom had a defined role and a 
specific contribution. It is important to note that the technical aspects developed in this 
thesis correspond only to my own work.  
As the only member of the group completing a Master's thesis, my responsibilities extended 
beyond technical contributions to include the overall coordination of the group, task 
distribution, and communication with the medical staff. Task allocation was carefully 
managed to leverage individual strengths: one student specialized in audio signal 
processing, another in ECG data handling, and a third in the implementation of Raspberry 
Pi-based data acquisition units.  
The work developed in this thesis corresponds to the fine-tuning of the MoViNet-A5 model 
and the development of a multimodal attention mechanism. This management strategy not 
only facilitated smooth collaboration but also strengthened the team’s ability to address 
practical challenges in a hospital setting.  
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2.​ State of the Art  

​ 2.1. Deep learning 
​ ​ 2.1.1. Foundations and applications 
 
 
Deep learning has emerged as one of the most transformative paradigms in modern artificial 
intelligence, offering state-of-the-art performance across a wide range of tasks, including 
computer vision, speech recognition, and natural language processing [3]. At its core, deep 
learning refers to a family of machine learning techniques based on artificial neural 
networks (ANNs) with multiple hidden layers, designed to automatically learn hierarchical 
representations of data. Unlike traditional machine learning models that rely heavily on 
handcrafted features, deep neural networks extract increasingly abstract and complex 
features directly from raw inputs, such as images, video, or audio signals [4]. 
 
Mathematically, a neural network is composed of layers of interconnected nodes (neurons), 
where each connection is associated with a weight . Given an input vector , a neuron 𝑤 𝑥

computes a weighted sum , where  is a bias term. This sum is then passed 𝑧 =
𝑖

∑ 𝑤
𝑖
𝑥

𝑖
+ 𝑏 𝑏

through a non-linear activation function, producing the neuron’s output. By stacking many 
such layers, a deep neural network is able to model highly non-linear relationships between 
input and output data. The network’s parameters are optimized through backpropagation, 
which computes the gradient of the loss function with respect to each weight and updates 
them iteratively using stochastic gradient descent or its variants [5]. 
 
One of the key strengths of deep learning lies in its ability to scale with large amounts of 
data and computational power. Landmark achievements such as AlexNet for image 
classification [6], ResNet for very deep architectures [7], and Transformer-based models for 
sequence modeling [8] have demonstrated that with sufficient training data, deep networks 
can outperform traditional methods by large margins. In video understanding specifically, 
3D convolutional neural networks (3D CNNs) and transformer architectures have become 
dominant approaches, capable of capturing both spatial and temporal patterns [9]. 
 
In healthcare, deep learning has already shown promise in domains such as medical 
imaging diagnostics, ECG classification, seizure detection, and patient monitoring [10], [11]. 
Its ability to learn complex spatiotemporal dependencies is particularly relevant for 
continuous monitoring scenarios, where patient conditions may evolve dynamically over 
time and subtle visual or physiological cues can indicate critical deterioration. However, the 
deployment of deep learning in clinical environments faces challenges, including limited 
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annotated datasets, ethical concerns about transparency and privacy, and the high 
computational demands of modern architectures [12]. 
 
Overall, deep learning provides the theoretical and methodological foundation for this 
thesis. By leveraging pre-trained models and fine-tuning them on domain-specific data, it 
becomes possible to adapt powerful architectures to the healthcare context while respecting 
the constraints of real-time monitoring and clinical applicability. 
 
 
 

​ ​ 2.1.2. Deep learning for action 
recognition 
 
 
Action recognition in video has been one of the most challenging and dynamic fields in 
computer vision over the past decade. Unlike static image classification, which focuses solely 
on spatial features, action recognition requires understanding how objects and people 
evolve over time. This temporal dimension introduces complexity but is also critical in 
clinical monitoring, where subtle sequences of movements, such as a patient shifting 
repeatedly in bed before attempting to get up, may carry more significance than any single 
frame [13], [14]. 
 
The first generation of deep learning models for video relied on 2D convolutional neural 
networks (CNNs) applied frame by frame [15]. These models, originally developed for 
image recognition tasks, process spatial features effectively but ignore temporal dynamics, 
since each frame is analyzed independently. In practice, this often led to models that could 
recognize static postures but failed to capture transitions or actions, such as distinguishing 
between a patient sitting calmly and a patient preparing to leave the bed. 
 
To address this limitation, researchers introduced 3D convolutional neural networks (3D 
CNNs), which extend the convolutional operation into the temporal dimension. While a 2D 
convolution computes feature maps by sliding a kernel  of size  over an image 𝑊 (𝑘

ℎ
× 𝑘

𝑤
)

, a 3D convolution applies a kernel  to a video clip , 𝑋 ∈  ℝ𝐻×𝑊 𝑊 ∈  ℝ
𝑘

𝑡
×𝑘

ℎ
×𝑘

𝑤 𝑋 ∈  ℝ𝑇×𝐻×𝑊

where is the number of frames. The resulting feature map is given by: 𝑇 
 

 𝑌
𝑡,𝑖,𝑗

=
τ=1

𝑘
𝑡

∑
𝑚=1

𝑘
ℎ

∑
𝑛=1

𝑘
𝑤

∑ 𝑊
τ,𝑚,𝑛

· 𝑋
𝑡+τ,𝑖+𝑚,𝑗+𝑛
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This formulation enables the network to jointly learn spatial and temporal dependencies, 
making it far better suited for video understanding [16], [17]. Early models such as C3D [49] 
demonstrated the power of 3D convolutions, achieving significant improvements over 2D 
approaches on benchmark datasets. 
 
Another important development came with two-stream networks [14], which introduced the 
idea of separating spatial and temporal information. One stream processes raw RGB frames 
to capture appearance, while the other processes optical flow fields to capture motion. The 
outputs are then fused to improve action recognition accuracy. This approach highlighted 
the importance of explicitly modeling temporal cues beyond static frame analysis. 
 
More recently, models such as SlowFast networks [18] refined these ideas by using two 
parallel pathways: a “slow” pathway operating on sparsely sampled frames to capture 
semantic information, and a “fast” pathway operating at a higher frame rate to capture 
motion dynamics. This multi-rate design proved highly effective, particularly for 
fine-grained action recognition tasks, but it also increased computational demands, making 
deployment on resource-constrained devices more challenging. 
 
Despite these advances, one of the recurring issues with 3D CNNs is their computational 
cost. Compared to 2D CNNs, the number of parameters and floating-point operations 
(FLOPs) increases significantly, resulting in high memory consumption and slow inference 
speed. This trade-off between accuracy and efficiency is especially relevant in clinical 
applications, where models must not only perform well but also run in real time on modest 
hardware. As will be discussed in Section 2.5, this challenge motivated the development of 
more efficient architectures such as MoViNet [19], which integrates innovations like stream 
buffering and causal convolutions to reduce memory bottlenecks without sacrificing 
accuracy. 
 
In summary, deep learning for action recognition has progressed from simple frame-based 
2D CNNs to sophisticated 3D CNNs and multi-stream architectures capable of modeling 
both spatial and temporal dynamics. These developments provide the foundation for 
applying AI in patient monitoring, where understanding actions such as agitation, attempts 
to leave the bed, or removal of medical devices requires robust temporal modeling. The 
challenge remains to adapt these powerful but computationally heavy models to the strict 
efficiency, interpretability, and reliability requirements of hospital environments. 
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2.1.3. CNNs, RNNs, and transformers 
 
Deep learning for video understanding has historically been structured around three main 
paradigms: convolutional neural networks (CNNs), recurrent neural networks (RNNs), and 
more recently, transformers. Each paradigm reflects a different way of modeling 
spatiotemporal dependencies, with their own strengths and limitations [14], [16], [18]. 
 
CNNs remain the cornerstone of visual representation learning. Originally designed for 
image classification, CNNs apply convolutional kernels to extract local spatial features such 
as edges, textures, or object parts. In the video domain, these networks can either process 
frames independently (2D CNNs) or jointly across space and time (3D CNNs). As described 
earlier, 3D convolutions extend kernels into the temporal dimension, enabling direct 
modeling of motion.  
 
While CNNs are highly effective at learning local spatiotemporal correlations, they struggle 
with long-term temporal dependencies, since the receptive field grows slowly with depth. 
This makes it challenging to capture actions that unfold over many seconds or minutes, as is 
often the case in clinical monitoring. 
 
To address this limitation, RNNs and their variants, particularly Long Short-Term Memory 
(LSTM) networks [20], were introduced for sequential modeling. Unlike CNNs, RNNs 
process data step by step, maintaining a hidden state that summarizes past information.  
LSTMs improve on RNNs by introducing gating mechanisms that regulate the flow of 
information and alleviate the vanishing gradient problem. This enables them to capture 
longer-term temporal dependencies, making them attractive for early action recognition 
research. However, RNNs are inherently sequential in their computation, which limits 
parallelization and makes training on large-scale video datasets inefficient. 
 
The emergence of transformers [21] revolutionized sequence modeling by replacing 
recurrence and convolution with self-attention mechanisms. In this framework, each input 
element attends to every other element in the sequence, weighted by learned attention 
scores.  
 
For vision tasks, this concept was adapted in the Vision Transformer (ViT) [22], which splits 
an image into patches treated as tokens, analogous to words in natural language. For videos, 
spatiotemporal transformers [23], [24] extend this idea by embedding both spatial and 
temporal patches, enabling the model to learn complex motion patterns across long 
sequences. The use of multi-head attention further enhances capacity by allowing the model 
to jointly capture different types of dependencies. 
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Transformers offer several advantages over CNNs and RNNs: they are fully parallelizable, 
scale effectively with data, and can capture both short- and long-range dependencies in a 
single framework. However, these benefits come at the cost of computational and memory 
intensity, especially when applied to long video sequences. This makes them powerful 
benchmarks for action recognition accuracy but less suited for real-time deployment in 
resource-constrained settings such as hospital monitoring systems. 
 
 
 

2.2. Video-based patient monitoring 
 
 
In recent years, the issue of video surveillance of patients in the specific context of hospital 
environments has become increasingly important, as monitoring is often essential for the 
patient’s safety but also synonymous with a heavy workload for medical staff. Traditionally, 
patient supervision relied on a combination of bedside observation and physiological 
sensors such as ECG, pulse oximeters, or blood pressure monitors. While effective for 
tracking vital signs, these systems do not capture visible patient behaviors, such as agitation, 
attempts to leave the bed, or removal of catheters, which are often the earliest indicators of 
distress or risk [26], [27]. For this reason, video-based continuous monitoring systems have 
emerged as a complementary solution, aiming to ensure the patient's safety by observing his 
activity in real time. 
 
Numerous research groups have explored the use of computer vision for the purpose of 
analysing hospital videos. Early approaches relied on conventional image processing 
methods such as background subtraction, motion tracking, and handcrafted feature 
extraction [28]. These techniques made it possible to recognise typical movements such as 
patients getting out of bed or falling, but lacked robustness in the context of complex clinical 
environments, where lighting conditions, occlusions, and subtle change in facial expressions 
make detection more challenging. With the rise of deep learning, especially convolutional 
neural networks (CNNs), more sophisticated methods have been proposed to automatically 
extract features from raw video and classify patient states with higher accuracy [29]. 
 
The flagship application of patient monitoring in hospitals is fall detection. Falls remain one 
of the most common and easily detectable events in healthcare, particularly among elderly 
or post-surgical patients. The aim of patient monitoring in this context is to prevent these 
falls and thus reduce their occurrence. Studies have shown that video systems combined 
with deep learning can detect attempts to exit the bed, restlessness, or sudden collapses 
before an actual fall occurs [30]. In some implementations, alarms are triggered in real time, 
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enabling staff to intervene quickly and prevent injury [31]. Beyond fall detection, detecting 
episodes of delirium and agitation, signs of suffering that are especially common in 
intermediate care units after neurological procedures, is another application for which video 
surveillance is proving relevant. Such states are characterized by restless movements, 
attempts to remove catheters, or facial expressions of pain, which can be captured more 
reliably by cameras than by physiological monitors alone [32]. 
 
Despite these advances, several limitations remain. A first major issue is the quality and 
availability of datasets. To train effective models, large-scale annotated datasets are required. 
However, due to privacy concerns, very few hospitals have been able to collect and release 
real patient recordings. Many published systems therefore rely on simulated datasets, using 
actors or medical staff to reproduce typical patient movements [26], [29]. While useful for 
proof-of-concept demonstrations, such datasets often fail to capture the diversity and 
unpredictability of real patients, leading to reduced generalizability in practice. In the 
context of the present thesis, this limitation was also encountered, as simulated recordings 
had to be used for initial validation. 
 
Another challenge relates to anonymization. In traditional video analysis, anonymization 
can be achieved by blurring faces or masking backgrounds. However, in the medical context, 
facial expressions often carry essential clinical information. Subtle signs of pain such as 
grimacing, eye movements, or head shaking may indicate confusion, or distress [19]. If these 
features are removed during anonymization, much of the clinically relevant signal is lost, 
thereby limiting the system’s effectiveness. This raises ethical concerns that must be carefully 
managed [34]. 
 
Finally, video-based monitoring must also account for workflow integration. A system that 
generates too many false alarms may quickly become unusable due to alarm fatigue, a 
well-documented problem in intensive and intermediate care units [9]. At the same time, a 
system that misses critical events (false negatives) would fail in its most important function: 
ensuring patient safety. As such, the key challenge is to find a balance between sensitivity 
and specificity, while designing tools that help and support nurses and assistant nurses in 
their work, rather than making them even more tired. 
 
In summary, video-based patient monitoring represents a promising extension of current 
clinical supervision methods. It enables the detection of complex, non-physiological signs of 
distress, provides real-time support for specific movement detection , and reduces the need 
for continuous human observation. However, its effectiveness depends on the quality of 
training datasets, the handling of privacy concerns, and its integration into clinical 
workflows. These challenges highlight the importance of developing robust, ethically sound, 
and clinically validated systems, forming the foundation for the present thesis. 
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​ 2.3. Multimodal monitoring 
 
 
Although video surveillance is a powerful tool for observing patient behaviour, it is clear 
that relying on a single modality has certain limitations. Many clinical situations cannot be 
fully detected by visual recognition alone, as they do not necessarily manifest themselves 
through visible movements. Certain respiratory patterns or cardiac activities may change, 
and sounds may be emitted. Thus, certain pains or signs that are cause for concern regarding 
the patient's health may be expressed through more subtle physiological signs. This has led 
to a growing body of research on multimodal monitoring systems, which combine video 
with other data sources to provide a more comprehensive and reliable view of patient status 
[36], [32]. 
 
Among the most common complementary modalities are audio signals and physiological 
measurements. Audio can capture patient vocalizations such as moaning, shouting, or calls 
for help, which often precede physical agitation or deterioration. Research has shown that 
audio-based features, when combined with video, can significantly improve classification 
accuracy in patient monitoring tasks [25]. Likewise, physiological signals, particularly from 
the Electrocardiogram (ECG), offer direct insight into cardiac and respiratory states. In 
hospital monitoring systems, ECG and related measurements such as blood pressure or 
oxygen saturation are already continuously available through the Patient Monitoring System 
(PMS). By integrating these signals with video-based action recognition, it becomes possible 
to detect not only what the patient is doing, but also how the patient is physiologically 
responding [32], [37]. 
 
The main challenge of multimodal monitoring lies in the weight given to each channel. For 
example, if the patient remains calm in bed, showing stable heart rate and blood 
oxygenation levels, the system will predict that no intervention by nurses is necessary. 
Conversely, if even the slightest movement is combined with an alarming sound and 
abnormal physiological data, the system will immediately detect a need for intervention. 
This motivates the use of multimodal attention mechanisms [25], [29], which allow the 
model to dynamically adjust the importance of each modality depending on the context. In 
practice, this means that video, audio, and physiological data are processed separately 
through specialized feature extractors before being fused at a later stage. The attention 
mechanism then learns, during training, to assign greater weight to the most informative 
modality for each situation.  
Another challenge of multimodal attention is its time cost. Indeed, a system of this type is 
difficult to operate in real time due to its complexity. Although it offers a robust alternative 
to the detection of specific events, its implementation in real time remains difficult to 
imagine.  
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In summary, multimodal surveillance is a promising component of automated surveillance. 
By combining different types of input such as sound, heart rate, and video, these models are 
well positioned to detect complex patient’s states, to handle uncertain or noisy conditions, 
and to provide more reliable alerts. This line of research directly addresses one of the main 
challenges of hospital AI: moving from isolated signal processing toward context-aware 
monitoring systems capable of supporting clinical decision-making in real time. 
 
 
 

​ 2.4. Ethical and privacy considerations in 
healthcare AI 
 
 
The use of artificial intelligence for continuous patient monitoring raises a number of ethical 
and legal questions that must be addressed before any clinical implementation. At the 
European level, the regulation of  video processing and physiological data is done by the 
General Data Protection Regulation, which mandates principles such as lawfulness, purpose 
limitation, data minimization, storage limitation and strict access controls. In short, data 
controllers must have a lawful basis for processing, such as explicit patient consent, 
implement appropriate technical and organisational safeguards, and ensure that personal 
data are retained only as long as necessary. [47] 
 
Beyond the legal texts, a recurring practical tension in video-based clinical research is the 
trade-off between privacy (anonymization) and clinical utility. Many standard approaches to 
privacy, like blurring faces or masking identifying regions for instance, reduce the risk of 
re-identification but also remove clinically relevant signals such as facial micro-expressions, 
grimacing or subtle head movements that are strong indicators of pain, agitation or delirium 
[39].  
 
As a consequence, some ethically-approved medical studies have permitted access to 
non-anonymized video under strict governance (limited, logged access and short retention), 
because anonymization would materially undermine the scientific and clinical value of the 
recordings [26]. 
Informed consent, transparency and patient autonomy are therefore central. Patients must 
be given clear, accessible information about what is recorded, for what purpose, who will 
access the recordings, how long the data will be kept, and how they can withdraw consent. 
In hospital implementations, transparent communication with both patients and staff is also 
essential to build trust and acceptance.  
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When ethical approval allows viewing of non-anonymized video for model training, 
governance must be strict and technically enforced. Best practice includes: minimizing the 
number of individuals with raw-video access, storing videos on encrypted, 
hospital-managed storage, keeping identifiers separate from clinical recordings, deleting 
personally identifying metadata as soon as possible, and deleting or archiving data 
according to a predefined retention schedule. Many hospital projects adopt a limited-access 
model and explicit, auditable policies for local storage and backup; such practices were 
recommended in pilot implementations and reviews of continuous video monitoring 
systems [40], [35]. 
 
The measures put in place for data backup must be commensurate with the sensitivity of the 
data. Among these, the GDPR and associated national bodies refer to encrypted backups, 
strict user authentication, regular audits, and defined breach-response procedures as 
necessary prerequisites for any hospital AI deployment [47]. 
Algorithmic fairness, bias and model transparency must also be considered as ethical issues 
in their own right. Models trained on small or non-representative datasets risk performing 
poorly for under-represented patient groups, which can worsen inequities in care. The 
literature highlights the need for continuous evaluation across demographic and clinical 
subgroups, re-training with new real-world data. Clinical acceptance studies further show 
that staff trust increases when models provide interpretable outputs and when clinicians are 
involved in iterative validation workshops [41], [42].  
 
From a clinical-workflow perspective, ethical deployment also means designing the system 
to support rather than replace clinical judgment. Systems should be validated in parallel 
with standard care before any automated alerting is trusted; alarm thresholds and the 
balance between sensitivity and false alarms must be tuned together with nursing staff to 
avoid alarm fatigue [35], [28]. 
 
 

​ 2.5. Summary of research gaps 
 
 
Despite the significant progress in applying AI to clinical video monitoring, several research 
gaps remain that limit both scientific understanding and practical deployment in real 
hospital environments. First, most existing studies have been performed on simulated 
datasets or controlled experimental environments rather than on real patient populations 
[32], [37], [40]. This limitation affects the generalizability of results, as real hospital settings 
present higher variability in lighting, patient positioning, and background activity. 
Moreover, few studies systematically address the difficulty of building ethically-approved, 
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large-scale clinical datasets, which is still one of the main bottlenecks for robust training and 
validation [26], [43]. 
 
Another major gap concerns the multimodal integration of heterogeneous data. While 
video-based recognition has been widely studied, the combined use of video, audio, and 
physiological signals remains underexplored [35]. Most architectures either focus exclusively 
on visual data or handle additional modalities in a simplistic, late-fusion manner. There is 
limited evidence on how advanced mechanisms such as multimodal attention or 
spatiotemporal transformers perform when combining complex clinical data sources in 
practice. This lack of exploration represents a missed opportunity, since multimodal fusion 
could provide greater robustness and reduce false negatives in high-risk monitoring tasks. 
 
Another open question is robustness to clinical variability. Existing studies often report high 
accuracy but rarely evaluate how models generalize to different hospitals, patient groups, or 
recording conditions [36], [44]. There is a pressing need for multi-center datasets and 
external validation to ensure that AI systems do not overfit to one hospital’s specific 
practices or environment. Similarly, bias and fairness issues remain understudied, as most 
datasets are too small to capture demographic diversity [28]. 
 
Finally, ethical and clinical adoption challenges remain insufficiently researched. While 
several works emphasize privacy-preserving techniques or anonymization methods, there is 
little empirical evidence on how these approaches affect both model performance and staff 
acceptance [27]. Furthermore, few studies investigate how to integrate AI monitoring into 
the existing workflow without increasing alarm fatigue or cognitive burden on nurses [35]. 
Research that combines technical evaluation with human-centered design and clinical 
workflow studies is therefore essential to bridge the gap between promising laboratory 
results and actual patient benefit. 
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3.​Materials and methods 
3.1. Ethical approval and patient consent 

 
 
This study is conducted within the framework of an ethical approval granted by the Swedish 
Ethical Review Authority, which regulates all aspects of data collection, processing, and 
storage. The approval covers the acquisition of multimodal patient data, including video 
recordings (with sound) from room-installed cameras, physiological signals from the Patient 
Monitoring System (ECG, blood pressure, pulse, oxygen saturation, temperature, respiratory 
rate), and field observations. To label relevant moments for AI training, each video stream is 
marked in real time using a physical button connected to the camera system. In parallel, 
nurses or assistant nurses record timestamps in a written logbook, creating a dual-tagging 
mechanism. 
 
Crucially, the collected video data is not anonymized, as the objective is to train machine 
learning models on realistic behavior in clinical environments. However, all patient 
identifiers are kept separate from the video material. A temporary list containing social 
security numbers may be stored exclusively by a clinical staff member, solely for the 
purpose of conducting patient follow-ups after discharge. This list is never shared with 
researchers or developers and is deleted immediately after use. It is not part of the research 
data itself. 
 
Workshops involving nurses, assistant nurses, and technology developers are also part of 
the approved research activities. These include the analysis of anonymized video clips for 
model calibration, as well as collaborative sessions for system design. Access to the collected 
data is restricted to a core team of six authorized personnel: two researchers from KTH, one 
from Karolinska Institutet, one from Karolinska University Hospital, and two technology 
developers. No other parties are granted access. The data will be retained (in anonymized 
form) until 2030 for research purposes and cannot be repurposed outside the scope of this 
project. This framework ensures that all procedures align with ethical and legal 
requirements, while enabling meaningful development of clinical AI systems [Appendix 3]. 
 
One of the key issues in the project concerned patient consent. Patients involved in the 
project are prone to periods of delirium during which they are not considered to be 
psychologically capable of giving consent. It is therefore necessary to inform patients about 
the project and ask for their consent before they are admitted to intermediate care. However, 
given the timing of these patients' hospital stay, it is delicate to ask for their consent to be 
filmed during difficult moments of their life, while they are being told that they need to 

35 



undergo an intracranial surgery. These announcements can be quite overwhelming, 
therefore, empathy should always remain at the heart of the project.  
This issue was the subject of much debate among the medical teams involved, and it was 
finally decided that doctors would discuss the project with patients and ask for their consent 
during explanatory meetings about the surgery they were going to undergo. This means that 
patients' consent is obtained several weeks before they enter the intermediate post-surgery 
care unit. 
 
 
 

3.2. Data collection setup 
​ 3.2.1. Camera system and Raspberry Pi setup 
 
 
The camera setup was implemented using three Raspberry Pi boards connected to 
3D-printed mounts. Each Pi handled one video stream and synchronized its internal clock 
with the tagging system. This lightweight and modular infrastructure was designed for 
scalability across different patient rooms. The choice of Raspberry Pi was also motivated by 
its ability to support lightweight real-time AI inference models, such as the one developed in 
this study. 
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Figure 8 - Cameras and Raspberry Pi setup 

 
 
The electronic infrastructure of the monitoring system was designed to be both reliable and 
unobtrusive within the clinical environment. The setup consists of multiple cameras 
connected to Raspberry Pi devices through Ethernet switches, supported by a simple control 
unit containing an on/off switch, a tagging push button, and indicator LEDs. Video data is 
stored locally on Raspberry Pis and backed up on a 1 TB external hard drive. To minimize 
the visibility of the system, the Raspberry Pis are placed in the false ceiling while cameras, 
equipped with 12 MP sensors at 30 FPS, are mounted on custom 3D-printed supports 
adapted to the rails of hospital ceilings. The entire system is powered safely through the 
hospital’s electrical infrastructure, using 5V/3A USB-C inputs, ensuring protection against 
misconfigured power delivery. 
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Figure 9 - Camera and button box in the hospital environment 

 
 
Special attention was given to usability, as nurses and assistant nurses work under stressful 
conditions and must interact with the system seamlessly. For this reason, the tagging button 
was installed at the entrance of each patient room, allowing staff to press it quickly before 
entering for an intervention. The user interface was intentionally designed to remain 
minimal and intuitive. The future alerting interface will also be co-developed with medical 
staff to ensure that its features align with their workflow. 
 
In terms of performance, the hardware is required to operate continuously and withstand 
environmental variations such as changes in light, and  noise. However, one limitation 
identified was luminosity in hospital rooms at night: the cameras used in this setup cannot 
capture usable video in low-light conditions. For this reason, the scope of this thesis was 
restricted to analyzing daytime movements only, while the development of solutions for 
nighttime monitoring is left for future research (see Section 5.4. Suggestions for Future 
Work). 
 
Placement of devices was carefully planned to avoid obstructing medical operations or 
posing risks of falling. This lightweight and modular design makes the infrastructure 
scalable across different rooms while maintaining robustness and safety standards expected 
in a hospital environment. 
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​ 3.2.2. Control box and labeling mechanism 
 
 
In the initial phase, we focused on collecting video data only. Three cameras were installed 
in a patient room, capturing footage from different angles. Using multiple viewpoints is 
particularly important for training a robust model, as patient movements may be partially 
occluded or difficult to interpret from a single perspective. In our case, this setup was also 
essential to capture patients’ facial expressions, such as grimaces, which can signal pain or 
distress and represent subtle but clinically meaningful cues for intervention. One of the 
cameras was therefore positioned above the patient’s bed to ensure these nuances could be 
recorded. For this reason, building an anonymized dataset with blurred patient faces would 
have been impractical in this project, as it would have eliminated crucial information related 
to patients’ facial expressions and overall behavior.  
 
A control box was placed at the room's entrance, featuring two main components: a power 
switch, allowing staff to stop video recording during privacy-sensitive moments, and a 
push-button to tag video frames in real time when a nurse or assistant entered the room to 
perform an intervention. The Raspberry Pi devices were programmed to associate each 
video stream with a binary labeling system: continuous frames were assigned a value of ‘0’ 
when no intervention was needed, and a value of ‘1’ was generated at the exact frame where 
the button was pressed, indicating that an intervention had begun. This simple binary 
scheme forms the basis of the supervised learning task: the model is trained to discriminate 
between periods requiring no intervention and those where an intervention is necessary. 
 
However, assigning a “1” is not a trivial process. Unlike a purely mechanical event, the 
decision to intervene depends heavily on the clinical judgment and expertise of the nurses, 
which may vary depending on context, patient behavior, and professional experience. There 
is no universal or predefined threshold that clearly distinguishes when an intervention 
becomes necessary. This introduces an inherent subjectivity in the labeling process, 
underscoring the importance of close collaboration with nurses and assistant nurses. Their 
input is essential not only for ensuring accurate labeling but also for defining clinically 
meaningful criteria that the AI system should ultimately learn to recognize. 
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Figure 10 - Patient room equipped with the camera setup in Karolinska, Solna 

 
 
To ensure accuracy during the simulation phase, all collected videos were manually 
reviewed in fast-forward mode, and missing or misplaced labels were corrected. In 
preparation for future real-world data collection, a complementary mechanism was 
designed: nurses will be able to report missed button presses using a dedicated log sheet, 
where approximate times of interventions can be noted [Appendix 2]. While this procedure 
was not yet implemented during the current simulations, it will support the creation of a 
more reliable and clinically validated dataset in future stages of the project. 
 
 
 

​ 3.3. Dataset construction and preprocessing 
​ ​ 3.3.1. Simulation data collection 
 
 
Due to the late arrival of patient consent and logistical constraints, the full dataset of real 
patient recordings could not be collected in time for training. As an alternative, we 
conducted simulation sessions inside the hospital room using the complete monitoring setup 
to generate labeled video data. Over a continuous period of approximately five hours, three 
different individuals took turns simulating patient behavior in the room, reproducing a 
variety of movements and actions that could occur in real clinical contexts. This approach 
ensured diversity in body types, gestures, and reactions, providing a broader basis for 
testing the system. 
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Figure 11 - Examples of frames associated to a tag ‘1’ (intervention required)* 

 
 
 

 
 

Figure 12 - Examples of frames associated to a tag ‘0’ (no intervention required)* 
 
 
* the pictures have been voluntarily blurred and discoloured in this report for privacy 
reasons 
 
 
 
The simulation served multiple purposes. First, it allowed us to validate the hardware 
infrastructure, including the three-camera setup, the control box with its push-button 
tagging mechanism, and the Raspberry Pi data storage and synchronization. Second, it 
enabled us to test the end-to-end pipeline, from video capture and labeling to dataset 
construction and preliminary training of the models. Importantly, the simulation confirmed 
that the system was capable of running continuously without major failures, which is a key 
requirement for its eventual clinical deployment. 
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Although the simulated dataset is not fully representative of real patient behavior, since it 
lacks the unpredictability, emotional cues, and clinical context of actual hospital cases, it 
nevertheless provided a functional and practical testbed for both the technical infrastructure 
and the AI models. Some limitations and potential improvements were identified during this 
phase (see Section 4.3. Discussion), but overall the sessions proved successful in 
demonstrating feasibility. The simulated data also prepared the ground for future student 
teams, who will be able to continue development using actual patient datasets once consent 
and logistical conditions are fully met. 
 
 
 

​ ​ 3.3.2. Preprocessing pipeline and data 
augmentation 
 
 
Before using the dataset for training, a thorough post-processing and verification step was 
required. One of the main challenges encountered was the latency between the push-button 
tags and the actual video frames, which caused discrepancies between the intended 
intervention moments and their recorded timestamps, the possible cause being a cable with 
poor throughput installed in the hospital room. 
To address this, all videos were reviewed in fast-forward mode, and each tag was manually 
verified and corrected when necessary. This manual curation ensured that the dataset was as 
reliable and representative as possible for training the AI system. 
 
The dataset creation process was built upon a collection of raw video recordings, each 
associated with an annotation file. To facilitate synchronization and dataset construction, a 
dedicated CSV file was created to systematically organize the data. This file recorded for 
each sequence the initial frame, relative frame indices, and the corresponding binary tags (0 
= no intervention, 1 = intervention). This structure allowed for easier parsing, clip 
segmentation, and dataset management, while providing a transparent mapping between 
video data and intervention labels. 
 
The use of relative frames was particularly beneficial. It not only helped to counterbalance 
the latency issues observed during tagging but also significantly reduced runtime operations 
during training, since clips could be pre-indexed and accessed efficiently without scanning 
entire video files. This improvement made the training process faster and more stable, even 
on limited hardware. 
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Raw videos 

 
Clips generated 

Batches 

Train dataset Test dataset 

Quantity 5 1440 360 90 

Length (of each) 1 hour 2-3s 4 to 16 frames per batch  
(depending on the model) 

 
Table 1 - Simulated dataset distribution 

 
 
The datasets were constructed using TensorFlow’s tf.data API, which leveraged the .csv 
metadata to stream clips efficiently. However, initial versions of the pipeline encountered 
multiple technical challenges. Real-time frame extraction caused excessive RAM usage and 
prolonged loading times, often resulting in training session interruptions.  
 
Finally, to increase dataset variability and enhance model generalization, several data 
augmentation techniques were applied to the video clips. These included horizontal 
flipping, random cropping, and brightness adjustments, which simulate the variability of 
real hospital conditions such as different lighting environments, patient positions, or camera 
perspectives. By introducing such diversity, the augmented dataset helps mitigate 
overfitting and strengthens the robustness of the trained models. 
 
 
 

​ ​ 3.3.3. Guided sampling strategy 
 
 
In order to further address the issue of class imbalance and improve the representativity of 
rare action categories during training, a guided sampling strategy was employed. Rather 
than uniformly sampling video clips, the data loader was modified to prioritize the selection 
of underrepresented classes. This was achieved by computing class frequencies in the 
training set and assigning higher sampling probabilities to minority classes. 
 
By integrating guided sampling, the model was exposed to a more balanced distribution of 
examples during each epoch, enhancing its ability to learn decision boundaries for less 
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frequent actions. This method proved particularly useful in the context of limited dataset 
diversity, where traditional random sampling would otherwise reinforce existing 
imbalances. 
​  
 
 

​ 3.4. Model Architectures 
 
This project investigates and compares two main deep learning architectures: MoViNet and 
PredFormer.  
 
 

​ ​ ​ 3.4.1. MoViNet 
 
 
MoViNet (Mobile Video Network) is a family of deep learning models specifically designed 
for efficient and real-time video action recognition. Unlike traditional architectures that often 
require powerful GPUs and batch processing of long video clips, MoViNet was developed to 
support continuous streaming inference on lightweight hardware, making it suitable for 
real-time applications such as patient monitoring [28]. 
 
At its core, MoViNet builds upon 3D convolutional neural networks (3D-CNNs), which 
extend standard 2D convolutions to the temporal dimension as previously discussed in the 
state of the art section. However, full 3D convolutions are computationally expensive and 
memory-intensive. 
 
To mitigate this, MoViNet adopts factorized convolutions (2+1D), decomposing a 3D kernel 
into a spatial convolution followed by a temporal one: 
 

 𝑌(𝑡, 𝑖, 𝑗) =
𝑚,𝑛
∑ 𝑋(𝑡, 𝑖 + 𝑚, 𝑗 + 𝑛) · 𝐾

𝑠
(𝑚, 𝑛)( 𝐾 ٭ (

𝑡
(𝑝),

 
where  is the 2D spatial kernel and  the 1D temporal kernel. This reduces the number of 𝐾

𝑠
𝐾

𝑡

parameters while retaining the ability to model spatiotemporal features. 
 
 
A central innovation of MoViNet is the temporal stream buffer, which enables continuous 
inference without recomputing all activations for each new clip. Instead of processing 
overlapping subclips independently, intermediate feature maps at subclip boundaries are 
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cached and reused. If  denotes the hidden activation at time , the buffer stores  so that ℎ
𝑡

𝑡 ℎ
𝑡

the next prediction uses: 
 

 ℎ
𝑡+1

=  𝑓(𝑋
𝑡+1

,  ℎ
𝑡
 ),

 
where  is the convolutional transformation. This reduces memory usage from  to , 𝑓 𝑂(𝑇) 𝑂(1)
with reported savings of up to 90% for MoViNet-A5. Importantly, only causal operations are 
used, meaning that predictions depend on past and current frames, but never on future 
ones. This property makes MoViNet viable for real-time monitoring in clinical 
environments. 
 
Beyond its streaming capability, MoViNet integrates architectural elements from 
MobileNetV3, such as inverted residual blocks and squeeze-and-excitation (SE) modules. 
The latter act as channel-wise attention mechanisms. It dynamically reweights feature maps 
to emphasize informative channels while suppressing irrelevant ones. 
 
MoViNet models are available in different scales (A0–A5), balancing efficiency and accuracy. 
Smaller models (A0, A1) are highly efficient for mobile devices, while larger ones (A4, A5) 
achieve state-of-the-art accuracy. In this thesis, MoViNet-A5 was selected as it provides the 
best compromise for our application: accurate recognition of patient behaviors while still 
being deployable on relatively constrained hardware. 
 
By combining 2+1D convolutions, causal buffering, and lightweight attention modules, 
MoViNet achieves both efficiency and robustness, making it particularly well-suited for 
real-time monitoring tasks in hospital environments. 
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Figure 13 - MoViNet-A5 architecture 
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​ ​ ​ 3.4.2. PredFormer 
 
 
PredFormer is a transformer-based architecture developed for video prediction tasks, and it 
distinguishes itself by removing both convolutional and recurrent operations. Instead, it 
relies solely on spatiotemporal self-attention to capture dependencies across space and time. 
This design gives PredFormer a global receptive field, which is crucial when modeling 
long-range temporal structures or subtle behavioral signs that cannot be efficiently captured 
by CNNs or RNNs. In the clinical monitoring context, such as detecting early agitation in 
patients, the ability to model gradual, temporally extended changes makes PredFormer an 
interesting candidate despite its high computational demands and lack of real-time 
feasibility [14]. 
 
Formally, given an input sequence of video frames 

 𝑋 = 𝑥
𝑡−𝑇+1

,..., 𝑥
𝑡{ },  𝑥

𝑖
∈ ℝ𝐻×𝑊×𝐶,

 
the goal of PredFormer is to learn a mapping 
 

 𝐹
Θ

:  𝑋 → Ŷ = ŷ
𝑡+1

,..., ŷ
𝑡+𝑇{ },

 

where are the predicted future frames. The model parameters  are optimized ŷ
𝑗

∈ ℝ𝐻×𝑊×𝐶 Θ

by minimizing a reconstruction loss such as the mean squared error 
 

 𝐿(Ŷ,  𝑌) = 1
𝑇'·𝐻·𝑊·𝐶

𝑗=1

𝑇'

∑ ŷ
𝑡+𝑗

− 𝑦
𝑡+𝑗| || |

2

2,

 
with optional perceptual or adversarial terms to encourage sharper predictions. 
 
Each video frame is divided into non-overlapping patches of size , flattened and 𝑝 × 𝑝
projected through a linear embedding layer into a latent space of dimension . The result is 𝐷
a sequence of tokens 
 

 𝑍
0

= 𝑧
0
1,  𝑧

0
2,..., 𝑧

0
𝑁⎡⎢⎣

⎤⎥⎦,  𝑧
0
𝑖 ∈ ℝ𝐷,

 

where  is the number of tokens per frame. To retain temporal order, PredFormer 𝑁 = 𝐻𝑊

𝑝2

applies sinusoidal positional encodings to each token.  
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The backbone of PredFormer is the Gated Transformer Block (GTB), which modifies the 
standard transformer encoder by integrating gating mechanisms for improved control of 
information flow. Within each block, the multi-head self-attention mechanism computes: 
 

 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) =  𝑆𝑜𝑓𝑡𝑚𝑎𝑥 𝑄𝐾𝑇

𝑑
𝑘

( )𝑉,

 
where queries , keys , and values are linear projections of the input tokens.  𝑄 𝐾 𝑉 
 
An important architectural choice concerns the structuring of attention. PredFormer can 
employ full joint spatiotemporal attention, but due to quadratic complexity in sequence 
length, factorized attention is often preferred. Therefore, attention is alternately applied 
across the temporal and spatial dimensions. For instance, a temporal attention block models 
dependencies across frames for each spatial location, followed by a spatial attention block 
across patches within each frame. Interleaving these blocks provides flexibility in balancing 
accuracy and efficiency. Such design is particularly useful in patient monitoring scenarios, 
where some risk behaviors appear abruptly while others evolve slowly. 
 
The decoder is kept deliberately simple. Since the encoder already maintains spatiotemporal 
context. This lightweight reconstruction head reduces overhead while ensuring high-quality 
predictions. 
 
PredFormer thus embodies the power of transformer-based architectures in video modeling. 
Its strength lies in the absence of strong inductive biases tied to locality or sequential 
processing, enabling it to learn subtle, long-range dependencies. While this comes at the cost 
of high memory consumption and limited real-time feasibility, its accuracy in offline settings 
makes it an excellent benchmark against lightweight architectures like MoViNet. In the 
context of this thesis, PredFormer serves to assess whether transformer-based models 
provide a meaningful advantage in recognizing complex or temporally extended patient 
behaviors, paving the way for future multimodal transformer frameworks in clinical AI. 
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3.4.3. Preliminary comparison 
 
 
To assess the potential of the PredFormer architecture for clinical video monitoring, we 
conducted a preliminary comparison with MoViNet focusing strictly on two baseline 
criteria: processing speed and memory requirements. MoViNet is designed for low-latency 
inference and edge deployment, and benefits from aggressive model compression and 
quantization. It is capable of running efficiently on devices with limited computational 
power such as mobile processors or embedded systems, including Raspberry Pis in our case. 
In contrast, PredFormer is a transformer-based model that forgoes both convolution and 
recurrence in favor of self-attention mechanisms applied across spatiotemporal sequences. 
While this allows for superior modeling of long-range dependencies, it also introduces a 
higher computational overhead, especially during inference. The self-attention operation 
scales quadratically with the number of input tokens, making it memory-intensive and less 
suited to real-time performance on resource-constrained hardware. In practice, preliminary 
testing shows that PredFormer requires more VRAM (typically 6–12 GB) and has 
significantly slower inference speed, particularly on long video sequences or high-resolution 
frames. 
 
Therefore, although PredFormer shows architectural promise in terms of modeling capacity, 
our analysis confirms that MoViNet remains more appropriate for real-time hospital 
deployment where low-latency and lightweight memory usage are critical. PredFormer 
could, however, be explored further in offline settings or as a benchmark model for future 
accuracy-focused evaluations. 
 
 

Table 2 - Preliminary comparison between MoViNet and PredFormer 
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Feature MoViNet  PredFormer 

Core mechanism 3D convolutions with stream 
buffering 

Spatiotemporal self-attention (no 
conv/RNN) 

Complexity Linear in sequence length Quadratic in sequence length 
Memory usage Low (optimized for edge 

devices) 
High (requires powerful GPUs) 

Training data 
requirement 

Moderate (pre-trained on 
Kinetics-700) 

Very large datasets (e.g., Kinetics, 
Human3.6M) 

Role in this thesis Deployable solution Benchmark for recognition accuracy 



​ ​ ​ 3.4.4. Multimodal integration and 
attention mechanism 
​ ​  
 
Beyond video, the system was designed to incorporate audio and ECG signals. Each 
modality was processed separately before being fused via a multimodal attention 
mechanism, which dynamically weighs the contribution of each modality to the final 
classification. This integration was conducted experimentally, as real multimodal data could 
not be collected during the thesis period due to limited access. 
 
As discussed in the state of the art section, multimodal attention is a mechanism used in 
deep learning models to effectively combine and interpret information coming from 
multiple sources, or modalities, such as video, audio, and physiological signals. Rather than 
treating all input data equally, attention mechanisms allow the model to dynamically focus 
on the most relevant features from each modality depending on the context.  
 
In this project, each modality was first processed independently by a feature extraction 
module tailored to its nature. The video stream was passed through a spatiotemporal 
backbone (MoViNet or PredFormer), and fine-tuned. Audio signals were converted into 
spectrograms and encoded via a convolutional feature extractor. ECG waveforms were 
processed using a temporal encoder designed to capture rhythmic patterns in the signal. 
Each of these steps generated latent feature vectors of dimension , which were then 𝑑
projected into a common embedding space to allow joint processing.  
 
The integration of these features was achieved through a multi-head attention mechanism, a 
central element of transformer architectures. Similarly to the PredFormer model, for an 

input sequence of embeddings , queries , keys , and values  are computed ℤ ∈ ℝ𝑛×𝑑 𝑄 𝐾 𝑉
through learned linear projections: 
 

 𝑄 = 𝑍𝑊
𝑄

 ,    𝐾 = 𝑍𝑊
𝐾

 ,    𝑉 = 𝑍𝑊
𝑉

 

 

where ,  ,  . The attention operation evaluates the relevance between tokens 𝑊
𝑄

𝑊
𝐾

𝑊
𝑉

∈ ℝ
𝑑×𝑑

𝑘

by computing scaled dot-products: 

 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥 𝑄𝐾𝑇

𝑑𝑘( )𝑉
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The multi-head replicates this operation  times with different learned projections, yielding: ℎ
 

 𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑(𝑄, 𝐾, 𝑉) = 𝐶𝑜𝑛𝑐𝑎𝑡 ℎ𝑒𝑎𝑑
1
,..., ℎ𝑒𝑎𝑑

ℎ( )𝑊
0

 

where each . This mechanism enables the model to ℎ𝑒𝑎𝑑
𝑖

= 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄𝑊
𝑖
𝑄 ,  𝐾𝑊

𝑖
𝐾 ,  𝑉𝑊

𝑖
𝑉 )

jointly attend to information from different representation subspaces at multiple scales. In 
practice, some heads may specialize in capturing short-term temporal correlations (e.g., 
rapid spikes in ECG or sudden noises), while others focus on long-range dependencies (e.g., 
gradual patient agitation visible in video). 
 
The choice of multi-head attention in this project was motivated by its ability to dynamically 
weigh the relative importance of modalities depending on context. For instance, a sudden 
acceleration in heart rate might be insignificant in isolation, but when combined with 
unusual movements captured in video and abnormal sounds, it becomes a strong indicator 
of patient distress. A single-head mechanism would be limited in its representational 
capacity, whereas multi-head attention allows for richer, complementary interactions 
between modalities. 
From a technical perspective, multimodal integration offers two critical benefits. It increases 
overall robustness by adapting its weights: when one modality is noisy or missing (e.g., 
low-light video conditions at night, background noise in audio), others can compensate, and 
it enhances interpretability while correlated changes across modalities provide clinicians 
with stronger evidence of a true event requiring intervention. However, a multimodal model 
is costly in terms of time and memory. A real-time implementation is not currently feasible 
within the scope of this project and still needs to be explored (see Section 5.4. Suggestions for 
future research). 
 
 
 

​ ​ 3.5. Model training 
​ ​ ​ 3.5.1. Fine tuning and 
hyperparameters 
 
 
Both models investigated in this project, MoViNet-A5 and PredFormer, were pre-trained on 
large-scale datasets before being adapted to the clinical monitoring task. MoViNet was 
trained on Kinetics-700, a dataset containing approximately 650,000 video clips across 700 
human action categories, such as walking, sitting, or interacting with objects. This dataset 
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provides a broad representation of motion and gesture dynamics, enabling the model to 
learn generic spatiotemporal patterns. PredFormer, on the other hand, was pre-trained on 
Human3.6M, a motion capture dataset with millions of frames depicting 3D human poses 
across diverse activities, including sitting, walking, smoking, and discussion. While 
Kinetics-700 focuses on high-level action categories from natural videos, Human3.6M 
emphasizes fine-grained body dynamics, making PredFormer particularly suited for 
modeling subtle postural changes. 
 
Fine-tuning is the process of adapting these pre-trained models to a specific downstream 
task by retraining them on a smaller, domain-specific dataset, in this case, simulated hospital 
videos annotated with intervention labels. The early layers of the networks, which capture 
low-level features such as edges, textures, and short-term motion patterns, were frozen to 
preserve their general representational power. Only the later layers, particularly the 
classification heads, were retrained to specialize in the binary classification task: detecting 
whether an intervention was required (label ‘1’) or not (label ‘0’). This strategy significantly 
reduced the risk of overfitting given the limited dataset size while leveraging the wide 
knowledge learned from Kinetics-700 and Human3.6M. 
From a mathematical perspective, fine-tuning relies on backpropagation, where the gradient 
of the loss function  with respect to the model parameters  is computed using the chain ℒ Ө
rule: 
 

  ∂ℒ
∂Ө = ∂ℒ

∂𝑦 · ∂𝑦
∂Ө

 
with  the model’s prediction. The parameters are then updated iteratively through gradient 𝑦
descent: 
 

 Ө
𝑡+1

= Ө
𝑡

− η · ∇
Ө

ℒ,

 
where  is the learning rate. Optimizers such as Adam adapt this process by dynamically η
adjusting the learning rate per parameter based on momentum and past gradient 
magnitudes, which improves convergence stability.  
 
In this project, several hyperparameters were critical to model performance. The learning 

rate was set between  and , allowing gradual adaptation of weights 1 × 10−4 1 × 10−5

without overwriting the valuable pre-trained representations. The batch size varied between 
4 and 16 depending on GPU memory availability, balancing stability and training efficiency. 
A dropout rate was applied to the final layers to mitigate overfitting, particularly relevant 
given the small dataset. The number of training epochs was tuned to ensure convergence 
without overtraining. Performance was evaluated through k-fold cross-validation, ensuring 
robustness despite data scarcity. 
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Fine-tuning is especially pertinent in our case because training a deep video recognition 
model entirely from scratch would require extremely large datasets, often millions of 
annotated video clips, and substantial computational resources, which are far beyond what 
is available in this project. By starting from models pre-trained on large-scale datasets such 
as Kinetics-700 or Human3.6M, we leverage the fact that these networks have already 
learned general spatiotemporal features such as motion dynamics, body poses, and common 
action patterns. These features are transferable to our clinical setting, where the fundamental 
challenge is still to recognize specific types of human movements and behaviors. Fine-tuning 
allows us to adapt these broad representations to a more specialized binary classification 
task (intervention vs. no intervention) using a much smaller, domain-specific dataset. This 
approach reduces training time, mitigates the risk of overfitting, and ensures that the model 
can achieve robust performance despite the limited availability of labeled hospital data. 
 
 
 
 

​ ​ ​ 3.5.2. Optimizers, loss functions, and 
dropout 
 
 
The training of deep neural networks relies on optimization algorithms to iteratively adjust 
the model’s parameters in order to minimize the loss function. In this project, we 
experimented with widely used optimizers such as Adam, RMSprop, and Stochastic 
Gradient Descent (SGD). Adam was ultimately chosen as the primary optimizer because it 
combines the advantages of both momentum and adaptive learning rates. This makes it 
particularly efficient when training on relatively small, noisy datasets such as ours, where 
rapid convergence and robustness to sparse gradients are essential. Adam’s update rule 
dynamically scales the learning rate for each parameter based on estimates of the first and 
second moments of the gradients, reducing the need for extensive manual tuning. 
 
The loss function defines the training objective. Since the project’s task is binary 
classification, we employed binary cross-entropy loss, which measures the difference 
between the predicted probabilities and the true labels. Mathematically, for  samples, the 𝑁
binary cross-entropy loss is expressed as: 
 

 𝐿 =− 1
𝑁

𝑖=1

𝑁

∑ 𝑦
𝑖
 𝑙𝑜𝑔(ŷ

𝑖
) + (1 − 𝑦

𝑖
)𝑙𝑜𝑔(1 − ŷ

𝑖
)[ ]
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where  is the ground-truth label and the model’s predicted probability of an 𝑦
𝑖

∈ 0, 1{ } ŷ
𝑖

intervention. This formulation penalizes incorrect predictions more strongly when the 
model is confident, thereby encouraging calibrated probability estimates. 
 
One of the main challenges when training deep learning models is overfitting. Overfitting 
occurs when a model learns patterns that are too specific to the training dataset, such as 
noise or incidental correlations, instead of capturing generalizable features. This results in 
excellent performance on the training set but poor accuracy on unseen data. Overfitting is 
particularly problematic in medical applications, where datasets are often limited and the 
ability to generalize is critical for patient safety. 
To mitigate this issue, we applied dropout in the final layers of the network. Dropout works 
by randomly deactivating a fraction  of neurons during training, which forces the network 𝑝
to learn more distributed and robust representations rather than relying on specific 
co-adapted features. In practice, we used dropout rates between 0.3 and 0.5 depending on 
the model architecture. This technique helped improve generalization to unseen data while 
maintaining training stability. 
 
 
 
 

​ ​ ​ 3.5.3. Frameworks: Tensorflow vs 
Pytorch 
 
 
Deep learning has evolved around two dominant frameworks: TensorFlow, developed by 
Google, and PyTorch, developed by Meta. Although both libraries allow researchers to 
design, train, and evaluate deep neural networks, they embody different philosophies that 
influence how models are implemented. TensorFlow was initially designed with production 
and large-scale deployment in mind, relying on static computation graphs that can be 
optimized for efficiency but are sometimes difficult to debug. PyTorch, in contrast, was 
designed around dynamic computation graphs, which make experimentation and 
debugging considerably more intuitive. réference  
 
In this project, TensorFlow was employed for experiments with MoViNet, because the model 
is officially provided through the TensorFlow Model Garden together with pretrained 
weights. This ecosystem allowed for a relatively straightforward fine-tuning process using 
Keras, while also ensuring compatibility with TensorFlow’s deployment tools such as 
TensorFlow Lite, which are relevant for future real-time applications. Nevertheless, 
TensorFlow’s graph-based nature required a certain adaptation, particularly in controlling 
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memory usage during video data processing, where large datasets can easily saturate system 
RAM. 
 
Conversely, PyTorch was necessary for the work with PredFormer, as pretrained 
implementations based on the Human3.6M dataset are only available in this framework. 
PyTorch’s dynamic execution enabled faster prototyping and clearer debugging when 
adapting the model to a new classification task. However, PyTorch is less tightly integrated 
with deployment pipelines, which means that the focus remained primarily on 
research-oriented fine-tuning rather than production readiness. Switching from TensorFlow 
to PyTorch also required adapting the data pipeline, since the video clip generators initially 
written for TensorFlow datasets had to be reformulated into PyTorch’s Dataset. 
 
Overall, the dual use of both frameworks highlighted their complementary strengths. 
TensorFlow provided a stable and well-supported environment for leveraging MoViNet in a 
way that is directly connected to real-world deployment scenarios, while PyTorch offered 
the flexibility needed to explore an advanced research model such as PredFormer. This dual 
approach required additional effort in adapting code and training pipelines, but it provided 
valuable insights into how each ecosystem supports different stages of the machine learning 
workflow. 
 
 
 

​ ​ 3.6. Evaluation 
​ ​ ​ 3.6.1. Evaluation metrics 
 
 
To rigorously assess the performance of the AI monitoring system, we relied on several 
standard metrics commonly used in classification tasks: accuracy, precision, recall, and 
F1-score. Each metric highlights a different aspect of the model’s predictive ability, and their 
combination provides a comprehensive evaluation. 
 

-​ Accuracy measures the overall proportion of correct predictions and is defined as: 
 

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑇𝑃+𝑇𝑁
𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁

 
where  are true positives,  true negatives,  false positives, and  false negatives.  𝑇𝑃 𝑇𝑁 𝐹𝑃 𝐹𝑁
While accuracy offers a general sense of performance, it can be misleading in imbalanced 
datasets, such as ours, where the majority of time corresponds to “no intervention” (class 0). 
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-​ Precision focuses on the reliability of positive predictions and is given by: 

 

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃
𝑇𝑃+𝐹𝑃

 
It answers the question: when the system predicts that an intervention is needed, how often 
is it correct? High precision is important to reduce unnecessary false alarms that may cause 
fatigue among medical staff. 
 
 

-​ Recall, or sensitivity, measures the ability of the model to detect actual interventions: 
 

 𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃
𝑇𝑃+𝐹𝑁

 
In our medical context, recall is the most critical metric because false negatives (missed 
interventions) could result in severe consequences for patient safety. For clinical 
deployment, recall must approach 100%, as even a single missed event is unacceptable. 
 
 

-​ The F1-score provides a balanced metric by combining precision and recall into their 
harmonic mean: 

 

 𝐹1 = 2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙 

 
This score is particularly useful when evaluating systems under class imbalance, as it 
penalizes extreme disparities between precision and recall. 
 
 
In the context of patient monitoring in Intermediate Care Units (IMUs), the metrics must be 
interpreted through a clinical lens. The primary objective is to achieve a perfect recall (100%) 
to guarantee that no critical intervention is missed. Precision should remain sufficiently high 
(≥ 80%) to avoid overwhelming nurses with false alarms, though some level of false positives 
is tolerable. Accuracy, while less informative in this context, should ideally remain above 
90% to demonstrate overall robustness. Finally, the F1-score should reflect a strong balance, 
with values ideally ≥ 85%, ensuring that both recall and precision are jointly optimized. 
To ensure safety, the system will first operate in parallel with nursing staff for validation. 
Continuous monitoring and retraining will be necessary to maintain these thresholds in real 
clinical settings. Only once these metrics are consistently met can the system be considered 
clinically viable. 
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​ ​ ​ 3.6.2. Cross-validation and 
robustness checks 
 
 
Cross-validation is a robust statistical technique designed to evaluate the generalization 
ability of a machine learning model. In other terms, it evaluates its capacity to perform well 
on unseen data rather than merely memorizing the training set. The most widely adopted 
method in literature and the one used in this project, is k-fold cross-validation, where the 
dataset is split into  equally sized folds. The model is trained  times, each time using 𝑘 𝑘

 folds for training and the remaining fold for validation. The results are then averaged 𝑘 − 1
across all folds to provide an overall performance estimate. Mathematically, if  denotes the 𝑀

𝑖

performance metric obtained on fold , the cross-validation score is: 𝑖
 

 𝐶𝑉 = 1
𝑘

𝑖=1

𝑘

∑ 𝑀
𝑖

 
This averaging reduces variance in evaluation and mitigates the risks of data bias (caused by 
specific patient characteristics being overrepresented in a split) and overfitting, particularly 
relevant in medical contexts where datasets are often small and imbalanced. 
 
In this thesis, cross-validation was critical to assess whether the models (MoViNet and 
PredFormer) learned generalizable patterns of patient behavior rather than overfitting to 
specific simulation sessions. By ensuring consistent results across folds, we increased 
confidence that the models would perform reliably when applied to future real patient 
datasets. 
 
Beyond raw performance metrics, several signals were monitored during cross-validation to 
verify that the model was learning appropriately: 

-​ Training vs. validation curves: if the training performance increases while validation 
stagnates or decreases, this indicates overfitting. 

-​ Stability of metrics across folds: large fluctuations suggest sensitivity to data splits, 
which would undermine robustness. 

-​ Learning dynamics: observing whether the loss function decreases smoothly without 
oscillations, which could reflect instability in optimization. 

A model that demonstrates stable recall close to 100% across folds, with acceptable precision 
and without large inter-fold variability, can be considered robust enough for clinical testing. 
Cross-validation therefore provides both a quantitative and qualitative assurance that the 
system is not only accurate but also dependable in real-world scenarios. 
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3.7. Collaboration with the Medical staff 
 
Collaboration with the nursing teams was a cornerstone of this project. Katarina, the head 
nurse of the Intermediate Care Units at both Solna and Huddinge hospitals, served as the 
project’s anchor point and played a central role in coordinating the clinical side. Together, 
we organized several meetings and open discussions with nurses from both sites to ensure 
that the system would be tailored to their clinical realities and seamlessly integrate into their 
daily workflow. These exchanges were highly valuable: they provided me with a deeper 
understanding of the nurses’ working conditions, while also offering the medical staff clear 
insights into the technical aspects and deployment strategy of the system. 
 
Since the data collection process relied heavily on the active participation of nurses and 
assistant nurses, effective communication was vital. To support this, explanatory posters and 
flyers were designed [Appendix 1], that outlined the project’s objectives and practical 
workflow, ensuring accessibility to all staff members. A “question box” was also installed in 
the units, giving nurses the opportunity to anonymously submit questions or concerns to the 
technical team. In addition, small-group meetings were held with particularly engaged 
nurses who volunteered as key contacts. These nurses contributed directly to resolving 
practical matters such as camera positioning and the interaction between the monitoring 
setup and their daily routines. 
 

 
Figure 14 - Question box in the IMU of Karolinska, Solna 

 
The collaboration was met with strong enthusiasm from the nursing staff, whose motivation 
and trust were essential to the project’s progress. The positive reception even sparked 
discussions about extending the system to other hospital units, such as neurology care, 
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highlighting the project’s perceived relevance and potential impact. Ultimately, this close 
and reciprocal collaboration with the nursing teams was essential not only for the success of 
the simulation-based dataset collection but also for fostering trust, and sustainability of the 
system within the clinical environment. 
 
 
​ ​  
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4.​Results and discussion 
4.1. Model training results 
​ 4.1.1. MoViNet performance 

 
 
Training was carried out on a series of five folds, for which metrics were recorded. The 
following curve shows the evolution of the loss over time, where the coloured lines 
represent the averages obtained for each dataset, respectively the training and validation 
data. Within the folds, the loss decreases over time. This means that the model is learning 
correctly. Furthermore, it is notable that the trend of the curve is the same for both data sets, 
which shows that the model is not showing any sign of overfitting and is, on the contrary, it 
suggests a stable learning process. 
 
 

 
 

Figure 15 - Training vs validation curves for K-fold cross-validation loss with MoViNet 
 

 
The confusion matrix for the validation dataset is given below. The notable feature is the 
absence of false negatives, which are particularly feared in the context of our project since 
the absence of an alert for a significant event can cause great suffering and have serious 
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implications. This zero false negative value allows the model to achieve 100% recall, which is 
one of the key and essential elements of the project. 
However, the model occasionally produced false positives, which means that it predicted the 
need for an intervention when there was not. These are relatively limited but resulted in a 
slightly lower precision. 
 
 

 
Figure 16 - Confusion matrix of the fine-tuned MoViNet-A5 model using the simulation 

dataset 
 
This fine-tuned model demonstrated strong performance across all evaluation metrics. It 
achieved an accuracy of 92%, which confirms that the model is capable of classifying the 
majority of video clips. The F1-score of 91% confirms the balance achieved between recall 
and precision. 

 
 

Metric Accuracy Recall Precision F1-score 

Value 0.92 1.0 0.85 0.91 

 
Table 3 - Results of the fine-tuned MoViNet-A5 model using the simulation dataset 
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Taken together, these results highlight our fine-tuned MoViNet-A5 model as highly reliable 
for this task. 
 
 
 

​ 4.1.2. PredFormer performance 
 
 
First and foremost, it is important to note that the batch size used when training the 
PredFormer model had to be reduced from 16 to 4 due to constantly saturated RAM. 
Furthermore, training the model took significantly longer than for MoViNet despite this 
reduction. 
 
As before, training was performed on a set of five folds. The curves showing the evolution of 
loss over time for each fold, as well as the average of these according to the dataset, are 
presented below. With the training set, the loss gradually decreases over time, showing 
relatively stable learning. However, this same curve does not follow the same trend with the 
validation set. Compared to the previous curves, there are more oscillations and less 
consistency between folds. This shows signs of overfitting, probably due to the necessary 
reduction in training data.  
 
 

 
Figure 17 - Training vs validation curves for K-fold cross-validation loss with PredFormer 
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The confusion matrix for the validation set highlights a number of important points. Firstly, 
the relatively lower precision is particularly noteworthy, as it indicates a higher rate of false 
positives and negatives. Three false negatives are counted, which is extremely problematic 
in our clinical context and causes the recall to drop to 92% compared to 100% with the 
previous model.  
 

 
Figure 18 - Confusion matrix of the fine-tuned PredFormer model using the simulation 

dataset 
 

 
 

Metric Accuracy Recall Precision F1-score 

Value 0.82 0.92 0.72 0.81 

 
Table 4 - Results of the fine-tuned PredFormer model using the simulation dataset 
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The fine-tuned PredFormer model therefore exhibits weaker performance overall. While it 
demonstrates the capacity to capture relevant events, its computational demands and 
susceptibility to overfitting with a relatively small dataset limit its practicality in this setting. 
 
 
 
 

​ ​ 4.1.3. Comparative analysis 
 
 
A direct comparison between MoViNet and PredFormer underscores both the performance 
gap and the practical trade-offs between the two models. MoViNet not only outperforms 
PredFormer across all key metrics, but also trains more efficiently, requiring less memory 
and shorter training times. PredFormer, despite its promising architecture for motion 
prediction and sequence modeling, appears less suited for the present classification task 
when operating under constrained computational resources. The need to reduce batch sizes 
had a negative effect on its ability to generalize, as reflected in the higher rate of false 
positives and negatives and lower overall precision and recall.  
MoViNet’s lightweight design and specialized optimization for video classification tasks on 
the other hand, allowed it to maintain both high recall and balanced precision while training 
stably across folds.  
However, it is important to note that although Kinetics-700 and Human3.6M are both 
human action recognition datasets, they are different and may also be the cause of the 
differences observed in the model results. 
Nevertheless, these findings suggest that MoViNet is not only the better-performing model 
but also the more pragmatic choice for deployment in resource-constrained real-world 
environments as the one this project is aiming for. 
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4.2. Discussion 
4.2.1. Technical constraints 

 
 
From a technical perspective, several constraints limited the development and evaluation of 
the monitoring system. A first major limitation was related to the computational resources 
available for training and inference. Both MoViNet-A5 and PredFormer are computationally 
expensive models, although to different degrees. While MoViNet is optimized for 
lightweight inference and therefore compatible with devices such as Raspberry Pis, 
PredFormer requires significantly more memory and processing power, making it 
unsuitable for real-time deployment in the current hardware configuration. It is highly likely 
that the potential of the PredFormer model was limited by RAM and GPU memory 
restrictions, which led to the decision to reduce the batch size, even though this only serves 
to prove that the model is not suitable for this particular project. 
 
Another technical constraint involved synchronization and latency in the data pipeline. 
Although already described as a practical challenge in relation to labeling, it was also a 
technical issue at the system level. The Raspberry Pi units exhibited delays between the 
tagging button press and the corresponding frame timestamps, which introduced noise into 
the dataset. While the implementation of relative frame indexing and CSV-based metadata 
files reduced this problem, it remains a structural constraint inherent to using low-cost 
embedded hardware. As this problem was not noticed during laboratory testing, one 
possible explanation could be the use of a cable that is not shielded from surrounding 
signals in the hospital room, thereby reducing the flow of transmitted information. 
 
Although the models were pre-trained on large-scale datasets, training on simulation data 
remains incomplete. Due to organisational difficulties, simulation data could only be 
collected over a continuous five-hour period, which represents only a tiny fraction of the 
total data that would be relevant to use. This small dataset contributed to the overfitting of 
the PredFormer model, despite the augmentation techniques implemented. 
 
Finally, the integration of multimodal data (video, audio, ECG) introduced additional 
challenges. Each modality required separate preprocessing pipelines, feature extraction, and 
synchronization before fusion through the multimodal attention mechanism. The 
impossibility of creating a synchronised and complete dataset meant that this model was 
only explored as a proof-of-concept, but it paves the way for future optimized experiments.  
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4.2.2. Practical challenges 
 
 
Beyond the purely technical aspects, we had to deal with a number of practical and 
organisational challenges. One of the most significant issues was the lack of patient consent 
during the project period, which made it impossible to collect real data nor to implement our 
model in real-time settings, and forced us to use simulation data only.  Although this 
simulated data enabled us to validate the model concept, it does not reproduce the full 
spectrum of patient behaviours. This gap highlighted the dependency of the project on 
clinical participation and the complexity of data acquisition in sensitive medical 
environments. 
 
The project also faced workflow-related challenges. Nurses and assistant nurses already 
operate under high stress and time pressure, which makes their active involvement in data 
collection demanding. To address this, communication efforts were made, including 
explanatory posters, flyers, and the installation of a question box to allow anonymous 
feedback. These tools proved effective in maintaining engagement, but they also revealed 
the delicate balance between introducing new technologies into the hospital environment 
and respecting the limited time and energy of the staff. 
 
Finally, the hospital environment is a challenge in itself. Continuous video recording in 
patient rooms raises concerns about patient privacy and dignity. Cameras must be turned off 
when patients are receiving personal care, which requires the creation and design of a 
simple and intuitive system for turning them off. These considerations demonstrate that, 
even beyond the algorithms themselves, the design of intelligent algorithms for the 
healthcare sector requires, above all, the establishment of a strong bond of trust, where 
respect for privacy and ethics is central.  
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4.2.3. Ethical and clinical implications 
 
 
The integration of an AI-based monitoring system into clinical practice raises important 
ethical and clinical considerations that go beyond the technical development of the model.  
 
A first and central concern relates to patient privacy and dignity. Because the videos 
collected in this project are not anonymous, they capture patients’ faces and expressions, 
which are essential for detecting subtle behavioral specificities such as pain or distress. 
While this non-anonymity is necessary for the model’s effectiveness, it also places a heavy 
responsibility on researchers to ensure that data access is strictly limited.  
 
Another ethical implication arises from the subjectivity of interventions. Unlike 
physiological parameters, which can be quantified through defined thresholds, the decision 
to intervene often relies on the clinical judgment of nurses, informed by their expertise and 
experience. This makes it difficult to establish a universally valid ground truth for training. 
Embedding such subjective judgments into an AI system risks codifying certain practices 
while neglecting others, which could influence future workflows in unintended ways. 
Maintaining the system as a tool to support, rather than replace, clinical decision-making is 
therefore essential. The model must be seen as an assistant that alerts nurses to potential 
risks, leaving the final decision in the hands of trained professionals. 
 
From a clinical perspective, the implementation of such a system has significant implications 
for the workload and well-being of medical staff. By reducing the cognitive burden of 
continuous monitoring, the system has the potential to alleviate stress and fatigue, especially 
during night shifts where concentration is more difficult to sustain. However, excessive false 
positives could create additional strain, leading to alarm fatigue and possibly undermining 
trust in the system. Ensuring that the balance between sensitivity and specificity is clinically 
acceptable will be key to real-world adoption. 
 
Finally, the project raises broader questions about the responsibility and accountability 
associated with AI in healthcare. If an alert is missed or misclassified, it remains the clinical 
staff who must bear the consequences, even though the decision originated from an 
automated system. This highlights the need for transparent models, interpretable 
predictions, and clear guidelines on how AI-based alerts should be integrated into clinical 
workflows. Only by addressing these ethical and clinical dimensions can the system evolve 
from a research prototype to a trustworthy tool in patient care. 
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5.​Conclusions and future work 
5.1. Summary of the work 

 
 
This thesis explored the development of an AI-based monitoring system designed to assist 
nurses and assistant nurses in Intermediate Care Units (IMUs) by detecting patient 
behaviors that may require clinical intervention. Building on prior work and under the 
framework of an ethical approval, the study investigated two deep learning architectures: 
MoViNet, a lightweight 3D convolutional network optimized for real-time inference, and 
PredFormer, a transformer-based model better suited for offline recognition of complex 
temporal patterns. The project combined technical experimentation with close collaboration 
with nursing staff, ensuring that the designed system was aligned with clinical needs and 
workflows. Due to the limited availability of patient data, a simulated dataset was created in 
a hospital room setting, allowing validation of the technical work and preliminary training 
of the models. Additional modalities such as audio and ECG were also integrated 
conceptually through a multimodal attention mechanism but could not be tested due to the 
lack of synchronized data. Despite the constraints, the study demonstrated the feasibility of 
implementing such a system in clinical environments and laid the groundwork for future 
research focused on real-time monitoring, multimodal fusion, and large-scale clinical 
validation. 
 
 
 

5.2. Key findings 
 
 
One of the key outcomes of this work is the confirmation that lightweight architectures such 
as MoViNet-A5 can be fine-tuned and adapted for use in a clinical environment, offering 
real-time inference capabilities suitable for deployment on modest hardware like Raspberry 
Pi devices. At the same time, the experiments with PredFormer highlighted the potential of 
transformer-based models to capture long-range temporal dependencies, even though their 
computational demands currently prevent real-time use. This dual exploration underscored 
the trade-off between efficiency and accuracy that must be balanced in hospital applications. 
 
Another major finding was the relevance of multimodal integration for robust patient 
monitoring. While video formed the backbone of the system, the addition of modalities such 
as audio and ECG signals provided complementary information that could improve the 
detection of complex or subtle behaviors, such as agitation or early signs of distress. The 
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attention mechanism, particularly the multi-head design, proved to be an effective way of 
weighting contributions across modalities, paving the way for more context-aware and 
reliable systems. 
 
Finally, the project revealed that the success of such AI-based solutions depends not only on 
technical performance but also on clinical collaboration. Engaging nurses and assistant 
nurses in the early stages of the system’s design ensured that our tool was clinically relevant, 
and aligned with real-world workflows. Their feedback highlighted the need for a system 
that minimizes false negatives, tolerates some false positives, and remains intuitive to use 
under stressful working conditions. This collaborative approach represents a critical step 
toward ensuring that future iterations of the system are both technically effective and 
practically sustainable in hospital environments. 
 
 
 

5.3. Limitations of the study 
 
 
As discussed previously, a central limitation of this thesis lies in the lack of real patient data 
during the development phase. The absence of real patient data makes it impossible to 
validate the model and system other than through a proof-of-concept. 
As the simulation dataset is small in size and diversity, model evaluation is based on only a 
limited number of examples, which increases the risk of overfitting and limits the 
generalisability of the results.  
 
Finally, from a technical standpoint, our system also has some limitations. The cameras can 
only capture images with sufficient lighting, making it impossible to collect data at night. 
This represents a significant gap, since night shifts are particularly challenging for nurses 
and may be when automated assistance is most needed. The technical infrastructure also 
imposed constraints in terms of available resources, which we had to adapt to in order to 
find an acceptable compromise in the model training results. 
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5.4. Suggestions for future research  
 
 
As part of this project, it is necessary to collect a dataset consisting of real patient data. This 
will not only enable the technical models to be validated using more extensive and complex 
datasets, but will also strengthen collaboration with medical staff, whose participation in 
tagging the videos is essential.  
Once these models have been validated using real data, real-time implementation can begin. 
This involves first designing a nurse alert system that is consistent with their way of 
working, simple and intuitive. Then, the system will be implemented in parallel with the 
nurses' shifts in order to test the tool's effectiveness and reliability. 
 
Another avenue of research involves creating a synchronised dataset of real patient data, 
including tagged videos and associated audio, as well as PMS signals. This will enable the 
multimodal attention model to be validated or rejected, and a decision made on its possible 
implementation in a hospital setting. 
 
Finally, developing mutual trust between medical and technical staff enables the design of 
systems that are fully adapted to the everyday reality of nurses. Their advice, opinions, and 
suggestions must be at the heart of future infrastructure designs so that they are best suited 
to their needs once real-time implementation begins. 
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Appendixes 

 
Appendix 1  
Explicative poster of the project from a technical point of view (English and Swedish 
versions)  
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Appendix 2  
Explicative script of the camera and button setup and associated tagbook 
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Appendix 3 
Extract of the Ethical approval and its English translation (generated using DeepL) 
 
 
Svenska  
 
6.1 Redogör för datainsamling och datas karaktär. 
Data från paenter består av video från filmkamera inklusive ljud samt data från 
paentmonitorerings system (PMS) bestående av EKG, blodtryck, puls, saturaon, temperatur 
och andningsfrekvens. Data i videon markeras i systemet via e tryck på en knapp/klocka 
kopplat ll kameran. Parallellt med dea sker en notering i en loggbok av sjuksköterskan eller 
undersköterskan på vårdrummet. 
För a kunna följa upp paenter som vårdats på IMA eer a vården avslutats, kommer en lista 
med paenters personnummer och vårdd a genomföras. Denna lista är enbart för a vi ska 
kunna komma i kontakt med paenten och kasseras direkt eer uppföljningen. (Dea ingår inte 
i forskningen utan är e sä a följa upp paenternas upplevelse av deltagandet i forskningen.) 
Data inhämtning via workshops består av ljudinspelning, observaoner och anteckningar. I 
den första workshopen där sjuksköterskor och undersköterskor llsammans med 
teknikutvecklare analyserar data bestående av videoklipp. Data från denna workshop 
innehåller sjuksköterskors, undersköterskor och teknikutvecklarnas analys av 
videoinspelningar av paenten som ger klassifikaonen för träningen av modellen. I de två 
följande workshoparna där samutvecklingen av maskininlärningsmodellen sker mellan 
sjuksköterskor, undersköterskor och teknikutvecklare, kommer ljudinspelning, observaon 
och anteckningar a genomföras. 
 
6.4 Hur kommer insamlade data a hanteras och förvaras? 
Data från video och PMS kommer a bevaras på hårddiskar inom verksamheten på 
Karolinska Universitetssjukhuset, en i Huddinge och en i Solna. Dessa hårddiskar kommer a 
vara inlåsta så a enbart deltagare i forskningsprojektet har llgång ll dea, dvs 3 personer (2 
teknikutvecklare samt 1 forskare på KTH). Inga paentdata kommer a samlas in utan det är 
enbart video, dvs kodlistor kommer inte a förekomma i anslutning ll videomaterialet. 
Separat kommer K.M. a föra en lista där paentens personnummer framgår, dea 
för a eer utskrivning från intermediärvårds avdelningen kunna kontakta paenten för e 
uppföljande samtal. 
Data från kalibrerings workshop och de två designworkshoparna kommer a samlas in och 
handlar om upplevelser, åsikter, och synpunkter ll maskinlösningen och användargränssni. 
För a säkerställa kvaliteten på forskningen planerar vi a ljudinspela workshopparna samt 
anteckna. 
Ljudinspelningarna kommer a transkriberas. I transkriponerna kommer möjliga namn, 
platser eller andra idenfierare a tas bort eller ges pseudonymer. Ljudinspelningar och 
anteckningar från workshoparna kommer a lagras på en lösenordsskyddad, krypterad 
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hårddisk och låsas in i säkert skåp på Karolinska Universitetssjukhuset. Transkriponer 
kommer a lagras med en anonym idenfierare (t.ex. P01) i en lösenordsskyddad, 
GDPR-kompabel molnserver på Karolinska Universitetssjukhuset. Ljudinspelningar 
kommer a raderas eer a transkriberingen har avslutats. Data utan den personliga 
idenfieraren kommer a lagras ll 2030. Endast forskarna (se nedan) har llgång ll data. 
Enbart forskarna knutna ll dea projekt kommer a ha llgång ll data, dvs 6 personer (forskare 
från KTH 2 st, Karolinska Instutet 1 st, Karolinska Universitetssjukhuset 1 st och 
teknikutvecklare 2 st). Materialet kommer a vara anonymiserat och det kommer inte a 
förekomma några personuppgier i samband med detta material. 
 
 
 
English translation (by DeepL) 
 
6.1 Describe the data collection and the nature of the data. 
Data from patients consists of video from film camera including sound and data from 
patient monitoring system (PMS) consisting of ECG, blood pressure, pulse, saturation, 
temperature 
and respiratory rate. The data in the video is marked in the system by pressing a 
button/clock connected to the camera. In parallel, an entry is made in a logbook by the nurse 
or the assistant nurse in the care room. 
In order to be able to follow up on patients who have been treated at the IMA after the 
treatment has ended, a list with the patient's social security number and treatment will be 
implemented. This list is only for us to be able to get in touch with the patient and is 
discarded directly after the follow-up. 
Data collection via workshops consists of audio recording, observations and notes. In the 
first workshop, nurses and assistant nurses together with technology developers 
analyse data consisting of video clips. Data from this workshop includes the analysis of 
video recordings of the patient by nurses, nursing assistants and technology developers, 
which provide the classifier for the training of the model. In the next two workshops where 
the co-development of the machine learning model takes place between nurses, assistant 
nurses and technology developers, audio recordings, observations and notes will be 
conducted. 
 
 
6.4 How will the collected data be handled and stored? 
Data from video and PMS will be stored on hard drives within the Karolinska University 
Hospital, one in Huddinge and one in Solna. These hard drives will be locked so that only 
participants in the research project have access to them, i.e. 3 people (2 technology 
developers and 1 researcher at KTH). No patient data will be collected, only video, i.e. code 
lists will not be present in connection with the video material. 
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Separately, K.M. will keep a list of the patient's social security number, in order to be able to 
contact the patient for a follow-up call after discharge from the intermediate care unit. 
Data from the calibration workshop and the two design workshops will be collected and is 
about experiences, opinions, and views of the machine solution and user interface. To ensure 
the quality of the research, we plan to audio record the workshops and take notes. 
The audio recordings will be transcribed. In the transcripts, possible names, locations 
or other identifiers will be removed or given pseudonyms. Audio recordings and notes 
from the workshops will be stored on a password-protected, encrypted hard drive and 
locked in a secure cabinet at Karolinska University Hospital. Transcripts will be stored with 
an anonymous identifier (e.g. P01) in a password-protected, GDPR-compliant cloud server 
at Karolinska University Hospital. Transcripts will be stored with an anonymous identifier 
(e.g. P01) in a password-protected, GDPR-compliant cloud server at Karolinska University 
Hospital. Audio recordings will be deleted once the transcription has been completed. Data 
without the personal identifier will be stored until 2030. Only the researchers (see below) 
have access to the data. 
Only the researchers associated with the project will have access to data, i.e. 6 people 
(researchers from KTH 2, Karolinska Instutet 1, Karolinska University Hospital 1 and 
technology developers 2). The material will be anonymised and there will be no personal 
data associated with this material. 
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