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Abstract
The exploration of Mars represents one of the most ambitious missions for the
conquest of space. It is not just a question of pushing man into territories never
before physically reached, but also of deepening scientific knowledge through the
search for possible forms of past microbial life and the analysis of rocks and craters,
comparing them with those on Earth. Furthermore, a possible future colonisation
of the red planet would open up significant economic scenarios linked to the ex-
ploitation of new resources and the development of advanced technologies.

This thesis aims to study and optimise trajectory control during the landing phase
on Mars. Trajectory optimisation is carried out using the indirect method. This
approach transforms the problem of maximising the final mass into a Multi-Point
Boundary Value Problem (MPBVP), solved through a multi-shooting iterative
procedure based on Pontryagin’s Maximum Principle (PMP). In order to minimise
propellant consumption and maximise payload, a hybrid propulsion configuration
was adopted, consisting of an electric motor and a chemical motor: the former used
in the initial phases to maximise energy efficiency, and the latter in the terminal
phase to ensure a controlled and precise landing.

The dynamic method adopted includes a two-body model, in which atmospheric
resistance is considered as a perturbative effect. Atmospheric density data were
calculated using NASA’s Mars Global Reference Atmospheric Model (Mars-GRAM)
software, which allows the density value to be evaluated as altitude, latitude and
longitude vary. The optimal descent trajectory is sought by imposing boundary
conditions and internal conditions that allow the orbit to be gradually reduced.
This optimisation is carried out considering both variable-time and fixed-time
scenarios.
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Chapter 1

Introduction

1.1 Preface

One of the fundamental characteristics of human beings is the tendency to push
beyond their visible boundaries, to explore the unknown, to reach unknown lands.
Since prehistoric times, primitive man has moved from one territory to another
to hunt, survive and exploit the natural resources present in the surrounding
environment. At this stage, we cannot yet speak of “conquests” in the modern
sense of the term, but this behaviour highlights an inner drive, guided by instinct
and necessity.
Starting in the Metal Age, we begin to see true forms of conquest, with political
and military significance. Civilisations such as the Sumerians and Egyptians began
to expand their territories into unknown lands, giving rise to processes of not only
territorial development, but also scientific and technological development. This
expansion involved the need to overcome the limitations imposed by the human
body, finding solutions to move more quickly or cope with hostile environments.
In this sense, humans learned to exploit the natural elements to their advantage:
sea currents, favourable winds, as well as knowledge of the most suitable times to
travel, for example, avoiding the hottest hours in the desert.
This drive for expansion was not motivated solely by material needs, but also by a
deep curiosity: the desire to know, to discover if there was anything beyond their
known world. Although this attitude of intellectual inquiry emerged particularly in
Greek culture, especially with Herodotus, considered the “father of history” [1] and
the first traveller driven by a desire for exploration [2], it was already present in
ancient civilisations, where exploration took the form of openness to the different
and the new.
The conquests of antiquity did not take place with the support of modern tools
such as detailed maps or satellite positioning systems. Instead, men relied on visual
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memory, natural landmarks and previously left traces, developing a sophisticated
sense of direction and a deep knowledge of the territory.

Just as in ancient times, human beings ventured beyond known boundaries to
explore new lands, today we turn our gaze towards the universe. Space exploration
is a continuation of the instinct that drove the peoples of the past to wonder about
what exists beyond known territories: to understand the nature of other planets, to
know if other forms of life exist or have existed, and to learn for the pure pleasure
of doing so.
Unlike the explorations of antiquity, today we have detailed knowledge of the
dangers to be faced, both during the journey and once we reach our destina-
tion. Modern space missions are based on careful planning, taking advantage of
the most favourable launch windows and making use of simulations, data and
cutting-edge technology. Human beings no longer move solely on instinct, but ap-
proach every step of exploration with scientific awareness and technical preparation.

In this context, Mars is now the main target for expansion. The desire to set foot
on its surface is what drives me to write this thesis.
One of the most significant challenges facing humans in the exploration of Mars is
that of entry, descent and landing on the red planet. The aim of this thesis is to
propose a strategy for controlled landing that allows satellites and landers to reach
the Martian surface safely and without damage.
To this end, the use of a hybrid propulsion system will be studied, characterised by
an initial low-thrust braking phase and a high-thrust terminal phase. This solution
optimises the management of the vehicle’s overall mass, reducing the amount of
propellant required and thus reserving more space for the payload, a crucial element
for the success of the mission.

1.2 Optimization for Spacecraft Trajectories

The objective of this thesis is to minimise the consumption of propellant required
to perform a transfer manoeuvre from a low Martian orbit to the planet’s surface.
Thanks to the contribution of Russian physicist Konstantin Eduardovich Tsiolkovsky,
who formulated the Rocket Equation (1.1) in his work “Exploration of Cosmic
Space by Means of Reaction Devices” [3], it was possible to express the relationship
between the initial mass and final mass of the vehicle as a function of the ratio
between the effective exhaust velocity, which measures how effectively the expelled
propellant mass is used, and the velocity change required by the mission, i.e. the
‘propulsion cost’.
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m0

mf

= e
∆V

c (1.1)

Throughout this section, the concepts of effective exhaust velocity c and specific
impulse Isp will be used interchangeably, as they are directly proportional to each
other. Specific impulse is defined as:

Isp = c

g0
(1.2)

where g0 represents the acceleration due to gravity at sea level on Earth. Specific
impulse is expressed in seconds and represents a measure of engine efficiency: for
the same propellant mass, a higher value allows the same thrust to be obtained
for a longer time. Similarly, a higher exhaust velocity allows greater thrust to be
generated in the same time interval. Chemical propulsion systems are characterised
by low specific impulses, typically between 250 s and 350 s, reaching up to about
450 s in the case of high-efficiency liquid propellants, such as LOX/LH2. They are
capable of generating large amounts of energy in a short time, but are intrinsically
limited by the maximum chemical energy available in the reaction, as approximately
expressed by the relationship (1.3).

c ≈
ñ

2Ech (1.3)

Where Ech represents the specific chemical energy of the propulsion system [4]. A
significant advantage of chemical propulsion systems lies in their scalability: the
energy is contained within the propellant itself, making it possible to build engines
of different sizes, capable of operating with highly variable flow rates and thrusts
(from mN to MN).
To overcome the high propellant consumption associated with these systems, elec-
tric propulsion can be used, which is characterised by much higher specific impulses.
However, the thrust generated is generally very low, and acceleration is continuous
and prolonged (in the order of hours, days or weeks), typically requiring a higher ∆V
due to losses accumulated over time. Despite this, these systems offer a high level of
precision and are a viable alternative for missions where time is not a limiting factor.

The numerical methods developed to solve these types of boundary value problems
are direct methods and indirect methods.
Direct methods address the problem by transcribing it into subclasses subject to
algebraic constraints; subsequently, all functions are discretised. The accuracy of
the solution obtained depends on the density of the discretisation: the higher the
density, the greater the accuracy, but the number of variables required will also
increase, making the calculation computationally burdensome.
However, an advantage of these methods is that they do not require a complete
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understanding of the problem or boundary conditions to obtain acceptable discrete
solutions.
In contrast, indirect methods are faster, as they require fewer variables and return
optimal solutions, provided they are initialised correctly. These methods are based
on the introduction of additional variables and Lagrange multipliers, which lead to
the formulation of an augmented problem. However, indirect methods are extremely
sensitive to initial conditions, so they can suffer from poor convergence.
A comprehensive comparison of direct and indirect methods is provided in the work
of Betts [5].

1.3 Overview of Chapters

Here a brief overview of the thesis contents is outlined.

Chapter 2 introduces the dynamic model of motion: the basics of celestial mechanics
are reviewed, then the Reference Systems (RS) adopted are defined, namely the
Mars-centred inertial system and the local system ZEN (Zenith–East–North), and
the equations of motion are derived in spherical coordinates with projection of ve-
locities and thrust. The chapter concludes with a review of the main perturbations,
although only atmospheric resistance is adopted in the simulations.

Chapter 3 is dedicated to atmospheric density perturbation, which is the most
relevant factor for the simulations in this work. The calculation of aerodynamic
drag in the chosen RS is discussed, and the modelling of Martian atmospheric
density using the Mars-GRAM [6] software is analysed, which allows the density to
be estimated as a function of latitude, longitude and altitude.

Chapter 4 presents Optimal Control Theory (OCT) and illustrates how a dy-
namic problem can be reformulated as an Optimal Control Problem (OCP). After
comparing direct and indirect methods, the focus shifts to the indirect approach
and the formulation of the MPBVP. The necessary mathematical tools, such as
added variables and optimality conditions, are described, and the multi-point opti-
mal control problem is explored in depth, with the related differential correction
techniques (single and multiple shooting) and the distinction between variable-time
and fixed-time formulations. The chapter concludes with the application of these
tools to the case study.

Chapter 5 illustrates and analyses the results obtained using the tool developed.
It describes the evolution of the trajectory and mass variations, discussing the
characteristics and effectiveness of the solutions identified in relation to the set
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objectives and highlighting the contribution of the different propulsion phases.

Finally, Chapter 6 summarises the conclusions of the study. It highlights the
main strengths, together with the limitations due to the simplifications of the
model adopted, and proposes possible future developments to make the dynamic
model increasingly realistic.

5



Chapter 2

Dynamic Model

This chapter presents the dynamic model adopted to describe the motion of a
vehicle, starting from the fundamental laws of celestial mechanics and arriving at
the operational formulation of the equations of motion used in simulations. The aim
is to provide a logical path that, starting from physical principles, leads to a system
of equations consistent with the reference choices and simplifying assumptions
specific to the discussion.

The chapter begins with Newton’s law of universal gravitation, which establishes
the nature of the attractive field and allows us to write down the forces acting
between point masses. On this basis, the N -body problem is introduced, high-
lighting how the nonlinear coupling of the equations generally makes an exact
analytical solution impossible for N > 2, thus motivating the use of reduced models
or numerical methods. The case is then specialised to the two body problem,
in which an analytical solution is obtained in terms of conic sections. In this
context, the constants of motion, mechanical energy and angular momentum, and
the vis-viva relation, which are useful for classifying trajectories, are introduced.
To link the analytical description of the orbit to the numerical formulation of the
model, the chapter precisely defines the RS used. In particular: (i) the equatorial
Mars-centred inertial system, with respect to which the three fundamental vectors
of orbital mechanics are defined (specific angular momentum h⃗, node vector n⃗ and
eccentricity e⃗) and therefore the six classical orbital elements (a, e, i, Ω, ω, ν); (ii)
the perifocal system, natural for expressing position and velocity on the Keplerian
orbit; (iii) the Mars-centred polar system with velocities projected in the local
triplet ZEN, adopted as the operational reference for time integration. We then
move on to the construction of the equations of motion in the chosen reference.
Finally, the chapter outlines the non-Keplerian effects. Although the simulations
in this thesis adopt a perturbative model focused solely on Martian atmospheric
resistance, an overview is provided of the main physical contributions that can
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influence orbital evolution: non-sphericity of the gravitational field, third-body
interactions and solar radiation pressure.

2.1 Newton’s Gravitational Law
Isaac Newton, through his principles of dynamics, laid the foundations of classical
mechanics. However, perhaps his most significant legacy from an astrodynamic
point of view is the law of universal gravitation [7], which explains the gravitational
interaction between bodies and provides a description of the orbital motion of
celestial bodies.

The law of universal gravitation states that:

Two point masses A and B, with masses mA and mB respectively, exert
an attractive force F⃗g on each other, directed along the line connecting
the two points. The magnitude of this force is directly proportional to
the product of the masses and inversely proportional to the square of
their distance.

This law can be expressed mathematically as:

F⃗g = −G
mAmB

r2 r̂ (2.1)

where:

• F⃗g is the gravitational force

• G is the universal gravitational constant, whose value is G = 6.67 × 10−11 m3

kg s2

• r⃗ is the vector connecting the two masses, and r = |r⃗| is their distance

• r̂ = r⃗
r

is the unit vector along the connecting line.

Figure 2.1 shows the interaction between a satellite and the Earth, illustrating
the application of the law of universal gravitation.

2.2 N-Body Problem

2.2.1 Absolute motion
To study the absolute motion of celestial bodies, reference is made to the equations
of dynamics in an inertial RS, i.e. a system that is stationary with respect to the
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Figure 2.1: Gravitational interaction between two point masses

so-called fixed stars or moves in a uniform rectilinear motion. Although “fixed
stars” do not exist in an absolute sense, they are so far away that they appear
practically motionless to the observer, making them a useful reference for analysing
motion.

To simplify the study of the gravitational system consisting of multiple bodies
(known as the N-body problem), certain assumptions are made:

• Point masses: it is assumed that the entire mass of each body is concentrated
at its centre of mass.

• Constant masses: it is assumed that masses do not change over time.

• Gravitational forces only: the presence of forces other than gravitational forces
is disregarded.

The equation of motion for the generic body i of the system is therefore:

mi
¨⃗
Ri = F⃗1 + F⃗2 + ... + F⃗j + F⃗N (2.2)

where the force exerted by body j on body i is given by:

F⃗ij = −G
mimj

|R⃗i − R⃗j|2
· R⃗i − R⃗j

|R⃗i − R⃗j|
(2.3)

This equation describes a non linear, coupled dynamic system, whose complexity
increases rapidly with the number of bodies involved. Already for N > 2, the
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Figure 2.2: Gravitational interactions in an N-body system

behaviour of the system can no longer be treated analytically in an exact manner.
A simple integration of the equation of motion is not possible, since the acceleration
¨⃗
Ri of the i-th body depends not only on its position R⃗i, but also on those of all
other bodies R⃗j with j /= i. More precisely, the gravitational force acts as a function
of the relative distance between the bodies and varies dynamically over time as
the bodies move. The force, therefore, is not constant, and the system evolves
continuously with a strong dependence on the initial conditions. Furthermore, since
this is a system with coupled second-order equations, solving the entire problem
requires not only writing a system of N vector equations, but also addressing them
jointly, since each is influenced by all the others.
From a computational point of view, the vectors can be split into three Cartesian
scalar components (x, y, z), transforming each vector equation into three scalar
equations. However, this leads to an increase in the total number of equations:
from N vector equations to 3N scalar equations, which remain coupled and of the
second order.
In summary, there is no general analytical solution for the N body problem. The
only viable way to obtain an approximate solution is to use numerical integration
methods, which allow the system to evolve over time with a precision determined
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by the choice of method and time step used.

2.2.2 Relative motion

The main interest in studying the motion of celestial bodies often does not concern
their movement with respect to an absolute inertial RS, but rather their relative
motion with respect to a central body, such as the Sun in the case of the solar
system. From this perspective, the number of equations to be considered is reduced
from N to N − 1, as one of the equations is absorbed into the relative reference.
A particularly important situation is the so-called restricted N -body problem,
which arises when one of the bodies (of mass mj) is much less massive than the
others, i.e. mj ≪ m1, m2, . . . , mN−1. In this case, it is assumed that the body
of negligible mass does not influence the motion of the other bodies, but still
undergoes their gravitational attraction.

A further simplification occurs in the two body problem, which represents a
special but fundamental case for many applications, such as the Earth–Sun system
or a spacecraft–Earth system. This model is characterised by the presence of a
main body, significantly more massive than the other, and has an exact analytical
solution.
Although simplified, this type of modelling forms the theoretical basis for classical
orbital dynamics and is the starting point for the analysis of space trajectories,
interplanetary missions and orbital manoeuvres.

2.3 Two Body Problem

In the two body problem model, further simplifying assumptions are made, partly
derived from the N-body problem, such as the assumption of point masses and
spherical symmetries. Furthermore, the system considered consists of two masses:
a primary mass (of mass M) and a secondary mass (of mass m), where the
latter is negligible compared to the former m << M . Finally, it is assumed that
the interaction between the two bodies occurs only through gravitational force,
neglecting the effects of perturbative forces and those due to other bodies present
in the system.
The system is described in an inertial RS, as illustrated in the Figure 2.3
The force by which the two bodies attract each other is identical in magnitude
and direction, but opposite in verse, and is, according to equation (2.1), directly
proportional to their masses and inversely proportional to the square of their
distance, where r⃗ = ρ⃗ − R⃗, as shown in the following equation:
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|Fm| = |FM | = G
mM

r2 (2.4)

Figure 2.3: Gravitational interactions in a two body system

2.3.1 Equation of motion
The equation of motion can be obtained by writing the equation of motion for
each body relative to the inertial frame RS. In this way, the equilibrium between
the product of mass and acceleration relative to the inertial frame RS and the
gravitational force acting on each body is established. Therefore, for each of the
masses, the following equations are obtained:

m ¨⃗ρ = −G
mM

r2
r⃗

r
(2.5a)

M
¨⃗
R = G

mM

r2
r⃗

r
(2.5b)

Subtracting equations (2.5a) and (2.5b), and simplifying appropriately, we arrive
at the overall motion equation (2.6). In this expression, we consider that the
secondary mass m is negligible compared to the primary mass M, and we observe
that the difference between the accelerations of the two bodies in the inertial frame
RS is equivalent to the acceleration of the secondary body relative to the main
body. Therefore, we obtain:
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¨⃗ρ − ¨⃗
R = −G

M + m

r2
r⃗

r

¨⃗r ≈ −GM

r2
r⃗

r
(2.6)

Where GM = µ represents the gravitational parameter, which depends on the mass
of the primary body, and its unit of measurement is [µ] = [km3/s2]. In this way,
we arrive at the equation of motion of the secondary body relative to the primary
body in the two body problem. Solving equation (2.7), we obtain the position of
the body of mass m relative to the body of mass M.

¨⃗r + µ

r2
r⃗

r
= 0 (2.7)

By integrating the equation of motion obtained previously, we can derive the
equation of the trajectory, which describes a conic section. However, before
proceeding with the calculation of the trajectory, it is necessary to determine two
constants of motion, which provide crucial information about the nature of the
orbit: mechanical energy and angular momentum.
In the context of the two body problem, mechanical energy is conserved, except
for perturbing forces, and is the sum of kinetic energy and gravitational energy.
Mechanical energy is expressed by the following formula:

E = V 2

2 − µ

r
(2.8)

Equation (2.8) is known as vis-viva, relating orbital velocity V , radial distance r
and gravitational parameter µ. The sign of the mechanical energy allows us to
classify the type of orbit: if E < 0, the orbit is an ellipse or a circle; if E = 0, the
orbit is a parabola; if E > 0, the orbit is a hyperbola. Mechanical energy can also
be expressed as a function of the semi-major axis a of the conic:

E = − µ

2a
(2.9)

In this formulation, it is clear that the shape of the trajectory is identified by the
sign and value of a: for a > 0, the orbit is closed; for a → ∞, the trajectory is open
and a parabola is obtained; while for a < 0, the trajectory is open and a hyperbola
is obtained.
Another parameter that is conserved during the motion of a body under gravitational
influence, barring perturbations, is angular momentum, defined as the vector
product of the radius and velocity of the body:

h⃗ = r⃗ × V⃗ (2.10)
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Equation (2.10) implies that, at every point along the trajectory, the product of
the radius and the velocity is constant, which means that the angular momentum
is conserved during the motion of the body.

To derive the equation of the trajectory, it is necessary to perform the vector
product between the angular momentum and each member of the equation (2.7).
In this way, we obtain the equation of the trajectory (2.12):

h⃗ ∧ ¨⃗r = h⃗ ∧ [− µ

r2
r⃗

r
] (2.11)

From which, after appropriate manipulations, the equation of the trajectory in
polar form is obtained:

r = h2/µ

1 + B/µ · cosν
(2.12)

In this expression, r represents the distance between the two bodies, h is the specific
angular momentum, µ is the gravitational parameter, and ν is the true anomaly.
The constant B depends on the initial conditions of the system and determines the
shape of the orbit. Equation (2.12) assumes a minimum value if the function in
the denominator is at its maximum, i.e. when ν = 0.

2.3.2 Polar equation of a conic section
A conic section in the plane can be defined as the set of points such that the ratio
between the distance of each point from a focus and its distance from the directrix
is constant. This constant is called the eccentricity of the conic section.
Equation (2.12) can be rewritten in the canonical form of conic sections in polar
coordinates:

r = p

1 + e cos(ν) (2.13)

where p = h2/µ is the semi-major axis, which represents the distance between the
focus and the point on the conic section identified by the intersection of the curve
with the line perpendicular to the major axis passing through the focus, while
e = B/µ is the eccentricity of the conic section, which determines its geometric
shape. In particular, as e varies, different types of trajectories can be distinguished:
for e = 0, the curve is a circle; for 0 < e < 1, it is an ellipse; if e = 1, it is a
parabola; and finally, for e > 1, it is a hyperbola.

In summary, the classification of orbital trajectories can be expressed in terms of
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specific mechanical energy E , semi-major axis a and eccentricity e, as shown in
Table 2.1.

Mechanical Energy Semi-major axis Eccentricity Conic
E < 0 a > 0 e = 0 Circumference
E < 0 a > 0 0 < e < 1 Ellipse
E = 0 a → ∞ e = 1 Parabola
E > 0 a < 0 e > 1 Hyperbole

Table 2.1: Classification of conic sections based on E , a, e

Starting from the classification of orbits based on specific mechanical energy
and orbital parameters, it is possible to introduce some characteristic velocities,
which represent limit or reference conditions for the motion of a body around the
centre of attraction.
In particular, to maintain a circular orbit, a satellite must have the so-called circular
velocity, always tangent to the trajectory and therefore perpendicular to the radius
vector. As in a circular trajectory the distance from the centre of attraction remains
constant, we have a = r. Substituting this relationship into the equation of vis-viva
(2.8) and highlighting the orbital velocity V , we obtain:

vc =
ò

µ

r
(2.14)

This relationship shows that circular velocity decreases as the orbital radius increases.
Another particularly important characteristic velocity is escape velocity, defined as
the minimum velocity required for a body to permanently escape the gravitational
field of the central planet. It is obtained by equating the equation of vis-viva
calculated at the point of interest with the same equation evaluated at the limit
r → ∞:

v2
e

2 − µ

r
= v2

∞
2 − µ

r∞
, (2.15)

where v∞ represents the residual velocity at infinite distance. In the limiting case
v∞ = 0, we obtain:

ve =
ó

2µ

r
=

√
2vc. (2.16)

In this scenario, the orbital mechanical energy is zero, a condition equivalent to
a → ∞, and the resulting trajectory is a parabola.
The concept of escape velocity is closely related to that of Sphere of Influence (SOI),
which represents the volume of space within which the gravitational attraction of

14



Dynamic Model

the planet can be considered predominant over that of the main body (in the case
of Earth, the Sun). The radius of the sphere of influence can be estimated using
the following equation:

rSOI = r12

3
m2

m1

42/5
, (2.17)

where r12 is the average distance between the planet and the central body, m2 is
the mass of the secondary body (Earth) and m1 is the mass of the central body
(Sun).

Figure 2.4: Assessment of the Sphere of Influence

For Earth, the value of SOI is rSOI = 6.9 × 105 km.
At last, we introduce the third characteristic velocity, known as hyperbolic excess
velocity, which represents the residual velocity possessed by a body once it has left
the sphere of influence of the planet. Unlike the parabolic case, where the final
velocity at infinity is zero, here it is positive and is denoted by v∞.

v∞ =
ò

−µ

a
(2.18)

For the root argument to be positive, a < 0 must hold, a condition that corresponds
to a hyperbolic trajectory.
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In the specific case of Earth, the characteristic velocities assume well-defined
values, traditionally referred to as cosmic velocities. These values are summarised
in Table 2.2.

Cosmic velocity Value [km/s]
First cosmic velocity 7.91

Second cosmic velocity 11.19
Third cosmic velocity 16.65

Table 2.2: Cosmic velocities of the Earth

The first cosmic velocity corresponds to the minimum velocity required to
describe a circular orbit around the Earth at zero altitude.
The second cosmic velocity is the velocity that allows a spacecraft to permanently
leave the Earth’s gravitational field, travelling along a parabolic or hyperbolic
trajectory.
The third cosmic velocity represents the velocity that a spacecraft on the Earth’s
surface would need to have at launch in order to leave the sphere of influence of
the Sun, i.e. to leave the Solar System.

2.4 Reference System
An RS is defined by an origin, a fundamental plane and an orthonormal triad
associated with that plane. Choosing a suitable RS can greatly simplify the analysis
and resolution of a specific problem. In this thesis, a RS in Mars-centred system
polar coordinates was adopted to describe the position of the satellite, where r is
the radius, φ is the latitude, and ϑ is the longitude, while the velocity is projected
into the local ZEN system. This topocentric, rotating and therefore non-inertial RS,
identified by the triplet {û, v̂, ŵ}, allows the components of the probe’s velocity
along the radial, tangential and normal directions to be described in a natural way.
The radial direction is defined by the vector connecting the centre of the planet
with the instantaneous position of the probe, while the tangential and normal
directions are orthogonal to it and are comparable, respectively, to the directions
identified by a parallel and a meridian on the celestial sphere.

Before showing how the equations of motion are expressed in the RS adopted
in this thesis, it is worth recalling the different systems used to describe orbital dy-
namics. Starting from the equation of motion derived in Section 2.3.1, it is possible
to determine the orbital parameters that characterise the trajectory. Subsequently,
these parameters are translated into coordinates for the perifocal system (p̂, q̂, ŵ)
and finally transformed into the RS chosen in this discussion, i.e. that defined by
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polar coordinates for position and by the local system ZEN for velocity, passing
through the equatorial Mars-centred system.

2.4.1 Orbital parameters

Before deriving the six classical orbital parameters, it is necessary to introduce
three fundamental vectors (⃗h, n⃗, e⃗), expressed in their components with respect to
the Mars-centred equatorial inertial frame RS (Figure 2.5). This system originates
at the centre of Mars, with the Martian equator as its fundamental plane, and is
defined by the orthonormal triplet (Î , Ĵ , K̂). The axis Î is directed towards the
vernal equinox, K̂ is perpendicular to the equatorial plane and oriented along the
Martian north pole, while Ĵ completes the triad according to the right-hand rule.

Figure 2.5: Mars RS (Î , Ĵ , K̂).

The first vector to be introduced is the specific angular momentum:

h⃗ = r⃗ × v⃗ =

-------
Î Ĵ K̂
rI rJ rK

vI vJ vK

------- = hI Î + hJ Ĵ + hKK̂, (2.19)

which is perpendicular to the orbital plane and defines its orientation in space. The
second vector is the node vector:
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n⃗ = K̂ × h⃗ =

-------
Î Ĵ K̂
1 0 0
hI hJ hK

------- = −hJ Î + hI Ĵ , (2.20)

obtained as the vector product between the polar axis K̂ and the specific angular
momentum. It lies on the equatorial plane and points along the line of nodes in
the direction of the ascending node. Lastly, the eccentricity vector is defined:

e⃗ = B⃗

µ
= v⃗ × h⃗

µ
− r⃗

r
, (2.21)

pointing from the centre of the planet towards the periastron of the orbit. Its
modulus coincides with the value of the orbital eccentricity, providing a direct
measure of the shape of the trajectory.
Figure 2.6 (taken from [8]) shows the geometric representation of the three vectors
h⃗, n⃗ and e⃗ within the inertial RS, highlighting the relationships with the equatorial
plane and with the orbital parameters that will be introduced later.

Figure 2.6: Orbital parameters

Once that three fundamental vectors (⃗h, n⃗, e⃗) are defined, the orbital element
can be easily calculated, as can be seen in the Table 2.3 (taken by [9]):
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Parameter Definition

Semi-major axis a E = − µ

2a

Eccentricity e e = ∥e⃗∥

Inclination i cos i = h⃗ · K̂

h
= hK

h

RAAN Ω cos Ω = I⃗ · n⃗

n
= nI

n

Argument of perigee ω cos ω = n⃗ · e⃗

ne

True anomaly ν cos ν = e⃗ · r⃗

er

Table 2.3: Definition of the six classical orbital elements

The element a determines the size of the orbit, while the eccentricity e defines its
shape. The inclination i identifies the inclination of the orbital plane with respect
to the equatorial reference plane and is always between 0◦ and 180◦. The longitude
of the ascending node Ω represents the angle between the reference axis Î and
the direction of the ascending node; in particular, if nJ > 0, then 0◦ < Ω < 180◦,
while if nJ < 0, then 180◦ < Ω < 360◦. The argument of perihelion ω is defined
as the angle between the ascending node and the perihelion: if eK > 0, then
0◦ < ω < 180◦, while if eK < 0, then 180◦ < ω < 360◦. Finally, the true anomaly
ν is the angle between the perigee and the instantaneous position of the satellite
along the orbit at a given moment in time; if r⃗ · v⃗ > 0, then 0◦ < ν < 180◦, while if
r⃗ · v⃗ < 0, then 180◦ < ν < 360◦.

2.4.2 Equation of motion in spherical coordinates

Given the six orbital parameters a, e, i, Ω, ω, ν, it is possible to determine
the position vector and velocity vector in the perifocal RS. They are expressed
respectively as

r⃗pqw =

r cos ν
r sin ν

0

 , v⃗pqw =


−
ñ

µ
p

sin νñ
µ
p
(e + cos ν)

0

 , (2.22)
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where the vector radius r is calculated using the conic equation (2.13), while the
semi-major axis is defined as p = a(1−e2) [9]. The perifocal RS describes the motion
of the satellite in a natural way. Its origin coincides with the centre of the central
body, located at the focus of the orbit, and is defined by the orthonormal triplet
{p̂SC , q̂SC , ŵSC}, shown in Figure 2.7 (taken from [8]). The versor p̂SC is oriented
along the direction of the eccentricity vector e⃗, while ŵSC is perpendicular to the
orbital plane and coincides with the direction of the specific angular momentum
vector h⃗ (Figure 2.6). Finally, q̂SC completes the triplet according to the right-hand
rule.

Figure 2.7: Perifocal RS

Using the rotation matrix shown in Appendix A, it is possible to transform
the coordinates from the perifocal system to the Mars-centred equatorial inertial
system. Applying the matrix Lpqw→IJK , we obtain the relationships between the
position and velocity vectors expressed in the two RS:

r⃗IJK = Lpqw→IJK r⃗pqw, v⃗IJK = Lpqw→IJK v⃗pqw, (2.23)

where r⃗IJK = (x, y, z) and v⃗IJK = (ẋ, ẏ, ż) represent the Cartesian components
of the position vector and velocity vector, respectively. Once these components
are known, it is possible to determine the associated spherical coordinates, i.e.
the radius r, the declination φ and the right ascension ϑ, using the following
expressions:

r =
ñ

x2 + y2 + z2, ϑ = atan2(y, x), φ = atan2(z,
ñ

x2 + y2) (2.24)

As illustrated in Figure 2.8, the position vector can therefore be rewritten in
spherical form:
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r⃗ = r

cosφ cosϑ
cosφ sinϑ

sinφ

 . (2.25)

Figure 2.8: Representation of the position vector in spherical coordinates within
the Mars-centred equatorial inertial RS

Deriving equation of position vector in spherical coordinates gives the Cartesian
velocity:

v⃗ = ˙⃗r =

ṙ cos φ cos ϑ − r ϑ̇ sin ϑ cos φ − r φ̇ cos ϑ sin φ

ṙ cos φ sin ϑ + r ϑ̇ cos ϑ cos φ − r φ̇ sin ϑ sin φ
ṙ sin φ + r φ̇ cos φ

 . (2.26)

By projecting v⃗ onto the local triplet {êr, êϑ, êφ} (defined in Appendix B) via scalar
product, we obtain the components

vr = v⃗ · êr = ṙ = u (2.27a)
vϑ = v⃗ · êϑ = r ϑ̇ cos φ = v (2.27b)
vφ = v⃗ · êφ = r φ̇ = w (2.27c)

from which the three kinematic relationships are derived:
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dr

dt
= u (2.28a)

dϑ

dt
= v

r cos φ
(2.28b)

dφ

dt
= w

r
(2.28c)

Deriving v⃗ gives the acceleration in spherical coordinates:

a⃗ = d

dt
(vrêr + vϑêϑ + vφêφ) = v̇r êr + vr

˙̂er + v̇ϑ êϑ + vϑ
˙̂eϑ + v̇φ êφ + vφ

˙̂eφ, (2.29)

which, by explicitly developing the time derivatives of the local unit vectors (defined
in Appendix B) and appropriately reordering the terms obtained, leads to the
following compact expression of the acceleration in the three directions of the
spherical basis:

a⃗ =
1
v̇r − vϑ ϑ̇ cos φ − vφ φ̇

2
êr

+
1
v̇ϑ + vr ϑ̇ cos φ − vφ sin φ ϑ̇

2
êϑ

+
1
v̇φ + vr φ̇ + vϑ sin φ ϑ̇

2
êφ. (2.30)

Expressed in terms of the components (u, v, w) defined above, the kinematic
equations for accelerations become

du

dt
= v2

r
+ w2

r
(2.31a)

dv

dt
= − uv

r
+ wv

r
tan φ (2.31b)

dw

dt
= − uw

r
− v2

r
tan φ (2.31c)

which represent purely geometric terms (no force applied).
In the central gravitational model, Mars’ acceleration is radial and values −µ/r2

along −êr. To this are added the perturbative accelerations (ap)r, (ap)ϑ, (ap)φ and,
if present, the components of thrust (Tu, Tv, Tw) projected onto the spherical base.
The dynamic system in Mars-centred polar coordinates for position and in ZEN
for velocity is therefore:
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

dr

dt
= u

dθ

dt
= v

r cos φ
dφ

dt
= w

r
du

dt
= − µ

r2 + v2

r
+ w2

r
+ Tu

m
+ (ap)u

dv

dt
= −uv

r
+ vw

r
tan φ + Tv

m
+ (ap)v

dw

dt
= −uw

r
− v2

r
tan φ + Tw

m
+ (ap)w

dm

dt
= −T

c

(2.32)

The components of the thrust T projected onto the local reference system ZEN
can be expressed as:

Tu = T sin αT , (2.33a)
Tv = T cos αT cos βT , (2.33b)
Tw = T cos αT sin βT . (2.33c)

where αT represents the thrust angle in the local plane, while βT defines the thrust
deviation out of the plane.

2.5 Perturbing Forces
So far, the only reference has been to ideal orbits, i.e. Keplerian orbits, described
in the context of simplifying assumptions that characterise the treatment of the
two body problem. In reality, however, these assumptions do not hold: none of the
six classical orbital parameters is constant over time.
Actual orbits can be described as Keplerian orbits subject to perturbations due to
the presence of non-Keplerian forces. In the two body model, all orbital parameters
are invariant over time, with the exception of the true anomaly, which varies
naturally with orbital motion, except in the case of transfer manoeuvres. In reality,
however, this variation is superimposed by additional effects: on the one hand, a
secular drift is observed, characterised by a monotonic, generally linear variation of
the orbital parameters; on the other hand, periodic oscillations may occur, which
can be divided into short-period oscillations, due to phenomena that repeat at each
revolution, and long-period oscillations, linked to the interaction and variation of
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the different parameters.
An example of this behaviour is shown in Figure 2.9, which shows the evolution
of orbital inclination. In a purely Keplerian model, the inclination would remain
constant, while in the presence of perturbations it exhibits a secular drift associated
with both long- and short-term oscillations.

Figure 2.9: Evolution of the orbital inclination over time: comparison between
the Keplerian case and the perturbative effects

Therefore, we can no longer refer to a perfect Keplerian orbit, but instead
introduce the concept of an osculating orbit, i.e. an instantaneous Keplerian orbit
that represents the state of the body at a given moment.
The equation of motion, including perturbative effects, can be expressed as:

¨⃗r = −µ2

r2
r⃗

r
+ a⃗p (2.34)

where a⃗p represents the acceleration due to perturbing forces. In the dynamic model
adopted in this thesis, the only perturbing effect considered is the acceleration
due to the presence of the Martian atmosphere. For the sake of completeness,
however, other possible sources of perturbation will also be mentioned, such as the
non-sphericity of the planet, third-body interactions due to both the gravitational
attraction of the Sun and that of the natural satellites Phobos and Deimos, and,
finally, solar radiation.
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The total perturbing acceleration can be expressed as the sum of the main contri-
butions:

a⃗p = a⃗drag + a⃗J2 + a⃗3b (2.35)

2.5.1 Atmospheric drag
Atmospheric drag is a disruptive force that acts on the satellite’s momentum,
causing a change in its velocity. In the case of Mars, due to the low atmospheric
density, the effect of drag is only significant at relatively low altitudes and becomes
negligible above approximately 120–150 km. As reported in [10], the acceleration
due to atmospheric drag can be expressed as:

a⃗drag = −1
2

CDA

m
ρv2

rel

v⃗rel

vrel

(2.36)

The effect of atmospheric drag depends on several parameters that are difficult to es-
timate accurately. These include the aerodynamic drag coefficient, CD, which varies
depending on the satellite configuration (typically CD ≈ 2.0 − 2.2), atmospheric
density, ρ, which is highly dependent on altitude and environmental conditions and
whose calculation is described in detail in Chapter 3, and the exposed cross-sectional
area, A, which is related to the aircraft’s attitude.
The relative velocity to be considered is that with respect to the atmosphere and
not simply the orbital velocity, since the atmosphere rotates with Mars and is
subject to phenomena such as winds. The velocity vector relative to the rotating
atmosphere is:

v⃗rel = dr⃗

dt
− ω⃗⊕ × r⃗ =



dx

dt
+ ω⃗♂y

dy

dt
− ω⃗♂x

dz

dt

 (2.37)

where ω⃗♂ represents the angular velocity of Mars. The relative velocity can be
further refined by including the effect of atmospheric winds. A more general
formulation, proposed by Pedro Ramon Escobal [11], is as follows:

v⃗rel =



dx

dt
+ ω⊕y + vw{− cos(α) sin(δ) cos(βw) − sin(α) sin(βw)}

dy

dt
− ω⊕x + vw{− sin(α) sin(δ) cos(βw) + cos(α) sin(βw)}

dz

dt
+ vw{cos(δ) cos(βw)}

 (2.38)
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where vw represents the wind speed, βw its azimuth, while α and δ are respectively
the right ascension and declination of the satellite. In this study, the component
due to atmospheric winds has been neglected, thus adopting the expression of
(2.37) for the calculation of the relative velocity.
Since the position of the satellite is expressed in Mars-centred polar coordinates,
where r is the radius, φ is the latitude and ϑ is the longitude, while the velocity
is projected into the local ZEN system, it is necessary to transform the position
and velocity appropriately into the same RS used in (2.37), i.e. the Cartesian one
(Î , Ĵ , K̂). 

x = r cosφ cosϑ

y = r cosφ sinϑ

z = r sinφ

(2.39)

The velocity is projected from ZEN to Cartesian coordinates by:

v⃗IJK = LZEN→IJK v⃗ZEN (2.40)

where vZEN = [u v w]T and LZEN→IJK is the rotation matrix defined in Appendix A.
After calculating the components of atmospheric drag acceleration in the Cartesian
inertial system, these must be converted back to the polar system with velocities
expressed in ZEN, in order to be consistent with the dynamic model adopted. The
inverse transformation is obtained by transposing the matrix LZEN→IJK :

a⃗ZEN = LT
ZEN→IJK a⃗IJK (2.41)

2.5.2 Mars asphericity
Another significant source of perturbation is the non-sphericity of Mars’ gravita-
tional field. In fact, like Earth, the Red Planet cannot be considered a perfectly
spherical body, but rather an areoid characterised by flattening at the poles and
irregularities due to the non-uniform distribution of internal masses. The perturbed
gravitational potential can be expressed in the general form:

Egp = − µ♂

r
{1 −

∞Ø
n=2

Jn

3
R♂

r

4n

Pn(sin φ)

+
∞Ø

n=2

∞Ø
m=2

3
R♂

r

4n

JnmP m
n (sin φ) cos[m(ϑ − ϑnm)]} (2.42)

where Jn are the coefficients of the zonal harmonics, which describe axial deviations
from spherical symmetry, Pn are Legendre polynomials of order n related to latitude,
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Jnm are tesseral harmonics, if n /= m, or sectorial harmonics, if n = m, and P m
n are

associated Legendre polynomials of order n and degree m. Legendre polynomials
are defined as:

Pn(x) = 1
2nn!

dn

dxn
(x2 − 1) (2.43a)

P m
n (x) = (−1)m(1 − x2)m/2 dm

dxm
[Pn(x)] (2.43b)

Among the various terms, the one that produces the dominant effect is the
oblateness coefficient J2, which represents the flattening of the planet at the poles
and the consequent deviation of the potential from the spherical case. The influence
of J2 introduces secular and periodic variations in the orbital parameters, with
particularly significant effects on the longitude of the ascending node Ω and on the
argument of periastron ω.

2.5.3 Third-body perturbations
The perturbative effects induced by a third body, such as the Sun or the natural
satellites Phobos and Deimos, become particularly relevant at high altitudes, when
atmospheric resistance progressively loses importance. Figure 2.10 illustrates the
geometric configuration: the satellite of mass m orbits around the main body M
(Mars), while also being affected by the gravitational pull of a perturbing body mp,
in this case represented by Phobos.

Figure 2.10: Third-body interaction scheme

The distance between M and m is defined by the vector r⃗ = ρ⃗ − R⃗ = ρ⃗0 − R⃗0,
while the geometric relationships between the three bodies are governed by:
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r cosβ + ρ cosα = R → ρ

R
cosα = 1 − r

R
cosβ (2.44)

where α and β are the angles formed by the perturbing body and the satellite with
respect to Mars.
Starting from the equation of motion for an n-body system, we can write the
acceleration of the positions ¨⃗ρ0 and ¨⃗

R0 with respect to the inertial frame RS:

¨⃗ρ0 = − GM

r2
r⃗

r
− Gmp

ρ2
ρ⃗

ρ
(2.45a)

¨⃗
R0 = − GM

r2
r⃗

r
− Gmp

R2
R⃗

R
(2.45b)

Subtracting equation (2.45b) from (2.45a) gives the equation of motion for the
satellite subject to the simultaneous attraction of Mars and the perturbing body:

¨⃗r = − µ

r2
r⃗

r
− µp

ρ2
ρ⃗

ρ
+ µp

R2
R⃗

R
(2.46)

where the first term corresponds to the two body problem (Mars–satellite), while
the remaining two describe the gravitational interaction of the third body. It is
important to note that the perturbative acceleration does not derive directly from
the attractive force of the perturbing body on the satellite, but rather from the
difference in the forces exerted on the satellite and the central body, respectively.
To quantify this perturbative acceleration, Carnot’s theorem can be applied to the
triangle formed by Mars, the satellite and the perturbing body:

ap = µp

ρ2

ó
1 − 2 ρ2

R2 cosα + ρ4

R4 (2.47)

The discussion is divided into two cases. In the first case, if ρ << R, the satellite
is very close to the perturbing body: the perturbative acceleration can then be
approximated as ap ≃ µp/ρ2, a condition that corresponds to the so-called classical
three-body problem. In the second case, ρ ≃ R, or r/R << ε, the relation (2.44)
becomes

ρ

R
cosα = 1 − ε cosβ (2.48)

Replacing in (2.47) and developing using Newton’s series expansion, we obtain the
expression for the perturbative acceleration of the third body

ap = µp
r

R3

ñ
1 + 3 cos2β (2.49)
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The magnitude of the acceleration varies depending on the angle β: in the conjunc-
tion configuration (β = 0, π) it assumes the maximum value ap = µp2r/R3, while
in quadrature (β = π/2), it is reduced to ap = µpr/R3.
In general, the perturbative action of a third body is more significant the greater
the distance of the satellite from the central body.

Table 2.4 shows a comparison between the gravitational and perturbative ac-
celerations exerted by Mars, the Sun and the two natural satellites Phobos and
Deimos, referring to a satellite located at an altitude of 140 km from the Martian
surface. With regard to the accelerations due to perturbing bodies, the quadrature
case was considered.

Gravitational acceleration [km/s2] Perturbative acceleration [km/s2]

a♂ =
µ♂
r2 = 3.43 × 10−2 —

a⊙ = µ⊙

ρ2
⊙

= 5.89 × 10−6 ap⊙ = µ⊙ r

ρ3
⊙

= 1.39 × 10−10

aP hobos = µP hobos

ρ2
P hobos

= 8.08 × 10−8 apP hobos
= µP hobos r

ρ3
P hobos

= 3.05 × 10−8

aDeimos = µDeimos

ρ2
Deimos

= 1.78 × 10−10 apDeimos
= µDeimos r

ρ3
Deimos

= 2.68 × 10−11

Table 2.4: Comparison between gravitational and perturbative accelerations

The analysis of the values reveals an interesting aspect: although Phobos is
much less massive than the Sun, its gravitational acceleration on the satellite is
about two orders of magnitude lower. However, due to its proximity to Mars,
Phobos’ perturbing action is about two orders of magnitude greater than that of
the Sun, demonstrating how distance plays a decisive role in the intensity of the
perturbation.

2.5.4 Solar radiation

The last effect considered is that of solar radiation, whose intensity, similar to
the case of third-body perturbations, is less significant at low altitudes, where
atmospheric effects predominate. It represents the pressure exerted by solar
radiation on any exposed surface, producing a change in momentum due to the
impact of photons. The acceleration due to solar radiation pressure is expressed
by:
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aSR = p CR
S

m
(2.50)

where CR is the reflectivity coefficient, which depends on the optical properties of the
spacecraft’s surface, S is the exposed area, and m is the mass of the satellite. The
term p represents the solar pressure, which decreases with the square of the distance
from the Sun. At a distance of 1 astronomical unit, equal to the average distance
between the Earth and the Sun, its value is approximately p = 4.5 × 10−6 N/m2.
In the case of Mars, the greater distance from the Sun results in a reduction in the
pressure value, which is approximately p♂ = 1.94 × 10−6 N/m2.
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Atmospheric Density

Atmospheric drag played a fundamental role in the mission, as it allowed the main
objective to be pursued: reaching the surface of Mars at a speed close to zero.
In addition to modifying the satellite’s trajectory, allowing for a reduction in the
overall mission time, aerodynamic drag played a crucial role in gradually slowing
down the vehicle, making the final controlled descent phase possible.

This chapter aims to provide a comprehensive overview of the atmospheric drag
modelling adopted in the study. It begins with the presentation of the method
used to represent the interaction between the satellite and the Martian atmosphere,
including the spatial density interpolation procedure. This is followed by an analysis
of the Mars-GRAM model, with a focus on its fundamental characteristics. It
should be noted that this section is not intended as a user guide to Mars-GRAM,
as this aspect is already thoroughly documented in the official User Guide [6], but
rather as a summary of the main features relevant to the present work. Finally,
the chapter concludes with the analysis of the case study, where the numerical and
graphical results are presented and discussed.

3.1 Modelling of Martian Atmospheric Density
To model the Martian atmosphere, software developed by NASA Mars-GRAM was
used, which provides the values of the main atmospheric parameters, including
density, based on altitude, longitude and latitude.
This tool was used to generate an output file, as shown in Figure 3.1, containing
the data needed to characterise the atmospheric profile. Subsequently, using a
trilinear interpolation process implemented in Python, this information was used
to introduce a contribution of aerodynamic drag into the satellite’s dynamics.
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To accurately estimate local density, the data space was represented as a three-
dimensional matrix, as shown in Figure 3.2, as if Mars were surrounded by a
three-dimensional grid, whose axes are defined by:

• altitude, ranging from 0 − 200 km,

• latitude, ranging from −90◦ to 90◦,

• longitude, ranging from 0◦ to 360◦.

Figure 3.1: Example of an Output file generated by Mars-GRAM

Each node of the grid contains the density value calculated by Mars-GRAM;
the density corresponding to the satellite position, determined by the state vector,
is obtained by trilinear interpolation within the three-dimensional matrix.
In particular, the point of interest is identified within a cube defined by eight known
density nodes, corresponding to two altitude values, two latitude values and two
longitude values.
The trilinear interpolation process consists of several steps: initially, four linear
interpolations are performed along a first direction, thus reducing the problem
from three-dimensional to two-dimensional; subsequently, two interpolations are
performed along the second direction, which reduce the problem to one dimension;
finally, a last linear interpolation is applied along the third direction, obtaining the
final density value at the required point.
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Figure 3.2: Cube for trilinear interpolation

3.2 Use of the Mars-GRAM Model for Atmo-
spheric Analysis

Mars-GRAM is an atmospheric model developed by NASA, specifically by the NASA
Marshall Space Flight Center. Some of the fundamental atmospheric models from
which Mars-GRAM derives its data, such as the Mars General Circulation Model
(MGCM) and the Mars Thermospheric General Circulation Model (MTGCM), were
developed respectively by the NASA Ames Research Center and the University of
Michigan.
Mars-GRAM was developed to support engineers and mission planners in the design
of vehicles intended to enter and navigate within the Martian atmosphere. The
model provides detailed values on atmospheric properties and related variations,
including temperature, density, pressure and winds.
The software allows the user to set input parameters such as time, geographic
position (altitude, longitude, and latitude), and atmospheric dust level, returning
as output the values of atmospheric properties and composition. Mars-GRAM
has been employed in numerous Martian aerobraking missions of probes such as
Mars Global Surveyor (MGS), Mars Odyssey (ODY), Mars Reconnaissance Orbiter
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(MRO), and the Mars Atmosphere and Volatile Evolution (MAVEN) mission.
Mars-GRAM has undergone several updates over time. It was originally developed
in Fortran in 1988 and has recently rewritten in C++ to improve computational
efficiency and integration with other engineering tools. In particular, the new
version includes integration with NASA’s SPICE libraries, enabling more accurate
computation of Martian ephemerides, as well as the introduction of a new CSV
output format, better suited for data processing and visualization.

3.2.1 Mars-GRAM atmospheric data
Within the Mars-GRAM model, the atmospheric structure is defined by combining
two models: the NASA Ames MGCM up to an altitude of 80 km, and the MTGCM
for the upper layers. Both models use the topography derived from the MOLA
(Mars Orbiter Laser Altimeter) altimeter of the MGS mission, referring to the
constant equipotential surface known as the areoid.
Mars-GRAM allows the selection of different configurations of the average atmo-
sphere through the MapYear input parameter, which identifies the Martian year of
reference for the data.

• With MapYear = 0, the user can manually specify the optical depth of the
dust and use interpolated MGCM data corresponding to three values of τ
(τ = 0.3, 1.0, 3.0).

• With MapYear = 1 or 2, the data are derived from MGCM simulations guided
by actual measurements of optical depth made by the TES (Thermal Emission
Spectrometer) instrument during Martian years 1 (1999-2001) and 2 (2001-
2002).

Mars-GRAM also allows local atmospheric variations to be modelled using three
disturbance scale parameters:

• DensityPerturbationScale, for density;

• EWWindPerturbationScale and NSWindPerturbationScale, for east–west
and north–south winds;

• PerturbationWaveLengthScale, for the perturbation wavelength.

The planetary constants are taken from the NASA Space Science Data Coordinated
Archive portal, specifically from the Planetary Fact Sheet for Mars section, as
shown in Table 3.1.
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Mars Label Units Value
Gravitational Parameter GM km3/s2 42828.3736
Mean Equatorial Radius Re km 3396.2

Mean Polar Radius Rp km 3376.2
J2 harmonic J2 km5/s2 0.00196045

Period s 88642.44

Table 3.1: Mars gravity parameters

Topography Data The MOLA, aboard the MGS probe, provided high-resolution
Martian topographic data, used in Mars-GRAM to define altitude relative to
a geodetic reference known as the areoid, a gravitational equipotential surface.
Starting with versions after 2001, Mars-GRAM adopts the MOLA topography and
the related areoid with a grid resolution of half a degree in latitude and longitude
by default. However, it is still possible to work with versions prior to 2001 with
lower resolutions.

Atmospheric Input Models and Data The MGCM tables provide meteoro-
logical data as a function of altitude, longitude, latitude, and local time up to an
altitude of 80 km, while the MTGCM tables extend this coverage from 80 to 170
km for MapY ear = 0 and up to 240 km for MapY ear = 1 or 2.
For altitudes above 170 km, Mars-GRAM uses a modified Stewart-type thermo-
spheric model, which accounts for geographic variations and solar activity. This
model becomes effective starting from a pressure level of 1.26 nbar, corresponding
to an altitude known as the ZF height (typically around 125 km).
Between 80 km and the ZF height, Mars-GRAM relies on MTGCM data, which
are interpolated or extrapolated as a function of the solar activity index F10.7,
using reference datasets available for F10.7 = 70 and F10.7 = 130.
Finally, between the ZF height and 170 km, a gradual transition is carried out
between the two models, ensuring continuity and consistency in atmospheric prop-
erties.

Interpolation Methods The atmospheric parameters in Mars-GRAM are ob-
tained through multidimensional interpolation on MGCM/MTGCM gridded data,
including logarithmic interpolation on optical depth and altitude interpolation that
respects the barometric law and that of perfect gases. This approach ensures realis-
tic and stable transitions between the different levels of the simulated atmosphere.

To realistically represent the strong thermal and dynamic discontinuities in the
lower layer of the Martian atmosphere, Mars-GRAM uses a boundary layer model
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based on a logarithmic profile corrected by the Richardson number. This approach
allows for accurate simulation of the differences between ground and air tempera-
tures as low as 5 metres above the ground, as well as the vertical reduction of wind
components near the surface.
The model takes into account surface roughness (z0), assuming different values in
the presence of ice, directly influencing the slope of the thermal profile and wind
components in the sub-surface layer.

Longitude-Dependent Waves Mars-GRAM allows to include the effect of
longitude-dependent waves (LDW), which are particularly relevant for orbital
scenarios synchronous with the Sun. This model introduces periodic modulations of
atmospheric density as a function of longitude and time, which can be customised
via input files or external dynamic coefficients.

Height Adjustment One of the main challenges in Martian atmospheric mod-
elling is ensuring physical and numerical continuity in the transition between models
developed for different altitude ranges. Mars-GRAM addresses this issue by intro-
ducing altitude corrections that allow the interface to be adjusted at approximately
80 km altitude, where the transition from MGCM to MTGCM data occurs.
These corrections allow the height of atmospheric levels to be adjusted in order to
maintain consistency between simulated and observed density profiles, for example
during aerobraking missions. In particular, the latest versions of Mars-GRAM offer
various options for calculating the height offset, from a simple constant correction
(OffsetModel = 0) to more sophisticated models based on local and seasonal data
(OffsetModel = 3 or 4).

Quantitative Dust Concentration Model A distinctive feature of Mars-
GRAM is its ability to model dust storms on a global or regional scale in a
parametric and highly controllable manner. Dust storms are one of the most
critical aspects of the Martian atmosphere, as they can cause significant variations
in atmospheric density, temperature, and the vertical distribution of dust itself.
These variations directly affect aerodynamic operations (e.g., during atmospheric
entry) and the performance of surface scientific instruments.
Mars-GRAM allows a storm to be defined by a series of physically meaning-
ful parameters: intensity (StormIntensity), duration (StormDuration), loca-
tion (StormLatitude, StormLongitude) and maximum radius (StormMaxRadius).
When StormMaxRadius takes on high or zero values, the storm is treated as global,
allowing extreme scenarios to be simulated. Intensity is expressed in terms of max-
imum optical depth, which is added to the background optical depth to determine
the total optical depth τ .
Mars-GRAM computes the vertical distribution of atmospheric dust from the
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optical depth τ , using formulas derived from the MGCM developed by Haberle et
al [12]. The model assumes that the particles are spherical, with a typical diameter
of 5 µm and a density of 3,000 kg/m3. From these parameters and the vertical
pressure distribution, Mars-GRAM derives:

• The areal density of dust on the ground (mass per unit area).

• The dust mixing ratio (mass per unit mass of air), calculated as a function of
a parameter DustNu that controls the vertical profile.

• The particle number density (number of particles per m3), useful for evaluating
optical and thermal phenomena.

Solar and Thermal Radiation Among the auxiliary programs available with
Mars-GRAM, MarsRad.cpp makes it possible to compute the incoming and outgoing
components of solar and thermal radiation, both at the surface and at the top of
the atmosphere. It uses as input the CSV file generated by Mars-GRAM, which
also includes dust concentrations, and is based on albedo values provided by the
MOLA_data.bin file.

Slope Wind Model The wind model in Mars-GRAM, implemented in the
slopewind subroutine, is based on the work of Ye et al. [13] and uses MOLA
topographic data with half-degree resolution to determine the slope of the terrain.
The computed winds depend on altitude, slope, and local time, with a maximum
vertical extent of 4.5 km during the day and 2.5 km during the night. They are
added to the MGCM winds and also include a vertical component proportional to
the slope and horizontal velocity. The activation and intensity of the model can be
controlled via the BoundaryLayerWindsScale parameter.

3.3 Analysis of the Case Study Results
Before analysing some examples of variations in atmospheric density as a function
of altitude, latitude and longitude, the procedure followed to generate the density
data grid using the Mars-GRAM software is described.

3.3.1 Preparation and compilation of Mars-GRAM
To generate the output file shown in Figure 3.1, it was first necessary to prepare a
trajectories file to be used as input to the auxiliary program BLDTRAJ.f90, spec-
ifying the reference elevations and the relative discretisation steps. In the case
study considered, a maximum altitude of 200 km was adopted, with a step of 1 km;
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longitude was varied over the interval 0◦–360◦ with a step of 10◦, while latitude was
evaluated between −90◦ and 90◦. The resulting three-dimensional grid is shown in
Figure 3.3.

Figure 3.3: Output BLDTRAJ.f90

To simplify the calculation of atmospheric density, the altitude was divided
into two separate ranges: the first up to 100 km and the second between 101 and
200 km. As for the time variable, a zero value was assigned, since in the case study,
variations in parameters such as density and temperature during the Martian day
were not considered. The values are therefore calculated with reference to the
initial instant.
The next step is to have Mars-GRAM process the generated trajectory file, prepar-
ing an input file that includes, in addition to the trajectory, additional information
necessary for the calculation. These include: the reference date and time, set to 6
May 2025, the level of solar activity, set close to the maximum for consistency with
the chosen day (F10.7 = 130); and finally the parameters relating to atmospheric
dust, assumed to be moderate, with values Dusttau = 0.5, Dustmin = 0.3 and
Dustmax = 1.0, as shown in the Figure 3.4.

Finally, once the input file had been correctly created, it was possible to pro-
ceed with the compilation of Mars-GRAM, as shown in Figure 3.5.

3.3.2 Trend of atmospheric density as a function of spatial
coordinates

To obtain a clearer picture of the distribution of Martian atmospheric density, an
analysis was carried out on the density trend as a function of altitude, longitude and
latitude. The data generated by the Mars-GRAM model were reprocessed using
Python to obtain the profile trends, with the aim of highlighting any differences
that could affect the dynamics of the satellite during descent.
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Figure 3.4: Input file Mars-GRAM

Figure 3.5: Mars-GRAM running

The graph in Figure 3.6 analyses the variation in density with latitude for different
longitudes, keeping the altitude constant at 10 km.
The curves show a peak density between 30◦ South and the equator, followed by
a gradual decrease towards northern latitudes. The density is not symmetrical
with respect to the equator: this could be due to the asymmetrical distribution of
atmospheric dust or local topographical variations.

Similarly, the plots in Figures 3.7 analyse the behaviour of density as a function
of altitude, this time keeping the latitude constant (equal to 0◦) and varying the
longitude. The complete graph again shows an exponential decrease with altitude,
common to all profiles. However, slight differences can be observed in the lower
part of the atmosphere, which become evident in the zoom shown in the second
figure (3.7b).
Between 0 and 10 km altitude, some longitudes (e.g., 300◦ and 330◦) have slightly
higher densities than others, such as 90◦ or 270◦. These differences may be due
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Figure 3.6: Atmospheric density profiles on Mars at altitude = 10 km

to the presence of plateaus or depressions, variations in surface albedo, or effects
related to local atmospheric circulation. Although the differences are small, it
is important to note that in the simulation of aerodynamic drag, even minimal
variations can have a significant impact on orbital dynamics at low altitudes.

The plot in Figure 3.8a shows the vertical profile of Martian atmospheric density
as altitude varies, keeping longitude constant (equal to 0◦) and varying latitude.
As expected, the density decreases exponentially with altitude. The differences
between the curves are minimal, but they are slightly more evident in the first few
kilometres above the surface.
Figure 3.8b, which is a zoom of the previous graph, highlights these local variations
in the lower atmospheric layer (below 10 km). In this region, the curves for the
lower latitudes (southern hemisphere) tend to show a slightly higher density than
those for the northern hemisphere. This effect can be attributed to the fact that,
on the date considered (6 May 2025), Mars is near its perihelion. In this orbital
configuration, corresponding to the southern summer, the southern hemisphere
receives more solar energy. This leads to a more pronounced warming of the
atmosphere, which tends to expand, generating higher density values at the same
altitude than in the opposite hemisphere [14].

The plot in Figure 3.9 shows the trend in Martian atmospheric density as a
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(a) Variable longitude

(b) Zoom

Figure 3.7: Atmospheric density profiles on Mars at latitude = 0◦
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(a) Variable latitude

(b) Zoom

Figure 3.8: Atmospheric density profiles on Mars at longitude = 0◦
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function of latitude, at a fixed longitude of 0◦ and for different altitudes between 0
km and 140 km.
At ground level (0 km), it can be seen that the southern hemisphere has higher
density values, as previously discussed. As altitude increases, density decreases
rapidly, as expected from the vertical structure of the Martian atmosphere. Above
60–80 km, the density becomes much lower and the latitudinal variations are less
pronounced. Above 100 km, the curves tend to overlap, indicating that at high
altitudes, density becomes almost independent of latitude, probably due to the
rarefaction of the atmosphere.

Figure 3.9: Atmospheric density profiles on Mars at longitude = 0◦
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Optimal Control Problem

The objective of OCP is to find an optimal control strategy to accomplish a
given mission. In the context of space exploration, depending on the mission’s
purpose, different optimisation criteria may be pursued; for example, minimis-
ing fuel consumption, thus maximising payload, or minimising the time taken to
complete the mission. This implies greater propellant consumption and, there-
fore, a reduction in payload, unlike the first case, which could require significantly
longer mission times. In this thesis, the approach adopted was to maximise payload.

This chapter opens with an introduction dedicated to the main differences be-
tween direct and indirect methods, illustrating their respective advantages and
disadvantages, and referring to some significant contributions in the literature on
this subject. The second section introduces the OCP, starting with the definition
of the merit index, and then describing the state variables and boundary condi-
tions (BCs). Next, the formulation of the augmented merit index, necessary to
apply the principles of the indirect method, is presented. Next, the transversality
and optimality conditions, derived from the analysis of the first variation of the
augmented merit index, are discussed, and it is illustrated how the Euler–Lagrange
differential equations for the added variables are obtained, together with the alge-
braic equations that govern the control variables. The third section extends the
formulation of the problem to two-point boundary values (TPBVP) to the more
general problem of MPBVP. The fourth section is devoted to the presentation of
differential correction techniques, with particular reference to single shooting and
multiple shooting approaches. Finally, the fifth section describes the application of
OCP to the case study considered.
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4.1 Difference Between Direct and Indirect Nu-
merical Methods

Numerical methods allow a complex and continuous problem, such as the OCP of
low-thrust trajectories, to be transformed into a finite set of simpler sub-problems
through so-called transcription, which converts ordinary differential equations into
a discrete problem.

These methods can be divided into two main categories: direct and indirect.
The former, nowadays widely employed thanks to the available computational
power, are characterized by greater robustness and simpler implementation, as
they transform the continuous problem into a discrete one by discretizing the
variables. However, the accuracy of the solutions depends on the grid density, while
an excessively fine grid leads to an increase in computational cost, and the nu-
merical result does not always provide a clear analytical interpretation of optimality.

On the other hand, indirect methods (IMs) generally provide more accurate solu-
tions at a lower computational cost, as well as valuable theoretical insights that
facilitate understanding and refinement of the solution. However, they also present
some practical difficulties, such as high sensitivity to initial conditions, the need for
preliminary analytical calculations, and the complexity of the convergence process.
Several studies conducted at the Politecnico di Torino have applied OCT to space
trajectories [15, 16]. The use of numerical techniques has improved robustness,
enabling the application of IMs to increasingly complex scenarios, which historically
were addressed almost exclusively with direct methods.
Initially, the indirect approach was applied to TPBVP, and it was later extended
to missions involving impulsive manoeuvres [17, 18, 19].

4.2 Optimal Control Problem
The OCT aims to maximise a specific merit or functional index, determining the
optimal control law that satisfies all the constraints imposed on a trajectory, from
the initial state to the final state. The merit index is defined as:

J = φ(x⃗0, x⃗f , t0, tf ) +
Ú tf

t0
[Φ(x⃗(t), u⃗(t), t)]dt (4.1)

Equation (4.1) consists of two scalar terms: the first, φ, depends on the values
assumed by the state variables and the times at the extremes of the interval; the
second, Φ, is a function of the temporal evolution of the variables.
The merit index can be reformulated as follows:
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• the Lagrange formulation, where φ = 0

• the Meyer formulation, where Φ = 0.

The control problem is described by a set of first-order ordinary differential equations
(ODE). These depend on the state vector x⃗(t) ∈ Rn and the control vector u⃗(t) ∈
Rm, both of which are functions of time. The system of ODE can be written as:

˙⃗x(t) = f⃗(x⃗(t), u⃗(t), t) (4.2)
The BCs may concern the initial or final time and, in this case, are called external
conditions. If necessary, additional conditions may be imposed at intermediate
instants. The BCs are collected in the constraint vector:

χ⃗(x⃗0, x⃗f , t0, tf ) = 0 (4.3)
where χ⃗ : [Rn,Rn,R,R] → Rq contains all the q constraints.

To apply the principles of IM, the optimality conditions are determined by defining
an augmented merit function, J∗, which incorporates both the evolution of the
state variables, described by the ODE of the dynamic model, and the degree of
compliance with the imposed constraints. Then, the added variables are introduced,
collected in the vector λ⃗(t) ∈ Rn, associated with the state variables, and the
Lagrange multipliers, µ⃗ ∈ Rm, linked to the boundary conditions. Therefore, the
augmented performance index takes the form:

J ∗ = φ + µ⃗T χ⃗ +
Ú tf

t0
[Φ + λ⃗T (f⃗ − ˙⃗x)]dt (4.4)

In the interests of brevity, explicit dependencies on state variables, control variables,
and multipliers have been omitted in the previous formulation.
It should be noted that solving the problem using the augmented merit index, (4.4),
is mathematically equivalent to the formulation with the standard merit index,
(4.1), provided that all the constraints imposed are satisfied.
The introduction of the adjoint variables λ⃗ and the Lagrange multipliers µ⃗ does
not alter the nature of the problem, but allows the optimality conditions to be
expressed systematically and manipulated analytically according to the indirect
approach.

By integrating by parts the term containing the time derivatives of the state
variables, the formulation of equation (4.4) can be simplified, leading to the follow-
ing expression:

J ∗ = φ + µ⃗T χ⃗ + (λ⃗T
0 x⃗0 − λ⃗T

f x⃗f ) +
Ú tf

t0
[Φ + λ⃗T f⃗ − ˙⃗

λT x⃗] dt (4.5)
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Within the integral of equation (4.5), there is a central term, the Hamiltonian
function, which allows the problem to be reformulated in a form that enables the
conditions of optimality to be derived systematically according to PMP.

H ≜ Φ + λ⃗T f⃗ . (4.6)

4.2.1 Boundary conditions for optimality

To determine the optimality conditions, it is necessary to extremise the augmented
merit index J ∗. Therefore, the variation of the functional is calculated by deriving
with respect to each of the variables present and imposing that this variation be
zero. In particular, one looks for the values of the adjoint variables λ⃗ and Lagrange
multipliers µ⃗ for which δJ ∗ = 0. After appropriate algebraic steps, the following
expression of the first derivative of J ∗ is obtained:

δJ ∗ =
A

∂φ

∂t0
+ µ⃗T ∂χ⃗

∂t0
− H0

B
δt0 (4.7a)

+
A

∂φ

∂tf

+ µ⃗T ∂χ⃗

∂tf

+ Hf

B
δtf (4.7b)

+
A

∂φ

∂x⃗0
+ µ⃗T ∂χ⃗

∂x⃗0
+ λ⃗T

0

B
δx⃗0 (4.7c)

+
A

∂φ

∂x⃗f

+ µ⃗T ∂χ⃗

∂x⃗f

− λ⃗T
f

B
δx⃗f (4.7d)

+
Ú tf

t0

CA
∂H
∂x⃗

+ ˙⃗
λT

B
δx⃗ + ∂H

∂u⃗
δu⃗

D
dt (4.7e)

From equation (4.7), two transversality conditions are obtained, associated with the
initial and final instants, obtained by imposing the cancellation of expressions (4.7a)
and (4.7b), and a set of 2n optimality conditions, relating to the state variables at
the extreme points, resulting from the cancellation of equations (4.7c) and (4.7d).
As regards transversality, if time does not appear in either the cost function φ or
the constraints χ⃗, the Hamiltonian H is zero at the initial and final instants, and
the time values are determined by the optimisation process. Conversely, if time is
constrained (initial and/or final), the corresponding value of the Hamiltonian takes
on a value other than zero and is in turn subject to optimisation.
A similar reasoning applies to the optimality conditions: if a state variable xi does
not appear in either the function φ or in the function χ⃗, the corresponding added
variable λxi

is zero.
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4.2.2 Adjoint and control variables
From the annulment of the coefficients in expression (4.7e), two fundamental results
are obtained. In particular, by imposing the annulment of the coefficient associated
with δx⃗, it is possible to obtain a system of n Euler-Lagrange differential equations
for the added variables, whose explicit formulation is given in Appendix C.

˙⃗
λ = −

A
δH
δx⃗

BT

(4.8)

The added variables are uniquely associated with the corresponding state variables;
consequently, ˙⃗

λ ∈ Rn.
Similarly, by imposing the annulment of the coefficient of the term δu⃗, it is possible
to obtain a set of m algebraic equations for the control variables:

A
δH
δu⃗

BT

= 0 (4.9)

When bounds are imposed on the control, for example umin ≤ u ≤ umax, equation
(4.9) cannot always be satisfied. This occurs in particular when the Hamiltonian is
linear or affine with respect to the control: in such cases, the derivative δH/δu is
constant and cannot vanish except in special situations (e.g., when the constant is
zero).
In these circumstances, the problem is solved by letting the control take one of the
admissible extreme values:

• if the coefficient in front of the control is positive, the optimal control is
u = umax;

• if it is negative, the optimal control is u = umin.

This strategy is known as bang-bang control, as control switches instantly between
the two limit values without assuming intermediate values. In the case discussed
in this thesis, this applies to the thrust T , which is linear in the Hamiltonian:
the optimal profile is therefore characterised by intervals in which the thrust is
maximum (T = Tmax) alternating with intervals in which it is zero (T = Tmin).
A special case occurs if the coefficient of the derivative with respect to the control
is zero (ku = 0) for a finite time interval. In this situation, the control is not
determined by bang-bang logic, but by a different strategy, called singular arc.
These cases require specific analysis (described, for example, in [20]), but they do
not arise in the context of this thesis and will therefore not be discussed.
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4.3 Multi-Point Optimal Control Problem
A MPBVP is a generalisation of the TPBVP. It occurs when, in addition to the
constraints imposed at the ends of the trajectory, conditions are also specified at
internal points.
To deal with this type of problem, the trajectory is divided into np sub-intervals,
called phases or arcs, a solution that improves the robustness of the numerical code
and facilitates convergence.
Within each arc, the variables evolve continuously, while discontinuities may occur
at the internal boundaries (i.e., at the junctions between consecutive arcs). The
duration of each arc is generally unknown and constitutes an optimisation variable,
potentially different from arc to arc. The BCs can be imposed not only at the
global extremes of the time interval, but also at the internal boundaries. These
conditions may depend on both the state variables and the independent variable
time.

Figure 4.1 (taken from [8]) shows a schematic representation of a MPBVP, com-
posed of np arcs. It highlights how the j-th arc begins at t(j−1)+ and ends at tj− ,
with boundary states x⃗(j−1)+ and x⃗j− , respectively.

Figure 4.1: Schematic representation of a MPBVP

The main formulations relating to MPBVP are given below. In particular, the
constraint conditions can be expressed in the following form:

χ⃗
1
x⃗(j−1)+, x⃗j−, t(j−1)+, tj−

2
= 0, j = 1, . . . , np. (4.10)

The merit index is instead defined as:

J = φ
1
x⃗(j−1)+ , x⃗j− , t(j−1)+ , tj−

2
+

npØ
j=1

Ú tj−

t(j−1)+

Φ
1
x⃗(t), u⃗(t), t

2
dt. (4.11)
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After integration by parts, the augmented functional takes the following form:

J ∗ = φ + µ⃗T χ⃗ +
npØ

j=1

1
λ⃗T

(j−1)+ x⃗(j−1)+ − λ⃗T
j− x⃗j−

2
+

npØ
j=1

Ú tj−

t(j−1)+

3
Φ + λ⃗T f⃗ − ˙⃗

λT x⃗
4

dt.

(4.12)
The first order differentiation δJ ∗ now is expressed per each arc as:

δJ ∗ =
A

∂φ

∂t(j−1)+

+ µ⃗T ∂χ⃗

∂t(j−1)+

− H(j−1)+

B
δt(j−1)+ (4.13a)

+
A

∂φ

∂tj−

+ µ⃗T ∂χ⃗

∂tj−

+ Hj−

B
δtj− (4.13b)

+
A

∂φ

∂x⃗(j−1)+

+ µ⃗T ∂χ⃗

∂x⃗(j−1)+

+ λ⃗T
(j−1)+

B
δx⃗(j−1)+ (4.13c)

+
A

∂φ

∂x⃗j−

+ µ⃗T ∂χ⃗

∂x⃗j−

− λ⃗T
j−

B
δx⃗j− (4.13d)

+
npØ

j=1

Ú tj−

t(j−1)+

CA
∂H
∂x⃗

+ ˙⃗
λ

B
δx⃗ + ∂H

∂u⃗
δu⃗

D
dt, j = 1, . . . , np. (4.13e)

4.4 Differential Correction
Differential correction is a numerical technique used to determine trajectories that
satisfy pre-established constraints on the final state, starting from an approximate
initial hypothesis. The central idea is that the final state of a trajectory depends
sensitively on the initial conditions: small variations in the initial state are reflected
in variations in the final state. Understanding this relationship allows targeted
corrections to be introduced to progressively reduce the gap between the obtained
state and the desired state.

Figure 4.2 shows the application of the single shooting procedure to a Hohmann
transfer. The correct trajectory with desired initial conditions ˜⃗

X∗(τ0) is shown
in grey, connecting an orbit with a dimensionless altitude of 2.5 to a lower orbit
with a radius of 1.5. In black, on the other hand, is a transfer obtained from
approximate initial conditions ˜⃗

X(τ0): in this case, the manoeuvre ends at a point
˜⃗

X( ˜⃗
X(τ0), τf) that differs from the correct one ˜⃗

X∗( ˜⃗
X∗(τ0), τf). The initial points

coincide in position space, so the deviation is attributable to an error in the initial
velocities. Knowing the desired final state and the state actually obtained, the
variation between the two can be defined as:
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Figure 4.2: Single shooting differential correction procedure from a generic state
˜⃗

X to a desired reference state ˜⃗
X∗ for a Hohmann transfer

δ
˜⃗

X(τf ) = ˜⃗
X( ˜⃗

X(τ0), τf ) − ˜⃗
X∗( ˜⃗

X∗(τ0), τf ) (4.14)

To progressively reduce this difference, it is necessary to introduce a correction in
the initial state:

˜⃗
X∗(τ0) = ˜⃗

X(τ0) + δ
˜⃗

X(τ0) (4.15)

By combining the two relations, the variation in the final state can be expressed as:
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δ
˜⃗

X(τf ) = ˜⃗
X
1 ˜⃗
X(τ0), τf

2
− ˜⃗

X∗
1 ˜⃗
X∗(τ0), τf

2
= ˜⃗

X
1 ˜⃗
X(τ0), τf

2
− ˜⃗

X∗
1 ˜⃗
X(τ0) + δ

˜⃗
X(τ0), τf

2

= ∂
˜⃗

X(τf )
∂

˜⃗
X(τ0)

δ
˜⃗

X(τ0)

δ
˜⃗

X(τf ) = Φ̃(τf , τ0) δ
˜⃗

X(τ0). (4.16)

where Φ̃(τf , τ0) is the State Transition Matrix (STM), which represents the linear
mapping between perturbations of the initial state and variations in the final state.

The STM evolves along the trajectory according to a linear differential equa-
tion involving the partial derivatives of the dynamical field, collected in a Jacobian
matrix Ã(τ).

Ã(τ) =


∂ ˙⃗x
∂x⃗

∂ ˙⃗x
∂λ⃗

∂
˙⃗
λ

∂x⃗

∂
˙⃗
λ

∂λ⃗

 =
C
Ãx⃗x⃗ Ãx⃗λ⃗

Ãλ⃗x⃗ Ãλ⃗λ⃗

D
. (4.17)

Its integration, carried out in parallel with that of the equations of motion, allows
the sensitivity of the state with respect to the initial conditions to be evaluated at
any moment. In spherical coordinates, the STM takes the form:

Φ̃(τ, τ0) =



∂r

∂r0

∂r

∂ϑ0

∂r

∂φ0

∂r

∂u0

∂r

∂v0

∂r

∂w0
∂ϑ

∂r0

∂ϑ

∂ϑ0

∂ϑ

∂φ0

∂ϑ

∂u0

∂ϑ

∂v0

∂ϑ

∂w0
∂φ

∂r0

∂φ

∂ϑ0

∂φ

∂φ0

∂φ

∂u0

∂φ

∂v0

∂φ

∂w0
∂u

∂r0

∂u

∂ϑ0

∂u

∂φ0

∂u

∂u0

∂u

∂v0

∂u

∂w0
∂v

∂r0

∂v

∂ϑ0

∂v

∂φ0

∂v

∂u0

∂v

∂v0

∂v

∂w0
∂w

∂r0

∂w

∂ϑ0

∂w

∂φ0

∂w

∂u0

∂w

∂v0

∂w

∂w0



=
Φ̃pp Φ̃pv

Φ̃vp Φ̃vv

 (4.18)

As shown in the final part of equation (4.18), the matrix is expressed in compact
form as consisting of four square 3 × 3 sub-matrices. These represent the partial
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derivatives of positions with respect to positions (Φ̃pp), positions with respect
to velocities (Φ̃pv), velocities with respect to positions (Φ̃vp), and velocities with
respect to velocities (Φ̃vv).
Finally, the time evolution of the STM is described by the following differential
relation:

˙̃Φ(τ, τ0) = d

dτ
Φ̃(τ, τ0) = d

dτ

 ∂
˜⃗

X

∂
˜⃗

X0



= ∂

∂
˜⃗

X0

d
˜⃗

X

dτ



= ∂
˙⃗̃

X

∂
˜⃗

X

∂
˜⃗

X

∂
˜⃗

X0

,

˙̃Φ(τ, τ0) = Ã(τ) Φ̃(τ, τ0) (4.19)

4.4.1 Single shooting

The single shooting procedure consists in properly adjusting the initial conditions of
a trajectory so that the final state satisfies a prescribed set of constraints. The idea
is that, given an approximate initial state, the obtained trajectory does not exactly
reach the desired state; through iterative corrections of the initial conditions, the
final discrepancy is progressively reduced.

As shown in Figure 4.2, the difference between the two final states is mainly
due to the initial velocities; therefore, only these must be left free to vary in the
correction, while keeping the position variables fixed.

Therefore, the free-variable vector, ˜⃗
X0 ∈ Rn×1, is defined as:

˜⃗
X0 = {X1, X2, ..., Xn}T (4.20)

and may contain components of position, velocity, and integration time.
On the other hand, the constraint vector, χ⃗( ˜⃗

Xf) ∈ Rm×1, which represents the
difference between the obtained final state and the desired one, is expressed as:
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χ⃗( ˜⃗
Xf ) = {χ1, χ2, . . . , χm}T =



ξ − ξ∗

η − η∗

ζ − ζ∗

ξ̇ − ξ̇∗

η̇ − η̇∗

ζ̇ − ζ̇∗


(4.21)

The goal is to find ˜⃗
X∗

0 such that χ⃗( ˜⃗
X∗

f ) = 0.
To linearize the problem, a first-order Taylor expansion of the constraint vector
around the current estimate ˜⃗

X0 is performed:

χ⃗( ˜⃗
X) ≈ χ⃗( ˜⃗

X0) + ∂χ⃗( ˜⃗
X0)

∂
˜⃗

X
( ˜⃗
X − ˜⃗

X0). (4.22)

where the matrix of partial derivatives represents the Jacobian of the constraints:

∂χ( ˜⃗
X0)

∂
˜⃗

X
= J̃

1
χ( ˜⃗

X0), ˜⃗
X
2

=



∂χ1

∂X̃1

∂χ1

∂X̃2
· · · ∂χ1

∂X̃n

∂χ2

∂X̃1

∂χ2

∂X̃2
· · · ∂χ2

∂X̃n

... ... . . . ...

∂χm

∂X̃1

∂χm

∂X̃2
· · · ∂χm

∂X̃n


. (4.23)

The method is iterative: starting from an initial guess, the residual χr at iteration
r is computed and a correction is applied using the Jacobian. The relation takes
the form:

χr+1 = χr + J(χr)
1 ˜⃗
Xr+1 − ˜⃗

Xr

2
. (4.24)

To satisfy the constraint, it must hold that χr+1 = 0, from which follows the update
rule:

˜⃗
Xr+1 = ˜⃗

Xr − J(χr)−1 χr. (4.25)
If the number of variables is greater than the number of constraints (n > m), the
minimum-norm solution is used:

˜⃗
Xr+1 = ˜⃗

Xr −
è
J(χr)T J(χr)

é−1
J(χr)T χr. (4.26)
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To improve numerical stability, a relaxation factor κR can be introduced, which
reduces the magnitude of corrections at each iteration.

4.4.2 Multiple shooting
When the trajectory is long, sensitive to initial conditions or composed of distinct
segments (e.g. propulsive arcs and free flight sections), the single shooting method
may not be robust enough. In such cases, multiple shooting is used, which divides
the trajectory into several segments. Each segment is integrated starting from
assumed conditions, and differential correction imposes continuity constraints at
the junctions between segments. This reduces propagation errors and improves
convergence.

4.4.3 Variable-time vs fixed-time
In the case of free-time problems, the state vector also includes the integration
time, which in the following case study represents the engine burn time and the
coasting duration. Therefore, the state vector becomes:

˜⃗
X0 = {r ϑ φ u v w τ}T (4.27)

The constraint vector coincides with that in equation (4.21), so the Jacobian matrix
introduces an additional column into the Jacobian of equation (4.23), making
J̃ ∈ R6×7. It takes the form:

J̃(χ⃗( ˜⃗
X0), ˜⃗

Xf ) =



∂rf

∂r0

∂rf

∂ϑ0

∂rf

∂φ0

∂rf

∂u0

∂rf

∂v0

∂rf

∂w0

∂rf

∂τ
∂ϑf

∂r0

∂ϑf

∂ϑ0

∂ϑf

∂φ0

∂ϑf

∂u0

∂ϑf

∂v0

∂ϑf

∂w0

∂ϑf

∂τ
∂φf

∂r0

∂φf

∂ϑ0

∂φf

∂φ0

∂φf

∂u0

∂φf

∂v0

∂φf

∂w0

∂φf

∂τ
∂uf

∂r0

∂uf

∂ϑ0

∂uf

∂φ0

∂uf

∂u0

∂uf

∂v0

∂uf

∂w0

∂uf

∂τ
∂vf

∂r0

∂vf

∂ϑ0

∂vf

∂φ0

∂vf

∂u0

∂vf

∂v0

∂vf

∂w0

∂vf

∂τ
∂wf

∂r0

∂wf

∂ϑ0

∂wf

∂φ0

∂wf

∂u0

∂wf

∂v0

∂wf

∂w0

∂wf

∂τ



(4.28)

This correction approach is known as the variable-time shooting method and
takes into account not only the evolution of the state but also the effect of the
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integration time on the final state. In the literature, it is referred to as Variable-
Time Differential Correction (VTDC). If the integration time is not treated as a
free variable, the Jacobian coincides entirely with the STM, and the procedure is
called fixed-time correction, or Fixed-Time Differential Correction (FTDC).

4.5 Application of OCP to the Case Study
The application of OCT to the case study considers the maximisation of final mass,
or the minimisation of propellant consumption, as its objective. This objective is
represented by the merit index, expressed as a function of the control law vector
u⃗ = T⃗ and the following state variables:

x⃗ = {r ϑ φ u v w m}T (4.29)
with x⃗ ∈ Rn, where each state variable is associated with an adjoint variable, or
costate, collectively defined in y⃗ ∈ R2n as:

y⃗ = {r ϑ φ u v w m λr λϑ λφ λu λv λw λm}T . (4.30)
The system of ODEs describing the dynamics of the satellite introduced in section
2.4.2: 

dr

dt
= u

dϑ

dt
= v

r cos φ
dφ

dt
= w

r
du

dt
= − µ

r2 + v2

r
+ w2

r
+ Tu

m
+ (ap)u

dv

dt
= −uv

r
+ vw

r
tan φ + Tv

m
+ (ap)v

dw

dt
= −uw

r
− v2

r
tan φ + Tw

m
+ (ap)w

dm

dt
= −T

c

(4.31)

From this system of equations, the Hamiltonian function can be defined as:

H = λ⃗T f⃗ =
2nØ
i=1

λifi (4.32)

which, once expanded and highlighting the terms dependent on the thrust T , takes
the form:
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H =λru + λϑ
v

r cosφ
λφ

w

r

+λu

C
− µ

r2 + v2

r
+ w2

r
+ (ap)u

D

+λv

5
−uv

r
+ wv

r
tanφ + (ap)v

6
+λw

C
−uw

r
− v2

r
tanφ + (ap)w

D

+ T

m

λ⃗V

T T⃗

T
− λm

m

c

 , (4.33)

where λ⃗V represents the primer vector, defined as λV =
ñ

λ2
u + λ2

v + λ2
w. From this

formulation, the switching function, SF , emerges:

SF = λ⃗V

T T⃗

T
− λm

m

c
. (4.34)

Knowing the value of the switching function, according to the bang-bang control
theory (see Section 4.2.2), we can obtain the optimal value of thrust T :

T =
0 if SF < 0

TMAX if SF > 0
(4.35)

The thrust vector T⃗ is defined by the elevation angle, αT , and the heading angle,
βT , which determine the in-plane and out-of-plane thrust components, respectively:

T⃗ =


Tu

Tv

Tw

 = T


sin αT

cos αT cos βT

cos αT sin βT

 (4.36)

To determine the optimal value of the thrust angles, the Hamiltonian function
(4.33) is derived with respect to these variables:

∂H
∂αT

= 0 = λv cos αT − (λu cos βT + λw sin βT ) sin αT (4.37a)

∂H
∂βT

= 0 = −λu sin βT + λw cos βT (4.37b)

The solution of system (4.37) leads to the following relations:
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sin αT = λu

λv

(4.38a)

cos αT cos βT = λv

λv

(4.38b)

cos αT sin βT = λw

λv

(4.38c)

These values correspond to the cosines of the primer vector and coincide with the
components of the thrust vector already introduced in equation (4.36).
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Chapter 5

Results

The purpose of this chapter is to present and analyse the results obtained from
numerical simulations developed in Python, aimed at studying a controlled descent
strategy on Mars.

The vehicle considered has an initial mass of 600 kg, a wet surface area of 2 m2 and
an aerodynamic drag coefficient of CD = 2.2. It is equipped with two propulsion
systems: an ion thruster, with an effective exhaust velocity of 40,000 m/s and a
thrust of 0.05 N, used in the initial orbital phases, and a chemical thruster, with an
effective exhaust velocity of 4,500 m/s and maximum thrust of 300,000 N, intended
for the final docking phase.

The mission profile envisages an initial phase in which the vehicle departs from
a circular orbit at an altitude of 140 km, characterised by tangential velocity
alone, and progressively reduces its altitude using the ion thruster. The propulsive
action, combined with atmospheric resistance, induces the transition from circular
to elliptical orbit. After each intervention, the orbit is left to evolve for two orbital
periods in free propagation, so as to allow the thruster to cool down before the
next ignition. This process is repeated until atmospheric drag becomes dominant
and leads to the decay of the orbit.

Once an altitude of 15 km is reached, a parachute is opened which, by exploiting
aerodynamic drag, further reduces the vehicle’s speed. Finally, near the surface,
the chemical thruster is ignited, ensuring a controlled and precise landing.

To simplify the numerical analysis, a dimensionless approach was adopted to
avoid dealing with very large quantities. The altitude was scaled using the radius of
Mars R♂ = 3396 km, while the velocities u, v, w and the effective exhaust velocity
were normalised with respect to the orbital velocity at the planet’s surface, equal
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to v♂ =
ñ

µ♂/R♂ = 3.551 km/s. Time was dimensionless using the parameter
T = R♂/v♂, while the mass of the satellite was set as the reference unit. The
characteristic acceleration a = v2

♂/R♂ was used as a parameter to render derived
quantities dimensionless, such as thrust, expressed with respect to the product of
the satellite’s mass and the characteristic acceleration. In general, all other quanti-
ties were made dimensionless using appropriate combinations of these fundamental
parameters, ensuring consistency and simplicity in the interpretation of the results.

The following sections are organised in such a way as to first describe the manoeu-
vres and propagation phases obtained with the ion thruster, then the descent with
parachutes and finally the terminal phase with the use of the chemical thruster, up
to landing.

To execute the algorithm implemented in Python, a Graphical User Interface
(GUI) was developed with the valuable support of supervisor Luigi Mascolo, as
shown in Figure 5.1. This tool made it possible to visualise and analyse the be-
haviour of the state variables as the initial conditions of the added variables varied,
as well as the switch times and the final time, thus facilitating the understanding
and validation of the results obtained.

Figure 5.1: GUI
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5.1 Ion Thrusters
Figure 5.2 shows the evolution of the state variables and the corresponding added
variables during the first manoeuvre. In the graphs, the orange line identifies the
interval in which the electric thrusters are on, while the blue line corresponds to
the coasting phase, in which no thrust is applied. The manoeuvres performed with
the electric thruster all have the same structure, characterised by the alternation
between an ignition phase and a shutdown phase. Table 5.1 shows the dimensionless
initial conditions, while Table 5.2 shows the initial conditions of the added variables,
including the switching times and the final time calculated to ensure the convergence
of the solution.

r ϑ φ u v w m
1.0412249705535925 0.0 0.0 0.0 0.980003693778245 0.0 1.0

Table 5.1: Initial state for the first manoeuvre

λr λϑ λφ λu λv

-0.177549478 0.0 0.0 0.060302417 -0.230424016
λw λm t1 tf

0.0 0.999983685 3.321892976 4.359103125

Table 5.2: Initial conditions of the adjoint variables for the first manoeuvre,
including switching and final time

Figure 5.2: First manoeuvre
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The plots in Figure 5.2 show how the orbital radius decreases progressively,
while the tangential component of the velocity v tends to increase. The radial
component u assumes a non-zero value, highlighting the transition of the orbit
from circular to elliptical. The mass of the satellite decreases linearly due to
propellant consumption, while the added variables λϑ, λφ, λu, λv, λw tend to zero,
as required by the BCs shown in Table 5.3. Constraints were not imposed on the
speed control components, but the corresponding added variables λu, λv and λw

were set to zero. Since the goal of this manoeuvre is to descend towards the surface
and not to maintain a stable orbit, circularising the trajectory at the end of the
manoeuvre would only result in an unnecessary increase in propellant consumption,
without any real advantage, as well as slowing down the descent phase. Table 5.4
summarises the final state of the manoeuvre.

r λϑ λφ λu λv λw λm

1.0409305064782097 0.0 0.0 0.0 0.0 0.0 1.0

Table 5.3: Boundary conditions for the first manoeuvre

r ϑ φ u
1.040930507441 4.103364763160 0.0 -6.309391661016e-05

v w m
0.980192931125 0.0 0.999993381948

Table 5.4: Final state for the first manoeuvre

The errors on the boundary conditions (BCs) are visible in Figure 5.2 and are
reported in detail in Table 5.5. It can be seen that all values are of the order of
10−7–10−8, fully compatible with the numerical tolerance adopted. In particular,
the errors relating to λφ and λw are zero, while for the remaining variables the
deviations are negligible. The calculated error norm is equal to 9.98 × 10−7, which
is lower than the convergence threshold set at 10−6, thus satisfying the required
criterion. We can therefore conclude that the boundary conditions are respected
with good accuracy and that the numerical solution obtained is consistent.

Figure 5.3 shows the trend of the dimensionless radius as a function of time,
representing the propagation phase following the first manoeuvre. In this phase,
the orbit is allowed to evolve freely for two orbital periods, corresponding to
tdim = 13.345, equal to approximately 3.56 h. In this phase, no thrust is applied
and the added variables are set to zero; consequently, the motion is governed solely
by gravitational dynamics and interaction with atmospheric resistance.
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∆SF ∆r ∆λϑ
∆λφ

∆λu

−1.0 × 10−7 9.62 × 10−10 −1.6 × 10−25 0.0 2.57 × 10−8

∆λv ∆λw ∆λm ||err|| maxerr

5.67 × 10−8 0.0 9.91 × 10−7 9.98 × 10−7 9.91 × 10−7

Table 5.5: Error on the BCs for the first manoeuvre

Figure 5.3: First propagation

The initial conditions of the second manoeuvre are shown in Table 5.6, while
Table 5.7 summarises the status of the added variables and the characteristic
switching and final times.

r ϑ φ u
1.040702805556 16.66923321307 0.0 -8.467043918379e-05

v w m
0.980305234032 0.0 0.999993381948

Table 5.6: Initial state for the second manoeuvre

Figure 5.4 shows the evolution of the state variables during the second manoeuvre.
Compared to the first, the variation in orbital radius is more pronounced. The
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λr λϑ λφ λu λv

-0.086225385 0.0 0.0 0.047594221 -0.087383016
λw λm t1 tf

0.0 0.999987268 3.650506822 5.09120896

Table 5.7: Initial conditions of the adjoint variables for the second manoeuvre,
including switching and final time

elliptical nature of the orbit is also more clearly evident: the radius initially
decreases, then increases slightly before decreasing again, thus following the profile
required by the manoeuvre. The angle ϑ increases to about 21.5 rad, confirming
the progression of motion along the orbit, while the mass of the satellite continues
to decrease in line with the consumption of propellant by the ion thruster. The
boundary conditions, shown in Table 5.8, are respected with good accuracy, as can
be seen in Table 5.9.

Figure 5.4: Second manoeuvre

r λϑ λφ λu λv λw λm

1.0404089667482805 0.0 0.0 0.0 0.0 0.0 1.0

Table 5.8: Boundary conditions for the second manoeuvre

The final state of the second manoeuvre is shown in Table 5.10. Figure 5.5 shows
the subsequent free propagation phase, during which a further lowering of the orbit
and a more pronounced effect of atmospheric drag are observed, contributing to
the progressive orbital decay. The propagation time is similar to that of the first
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∆SF ∆r ∆λϑ
∆λφ

∆λu

−9.59 × 10−7 4.67 × 10−8 −9.27 × 10−25 0.0 −7.24 × 10−9

∆λv ∆λw ∆λm ||err|| maxerr

2.19 × 10−7 0.0 4.86 × 10−10 9.85 × 10−7 9.59 × 10−7

Table 5.9: Error on the BCs for the second manoeuvre

phase, with a duration of approximately tadim = 13.335.

r ϑ φ u
1.040408388311 21.465057278128 0.0 -0.000164185438

v w m
0.980418158085 0.0 0.999986109215

Table 5.10: Final state for the second manoeuvre

Figure 5.5: Second propagation

The initial conditions of the third manoeuvre are shown in Table 5.11, while
Table 5.12 summarises the status of the added variables and the characteristic
switching and final times.
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r ϑ φ u
1.03951532820759 34.037211778988 0.0 -0.0002096030794

v w m
0.9808408014357 0.0 0.9999861092149

Table 5.11: Initial state for the third manoeuvre

λr λϑ λφ λu λv

-0.079162407 0.0 0.0 0.04385899 -0.079615017
λw λm t1 tf

0.0 0.999988443 3.560358189 5.09120896

Table 5.12: Initial conditions of the adjoint variables for the third manoeuvre,
including switching and final time

The third manoeuvre, shown in Figure 5.6 with the ion thruster, marks the final
phase of electric propulsion use. In this phase, orbital decay becomes more evident:
the orbital radius is further reduced and the radial component of the velocity takes
on more marked negative values, confirming the progressive transition towards
increasingly elliptical orbits.

Figure 5.6: Third manoeuvre
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The boundary conditions, shown in Table 5.13, are satisfied and the errors on the
boundary conditions, summarised in Table 5.15, are all below the set convergence
threshold. The final state of the manoeuvre is shown in Table 5.14.

r λϑ λφ λu λv λw λm

1.0387791680191292 0.0 0.0 0.0 0.0 0.0 1.0

Table 5.13: Boundary conditions for the third manoeuvre

r ϑ φ u
1.0387791572254 38.843213223712 0.0 -0.000232451706

v w m
0.9811542594848 0.0 0.999979016080

Table 5.14: Final state for the third manoeuvre

∆SF ∆r ∆λϑ
∆λφ

∆λu

−8.51 × 10−7 −3.23 × 10−9 −2.56 × 10−24 0.0 4.9 × 10−7

∆λv
∆λw

∆λm
||err|| maxerr

1.35 × 10−7 0.0 −1.84 × 10−11 9.91 × 10−7 8.51 × 10−7

Table 5.15: Error on the BCs for the third manoeuvre

This manoeuvre represents the last use of the ion thruster before the vehicle’s
deceleration is entrusted to interaction with the Martian atmosphere. The sub-
sequent free propagation, illustrated in Figure 5.7, shows further orbital decay,
in which aerodynamic drag becomes the dominant phenomenon and prepares the
conditions necessary for the parachute to open in the next phase of the mission. In
this case, the propagation time is greater than two orbital periods, with a value of
tadim = 14.267, chosen to allow the vehicle to reach the predetermined altitude for
the parachute to open.
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Figure 5.7: Third propagation

5.2 Parachute

Once the predetermined altitude of 15 km is reached, the parachute is activated
(Figure 5.8). The initial state of this phase is shown in Table 5.16. With the
opening of the parachute, the surface area exposed to the atmosphere increases
to 200 m2, while the aerodynamic drag coefficient CD is reduced from 2.2, valid
in the previous phase, to 1.7. The deployment sequence, lasting approximately
2 minutes, causes a sharp reduction in speed, as shown by the final state of the
satellite reported in Table 5.17, coinciding with the initial conditions of the last
manoeuvre. In this phase, the trajectory is strongly influenced by atmospheric
drag, which allows a significant amount of the vehicle’s kinetic energy to be rapidly
dissipated.

r ϑ φ u
1.0044159119018 52.297915646224 0.0 -0.0463679099419

v w m
0.2034050572903 0.0 0.999979016080

Table 5.16: Initial state for the trajectory with parachute
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Figure 5.8: Trajectory with open parachute

5.3 Chemical Thrusters

However, unlike Section 5.1, which used an electric thruster, in this phase with
the chemical thruster, the manoeuvre is divided into two distinct stages: an initial
coasting phase, during which the engine remains off, followed by the ignition of the
thruster, which is necessary to slow down the vehicle and ensure a controlled and
precise landing.

r ϑ φ u
1.0028486927687 52.306989827031 0.0 -0.0116797819309

v w m
0.0679949421274 0.0 0.999979016080

Table 5.17: Initial state for the last manoeuvre
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λr λϑ λφ λu λv

-0.347800000 0.0 0.0 0.001396000 -0.736543560
λw λm t1 tf

0.0 0.937903811 0.256839800 0.257424320

Table 5.18: Initial conditions of the adjoint variables for the last manoeuvre,
including switching and final time

As shown in the plots in Figure 5.9 and reported in more detail in Table 5.20,
the objective of a safe and controlled landing was achieved starting from the
initial conditions indicated in Table 5.18. The final radius assumed the value
r = 1.000000102, corresponding to approximately 34 cm from the planet’s surface.
The velocities are close to zero: in particular, the radial component is equal
to u = 7.4 × 10−7, m/s, while the tangential velocity to the surface is equal
to v = 2.55 × 10−5, m/s. The total duration of the manoeuvre, including the
coasting phase and the subsequent ignition of the chemical propulsion system, is
approximately 4 minutes, of which the last 10 seconds were characterised by the
ignition of the engine to ensure a controlled landing.

Figure 5.9: Last manoeuvre

r λϑ λφ u v w λm

1.0 0.0 0.0 0.0 0.0 0.0 1.0

Table 5.19: Boundary conditions for the last manoeuvre
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r ϑ φ u v w m
1.000000102 2.05893898 0.0 0.000000058 0.000002116 0.0 0.937886087

Table 5.20: Final state

5.4 Overview
This chapter presents the numerical results of the Mars descent mission, obtained
through simulations in Python. After an initial phase of three ion thruster ma-
noeuvres, alternating with free propagation, the vehicle’s orbit gradually decayed
to altitudes where atmospheric drag became predominant.
Once an altitude of 15 km was reached, the parachute was deployed, allowing for
rapid dissipation of kinetic energy and a significant slowdown in trajectory. In
the final phase, the ignition of the chemical thruster ensured a controlled and safe
landing, with negligible residual velocity.

To provide an overview, Figures 5.10 and 5.11 show the entire descent profile
and a detail of the final phase, respectively, highlighting the different phases: the
elliptical orbits due to ion manoeuvres, the abrupt change in trajectory when the
parachute opened, and the final deceleration imposed by the chemical thruster.
These figures allow us to appreciate the consistency of the descent strategy and
the correct sequence of manoeuvres that led to a safe landing.

Figure 5.10: Complete trajectory

In addition to considerations regarding the dynamic evolution of the mission, it
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Figure 5.11: Zoom in on the final landing phase

is also useful to analyse the overall mass consumption.
Starting from an initial dimensionless mass of 1, at the end of the last manoeuvre
with the ion propulsion system, the residual mass is m = 0.99997902, while at the
end of the mission it is m = 0.93788609. The overall consumption is therefore
∆m = 0.0621, corresponding to approximately 6.2% of the initial mass.
The part attributable to the electric phase is extremely small: only ∆mions ≈
2.1 × 10−5, equal to 0.002%, while the chemical phase involved a consumption
of ∆mchem ≈ 0.0621, equivalent to almost the entire amount. Assuming an initial
mass of 600 kg, this corresponds to approximately 12.6 g of propellant used by
the ion thruster and 37.3 kg consumed by the chemical thruster, for a total of
approximately 37.31 kg.

This result highlights the complementary nature of the two propulsion systems:
on the one hand, the ion thruster, which is extremely efficient in terms of mass
consumption but limited in terms of thrust; on the other hand, the chemical
thruster, which is capable of providing the thrust necessary to ensure a controlled
landing, but at a significantly higher cost in terms of mass.
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Finally, it should be noted that, without the manoeuvres performed with the
electric propulsion system, the time required for orbital decay and subsequent
landing would have been approximately one hour longer. This result confirms
that the use of the ion propulsion system, while requiring negligible amounts of
propellant, contributed significantly to the temporal efficiency of the mission.
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Chapter 6

Conclusions

This thesis addresses the problem of controlled descent on Mars from a circular
orbit at an altitude of 140 km. The objective was to develop and validate, using
a numerical code implemented in Python, a safe and controlled landing strategy
based on a combination of ion thrusters, parachutes and chemical propulsion.

6.1 Key strengths
A first important aspect concerns the adoption of a dimensionless approach, which
simplified the numerical analysis by avoiding the management of large quantities
and allowing greater clarity in reading the results. Furthermore, the use of the
indirect method in optimal control theory made it possible to obtain good quality
approximate solutions with a low computational cost, demonstrating the effective-
ness of this technique in addressing complex mission analysis problems. Finally, the
code developed in Python proved to be flexible and easily adaptable to scenarios
other than the one analysed in this thesis. With appropriate changes to the initial
parameters, it could in fact be applied to missions of a different nature, such as
the removal of space debris or the deployment of satellite constellations in multiple
orbits.

6.2 Limitations
Alongside its strengths, it is necessary to highlight the main limitations of the model
adopted. The atmospheric model has been treated in a simplified form, considering
aerodynamic resistance as the only disturbance. Other effects that would have
a significant impact on a real scenario, such as the term J2, solar radiation, the
influence of third bodies or eclipses, which would make it impossible to use the
electric propulsion system continuously in the absence of solar energy, have not
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been included. Although these approximations do not compromise the qualitative
validity of the results, they do reduce their accuracy with respect to an operational
application.

6.3 Next Steps in the Research
Starting from the identified limitations, several future developments are possible.
A first step is to integrate additional perturbations into the model, including the
contribution of J2, eclipses, solar radiation, and the effect of third bodies, already
presented in the theoretical part of the thesis. A second possible extension concerns
the definition of more complex missions, for example starting from higher orbits,
not immediately subject to atmospheric resistance, or considering a complete mis-
sion that includes departure from Earth, a lunar passage similar to the Artemis
programme, interplanetary transfer and final landing. Finally, a further interesting
development concerns the graphical interface created to support the code. In the
future, it could be made more flexible and interactive, allowing direct selection of
which perturbations to consider, the reference system to be adopted and the planet
around which to conduct the mission, thus expanding the database of available
atmospheres and parameters. In this way, the GUI could become a comprehensive
tool for simulating complex space scenarios.

The work carried out has demonstrated the feasibility of the proposed strategy for
controlled descent on Mars and the validity of the model implemented. The results
obtained confirm the effectiveness of the methodology adopted and provide a solid
basis for extending the analysis to future missions of increasing complexity, in line
with the prospects for space exploration that will characterise the coming decades.
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Appendix A

Rotational Matrices

Lpqw→IJK = R3(−Ω) R1(−i) R3(−ω)

=

cos Ω − sin Ω 0
sin Ω cos Ω 0

0 0 1


1 0 0
0 cos i − sin i
0 sin i cos i


cos ω − sin ω 0

sin ω cos ω 0
0 0 1



=


cos Ω cos ω − sin Ω sin ω cos i − cos Ω sin ω − sin Ω cos ω cos i sin Ω sin i

sin Ω cos ω + cos Ω sin ω cos i − sin Ω sin ω + cos Ω cos ω cos i − cos Ω sin i

sin ω sin i cos ω sin i cos i


(A.1)

LSEZ→IJK = R3(ϑ)T R2(φ)T =

cos ϑ − sin ϑ 0
sin ϑ cos ϑ 0

0 0 1


cos φ 0 − sin φ

0 1 0
sin φ 0 cos φ



=

cos φ cos ϑ − sin ϑ − sin φ cos ϑ
cos φ sin ϑ cos ϑ − sin φ sin ϑ

sin φ 0 cos φ

 (A.2)
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Spherical Unit Vectors

êr =

cos φ cos ϑ
sin φ cos ϑ

sin ϑ

 (B.1a)

êϑ = 1
cos φ

− cos φ sin ϑ
cos φ cos ϑ

0

 (B.1b)

êφ =

− sin φ cos ϑ
− sin φ sin ϑ

cos φ

 (B.1c)

˙̂er =

−φ̇ sin φ cos ϑ − ϑ̇ cos φ sin ϑ

−φ̇ sin φ sin ϑ − ϑ̇ cos φ cos ϑ
φ̇ cos φ

 = ϑ̇ cos φ êϑ + φ̇ êφ (B.1d)

˙̂eϑ =

−ϑ̇ cos ϑ

−ϑ̇ sin ϑ
0

 = −ϑ̇ cos φ êr + ϑ̇ sin φ êφ (B.1e)

˙̂eφ =

−φ̇ cos φ cos ϑ + ϑ̇ sin φ sin ϑ

−φ̇ cos φ sin ϑ − ϑ̇ sin φ cos ϑ
φ̇ sin φ

 = −φ̇ êr − ϑ̇ sin φ êϑ (B.1f)
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Appendix C

Euler-Lagrange equations for
the adjoint variables

˙⃗
λ = −∂H

∂x⃗
(C.1)

λ̇r = 1
r2

C
λϑ

v

cos φ
+ λφw + λu

3
−2u

r
+ v2 + w2

4
+ λv(−uv + vw tan φ)

+ λw(−uv − v2 tan φ)
D

− λu
∂(ap)u

∂r
− λv

∂(ap)v

∂r
− λw

∂(ap)w

∂r
− SF

∂T

∂r
(C.2a)

λ̇ϑ = − λu
∂(ap)u

∂ϑ
− λv

∂(ap)v

∂ϑ
− λw

∂(ap)w

∂ϑ
+ SF

∂T

∂ϑ
(C.2b)

λ̇φ = 1
r cos2 φ

1
− λϑv sin φ − λuvw + λvw + λwv2

2
− λu

∂(ap)u

∂φ
− λv

∂(ap)v

∂φ
− λw

∂(ap)w

∂φ
+ SF

∂T

∂φ
(C.2c)

λ̇u = 1
r

(−λrr + λuv + λww) (C.2d)

λ̇v = 1
r

C
− λϑ

cos φ
− 2λuv + λu(u − w tan φ) + 2λwv tan φ

D
(C.2e)

λ̇w = 1
r

(−λφ − 2λuw − λvv tan φ + λwu) (C.2f)

λ̇m = T

m2 λV − λu
∂(ap)u

∂m
− λv

∂(ap)v

∂m
− λw

∂(ap)w

∂m
(C.2g)
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