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Abstract

This thesis investigates the optimal control of low-thrust satellites operating
in Sun-synchronous orbits (SSOs), with particular attention to the effects of
atmospheric drag and eclipse constraints. The work addresses the challenge of
maintaining orbital stability when thrust application is limited by environmental
conditions, such as power unavailability during eclipse and the continuous loss of
orbital energy due to drag.

The problem is formulated as an optimal control problem and solved using
Pontryagin’s Maximum Principle, leading to a boundary value problem addressed
through an indirect shooting method. Atmospheric density is modeled using the
NRLMSISE-00 model, while eclipse prediction is based on a cylindrical shadow
formulation combined with ephemerides data obtained through SPICE.

A modular Python software environment, originally based on the Oculus frame-
work, has been extended to include atmospheric drag and eclipse modeling. A
graphical user interface supports scenario configuration and visualization of the
optimized solutions.

The developed framework is applied to three representative scenarios: an ideal
case with only two-body dynamics and continuous thrust, a case including atmo-
spheric drag, and a full model incorporating both drag and eclipse constraints.
The progressive comparison of these cases illustrates the impact of environmental
effects on thrust scheduling and orbital maintenance strategies.
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Chapter 1

Introduction

1.1 Background and Motivation

The modern landscape of space missions is increasingly shaped by the need for
autonomy, efficiency, and long-term operability. As satellites are tasked with more
complex maneuvers and tighter mission constraints, trajectory optimization has
become a central element of mission design and control. Among the technological
advancements driving this evolution, low-thrust propulsion systems — such as
Hall-effect thrusters and ion engines — have fundamentally transformed orbit
control. These systems provide continuous and finely tunable thrust, offering sub-
stantial gains in fuel efficiency and enabling extended mission lifetimes, progressive
orbit raising, and precise station-keeping. However, their effective use demands
sophisticated mathematical tools capable of handling long-duration maneuvers in
nonlinear and time-varying dynamical environments.

At the same time, real missions are constrained by physical and operational
limitations that strongly influence thrust scheduling. Among the most critical
are power availability and environmental effects. Solar-powered spacecraft must
suspend thrust during eclipse phases, when they receive no sunlight, either to
conserve energy or to avoid overloading their power subsystems. This introduces
time-dependent discontinuities in the control input, forcing the guidance law to
adapt to periods when thrust cannot be applied. Similarly, atmospheric drag
continuously removes orbital energy and causes secular decay of the semi-major
axis, requiring periodic reboost maneuvers to maintain the desired orbit. These
effects significantly complicate the trajectory optimization problem and render
traditional impulsive or analytical approaches inadequate.

Optimal control theory provides a powerful framework to address such challenges.
By formulating the problem as a constrained optimization problem over a dynamical
system, it is possible to derive control laws that minimise fuel consumption or
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mission time while respecting physical constraints such as thrust availability, power
limitations, or boundary conditions on orbit geometry. Both direct (discretization-
based) and indirect (Pontryagin’s Maximum Principle) approaches have been
applied to low-thrust orbit transfers, station-keeping, rendezvous, and interplanetary
missions. These methods allow the inclusion of nonlinear dynamics, time-varying
constraints, and environmental perturbations in a unified framework.

The accuracy and tractability of such methods, however, depend critically on
the fidelity of the underlying dynamical model. While the classical two-body
problem remains a useful first approximation, it is insufficient for precise long-term
analysis. Perturbations due to Earth’s oblateness, atmospheric drag, solar radiation
pressure, and third-body attractions become relevant for orbit propagation and
control, especially in low Earth orbit. Moreover, the choice of coordinate system
affects both the physical interpretation and the numerical properties of the problem.
Spherical coordinates, for instance, are often advantageous for modeling altitude
variations, ground-track evolution, and eclipse geometry.

This thesis is motivated by the growing need for accurate and efficient tools to
support orbit control in realistic operational conditions. The focus is on spacecraft
operating in Low Earth Orbit (LEO), and in particular on Sun-synchronous orbits
(SSOs), which are widely used for Earth observation and scientific missions. These
orbits are especially sensitive to perturbations and depend on continuous solar
illumination for power generation, making them an ideal context in which to study
the interplay between atmospheric drag, eclipse constraints, and optimal thrust
scheduling.

The representative problem addressed in this work is the station-keeping of a
satellite in a Sun-synchronous orbit, with a discontinuous thrust profile imposed
by eclipse phases. This scenario encapsulates many of the challenges encountered
in real missions and provides a relevant case study for developing and validating
optimal control strategies under realistic physical constraints.

1.2 Literature and Historical Context
The study of orbital mechanics dates back to the foundational works of Johannes
Kepler and Isaac Newton, whose laws provided the first predictive models for
planetary motion. Newton’s law of universal gravitation, combined with his second
law of motion, laid the groundwork for what would later be formalized as the two-
body problem (2BP). This analytical solution describes the motion of a satellite
around a central mass under the assumption of spherical symmetry and no external
perturbations. While elegant and insightful, the two-body problem alone cannot
capture the full complexity of real-world orbital dynamics.

To address more realistic scenarios, extended models have been developed over
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the centuries. These include the restricted three-body problem (R3BP), which
incorporates the gravitational influence of a secondary body (e.g., the Moon or
the Sun), and high-fidelity models accounting for non-spherical gravity fields,
atmospheric drag, solar radiation pressure, and third-body perturbations. The
development of such models has paralleled the evolution of space missions — from
early satellite deployments to modern interplanetary exploration — where higher
accuracy and long-term reliability are paramount.

The optimization of spacecraft trajectories has also undergone significant evo-
lution. In the early space era, trajectory design was largely based on impulsive
maneuvers and patched conic approximations. These approaches, while computa-
tionally simple, relied heavily on simplifying assumptions and pre-defined maneuver
structures. With the advent of more advanced computing and the emergence
of low-thrust propulsion systems, new challenges arose: continuous thrusting,
long-duration maneuvers, and nonlinear dynamics required more sophisticated
techniques.

This led to the adoption of optimal control theory as a systematic framework for
trajectory optimization. The indirect approach, grounded in Pontryagin’s Maximum
Principle (PMP), enables the derivation of necessary conditions for optimality in a
dynamical system. This approach has been successfully applied to a wide range
of problems, including fuel-optimal orbit transfers, deorbiting, rendezvous, and
attitude reorientation. However, it often results in boundary value problems that
can be sensitive to initial guesses and challenging to solve numerically.

To overcome these difficulties, direct methods — such as direct transcription
and collocation — have been developed. These techniques discretize the control
problem into a nonlinear programming problem, making them robust and well-
suited for problems with complex constraints or limited regularity. Numerous
software tools and solvers, such as GPOPS-II, CasADi, and DIDO, have been
developed to implement these techniques efficiently, and have been employed in
both academic and industrial mission design.

In the context of low Earth orbit (LEO) operations, especially for missions
that rely on solar power and require precise orbit maintenance (such as Earth
observation or remote sensing), optimal control theory offers a natural way to incor-
porate thrust limitations, eclipse periods, and perturbation effects into trajectory
planning. Several recent studies have investigated eclipse-aware thrust scheduling,
J2-influenced orbit control, and minimum-fuel strategies for Sun-synchronous orbit
maintenance.

This thesis builds upon this growing body of literature by focusing on a specific
yet representative problem: station-keeping in a Sun-synchronous orbit with the
additional constraint of no-thrust during eclipse. It combines classical orbital
theory, modern control techniques, and high-fidelity dynamical modeling in a unified
approach aimed at both theoretical understanding and practical application.
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1.3 Objective of this Thesis
The primary objective of this thesis is to investigate the problem of optimal orbit
maintenance for spacecraft operating in Sun-synchronous orbits (SSOs) under
realistic environmental and operational constraints, with particular emphasis on
the combined effects of atmospheric drag and eclipse. The focus is on designing
thrust strategies that minimise propellant consumption while ensuring orbital
stability and mission continuity despite power limitations and perturbing forces.

A key operational challenge for solar-powered satellites is the inability to apply
thrust during eclipse phases, when the spacecraft is temporarily deprived of solar
power. This constraint imposes discontinuities in the control input and introduces
additional complexity into the trajectory optimisation process. Furthermore, at-
mospheric drag continuously reduces orbital energy, leading to secular decay of
altitude and requiring regular station-keeping manoeuvres. Together, these effects
make the problem time-dependent, state-constrained, and highly nonlinear.

To address this challenge, the station-keeping problem is formulated as an optimal
control problem and solved using the indirect approach based on Pontryagin’s
Minimum Principle. The spacecraft dynamics are described by a modified two-body
model expressed in spherical coordinates (r, θ, ϕ) and coupled with a local NEZ
frame for the velocity components. The model includes central gravity, atmospheric
drag computed using the NRLMSISE-00 density model, and an eclipse constraint
derived from the cylindrical shadow geometry and ephemerides obtained via SPICE.

A modular Python tool with a graphical user interface — originally based on
the Oculus framework [1] and extended in this work — was developed to implement
the dynamical model and solve the optimal control problem. The thrust law is
modelled as piecewise-constant, taking the value Tmax in illuminated regions and
zero during eclipse.

The main contributions of this thesis can be summarised as follows:

• Development of a high-fidelity dynamical model incorporating gravitational
forces, atmospheric drag, and eclipse constraints in spherical coordinates.

• Formulation of the optimal control problem with discontinuous thrust avail-
ability and solution using an indirect shooting method.

• Extension of the existing Oculus tool with new modules for atmospheric drag
computation and eclipse detection, enabling realistic mission simulation.

• Numerical analysis of three representative scenarios (ideal dynamics, drag only,
and drag with eclipse) to assess how environmental effects influence optimal
control structure, thrust distribution, and mission performance.
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By integrating realistic physical models, advanced control theory, and dedicated
numerical tools, this work provides a robust framework for station-keeping analysis
in low Earth orbit. The results offer insights into how drag and eclipse constraints
shape optimal thrust strategies and contribute to the development of more efficient
orbit maintenance techniques for future Earth observation and scientific missions.

1.4 Dissertation Overview
The remainder of this thesis is structured as follows:

• Chapter 2 – Dynamical Models: introduces the mathematical models
used to describe orbital motion. It begins with a review of classical orbital
mechanics, reference frames, and orbital elements, and proceeds with the
formulation of the equations of motion in spherical coordinates. Non-Keplerian
perturbations, such as atmospheric drag and solar radiation pressure, are also
discussed, together with the Sun-synchronous orbit geometry.

• Chapter 3 – Optimal Control Theory: presents the theoretical background
of optimal control and its application to orbital problems. The chapter
discusses Pontryagin’s Maximum Principle, the formulation of optimal control
problems as boundary value problems, and the distinction between direct and
indirect solution methods.

• Chapter 4 – Problem Formulation and Implementation: details the
specific problem addressed in this thesis, including the modeling of the discon-
tinuous thrust constraint during eclipse, the structure of the boundary value
problem, and the numerical solution approach. The implementation of the
model within the extended Oculus framework and the development of the
Python simulation tool with a graphical interface are also presented.

• Chapter 5 – Results and Discussion: reports the results of the numerical
simulations for three representative scenarios — ideal dynamics, dynamics
with atmospheric drag, and the full model including both drag and eclipse.
The influence of these effects on optimal thrust profiles, orbital evolution, and
mission performance is analyzed.

• Chapter 6 – Conclusions and Future Work: summarizes the main findings
of the thesis and outlines possible extensions, including the incorporation of
additional perturbations, higher-fidelity gravity models, and more advanced
control strategies.
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Chapter 2

Dynamic Models

2.1 Introduction to Orbital Dynamics
The study of orbital dynamics is a cornerstone of modern astronautics, as it provides
the mathematical and physical foundation for predicting and controlling the motion
of spacecraft. Understanding these dynamics is essential not only for mission
planning but also for the design of optimal trajectories, station-keeping strategies,
and interplanetary transfers.

Orbital dynamics describe how a body moves under the influence of gravitational
and non-gravitational forces. In the simplest approximation, the problem reduces to
the motion of a particle around a central massive body, governed by Newton’s law
of gravitation. This framework, known as the two-body problem, offers analytical
solutions for the motion of satellites and forms the basis for more complex models.

From Ideal Models to Perturbed Orbits

Although the two-body model provides valuable insights, real-world spacecraft
trajectories are influenced by several perturbations:

• The Earth’s non-spherical gravitational field (e.g., the J2 term) causes secular
variations of orbital elements such as the right ascension of the ascending node
(RAAN) and argument of perigee.

• Atmospheric drag, which is particularly relevant for low Earth orbits (LEO),
reduces the semi-major axis and increases the decay rate of the orbit.

• Solar radiation pressure and third-body effects (e.g., Moon and Sun) further
modify the motion.
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Accurate modeling of these effects is fundamental for missions requiring long-term
orbit prediction or precision maneuvers, such as Sun-synchronous orbit maintenance
or low-thrust trajectory optimization.

Relevance for This Work

The present thesis focuses on the station-keeping of a spacecraft in a Sun-synchronous
orbit in LEO. This requires a detailed understanding of orbital dynamics in both
ideal and perturbed conditions, with special emphasis on low-thrust control strate-
gies. In the following sections, the two-body problem will be formulated, extended
to spherical coordinates, and complemented by the description of relevant reference
frames and perturbative forces.

Figure 2.1: Example of SSO

2.2 Reference Frames and Transformations

A rigorous understanding of reference frames is fundamental in astrodynamics.
Reference frames define how positions, velocities, and accelerations are described,
and how transformations are performed for modeling, control, and ground-based
operations. Here is the representation of some reference frames:
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Figure 2.2: ECI, Perifocal, NEZ

Earth-Centered Inertial (ECI) Frame
The Earth-Centered Inertial (ECI) frame is a non-rotating inertial frame with its
origin at the Earth’s center of mass. It is typically aligned with the mean equator
and equinox of the epoch J2000.

Figure 2.3: ECI
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Its axes are:

• X-axis: Points towards the vernal equinox,

• Z-axis: Aligned with the Earth’s rotational axis (North Pole),

• Y-axis: Completes the right-handed coordinate system.

The ECI frame is used as the inertial baseline for orbit propagation and optimal
control formulations.

Earth-Centered Earth-Fixed (ECEF) Frame
The ECEF frame shares the same origin as the ECI, but it rotates with the Earth.
It is fixed with respect to the Earth’s surface, and thus convenient for expressing
locations of ground stations or atmospheric models.

Figure 2.4: ECEF

The axes are:

• X-axis: Points towards the intersection of the equator and Greenwich merid-
ian,

• Z-axis: Aligned with the North Pole,

• Y-axis: Completes the right-handed system.

9
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NEZ (North-East-Zenith) Local Frame

The NEZ frame is a topocentric local reference frame centered at a specific point
on the Earth’s surface (e.g., a ground station).

Figure 2.5: NEZ

The frame is defined by:

• N-axis: Points toward geographic north,

• E-axis: Points eastward along the local horizontal,

• Z-axis: Points upward, normal to the local tangent plane.

It is commonly used in ground tracking, navigation, and measurement systems.

Rotation Matrices and Reference Frame Transformations

The orientation of one reference frame with respect to another is defined by a
combination of elementary rotations about the principal axes. A single rotation of
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an angle θ about the x, y, or z axis is represented by the following matrices [1, 2]:

R1(θ) =

1 0 0
0 cos θ sin θ
0 − sin θ cos θ

 , R2(θ) =

cos θ 0 − sin θ
0 1 0

sin θ 0 cos θ

 , R3(θ) =

 cos θ sin θ 0
− sin θ cos θ 0

0 0 1

 .
(2.1)

These matrices perform a passive rotation, i.e. they transform the components
of a fixed vector from one reference frame to another rotated frame. The overall
orientation between two right-handed orthogonal frames A and B can thus be
expressed as:

rB = RA→B rA, R−1
A→B = R⊤

A→B.

Below are the rotation conventions adopted in this work for the main frames used
in orbital dynamics and ground applications.

ECI to ECEF The transformation between the Earth-Centered Inertial (ECI)
frame and the Earth-Centered Earth-Fixed (ECEF) frame is obtained through a
rotation about the z-axis of the Greenwich sidereal angle θG(t):

RECI→ECEF = R3(θG(t)). (2.2)

The angle θG represents the Earth’s rotation about its polar axis and increases
approximately linearly with time:

θG(t) = θG0 + ωEt,

where ωE = 7.2921159 × 10−5 rad/s is the Earth’s mean rotation rate. For high-
precision applications, θG can be evaluated from the Julian Date using IAU/IERS
conventions that include precession and nutation corrections [2].

This transformation is used to convert ground coordinates (latitude, longitude,
altitude) or atmospheric fields—defined in the rotating ECEF frame—into the
inertial frame employed for orbital propagation.

Perifocal (PQW) to ECI The perifocal reference frame {p̂, q̂, ŵ} is defined
with origin at the central body and axes aligned with the orbital plane:

• p̂ points toward the periapsis;

• q̂ is orthogonal to p̂ in the orbital plane, completing a right-handed set;

• ŵ is normal to the orbital plane, parallel to the angular momentum vector.

11
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The transformation from the perifocal frame to the inertial ECI frame is performed
through the rotation sequence:

RP QW →ECI = R3(Ω)R1(i)R3(ω), (2.3)

where Ω is the right ascension of the ascending node, i is the inclination, and ω
is the argument of periapsis. This convention follows the standard 3–1–3 Euler
rotation sequence [1, 2].

NEZ (North–East–Zenith) Local Frame For ground-based or topocentric
analyses, it is convenient to define the local North–East–Zenith (NEZ) frame
centered at a specific point on the Earth’s surface. The transformation from ECEF
to NEZ coordinates is constructed using the observer’s geodetic latitude ϕ and
longitude λ:

RECEF →NEZ =

− sinϕ cosλ − sinϕ sin λ cosϕ
− sinλ cosλ 0

− cosϕ cosλ − cosϕ sinλ − sinϕ

 . (2.4)

The three axes are oriented as follows:

• N̂ : toward geographic north,

• Ê: eastward along the local tangent plane,

• Ẑ: upward, normal to the local horizon.

The NEZ frame is mainly used to express measurements, elevation angles, and
line-of-sight vectors between a satellite and a ground station.

Summary The rotation matrices introduced above enable consistent transforma-
tions among all the coordinate systems used in this work:

ECI ←→ ECEF ←→ NEZ, PQW ←→ ECI.

These transformations are fundamental for correctly describing satellite motion,
evaluating eclipse conditions, and applying perturbations such as atmospheric drag
or thrust in the appropriate reference frame.

Having defined the reference frames and rotation conventions, the next section
derives the equations governing the two-body gravitational motion.
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2.3 The Two-Body Problem

Model assumptions
Before deriving the governing equations of motion, it is important to state the
assumptions underlying the classical two-body problem (2BP). The model represents
the motion of two point masses, m1 and m2, which interact only through their
mutual gravitational attraction.

Figure 2.6: Two Body Problem scheme

The following hypotheses are introduced:

• Both bodies are considered point masses, meaning that their dimensions
are negligible compared to the mutual distance, and the gravitational field is
spherically symmetric.

• The system is isolated: no external forces act on the pair, such as atmospheric
drag, solar radiation pressure, or third-body attractions.

• The gravitational constant G is uniform and time-invariant.

• The motion is analyzed in an inertial reference frame whose origin can be
placed either at the system’s barycenter or at one of the two bodies (typically
the more massive one, in the Earth–satellite case).

Under these assumptions, the dynamics of the system are governed solely by
Newton’s law of universal gravitation and Newton’s second law of motion [3, 2, 4].
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Derivation of the relative equation of motion
Let m1 denote the more massive body (e.g. the Earth) and m2 the smaller one
(e.g. a satellite). Their position vectors in an inertial reference frame are R1(t) and
R2(t), respectively. The mutual gravitational forces acting on the two bodies are

F12 = −G m1m2

∥R2 −R1∥3 (R2 −R1), F21 = −F12, (2.5)

where F12 is the force exerted by body 1 on body 2, and F21 is the equal and
opposite force on body 1. Applying Newton’s second law to each mass yields

m1 R̈1 = F21, m2 R̈2 = F12. (2.6)
Subtracting the first equation from the second eliminates the internal forces and
leads to the relative equation of motion. Defining the relative position vector
r = R2 −R1 and its second derivative r̈ = R̈2 − R̈1, one obtains

r̈ = −G (m1 +m2)
r
r3 , r = ∥r∥. (2.7)

Equation (2.7) governs the relative motion of the two masses. It shows that each
body moves under the influence of an inverse-square central force directed along r.
The term

µ = G (m1 +m2)
is the gravitational parameter of the system. In the Earth–satellite case m2 ≪ m1,
so that µ ≃ Gm1 = 3.986 004× 105 km3/s2, known as the standard gravitational
parameter of Earth. From this point on, the equations of motion will be expressed
in terms of µ for compactness, leading to this formulation:

r̈ = − µ
r3 r. (2.8)

Equation (2.8) forms the starting point for all orbital mechanics models. In the
next sections it will be used to derive the integrals of motion (angular momentum
and mechanical energy), and to obtain the analytical form of the orbital trajectory.
These steps will ultimately lead to the classical conic solution r = p/(1 + e cos ν),
which describes all possible orbits under a central gravitational field [5, 6, 1].

Conservation Laws
A key property of the 2BP is that the force is always directed along r, hence it
is a central force. Taking the cross product of (2.7) with r, the specific angular
momentum vector

h = r× ṙ (2.9)
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is found to be constant, since ḣ = r× r̈ = 0. This result implies that the motion is
confined to the plane perpendicular to h. Moreover, the rate at which the radius
vector sweeps area, 1

2∥r× ṙ∥ = 1
2h, is constant. This is precisely Kepler’s second

law: equal areas are swept in equal times [3, 2].

Within this orbital plane we introduce polar coordinates (r, ν), where ν is the true
anomaly, the angle measured from the direction of the periapsis to the current
position of the satellite. Expressing the velocity as ṙ = ṙ êr +rν̇ êν , and substituting
in (2.9) leads to h = r2ν̇, which directly relates angular velocity to instantaneous
radius.

Differentiating ṙ and using (2.7), one obtains the radial and transverse compo-
nents of acceleration:

r̈ − rν̇2 = − µ
r2 , rν̈ + 2ṙν̇ = 0. (2.10)

The second equation integrates immediately to the conservation law r2ν̇ = h derived
earlier. Substituting this expression in the radial equation of motion gives

r̈ = h2

r3 −
µ

r2 . (2.11)

It is convenient to introduce u = 1/r and express derivatives with respect to the
true anomaly ν. Since ṙ = −h du

dν
and r̈ = −h2u2 d2u

dν2 , substituting into (2.11) yields
the differential equation

d2u

dν2 + u = µ

h2 , (2.12)

whose general solution is

u(ν) = µ

h2

è
1 + e cos(ν − ν0)

é
. (2.13)

Choosing the reference such that ν0 = 0 at periapsis and recalling that u = 1/r,
one obtains the classical polar equation of a conic section:

r = p

1 + e cos ν , p = h2

µ
. (2.14)

Equation (2.14) demonstrates that all possible orbits under a central inverse-square
law are conic sections with the Earth at one focus. The value of e (the eccentricity)
determines the shape: e = 0 corresponds to a circle, 0 < e < 1 to an ellipse,
e = 1 to a parabola, and e > 1 to a hyperbola. For bound orbits (e < 1), the
relation between the specific mechanical energy and the semi-major axis is found
by integrating the scalar product ṙ · ṙ:
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E = v2

2 −
µ

r
= − µ

2a, (2.15)

known as the vis-viva equation. This compact expression directly relates the orbital
velocity to position and semi-major axis, v2 = µ

1
2
r
− 1

a

2
, and plays a central role

in orbital transfers and energy analyses [4, 2].

To characterise the direction of periapsis within the orbital plane, it is useful to
define the eccentricity vector

e = ṙ× h
µ
− r
r
, (2.16)

which is constant and points from the focus toward periapsis, with magnitude
∥e∥ = e. The vector form of (2.14) can then be written as

r = h2/µ

1 + e cos ν êr,

revealing how the position vector rotates around the fixed e direction.
Finally, combining the angular momentum and energy integrals yields useful

geometric relations:

h2 = µa(1− e2), rp = a(1− e), ra = a(1 + e),

which fully specify the ellipse once (a, e) are known.
This formulation concludes the derivation of the unperturbed motion in closed form.
Starting from Newton’s laws, we have obtained the governing equation, identified
the conserved quantities (h and E), and expressed the solution as a planar conic
whose geometry depends solely on (a, e). These results represent the mathematical
foundation upon which all subsequent perturbation and optimal-control analyses
are constructed [1, 7, 5, 3].

2.4 Perturbation Models

2.4.1 Introduction to Perturbations
The two-body problem derived in Section 2.3 assumes a perfectly central gravi-
tational field and neglects all secondary influences. In practice, the motion of an
Earth-orbiting satellite is affected by several small forces, generally referred to as
perturbations. These perturbations cause slow variations of the orbital elements
over time, deviating the motion from the ideal Keplerian solution [3, 2, 5, 8].

Perturbations are traditionally classified as:
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• Conservative, if they preserve the total mechanical energy of the orbit (e.g.
the Earth’s oblateness and third-body attractions);

• Non-conservative, if they dissipate energy from the system (e.g. atmospheric
drag or magnetic torques).
The equation of motion can therefore be written as:

r̈ = − µ
r3 r + ap, (2.17)

where ap collects all perturbing accelerations. For low Earth and Sun-synchronous
orbits, the most relevant contributions are: the J2 term of the geopotential, the
atmospheric drag, and—at higher altitudes—the solar radiation pressure (SRP).

2.4.2 Zonal Harmonics and the J2 Perturbation
Due to the Earth’s equatorial bulge, the gravitational potential deviates from that
of a perfect sphere and can be expanded as a series of zonal harmonics:

U(r, ϕ) = −µ
r

C
1−

∞Ø
n=2

Jn

3
RE

r

4n

Pn(sinϕ)
D
, (2.18)

where RE is the equatorial radius, ϕ the geocentric latitude, and Pn are the Legendre
polynomials [2, 4].

Truncating the expansion at the dominant term J2 = 1.08263× 10−3 gives the
quadrupole contribution:

UJ2 = −µ
r
J2

3
RE

r

42 1
2 (3 sin2 ϕ− 1). (2.19)

Taking the gradient of UJ2 produces the corresponding acceleration in the
Earth-centered inertial (ECI) frame:

aJ2 = 3J2µR
2
E

2r5


x(5z2/r2 − 1)
y(5z2/r2 − 1)
z(5z2/r2 − 3)

 . (2.20)

This acceleration acts in the orbital plane as a conservative perturbation, leading
to secular precession of the line of nodes and the argument of perigee. Averaging
the equations of motion over one orbital period yields the classical expressions:

Ω̇ = −3
2J2n

3
RE

a

42 cos i
(1− e2)2 , ω̇ = 3

4J2n
3
RE

a

42 (4− 5 sin2 i)
(1− e2)2 , (2.21)

where n =
ñ
µ/a3 is the mean motion. These relations describe a westward

regression of the ascending node and a rotation of the line of apsides, both depending
on altitude and inclination [3, 9, 5, 8].
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2.4.3 Application to Sun-Synchronous Orbits
Sun-synchronous orbits (SSO) exploit the nodal precession caused by J2 to maintain
a constant local solar time of passage over each point on Earth. By selecting a
suitable combination of inclination and semi-major axis, the regression rate of the
ascending node is synchronized with the apparent annual motion of the Sun:

Ω̇SSO ≈ −
360◦

year = −1.991× 10−7 rad/s. (2.22)

Inserting (2.21) into the condition above yields:

cos iSSO = − 2
3J2

(1− e2)2

(RE/a)2
Ω̇SSO

n
. (2.23)

For a representative altitude of h = 300 km (a ≃ 6671 km), this gives iSSO ≈
96.65◦, corresponding to a retrograde, near-polar orbit [8, 5, 3]. Atmospheric
drag slowly reduces the semi-major axis, thereby altering Ω̇ and breaking exact
sun-synchronicity; small thrust maneuvers are therefore required for long-term
maintenance.

Figure 2.7: Condition for Sun-synchronicity: the J2-induced regression of the
node matches the apparent motion of the Sun.
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2.4.4 Atmospheric Drag
At low altitudes, typically below 800–1000 km, the residual atmosphere produces a
drag acceleration opposed to the direction of motion, expressed as:

aD = −1
2
CDA

m
ρ(h) vrelvrel, (2.24)

where CD is the drag coefficient, A the reference area, m the satellite mass, and
ρ(h) the local atmospheric density. The velocity vrel = ṙ−ωE × r accounts for the
rotation of the atmosphere with the Earth.

In simplified textbooks an exponential model

ρ(h) = ρ0 exp
A
−h− h0

H

B

is often employed to approximate the density variation with altitude. While
analytically convenient, this relation is inadequate for accurate propagation in low
Earth orbits, as it neglects solar and geomagnetic activity and cannot reproduce
the day–night asymmetry or temporal variations of the thermosphere. For this
reason, in this work the density is computed using the PyMSIS implementation of
the NRLMSISE-00 model [10], which provides ρ(h, t) as a function of the solar flux
indices (F10.7, F10.7a) and the geomagnetic index Ap.

The resulting drag acceleration is typically of the order of 10−6–10−7 m/s2 in
LEO, leading to a gradual decay of the semi-major axis and orbital energy. Unlike
J2, this is a non-conservative perturbation and acts as a continuous dissipative
force [5, 6, 1].

2.4.5 Solar Radiation Pressure
Beyond a few hundred kilometers of altitude, another perturbing effect becomes
non-negligible: the solar radiation pressure (SRP). Photons emitted by the Sun
carry momentum and exert a small but continuous force on exposed satellite
surfaces. The resulting acceleration can be expressed as:

aSRP = −P⊙ CR
A

m

A
r⊕

r⊙

B2

ŝ, (2.25)

where P⊙ = 4.56× 10−6 N/m2 is the solar radiation pressure at 1 AU, CR is the
reflectivity coefficient (typically 1–1.5), A/m the area-to-mass ratio, ŝ the unit
vector from the Sun to the spacecraft, r⊕ the mean Sun–Earth distance, and r⊙
the instantaneous Sun–spacecraft distance.

Although its magnitude is typically 10−7–10−8 m/s2, SRP becomes significant
for high area-to-mass spacecraft or during long-duration missions. In LEO the effect
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is negligible compared to J2 and drag, but it is often included in higher-fidelity
propagation for completeness [2, 3].

In summary, the dynamical model implemented in this work explicitly includes
the atmospheric drag as the only non-conservative perturbation acting on the
satellite. The J2 harmonic is not directly integrated as a force term but is employed
analytically to determine the inclination ensuring the Sun-synchronous geometry
of the reference orbit, according to Eq. (2.23).

Solar radiation pressure, although considerably weaker than drag in the altitude
range of interest (300–500 km), may become comparable or even dominant for
higher orbits or for spacecraft with large area-to-mass ratios. For this reason, it is
here discussed for completeness but not included in the numerical propagation. Its
long-term influence will, however, be relevant in higher-altitude missions and can
be incorporated in future extensions of the model [2, 3].
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Chapter 3

Optimal control theory

3.1 Introduction and Problem Definition
Optimal control theory provides a rigorous mathematical framework for determining
how a dynamical system should be controlled in order to optimize a given perfor-
mance objective. It extends classical control approaches by explicitly accounting
for system dynamics, control constraints, and boundary conditions, allowing the
identification of control strategies that achieve a desired goal in an optimal way.

In the context of dynamical systems, the goal of an optimal control problem
(OCP) is to determine the time history of the control variables u(t) that minimizes
(or maximizes) a given performance index while ensuring that the state vector x(t)
evolves according to the prescribed dynamics. Formally, the system is described by
a set of ordinary differential equations:

ẋ(t) = f
1
x(t),u(t), t

2
, (3.1)

where x(t) ∈ Rn is the state vector, u(t) ∈ Rm is the control vector, and f is a
generally nonlinear function describing the system dynamics.

The performance objective is expressed by a cost functional defined over a time
interval [t0, tf ]. In its most general form, known as the Bolza formulation, it is
written as:

J = Φ
1
x(tf ), tf

2
+
Ú tf

t0
L
1
x(t),u(t), t

2
dt, (3.2)

where:

• L(x,u, t) is the running cost, which accounts for contributions accumulated
during the evolution of the system;

• Φ(x(tf ), tf ) is the terminal cost, which depends on the final state and possibly
on the final time.
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The objective of the optimal control problem is to find the control law u∗(t) that
minimizes J while satisfying the system dynamics, boundary conditions, and any
constraints imposed on the state and control variables. The general formulation
can therefore be expressed as:

min
u(t)

J = Φ
1
x(tf ), tf

2
+
Ú tf

t0
L
1
x(t),u(t), t

2
dt, (3.3)

subject to: ẋ(t) = f
1
x(t),u(t), t

2
, (3.4)

x(t0) = x0, (3.5)
c
1
x(t),u(t), t

2
≤ 0. (3.6)

The flexibility of this framework makes optimal control theory applicable to a
wide variety of engineering problems, ranging from aerospace trajectory optimization
and rendezvous maneuvers to mechanical systems, robotics, and economics. It
provides a systematic way to handle dynamic constraints and performance trade-
offs, producing solutions that are not only feasible but provably optimal under the
chosen cost criterion.

In the following sections, the mathematical foundations of optimal control theory
are developed in detail. The general formulation introduced here will serve as the
basis for deriving the necessary conditions for optimality through the Pontryagin
Minimum Principle, determining the structure of the optimal control law, and
establishing the boundary and path constraints that complete the formulation of
the problem.

3.2 General Formulation of an Optimal Control
Problem

The motion of a dynamical system controlled by external inputs can be described
by a set of nonlinear differential equations of the form:

ẋ(t) = f(x(t),u(t), t), x(t0) = x0, (3.7)

where:

• x(t) ∈ Rn is the state vector describing the system at time t,

• u(t) ∈ Rm is the control vector (decision variable),

• f is a continuous and sufficiently smooth function describing the system dynamics.

The goal of an optimal control problem (OCP) is to determine the control
history u(t) that minimizes (or maximizes) a prescribed performance index while
satisfying the state dynamics (3.7) and all boundary and path constraints.
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Bolza, Mayer, and Lagrange Forms
The most general form of an optimal control problem is the Bolza form, written as:

J = Φ(x(tf ), tf ) +
Ú tf

t0
L(x(t),u(t), t) dt, (3.8)

where:

• Φ(x(tf ), tf ) is the terminal cost (Mayer term), depending on the final state and
possibly on the final time,

• L(x(t),u(t), t) is the running cost (Lagrange term), defined over the control
horizon [t0, tf ].

Two special cases of (3.8) are often considered:

• Mayer form: if L = 0, the cost reduces to

J = Φ(x(tf ), tf ) ,

i.e. only the terminal state contributes to the performance index.

• Lagrange form: if Φ = 0, the cost is defined solely by the integral term:

J =
Ú tf

t0
L(x(t),u(t), t) dt.

It is always possible to convert a Bolza problem into either a Mayer or a Lagrange
problem by introducing auxiliary states. For instance, by defining a new state
variable

ż(t) = L(x(t),u(t), t), z(t0) = 0,
the Bolza problem (3.8) becomes equivalent to a Mayer problem:

J = Φ(x(tf ), tf ) + z(tf ).

Boundary Conditions
An optimal control problem is also defined by a set of boundary conditions on the
state and possibly on the final time:

x(t0) = x0, ψ(x(tf ), tf ) = 0.

The initial state is typically known and fixed, while the final conditions may be
either fully prescribed (e.g. fixed orbital elements) or partially free (e.g. free final
mass). In the latter case, transversality conditions will apply (see Section 3.3).
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Path Constraints
In many practical applications, the state and control variables must satisfy addi-
tional path constraints during the evolution of the system:

g(x(t),u(t), t) ≤ 0.

These constraints may represent physical limits (e.g. thrust bounds), operational
restrictions (e.g. thrust disabled in eclipse), or safety requirements (e.g. altitude
limits). Path constraints significantly affect the structure of the optimal solu-
tion and must be properly handled in both analytical derivations and numerical
implementations.

Time Horizon and Final Time
The final time tf may be either fixed or free, depending on the mission objective.
If it is treated as a free variable, its optimal value will emerge from the necessary
conditions derived in the next section. Problems with free final time arise, for
instance, in minimum-time transfers or when the mission duration is not prescribed
a priori.

The general formulation described above provides the mathematical foundation
for the derivation of necessary conditions for optimality, which can be obtained
through the Pontryagin Minimum Principle (PMP) introduced in the next section
[11, 12, 1].

3.3 Pontryagin Minimum Principle
The Pontryagin Minimum Principle (PMP) provides necessary conditions for
optimality in continuous-time control problems and is a cornerstone of modern
optimal control theory [13, 11, 12]. It extends the classical calculus of variations
by introducing costate variables (also known as adjoint variables or Lagrange
multipliers) associated with the system dynamics, transforming a constrained
optimization problem into an unconstrained one.

Hamiltonian formulation
Consider the general optimal control problem introduced in Section 3.2:

ẋ(t) = f(x(t),u(t), t), (3.9)
x(t0) = x0, (3.10)

g(x(t),u(t), t) ≤ 0, (3.11)
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with cost functional in Bolza form:

J = Φ(x(tf ), tf ) +
Ú tf

t0
L(x(t),u(t), t) dt. (3.12)

We define the Hamiltonian function as:

H(x,u,λ, t) = L(x,u, t) + λ⊤f(x,u, t), (3.13)

where:

• λ(t) ∈ Rn is the costate vector introduced as a Lagrange multiplier associated
with the dynamic constraint,

• f is the state dynamics vector defined in Eq. (3.7),

• L is the running cost defined in Eq. (3.8).

Necessary conditions for optimality

If u∗(t) is an optimal control and x∗(t) is the associated optimal trajectory, then
there exists a nontrivial costate vector λ(t) such that the following necessary
conditions hold for all t ∈ [t0, tf ]:

State equations:

ẋ∗(t) = ∂H
∂λ

----
(x∗,u∗,λ∗)

= f(x∗,u∗, t). (3.14)

Costate equations:

λ̇∗(t) = −∂H
∂x

----
(x∗,u∗,λ∗)

. (3.15)

Stationarity condition:
∂H
∂u

----
(x∗,u∗,λ∗)

= 0. (3.16)

For systems in which the control appears linearly in the Hamiltonian, condition
(3.16) often leads to a bang–bang structure of the optimal control, which will be
derived in Section 3.4.
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Transversality conditions: The boundary conditions for the costate variables
depend on the nature of the terminal constraints. If the final time is fixed and the
terminal state is free, the costates satisfy:

λ⊤(tf ) = ∂Φ
∂x(tf ) . (3.17)

If some components of the final state are constrained, additional conditions involving
Lagrange multipliers associated with these terminal constraints must be included.

If the final time tf is free, an additional transversality condition applies:

H
1
x∗(tf ),u∗(tf ),λ∗(tf ), tf

2
+ ∂Φ
∂tf

= 0. (3.18)

3.3.1 Physical and mathematical interpretation of costates.

The costate variables λ(t) arise naturally in the optimal control formulation as
Lagrange multipliers associated with the system dynamics. Their introduction
transforms the constrained optimization problem into an unconstrained one by
embedding the dynamical equations directly into the Hamiltonian. Mathematically,
they play a role analogous to that of generalized momenta in classical mechanics,
being canonically conjugate to the state variables. In this sense, the pair (x,λ)
forms a Hamiltonian system whose evolution is governed by the PMP equations.

From a physical perspective, costates measure the sensitivity of the optimal
performance index to changes in the state variables. Each component λi(t) rep-
resents how a marginal variation in the state component xi(t) affects the total
cost. For example, in orbital transfer problems, the components of the costate
associated with velocity can be interpreted as generalized impulses or “shadow
prices” of velocity, indicating the direction in which thrust should be applied to
most effectively decrease the cost functional. Similarly, the costate associated with
the mass variable reflects the sensitivity of the objective to changes in propellant
mass, and its appearance in the switching function determines whether thrusting is
beneficial or not.

Costates also carry important information about the structure of the optimal
trajectory. In particular, discontinuities in the costate vector are associated with
changes in active constraints or switching conditions in the control law. Moreover,
their boundary values are directly linked to the terminal cost function through
the transversality conditions, establishing a connection between the endpoint
conditions and the evolution of the system throughout the trajectory. This dual
role—mathematical and physical—makes costates a fundamental element of optimal
control theory and central to the determination of the optimal solution [11, 12, 1].
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Normal and abnormal solutions
Solutions to the PMP can be classified as:

• Normal solutions: when the multiplier associated with the cost functional
is non-zero (often normalized to 1). These represent the typical case in most
practical problems.

• Abnormal solutions: when the multiplier associated with the cost is zero.
Although less common, they may arise in problems with pure constraints or
singular arcs.

In this work, only normal solutions are considered, as they correspond to
the physically meaningful fuel-optimal trajectories relevant to the orbital control
problem addressed.

The PMP thus transforms the original optimal control problem into a two-point
boundary value problem (TPBVP), consisting of the state equations (3.14), the
costate equations (3.15), the stationarity condition (3.16), and the appropriate
boundary and transversality conditions. The solution of this TPBVP yields both the
optimal control law and the associated state trajectory. This theoretical framework
serves as the foundation for the derivation of the control law in Section 3.4 [13, 11,
12, 1].

3.4 Optimal Control Law
This section derives the optimal thrust control law from the Pontryagin Minimum
Principle (PMP), under the operational assumption that the thrust magnitude can
only take two values: zero or the maximum available thrust Tmax. The control is
therefore characterized entirely by the unit thrust direction û(t), which satisfies
∥û∥ = 1 when thrust is applied.

Hamiltonian structure
For the low-thrust orbital problem described by Eqs. (3.1)–(3.7) and a Mayer-type
performance index (fuel-optimal formulation, i.e. maximize m(tf )), the Hamiltonian
can be written as:

H(x, û, T,λ, t) = λ⊤
r v + λ⊤

v

3
− µ
r3 r + aD + T

m
û
4

+ λm

A
− T

Ispg0

B
, (3.19)

where λ = [λr,λv, λm]⊤ are the costates associated with the state variables
[r,v,m]⊤.
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Optimal thrust direction
For a given nonzero thrust magnitude, the Hamiltonian depends on the thrust
direction û only through the scalar product λ⊤

v û. The stationarity condition

∂H
∂û

= 0

subject to the unit norm constraint ∥û∥ = 1, leads to the well-known result:

û∗(t) = − λv(t)
∥λv(t)∥ , when T ∗(t) > 0. (3.20)

Hence, the optimal thrust direction is always antiparallel to the costate associated
with the velocity, often referred to as the primer vector. This result has an intuitive
physical meaning: thrust should always be applied in the direction that most
efficiently reduces the Hamiltonian, which corresponds to pointing opposite to λv.

Bang–bang structure and switching function
By substituting Eq. (3.20) into Eq. (3.19), the thrust-dependent part of the Hamil-
tonian becomes:

Hth(T ) = −T
A
∥λv∥
m

+ λm

Ispg0

B
.

The necessary condition for optimality requires minimizing the Hamiltonian
with respect to T . This leads naturally to the introduction of the switching function,
defined as:

Sf (t) = ∥λv(t)∥
m(t) + λm(t)α, α = 1

Ispg0
. (3.21)

The sign of Sf (t) determines the optimal thrust policy:

T ∗(t) =


Tmax, if Sf (t) > 0 and χsun(t) = 1,

0, if Sf (t) < 0 or χsun(t) = 0,

either 0 or Tmax, if Sf (t) = 0.

(3.22)

The physical interpretation of Eq. (3.21) is straightforward: the first term
represents the dynamical benefit of applying thrust, linked to the velocity costate,
while the second term accounts for the cost associated with propellant expenditure.
When Sf (t) > 0, the dynamical benefit outweighs the mass penalty, and the optimal
solution is to apply maximum thrust. Conversely, when Sf(t) < 0, the cost of
thrusting exceeds its benefit and the optimal solution is to coast.
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Additionally, the eclipse constraint, represented by the illumination function
χsun(t), enforces the condition that no thrust can be applied while the spacecraft is
in Earth’s shadow, regardless of the value of Sf (t).

It is worth noting that in optimal control problems where the control enters
linearly into the Hamiltonian and the cost functional is purely Mayer, a continuous
zero of Sf(t) over a finite interval would correspond to a singular arc. In the
fuel-optimal low-thrust problem considered here, with bounded thrust and discrete
thrusting capability, singular arcs are not expected to occur. Coasting phases
arise instead either from regions where Sf(t) < 0 or from eclipse intervals where
thrusting is not permitted [11, 12].

Finally, combining Eqs. (3.20) and (3.22), the optimal control law is fully defined
by the costate dynamics and the switching function:

û∗(t) =


− λv(t)
∥λv(t)∥ , if T ∗(t) = Tmax,

arbitrary (unused), if T ∗(t) = 0,

with T ∗(t) given by Eq. (3.22). These results, together with the state and costate
dynamics derived from the PMP, define the complete two-point boundary value
problem equivalent to the original optimal control formulation. Its numerical
solution will be addressed in Section 3.6 using indirect shooting and Newton-type
methods [1, 11, 12].

3.5 Boundary Conditions and Constraints
The formulation of an optimal control problem is completed by specifying the
boundary conditions and the constraints that the state and control variables must
satisfy. These conditions, together with the necessary optimality conditions derived
in the previous sections, define a well-posed two-point boundary value problem
whose solution determines the optimal state trajectory and control profile.

Initial Conditions
The initial conditions describe the state of the system at the initial time t0. In
most cases, the initial time is fixed and the initial state vector is fully specified:

x(t0) = x0. (3.23)
The control input at the initial time is typically left free, unless additional

physical or operational constraints require it to satisfy specific conditions. The
choice of the initial state depends on the nature of the problem and on the physical
system under consideration, but in all cases it serves as the starting point from
which the system evolves according to the dynamics.
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Final Conditions
The final conditions define the desired state of the system at the terminal time tf .
These conditions may be:

• Fixed terminal state: all components of the state vector are specified, i.e.

x(tf ) = xf .

• Partially constrained terminal state: only some components are fixed,
while others are free.

• Free terminal state: the final state is unconstrained and determined by the
optimal solution.

The terminal time itself can also be treated in different ways:

• Fixed final time: tf is prescribed.

• Free final time: tf is a decision variable, and the transversality condition

H
1
x(tf ),u(tf ),λ(tf ), tf

2
+ ∂Φ
∂tf

= 0 (3.24)

must be satisfied.

The appropriate choice of terminal conditions depends on the specific control
objective, such as reaching a target state, minimizing time, or optimizing fuel
consumption.

Path Constraints
Path constraints represent limitations on the state and control variables that
must hold throughout the trajectory. They are expressed as inequality or equality
constraints of the form:

c(x(t),u(t), t) ≤ 0, t ∈ [t0, tf ]. (3.25)

Such constraints may arise from physical limitations, operational requirements,
or safety considerations. Typical examples include:

• Control constraints: bounds on the control inputs, such as

umin ≤ u(t) ≤ umax.

• State constraints: restrictions on the state variables, for example to ensure
that the system remains within a permissible region of the state space.
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• Mixed constraints: involving both state and control variables simultaneously.
When active, path constraints modify the necessary conditions for optimality by

introducing additional Lagrange multipliers associated with each active constraint.
This leads to complementary slackness conditions that must be satisfied along the
optimal trajectory.

Path constraints, together with the initial and terminal conditions, complete
the mathematical formulation of the optimal control problem. Along with the
system dynamics and cost functional, they define the feasible set in which the
optimal trajectory must lie and allow the problem to be solved using the necessary
conditions derived earlier [11, 12, 1].

3.6 Numerical Solution Approach
The application of the Pontryagin Minimum Principle transforms the original
optimal control problem into a set of coupled differential equations for the state
and costate variables, subject to boundary and transversality conditions. This
results in a two-point boundary value problem (TPBVP) that must be solved to
determine the optimal state trajectory and control profile. Analytical solutions are
rarely available for nonlinear dynamical systems, making numerical methods the
standard approach to solving such problems.

The Two-Point Boundary Value Problem
The TPBVP arising from the PMP consists of:
• the state differential equations:

ẋ(t) = ∂H
∂λ

,

• the costate differential equations:

λ̇(t) = −∂H
∂x

,

• the stationarity condition:
∂H
∂u

= 0,

• the boundary and transversality conditions at t0 and tf .
This coupled system typically consists of 2n first-order differential equations,

where n is the dimension of the state vector. The state equations are subject
to initial conditions at t0, while the costate equations are subject to terminal
conditions at tf . This mixed set of boundary conditions is what characterizes the
problem as a TPBVP.
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Indirect Methods and the Shooting Approach
One of the most widely used approaches to solving TPBVPs arising from optimal
control problems is the indirect method, where the necessary conditions derived
from the PMP are integrated directly. The most common implementation of this
approach is the shooting method.

The key idea is to convert the TPBVP into an equivalent initial value problem
(IVP) by guessing the unknown initial values of the costates (and possibly other
free parameters, such as the final time). The procedure can be outlined as follows:

1. Make an initial guess λ(t0) for the unknown costate vector at the initial time.

2. Integrate the combined state–costate system forward in time from t0 to tf
using this guess.

3. Evaluate the terminal boundary conditions. If they are not satisfied, update
the guess for λ(t0) and repeat.

This iterative process continues until the boundary conditions at tf are met
within a specified tolerance. The challenge lies in finding the correct initial costates,
since small errors in the initial guess can lead to large deviations at the final time.

Newton Iteration and Sensitivity Matrix
To improve convergence, the shooting method is often implemented together with a
Newton-type root-finding procedure. Let F(λ0) be the vector of terminal constraint
errors resulting from a given guess λ0. The goal is to solve:

F(λ0) = 0.

A Newton iteration updates the costate guess according to:

λ
(k+1)
0 = λ

(k)
0 − J−1

1
λ

(k)
0

2
F
1
λ

(k)
0

2
, (3.26)

where J is the Jacobian matrix of partial derivatives of F with respect to λ0, also
known as the sensitivity matrix. Its elements are given by:

Jij = ∂Fi

∂λ0j

.

Efficient and accurate computation of J is crucial for the convergence of the
Newton iteration. It can be obtained by finite differences (perturbing the initial
costates and re-integrating) or by integrating the variational equations associated
with the TPBVP.
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Multiple Shooting Method
In problems where the dynamics are highly nonlinear or the integration interval is
long, the simple shooting method may suffer from numerical instability and poor
convergence. An extension known as the multiple shooting method can alleviate
these issues.

In multiple shooting, the integration interval [t0, tf ] is divided into N subintervals.
Independent initial guesses are made for the state and costate vectors at the start
of each subinterval, and the system is integrated separately within each segment.
Additional continuity conditions are then imposed to ensure that the solutions match
at the segment boundaries. This results in a larger but better-conditioned nonlinear
system, which can improve convergence properties and numerical robustness.

Alternative Approaches
While indirect methods based on the PMP offer high accuracy and analytical
insight, they require the solution of a potentially complex TPBVP and are sensitive
to the initial costate guess. For this reason, direct methods are often employed as
an alternative. These methods discretize the control and state trajectories and
transcribe the continuous-time OCP into a finite-dimensional nonlinear program-
ming (NLP) problem. Although they fall outside the scope of this chapter, direct
approaches such as direct collocation and pseudospectral methods are widely used
in practical trajectory optimization due to their robustness and ability to handle
complex constraints [11, 12].

Overall, the numerical solution of optimal control problems formulated through
the Pontryagin Minimum Principle ultimately reduces to solving a two-point
boundary value problem. Among the available techniques, indirect methods such
as shooting and multiple shooting remain fundamental tools due to their accuracy
and close connection to the analytical structure of the problem.
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Chapter 4

Dynamic Modeling and
Optimal Control
Formulation

4.1 Problem Setup and Modeling Framework

The theoretical framework presented in the previous chapter provides the necessary
tools for formulating and solving optimal control problems in astrodynamics. In
this chapter, the focus shifts from the general theory to its application to a specific
class of problems: the optimal control of a satellite in Low Earth Orbit (LEO)
using continuous low-thrust propulsion.

The goal is to construct a high-fidelity dynamical model that incorporates
the relevant physical effects acting on a spacecraft in LEO and to integrate it
into the optimal control formulation. In particular, the model is expressed in a
three-dimensional spherical coordinate system and includes perturbations such as
atmospheric drag and shadowing effects due to solar eclipses. These perturbations
introduce additional challenges and constraints that must be accounted for in the
control law.

Once the physical model has been defined, it is embedded within the optimal
control problem and solved numerically using the indirect approach described
previously. Finally, the chapter outlines the numerical implementation developed
in Python and the structure of the graphical user interface (GUI) used to set up
simulations and visualize results.

This transition from theory to application represents a crucial step toward the
design of practical low-thrust station-keeping strategies and paves the way for the
numerical results and analyses presented in the following chapters.
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4.2 Dynamical Model Formulation
The spacecraft dynamics are formulated using a mixed representation that combines
global position variables expressed in spherical coordinates with velocity and
acceleration components expressed in a local reference frame. This approach
preserves the advantages of a global inertial description while allowing a physically
meaningful decomposition of forces and motion in a local basis.

Position Representation
The position of the spacecraft is expressed by the spherical coordinates (r, θ, ϕ)
relative to the Earth-Centered Inertial (ECI) frame:

• r: geocentric distance from Earth’s center;

• θ: measured eastward from the ECI X-axis and computed from the inertial
components as

θ = arctan 2(yECI, xECI);

• ϕ: geocentric latitude, measured from the equatorial plane and defined as

ϕ = arcsin
3
zECI

r

4
.

Here, θ and ϕ are scalar quantities derived from the inertial position vector
rECI = [xECI, yECI, zECI]T .

Local Reference Frame (NEZ)
For the description of velocity, thrust, and drag, a local orthonormal frame is defined
at the spacecraft’s instantaneous position. This frame is the North–East–Zenith
(NEZ) system, constructed as:

• êZ : zenith direction, aligned with the position vector r and pointing radially
outward from Earth;

• êE: east direction, tangent to the parallel (line of constant latitude) and pointing
eastward, orthogonal to both êZ and the Earth’s rotation axis;

• êN : north direction, tangent to the meridian and pointing toward increasing
latitude.
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This local basis is computed directly from the ECI position vector and Earth’s
rotation axis k̂ as:

êZ = r
∥r∥

, êE = k̂× êZ

∥k̂× êZ∥
, êN = êZ × êE

where k̂ is the unit vector along Earth’s rotation axis.

Velocity Representation
The velocity vector v is expressed as a linear combination of the NEZ unit vectors:

v = u êZ + v êE + w êN

where:

• u: radial velocity component along êZ ,

• v: eastward velocity component along êE,

• w: northward velocity component along êN .

It is worth emphasizing that êE points toward geographic east and is not, in
general, aligned with the orbital velocity vector. This distinction is crucial when
projecting perturbing accelerations and defining thrust directions.

Equations of Motion
The spacecraft motion under the effects of Earth’s gravity, low-thrust propulsion,
and atmospheric drag can be expressed as:

ṙ = u, (4.1)

θ̇ = v

r cosϕ, (4.2)

ϕ̇ = w

r
, (4.3)

u̇ = v2 + w2

r
− µ

r2 + aT,Z + aD,Z , (4.4)

v̇ = −uv
r
− vw tanϕ

r
+ aT,E + aD,E, (4.5)

ẇ = −uw
r
− v2 tanϕ

r
+ aT,N + aD,N , (4.6)

ṁ = − T

Ispg0
, (4.7)
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where: - µ = GME is Earth’s gravitational parameter; - aT,Z , aT,E, aT,N are the
thrust acceleration components along the zenith, east, and north directions; - aD,Z ,
aD,E, aD,N are the corresponding drag acceleration components; - Isp is the specific
impulse and g0 the standard gravitational acceleration.

The first three equations govern the evolution of the scalar coordinates (r, θ, ϕ),
while the next three describe the dynamics of the velocity components in the NEZ
frame. The terms v2+w2

r
represent the centrifugal acceleration balancing gravity,

while −uv
r

and −uw
r

arise from the curvature of the spherical coordinate system.

Physical Interpretation
This mixed representation — global coordinates for position and a local NEZ
basis for velocity and acceleration — offers both physical clarity and computa-
tional convenience. The use of spherical coordinates ensures compatibility with
ephemerides and eclipse geometry calculations in the inertial frame, while the
NEZ decomposition provides a natural description of thrust and perturbing forces.
Atmospheric drag acts primarily in the êZ direction, while thrust can be oriented
with respect to êZ , êE, and êN to achieve the desired orbital control.

4.3 Atmospheric Drag Modeling
Atmospheric drag is one of the most significant perturbations affecting satellites in
Low Earth Orbit (LEO). Unlike high-altitude missions, where the atmosphere is
practically negligible, satellites operating below approximately 1000 km experience
a continuous decelerating force due to interactions with the rarefied atmosphere.
Over time, this drag leads to a reduction in orbital energy and altitude, making it
a critical effect to account for in trajectory design and station-keeping strategies.

Fundamentals of Drag Acceleration
The aerodynamic drag force experienced by a satellite traveling through the upper
atmosphere is given by:

FD = −1
2CD Aρ vrel vrel, (4.8)

where:

• CD is the drag coefficient, dependent on the spacecraft geometry and flow
regime;

• A is the effective cross-sectional area of the spacecraft;

• ρ is the atmospheric density at the current altitude;
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• vrel is the relative velocity between the spacecraft and the surrounding atmo-
sphere;

• vrel = ∥vrel∥ is its magnitude.

The corresponding acceleration is obtained by dividing by the spacecraft mass:

aD = −1
2CD

A

m
ρvrelvrel. (4.9)

The relative velocity accounts for the fact that the atmosphere rotates with the
Earth. If ω⊕ is Earth’s rotation vector, then:

vrel = v− ω⊕ × r.

Atmospheric Density Modeling
A key challenge in modeling drag is the determination of atmospheric density ρ,
which varies with altitude, solar activity, geomagnetic conditions, latitude, local
time, and season. Inaccurate density modeling can lead to significant errors in drag
prediction and orbit propagation.

A commonly used simplified model expresses the density as an exponential
function of altitude:

ρ(h) = ρ0 exp
A
−h− h0

H

B
, (4.10)

where ρ0 is the reference density at altitude h0, and H is the scale height. This model
is attractive due to its simplicity and analytical form, but it neglects many physical
influences such as solar flux variability, diurnal variations, and compositional
changes in the upper atmosphere. As a result, its accuracy rapidly deteriorates
above about 300 km, often producing errors of one order of magnitude or more.

To achieve higher fidelity, this work employs the NRLMSISE-00 empirical
atmospheric model, implemented via the pymsis library [10]. This model accounts
for variations due to solar flux (F10.7), geomagnetic index (Ap), and local time,
and has been widely validated for orbital prediction applications. The density is
computed as a function of position and time:

ρ = ρ(r, θ, ϕ, t;F10.7, Ap), (4.11)

where the arguments explicitly indicate the dependence on position, epoch, and
space weather parameters.

Direct calls to MSISE-00 at each integration step, however, can be computation-
ally expensive. To address this, we adopt a hybrid approach in which the density
is precomputed over a grid of altitudes and stored in a table. During integration, ρ
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is obtained by interpolation from this tabulated data. This method preserves the
fidelity of the original model while substantially reducing runtime.

The advantages of this approach are illustrated in Figure 4.1. The plot com-
pares the density as a function of altitude predicted by the exponential model,
the interpolated tabulated MSISE-00, and the “true” MSISE-00 output. The
exponential model diverges significantly from the true profile beyond 300 km, while
the interpolated version overlaps almost perfectly with the reference curve.

Figure 4.1: Comparison between the exponential model, tabulated-interpolated
MSISE-00, and the reference MSISE-00 output.

A second way to quantify model accuracy is to examine the relative error in
density prediction:

ερ(h) = |ρmodel(h)− ρMSIS(h)|
ρMSIS(h) .

As shown in Figure 4.2, the exponential model exhibits large errors, whereas the
interpolated version maintains errors well below a few percent over the entire range
of interest.

Because the drag acceleration

aD = −1
2CD

A
m
ρ vrel vrel

depends linearly on ρ, these density errors translate directly into proportional
errors in the computed drag force.

For these reasons, the tabulated-interpolated NRLMSISE-00 model was adopted
in this work as the best compromise between accuracy and computational efficiency.
Its use ensures that drag effects are represented realistically while preserving
acceptable integration times during optimal control simulations.
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Figure 4.2: Relative error density.

Acceleration Components in Spherical Coordinates

In the spherical coordinate system adopted in this work, the drag acceleration is
projected onto the ZEN directions. Denoting by Ẑ, Ê, ϕ̂ the local unit vectors, the
acceleration can be written as:

aD = aD,ZẐ + aD,EÊ + aD,NN̂, (4.12)

where the components are obtained by projecting aD onto each basis vector. These
components are then included in the dynamical equations introduced in Section 4.2,
where they act as perturbing terms in the radial, in-plane, and out-of-plane equations
of motion.

Accurate modeling of drag is essential in low-thrust orbit control problems, as it
directly affects the energy balance and long-term orbital evolution. In particular, it
influences the required thrust magnitude and direction needed to counteract orbital
decay and maintain mission requirements over extended durations.

4.4 Eclipse Modeling and Sun Visibility
Accurate detection of eclipse intervals is essential in low-thrust mission analysis
because solar power availability directly affects the admissible thrusting arcs. This
section formulates the Sun visibility test in an Earth-centered inertial (ECI) frame
using a conical shadow model (umbra/penumbra) and, for comparison, a simpler
cylindrical approximation [2, 14].
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Geometry and definitions
Let r(t) ∈ R3 be the spacecraft position vector expressed in ECI and r⊙(t) the
geocentric Sun position (from ephemerides). Define the Sun unit vector and its
geocentric distance as

ê⊙(t) = r⊙(t)
∥r⊙(t)∥ , k(t) = ∥r⊙(t)∥.

Let R⊕ and R⊙ denote the mean radii of Earth and Sun, respectively. Introduce the
axial coordinate along the anti-solar direction and the distance from the Sun–Earth
axis:

d(t) = − r(t) · ê⊙(t), ρ(t) =
... r(t)−

1
r(t) · ê⊙(t)

2
ê⊙(t)

.... (4.13)

Thus d > 0 identifies the anti-solar (night) side; ρ is the perpendicular distance to
the axis.

Conical shadow model (umbra/penumbra)
Finite solar angular size produces a conical umbra and a surrounding penumbra.
Their axial lengths are

Lu(t) = k(t)R⊕

R⊙ −R⊕
, Lp(t) = k(t)R⊕

R⊙ +R⊕
, (4.14)

and the corresponding cone radii at distance d ≥ 0 from Earth’s center (measured
along −ê⊙) are

Ru(d) = R⊕

A
1− d

Lu

B
(0 ≤ d ≤ Lu), Rp(d) = R⊕

A
1 + d

Lp

B
(d ≥ 0).

(4.15)
The illumination status follows directly:

χsun(t) =


0, d(t) ≥ 0 and ρ(t) ≤ Ru

1
d(t)

2
(umbra),

χpen, d(t) ≥ 0 and Ru

1
d(t)

2
< ρ(t) ≤ Rp

1
d(t)

2
(penumbra),

1, otherwise.
(4.16)

Here χpen ∈ (0,1) may be set to 0 (conservative assumption: no thrust in penumbra)
or to a user-defined fraction if a partial-power model is desired. In many preliminary
analyses, both umbra and penumbra are treated as eclipse (χsun =0).
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Cylindrical approximation (parallel rays)
For fast computations, the cylindrical shadow model neglects solar angular size
(parallel rays). The spacecraft is in shadow iff it lies on the night side and within a
cylinder of radius R⊕ aligned with −ê⊙:

χcyl
sun(t) =

0, r · ê⊙ < 0 and ρ(t) ≤ R⊕,

1, otherwise.
(4.17)

This approximation overestimates eclipse duration slightly relative to the conical
model, but is often acceptable for preliminary screening.

Sun vector and frames
High-precision Sun position r⊙(t) is obtained from ephemerides (e.g. NAIF SPICE)
and transformed to the ECI frame used in the dynamics. Care must be taken to
use a consistent time scale and reference frame (e.g. converting from the ephemeris
frame to ECI/J2000) to avoid phase errors in eclipse entry/exit times [14, 2].

Event detection in numerical integration
Eclipse transitions are identified by locating the roots of the implicit surfaces
ρ = Ru(d) (umbra boundary) and ρ = Rp(d) (penumbra boundary) with d ≥ 0. In
practice, one monitors the signed functions

Φu(t) = ρ(t)−Ru

1
d(t)

2
, Φp(t) = ρ(t)−Rp

1
d(t)

2
,

and triggers events when their sign changes, updating χsun(t) according to Eq. (4.16).
This yields consistent, time-accurate eclipse arcs within the integration scheme.

4.5 Optimal Control Problem Formulation for
the LEO Scenario

With the physical model and perturbations established in the previous sections,
the optimal control problem can now be formulated for a satellite operating in Low
Earth Orbit (LEO) under continuous low-thrust propulsion. The objective is to
determine the thrust direction that minimizes propellant consumption (or equiva-
lently maximizes final mass) while maintaining the desired orbital configuration in
the presence of drag and eclipse constraints.

42



Dynamic Modeling and Optimal Control Formulation

State and Control Variables
The state vector is defined as:

x(t) =



r(t)
θ(t)
ϕ(t)
u(t)
v(t)
w(t)
m(t)


, (4.18)

where r, θ, ϕ are the spherical position coordinates, u, v, w are the velocity compo-
nents, and m is the spacecraft mass.

The control vector consists of the thrust direction, expressed through two control
angles:

u(t) =
C
α(t)
δ(t)

D
, (4.19)

where α is the in-plane angle and δ the out-of-plane angle of the thrust vector. The
thrust magnitude is assumed constant and equal to Tmax when the engine is active
and zero otherwise.

System Dynamics with Perturbations
The state dynamics including gravitational acceleration, atmospheric drag, and low-
thrust propulsion are the same described in the section 4.2. For the calculation of
the variation of the mass we had to ad the χsun(t), where χsun(t) is the illumination
function defined in Eq. (4.16), equal to 1 in sunlight and 0 during eclipse. This
function acts as a control constraint, enforcing the physical condition that the
thruster cannot operate without solar power.

Objective Functional
The cost functional is chosen to maximize the final mass, or equivalently, to
minimize propellant consumption:

J = −m(tf ). (4.20)

This formulation belongs to the Mayer class of optimal control problems, where
the cost depends only on the final state. Alternative formulations could include
Lagrange terms (e.g., minimizing time or integrated thrust), but the Mayer form is
particularly suited for low-thrust station-keeping missions where fuel efficiency is
critical.
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Hamiltonian and Optimality Conditions
The Hamiltonian associated with this problem is:

H = λr u+ λθ
v

r cosϕ + λϕ
w

r

+ λu

A
v2 + w2

r
− µ

r2 + aT,Z + aD,Z

B

+ λv

A
−uv
r
− vw tanϕ

r
+ aT,E + aD,E

B

+ λw

A
−uw

r
+ v2 tanϕ

r
+ aT,N + aD,N

B
− λm

Tmax

Ispg0
χsun(t)

(4.21)

where λ = [λr, λθ, λϕ, λu, λv, λw, λm]T is the costate vector associated with the
state variables.

The necessary condition for optimality is obtained by setting the partial deriva-
tive of the Hamiltonian with respect to the control direction to zero:

∂H
∂α

= 0, ∂H
∂δ

= 0.

Introducing the switching function:

Sf (t) =
ñ

(λu cosα cos δ + λv sinα cos δ + λw sin δ)2 − λm

Ispg0
, (4.22)

the optimal thrusting condition is:

T (t) =
Tmax, Sf (t) > 0,

0, Sf (t) < 0.
(4.23)

This condition enforces thrusting only when the marginal benefit of propellant
expenditure exceeds its cost, and it is further modulated by the illumination
function, which prevents thrust during eclipse phases regardless of the switching
function sign.

Boundary Conditions and Constraints
The initial state is prescribed by the mission scenario:

x(t0) = x0, (4.24)
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while the terminal state may be either fully or partially constrained depending
on the mission requirements. Typical constraints include maintaining the orbital
radius or ground-track repeatability within specified tolerances.

Path constraints are also imposed:

• Thrust is limited: T = 0 or Tmax;

• Thrust is disabled during eclipse: T = 0 if χsun(t) = 0;

• State constraints (e.g., altitude limits) may be included depending on the
operational scenario.

Together, these elements define a well-posed optimal control problem tailored
to a realistic LEO environment with continuous low thrust, atmospheric drag, and
eclipse constraints.

4.6 Numerical Implementation
The optimal control problem formulated in Section 4.5 cannot be solved analytically
due to the nonlinear dynamics, the presence of perturbations such as atmospheric
drag, and the time-dependent eclipse constraint. Instead, it must be solved
numerically by integrating the necessary conditions derived from the Pontryagin
Minimum Principle. This leads to a two-point boundary value problem (TPBVP)
that is solved using an indirect approach based on the shooting method combined
with Newton iteration.

Problem Transformation and State Augmentation

The first step is to rewrite the optimal control problem as an augmented dynamical
system composed of both state and costate equations:

d

dt

C
x(t)
λ(t)

D
=
C

∂H
∂λ

−∂H
∂x

D
,

where the control enters implicitly through the switching function and is determined
at each time step by enforcing the stationarity condition.

This system, consisting of 2n first-order differential equations (with n = 7 in
our case), is integrated forward in time starting from known initial conditions for
the state and a guessed initial condition for the costates.
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Shooting Method and Costate Guessing
Because the state vector is constrained at the initial time and the costate vector is
constrained at the final time, the problem is inherently a TPBVP. The shooting
method converts it into an initial value problem by guessing the unknown initial
costates λ(t0). The algorithm proceeds as follows:

1. Make an initial guess λ(0)(t0) for the costate vector.

2. Integrate the augmented system forward in time from t0 to tf using a numerical
ODE solver.

3. Evaluate the terminal boundary conditions (e.g., final radius, velocity, or
ground-track phase).

4. If the boundary conditions are not satisfied, update λ(t0) using a Newton-type
iteration and repeat until convergence.

The accuracy of the initial guess strongly influences convergence. A poor initial
guess may result in divergence or convergence to a non-optimal solution. In
practical applications, the initial guess can be generated by simplified analytical
approximations, by linearizing the dynamics, or by using solutions from neighboring
problems as warm starts.

Newton Iteration and Sensitivity Matrix
The update of the costate guess is performed via a Newton iteration. Denoting by
F(λ0) the vector of boundary condition errors resulting from a given initial guess,
the root-finding problem is:

F(λ0) = 0.

The costate vector is updated iteratively as:

λ
(k+1)
0 = λ

(k)
0 − J−1

1
λ

(k)
0

2
F
1
λ

(k)
0

2
, (4.25)

where J is the Jacobian (sensitivity) matrix:

Jij = ∂Fi

∂λ0j

.

The Jacobian can be computed numerically by finite differences, i.e., perturbing
each costate component and reintegrating the system, or analytically by integrating
the variational equations. The latter improves accuracy but requires additional
implementation effort.
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Time Integration Scheme
The forward integration of the state–costate system is carried out using a variable-
step Runge–Kutta integrator of order 4(5), such as Dormand–Prince (RK45).
Variable step-size control is crucial because the problem exhibits regions of different
time scales — for example, near eclipse transitions or during thrust switches —
where fine resolution is necessary to ensure numerical stability and accuracy.

At each time step, the switching function is evaluated and used to determine
whether thrust is applied. The illumination function χsun(t) is also evaluated in
real time based on the Sun–Earth–spacecraft geometry (Section 4.4) to enforce the
eclipse constraint. This results in a time-varying control law that respects physical
constraints.

Handling Path Constraints
Path constraints such as thrust availability in sunlight and thrust magnitude limits
are enforced directly during integration. The thrust magnitude is set to Tmax if the
switching function is positive and χsun(t) = 1, and to zero otherwise. This logic
ensures that the control solution remains physically admissible and consistent with
the spacecraft’s power limitations.

Inequality constraints on state variables (e.g., altitude or latitude limits) can
be treated either by penalizing constraint violations in the cost functional or
by introducing additional Lagrange multipliers in the PMP formulation. In this
work, hard enforcement through inequality checks during integration is adopted for
simplicity.

Convergence and Numerical Considerations
The shooting–Newton approach typically converges quadratically when the initial
guess is close to the true solution. However, nonlinearities in the dynamics and the
discontinuous nature of the eclipse constraint can make the convergence sensitive.
Common techniques to improve robustness include:

• Continuation methods: gradually varying problem parameters (e.g., thrust
level or target conditions) to approach the final solution.

• Multiple shooting: splitting the integration interval into segments to improve
numerical conditioning.

• Hybrid approaches: using a direct method to generate an initial guess for
the indirect solver.
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When implemented carefully, the indirect shooting approach provides highly
accurate solutions and valuable analytical insight into the structure of the optimal
control law, while remaining computationally efficient for problems of moderate
dimension.

4.7 Graphical User Interface
The numerical tool employed in this work is based on Oculus, a graphical user
interface originally developed by Mascolo [15] for solving low-thrust optimal control
problems and visualizing the resulting orbital trajectories. Oculus provides a robust
and modular environment that integrates trajectory optimization algorithms with
a user-friendly interface, enabling intuitive interaction with the problem setup,
solution, and visualization stages.

The software is structured around an indirect optimization framework and
allows users to define initial and final orbital conditions, propulsion parameters,
and integration settings. Once the problem is configured, the solver computes the
optimal trajectory and displays its evolution both graphically and numerically,
facilitating physical interpretation and analysis.

Building on this existing framework, the software used in this thesis has been
significantly extended to address additional physical phenomena relevant to low
Earth orbit missions. In particular, two major capabilities have been implemented:

• Atmospheric drag modeling: a module that computes atmospheric density
using the NRLMSISE-00 model and evaluates drag acceleration. This required
modifications to the equations of motion and the force model implemented in
the solver.

• Eclipse constraint handling: a new functionality that determines when
the spacecraft enters Earth’s shadow based on solar ephemerides from SPICE
kernels and enforces a thrust constraint that disables propulsion during eclipse
phases.

These extensions required nontrivial changes to the dynamics propagation,
costate integration, and Hamiltonian minimization procedures, while preserving the
modular structure and interactive design of the original Oculus interface. As a result,
the final software combines the versatility of the existing tool with new physical
realism, enabling the simulation and optimization of low-thrust station-keeping
trajectories under environmental constraints that were not originally supported.
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Chapter 5

Result and Analysis

5.1 Simulation Setup and Parameters
To evaluate the performance of the optimal control strategies derived in the previous
chapters, a set of numerical simulations was performed under different modeling
assumptions. This section presents the simulation setup, including the orbital
configuration, spacecraft characteristics, environmental models, and numerical
parameters adopted throughout the analyses.

Orbital Configuration
The spacecraft is assumed to operate in a low Earth orbit (LEO), with parameters
representative of typical small satellite missions. Unless otherwise specified, the
nominal orbital elements at the initial epoch are:

• Semi-major axis: a = R⊕ + h0, with h0 = 300 km;

• Eccentricity: e = 0 (circular orbit);

• Inclination: i = 96.5◦ (sun-synchronous);

• Right ascension of ascending node: Ω = 0◦;

• Argument of perigee: ω = 0◦;

• True anomaly: ν = 0◦.

These values correspond to a circular sun-synchronous orbit, a common choice
for Earth observation and scientific satellites. The circular assumption simplifies
the analysis while preserving the main dynamical effects relevant to the control
problem.
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Spacecraft Parameters
The simulated spacecraft properties are representative of a small satellite equipped
with an electric propulsion system:

• Initial mass: m0 = 500 kg;

• Effective cross-sectional area: A = 1 m2;

• Drag coefficient: CD = 2.2;

• Maximum thrust: Tmax = 0.5 N;

• Specific impulse: Isp = 1000 s.

The thrust level and specific impulse are consistent with state-of-the-art electric
propulsion systems for small satellites. The thrust is assumed constant in magnitude
and aligned according to the optimal control law, when available power allows.

Environmental Models
Atmospheric drag is computed using the NRLMSISE-00 empirical model imple-
mented via the pymsis library [10]. This model accounts for the effects of solar
and geomagnetic activity through the F10.7 solar flux and Ap geomagnetic index.
The baseline simulations use:

F10.7 = 150, Ap = 10.

Solar position is obtained from NAIF SPICE ephemerides [14], ensuring accurate
Sun vector computation in the ECI frame. Eclipse detection is performed using
the conical shadow model described in Section 4.4. Thrust is set to zero whenever
the illumination function satisfies χsun(t) = 0.

Numerical Solver and Integration Settings
The coupled state–costate equations are integrated using a variable-step, adaptive
Runge–Kutta 4(5) method (Dormand–Prince, RK45). A relative tolerance of
10−10 and an absolute tolerance of 10−12 are used to ensure numerical accuracy.
Event detection is implemented to precisely locate eclipse entry and exit points by
monitoring the sign of the shadow boundary functions.

The total integration time spans T = 7 orbital periods, sufficient to capture
multiple eclipse cycles and evaluate the long-term impact of drag and thrust
scheduling. The indirect shooting method combined with Newton iteration is
employed to solve the resulting TPBVP, as described in Section 4.6.
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Simulation Cases

To systematically assess the influence of drag and eclipse constraints, three main
simulation cases are considered:

1. Case A – Ideal dynamics: only two-body gravitational acceleration and
continuous thrust are included (no drag, no eclipse).

2. Case B – Atmospheric drag: drag is included, but the eclipse constraint
is neglected (χsun(t) = 1).

3. Case C – Full model: both drag and eclipse constraints are included.
This progressive approach isolates the effect of each physical phenomenon and

highlights its impact on the optimal solution.

5.2 Baseline Case – Ideal Dynamics (No Pertur-
bations)

As a reference scenario, the optimal control problem was first solved assuming an
ideal two-body environment without atmospheric drag or eclipse constraints. In
this case, the spacecraft is subject only to Earth’s central gravitational attraction
and a continuous low-thrust acceleration with constant magnitude Tmax. The thrust
direction is optimized according to the Pontryagin Minimum Principle described in
Chapter 4.5.

Problem definition

The objective of this case study is to determine the optimal low-thrust control
profile required to raise the satellite’s orbit from an initial circular altitude of 300
km to a final altitude of 302 km. This manoeuvre is designed as a representative
station-keeping operation in Low Earth Orbit (LEO), where atmospheric drag
continuously reduces the spacecraft’s orbital energy and causes a gradual decay of
the semi-major axis.

Although the atmospheric drag effect is not explicitly included in this first
scenario, the two-kilometre altitude increase anticipates the counteraction of this
perturbation and ensures that the satellite remains close to its nominal operational
orbit over time. The manoeuvre is performed using continuous low-thrust propulsion
aligned with the direction of motion, and the optimization is aimed at minimising
the propellant consumption required to achieve the desired orbital raise.

Since no environmental perturbations are present, the control is free to operate
continuously, and the illumination function is identically χsun(t) = 1.
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Numerical Results
The baseline simulation demonstrates the expected characteristics of low-thrust
motion in an unperturbed environment:

• Orbital evolution: the altitude increases smoothly with no oscillations, as
the thrust is continuously aligned with the velocity vector.

• Mass variation: the propellant mass decreases linearly with time due to the
constant thrust magnitude when T = Tmax.

• Thrust profile: thrust is active at the start of the orbit, in the middle and in
the end.

Figure 5.1: Baseline case: Variable evolution under low thrust in a two-body
environment.

The baseline solution provides a reference for quantifying the effects of environ-
mental perturbations. In particular, it highlights the efficiency of the thrust system
in an idealized scenario and serves as a benchmark for evaluating the additional
control effort required when drag and eclipse constraints are introduced.

Discussion
The results of the baseline case show that the optimal control solution does not
consist of a continuous thrust profile over the entire transfer, as might be expected
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from a purely analytical perspective. Instead, the thrust is applied in a series of
distinct arcs separated by coast phases in which the engine is turned off.

Specifically, the solution exhibits five distinct phases: an initial thrust arc that
accelerates the spacecraft and begins to raise the orbit, followed by a coast phase
during which the orbital motion evolves naturally under gravity. This is then
followed by a second thrust arc, a second coast phase, and a final thrust arc that
completes the transfer to the target altitude.

This structure arises from the optimisation process itself and reflects the interplay
between thrust direction, mass variation, and the nonlinear orbital dynamics. By
concentrating thrust into discrete arcs rather than spreading it continuously, the
solution minimises propellant consumption while still achieving the required change
in orbital energy.

Such bang-bang-like structures are well known in optimal low-thrust control
problems [11, 13], even when no explicit constraints on thrust availability are
imposed. The presence of coast phases is therefore not a numerical artifact, but an
intrinsic feature of the optimal solution.

5.3 Dynamics with Atmospheric Drag Only

Problem description

In this second scenario, the effect of atmospheric drag is included in the dynamical
model, while the eclipse constraint remains inactive (χsun(t) = 1). All other
parameters, including thrust magnitude, specific impulse, and initial and final
orbital conditions, are the same as in the baseline case. The objective remains to
raise the spacecraft’s altitude from 300 km to 302 km, compensating for the energy
loss caused by drag.

Results and Discussion

The inclusion of atmospheric drag does not qualitatively change the structure of the
optimal thrust profile: the solution still consists of multiple thrust arcs separated
by coast phases, as already observed in the baseline case. The main difference
lies in the **increased duration of the thrust phases**, which reflects the need to
compensate for the continuous loss of orbital energy caused by drag.

The optimisation naturally responds to this perturbation by increasing the total
impulse delivered along the orbit, without altering the fundamental thrust–coast–thrust
structure. As a result, the overall transfer takes slightly longer and the propellant
consumption is higher compared to the drag-free scenario.
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Figure 5.2: Time evolution of the state variables for the drag-included scenario.

The figure above shows the time evolution of the main state variables. Despite
the presence of drag, the system follows a trajectory qualitatively similar to the
baseline case, with the increased thrust duration clearly visible in the orbital
evolution. This demonstrates how atmospheric drag, though relatively weak at
these altitudes, has a measurable impact on the control strategy and mission
timeline.

5.4 Full Model: Drag and Eclipse Constraint

Problem Description

The third and final scenario incorporates both atmospheric drag and the eclipse
constraint into the optimal control formulation. As before, the objective is to raise
the spacecraft’s altitude from 300 km to 302 km using low-thrust propulsion, while
minimising propellant consumption. The eclipse constraint is implemented by
enforcing χsun(t) = 0 when the spacecraft is in Earth’s shadow, thereby preventing
thrusting during eclipse phases.

This case represents the most realistic operational condition, as it combines the
primary environmental perturbation in low Earth orbit with the power-generation
limitations imposed by solar illumination. The solution therefore provides insight
into the control strategy required for station-keeping in a practical mission context.
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Orbital Evolution and Thrusting Pattern

The inclusion of the eclipse constraint significantly influences the optimal control
profile without altering the overall mission objective. The total altitude increase
remains essentially the same as in the previous scenarios, but the temporal distri-
bution of thrust is markedly different.

In the baseline and drag-only cases, thrust was applied in several distinct arcs
distributed across the orbit. In contrast, the presence of eclipse windows now
prevents thrusting during certain orbital phases. As a result, the optimiser shifts
the control effort toward periods of continuous solar illumination, leading to longer
thrust arcs concentrated at the beginning and end of the manoeuvre, and shorter
thrust segments — or complete coast phases — in the central portion of the
trajectory.

Figure 5.3: Graphical user interface view of the full-model case.

The time history of the state variables shows that the altitude raise is still
achieved within the mission requirements, but the profile reflects the constrained
thrust availability. In particular, the radial velocity component exhibits longer
periods of acceleration early and late in the transfer, corresponding to the extended
thrust phases outside of eclipse.
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Figure 5.4: Time evolution of the state variables for the full-model case.

Physical Interpretation and Implications
This final scenario highlights the critical impact of environmental constraints on
the structure of optimal control solutions. Even though the total ∆h is unchanged,
the necessity to interrupt thrust during eclipse phases leads to a redistribution
of control effort. The spacecraft compensates for the unavailable thrust periods
by increasing the duration and intensity of thrusting before and after the shadow
interval.

This behaviour has important implications for mission design. It suggests
that, when eclipse windows are present, thrust planning cannot rely solely on
idealised continuous-control assumptions. Instead, the mission timeline, power
availability, and control law must be designed together to ensure that sufficient
thrust can be delivered during illuminated arcs. The resulting strategy preserves
propellant efficiency while respecting the physical limitations imposed by the space
environment.
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Chapter 6

Conclusions and Future
Work

Conclusions
This thesis presented the formulation, numerical solution, and analysis of an optimal
control problem for low-thrust satellite operations in Low Earth Orbit (LEO), with
particular emphasis on the effects of atmospheric drag and eclipse constraints.
The work combined high-fidelity dynamical modeling, indirect optimal control
techniques, and numerical implementation in a dedicated Python environment with
a graphical user interface.

The main contributions and findings can be summarized as follows:

• A comprehensive dynamical model was developed in spherical coordinates,
including central gravitational attraction, atmospheric drag based on the
NRLMSISE-00 density model, and the time-dependent illumination function
derived from cylindrical shadow geometry. This model captures the key envi-
ronmental effects relevant to low-thrust LEO missions.

• The optimal control problem was formulated using Pontryagin’s Minimum
Principle, leading to a two-point boundary value problem solved through an
indirect shooting method combined with Newton iteration. This approach
provided high-accuracy solutions and clear insight into the structure of the
optimal control law.

• A detailed analysis of the effects of drag and eclipse on the optimal solution
revealed their significant impact on mission performance. Drag continuously
reduces orbital energy and requires additional thrust to maintain altitude, while
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eclipse intervals impose strict constraints on thrust availability, introducing
discontinuities in the control profile and reducing overall acceleration.

• A progressive set of simulations — from an ideal two-body case to a full model
including both drag and eclipse — demonstrated how each physical effect
modifies the optimal solution. The comparison showed that neglecting these
effects can lead to substantial underestimation of propellant use and mission
duration.

• A modular software tool was developed to implement the model and optimization
algorithm, providing a flexible framework for scenario definition, simulation,
and visualization. The inclusion of a graphical user interface enhances usability
and supports rapid parametric studies.

Overall, the results demonstrate that accounting for both atmospheric drag
and eclipse constraints is essential in the design of realistic low-thrust station-
keeping and orbit maintenance strategies. These effects significantly influence the
structure of the optimal control law, the propellant budget, and the achievable
orbital performance. The methodology developed in this work provides a rigorous
foundation for preliminary mission analysis and can be extended to support future
operational planning.

Future Work
Several extensions of this work are possible and represent valuable directions for
future research:

• Inclusion of higher-order gravitational effects: Incorporating Earth’s
oblateness (J2) and higher-order harmonics would allow the framework to be
applied to long-term station-keeping and ground-track repeat missions.

• Inclusion of additional perturbations: Modeling solar radiation pressure
and third-body effects would further improve fidelity, particularly for higher
orbits or extended mission durations.

• Robust and adaptive control strategies: Extending the framework to
include robust or feedback-based control laws could improve performance under
uncertainty, such as variable atmospheric density or thrust fluctuations.

• Direct optimization approaches: Implementing direct transcription or
collocation methods would enable the solution of more complex problems, such
as multi-phase maneuvers, minimum-time transfers, or missions with additional
constraints.
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• Hardware-in-the-loop validation: Coupling the software with hardware
simulators or propulsion system testbeds would support experimental validation
and accelerate the transition to operational applications.

In conclusion, this work provides both a theoretical and practical foundation
for the optimal control of low-thrust spacecraft in LEO. By integrating accurate
environmental modeling with indirect optimization techniques, it contributes to
the development of more efficient and realistic station-keeping strategies. The
results and methodologies presented here are not only relevant for small satellite
missions but can also be extended to future distributed space systems, Earth
observation constellations, and scientific platforms requiring precise orbital control
under challenging environmental conditions.
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