
Politecnico di Torino

Master’s degree in Aerospace Engineering

A.Y. 2024/2025

Graduation Session October 2025

A digital twin of an air-bearing
platform for tethered satellite

systems: from tether deployment to
post-deployment control

Supervisors:
Prof. Paolo Maggiore
Dr. Giuseppe Governale
Prof. Stephanie Lizy-Destrez

Candidate:
Edoardo De Blasi

Acknowledgements

I would like to express my sincere gratitude to all the people who made this work possible.

I want to thank Doctor Giuseppe Governale for his availability, guidance, and invaluable advice
throughout all the stages of this project, as well as Professor Stéphanie Lizy-Destrez and
Professor Paolo Maggiore for their help and supervision.

I wish to thank the Astradors team for their warm welcome, their guidance, and the many nice
moments we shared together.

I am deeply grateful to my family for their constant support, and to my cousins: Stefania, who
inspired my passion for science through the fascinating stories she told me as a child, and for
her help during my high school years; Anna Maria and Lorenzo, for welcoming me with warmth
and for the many pleasant moments we shared, which brightened my time in Turin.

My heartfelt thanks also go to my friend Stefano, who supported me during the most difficult
moments here in Turin and helped me unwind when I needed it most: this achievement is yours
too.

Finally, I would like to thank my friends from the Horus project and my Erasmus friends, for
making me feel at home wherever I was. The laughs and beautiful evenings we shared are
memories I will always keep in my heart.

ii

Abstract

Tethered Satellite Systems (TSS) represent a promising technology for a wide range of space
applications, including orbital maneuvering, de-orbiting operations, and in-orbit servicing.
These systems enable novel mission concepts that can reduce propellant consumption and
mission costs, while also supporting sustainable space operations. On the other hand, TSS
are characterized by complex dynamics both during deployment and post-deployment phases,
making their modeling and experimental validation extremely important.

Given the high costs associated with space missions, ground testing has always represented an
important opportunity to reduce overall mission expenses. Nowadays, however, a new trend is
the development of digital twins (namely digital models of experimental setups) which make it
possible to further reduce costs and to carry out an unlimited number of tests. To address this
challenge, this thesis presents the development of a digital twin of an air-bearing platform for
tethered satellite systems, implemented in Unity™.

The first and most important step was the analysis of the existing literature on tethered satellite
systems. This review aimed to identify, with the support of tools such as the Analytic Hierarchy
Process (AHP), a TSS architecture capable of ensuring a safe deployment and maximizing the
tether’s expected lifetime in the harsh environment of Low Earth Orbit (LEO). To enhance the
physical understanding of the system through an intuitive 3D representation, a digital twin was
developed using a 3D modeling software. Among the tools examined, the software providing
the optimal trade-off among key criteria such as physical fidelity and accessibility was selected.
After the TSS architectural design was defined, attention was devoted to the problem of scaling
the real system to the dimensions of the experimental setup. Subsequently, the implementation
of the air-bearing platform in Unity™ was undertaken. Two scenarios were developed: one in
which the tether is already deployed, and one concerning the deployment phase. In the first
case, two position control algorithms (PID and LQR) and a PID controller for tether tension
were designed and tested, while in the second case a control strategy was implemented to halt
the deployment once the desired tether length had been reached, along with a PID tension
control algorithm that was likewise developed and validated. It is important to note that the
scenario with the tether already deployed was addressed first. This allowed for the immediate
testing of the modeling approaches used in Unity™. Only after verifying their correctness was
the deployment case developed. This case required more complex modeling due to the helical
winding of the tether around the spool.

Finally, based on the results, it can be concluded that the objective of developing a digital
twin of an air-bearing platform capable of simulating tether deployment, reproducing post-
deployment dynamics, and validating control strategies has been successfully accomplished.
Future developments may involve integrating sensors, incorporating force exchange and friction
in the tether-spool interaction, and creating a more accurate model of the spool and floater
geometries.

iv

Table of Contents

List of Tables viii

List of Figures ix

1 Introduction 1

1.1 Thesis outline . 2

1.2 Literature review on tethered satellite missions 2

1.3 Overview of deployment systems technologies and air-bearing platform experiments 4

1.4 3D simulation software for tethered satellite systems digital twin 6

1.5 Research questions . 9

2 Optimal architecture for tethered satellite survivability and deployment
reliability 10

2.1 Introduction to the AHP analysis . 10

2.2 Comparative study of tether materials . 12

2.3 Comparative study of tether shapes . 14

2.4 Comparative study of deployment systems . 18

2.5 Summary of the selected architecture . 20

2.6 Assessment of environmental and dynamic risks for tethered satellites in LEO . 20

3 Selection of 3D modeling software and methodologies for tether modeling 26

3.1 Digital twin software selection . 26

3.2 Implementation of scaling laws for experimental and digital twin representations 33

3.3 Methodologies for tether modeling . 34

3.3.2 Euler and Verlet integration methods . 34

3.3.3 PBD and XPBD methods . 36

3.3.4 Collision handling . 38

3.4 Deployed tether and deployment phase: characteristics, challenges, and key aspects 39

vi

4 Scene creation in Unity™ 40

4.1 Fundamental components of Unity™ for physical simulations 40

4.2 Simulation scene composition: implemented objects 41

4.2.5 Full scene . 44

5 Software implementation of the deployed tether case 45

5.1 Tether implementation - VerletTether.cs . 45

5.2 Description of the implemented functions . 47

5.3 PID tension controller for deployed tether . 52

5.4 PID position controller for deployed tether . 55

5.5 LQR position controller for deployed tether . 58

6 Software implementation of the deployment case 61

6.1 Deployment implementation - XPBDTetherWithSpool.cs 62

6.2 Desctiption of new implemented functions . 64

6.3 PID tension control during deployment phase 67

7 Conclusions and future perspectives 70

Bibliography 72

A Results video 78

B VerletRope.cs 86

C PIDTensionController.cs - Deployed case 99

D PIDPositionController.cs - Deployed case 105

E LQRPositionController.cs - Deployed case 110

F XPBDTetherWithSpool.cs - Deployment 116

G PIDTensionController_Deployment.cs - Deployment 137

vii

List of Tables

1.1 Standard software for tethered dynamics simulations 7

2.1 AHP fundamental scale: intensity of importance 11

2.2 Materials scores matrix . 12

2.3 Material prioritization matrix . 13

2.4 Material criteria weights . 13

2.5 Material decision matrix . 13

2.6 Shape scores matrix . 16

2.7 Shape prioritization matrix . 16

2.8 Shape criteria weights . 17

2.9 Shape decision matrix . 17

2.10 Deployment systems scores matrix . 19

2.11 Deployment systems prioritization matrix . 19

2.12 Deployment systems criteria weights . 20

2.13 Deployment systems decision matrix . 20

2.14 Severity of consequence scoring scheme . 23

2.15 Probability scoring scheme . 23

2.16 Risks identification . 23

2.17 Risks matrix before mitigation . 23

2.18 Risks matrix after mitigation . 25

3.1 Digital twin software scores matrix . 32

3.2 Digital twin software prioritization matrix . 32

3.3 Digital twin software criteria weights . 32

3.4 Digital twin software decision matrix . 32

3.5 Comparison between Verlet and Euler integration for tether modeling 35

viii

List of Figures

4.1 Floater in Unity . 41

4.2 Granite bench in Unity . 41

4.3 Tether in Unity . 43

4.4 Pole in Unity . 43

4.5 Rotating spool system in Unity . 43

4.6 Full scene in Unity . 44

5.1 VerletTether.cs flowchart . 46

5.2 PID tension control diagram, deployed tether 52

5.3 Deployed case - PID tension results . 54

5.4 PID position control diagram, deployed tether 55

5.5 Deployed case - PID position results . 56

5.6 LQR position control diagram, deployed tether 58

5.7 Deployed case - LQR position results . 60

6.1 Spool in Unity . 61

6.2 XPBDTetherWithSpool.cs flowchart . 63

6.3 Deployment PID tension control diagram . 67

6.4 Deployment case - PID tension results . 68

A.1 Results QR code . 78

ix

Chapter 1

Introduction

In recent years, tethered satellite systems have emerged as a promising solution to several
pressing challenges in space exploration and orbital operations, ranging from debris mitigation
and satellite deorbiting to formation flying and momentum management. Their potential to
provide efficient, low-cost, and sustainable alternatives to conventional propulsion methods
has stimulated interest within the aerospace community. However, the inherent complexity of
tether dynamics, coupled with the difficulties of reproducing microgravity conditions on Earth,
makes the experimental validation of such systems a formidable task. Direct testing in orbit
remains prohibitively expensive and logistically demanding, which further amplifies the need for
ground-based experimental platforms capable of offering realistic yet accessible environments.

Among the available non orbital reduced-gravity testing facilities, air-bearing platforms represent
a particularly attractive option, due to their lower cost and greater accessibility compared
to other types of testing, such as drop towers, sounding rockets and parabolic flights. By
drastically reducing friction between the test bench and the floater, they enable the emulation of
reduced-gravity conditions in a controlled laboratory environment. This makes them particularly
suitable for investigating two-dimensional analogues of orbital maneuvers, such as rendezvous,
docking, and tether deployment. In this way, critical tethered satellite missions aspects (from
deployment mechanisms to guidance, navigation, and control algorithms) can be evaluated and
refined before engaging in costly in-orbit demonstrations.

At the same time, the development of advanced software has unlocked new avenues for comple-
menting physical experiments. In particular, digital twins (virtual representations of physical
systems) are increasingly recognized as potent tools for design, testing, and operational support.
Implementing a digital twin of a tethered satellite system offers several advantages: it mini-
mizes reliance on costly hardware facilities, enables researchers to explore a diverse range of
configurations and materials, and facilitates the testing of control laws under various scenarios,
all without the inherent risks and expenses associated with space missions.

Modern 3D modeling software, such as Blender, Unity™, and NVIDIA IsaacSim, further
enhances these opportunities. Unlike traditional simulation software, these platforms provide
highly realistic visualization, advanced physics modeling, and the ability to integrate control al-
gorithms through scripts. This makes them particularly well-suited to reproducing the nonlinear
and contact-rich dynamics of tethers, such as collisions, oscillations, or spool interactions, which
are otherwise challenging to capture. In this context, developing a digital twin of an air-bearing
platform for tethered satellite systems allows researchers to bridge the gap between theoretical
models, numerical simulations, and experimental validation. This ultimately supports the
design of more robust and long-lived tethered missions in space.

1

Introduction

1.1 Thesis outline
This thesis aims to guide the reader through the theoretical background, the development, and
validation of a digital twin for tethered satellite systems.

The thesis starts with a review of the current literature. It gives context and highlights the
main challenges in the field. Based on this foundation, the study looks at different tether
materials and shapes. The goal is to identify those that are best for improving the survivability
of tethered systems in Low Earth Orbit (LEO) and boosting the chances of successful tether
deployment.

Next, the thesis looks into the choice of deployment and storage systems. It assesses their
practicality and success in reaching the set goals. A comparison of various 3D simulation
environments, such as Blender, Unity™, and NVIDIA IsaacSim, is carried out to find the best
tool for creating the digital twin.

The thesis then introduces the concept of scaling factors, explaining how the dynamic behavior
of a real tethered system in orbit can be replicated at laboratory scale using an air-bearing
platform. This physical testbed can then be reproduced in a virtual environment.

Finally, the thesis describes how the experimental setup was created in Unity™, which includes
modeling the air-bearing platform and the tether along with their interactions. Three different
control strategies for the deployed tether case are implemented and analyzed: PID tension
control, PID position control, and LQR position control. After validating the tether modeling
methods, the simulation of the tether deployment phase up to a specified length is conducted.
This is combined with a PID-based tension control algorithm. The thesis wraps up with a
thorough analysis of the results and a discussion of the main outcomes.

1.2 Literature review on tethered satellite missions
Below is a brief summary of the missions that have involved tethered satellite systems to date.
Much of the information cited in this section was taken from Mattia Li Vigni’s bachelor’s thesis
[1].
Since 1966, various missions involving tethered satellite systems have been launched to study
and test the feasibility of several ambitious objectives, including:

• Propellant-less propulsion: generating thrust (to increase orbit) or drag (to decrease
orbit and deorbit) without using propellant. This is achieved through the interaction
between a conductive tether and Earth’s magnetic field.

• Formation flying and tethered constellations: connecting satellites constellations
with tethers to maintain precise geometric configurations. Tethers can simplify formation
control compared to propelled systems.

• Electric power generation: similar to electrodynamic tethers for propulsion, but the
primary goal is to generate power for the connected satellite by exploiting current induced
in the tether as it moves through Earth’s magnetic field. This could serve as an alternative
or supplement to solar panels, particularly for satellites operating in low orbits where
magnetic interactions are more pronounced.

• Space debris capture and removal with tethers: A “chaser” satellite equipped with
a tether approaches the debris. Once captured (various technological solutions, such as
nets, are being studied for this purpose), the system (chaser, tether, and debris) can be

2

Introduction

deorbited passively if the tether is non-conductive, by increasing drag, or actively if the
tether is electrodynamic.

1.2.1 Gemini XI and Gemini XII
On September 12, 1966, NASA’s Gemini XI made history as the first tethered space mission.
The crew’s main goal was to connect with the Gemini Agena Target Vehicle 11 (GATV-11)
and see if they could create artificial gravity by spinning the two spacecraft around their
shared center of mass. They successfully deployed a 30-meter tether and achieved a stable spin,
producing a very small amount of artificial gravity, about 0.00015 g.

The next mission, Gemini XII, in 1967, aimed to study gravitational stabilization between
the spacecraft and the Agena. Even though there was only a tiny gravitational difference
between the two vehicles, the mission showed some level of gravity-gradient stabilization. It
also highlighted the complex behavior of tethers in space, exceeding initial expectations.

1.2.2 TSS-1 and TSS-1R
The Tethered-Satellite System (TSS-1) marked the inaugural mission of NASA and the
Italian Space Agency (ASI) collaborating on tethered satellite systems. Launched aboard the
Space Shuttle Orbiter Atlantis (STS-46) on July 31, 1992, the mission’s primary objective was
to investigate the dynamics of the tether and analyze the electromagnetic interaction between
the tether and the space plasma.
The mission’s objectives included flying the Shuttle away from Earth, extending the 12 m
deployment boom to provide a safe clearance between the probe and the Shuttle, and then
deploying the 20 km tether. The deployment process began with thrusters, followed by gravity-
gradient stabilization. The 2.54 mm diameter tether, constructed with a complex structure and
various materials such as Nomex, copper, Teflon, and Kevlar, was designed to achieve electrical
conduction and tensile strength. While the boom activation was successful, a bolt interference
in the deployer mechanism prevented the complete deployment of the tether. The mechanism
stopped while the tether was only 256 m long. Despite this setback, the mission still allowed
for the exploration and analysis of certain deployment regimes.

In 1996, the Tethered Satellite System (TSS) had a second flight opportunity on Space Shuttle
Columbia (STS-75). This time, the tether was successfully deployed and reached a length of
19.7 km, close to its full length of 20 km. However, just before the deployment was completed,
the tether broke suddenly. An electrical discharge generated enough heat to melt it.

1.2.3 SEDS-1 and SEDS-2
The first Small Expendable Deployer System (SEDS-1) launched in 1993. It included
an “end mass” payload satellite attached to the second stage of a Delta II rocket with a 20 km
long tether. The main goal was to test situations where tether retrieval was not needed, using a
simple deploy-only system. The tether deployed successfully, and after one orbit, the satellite
and tether were put on a path to reenter the atmosphere. This allowed researchers to study
how to use a tether to place a payload in a deorbit trajectory and observe its reentry.

In 1994, NASA launched SEDS-2, a mission similar to SEDS-1 but with an improved braking
system. The mission’s objectives included testing the efficiency of the close-loop deployment
control law, which applied braking force based on the unrolling tether’s speed to prevent
bouncing. Additionally, it aimed to study the dynamic evolution of a tethered system over a
long period and analyze the risk associated with micrometeoroid impacts. Despite the expected

3

Introduction

lifetime exceeding 20 days, the 19.7 km tether was severed a few days after launch, likely due
to untracked debris or micrometeoroids. Even with this setback, the mission was considered
successful. The end mass smoothly stopped along the local vertical, with minimal residual
sawing, thanks to the implemented control law.

1.2.4 YES2
YES2 mission, launched in 2007 aboard a Foton capsule for the Foton-M3 mission, aimed
to demonstrate the capability of returning a low-mass re-entry capsule (FOTINO) using a
tether (known as “SpaceMail”). The YES2 tether hardware was essentially an evolution of the
successful concept employed during SEDS missions. This system involves axial deployment of a
tether from a static spool, which proved to be an extremely reliable concept. The YES2 tether
was constructed from Dyneema (non-conductive), measuring 31.7 kilometers in length and 0.5
millimeters in diameter. The 36-kilogram payload consisted of three main components:
FLOYD (Foton Located YES Deployer, weighing 22 kilograms), which housed the tether spool
and was located within the Foton-M3 capsule; MASS (Mechanical and data Acquisition Support
System, weighing 8 kilograms); and FOTINO, the re-entry capsule (6 kilograms).
After a 11-day launch, the YES2 mission was activated. MASS and FOTINO were deployed
from FLOYD. While tether deployment faced some challenges, it was overall successful, with
the tether reaching its full length.

1.3 Overview of deployment systems technologies and
air-bearing platform experiments

1.3.1 Experiments on air-bearing inclinable turntable
In the context of the experiments carried out on air-bearing platforms, experiment [2] is of
special interest for this work. It comprises a ground-based experimental setup engineered to
simulate the deployment dynamics of tethered satellites in orbit. The system employs a tiltable
air-bearing rotating platform, enabling individual adjustment of the tilt and rotational velocity.
Some interesting aspects are:

• Scale factors: they have been calculated for the different forces which act on the secondary
satellite. These factors are employed to compare the behavior of the tethered system in
the experiment with that in orbit.

• Satellite attitude determination: to track the motion of the secondary satellite, two cameras
are used. For this purpose, a program based on OpenCV has been developed.

The results suggest that the experimental setup is promising for the study of tethered satellite
behavior and that the scaling factors have been implemented effectively. The experiment authors
propose to implement control laws and model and measure the system damping.

1.3.2 Shape and material related differences
Up to present, the most commonly employed tether shapes have been cylindrical, tape and
braided. Some studies, such as [3] and [4], have shown the superiority of the tape shape
compared to the cylindrical one in different aspects.
Nevertheless, analyzing the study [5], we can state that, regarding shape, the braided shape is
an interesting alternative, as is Spectra for materials. These options will be considered in the
analyses conducted in the relevant sections of this thesis.

4

Introduction

1.3.3 Deployment control laws
Distinct control laws have been implemented and tested so far:

• Threshold-based control law: the tether tension is measured, and based on its value,
the release is either accelerated or slowed down.

• Velocity control law: it aims to maintain the deployment speed at a desired value.

• Length-proportional tether deployment system: the speed deployment is propor-
tional to the length of tether that still needs to be deployed.

• SEDS system control low: this mission implemented a control law based on the velocity
in order to obtain the desired tether tension during the whole deployment [6], [7].

• YES2 system contol low: this mission implemented different control laws during for
each phase of the deployment. It used the ”barberpole mechanism” for controlling the
deployment of the tether, where the tether tension depends exponentially on the number
of windings, while the friction depends on the diameter of the pole [6], [8].

In addition, most systems exploit the gravitational gradient in order to deploy and stabilize the
tether. This technic requires an initial impulse (like a spring ejection) and an end mass.

1.3.4 Storage and deployment systems
Various storage and deployment systems are available, which will be further discussed in
section 2.4 A concise overview is provided below.

• Barberpole mechanism: it’s a simple and low-cost friction mechanism. The tether
tension depends exponentially on the number of windings, while the friction depends on
the diameter of the pole. [6]

• Rotating spool: the system rotates to wind or unwind the tether, it is controlled by
managing the rotational speed of the spool, often through a motor with a braking system.

• Stationary reel: the reel onto which the cable is wound remains fixed. A separate
element, often called a ’wire guide’ or ’rotating arm’, rotates around the fixed reel and
allows the cable to unspool from one end.

• Origami: the tether is folded onto itself following a predefined pattern. The aim is to
occupy the smallest possible volume. The deployment occurs by opening the folds of the
cable: this can be activated by the release of constraints holding the folds closed, by the
strain energy stored in the folded material, or by external forces.

• Thrust motor systems: they are a novel mechanism for deploying electrodynamic tethers.
These systems utilize electric motors to unlock and eject a top plate, converting spring
potential energy into kinetic energy for initial deployment. Designed to be low in volume
and weight (e.g., 2.3 kg), these systems align with the evolving trends in space payloads.
[9]

• CubeSat DESCENT mechanism: it’s constituted by a conical spring and its supports
positioned on the two CubeSats, a tether storage box (origami method) located on the
deputy CubeSat, a tensioner and fastening cables. When the fastening cables are cut, the
spring expands, generating an impulse force that separates the two CubeSats. This system
does not include a braking system for the final part of the deployment. This method will
not be covered in the analysis. [10]

5

Introduction

1.4 3D simulation software for tethered satellite systems
digital twin

The simulation of tethered satellite systems has very often required the development of specific
software capable of reproducing the complex dynamics of these systems in space.

The motion of tethered systems is described by a set of nonlinear, non-autonomous, and coupled
ordinary and partial differential equations. These equations create significant challenges for
reliable prediction.

To tackle this complexity, researchers have developed several modeling approaches [11]:

• Rigid Body/Dumbbell Model: This is the simplest approach. It represents the tether
as a rigid, often massless, rod connecting two point masses. It serves as a starting point
and helps in understanding the basic effects of gravity gradient stabilization.

• Lumped-Mass (Bead-and-Chain) Model: In this approach, the tether is broken down
into a series of interconnected point masses, springs, and dampers. This setup models the
tether’s flexibility, including both longitudinal and lateral vibrations. It also helps evaluate
tether tension and how the spacecraft responds to tension peaks.

• Continuous Thread Model: This method treats the tether as a continuous flexible
body. It derives its equations of motion from a force balance on a small part of the tether.
The resulting partial differential equations are usually solved numerically, often using finite
element methods.

• Finite Element Method (FEM) / Absolute Nodal Coordinate Formulation
(ANCF): These methods provide high-accuracy models of tether flexibility, deformation,
slack, and rebound. They are particularly useful for complex situations like three-body
systems or net capture dynamics.

Below, we analyze the most relevant software used in real missions. Most of the information
about the software used was taken from [12].

SKYLINE: it is a tether simulation tool developed in the early 1990s, was designed to analyze
the deployment phase of long tethers. It takes into account effects such as oscillations and
aerodynamic drag. However, it does not include algorithms or control procedures for the
deployed tether or the TSS.

YESSim: it is a tool created for the European tether mission Yes2. It is an improved version
of BEASim, which modeled the tether as a lumped-mass system. This approach took into
account various orbital disturbances. The tool mainly supported the design of the eject/retrial
and brake system for the SEDS-1 and SEDS-2 missions.

While the "lumped-mass" approach simplifies the model, it is computationally efficient and
usually good enough to capture the larger dynamics related to deployment and release.

STS simulator: developed in the 1990s, was designed to determine algorithms for retrieving
or deploying the tether. A crucial feature of this simulator is its capability to apply external
forces to the tether.

Matlab and Tether Dynamics Toolbox (TDT): many dynamic models for tethered
systems, particularly those involving partial differential equations, are initially converted into
a finite number of ordinary differential equations using the Ritz procedure. These resulting
ordinary differential equations are then numerically integrated using Matlab’s ODE solvers.
Additionally, there’s a specialized Matlab-based toolbox called the Tether Dynamics Toolbox

6

Introduction

(TDT) that offers at least three distinct approaches for tether dynamics: the rigid body
model, the continuous thread model, and the lumped-mass approach. The TDT features
support for specifying tether parameters, analyzing dynamics with damping, evaluating required
tether properties, pre-analyzing instabilities, and considering orbital perturbations for short
missions.

1.4.1 Standard software for tethered dynamics simulations

Software Key characteristics Main goals

Tether dynamics toolbox
[12]

Flexible modeling Analysis of ADR missions

SKYLINE [12] Deployment, Oscillations Analysis of long tether deploy-
ment phase

YESSim [12] Concentrated masses, Orbital
perturbations

Design eject/retrial SEDS sys-
tem

STS Simulator [12] Deployment algorithms, exter-
nal forces

Determination of tether control
algorithms

MTBSim [13] 6 DOF, mission planification Mission YES2 simulation,
SpaceMail

MSC Adams [14] Rigid/flexible bodies, joint
modeling, external forces

Vehicle structure analysis, sus-
pensions

Simscape Multibody
(MATLAB) [15]

Flexible body dynamics 3D Mechanism modeling

EcosimPro [16] Object-oriented modeling Tethered satellite systems mod-
eling

Basilisk [17] Spacecraft-centered mission
simulation framework

Modeling the attitude dynam-
ics of multi-body spacecraft

NASA Trick Simulation
Environment [18]

Creation of applications
throughout all stages of space-
craft development

Simulations to support human
spaceflight activities

Table 1.1: Standard software for tethered dynamics simulations

1.4.2 Unexplored 3D simulation software for tethered satellite sys-
tems
3D simulation software, such as Blender, Unity™ or NVIDIA IsaacSim, could be extremely
useful in the development of a digital twin for complex physical systems, with the aim of
validating and testing algorithms and control strategies.

This type of software is characterized by powerful physics engines (in particular Unity™ and
IsaacSim) which allow for an accurate simulation of the real-world physics, and they are
able to compute step by step the system evolution, taking into account forces, masses, collisions,
constraints and the behavior of joints with high fidelity. [19, 20] Furthermore, another relevant
characteristic is the opportunity of recreating different materials and their properties,
like static friction, dynamic friction, stiffness, etc. Hence, the physical fidelity offered by these
software allows studying complex phenomena in a virtual, safe environment: for example,
non-linear behaviors, accidental collisions, and instabilities could come out during simulation,

7

Introduction

just as it would occur in a real case, allowing engineers to identify them during the design
phase.

The case of interest focuses on simulating an air bearing platform. This is a laboratory setup
that creates an air cushion to mimic the nearly frictionless motion of a satellite on a plane.
This kind of testbed provides an almost frictionless surface, supporting the floater on a thin
layer of pressurized air and simulating microgravity in two dimensions. These planar platforms,
often made from highly polished granite, allow small satellite simulators to move across the
surface. This setup creates conditions similar to those of an orbiting satellite, which is useful
for experiments in dynamics and control.

To reproduce a system like this in a 3D simulation, both the floater (its mass, dimensions, and
other features) and the low-friction environment need to be modeled. Physics engines in 3D
simulators can effectively replicate tether dynamics. They can approximate a tether as a series
of rigid segments with movable joints or through flexible element models. This design allows
the virtual catenary to respond to tension and gravity in a way that parallels a real tether.

Modeling tethers in this type of software has the advantage of offering a true-to-life visual and
physical representation of tether behavior. It allows for the study of long-term dynamics or
responses under control laws in the tether’s deployed state. This understanding helps identify
potential issues like tether vibrations, instabilities, or sudden slackening, which in turn helps
develop necessary control measures.

Modern simulation environments provide a major benefit by allowing direct implementation of
control laws on the virtual model. This allows for assessing their effectiveness. You can achieve
this using scripting languages like C for Unity™ or Python/C++ for IsaacSim. Academic
studies have shown the usefulness of this approach [20]. For example, a teleoperation platform
was created using reinforcement learning algorithms on a virtual robotic arm in Unity™ [21].
The control successfully transferred to the real arm thanks to the accuracy of the simulation
model.

Testing PID or LQR algorithms in the digital twin has many benefits. You can quickly
adjust parameters, giving instant feedback on performance changes like oscillation damping,
settling time after maneuvers, and tethered satellite stability. You can also introduce simulated
disturbances to test the algorithm’s resilience under extreme conditions.

In the context of satellite simulators on air bearings, an interactive 3D model lets you test
maneuvers and control strategies before trying them on the physical platform. This approach
ensures that the behavior observed in simulation mirrors the real-world situation. Tools like
Blender, Unity™, and NVIDIA IsaacSim offer the perfect mix of physical realism and flexibility
for digital twin applications in engineering. They allow for accurate recreation of complex
experimental setups, such as tethered satellite systems, and enable pushing them to their limits
in the virtual environment. This process provides valuable insights for design, control, and the
success of future missions.

8

Introduction

1.5 Research questions
In light of the problem presented, the objectives of this thesis are the following ones:

1. Select the material and the shape of the tether, paying particular attention to innovative
solutions, such as new composites, in order to allow the tether to survive in the hostile
low-atmosphere environment.

2. Analyze deployment systems and storage methods to identify the most suitable and reliable
configuration. This configuration should ensure compatibility with the chosen tether and
increase the likelihood of a successful deployment.

3. Compare the advantages and limitations of three different 3D simulation software (Blender,
Unit™, NVIDIA IsaacSim) with the aim of selecting the most suitable one for achieving
an accurate physical representation of an air-bearing platform.

4. Study the possibility of implementing different control laws for the deployed tether and
the tether deployment in the selected software

9

Chapter 2

Optimal architecture for
tethered satellite survivability
and deployment reliability

2.1 Introduction to the AHP analysis
The Analytic Hierarchy Process (AHP) is an evaluation methodology for complex, multi-criteria
decisions. In this context, it is used to weigh the most relevant material and design characteristics
and compare competing alternatives. Each row of the final decision matrix corresponds to a
specific criterion, with the first column reporting the weight assigned to that criterion. The
remaining columns contain the normalized scores of the alternatives [22].

This chapter aims to select the architecture (material, shape, coating, and deployment system)
that maximizes the survival of a tether satellite system in the LEO environment and that
increases the likelihood of successful deployment. To achieve this, an Analytic Hierarchy Process
(AHP) analysis is conducted for the material, shape, and deployment system, with coating
excluded due to its single-configuration requirement. Qualitative properties are assessed using a
1-to-9 scoring scale, and the reference table 2.1 is used to complete the prioritization matrices.
AHP is employed to analyze the candidate options for constructing the tether and perform a
trade-off among their characteristics, ultimately identifying the configuration that best meets
the mission needs. The workflow proceeds as follows:

1. Initial prioritization: an initial prioritization matrix is compiled by evaluating each
criterion against every other using the provided scale and its reciprocals.

2. Criteria weights: The weights vector is the eigenvector linked to the maximum eigenvalue.
It is normalized so that the sum of its components equals one.

3. Alternative assessment: Each alternative is evaluated against each criterion using
measured data when available or a qualitative 1–9 grid when needed. The resulting score
matrices for each criterion are column-normalized to sum to one.

4. Overall scores: Overall scores are calculated by taking the weighted sum across the
criteria. This involves multiplying the score vectors for each criterion by the corresponding
weights and summing the results. This produces the decision matrix and a ranking of the
alternatives.

10

Optimal architecture for tethered satellite survivability and deployment reliability

Intensity of
importance

Definition Definition explanation

1 Equal importance Two activities contribute equally to the objec-
tive.

2 Weak or slight
3 Moderate importance Experience and judgement slightly favour one

activity over another.
4 Moderate plus
5 Strong importance Experience and judgement strongly favour one

activity over another.
6 Strong plus
7 Very strong or demon-

strated importance
An activity is favoured very strongly over an-
other; its dominance demonstrated in practice.

8 Very, very strong
9 Extreme importance The evidence favouring one activity over an-

other is of the highest possible order of affir-
mation.

Table 2.1: AHP fundamental scale: intensity of importance

11

Optimal architecture for tethered satellite survivability and deployment reliability

2.2 Comparative study of tether materials
For what concern the material selection, the comparison focused on three very promising
materials: Zylon, Kevlar, and Spectra. The alternatives are assessed against mission-relevant
criteria to identify the most suitable tether material.

Spectra
(UHMWPE)

Zylon HM (PBO) Kevlar (Aramid)

Flexibility (Young
modulus) [GPa]

117
[23]

270
[24]

112.4
[25]

UV resistance Qualitative score: 9
Excellent

[26]

Qualitative score: 1
Poor
[27]

Qualitative score: 1
Poor
[25]

Chemical resistance Qualitative score: 9
Very good

[26]

Qualitative score: 5
Stable

[27]

Qualitative score: 7
Good
[25]

Atomic Oxygen re-
sistance [cm3/atom]
[28]

3.74× 10−24

High erosion
1.36× 10−24

Moderate erosion
6.28× 10−25

Low erosion

Max temperature for
long time [°C]

70
[26]

650
[24]

77
[25]

Max temperature for
peaks [°C]

130
[26]

650
[24]

482
[25]

Tensile
strength [GPa]

2.59
[23]

5.8
[24]

3.6
[25]

Density [g/cm3] 0.97
[23]

1.56
[24]

1.44
[25]

Table 2.2: Materials scores matrix

12

Optimal architecture for tethered satellite survivability and deployment reliability

Regarding prioritization, the decision was made to give more importance to properties such as
resistance to chemical agents, UV radiation, and atomic oxygen, compared to the mechanical
properties of the tether, with the aim of extending as much as possible the survival of a tether.

Flexibility UV
resistance

Chemistry
resistance

AO
resistance

T long T peak Tensile
strength

Density

Flexibility 1 1/9 1/8 1/8 1/7 1/5 1/2 2
UV resistance 9 1 2 2 2 3 9 9
Chemistry resistance 8 1/2 1 1/3 1/6 1/5 7 9
AO resistance 8 1/2 3 1 1/5 1/3 7 9
T long 7 1/2 6 5 1 3 7 9
T peak 5 1/3 5 3 1/3 1 5 7
Tensile strength 2 1/9 1/7 1/7 1/7 1/5 1 4
Density 1/2 1/9 1/9 1/9 1/9 1/7 1/4 1

Table 2.3: Material prioritization matrix

The weights for the different criteria are the values of the eigenvector corresponding to the
maximum eigenvalue:

0.021 0.258 0.094 0.127 0.284 0.170 0.029 0.015

Table 2.4: Material criteria weights

Finally, the decision matrix can be filled out:

Properties Weights Spectra Zylon Kevlar

Flexibility 0.021 0.009 0.004 0.009

UV 0.258 0.211 0.023 0.023

Chemistry 0.094 0.040 0.022 0.031

AO 0.127 0.013 0.036 0.078

T long 0.284 0.025 0.232 0.027

T peak 0.170 0.0175 0.087 0.065

TS 0.029 0.007 0.014 0.009

Density 0.015 0.007 0.004 0.005

TOTAL SCORE 0.329 0.423 0.247

Table 2.5: Material decision matrix

The analysis determined that Zylon is the best compromise with respect to the different
properties and their relative weights.

13

Optimal architecture for tethered satellite survivability and deployment reliability

2.3 Comparative study of tether shapes
Zylon was identified as the optimal material through the previous AHP analysis. Despite its
exceptional mechanical and thermal properties that make it ideal for load-bearing applications
in space, Zylon has significant environmental vulnerabilities. This implies that Zylon’s envi-
ronmental sensitivities are not minor details, but fundamental design challenges, necessitating
that the "optimal" tether shape for Zylon facilitates or enhances the effectiveness of protective
measures against UV and atomic oxygen.

Although Zylon’s material properties are excellent, the shape of the tether is vital for achieving
its full potential. The goal now is to assess how cylindrical, tape, and braided tether shapes affect
the overall performance of the system in space. Each tether design has its own advantages and
disadvantages related to key performance factors. These include structural strength, resistance
to impacts from micrometeoroids and orbital debris (MMOD), vulnerability to UV damage
and atomic oxygen, and the challenges of deployment and stability control. Braided and tape
shapes involve twisting or folding, which can create stress points, especially at knots or folds.
Cylindrical wires, while more straightforward, do not have redundancies. The larger shape
(whether cylindrical, ribbon, or braided) affects how stress is distributed on a smaller scale.

2.3.1 Coating influence on UV degradation and environmental pro-
tection
Various coatings have been tested with a Zylon tether to date, including Photosil, nickel
metallization, and TOR-LM polymer. Key studies on this topic include [29] and [30], which
yielded the following results.

• Nickel coating: this coating can withstand atomic oxygen, but it has cracking problems
due to thermal cycling. This happens because of the difference in thermal expansion with
Zylon. It also has ferromagnetic properties that need consideration.

• TOR-LM: this coating did not provide complete protection, particularly against UV rays.

• POSS: These are organic-inorganic hybrid materials. When they come into contact with
atomic oxygen, they form a thin and protective silicon dioxide (SiO2) layer. In tests on
Zylon fibers, sol-gel coatings, like ’Photosil’, have reduced erosion, achieving a coated
braid AO reactivity of about ∼ 1.7× 10−24. However, using chemical application methods
can cause microcracks. A 10-20% POSS coating, just a few micrometers thick, on the
fiber would offer significant protection against atomic oxygen and UV light while adding
minimal weight.

Based on the studies mentioned, it can be concluded that the best solution for protecting
Zylon from UV rays and atomic oxygen (AO) is to use a POSS protective coating.
However, the application process, such as coating or plasma deposition, must be carefully
controlled to avoid damaging the fiber.

2.3.2 Shape influence on space debris and micrometeoroids impacts
Cylindrical Tethers (Single Strand): this basic shape is particularly vulnerable to single-
point failures. Even impacts from small debris can easily sever a thin cylindrical tether, leading
to low survivability. Although hollow cylindrical tethers have been proposed to increase diameter
and improve robustness against small debris, their fundamental single-strand nature remains a
concern [31].

14

Optimal architecture for tethered satellite survivability and deployment reliability

Tape tethers: their wider and thinner cross-section offer better resistance to MMOD (microm-
eteoroid and orbital debris) impacts compared to cylindrical wires. Instead of being severed,
small debris impacts tend to create holes in the ribbon, allowing the tether to withstand critical
impacts. The damaged area can be larger than the projectile’s path due to the high temperature
and stress upon impact. However, if a ribbon tether twists into loops, a single impact can
potentially cause a cascading effect with multiple collisions [32].

Braided Tethers: this shape provides the highest level of MMOD resistance because of its
structural redundancy. It consists of multiple interwoven strands, which create many load paths.
If one strand is cut, the load shifts to the other strands. This process prevents total tether
breakage.

2.3.3 Shape influence on deployment, stability and control
Tether deployment is a critical and complex issue: factors like the libration angle and tension
control are crucial for stable deployment. Gravitational gradient forces naturally align tethers
with the radial direction, but the system can oscillate (librate) like a pendulum: controlling
these librations is essential for stability.

• Cylindrical Tethers: these are simpler to handle and less prone to twisting during
deployment. However, single-strand tethers have experienced deployment failures (TSS-1)
due to mechanical issues. [33]

• Tape tethers: These can be prone to twisting and forming non-ideal shapes during
deployment and operation. This twisting can reduce the effective drag area. [34]

• Braided Tethers: Multi-strand braided structures are robust in terms of deployment, as
demonstrated by the [35] tests.

15

Optimal architecture for tethered satellite survivability and deployment reliability

2.3.4 Comparative performance overview and shape selection
In order to select the shape that best satisfies the objectives, the following AHP analysis was
conducted.

Cylindrical Tape Braided

MMOD resistance Qualitative score: 1
Low

Qualitative score: 5
Medium

Qualitative score: 6
Medium

Susceptibility to
UV degradation

Qualitative score: 1
High, entirely
dependent on

external coatings

Qualitative score: 1
High, due to the

wide exposed surface

Qualitative score: 1
High, but braids

offer self-shielding

Ease of deployment Qualitative score: 9
Simple, but with

risks of mechanical
failures

Qualitative score: 1
Complex, due to the
tendency for twisting

and tangling

Qualitative score: 1
Complex, requires

precise control

Deployment
stability

Qualitative score: 9
Low tendency
for twisting

Qualitative score: 1
High tendency

for twisting

Qualitative score: 5
Complex dynamics

Manufacturing
complexity

Qualitative score: 1
Low

Qualitative score: 5
Medium

Qualitative score: 9
High

Manufacturing
cost

Qualitative score: 1
Low

Qualitative score: 5
Medium

Qualitative score: 9
High

Table 2.6: Shape scores matrix

MMOD
resistance

UV
susceptibility

Ease of
deployment

Deployment
stability

Manufacturing
complexity

Manufacturing
cost

MMOD
resistance

1 1/2 4 3 9 9

UV
susceptibility

2 1 4 3 9 9

Ease of
deployment

1/4 1/4 1 2 7 7

Deployment
stability

1/3 1/3 1/2 1 5 5

Manufacturing
complexity

1/9 1/9 1/7 1/5 1 3

Manufacturing
cost

1/9 1/9 1/7 1/5 1/3 1

Table 2.7: Shape prioritization matrix

16

Optimal architecture for tethered satellite survivability and deployment reliability

The weights for the different criteria are the values of the eigenvector corresponding to the
maximum eigenvalue:

0.303 0.379 0.148 0.110 0.035 0.024

Table 2.8: Shape criteria weights

Finally, the decision matrix can be filled out:

Properties Weights Cylindrical Tape Braided

MMOD resistance 0.303 0.025 0.126 0.151

UV susceptibility 0.379 0.126 0.126 0.126

Ease of deployment 0.148 0.121 0.013 0.013

Deployment stability 0.110 0.066 0.007 0.037

Manufacturing complexity 0.035 0.027 0.005 0.003

Manufacturing cost 0.024 0.018 0.004 0.002

TOTAL SCORE 0.384 0.283 0.333

Table 2.9: Shape decision matrix

The analysis determined that the cylindrical shape is the best compromise with respect
to the different properties and their relative weights.

17

Optimal architecture for tethered satellite survivability and deployment reliability

2.4 Comparative study of deployment systems
Various mechanisms have been employed for tether deployment, each with distinct advantages
and disadvantages that influence their suitability for specific mission profiles and tether char-
acteristics. These can be broadly categorized into friction-based deployment systems,
such as the Barberpole, spool-based deployment systems (either rotating or stationary),
and systems that rely on stored energy from folding the tether for storage, like the Origami
method. Another promising type of mechanism currently under study is based on a thrust
motor.

Below is a brief overview of these different deployment systems, followed by an AHP analysis
comparing the various proposed solutions to determine the system best suited for the defined
objectives and for the tether being studied.

2.4.1 Barberpole system
The Barberpole is a friction braking mechanism where the tether is wound around a simple
pole to control the deployment speed by regulating tension. Through a toothed wheel, it allows
for control of the tether’s entry angle into the mechanism, and thus the exit tension. Friction
depends exponentially on the number of wraps, allowing for a wide range of tension levels (from
10mN to 3N for YES2), which is crucial for controlling dynamics over variable tether lengths
(e.g., from 300m to 30km). An advantage of this system is that it consists of few moving parts
and few tether guides, enhancing reliability and safety and reducing the risk of jams or tether
damage. A disadvantage of this system is that tether coils can accumulate near the entrance
or overlap, especially with a high number of wraps, narrow poles, low roughness, or low input
tension, potentially reducing friction or causing tangles [6]. The Barberpole, while a tension
control mechanism, could be integrated into a retrieval system (acting as a brake/regulator),
but it is not a complete storage and retrieval system itself.

2.4.2 Rotating spool system
Spool methods are very common for tether storage and deployment. Rotating spool systems
involve the entire spool rotating. This is a well-known technology, commonly used for various
applications like ropes and tapes. A major advantage of this type of mechanism is that it works
independently of the tether’s cross-sectional shape, so it could be used without major issues
even with a braided tether. However, one must consider the inherent complexity due to the
need for spool supports and bearings, which can compromise overall conduction and thermal
performance if not designed correctly [36]. Rotating spool systems are inherently bidirectional,
allowing the spool, driven by a motor, to rotate in both directions. This enables controlled
deployment and retrieval of the tether. The spool’s design ensures neat winding of the tether,
which is crucial for retrieval.

2.4.3 Stationary spool system
In this type of system, the spool is fixed, and a separate element, often called a "wire guide"
or "rotating arm," rotates around the spool, allowing the tether to unwind. It has smaller
dimensions compared to the rotating spool system and does not require spool supports or
bearings, thus having a simpler mechanical design. A critical aspect that must not be overlooked,
and which represents the biggest problem in using this type of system, is that it introduces
significant torsional rotation (360° per turn), leading to thousands of turns for kilometers-long
tethers. This can be problematic for tether integrity [36].

18

Optimal architecture for tethered satellite survivability and deployment reliability

2.4.4 Thrust motor deployment system
As the name suggests, this is a new mechanism for deploying electrodynamic tethers based
on thrust motors, designed to overcome historical high failure rates. It uses electric motors
to unlock and eject a top plate, converting the spring’s potential energy into kinetic energy
for initial deployment. It is designed for low volume and weight (e.g., 2.3 kg), aligning with
future trends in space payloads. Thrust motor system is a passive expulsion system, meaning
the deployment speed or tether tension cannot be regulated and it cannot refold or restore the
tether to its original configuration after deployment. [37]

2.4.5 Origami deployment system
This method involves folding the tether. It is generally not compact enough and unsuitable for
tethers kilometers long that retain fold memory. This implies that for long tethers and materials
with significant bending memory or stiffness, this approach is impractical [36]. With Origami
system, there is no built-in way to put the tether back into its pre-deployment configuration.

2.4.6 Comparative overview of features and deployment system
selection
The criteria to be taken into consideration in the AHP analysis are:

1. Active control

2. Compatibility with the chosen tether

3. Reliability

4. Roll-in capability

Barberpole Rotating spool Stationary spool Thrust motor Origami

Active control Qualitative score: 9
Yes

Qualitative score: 9
Yes

Qualitative score: 9
Yes

Qualitative score: 1
No

Qualitative score: 1
No

Tether compatibility Qualitative score: 9
All tethers

Qualitative score: 9
All tethers

Qualitative score: 9
All tethers

Qualitative score: 4
Not all tethers

Qualitative score: 1
Only tape tethers

Reliability Qualitative score: 5 Qualitative score: 9 Qualitative score: 7 Qualitative score: 3 Qualitative score: 3

Roll in Qualitative score: 1
No

Qualitative score: 9
Yes

Qualitative score: 9
Yes

Qualitative score: 1
No

Qualitative score: 1
No

Table 2.10: Deployment systems scores matrix

Active control Tether
compatibility

Reliability Roll in

Active control 1 1/3 1/8 9

Tether compatibility 3 1 3 9

Reliability 8 1/3 1 6

Roll in 1/9 1/9 1/6 1

Table 2.11: Deployment systems prioritization matrix

19

Optimal architecture for tethered satellite survivability and deployment reliability

The weights for the different criteria are the values of the eigenvector corresponding to the
maximum eigenvalue:

0.131 0.468 0.367 0.033

Table 2.12: Deployment systems criteria weights

Finally, the decision matrix can be filled out:

Properties Weights Barberpole Rotating
spool

Stationary
spool

Thrust
motor

Origami

Active control 0.131 0.041 0.041 0.041 0.004 0.004

Tether compatibility 0.468 0.132 0.132 0.132 0.059 0.015

Reliability 0.367 0.068 0.122 0.095 0.041 0.041

Roll in 0.033 0.002 0.014 0.014 0.002 0.002

TOTAL SCORE 0.242 0.309 0.282 0.105 0.0615

Table 2.13: Deployment systems decision matrix

The analysis determined that rotating spool system is the best compromise with respect
to the different properties and their relative weights.

2.5 Summary of the selected architecture
In conclusion, following the comparative analyses and technical evaluations performed, we can
confirm that the system architecture best satisfying the mission requirements has been fully
identified.

The chosen solution features a Zylon tether with a cylindrical shape, covered by a POSS
(Polyhedral Oligomeric Silsesquioxane) surface coating. This combination was selected for its
strong resistance to atomic oxygen and ultraviolet radiation, which are both crucial for the
system’s survival. For the deployment subsystem, a rotating spool mechanism has been chosen.
This technology is the only one that meets all requirements and provides the essential ability
to retrieve the tether if necessary. Thus, the selected design is the option that best meets the
goals while adhering to the constraints.

2.6 Assessment of environmental and dynamic risks for
tethered satellites in LEO

2.6.1 Risk identification
Space tethers are susceptible to several environmental and dynamic phenomena in orbit.
Specifically, risks can be devided into:

20

Optimal architecture for tethered satellite survivability and deployment reliability

• Environmental risks: space debris, micrometeoroids, ionizing radiation, thermal fluctua-
tions, atomic oxygen, ionospheric plasma

• Dynamic risks: mechanical jams, uncontrolled oscillations, or collisions with the mother
vehicle

Space debris and micrometeoroids impacts (MMOD)

Low Earth Orbit (LEO) is populated by myriad artificial debris and high-velocity meteoroid
dust particles. Even a small object can sever a thin tether: studies estimate approximately one
cut per km·year of exposure for a 1 mm wire in LEO [38]. Approximately half of the orbital
tether experiments have failed due to micrometeoroid impacts [39].

• Potential impact: high – a single cut severs the tether, leading to mission loss

• Possible countermeasures: utilize redundant designs, robust materials, conduct durability
tests, and avoid debris-dense orbits

Ionizing radiations-induced degradation

Space radiations that can most impact the life of tethers include cosmic rays, proton/electron
beams trapped in the Van Allen belts, and solar flares. This radiation can degrade materials
(especially insulators or polymers) and progressively weaken the tether. Furthermore, high
electrical tensions (in conductive tethers) combined with radiation can cause unforeseen elec-
trostatic discharges that damage the insulation. For example, the STS-75 (TSS-1R) mission
highlighted how insufficient protection led to short circuits with the ionospheric plasma and the
tether’s breakage [40].

• Potential impact: medium – radiation does not instantly cut the tether, but it reduces
mechanical/insulating strength over time. Electrical malfunctions (arcing) can be more
critical

• Possible countermeasures: use insulating materials with high radiation resistance, apply
protective coatings on exposed parts (e.g., dielectric films), insert local shielding if necessary,
monitor current and adopt charge dissipators (plasma contactors)

Thermal fluctuations and atomic oxygen erosion

The tether experiences drastic temperature cycles, and these thermal excursions can cause
expansion/contraction that may generate micro-fractures in composite materials. Furthermore,
at LEO altitudes, residual atomic oxygen rapidly oxidizes many polymers. Extreme temperatures
therefore affect mechanical strength and electrical conductivity, and repeated thermal cycling
can weaken the tether, leading to internal cracks [40], [38], [41].

• Potential impact: medium – progressive degradation of tether properties, in extreme cases,
the tether can lose elasticity or break due to thermal fatigue. The combined action of solar
UV and atomic oxygen is degenerative for many plastic or polymeric materials.

• Possible countermeasures: use materials that can withstand high and low temperatures.
Apply reflective or highly emissive coatings, such as silica or alumina, to reduce solar
heating. Use anti-atomic oxygen paints as protective coats. Test thermo-mechanical
behavior thoroughly under extreme conditions.

21

Optimal architecture for tethered satellite survivability and deployment reliability

Ionospheric plasma interactions

A conductive tether inserted into the ionospheric plasma generates electrodynamic currents
(Lorentz effect). The presence of electrical charges in the environment can lead to arcing
phenomena or electrostatic discharges on the tether. [40]

• Potential impact: high, a discharge can sever the tether or render its electrical function
unusable, potentially even short-circuiting the cable to the vehicle. Magnetic perturbations
can induce voltage oscillations.

• Possible countermeasures: use suitable plasma contactors, like ion or electron emitters, to
keep the tether neutral. Choose insulators that are thick enough and made from materials
with strong dielectric properties. Remove static charges. Ventilate or fill high-voltage
containers with inert gases to avoid internal plasma formation.

Mechanical jamming

The controlled release of the tether is essential. A sudden jam in the deployment mechanism,
such as excessive friction or a reel lock-up, can send the end mass back, which risks a collision
with the mother satellite. [42]

• Potential impact: high, an immediate jam blocks deployment and can damage both the
cable and the satellite through direct collision. The mission fails if the tether is not
extended correctly.

• Possible countermeasures: design deployment mechanisms with low friction and calibrated
brakes, install real-time tension and position sensors, adopt automatic shutdown and
rollback controls in case of unexpected spikes, deploy the tether gradually under software
supervision to detect any jamming, and conduct long-duration ground tests, including on
a digital twin.

Dynamic Instability

The free tether creates a "pendulum" system with the two masses at its ends. In-plane and
out-of-plane oscillations, known as gravitational librations, can increase if they are not damped.
Sudden changes in tension can lead to transverse and longitudinal vibrations. If these vibrations
are not controlled, they can raise tether tension and lead to a loss of system attitude. [42]

• Potential impact: medium-high. Pronounced oscillations can cause the payload to hit the
vehicle or stress the tether too much. Uncontrolled dynamics often lead to breakage or
secondary collisions.

• Possible countermeasures: use dampers to reduce initial vibrations, implement active
tension control to lessen movements, and perform dynamic simulations with lumped-mass
models.

22

Optimal architecture for tethered satellite survivability and deployment reliability

Severity Score Description Performance
Negligible 1 Negligible impact Minimal or no impact
Significant 2 Low impact, easily manageable Limited effect, recoverable

Major 3 Significant impact Performance degradation
Critical 4 Severe impact Severe damage or partial loss

Catastrophic 5 Catastrophic impact Loss of the system or mission

Table 2.14: Severity of consequence scoring scheme

Probability Score Description
Minimum A Qualitative: very unlike to occur Quantitative: ≤ 20%

Low B Qualitative: Not likely to occur Quantitative: 20-40%
Medium C Qualitative: May occur Quantitative: 40-60%

High D Qualitative: Highly likely to occur Quantitative: 60-80%
Maximum E Qualitative: Nearly certain to occur Quantitative: 80-100%

Table 2.15: Probability scoring scheme

ID Category Risk Probability Severity
EN-01 Environmental Space debris and micrometeoroids impacts C 5
EN-02 Environmental Ionizing radiations-induced degradation E 3
EN-03 Environmental Thermal fluctuations D 3
EN-04 Environmental Atomic oxygen erosion E 3
EN-05 Environmental Ionospheric plasma interactions C 4
DY-01 Dynamic Mechanical jamming D 4
DY-02 Dynamic Dynamic instability D 3

Table 2.16: Risks identification

E-Maximum EN-02, EN-04

D-High EN-03, DY-02 DY-01

C-Medium EN-05 EN-01

B-Low

A-Minimum

Probability/
Severity

1-Negligible 2-Significant 3-Major 4-Critical 5-Catastrophic

Table 2.17: Risks matrix before mitigation

23

Optimal architecture for tethered satellite survivability and deployment reliability

2.6.2 Risks mitigation
The AHP analysis on various materials, the comparison of three different forms, and the
assessment of several possible deployment systems allowed us to determine the best combination
of material, form and deployment system for the defined objectives: a cylindrical Zylon
tether with a POSS coating, and a rotating spool system as deployment system. Below,
we analyze how this choice helps mitigate the previously identified risks.

Space debris and micrometeoroids impacts

Zylon has exceptionally high tensile strength and excellent toughness. This makes it very
resistant to debris and micrometeoroid impacts compared to less robust materials.

Ionizing radiation-induced degradation

Zylon (PBO) is an organic polymer, so it can undergo long-term degradation due to ionizing
radiation, however using a protective POSS coating significantly lowers the severity of this risk.

Thermal fluctuations

Zylon has a very low coefficient of thermal expansion (CTE), so it undergoes minimal dimensional
changes with temperature variations, which reduces thermal stress and tension fluctuations in
the tether. The study [43] conducted at 295 K (room temperature) and 77 K (liquid nitrogen)
have revealed that the Zylon fibers within the composite maintain an exceptionally high Ultimate
Tensile Strength (UTS), surpassing 4.3 GPa at these temperatures. This drastically lowers the
severity of the event.

Atomic oxygen erosion

Zylon is susceptible to atomic oxygen (AO) degradation in Low Earth Orbits (LEO). AO breaks
chemical bonds on the polymer’s surface. The POSS protective coating contribute to reduce
the severity of this risk.

Ionospheric plasma interactions

Zylon itself is not conductive, so it does not directly interact with plasma regarding current
generation or electrodynamic forces. Because of this characteristic, the interaction is limited to
surface charge that can accumulate.

Mechanical jamming

Zylon’s high strength and flexibility reduce the likelihood of breakage or damage during
deployment. Mitigation here heavily depends on the deployment system design: controlled
deployment is crucial to prevent "jamming". Mechanical jamming can be caused by several
factors, including tether creep, excessive friction between the spool and the tether, and
potential uneven expansions or contractions of the tether due to thermal fluctuations.
These issues can lead to small undulations or bulges that hinder the tether’s release. Zylon
demonstrates practically zero creep or 0% unrecoverable deformation even under significant
static loads, such as 40-58% of its ultimate breaking strength. This intrinsic property ensures
that a Zylon tether, stored wound on a spool for extended periods, is highly unlikely to
retain a significant “curvature” or coiled shape upon deployment. The elastic and viscoelastic
components of deformation recover, leaving negligible permanent deformation [44]. To minimize
excessive friction between the tether and the spool, a low-friction coating can be applied to the

24

Optimal architecture for tethered satellite survivability and deployment reliability

spool wall. Finally, to prevent excessive thermal fluctuations, ground-based thermal analyses
must be conducted, and if necessary, thermal management solutions should be considered.

Dynamic instability

Zylon’s lightweight nature helps maintain a low tether mass, which is generally favorable for
dynamic stability. Its high elastic modulus and low creep (deformation under constant load)
contribute to maintaining consistent mechanical properties. A cylindrical tether can have a
simpler cross-section and a smaller exposed surface area compared to a braided one. This could
lead to reduced drag effects and potentially instability, which must be accounted for in dynamic
modeling.
Mitigating this risk requires complex dynamic analysis and the implementation of active or
passive control algorithms.
Implementing a control law helps prevent overlaps or slippages that generate instability. The
use of real-time tension sensors can help maintain uniform deployment. Another useful aspect
for identifying critical instability points is to simulate the tether’s dynamic behavior through
digital twins and conduct small-scale tests in controlled environments, which is among the
objectives of this thesis.

Using a cylindrical Zylon tether can therefore reduce the severity of risks related to MMOD,
AO, and thermal fluctuations. Risks due to ionizing radiation and ionospheric plasma require a
POSS protective layer to be mitigated. Risks during the deployment phase and those related to
dynamic instability are mitigated by using a rotating spool system and implementing control
laws for deployment.

For what concern the probability of events dependent on the space environment, it cannot be
reduced, as it relies on natural phenomena.

The risk matrix below reflects the mitigation attributed to the material, form, coating
and deployment system selection.

E-Maximum EN-02

D-High EN-03 EN-04

C-Medium EN-01 EN-05

B-Low DY-02 DY-01

A-Minimum

Probability/
Severity

1-Negligible 2-Significant 3-Major 4-Critical 5-Catastrophic

Table 2.18: Risks matrix after mitigation

25

Chapter 3

Selection of 3D modeling
software and methodologies for
tether modeling

3.1 Digital twin software selection
For selecting the software environment in which to develop the digital twin of the air-bearing
platform, three possible 3D simulation environments are analyzed: Blender, Unity, and
NVIDIA IsaacSim. For each one, the relevant features and the pros and cons for use as the
digital twin of the case study are discussed. The following requirements are considered:

• Physical accuracy: e.g., realistic modeling of the tether and its interactions with other
objects in the scene

• Scripting and integration of control algorithms

• Cross-platform portability: ability to run the digital twin on different platforms

• Maturity of the support community

The option that best satisfies the defined objectives is first identified by evaluating the advantages
and disadvantages of the three tools, and subsequently validated through an AHP analysis.

3.1.1 Blender
Blender is an open-source 3D graphics and animation software powered by the Bullet physics
engine. It runs on Linux, macOS, and Windows, and it is completely free. Blender provides
various built-in physics simulation tools (rigid bodies, soft bodies, constraints, etc.) integrated
into its animation environment. In particular, the Bullet Physics engine enables rigid-body and
constraint simulations, allowing, for example, chains of linked objects to represent a tether.

Advantages:

• Free and open-source: It is free to use and modify, and it has a large support community.
Installation is easy, and the application does not require many resources.

• Cross-platform support: Blender works on Windows, MacOS, and Linux without any
functional differences. This makes it easy to share the digital twin across different operating
systems.

26

Selection of 3D modeling software and methodologies for tether modeling

• Python scripting: it allows controlling nearly every aspect via Python. This characteristic
offers an advantage for the specific use case, allowing custom logic (e.g., PID/LQR
controllers and even a custom physics solver such as PBD or XPBD to compute tether
tension) to be integrated with ease into the simulation. The Python API allows access to
object properties (floater position, cable length, etc.) at each step and the application of
custom forces or constraints.

• Integrated physics simulation: Bullet supports rigid bodies, collisions, and constraints
such as hinges and joints. Tether elements can be modeled as rigid segments connected by
spherical joints or fixed-distance links, yielding chain-like behavior to approximate a cable.
flexible also supports soft-body/cloth simulations which, with appropriate settings, can
represent flexible ropes. In general, a discrete cable model (e.g., a series of capsules/segments
connected together) can be used to simulate tether physics.

• Rendering and visualization: if visual quality matters, Blender is great at producing
realistic renders and animations. For a digital twin, it allows for detailed modeling of the
platform and floater, as well as accurate visualization of system motions. This is useful for
presentations or qualitative analysis.

Drawbacks:

• Physical fidelity limited by Bullet: While Bullet is reasonably accurate, it focuses on
speed and stability in animations. It may need smaller time steps, more sub-steps, and
more solver iterations to manage demanding situations like a very flexible or long tether.
For instance, keeping stability in a long chain of segments can be difficult with an iterative
solver like Bullet, especially if keeping simulation time reasonable is needed. In extreme
cases, accuracy may not match that of newer engines, such as NVIDIA’s PhysX 5, which
is used in IsaacSim.

• Handling complex interactions: When deployed, the tether must first be wound around
a pole. This needs to be handled through collisions between the cable segments and the
pole or by using specific logic, which Bullet may only manage roughly. Achieving an
accurate model of tether behavior in Blender is possible but requires extra effort.

• Performance: Running long simulations or many iterations in Blender via Python
can be slower than in optimized environments. Blender is not primarily designed for
high-speed interactive simulation loops; each frame computed with Python scripts adds
overhead. Unity or IsaacSim may also leverage multicore CPUs or the GPU for physics
more effectively.
[45], [46]

3.1.2 Unity
Unity is a general-purpose game engine, widely used for interactive simulations and real-
time 3D applications. It is proprietary software (free for personal/educational use below a
certain revenue threshold), with broad cross-platform compatibility: it enables development
and deployment on Windows, MacOS, and Linux. Unity integrates NVIDIA PhysX to handle
rigid-body simulations, collisions, and joints.

Advantages:

• Robust integrated physics engine: Unity provides a strong out-of-the-box physics
foundation via PhysX. Rigid bodies can be defined for the floater and other elements,
forces can be applied, constraints (Unity supports hinge joints, fixed joints, spring joints,
etc.) can be configured, and collisions detected. For the tether, a chain of small bodies

27

Selection of 3D modeling software and methodologies for tether modeling

connected by hinge joints with limits can yield flexible behavior. The PhysX solver is
fast and stable in most cases, suitable for real-time game simulations and, with proper
configuration, technical scenarios as well.

• Interactive, visual environment: the Unity Editor facilitates scene construction, import
3D models (e.g., floater and platform), place objects, and adjust physics parameters (mass,
low friction for the air-bearing plane, tether joint lengths and stiffness, etc.) through a
GUI. The simulation can be observed in real time in the Game view and modified quickly.

• Flexible scripting (C): programming in Unity is mostly done in C. This language offers
strong performance, often faster than Python scripts [47]. It’s possible to implement PID
and LQR control through scripts that check the floater position every frame and calculate
control actions. Tether tension can be computed using methods such as XPBD implemented
in C, which manually updates cable positions and constraints at each simulation step.

• Performance: the physics time step can be reduced to improve accuracy, though this
increases CPU usage. Unity supports multithreading for some parts of physics and can
efficiently handle a moderate number of bodies. Therefore, even without IsaacSim’s GPU
acceleration, Unity can run medium-complexity scenarios smoothly. In this case, with a
single tether and a floater, Unity should perform well in real time.

• Ecosystem and community: Unity’s large user base provides abundant resources: useful
plugins/assets and extensive documentation. Unity also integrates with other platforms:
there is ROS support if needed, and it’s generally easy to communicate with external
programs. This flexibility is valuable for exporting and analyzing data in other tools (e.g.,
MATLAB) or for future project expansions. Unity is already used in robotics for advanced
visualization and simulations with human/VR interaction, supporting its suitability for
digital-twin contexts [20].

• Export as standalone software: simulations can be run on another computer without
Unity installed, by creating platform-specific builds. Unity’s portability across target
platforms is excellent.

Drawbacks:

• Lower physical accuracy than specialized solutions: although powerful, Unity’s
PhysX is designed for games. Some simplifications or limits may show up in demanding
situations. For instance, simulating a long, flexible cable connected to a satellite requires
high stability. PhysX (version 4.x in Unity) might introduce stretch or instability if the
integration step is not small enough. NVIDIA made significant improvements in PhysX 5
(used in IsaacSim) for constraint stability, improvements that Unity has not integrated yet.
This means that Unity may be slightly less accurate than IsaacSim for difficult simulations.
In practice, this requires careful tuning of parameters, like multiple sub-steps, to achieve
precise tether modeling without numerical oscillations.

• Proprietary software and dependencies: while free for many uses, Unity is not
open-source. This implies less transparency into exactly how internal physics computations
are performed.
[48, 49, 20]

3.1.3 NVIDIA IsaacSim
NVIDIA IsaacSim is an advanced robotics simulation platform built on NVIDIA Omniverse.
It is designed explicitly to create digital twins of robots and environments with very high visual
and physical realism. It uses the latest generation of NVIDIA’s PhysX engine (version 5) and

28

Selection of 3D modeling software and methodologies for tether modeling

leverages GPU hardware (RT Cores, CUDA) to accelerate simulations. IsaacSim targets AI and
robotics scenarios: simulated sensors (RGB-D cameras, LiDAR), native ROS/ROS2 integration,
synthetic data generation, etc. Although many of these features fall beyond the scope of the
present work (e.g., sensors or machine learning), physical accuracy and tether modeling remain
particularly relevant.

Advantages:

• Maximum physical fidelity: IsaacSim likely provides the most accurate physics of the
three options. It uses PhysX 5, which brings better solvers for joints and constraints,
reducing instabilities and unrealistic behavior. Overall, IsaacSim aims for believable and
lifelike virtual environments, as stated in NVIDIA’s documentation. This allows effects
like tether dynamics to be solved with high precision, especially when using small time
steps and GPU-accelerated solvers.

• Python support and customization: IsaacSim can be controlled through Python, much
like Blender. It’s possible to script the simulation, create custom controllers, and interact
with the physics. For instance, we can access the world state, including positions, velocities,
and forces, at each step and apply algorithms like XPBD-based tension calculation.

• Cable/robotics-specific building blocks: While there is not a dedicated “rope” module
yet, IsaacSim offers examples and tools that help in constructing cables using multiple
segments with joints. For instance, a rope demo mentioned in NVIDIA forums connects
capsules with spherical joints to simulate a cable.

• Scalability and GPU performance: IsaacSim shines as simulation load increases. It
can exploit the GPU for physics (PhysX GPU) to simulate thousands of objects or contacts
in parallel. However, few bodies are required in this case.

Drawbacks:

• High hardware requirements: the main drawback is accessibility. To run IsaacSim
optimally, a relatively recent and powerful NVIDIA GPU (ideally RTX series) is needed.
Suggested minimum is roughly an RTX 3070 with 8 GB VRAM and at least 32 GB system
RAM, plus tens of GB of disk space. This can be a serious barrier if we aim to run the
digital twin on multiple machines without discrete GPUs. Notably, IsaacSim does not
support non-NVIDIA GPUs, so it cannot run natively on modern Macs (Apple/AMD
GPUs). Official support targets Windows 10/11 and Ubuntu 20.04/22.04, MacOS is
excluded. Regarding accessibility (criterion: Windows, MacOS, Linux), IsaacSim fails to
be truly cross-platform.

• Installation complexity and software footprint: IsaacSim is not a small program. It
is usually installed through the NVIDIA Omniverse Launcher or Docker containers. The
installation is large, with downloads over 10 GB. Starting the program can take several
minutes because it loads many modules, such as RTX rendering, physics, and the user
interface. In comparison, Blender opens in seconds, while Unity is faster than IsaacSim but
still heavier. To use IsaacSim effectively, it is often necessary to adjust several settings, like
PhysX GPU parameters. Users have mentioned this, especially when running multi-cable
simulations. There is a lot of system requirement that might not be necessary for a simpler
setup, such as a single tether and a floater on a plane.

• Portability limitations: sharing the digital twin requires the end user to have a compat-
ible system and to install IsaacSim, reducing ease of distribution. There is no “standalone
build” concept as in Unity; being a platform, anyone who wants to run the simulation
must install the full environment. This conflicts with the requirement of being “easily

29

Selection of 3D modeling software and methodologies for tether modeling

launchable on different platforms”.

• Overkill without sensors: IsaacSim shows its strengths when its unique capabilities are
leveraged (physical sensors, RTX photorealism for vision training, complex multi-robot
scenarios). In this context, only a subset of the available features would be relevant, as
the simulator would primarily handle the mechanical dynamics of a cable and an object.
Without the need for photorealism or sensing, the physical-fidelity advantage alone may
not offset the software’s greater complexity. Problems of this type can be effectively solved
with lightweight tools, given appropriate parameter tuning, thereby avoiding the adoption
of an enterprise platform.

• Learning curve and maturity: IsaacSim is still relatively new. Documentation is
available but is still developing, and some bugs can appear, especially with GPU features
and new capabilities. For instance, users have noticed instability when simulating multiple
cables on the GPU and often have to switch to the CPU solver for stability. NVIDIA
is rapidly improving the product, but using IsaacSim takes time to understand concepts
like USD scenes and Omniverse extensions, as well as to identify hidden issues. Blender
and Unity, being more established and popular, provide many more tutorials and forum
discussions for common problems.

• Less flexibility outside the standard path: although Python is supported, IsaacSim is
less open than Blender. For example, you don’t have full control over the integrated PhysX
core (you can configure it, but not easily replace it). Implementing your own XPBD solver
inside IsaacSim may require disabling parts of the native tether physics and managing
bodies manually via scripts, which is possible, but not exactly the workflow Omniverse
is optimized for. Unity or Blender may offer greater freedom to “take control” of objects
and move them arbitrarily according to external computations, whereas IsaacSim tends to
steer you toward its internal system (which, if properly configured, should simulate the
tether without writing XPBD from scratch).
[50, 51, 52]

3.1.4 Assessment of the optimal solution
Summarizing the comparison, here are the key points:

• Physical accuracy: NVIDIA IsaacSim provides advanced physics capabilities (PhysX
5, GPU solvers) and is intended for applications of this nature; on paper it provides the
best fidelity for tether simulation and free motion of the floater. Unity and Blender use
more traditional engines (PhysX 4 and Bullet, respectively); both can reproduce system
dynamics with good approximation, but Bullet may require stricter parameters (e.g.,
smaller time steps) to match the accuracy of Unity or IsaacSim.

• Accessibility and Platforms: Blender and Unity fully satisfy cross-platform requirements
(Windows, macOS, Linux). Unity allows building applications for all these OSs from a
single project, while Blender runs natively on all three. IsaacSim, by contrast, requires
specific hardware (NVIDIA GPU), limiting accessibility. This factor alone may be decisive
if the project must be shared with users on machines without discrete GPUs. In terms of
ease of launch, Blender is the simplest (open the .blend file), Unity requires a platform-
specific executable for users without the editor, and IsaacSim requires a full Omniverse
installation. Thus, for accessibility, Blender and Unity clearly prevail.

• Scripting and control integration: Blender and IsaacSim both use Python for scripting.
This language works well for implementing PID/LQR controllers and for XPBD-based

30

Selection of 3D modeling software and methodologies for tether modeling

tether calculations. Unity uses C, which is a high-performance language, along with a well-
documented API. Unity’s scripting is closely linked to the physics loop, or FixedUpdate.
This makes it easier to synchronize controllers with the simulation.

• Additional features: In the perspective of a future expansion of the digital twin (for
instance, through the addition of simulated sensors) Unity and IsaacSim provide greater
possibilities, whereas Blender is less suitable for interactive extensions.

• Community and support: Blender and Unity have very large communities (Blender
especially in graphics, Unity in gaming and increasingly in simulation/robotics). IsaacSim’s
community is smaller (mainly NVIDIA forums and technical docs). For troubleshooting or
finding similar examples, Unity resources are likely the easiest to find (including robotics
examples), like [21].

Considering all these aspects, Unity offers the best balance among accuracy, flexibility,
and ease of use across different platforms. It provides good physical fidelity, especially with
adjustable PhysX parameters and the option to add a custom XPBD solver for the tether. It
is relatively easy to construct and visualize scenes, and it can work on any operating system
without specific hardware needs. Additionally, it is built for interactivity and customization,
which fits a digital twin managed by custom algorithms.

While its physical accuracy is not as high as IsaacSim’s, Unity meets the required standards
and presents a more practical option. It allows for the rapid development and testing of the
tethered system while still achieving adequate realism. Blender, in contrast, would require more
manual work to reach a similar level of simulation quality. IsaacSim, though physically superior,
does not align well with the practical needs of the project, such as accessibility and ease of
deployment.

Moreover, IsaacSim’s extra features, like RTX photorealism, sensor simulation, and tight
integration with the AI ecosystem, would not be fully used in this situation, all while adding
significant complexity.

In conclusion, taking into account the necessary accuracy, portability across Windows, macOS,
and Linux, the need for custom scripting, and user-friendliness, Unity stands out as the best
choice for creating the digital twin of the air-bearing platform. It offers a balanced environment
for implementing tether physics and PID/LQR control, with the benefits of a mature, cross-
platform engine. Blender could be a suitable alternative if a completely free platform is desired
and more time can be committed to manual simulation work. IsaacSim would mainly be
considered if achieving maximum physical accuracy or transitioning to more complex scenarios
becomes a priority; for now, based on the stated needs, it offers more than what is necessary.

3.1.5 AHP analysis

Furthermore, an Analytic Hierarchy Process (AHP) analysis was carried out to substantiate
that Unity demonstrates the highest level of compliance with the defined objectives for the
development of the digital twin, when compared with the other two candidate platforms.

With regard to the compilation of the prioritization matrix, the highest importance was assigned
to physical accuracy, followed by the ability to implement control algorithms (which can
be implemented in all three software platforms, but are assigned different qualitative scores
depending on the efficiency of the programming language used).

31

Selection of 3D modeling software and methodologies for tether modeling

Blender Unity™ NVIDIA IsaacSim
Physical accuracy 2 7 9
Accessibility 9 6 2
Scripting and
control integration

3 9 3

Maturity of the
support community

9 7 2

Table 3.1: Digital twin software scores matrix

Physical accuracy Accessibility Scripting and
control integration

Maturity of the
support community

Physical accuracy 1 3 7 9
Accessibility 1/3 1 5 7
Scripting and
control integration

1/7 1/5 1 8

Maturity of the
support community

1/9 1/7 1/8 1

Table 3.2: Digital twin software prioritization matrix

The weights for the different criteria are the values of the eigenvector corresponding to the
maximum eigenvalue:

0.564 0.286 0.116 0.034

Table 3.3: Digital twin software criteria weights

Properties Weights Blender Unity™ NVIDIA IsaacSim

Physical accuracy 0.564 0.062 0.219 0.282

Accessibility 0.286 0.152 0.101 0.034

Scripting and
control integration

0.116 0.023 0.070 0.023

Maturity of the
support community

0.034 0.017 0.013 0.004

TOTAL SCORE 0.254 0.403 0.342

Table 3.4: Digital twin software decision matrix

As initially hypothesized, the analysis confirmed that Unity is the software solution most
appropriately aligned with the project’s objectives.

32

Selection of 3D modeling software and methodologies for tether modeling

3.2 Implementation of scaling laws for experimental and
digital twin representations

3.2.1 Scaling factors in the experimental setup
To ensure dynamic similarity between the real orbital environment, the laboratory test, and the
scene in the digital twin, appropriate scaling factors must be introduced.

The granite bench facility acts as a simple physical model, in which the lengths, masses, and
times are different from those of the reference orbital system. The Buckingham theorem
guarantees that the correct ratios between tether stiffness, satellite mass, and characteristic
accelerations are maintained in this model.

The Buckingham π theorem states that if a phenomenon is described by p variables involving q
fundamental units, the entire system can be expressed using r = p− q dimensionless parameters,
known as π variables. By equating the π variables of the real case and those of the scaled case,
the principle of similarity ensures dynamic similarity between the two systems. [53], [54], [55]

The system comprises a total of 15 variables:

[x y z ẋ ẏ ż ẍ ÿ z̈ Fx Fy Fz m t ω]

There are three fundamental units: length, mass, and time. Consequently, a total of 12 π
variables can be identified and used to establish the similarity conditions between the two
systems.

In particular, the scaling factors, namely λL, λm, and λt, are defined as the ratio between the
real case and the scaled variables.

λt = τ

t

λm = M

m

λL = ξ

x
= η

y
= ζ

z

(3.1)

For the test with the tether fully deployed, the length is scaled by selecting λL = 50 (half of the
actual 100 m tether mapped onto a 1 m cable). It is essential that the maximum real acceleration
(approximately 0.1416 m/s2) does not exceed the testbed’s capabilities. Consequently, λt ≤ 20.3,
therefore λt = 20 is adopted.

3.2.2 Scaling factors in the digital twin
A highly convenient option is to design the digital twin scene at a 1:1 scale with respect to the
experimental setup that needs to be replicated (in this case, the air-bearing platform discussed
in the paper [53]). This approach eliminates the need for additional scaling factors between
the experimental setup and the virtual scene. Instead, the digital twin simply incorporates the
same scaling factors that were applied to ensure dynamic similarity between the real tethered
satellite system and the air-bearing platform.

Three types of control will be implemented in the digital twin: PID tension control, PID
position control, and LQR position control. The position controllers compute the “real” control
acceleration based on the position error (in the coordinates of the tethered satellite system)
and then convert it into a “scaled-table” acceleration. This scaled-table acceleration is then

33

Selection of 3D modeling software and methodologies for tether modeling

translated into the corresponding tilt angle of the table. Similarly, in the PID tension control, a
force is computed, first converted into an equivalent acceleration in real coordinates, and then
into the corresponding “scaled-table” acceleration. In addition, the desired position (and Ω for
LQR control) can be provided relative to either the table frame or the real frame, selectable via
a flag.

The scaling factor used to scale the acceleration is given by the following expression:

abench = areal ·
λ2

T

λL

(3.2)

By applying this scaling factor, the acceleration on the table reproduces, with dynamic similarity,
that of the real system.

It is important to note, however, that the scaling laws do not enforce a strict similarity of the
tether stiffness. In fact, as also reported in [53], the physical tether employed in the laboratory
was modeled using a cotton thread. This choice is motivated by the fact that cotton provides an
effective approximation of the scaled stiffness within the measurable range of the load cell, while
avoiding unrealistically high tension values that would arise if a high-performance material (like
zylon, which was selected in the AHP analysis) were used at reduced length. For consistency
with the experimental setup, the digital twin models the tether with the same cotton-like
mechanical properties.

3.3 Methodologies for tether modeling

3.3.1 Problem formulation and modeling objectives
One of the most challenging aspects in the development of the digital twin lies in the modeling of
the tether. Since Unity does not provide a preconfigured object for its representation, the tether
must be implemented entirely through C scripting. The first step consists in discretizing the
tether into a set of points connected by segments. Three main issues must then be addressed:

1. Updating the positions of the points, which evolve under the action of external and internal
forces (modeled through Hooke’s law) acting on the tether

2. Graphically reproducing, in a manner consistent with its stiffness, the tendency of the
segments to return to their equilibrium length as a consequence of the elastic force

3. Handling the collisions of the segments and points that constitute the tether with all the
other elements of the scene

For each of the three problems, different solutions will be analyzed; specifically, Verlet integration
will be compared with Euler integration, the PBD method with the XPBD method, and, finally,
collision handling based on virtual spheres assigned to each tether node will be compared with
virtual spheres placed at the center of each segment.

3.3.2 Euler and Verlet integration methods
Tether dynamics are highly sensitive to integration schemes and timestep sizes. Explicit
integration methods, such as the Euler integration, can lead to instability in simulations. Euler
method tends to accumulate error and energy within the system, resulting in non-physical
behaviors which could lead to divergences or growing oscillations in the tether dynamics.
Additionally, an ideally inextensible tether represents a highly stiff system.

34

Selection of 3D modeling software and methodologies for tether modeling

The 3.5 table provides a comparison of the two methods with respect to several aspects relevant
to tether modeling. As evident from the comparison, Verlet integration appears to constitute
the most appropriate choice for the objectives of this study.

Feature Verlet Euler References

Numerical
stability

High stability for rigid
constraints, allows
larger timesteps

Unstable, requires
very small timesteps

[56, 57]

Physical fidelity Preserves segment
length well

Tends to artificially
stretch the rope

[58, 59]

Collision
handling

Easier with XPBD Harder, requires
post-integration
corrections

[60, 61];

Energy
conservation

Good, avoid spurious
energy drift

Poor, accumulates
numerical error

[58, 56]

Cost per step Update cost +
constraint iterations
(Gauss-Seidel/SOR)

Only update cost [59]

Computational
effort at
equivalent visual
quality

Large time step (dt),
faster convergence

Small time step (dt),
more substeps and
iterations required

[59]

Table 3.5: Comparison between Verlet and Euler integration for tether modeling

Verlet integration is a numerical technique for the simulation of dynamical systems, particu-
larly in the fields of computational mechanics and computer graphics. This method is based on
a Taylor series expansion of the particle position, and it relies on an explicit integration scheme
that updates particle positions using their values at previous time steps, thereby avoiding the
direct computation of velocities. In practice, the position at the next time step is estimated
from the current and the previous positions, resulting in reduced computational cost and
improved numerical stability compared to other explicit methods such as Euler integration. It is
characterized by several key features: it is simple to implement, stable over time, and naturally
preserves physical quantities such as energy and angular momentum more effectively than other
common integration schemes.

The starting point is the Taylor expansion of x(t + ∆t) and x(t−∆t):

x(t + ∆t) = x(t) + v(t)∆t + 1
2a(t)∆t2 +O(∆t3)

x(t−∆t) = x(t)− v(t)∆t + 1
2a(t)∆t2 −O(∆t3)

(3.3)

Adding the two preceding equations yields:

x(t + ∆t) = 2x(t)− x(t−∆t) + a(t)∆t2 (3.4)

The velocity is defined as:
v(t) ≈ x(t)− x(t−∆t) (3.5)

35

Selection of 3D modeling software and methodologies for tether modeling

Substituting equation (3.5) in (3.4) yields:

x(t + ∆t) = x(t) + v(t) + a(t)∆t2 (3.6)

As shown in the appendix section B dedicated to the code, this equation will be used to update
the positions of the tether’s points, which evolve under the action of external and internal
forces.

3.3.3 PBD and XPBD methods
Position-based dynamic (PBD) is a method for real-time simulation of deformable bodies,
such as tethers, in games and interactive applications. Its simplicity and robustness make it
particularly attractive. However, the constraint stiffness is inherently dependent on the chosen
time step and the number of solver iterations, which is the main limitation. Consequently,
achieving nearly inextensible strings requires increasing the number of iterations, affecting
not only the overall computational cost but also lacking a clear physical correspondence with
material parameters. Furthermore, the effects of iteration count are non-linear, making it
challenging to intuitively adjust parameters by simply rescaling stiffness values as a simple
function or iteration count. For these reasons, PBD is confined to applications prioritizing
computational speed over physical accuracy.

The extended position-based dynamic (XPBD) method extends PBD by introducing
compliance α, the inverse of stiffness, and a ‘total’ Lagrange multiplier updated at each step.
This allows the effective stiffness to become nearly independent of both the time step and the
number of solver iterations, enabling direct specification of material properties (e.g., Young’s
modulus E) while preserving consistent behavior across different time steps and iteration counts.
Additionally, XPBD provides a physically consistent estimate of the constraint force. [61]

The XPBD algorithm can be derived from Newton’s equations of motion in the case where the
force can be expressed as the gradient of a potential energy:

Mẍ = −∇UT (x) (3.7)

within which an implicit-position level time discretization can be performed:

M(xn+1 − 2xn + xn−1

∆t2) = −∇UT (xn+1) (3.8)

the energy potential U(x) may be further specified in terms of a vector constraint functions C:

U(x) = 1
2C(x)T α−1C(x) (3.9)

where α is defined as the inverse of the stiffness:

α = 1
k

(3.10)

and we can define:
α̃ = α

∆t2 (3.11)

In this way, the dependence on the time step is ‘absorbed’ into the effective compliance.
Additionally, the Lagrange multiplier is defined as:

λelastic = −α̃−1C(x) (3.12)

36

Selection of 3D modeling software and methodologies for tether modeling

Having introduced compliance, the elastic force can be reformulated in terms of the gradient of
the potential energy as follows:

felastic = −∇xUT = −∇CT α−1C (3.13)

Through a series of substitutions into equations (3.8) and (3.13), the discrete constrained
equations of motion are obtained, representing a nonlinear system:

M(xn+1 − x̃)−∇C(xn+1)T λn+1 = 0 (3.14)

C(xn+1) + α̃λn+1 = 0 (3.15)
The objective is to identify an x and λ that fulfill the system’s requirements. To solve this
problem, we employ a linearization centered around the current state:

C(xi+1) ≈ C(xi) +∇C(xi)∆x (3.16)

where ∆x = xi+1 − xi and ∆λ = λi+1 − λi.
The linearization is substituted into equation (3.15):

C(xi) +∇C(x)∆x + α(λi + ∆λ) = 0 (3.17)

From equation (3.14), ∆x can be expressed as: ∆x = M−1JT ∆λ. This expression can be
substituted into the preceding equation. By factoring out λ and rearranging the terms, the
following equation is obtained:

∆λ = −−C(xi)− αλi

JM−1JT + α
= − −C(xi)− αλiq

k wk ∥∇xk
C∥2 + α

(3.18)

where d = JM−1JT = q
k wk is a scalar referred to as the ‘effective mass’. And the variable

update takes the form:

∆x = M−1JT ∆λ

λi+1 = λi + ∆λ
(3.19)

The case of a tether segment AB is now considered, as it is instrumental for the implemen-
tation of the XPBD method in the code.

C(x) = ∥xB − xA∥ − L (3.20)

∇xA
C = −n̂, ∇xB

C = n̂, with n̂ = xB − xA

∥xB − xA∥
(3.21)

The effective mass becomes:

d =
Ø

k∈{A,B}
wk ∥∇xk

C∥2 = wA ∥n̂∥2 + wB ∥n̂∥2 = wA + wB (3.22)

Thus:
∆λ = −C(xi)− αλi

d + α
(3.23)

∆x = M−1J⊤∆λ (3.24)

xA ← xA − wA n̂ ∆λ xB ← xB + wB n̂ ∆λ

λi+1 = λi + ∆λ

37

Selection of 3D modeling software and methodologies for tether modeling

3.3.4 Collision handling

The collision handling strategy should ensure that the tether interacts credibly with itself
and the surrounding environment, avoiding interpenetrations and unrealistic behaviors. Two
common approaches are to assign small virtual spheres to each node of the rope or to place
spheres at the center of each segment connecting two nodes.

The main benefit of the first approach, spheres at each node, is its accuracy. Each point of the
rope has its own “protective sphere.” This setup ensures that collisions are captured clearly
when the tether bends around complex obstacles or gets tangled. However, the computational
cost goes up with the number of nodes. This leads to a quick rise in the number of pairwise
checks. As a result, there can be jitter or instability because of many corrections happening at
once.

The second approach, spheres placed at the center of each segment, aims to reduce the number
of collisions to be handled. Each segment is approximated by a sphere (with a radius equal
to half the segment’s length), resulting in a slower increase in the number of colliders with
rope resolution. This simplification leads to a more stable solver and improved performance,
particularly critical in applications requiring smooth execution, however, it reduces the accuracy
level too. In sharp bends or interactions with thin obstacles, the central sphere may not always
accurately represent contact, causing the rope to penetrate objects or itself without detection
by the physics engine.

In both approaches, when a penetration is detected, its depth is calculated. The endpoints of
the segment are then displaced. This corrective procedure makes sure that the tether moves
aside when it contacts external objects, preventing unrealistic passage through them.

Ultimately, the selection of the appropriate method depends on the specific intended use case.
If visual fidelity and realistic responses to small environmental details are essential, per-node
spheres are the better option, even though they require more processing power. On the other
hand, if fluidity and simulation stability are prioritized, per-segment spheres offer a more efficient
compromise.

In the specific scenario addressed in this work, since the tether is not anticipated to adopt
highly intricate geometries necessitating high-precision collision handling, the design choice
was to prioritize the stability and fluidity of the simulation. Consequently, collisions have been
implemented using virtual spheres positioned at the center of each segment. Moreover, to
prevent numerical artifacts due to an undersized diameter, a collision radius greater than the
geometric one was used.

In summary, after evaluating various approaches, the following methods were selected to tackle
the three primary challenges associated with modeling a tether in Unity: (i) Verlet integration,
used to update the positions of the discretized tether points affected by external forces; (ii)
the Extended Position-Based Dynamics (XPBD) method, used to ensure both a graphically
and physically consistent representation of the tether, while accurately enforcing the segments’
tendency to return to their rest length and enabling reliable tension computation; and (iii)
a collision-handling strategy that uses virtual spheres, each with a radius equal to half the
segment length and positioned at its center, to improve the overall fluidity and stability of the
simulation.

38

Selection of 3D modeling software and methodologies for tether modeling

3.4 Deployed tether and deployment phase: characteris-
tics, challenges, and key aspects

The digital twin is designed to comprise two principal developments: the modeling of the
deployment phase and the representation of the tether once it has been fully deployed.

The problem was tackled in two stages, each one more complex than the last. First, the digital
twin was set up for the fully deployed tether. This was a simpler setup because of the known and
constant free length. It allowed for early testing of modeling techniques and control algorithms
without the added challenges of deployment dynamics. In this phase, the goal was to understand
the basic behavior of the tether, including how tension is distributed, how it oscillates, and its
stability.

After finishing this first phase, the more complex deployment process was introduced. This
phase is different from the static scenario as it includes complicated dynamic and geometric
aspects. The tether starts wound in a helical shape around the spool, adding spatial limits
that need to be accurately reflected in the model. Another challenge comes from the gradual
release of the tether segments. Each segment goes from being tightly wound to free flight upon
release. This change affects the mass distribution and the system’s overall response, requiring a
more detailed representation in the digital twin. To simplify things, it was assumed that the
segments still wound on the spool follow only kinematic rules, while once released, they are
treated as dynamic elements subject to the full equations of motion.

In this phase, it is particularly important to observe dynamic transitions, like accelerations,
whiplash effects, and sudden changes in tether tension that can occur during deployment.

39

Chapter 4

Scene creation in Unity™

4.1 Fundamental components of Unity™ for physical
simulations

The construction of the digital twin within Unity was facilitated by a comprehensive set of
fundamental objects and components, enabling both realistic physics simulation and graphical
representation. Each component of the experimental setup, including the air-bearing platform,
the floater, the granite bench, and the tether, was meticulously modeled by combining these
Unity primitives with pertinent physical and visual attributes.

4.1.1 GameObjects
A GameObject is a generic container that represents any entity within a scene, and its func-
tionality is defined by the components that are attached to it. In this project, every physical
element, such as the floater, the granite bench, and each tether node, was implemented as a
GameObject. This modular structure allowed for the independent management of geometry,
physics, and behavior, while ensuring their coherent integration within the simulation.

4.1.2 Meshes and Mesh Colliders
To give GameObjects a real shape in the 3D environment, meshes were used. A mesh is made
up of vertices, edges, and faces that define the shape of an object. To help detect collisions
between the tether and these solid elements, mesh colliders were assigned to both the floater
and the bench. While primitive colliders, like spheres, boxes, or capsules, use simple shapes
to approximate geometry, mesh colliders copy the exact outlines of the object. This decision
was crucial for ensuring realistic physical interactions, especially since the tether required high
geometric accuracy when wrapping around the spool.

4.1.3 Rigidobies
The Rigidbody component serves as the central element in Unity’s physics simulation, enabling
GameObjects to be subjected to forces such as gravity, impulses, and collisions. In the digital
twin, the floater was equipped with a rigidbody and assigned a mass of 1 kg, commensurate
with the real experimental setup. This ensured that the floater responded realistically to the
forces transmitted by the tether, as well as to interactions with the granite bench.

40

Scene creation in Unity™

4.2 Simulation scene composition: implemented objects
Each scene element is meticulously modeled by combining the preceding primitives and proper-
ties.

4.2.1 Floater
The floater is the satellite mock-up moving on the air-bearing platform. In Unity, it was modeled
as a cylindrical mesh with a diameter of 65 mm, offering a geometrical match with the physical
prototype. To allow realistic physical interactions with the environment, a mesh collider was
linked to the cylinder. A RigidBody component was added to the floater, with its mass set at 1
kg according to the experimental setup. This setup enabled Unity’s physics engine to simulate
how the floater responds to external and internal forces, especially the tension passed through
the tether.

Figure 4.1: Floater in Unity

4.2.2 Granite bench
The granite bench was designed to mimic the flat microgravity environment of the physical
testbed. It was modeled as a cube with dimensions of 630 mm x 400 mm x 80 mm. A mesh-type
collider was assigned to this object, making it easy to detect contact between the tether and
the surface. The bench itself stayed still, without a rigidbody, serving as support for the floater
and tether to interact. This setup allowed the floater to move freely on the low-friction surface
while following geometric constraints.

Figure 4.2: Granite bench in Unity

For both the floater and the bench, it was imperative to establish a material that would simulate
the near-total absence of friction between the two bodies. In accordance with [62], the static
and dynamic friction coefficients governing the interaction between the air-bearing and the
granite table were assumed to be identical, with a value of 1 · 10−5. Consequently, a virtual

41

Scene creation in Unity™

material with these characteristics was created, designated as “NoFriction,” and assigned to
both objects.

4.2.3 Tether

As discussed in detail in the dedicated chapter, the tether posed the most significant modeling
challenge due to its flexible yet inextensible nature. In the virtual environment, the tether was
discretized into a series of nodes connected by linear segments, effectively representing it as a
mass–spring system. The two terminal nodes were anchored: one to the floater and the other
to a pole (for the already deployed case), or to the rotating spool system (for the deployment
case).

• Mass distribution: each node received an effective mass value. This value was calculated
using the total mass of the tether and the selected discretization scheme.

• Dynamics integration: the Verlet integration method was adopted to update the
positions of the intermediate nodes, chosen for its numerical stability and ability to
conserve the inextensible property of the tether.

• Constraints enforcement: The tether segments were limited to keep their rest length,
which is determined by the product of the tether’s Young’s modulus and cross-sectional
area. The Extended Position-Based Dynamics (XPBD) algorithm was used to enforce
these constraints. This approach addressed the instability problems found in standard
position-based dynamics (PBD) when modeling stiff systems.

• Collision handling: to ensure correct interaction with the floater and the granite bench,
each segment of the tether was sampled at multiple subpoints. These points were checked
for intersection with colliders using spherical approximations. If a collision was detected,
the nearest nodes were displaced outside the obstacle along the normal direction, thereby
avoiding penetration while maintaining the geometric consistency of the tether model.

Furthermore, as previously discussed in the chapter on scaling factors, the scaling laws don’t
require a strict correspondence between the tether stiffness. The laboratory’s physical tether was
modeled with a cotton thread because it accurately approximates the scaled stiffness within
the load cell’s measurable range, avoiding excessively high tension if a high-performance material
(like Zylon) were used at a reduced length. To maintain consistency with the experimental
setup, the digital twin models the tether with the same cotton-like mechanical properties:

Young Modulus E = 4.8 GPa

Rope diameter = 1.6 · 10−4 m

Density ρ = 1540 kg

m3

In [53], the diameter of the cotton thread is not explicitly specified; hence, it was assumed to
correspond to the value reported above.
Finally, the tether was modeled with a length of 1.16 m in the pre-deployed case and 3 m in the
deployment case. An additional 0.16 m, compared to the length reported in [53], was introduced
to enable the floater to reach the edges of the granite bench.

42

Scene creation in Unity™

Figure 4.3: Tether in Unity

4.2.4 Pole and rotating spool sysem
In the case of the already deployed tether, it was sufficient to anchor the end opposite to the
floater to a simple vertical pole, modeled in Unity as a cylinder. In contrast, for the deployment
case, the rotating spool system (identified through an AHP analysis as the most suitable
deployment mechanism for the defined objectives) was modeled as a horizontal cylinder, around
which the tether is helically wound, and as a rigidbody, an essential attribute for handling both
its rotation and its collisions with the tether.

Figure 4.4: Pole in Unity
Figure 4.5: Rotating spool system in
Unity

43

Scene creation in Unity™

4.2.5 Full scene
Once the individual components were created and parameterized, they were integrated into a
complete simulation environment. The floater, bench, and tether were positioned according to
the physical configuration of the air-bearing testbed, for instance, the floater was placed at a
distance of one meter from the pole.

Figure 4.6: Full scene in Unity

44

Chapter 5

Software implementation of the
deployed tether case

This chapter illustrates the implementation of the tether creation and management through
software, as well as the implementation of various control algorithms, specifically: two position
control algorithms (PID position and LQR position) and one tension control algorithm (PID
tension). For a more detailed mathematical treatment of the Verlet and XPBD methods,
reference is made to the preceding chapters.

5.1 Tether implementation - VerletTether.cs
The script utilizes a Verlet/XPBD (Extended Position-Based Dynamics) simulation method to
create a physically realistic rope/tether simulator for Unity. The rope is represented as a series
of point masses connected by inextensibility constraints, and its geometry is rendered using a
LineRenderer. The solver employs Gauss–Seidel iterations and successive over-relaxation (SOR)
techniques to enforce per-segment distance constraints. In addition, the script is responsible for
handling the following aspects:

• Handling collisions

• Computing tension through the XPBD method

• Applying back-reaction forces to rigid bodies at the anchors

• Tether rendering

45

Software implementation of the deployed tether case

Figure 5.1: VerletTether.cs flowchart

46

Software implementation of the deployed tether case

5.2 Description of the implemented functions

5.2.1 Awake()
The Awake() function is invoked automatically by the Unity engine during the initialization
phase of the simulation, before the first frame update and prior to the execution of the Start()
coroutine. Its primary role is to establish all the fundamental elements required for the tether
model. More specifically, the function performs the following tasks:

1. Parameter validation – the method calls ValidateAndMaybeClampRopeLength()

2. Geometrical initialization – through InitializeRope()

3. Physical parameter computation – by invoking RecomputeMaterialAndMass()

4. Solver buffer allocation - through AllocateSolverBuffers()

5. Initial visualization – by invoking DrawRope()

5.2.2 Start()
The Start() function in Unity is executed once, immediately after Awake() and before the first
simulation step. In this implementation it is defined as a coroutine, which allows the initialization
to be distributed across multiple frames, thereby ensuring that all Unity components (such as
Rigidbody objects and colliders) are fully instantiated before the tether begins its dynamic
evolution.
The function operates as follows:

1. Rope length adjustment (conditional) - if the flag useInspectorRopeLength is disabled, the
function recalculates the rope length directly from the geometric distance between the
anchor points

2. Recomputation of physical properties - through RecomputeMaterialAndMass()

3. Visualization - to refresh the initial graphical representation of the tether DrawRope() is
called

5.2.3 OnValidate()
The OnValidate() function is a special Unity callback that is automatically invoked in the
Editor environment whenever one of the serialized fields of the script is modified through the
Inspector panel. Unlike Awake() and Start(), which are executed during the runtime phase,
OnValidate() operates at design time and serves as a tool for maintaining internal consistency
of the simulation model while the user configures the tether parameters. As the preceding
functions, it performs the following tasks:

1. Parameter verification and clamping – it calls ValidateAndMaybeClampRopeLength()

2. Geometry reconstruction – it invokes InitializeRope()

3. Update of physical properties – through RecomputeMaterialAndMass()

4. Solver data reallocation – it calls AllocateSolverBuffers()

5. Graphical refresh – finally, DrawRope() is executed

47

Software implementation of the deployed tether case

5.2.4 ValidateAndMaybeClampTheRope()
The function is designed to guarantee the physical feasibility of the tether’s initial configuration
by checking the consistency between the user-defined rope length and the spatial arrangement
of the anchor points.

In practice, the function computes the geometric distance between the two rigid bodies (the
start and end anchors of the tether). It then compares this value with the desired rope length
specified in the Inspector or computed at runtime. Since a flexible tether cannot be shorter than
the straight-line distance between its endpoints, if the ClampRopeLengthToAnchors option is
enabled, the function enforces the following condition:

L ≥∥xend − xstart∥

where L is the prescribed rope length, and xstart, xend denote the positions of the two anchor
points. If the assigned rope length violates this inequality, the function automatically clamps it
to the minimum admissible value:

L←−∥xend − xstart∥

5.2.5 InitializeRope()
The InitializeRope() function is responsible for constructing the discretized representation of
the tether at the beginning of the simulation. Since the physical tether is modeled as a flexible
structure, it cannot be represented as a single rigid element; instead, it is approximated by a
sequence of point masses (nodes) connected by segments that enforce distance constraints.
The function executes the following key steps:

1. Segment length calculation: calculates the length of a segment by dividing the tether
length by the number of segments chosen for its discretization.

2. Node generation: the positions of these nodes are initialized by interpolating linearly
between the two anchor points (startRB and endRB). This ensures that the tether is
created in a straight configuration, with equally spaced nodes. The two anchor points are
set as locked though a flag.

3. Initial conditions: the current and previous positions of each node are set. This setup ensures
that the Verlet integration scheme can accurately calculate velocities and accelerations
from the first simulation step.

5.2.6 RecomputeMaterialAndMass()
This function is responsible for updating all the derived physical parameters of the tether
whenever its geometric or material properties change.

It computes the following values:

1. Linear density: µ = A · ρ

2. Axial stiffness for each segment: k = EA
L0

i

3. Constraint compliance (XPBD): α̃i = 1
k · s2

4. Mass distribution along the nodes: mi = µ · L0
i

48

Software implementation of the deployed tether case

5. Inverse mass of each point:

wi =


1

mi
1 ≤ i ≤ N − 1

0 i = 0 or i = N

Where:

L0
i = segment i rest length

s = substep value [s]

5.2.7 AllocateSolverBuffers()
The AllocateSolverBuffers() function serves as a preparatory routine, initializing the solver’s
internal buffer arrays necessary for the constraint resolution phase of the XPBD method.
Specifically, it allocates and resets the arrays responsible for storing Lagrange multipliers and
the tension values associated with each segment.

5.2.8 DrawRope()
The function is responsible for the visualization of the discretized rope in the simulation
environment. It iterates over the tether points and renders line primitives between adjacent
nodes. By doing so, it provides a real-time graphical representation of the rope’s configuration,
deformation, and motion as computed by the solver.

5.2.9 FixedUpdate()
This function represents the main loop of the code. In order to obtain a finer temporal
integration and enforce constraints, the time step dt is decomposed into S substeps.

5.2.10 Integrate()
The funtcion integrates the internal points with the Verlet integration

v = (xi − xi−1) · damping
xi = xi + v + a · ∆t2

In the numerical formulation, a damping term was incorporated to ensure energy dissipation
and to mitigate undesired oscillations during the rope dynamics simulation.

5.2.11 SolveTimeStep_Tolerance()
This function makes sure the distance between consecutive rope segments stays within the set
limits during each step of the simulation. It follows an iterative method to address the XPBD
constraints until the deviation is small enough or a maximum number of iterations is reached.
This way, it fixes any deviations that may have happened.

5.2.12 HandleSegmentCollisions()
This function enforces non-penetration constraints between each tether segment and the colliders
present in the environment. Its implementation employs a simplified yet computationally efficient
strategy: for each segment, a single virtual bounding sphere is constructed, centered at the

49

Software implementation of the deployed tether case

geometric midpoint of the segment and with a radius equal to half the segment’s length. This
ensures that the entire segment is enclosed within the sphere.

The Unity physics engine uses the OverlapSphere operation to find all colliders that intersect
the bounding sphere. For each collider it finds, the algorithm calculates the closest point on
the collider’s surface to the segment’s midpoint. Then, it checks if the midpoint is in the
penetration region of the bounding sphere. If there is penetration, the algorithm calculates the
penetration depth and creates a correction vector that goes from the collider surface to the
segment’s midpoint.

This correction applies equally to the two endpoints of the segment, unless one of the endpoints
is constrained, like being locked to an anchor. This way, the method pushes the tether outward
from the obstacle, keeping physical realism intact.

5.2.13 ApplyXPBDConstraints()
The function keeps the tether from stretching by using the Extended Position-Based Dynamics
(XPBD) method on each segment.

For each pair of consecutive points, the algorithm calculates the current constraint violation.
This calculation is the difference between the actual segment length and its set rest length. The
violation then goes through the XPBD update rule, which adds a compliance term. This term
helps control the effective stiffness of the constraint while ensuring numerical stability. The
method also tracks a Lagrange multiplier for each constraint and updates it at every iteration.

The correction is shared between the two endpoints of the segment based on their inverse
masses. Nodes with higher mobility get larger displacements. In contrast, anchored or heavily
constrained nodes stay nearly fixed. As a result, the algorithm adjusts the tether configuration
to reduce constraint violation while maintaining physical realism and considering material
compliance.

By iterating this process across all segments, ApplyXPBDConstraints() maintains the rope’s
rest length distribution, thereby ensuring that the tether neither stretches nor compresses
unrealistically under dynamic loading. In formulas, for each pair of points, the following
quantities are defined:

λ = Lagrange multiplier

Compliance α = 1
k

α̃ = α

∆t2

∆̄ = x̄B − x̄A

Constraint violation C = ∆̄− LSegment

Direction n̂ = ∆̄
∥∆̄∥

Effective mass of the point A wA = 1
mA

Effective mass of the point B wB = 1
mB

wsum = wA + wB

50

Software implementation of the deployed tether case

Then, the correction is computed according to the following expressions:

∆λ = − C + α̃λ

wsum + α̃

λ = λ + ∆λ

x̄A = x̄A + wA∆λ · n̂

x̄B = x̄B − wB∆λ · n̂

5.2.14 ComputeMaxConstraintError()
For each segment connecting two consecutive nodes, the function computes the absolute
difference between the current segment length and its prescribed rest length.

Among all segments, the maximum deviation is chosen as the global constraint error. This value
has two roles: first, it acts as a diagnostic tool to measure the accuracy of constraint enforcement
at a specific iteration. Second, it sets the stopping rule for the iterative solver. During each
physics substep, the constraint solver (SolveTimeStep_Tolerance) makes corrections repeatedly
until either the maximum error drops below a set tolerance level or the maximum number of
iterations is reached.

In this way, the functions acts as a convergence monitor, ensuring that the constraint projection
process does not terminate prematurely while also avoiding unnecessary iterations once the
tether geometry has been corrected within the desired numerical tolerance.

C = ∥x̄B − x̄A∥ − Lsegment

Evaluation of the maximum absolute value |C| over the rope:

Cmax = max
(A,B)

| ∥x̄B − x̄A∥ − Lsegment |

5.2.15 ComputeTensionFromLambdas()
The function evaluates the tensile force acting along each rope segment by exploiting the values
of the Lagrange multipliers obtained during the constraint resolution process. Specifically, once
the constraint violation C and the corresponding correction multiplier ∆λ have been determined,
the function computes the internal tension as a function of the updated multipliers, thereby
providing a consistent measure of the forces transmitted through the rope:

Ti = − λi

∆t2 (5.1)

A non-physical situation may arise when the computed value of a segment tension Ti becomes
negative, which would correspond to compressive forces that a real tether cannot sustain. To
prevent such artifacts, the implementation explicitly enforces Ti = 0 if Ti < 0.

5.2.16 ApplyBackReactionForces()
This function ensures that the interaction between the tether and its anchor points is dynamically
consistent with Newton’s third law of motion. Tensile forces are computed in ComputeTen-
sionFromLambdas(), and the equal and opposite reactions of these forces must be applied to
the rigid bodies to which the tether is attached (e.g., the floater or the spool). The function
achieves this by evaluating the net tensile force exerted by the first and last tether segments on
the two anchor points, and then applying the corresponding opposite forces to the rigid bodies
via Unity’s physics interface. This mechanism allows the anchors to respond realistically to the
tether tension.

51

Software implementation of the deployed tether case

5.3 PID tension controller for deployed tether
The PID tension controller regulates the tension acting along the discretized tether by com-
manding corrective roll and pitch inputs to the supporting platform (the granite bench), thereby
inducing controlled accelerations in the floater. As described in the chapter concerning the
scaling factors, the control acceleration is computed by the PID controller for the real system,
and only immediately before converting the acceleration into the rotation angles of the granite
bench is it transformed into the "table system", through equation (3.2).
The control chart is presented below:

Figure 5.2: PID tension control diagram, deployed tether

The primary objective is to regulate the tether tension T to a desired tension Td. However,
because derivative action on raw tension can amplify measurement noise, the measured tension is
first passed through a first-order exponential low-pass filter with user-selected cutoff frequency:

T̃k+1 = T̃k + (1− α)(Tk − T̃k)

Where α = e−2πfc∆t. In addition, for the first iteration T̃0 = T0
After filtering the measured tension, the different errors are calculated:

e = Td − T̃

ei =
Ú

e dt = e · dt

ed = de

dt

And the standard PID law is used:

u = Kp e + Ki

Ú
e dt + Kd

de

dt
= Kp e + Ki ei + Kd ed (5.2)

Where u = control acceleration
Once the control acceleration has been calculated, the direction in which it have to be applied
is then computed:

d̄ = x̄e − x̄s

n̂ = d̄

∥d̄∥
52

Software implementation of the deployed tether case

And finally:
ū = u · n̂

The acceleration in the real system is converted into the acceleration in the table reference
frame:

ūbench = ūreal ·
λ2

t

λL

The maximum tilt angle of the bench imposed on the actuators is 2°; it is therefore reasonable
to assume the hypothesis sinθ ≈ θ, in order to convert the control acceleration in angles.

ϕdes = ū · k̂
g

Roll angle

θdes = − ū · î
g

Pitch angle

The motion of the actuators, and consequently the inclination of the bench, is not instantaneous.
To simulate their inertia, the SmoothDampAngle function, already available in the Mathf
library, is employed; this function enables the desired angle to be reached from the current one
within a specified time interval.

5.3.1 Results of PID-Based tension control for a fully deployed
tether
To assess the effectiveness of this algorithm, it was initially imperative to calibrate the values of
the three gains. A trial-and-error methodology was employed until convergence to the desired
tension level was achieved.
The calibration process resulted in the following parameter values:

Kp = 1
Ki = 0.001
Kd = 0.81

The test was carried out using the following data:

Tdes = 0.08 N

p̄start = (0, 0.9, 0)
fcutoff = 3 Hz

βmax = 2◦

tactuators = 2 s

Where β is the bench tilt angle.

53

Software implementation of the deployed tether case

The results reported in figure 5.3 confirm that the controller is able to maintain the commanded
tension with acceptable overshoot and settling time (approximately 1–2 seconds). In particular,
the evolution of the X-position remains constant throughout the experiment, indicating that the
control action does not induce unwanted motion and that the geometry of the setup preserves
symmetry in the longitudinal direction. The oscillations along the y-axis are a result of the fact
that each time the bench tilts, it either elevates or depresses the center of mass of the floater.
In contrast, the Z-position exhibits a rapid settling toward a stable equilibrium near 0.2 m,
with a transient that is well damped and free from overshoot.

The tension trace itself provides the clearest indication of control performance. Starting from
zero, the tension increases smoothly and reaches the target value within approximately two
seconds, exhibiting minimal overshoot and settling quickly to a nearly constant level with only
small residual oscillations. The mean tension over the free segments remains very close to 0.08
N, confirming that the controller maintains the desired pre-load throughout the test.

In the post-deployment phase, tension control is essential to preserve a stable relative distance
and to mitigate vibrations induced by orbital perturbations or control actions. The PID law
can adjust small attitude or thrust corrections to maintain a constant preload, preventing the
tether from entering slack conditions that would result in loss of controllability and unwanted
impacts when tension is suddenly restored. Moreover, accurate tension regulation supports
attitude stabilization: since tether tension directly affects the torque transmitted to the deputy,
controlling it can indirectly stabilize its relative orientation or spin rate.

From a broader mission perspective, tension control contributes to the robustness and safety
of the system. By limiting peak forces and ensuring smooth tension variations, the controller
reduces mechanical fatigue and minimizes the risk of structural damage or overstress in the tether
material. In electrodynamic tether missions, where current flow depends on tether geometry and
tension, maintaining a constant force also ensures consistent electrical and thermal behavior.

Figure 5.3: Deployed case - PID tension results

54

Software implementation of the deployed tether case

5.4 PID position controller for deployed tether

Figure 5.4: PID position control diagram, deployed tether

The operation of the PID position controller is entirely analogous to that of the tension controller,
with the sole difference that the error is computed with respect to the desired position (specified
by the user) rather than the tension. Similarly to the previous case, this controller also
determines the control acceleration within the "real system", and only immediately before
converting the acceleration into angular values is it transformed into the "table system".

ē = p̄des − p̄

ēi =
Ú

ē dt = ē · dt

ēd = dē

dt
= ē

dt

Standard PID law:

ū = Kp ē + Ki

Ú
ē dt + Kd

dē

dt
= Kp ē + Ki ēi + Kd ēd (5.3)

Conversion of the control acceleration into the "table system":

ūbench = ūreal ·
λ2

t

λL

Transformation of the control acceleration into angles:

ϕdes = ū · k̂
g

Roll angle

θdes = − ū · î
g

Pitch angle

In this case as well, the SmoothDampAngle function is used to simulate the actuation inertia.

55

Software implementation of the deployed tether case

5.4.1 Results of PID-Based position control for a fully deployed
tether
In this test, the calibration process led to the following values:

Kp = 2.4
Ki = 0

Kd = 1.8

The test was carried out using the following data:

p̄des = (−5, 0.9, −10)
p̄start = (0, 0.9, 0)

βmax = 2◦

tactuators = 2 s

Where p̄des is express with respect to the real system. The following results were obtained:

Figure 5.5: Deployed case - PID position results

The results of the PID position control reveal the dynamic response of the system along the
three spatial axes, as well as the corresponding tether tension profile. In the X-direction, the
platform exhibits a rapid convergence towards the equilibrium configuration, with only small
oscillatory components before stabilizing around the desired position.
In contrast, the Y-direction response is characterized by a more pronounced oscillatory behavior,
but, as mentioned, the controller does not manage this direction.
Along the Z-direction, the graph indicates a quick movement toward the target position. This
is followed by a small overshoot and then stabilization.

The evolution of the tether tension reflects the effectiveness of the position control scheme. The
tension rises smoothly during the initial transient phase, avoiding abrupt peaks that could

56

Software implementation of the deployed tether case

compromise system stability, and progressively converges to a steady-state value consistent with
the imposed equilibrium configuration. The absence of significant fluctuations in the steady
state indicates that the PID law provides a consistent balance between position regulation and
tension stabilization.

In conclusion, the results show that the PID controller effectively directs the system to the
desired position while keeping the tether tension stable.

Position control finds numerous applications. During the post-deployment phase, once the
tether reaches its full length, position control ensures that the deputy satellite remains in a
quasi-stationary position relative to the chief. This is crucial for missions involving formation
flying, rendezvous and docking simulations. In these scenarios, maintaining a stable relative
geometry is essential to ensure that the measurements taken by the two satellites remain coherent
and that the tether does not introduce uncontrolled perturbations. Additionally, position control
allows the deputy to return to its desired configuration after external disturbances, such as
orbital perturbations, micro-impacts, or transient attitude motions. This ensures that the
nominal relative trajectory is quickly re-established without residual oscillations or long-term
drift.

Furthermore, position control can aid in attitude stabilization and station keeping. Since the
tether tension acts along the line connecting the two spacecraft, small position corrections
generate torques that can be utilized for attitude control without the need for continuous
propellant expenditure.

57

Software implementation of the deployed tether case

5.5 LQR position controller for deployed tether
The LQR position controller implements a Linear Quadratic Regulator (LQR) to achieve precise
position control of the tethered floater on the granite bench.
The control flow chart is presented below:

Figure 5.6: LQR position control diagram, deployed tether

The design of the LQR controller requires a state-space representation of the relative orbital
dynamics. In the local–vertical local–horizontal (LVLH) reference frame, the motion of a deputy
satellite with respect to a chief in a circular reference orbit of mean motion ω can be described
by the Hill–Clohessy–Wiltshire (HCW) equations. Considering only the in-plane dynamics
(radial x and tangential y coordinates), these equations read:ẍ− 2 ω ż − 3ω2 x = Fx

m

z̈ + 2 ω ẋ = Fz

m

ẍ− 2 ω ż − 3ω2 x = ux

z̈ + 2 ω ẋ = uz

(5.4)

Where:

• x and z are the radial and along-track relative position

• ẋ and ż are the corresponding velocities

• ux, uz are the control accelerations in the radial and tangential directions, respectively

•
ñ

µ
a3 is the orbital angular velocity of the chief

The HCW equations can be written as a linear time-invariant system:

ẋ = A x + B u

where:

¯̄A =



0 0 1 0
0 0 0 1

3ω2 0 0 2ω

0 0 −2ω 0

 , ¯̄B =



0 0
0 0
1 0
0 1


From the diagonal value inserted by the users, the matrices Q and R can be built, which are
necessary to solve Riccati equation. Q penalizes deviations from the desired relative trajectory,
and R penalizes control effort. Having created the two matrices, the matrix P can be calculated,

58

Software implementation of the deployed tether case

as the unique positive semi-definite solution of continuous algebraic Riccati equation.
At this stage, the gain matrix K is computed: K = R−1BT P

The error/state vector is introduced:

ē =



xdes − x

zdes − z

ẋ

ż



Finally, the control acceleration vector can be calculated:

ū(t) = − ¯̄K · x̄(t)

The LQR controller operates in the "real system"; therefore, before converting the control
acceleration into angles, it must first be referred to the "table system" through equation (3.2):

ūbench = ūreal ·
λ2

t

λL

After having converted the control acceleration, the conversion into angles can be carried out:

ϕdes = ū · k̂
g

Roll angle

θdes = − ū · î
g

Pitch angle

To simulate the actuation inertia, the SmoothDampAngle function is used.

5.5.1 Results of LQR-Based position control for a fully deployed
tether
In the case of position control based on the LQR formulation, a trial-and-error procedure was
likewise required in order to determine the diagonal entries of the weighting matrices Q and R
that yield the most satisfactory regulation of the system. The selection of these parameters
plays a crucial role, as it directly reflects the compromise between state accuracy and control
effort. As a preliminary step, the tuning was intentionally biased towards relatively large values
of Q11 and Q22, thereby assigning a dominant weight to the position states. This design choice
was motivated by the specific objective of enforcing a highly accurate position tracking, even at
the cost of allowing slightly higher control effort. The subsequent refinements of the remaining
parameters were then carried out to balance overall stability and actuation smoothness, leading
to the final configuration reported below.

Q11 = 3200
Q22 = 3200
Q33 = 200
Q44 = 200

R11 = 140
R22 = 140

59

Software implementation of the deployed tether case

The test was conducted using the following data:

p̄des = (−5, 0.9, −10)
p̄start = (0, 0.9, 0)

βmax = 2◦

tactuators = 2 s

Ω = 0.1 rad

s

Where p̄des is express with respect to the real system, while Ω with respect to the table system.

The results are reported in the following image:

Figure 5.7: Deployed case - LQR position results

Along the X-axis, the system rapidly converges to the desired equilibrium with minimal
overshoot and an almost critically damped response. The absence of sustained oscillations
indicates that the optimal feedback gains computed through the LQR formulation effectively
suppress deviations, providing both fast and smooth stabilization.

The Z-axis response shows a quick and controlled approach to the target position, with nearly
no overshoot. As a result, the system reaches stability in under three seconds.

The tension gradually rises to its equilibrium value. It reaches a steady state smoothly and
without overshooting.

60

Chapter 6

Software implementation of the
deployment case

This chapter presents the implementation of the tether deployment on the granite bench,
employing a PID-based tension control scheme and halting the deployment process once the
desired deployed tether length is reached. The model aims to reproduce, at a reduced scale, the
optimal architecture for a tethered satellite system derived from the analyses discussed in the
previous chapters. The rotating spool system is modeled as a spool around which the tether is
wound in a helical configuration. The tether itself is represented with the material properties of
a cotton thread (as in the deployed case), using the XPBD method in combination with Verlet
integration. Since many functions are shared with the code developed for the deployed-tether
case, this chapter will focus in detail only on the newly introduced functions.

Figure 6.1: Spool in Unity

61

Software implementation of the deployment case

6.1 Deployment implementation - XPBDTetherWith-
Spool.cs

This code (whose flowchart is shown in figure 6.2) implements tether deployment via a rotating
spool. It maintains two anchors: the spool side and the floater side, and it applies back-reaction
forces to the floater.
The spool is represented kinematically by a cylinder with a user-defined radius and helical
pitch. A subset of the rope’s discrete points is constrained to lie on a helical path around
the spool. These “wrapped” points advance along the helix as the spool rotates. Deployment
occurs by releasing the outermost wrapped point when its radial direction enters a configurable
angular window around the lowest point, simulating gravity-assisted unwinding. The first point
is permanently attached to the spool to model a fixed take-off. Upon deployment completion,
the script suspends the spool’s motion. Furthermore, the script continuously estimates segments
tensions from the XPBD multipliers.

62

Software implementation of the deployment case

Figure 6.2: XPBDTetherWithSpool.cs flowchart

63

Software implementation of the deployment case

6.2 Desctiption of new implemented functions

6.2.1 InitializeSpoolGeometry()
The InitializeSpoolGeometry() method is responsible for constructing the helical geometry that
governs the tether’s adhesion to and unwinding from the spool. It also identifies the physical
reference directions necessary for the deployment logic.

The function begins by establishing the helical axes and the radial reference direction. Subse-
quently, the helix turn length is computed.

Lhelix =
ñ

(2πR)2 + p2 where R = spool radius and p = pitch (6.1)

In order to determines the direction of the lowest point of the spool, in which segments switch
from being constrained to being free, the global downward vector ḡ = (0,−1,0) is projected
onto the plane orthogonal to the spool axis. Finally, the method invokes InitializeWrapped-
CountFromExcess(), in order to ensure that the number of points initially considered adherent
to the spool is consistent with the available slack in the tether.

6.2.2 InitializeWrappedCountFromExcess()
This function determines the number of tether segments that are wound on the spool at the
beginning of the simulation. This is essential for ensuring that the simulated tether starts in a
physically feasible state, with only the excess length beyond the anchor distance (with a slight
offset to prevent pre-tensioning of the tether) being available for deployment.

The first step is to evaluate the distance between the two anchor points:

d = ∥p̄start − p̄end∥

Then, the function calculates the excess length subtracting the distance between the anchors
and an additional safety margin from the total rope length:

Lexcess = max(0, Lrope − d−∆sslack)

In the end, it is possible to express this excess in terms of discrete segments:

Nexcess = Lexcess

Lseg

To avoid degenerate conditions, the result is clamped between 0 and N-1, where N is the total
number of the segments. If the computed value falls below the minimal required threshold, the
function forces the value to that minimum value.

6.2.3 HelixPosition()
The function HelixPosition() computes the spatial position of tether points constrained to lie
on the surface of the spool. The input parameter salong helix represents the arclength coordinate
along the elix (distance traveled along the tether), θoffset is an additional angular offset that
accounts for the instantaneous rotation of the spool, and Lhelix is the length of a winding.

The procedures begins by computing the angular position of the tether point along the helix.
Given the helix turn length Lhelix, the angle is determined as:

θ = salong helix

Lhelix

· 2π + θoffset

64

Software implementation of the deployment case

Knowing the spool axis ā and the radial vector ū, the second orthogonal direction is:

v̂ = ā× ū

∥ā× ū∥

Thus, the radial and the axial displacements can be calculated:

r̄(θ) = R(ū · cosθ + v̄ · sinθ)

z̄(salong helix) = ā · salong helix

Lhelix

p

where p is the helical pitch.

In the end, the total position of the tether point is reconstructed as the sum of the spool’s
global position x̄0 with the radial and axial components:

x̄(salong helix, θoffset) = x̄0 + r̄(θ) + z̄(salong helix)

6.2.4 HelixRadialDir()
The function HelixRadialDir() computes the direction associated with a tether point at a given
arclength along the helix. This direction vector is critical for the release logic: it is compared
with the “bottom direction” determined by gravity in order to decide when a segment of the
tether should detach from the spool.
The method calculates the angular parameter in the same way as in HelixPosition, and reuses
the same othonormal basis vectors.

The point direction is given by:

n̄r(θ) = ū · cosθ + v̄ · sinθ

∥ū · cosθ + v̄ · sinθ∥

This vector points radially outward from the spool center.

6.2.5 ApplySpoolLockPositions()
This function enforces the kinematic adhesion of the wound portion of the tether to the spool
surface at the beginning and end of each physics substep, so that, during constraint projection
and collision handling, these points do not drift off the cylinder.

For each wound index i ∈ {0, ..., Nwrap − 1} the code computes the arclength along the helix:

si = i · Lseg

in addition, it evaluates the point position on the helix through the HelixPosition function:
x̄i = HelixPosition(si, θoffset) and subsequently updates the position and records the previous
one. Finally, the function imposes m−1 = 0, which is the inverse mass used by the XPBD solver:
this value effectively removes the point from the dynamical solve.

6.2.6 UpdateSpoolAndRelease()
UpdateSpoolAndRelease() advances the spool kinematics (if driven) and decides whether the
outermost wound point should be released during the current physics step. The procedure
has two coupled effects: it updates the global angular phase θoff of the helix, and it triggers
discrete topology changes in the set of wound points. Its main tasks are:

65

Software implementation of the deployment case

• Kinematic update of the spool: if the simulation is in the deployment phase and the
user has enabled cinematic driving, the function applies a constant angular speed ω =
spoolAngularSpeed about the spool axis over the physics time step ∆t = Time.fixedDeltaTime.
The accumulated angular offset is then advanced by:

∆θ = ω ∆t, θoff ← θoff + ∆θ

• Geometric release criterion: if there is at least one point beyond the minimum which is
still unwound, the function examines the outermost wound index, forms the corresponding
arclength and evaluates the radial direction of the helix at that location:

ioutermost = Nwrap − 1
soutermost = Lseg · ioutermost

n̄r(soutermost, θoff) = HelixRadialDir(soutermost, θoffset)

Let b̂ = bottomDir denote the precomputed unit vector pointing toward the gravitationally
lowest point on the cylindrical surface. The code releases point ioutermost when the radial
direction lies within an angular window ∆θwin (in radians) around b̂, equivalently when:

n̄r · b̂ ≥ cos
1
∆θwin

2
Physically, this rule illustrates that the tether should detach near the bottom of the spool.
Upon release, the point becomes dynamical: the flag isLocked is cleared, the previous
position is set to the current one (to avoid artificial impulses in the ensuing Verlet step),
the inverse mass is restored to the free-point value, and the wound count decrements.

In conclusion, if the wound count has reached the imposed minimum, the function invokes
FinishDeployment() to close the deployment phase.

6.2.7 FinishDeployment()
This terminal routine formalizes the end of the deployment phase. When the number of wound
points falls to the minimum value, the code marks deployment as inactive and complete.

In the end, in order to physically stop the deployment, the spool is brought to rest by zeroing
its angular velocity and putting it to sleep.

6.2.8 Awake()
It initializes renderer and rigid-body references, validates rope length, constructs rope state,
computes material and mass parameters, allocates solver buffers, draws the initial polyline, as in
VerletRope. Additionally, for the deployed case, it initializes spool geometry (including axis,
radial reference, helix pitch, turn length, and bottom direction), derives the number of initially
wrapped points from excess length and marks them as locked to the spool, sets line positions
using a helical placement for wrapped segments and a straight or extrapolated segment for the
free part.

6.2.9 Start()
It performs setup that depends on the runtime, after other scripts and physics have updated,
similar to VerletRope. Additionally, in the deployed case, it recomputes spool geometry and
the count of wrapped points if the rope length changes during runtime. It also initializes CSV

66

Software implementation of the deployment case

logging by creating or overwriting the file and writing the header to record time, end-point
position, and peak tension. Finally, it sets deployment state flags such as deploymentActive
and deploymentComplete based on the wrapped points, which enables the timed release from
the spool that follows.

6.2.10 OnValidate()
It maintains editor-time consistency by clamping parameters and rebuilding rope/material/solver
state for Scene preview (as in VerletRope). Additionally, with respect to the deployed case,
recomputes spool geometry and wrapped-point state in the Editor (no Play Mode required);
renders the helical wrap so the inspector reflects spool-driven initial conditions.

6.3 PID tension control during deployment phase
The controller reads the tension value from the XPBDTetherWithSpool simulation, filters it,
computes the error with respect to the desired tension, and converts the control accelerations
into tilt angles for the bench in order to apply the correction. The algorithm operates in the
real system; only before converting the control accelerations into angles does it translate their
value into the table’s reference frame. The script also supervises spool deployment and can halt
the spool once a target deployed length is reached.

The control diagram is fully analogous to that of a PID in the case of an already deployed
tether:

Figure 6.3: Deployment PID tension control diagram

The functions implemented are identical to those of the previously deployed tether case, with
the only difference that, as soon as Ldes ≥ Ldeployed, the deployment process is halted, while the
PID tension control continues to operate.

6.3.1 Results of PID-Based tension control during tether deployment
The deployment phase represents a particularly delicate stage in the operation of tethered
systems, since it involves both the dynamic release of the tether and the regulation of its
mechanical tension. During this phase, the free length of the tether increases with time, and
the system is subject to strong transient effects such as accelerations, oscillations, and potential
whiplash phenomena. The control objective is therefore twofold: on one hand, ensuring that the
tether is deployed in a smooth and stable manner without generating excessive tension peaks,

67

Software implementation of the deployment case

and on the other, guaranteeing that the process halts precisely once the desired deployed length
has been reached.

The try-and-error strategy for the PID tension gains led to the following values:

Kp = 1.9
Ki = 0.05

Kd = 1

In the digital twin, the test was carried out using the following values:

Tdes = 0.05 N

Ldeployed des = 1 m

Ltether = 1.16 m

p̄start = (0, 0.9, 0)
fcutoff = 3 Hz

βmax = 2◦

tactuators = 2 s

ωspool = 1 rpm

The following results were obtained:

Figure 6.4: Deployment case - PID tension results

The analysis of the results reveals that the commanded tether length of 1 m is effectively achieved
after approximately 5 seconds. This convergence can be identified by the disappearance of the
discontinuities observed in the tension profile. During the deployment phase, the tension signal
is characterized by a sequence of sharp transients, which manifest in the plots as sudden jumps.

68

Software implementation of the deployment case

These fluctuations arise from the discrete nature of the tether model: as each individual segment
is progressively released from the spool, the effective free length of the tether undergoes an
increase, leading to instantaneous drops in the transmitted tension. Such behavior is consistent
with the physical expectation of stepwise deployment in a discretized representation of a flexible
tether. Once the deployment process is completed, the tension response stabilizes, and the PID
controller successfully drives the system towards the prescribed equilibrium condition, ensuring
convergence to the desired steady-state tension.

PID tension control is crucial during the tether’s deployment phase. When releasing the
tether, maintaining a controlled and uniform tension is essential to prevent slack formation
or uncontrolled whipping. These conditions can cause mechanical stress, oscillations, or even
collisions between the connected bodies. By continuously monitoring the measured tether
tension, the controller stabilizes the deployment rate and suppresses transient oscillations.

69

Chapter 7

Conclusions and future
perspectives

Final considerations
This thesis has addressed the development and validation of a digital twin of an air-bearing
platform for tethered satellite systems, with a specific focus on the two most critical operational
phases: tether deployment and post-deployment control. The work was motivated both by the
challenges identified in the literature review, as increasing the tether’s survivability in LEO and
the likelihood of a successful deployment.

The research began with an analysis of the low Earth orbit (LEO) environment. Particular atten-
tion was devoted to external perturbations such as atomic oxygen erosion, plasma interactions,
radiative effects, and thermal fluctuations, all of which contribute to the degradation of tether
materials and the complexity of long-term stability. This preliminary investigation provided
a solid foundation for the subsequent Analytic Hierarchy Process (AHP) analysis, which was
employed to systematically compare alternative materials, geometries, and deployment systems.
Thanks to this type of analysis it was possible to evaluate both quantitative parameters and
qualitative aspects. The resulting prioritization supported the identification of the most suitable
tethered satellite system architecture for the two specified objectives.

On the modeling side, an AHP analysis was conducted to compare three different 3D simulations,
leading to the selection of Unity™. Implementing the digital twin in the Unity™ environment
turned out to be an effective and flexible solution. The platform allowed to combine 3D modeling,
physics-based simulations, and control algorithm development in one environment. Specific
challenges were faced during the numerical simulation of tether dynamics. The tether, unlike
rigid bodies, needed a formulation that maintained its geometric constraints while ensuring
stable and realistic oscillatory behavior. To tackle this, Verlet and Euler integrators, as well as
Position-Based Dynamics (PBD) and its extended formulation (XPBD), were compared. The
chosen combination of Verlet integration with the XPBD method showed better stability and
accuracy in simulating tether dynamics, as indicated by the results of the numerical experiments.

A crucial aspect of this thesis has been the study of control strategies for both tether deployment
and post-deployment operations. During the deployment phase, a PID controller was imple-
mented to regulate tether tension, ensuring smooth release and avoiding dangerous transients
such as slack tether or excessive whiplash effects. The post-deployment scenario, characterized
by a constant free length of tether, was addressed through both the implementation of a PID
controller and of a Linear Quadratic Regulator (LQR) for position control of the system. The

70

Conclusions and future perspectives

simulation results confirmed the effectiveness of the implemented strategies, with the PID
controller successfully maintaining tension close to the desired value, and the LQR e PID
approaches providing stable and accurate control of the tethered floater relative motion.

The numerical results from the digital twin matched the expected physical behavior of tether
systems. The simulated tether dynamics showed realistic responses regarding oscillations,
vibrations, and tension changes. This shows that the chosen modeling framework can replicate
the key physical phenomena seen in real systems. This outcome proves that the digital twin
is a dependable virtual counterpart to the air-bearing platform. It can enhance experimental
investigations and help validate control laws and deployment methods.

Overall, this work shows the benefits of combining ground-based experiments with digital
twin environments. Air-bearing platforms offer a unique way to mimic planar microgravity
conditions safely and affordably. The digital twin used in Unity increases this capability by
providing flexibility, scalability, and constant access for simulation and analysis. Together, these
two approaches create a strong tool for studying tethered satellite systems. They help reduce
technological risks and development costs.

In conclusion, the research presented in this thesis has not only demonstrated the feasibility
of constructing a digital twin for tethered satellite systems but has also shown its capabil-
ity to replicate realistic behaviors under both deployment and post-deployment conditions.
The results obtained confirm the validity of the digital twin approach, positioning it as a
promising methodology to accelerate the design, analysis, and verification of tether-based space
technologies.

Future perspectives
Several directions for future developments can be identified.

One avenue involves integrating detailed sensor models into the simulation environment. These
models are essential in experimental setups. Including accurate models of sensors, such as noise,
biases, and delays, would allow for testing under more realistic operating conditions. This would
significantly improve the reliability of simulation results and reduce the gap between numerical
predictions and experimental data.

Additionally, implementing control strategies offers a key opportunity. The current work showed
the effectiveness of a PID controller for tether deployment, along with LQR and PID algorithms
for post-deployment stabilization. Future studies could explore more advanced methods.

Besides deployment, a promising direction is implementing tether rewinding models. The
analysis has focused on tether deployment and post-deployment dynamics, while retrieval has
not been fully addressed. Modeling the rewinding process brings new challenges, like managing
tether slack, controlling reeling torque, and accounting for extra friction and dynamic loads
that differ from those experienced during deployment.

Finally, refining the dynamic models employed in the digital twin would further enhance the
realism of the simulation. In particular, the deployment phase could benefit from incorporating
frictional effects between the tether and the spool, as well as a more accurate representation
of the mechanical properties of the winch system. Similarly, the current representation of the
rotating deployment system and the floater is limited to simplified geometrical approximations.
Developing more detailed models would improve the predictive accuracy of the simulation and
enable a more reliable translation of numerical findings to physical experimental setups.

71

Bibliography

[1] M. Li Vigni. Tethered Sitellite Systems: Missions Survey and Active Debris Removal
Applications. Bachelor Thesis. Turin, Italy, Sept. 2024 (cit. on p. 2).

[2] U. Bindra and Z.H. Zhu. «Ground based testing of space tether deployment using an air
bearing inclinable turntable». In: Int. J. Space Science and Engineering 4.1 (2016) (cit. on
p. 4).

[3] A. Francesconi, C. Giacomuzzo, F. Branz, and E.C. Lorenzini. «Sur-vivability to hyperve-
locity impacts of electrodynamic tape tethers for deorbiting spacecraft in LEO». In: 6th
European conference on space debris. Darmstadt, Germany, 2013 (cit. on p. 4).

[4] S.B. Khan and J.R. Sanmartin. «Survival probability of round and tape tethers against
debris impact». In: Journal of Spacecraft and Rockets 50.3 (2013), pp. 603–608 (cit. on
p. 4).

[5] A. Brunello, L. Olivieri, G. Sarego, A. Valmorbida, E. Lungavia, and E.C. Lorenzini. «Space
tethers: parameters reconstructions and tests». In: IEEE 8th International Workshop on
Metrology for AeroSpace (MetroAeroSpace). 2021 (cit. on p. 4).

[6] C. Menon, M. Kruijff, and A. Vavouliotis. «Design and testing of a space mechanism
for tether deployment». In: Journal of Spacecraft and Rockets 44.4 (2007), pp. 927–939
(cit. on pp. 5, 18).

[7] L. Johnson, B. Gilchrist, E. Lorenzini, and N. Stone. «Propulsive small expandable
deployer system (ProSEDS) experiment: mission overview and status». In: 39th AIAA/AS-
ME/SAE/ASEE Joint Propulsion Conference and Exhibit. Huntsville, Alabama, 2003
(cit. on p. 5).

[8] Wikipedia. Young Engineers’ Satellite 2. Accessed: 2025-05-8. 2025. url: https://en.
wikipedia.org/wiki/Young_Engineers%27_Satellite_2 (cit. on p. 5).

[9] Y. Yang, K. Yang, J. Zhang, H. Cai, C. Zhou, and L. Li. «A Novel Design and Optimization
Method for an Electrodynamic Tether Deployment Mechanism». In: Space: Science
Technology 4 (Apr. 2024) (cit. on p. 5).

[10] H.Z. Zhu, J. Kang, and U. Bindra. «Validation of CubeSat tether deployment system
by ground and parabolic flight testing». In: Acta Astronautica 185 (2021), pp. 299–307
(cit. on p. 5).

[11] M. Shan and L. Shi. «Comparison of Tethered Post-Capture System Models for Space
Debris Removal». In: Aerospace 9.33 (2022) (cit. on p. 6).

[12] M. Becker, E. Stoll, K. Soggeberg, and I. Retat. «Approaches and models for flexible
tether conncetions in active debris removal missions». In: 7th European Conference on
Space Debris. Darmstadt, Germany, 2017 (cit. on pp. 6, 7).

[13] M. Kruijff, E.J. Van der Heide, and M. Stelzer. «Applicability of tether deployment
simulation and tests nased on YES2 flight data». In: AIAA Modeling and Simulation
Technologies Conference and Exhibit. Honolulu, Hawaii, 2008 (cit. on p. 7).

72

https://en.wikipedia.org/wiki/Young_Engineers%27_Satellite_2
https://en.wikipedia.org/wiki/Young_Engineers%27_Satellite_2

BIBLIOGRAPHY

[14] Wikipedia. MSC Adams. Accessed: 2025-05-2. 2025. url: https://en.wikipedia.org/
wiki/MSC_Adams (cit. on p. 7).

[15] MathWorks. Simscape Multibody. Accessed: 2025-05-2. 2025. url: https://en.wikipedia.
org/wiki/MSC_Adams (cit. on p. 7).

[16] M. Kruijff, E.J. Van der Heide, and M. Stelzer. «Novel dynamic model for an object-
oriented space tether simulator”». In: ISSFD-25th. Munich, Germany, 2015 (cit. on p. 7).

[17] GitHub. Welcome to Basilisk: an astrodynamics simulation framework. Accessed: 2025-05-2.
2025. url: https://avslab.github.io/basilisk/ (cit. on p. 7).

[18] NASA. Simulation Tools. Accessed: 2025-05-2. 2025. url: https://www.nasa.gov/
general/simulation-tools/ (cit. on p. 7).

[19] NVIDIA. Physics simulation fundamentals. Accessed: 2025-09-o6. url: https://docs.
isaacsim.omniverse.nvidia.com/4.2.0/simulation_fundamentals.html (cit. on
p. 7).

[20] M. Singh, J. Kapukotuwa, E.L.S. Gouveia, E. Fuenmayor, Y. Qiao, N. Murray, and
D. Devine. «Comparative Study of Digital Twin Developed in Unity and Gazebo». In:
Electronics 14.276 (2025) (cit. on pp. 7, 8, 28).

[21] C. Bua, L. Borgianni, D. Adami, and S. Giordano. «Reinforcement Learning-Driven Digital
Twin for Zero-Delay Communication in Smart Greenhouse Robotics». In: Agriculture
15.1290 (2025) (cit. on pp. 8, 31).

[22] G. Governale, J. Rimani, N. Viola, and V. Fernandez Villace. «A trade-off methodology
for micro-launchers». In: Aerospace Systems 4 (2021), pp. 209–226. doi: 10.1007/s42401-
021-00095-w. url: https://doi.org/10.1007/s42401-021-00095-w (cit. on p. 10).

[23] Songhan. Honeywell Spectra® 900 Fiber. Accessed: 2025-05-16. url: https : / / www .
lookpolymers.com/pdf/Honeywell-Spectra-900-Fiber.pdf (cit. on p. 12).

[24] Mehler. Investigations by Mehler on the PBO-Fiber Zylon® from Toyobo. Accessed: 2025-05-
16. url: https://media.cdn.lexipol.com/_misc/BodyArmor/MehlerZylon_DSM.pdf
(cit. on p. 12).

[25] DuPont. Kevlar® Aramid Fiber Technical Guide. Accessed: 2025-05-16. url: https:
//www.dupont.com/content/dam/dupont/amer/us/en/safety/public/documents/
en/Kevlar_Technical_Guide_0319.pdf (cit. on p. 12).

[26] Honeywell. Honeywell Spectra® Fiber Capability Guide. Accessed: 2025-05-16. url: https:
//prod-edam.honeywell.com/content/dam/honeywell-edam/pmt/oneam/en-us/
high-performance-fibers/documents/SpectraFiber-CapabilityGuide-Brochure.
pdf (cit. on p. 12).

[27] Toyobo. Zylon® (PBO Fiber) Technical Information 2005. Accessed: 2025-05-16. url:
https://www.toyobo-global.com/seihin/kc/pbo/zylon-p/bussei-p/technical.
pdf (cit. on p. 12).

[28] NASA. Atomic Oxygen Erosion Yield Prediction for Spacecraft Polymers in Low Earth
Orbit. Accessed: 2025-05-16. url: https://ntrs.nasa.gov/api/citations/200900344
84/downloads/20090034484.pdf (cit. on p. 12).

[29] K.A. Gittemeier, C.W. Hawk, M.M. Finckenor, and E. Watts. «Low Earth Orbit Envi-
ronmental Effects on Space Tether Materials». In: American Institute of Aeronautics and
Astronautics () (cit. on p. 14).

[30] K.A. Gittemeier, C.W. Hawk, M.M. Finckenor, and E. Watts. «Space Environmental Ef-
fects on Coated Tether Materials». In: American Institute of Aeronautics and Astronautics
() (cit. on p. 14).

73

https://en.wikipedia.org/wiki/MSC_Adams
https://en.wikipedia.org/wiki/MSC_Adams
https://en.wikipedia.org/wiki/MSC_Adams
https://en.wikipedia.org/wiki/MSC_Adams
https://avslab.github.io/basilisk/
https://www.nasa.gov/general/simulation-tools/
https://www.nasa.gov/general/simulation-tools/
https://docs.isaacsim.omniverse.nvidia.com/4.2.0/simulation_fundamentals.html
https://docs.isaacsim.omniverse.nvidia.com/4.2.0/simulation_fundamentals.html
https://doi.org/10.1007/s42401-021-00095-w
https://doi.org/10.1007/s42401-021-00095-w
https://doi.org/10.1007/s42401-021-00095-w
https://www.lookpolymers.com/pdf/Honeywell-Spectra-900-Fiber.pdf
https://www.lookpolymers.com/pdf/Honeywell-Spectra-900-Fiber.pdf
https://media.cdn.lexipol.com/_misc/BodyArmor/MehlerZylon_DSM.pdf
https://www.dupont.com/content/dam/dupont/amer/us/en/safety/public/documents/en/Kevlar_Technical_Guide_0319.pdf
https://www.dupont.com/content/dam/dupont/amer/us/en/safety/public/documents/en/Kevlar_Technical_Guide_0319.pdf
https://www.dupont.com/content/dam/dupont/amer/us/en/safety/public/documents/en/Kevlar_Technical_Guide_0319.pdf
https://prod-edam.honeywell.com/content/dam/honeywell-edam/pmt/oneam/en-us/high-performance-fibers/documents/SpectraFiber-CapabilityGuide-Brochure.pdf
https://prod-edam.honeywell.com/content/dam/honeywell-edam/pmt/oneam/en-us/high-performance-fibers/documents/SpectraFiber-CapabilityGuide-Brochure.pdf
https://prod-edam.honeywell.com/content/dam/honeywell-edam/pmt/oneam/en-us/high-performance-fibers/documents/SpectraFiber-CapabilityGuide-Brochure.pdf
https://prod-edam.honeywell.com/content/dam/honeywell-edam/pmt/oneam/en-us/high-performance-fibers/documents/SpectraFiber-CapabilityGuide-Brochure.pdf
https://www.toyobo-global.com/seihin/kc/pbo/zylon-p/bussei-p/technical.pdf
https://www.toyobo-global.com/seihin/kc/pbo/zylon-p/bussei-p/technical.pdf
https://ntrs.nasa.gov/api/citations/20090034484/downloads/20090034484.pdf
https://ntrs.nasa.gov/api/citations/20090034484/downloads/20090034484.pdf

BIBLIOGRAPHY

[31] C. Pardini, T. Hanada, P.H. Krisko, L. Anselmo, and H. Hirayama. «Are de-orbiting mis-
sions possible using electrodynamic tethers? Task review from the space debris perspective.»
In: Acta Astronautica 60 (2007), pp. 916–929 (cit. on p. 14).

[32] Y. Uwamino, M. Fujiwara, H. Tomizaki, K. Ohtani, and K. Makihara. «Damage of
Twisted Tape Tethers on Debris Collision». In: Internation Journal of Impact Engineering
137.103440 (2020) (cit. on p. 15).

[33] Wikipedia. Space tether missions. Accessed: 2025-05-23. url: https://en.wikipedia.
org/wiki/Space_tether_missions (cit. on p. 15).

[34] J.L. Van Noord, B. West, and B. Gilchrist. «Electrodynamic Tape Tether Performance with
Varying Tether Widths at Low Earth Altitudes». In: American Institute of Aeronautics
and Astronautics () (cit. on p. 15).

[35] P. Toivanen, P. Janhunen, J. Kivekäs, and M. Mäkelä. «Robust Flight Tether for In-Orbit
Demonstrations of Coulomb drag Propulsion». In: Aerospace 11.62 (2024) (cit. on p. 15).

[36] G. Sarego et al. «Deployment requirements for deorbiting electrodynamic tether technol-
ogy». In: CEAS Space Journal 13 (2021) (cit. on pp. 18, 19).

[37] Yi Yang, Keying Yang, Jingrui Zhang, Han Cai, Chunyang Zhou, and Lincheng Li.
«A Novel Design and Optimization Method for an Electrodynamic Tether Deployment
Mechanism». In: Space: Science & Technology 4 (2024). Published April 25, 2024, Article
0147. doi: 10.34133/space.0147. url: https://doi.org/10.34133/space.0147
(cit. on p. 19).

[38] National Space Society. Tethers. Accessed: 2025-05-20. url: https://www.nss.org/
settlement/nasa/spaceresvol2/tethers.html (cit. on p. 21).

[39] European Space Agency. Snap-proof space tether. Accessed: 2025-05-20. url: https:
//www.esa.int/Enabling_Support/Space_Engineering_Technology/Snap-proof_
space_tether (cit. on p. 21).

[40] D.D. Tomlin, G.C. Faile, K.B. Hayashida, C.L. Frost, C.Y. Wagner, M.L. Mitchell, J.A.
Vaughn, and M.J. Galuska. Space tethers: Design Criteria. Technical Memorandum TM-
1997-108537. MSFC, Alabama: National Aeronautics and Space Administration (NASA),
July 1997. url: https://ntrs.nasa.gov/api/citations/19970027081/downloads/
19970027081.pdf (cit. on pp. 21, 22).

[41] J.A. Carroll. Guidebook for analysis of tether applications. Ed. by National Aeronautics
and Space Administration (NASA). San Diego, CA, 1985. url: https://ntrs.nasa.
gov/api/citations/19870001511/downloads/19870001511.pdf (cit. on p. 21).

[42] M. Kruijff. «Tethers in Space: A Propellantless Propulsion In-Orbit Demonstration».
PhD thesis. Delft, The Netherlands: Technische Universiteit Delft, May 2011. url: http:
//resolver.tudelft.nl/uuid:01b6e4d4-8d9e-4f51-b0e6-993d0f5e1f0e (cit. on
p. 22).

[43] R. Walsh and C.A. Swenson. «Mechanical Properties of Zylon/Epoxy Composite at 295K
and 77 K». In: IEEE Transactions on Applied Superconductivity 16.2 (2006), pp. 1761–1764
(cit. on p. 24).

[44] Teijin Frontier (U.S.A),INC. PBO Fiber (ZYLON®). Accessed: 2025-05-30. url: https:
//www.teijin-frontier-usa.com/zylon/ (cit. on p. 24).

[45] Blender. Blender 3.4 Manual – Getting Started. Accessed: 2025-09-08. url: https://
docs.blender.org/manual/en/3.4/getting_started/about/introduction.html
(cit. on p. 27).

74

https://en.wikipedia.org/wiki/Space_tether_missions
https://en.wikipedia.org/wiki/Space_tether_missions
https://doi.org/10.34133/space.0147
https://doi.org/10.34133/space.0147
https://www.nss.org/settlement/nasa/spaceresvol2/tethers.html
https://www.nss.org/settlement/nasa/spaceresvol2/tethers.html
https://www.esa.int/Enabling_Support/Space_Engineering_Technology/Snap-proof_space_tether
https://www.esa.int/Enabling_Support/Space_Engineering_Technology/Snap-proof_space_tether
https://www.esa.int/Enabling_Support/Space_Engineering_Technology/Snap-proof_space_tether
https://ntrs.nasa.gov/api/citations/19970027081/downloads/19970027081.pdf
https://ntrs.nasa.gov/api/citations/19970027081/downloads/19970027081.pdf
https://ntrs.nasa.gov/api/citations/19870001511/downloads/19870001511.pdf
https://ntrs.nasa.gov/api/citations/19870001511/downloads/19870001511.pdf
http://resolver.tudelft.nl/uuid:01b6e4d4-8d9e-4f51-b0e6-993d0f5e1f0e
http://resolver.tudelft.nl/uuid:01b6e4d4-8d9e-4f51-b0e6-993d0f5e1f0e
https://www.teijin-frontier-usa.com/zylon/
https://www.teijin-frontier-usa.com/zylon/
https://docs.blender.org/manual/en/3.4/getting_started/about/introduction.html
https://docs.blender.org/manual/en/3.4/getting_started/about/introduction.html

BIBLIOGRAPHY

[46] Erwin Coumans. Bullet 2.80 Physics SDK Manual. Accessed: 2025-09-08. url: https:
//www.cs.kent.edu/~ruttan/GameEngines/lectures/Bullet_User_Manual (cit. on
p. 27).

[47] Wikipedia. Python (programming language). Accessed: 2025-09-o6. url: https://en.
wikipedia.org/wiki/Python_%28programming_language%29 (cit. on p. 28).

[48] J. Collins, S. Chand, A. Vanderkop, and G. Howard. «A Review of Physics Simulators for
Robotic Applications». In: IEEE Access PP (Mar. 2021), pp. 1–1. doi: 10.1109/ACCESS.
2021.3068769 (cit. on p. 28).

[49] Unity Technologies. Unity real-time development platform. Accessed: 2025-09-o6. url:
https://unity.com/ (cit. on p. 28).

[50] NVIDIA. NVIDIA IsaacSim. Accessed: 2025-09-o6. url: https://developer.nvidia.
com/isaac/sim (cit. on p. 30).

[51] NVIDIA. Installation Requirements — NVIDIA Isaac Sim 4.5.0 Documentation. Accessed:
2025-09-o6. url: https://docs.isaacsim.omniverse.nvidia.com/4.5.0/installati
on/requirements.html (cit. on p. 30).

[52] NVIDIA developer forum. What Is the Correct Way to Build a Simulated Rope? Accessed:
2025-09-o6. url: https://forums.developer.nvidia.com/t/what-is-the-correct-
way-to-build-a-simulated-rope/244881 (cit. on p. 30).

[53] G. Governale, A. Pastore, M. Clavolini, M. Li Vigni, C. Bellinazzi, C. L. Matonti, S.
Aliberti, R. Apa, and M. Romano. «Hardware-in-the-Loop Testing of Spacecraft Relative
Dynamics and Tethered Satellite System on a Tip-Tilt Flat-Table Facility». In: Aerospace
12 (2025), p. 884. doi: 10.3390/aerospace12100884. url: https://doi.org/10.3390/
aerospace12100884 (cit. on pp. 33, 34, 42).

[54] B.R. Fernandez, L. Herrera, J. Hudson, and M. Romano. «Development of a tip-tilt air-
bearing testbed for physically emulating proximity-flight orbital mechanics». In: Advances
in space research 71 (2025), pp. 4332–4339 (cit. on p. 33).

[55] A.D. Ogundele, B.R. Fernandez, J. Virgili-Llop, and M. Romano. «A tip-tilt hardware-in-
the-loop air-bearing test bed with physical emulation of the relative orbital dynamics». In:
Proceedings of the 29th AAS/AIAA Space Flight Mechanics Meeting 168 (2019), p. 3781
(cit. on p. 33).

[56] E. Hairer, C. Lubich, and G. Wanner. Geometric Numerical Integration: Structure-
Preserving Algorithms of Ordinary Differential Equations. 2nd. Berlin: Springer, 2006
(cit. on p. 35).

[57] T. Jakobsen. «Advanced Character Physics». In: Proceedings of the Game Developers
Conference (GDC). San Jose, CA, 2001 (cit. on p. 35).

[58] M. P. Allen and D. J. Tildesley. Computer Simulation of Liquids. 2nd. Oxford: Oxford
University Press, 2017 (cit. on p. 35).

[59] M. Müller, B. Heidelberger, M. Hennix, and J. Ratcliff. «Position Based Dynamics». In:
Journal of Visual Communication and Image Representation 18.2 (2007), pp. 109–118
(cit. on p. 35).

[60] D. Baraff and A. Witkin. «Large Steps in Cloth Simulation». In: Proceedings of the 25th
Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH ’98).
New York: ACM, 1998, pp. 43–54 (cit. on p. 35).

[61] M. Macklin, M. Müller, N. Chentanez, and T.-Y. Kim. «XPBD: Position-Based Simulation
of Compliant Constrained Dynamics». In: Proceedings of the 9th International Conference
on Motion in Games (MIG ’16). New York: ACM, 2016, pp. 49–54 (cit. on pp. 35, 36).

75

https://www.cs.kent.edu/~ruttan/GameEngines/lectures/Bullet_User_Manual
https://www.cs.kent.edu/~ruttan/GameEngines/lectures/Bullet_User_Manual
https://en.wikipedia.org/wiki/Python_%28programming_language%29
https://en.wikipedia.org/wiki/Python_%28programming_language%29
https://doi.org/10.1109/ACCESS.2021.3068769
https://doi.org/10.1109/ACCESS.2021.3068769
https://unity.com/
https://developer.nvidia.com/isaac/sim
https://developer.nvidia.com/isaac/sim
https://docs.isaacsim.omniverse.nvidia.com/4.5.0/installation/requirements.html
https://docs.isaacsim.omniverse.nvidia.com/4.5.0/installation/requirements.html
https://forums.developer.nvidia.com/t/what-is-the-correct-way-to-build-a-simulated-rope/244881
https://forums.developer.nvidia.com/t/what-is-the-correct-way-to-build-a-simulated-rope/244881
https://doi.org/10.3390/aerospace12100884
https://doi.org/10.3390/aerospace12100884
https://doi.org/10.3390/aerospace12100884

BIBLIOGRAPHY

[62] K. Seweryn, R. Rybus, J. Oleś, and K. Tarenko. Validation Methodology of the Rendezvous
and Grasping Manoeuvre on the Planar Air-Bearing Microgravity Simulator. https :
/ / indico . esa . int / event / 181 / contributions / 1421 / attachments / 1313 / 1538 /
Seweryn_etal_CS2017_v4.pdf. Accessed: 2025-08-31. 2017 (cit. on p. 41).

76

https://indico.esa.int/event/181/contributions/1421/attachments/1313/1538/Seweryn_etal_CS2017_v4.pdf
https://indico.esa.int/event/181/contributions/1421/attachments/1313/1538/Seweryn_etal_CS2017_v4.pdf
https://indico.esa.int/event/181/contributions/1421/attachments/1313/1538/Seweryn_etal_CS2017_v4.pdf

Appendix A

Results video

The videos of the results of the various tests performed are freely available at the following link:
https://mega.nz/folder/FQVTQQiK#PlZRW0Ee2BZV3il40txn2g

or using the QR code:

Figure A.1: Results QR code

78

https://mega.nz/folder/FQVTQQiK#PlZRW0Ee2BZV3il40txn2g

Results video

PID tension control relevant frames - deployed case

(a) PID tension - Initial bench inclination commanded by the controller

(b) PID tension - Achievement of the desired tension

79

Results video

PID position control relevant frames - deployed case

(a) PID position - Initial bench inclination commanded by the controller

(b) PID position - Bench tilt around the z-axis

80

Results video

(c) PID position - Achievement of the desired position

81

Results video

LQR position control relevant frames - deployed case

(a) LQR - Initial bench inclination commanded by the controller

(b) LQR - Fine adjustment of the floater position (small bench tilt)

82

Results video

(c) LQR - Achievement of the desired position

83

Results video

PID tension control relevant frames - deployment case

(a) Deployment - Initial configuration

(b) Deployment - Tension drop caused by the release of new tether segments

84

Results video

(c) Deployment - Achievement of the desired tether length

(d) Deployment - Achievement of the desired tension

85

Appendix B

VerletRope.cs

1 /*
2 * Project : A digital twin of an air - bearing platform for tethered

satellite systems :
3 from tether deployment to post - deployment control
4 * File : VerletRope .cs
5 * Author : Edoardo De Blasi
6 * Supervisors : Prof. Paolo Maggiore , Dr. Giuseppe Governale , Prof.

Stephanie Lizy - Destrez
7 * Date : September 2025
8 * Notes : Developed in Unity using C# scripting .
9 * License : This code is intended for academic and research

purposes only.
10 */
11 using UnityEngine ;
12 using System . Collections ;
13 using System . Collections . Generic ;
14

15 [DefaultExecutionOrder (10000)]
16 [RequireComponent (typeof (LineRenderer))]
17 public class VerletRope : MonoBehaviour
18 {
19 // -------- Anchors --------
20 [Header (" Anchors ")]
21 public Transform startPointTransform ;
22 public Transform endPointTransform ;
23

24 // === Back - reaction & COM ===
25 [Header ("Back - reaction & Floater COM")]
26 [SerializeField] private bool applyBackReaction = true;
27 [SerializeField] private bool autoFindRigidbodies = true;
28 public Rigidbody startRB ; // pole rigidbody
29 public Rigidbody endRB; // floater rigidbody
30 [SerializeField] private bool setEndRbCenterOfMass = true;
31 [SerializeField] private Vector3 endRbCenterOfMassLocalOffset =

new Vector3 (0f, -0.2f, 0f); // lowers the CoM
32 [SerializeField] private bool setStartRbCenterOfMass = false;
33 [SerializeField] private Vector3 startRbCenterOfMassLocalOffset =

Vector3 .zero;
34

86

VerletRope.cs

35 // -------- Tether --------
36 [Header (" Tether Settings ")]
37 [SerializeField , Min (2)] private int segmentCount = 35;
38

39 [Tooltip (" Tether length ")]
40 [SerializeField , Min (1e-4f)] private float ropeLengthMeters = 1f;
41

42 [Tooltip ("If false , it assigns the tether a length equal to the
distance between the anchors ")]

43 [SerializeField] private bool useInspectorRopeLength = true;
44

45 [Tooltip ("If true and the anchors are farther apart than rop ...
djust ropeLength to the distance to avoid an impossible state")]

46 [SerializeField] private bool clampRopeLengthToAnchors = true;
47

48 [SerializeField] private bool snapStraightAtStart = true;
49 [SerializeField] private float gravity = -9.81f; // m/

s^2
50 [SerializeField , Range (0.90f, 1f)] private float damping = 0.997f

;
51

52 // -------- Material --------
53 [Header (" Material (Hooke)")]
54 [SerializeField] private float youngModulus = 8.0 e9f; // Pa
55 [SerializeField] private float ropeDiameter = 0.00016 f; // m
56 [SerializeField] private float density = 1540f; // kg/m^3
57

58 [Header ("XPBD")]
59 [SerializeField] private float compliance = 1e -10f; //

inverse stiffness (m/N)
60 [SerializeField , Min (1)] private int xpbdIterations = 6;
61 [SerializeField] private float constraintTolerance = 5e-5f; // m
62

63 [Header (" Integration ")]
64 [SerializeField , Min (1)] private int substeps = 8;
65 [SerializeField] private float timeScale = 1f;
66 [SerializeField] private float fixedDeltaTime = 0.02f;
67

68 [Header (" Collisions ")]
69 [SerializeField] private LayerMask collisionMask ;
70 [SerializeField , Range (1, 8)] private int samplesPerSegment = 3;
71 [SerializeField] private float collisionRadius = 0.0015 f;
72

73 [Header (" Rendering ")]
74 [SerializeField] private Color ropeColor = Color.white;
75 [SerializeField] private float ropeWidth = 0.002f;
76

77 [Header (" Anchors ")]
78 [SerializeField] private Transform startPointTransform ;
79 [SerializeField] private Transform endPointTransform ;
80

81 [Header ("Mass / Inertia ")]
82 [SerializeField] private Rigidbody floaterRb ; // floater

rigidbody
83 [SerializeField] private Rigidbody spoolRb ; // spool rigidbody

87

VerletRope.cs

84

85 [Header (" Options ")]
86 [SerializeField] private bool autoFindRigidbodies = true;
87

88 [Header ("Rope Geometry ")]
89 [SerializeField , Min (2)] private int segmentCount = 60;
90 [SerializeField] private float ropeLengthMeters = 2.0f;
91

92 [Header (" Anchoring / Locking ")]
93 [SerializeField] private bool lockFirstPoint = true;
94 [SerializeField] private bool lockLastPoint = true;
95

96 [Header ("XPBD Tuning ")]
97 [SerializeField , Range (0.9f, 1f)] private float lambdaDecay =

0.98f; // lambda decay each frame
98 [SerializeField] private bool scaleComplianceWithSubsteps = true;

// c’ = c / S^2
99

100 // -------- Sanity check --------
101 [Header (" Sanity Check (log)")]
102 // --- Sanity thresholds (new) ---
103 [SerializeField] private float arcTolAbs = 1e-3f; // 1 mm
104 [SerializeField] private float arcTolRel = 2e-3f; // 0.2% of

L
105 [SerializeField] private float sagVsSlackFactor = 3.5f;
106 [SerializeField] private float warnConstraintFactor = 20f;
107 [SerializeField] private bool enableSanityCheck = true;
108 [SerializeField , Min (1)] private int logEveryNFrames = 30;
109

110 [Tooltip (" Maximum allowed sag (fraction of the total length).")]
111 [SerializeField , Range (0.01f, 0.75f)] private float

maxSagFraction = 0.35f;
112

113 [Tooltip ("If true , logs a warning when the average constraint
error stays high for multiple substeps in a row.")]

114 [SerializeField] private bool warnOnHighConstraintError = true;
115

116 [Header (" Output ")]
117 [HideInInspector] public float Tension { get; private set; }
118 [HideInInspector] public float [] SegmentTensions { get; private

set; }
119

120 // -------- Internals --------
121 private LineRenderer lineRenderer ;
122

123 private struct RopePoint
124 {
125 public Vector3 currentPosition ;
126 public Vector3 previousPosition ;
127 public bool locked ;
128 public bool wound; // true if the point is wound on the spool
129 public Vector3 force;
130 }
131

132 private RopePoint [] ropePoints ;

88

VerletRope.cs

133 private float segmentRestLength ;
134 private float linearMass ; // kg/m
135 private float EA; // N (Young ’s modulus * area)
136 private float effectiveCompliance ;
137 private float invMassPerPoint ;
138

139 private float [] lambdas ; // XPBD Lagrange multipliers per
segment

140 private float [] segmentLengths ; // current segment lengths
141

142 private int frameCounter ;
143

144

145 private IEnumerator Start ()
146 // It initializes rope objects and runs any startup coroutines .
147 {
148 if (autoFindRigidbodies)
149 {
150 if (! floaterRb && startPointTransform) floaterRb =

startPointTransform . GetComponentInParent <Rigidbody >();
151 if (! spoolRb && endPointTransform) spoolRb =

endPointTransform . GetComponentInParent <Rigidbody >();
152 }
153

154 lineRenderer = GetComponent < LineRenderer >();
155 if (! lineRenderer) lineRenderer = gameObject . AddComponent <

LineRenderer >();
156 lineRenderer . positionCount = segmentCount + 1;
157 lineRenderer . startWidth = ropeWidth ;
158 lineRenderer . endWidth = ropeWidth ;
159 lineRenderer . material = new Material (Shader .Find(" Sprites /

Default "));
160 lineRenderer . startColor = ropeColor ;
161 lineRenderer . endColor = ropeColor ;
162 lineRenderer . useWorldSpace = true;
163

164 if (autoFindRigidbodies && ! floaterRb && ! spoolRb)
165 {
166 // No rigidbodies found automatically - this is fine if

rope endpoints are static .
167 }
168

169 InitializeRope ();
170 ValidateAndMaybeClampRopeLength ();
171

172 if (snapStraightAtStart && startPointTransform &&
endPointTransform)

173 {
174 // It snaps initial rope configuration to the straight

line between anchors (no initial sag).
175 Vector3 p0 = startPointTransform . position ;
176 Vector3 p1 = endPointTransform . position ;
177 for (int i = 0; i <= segmentCount ; i++)
178 {
179 float t = i / (float) segmentCount ;

89

VerletRope.cs

180 Vector3 p = Vector3 .Lerp(p0 , p1 , t);
181 ropePoints [i]. currentPosition = p;
182 ropePoints [i]. previousPosition = p;
183 }
184 }
185

186 // It waits one frame to ensure all Unity components are
initialized

187 yield return null;
188

189 // Optional initial draw
190 DrawRope ();
191 }
192

193

194 private void InitializeRope ()
195 // It builds rope geometry , sets initial positions , and

configures renderers .
196 {
197 ropePoints = new RopePoint [segmentCount + 1];
198 segmentLengths = new float[segmentCount];
199 lambdas = new float[segmentCount];
200 SegmentTensions = new float[segmentCount];
201

202 // It computes per -point mass and compliance
203 RecomputeMaterialAndMass ();
204 AllocateSolverBuffers ();
205

206 Vector3 p0 = startPointTransform ? startPointTransform .
position : transform . position ;

207 Vector3 p1 = endPointTransform ? endPointTransform . position :
p0 + Vector3 .right * ropeLengthMeters ;

208

209 for (int i = 0; i <= segmentCount ; i++)
210 {
211 float t = i / (float) segmentCount ;
212 Vector3 p = Vector3 .Lerp(p0 , p1 , t);
213 ropePoints [i]. currentPosition = p;
214 ropePoints [i]. previousPosition = p;
215 ropePoints [i]. locked = (i == 0 && lockFirstPoint) || (i

== segmentCount && lockLastPoint);
216 ropePoints [i]. wound = false; // default : not wound
217 ropePoints [i]. force = Vector3 .zero;
218 }
219

220 lineRenderer . positionCount = segmentCount + 1;
221 }
222

223

224 private void RecomputeMaterialAndMass ()
225 /* It computes effective cross - section area , linear mass density ,

Young modulus * area (EA),
226 and XPBD compliance . */
227 {
228 float radius = ropeDiameter * 0.5f;

90

VerletRope.cs

229 float area = Mathf.PI * radius * radius ; // m^2
230 linearMass = area * density ; // kg/m
231 EA = youngModulus * area; // N
232

233 segmentRestLength = ropeLengthMeters / segmentCount ;
234

235 // Effective compliance for XPBD (scaled if needed with
substeps).

236 effectiveCompliance = compliance ;
237 if (scaleComplianceWithSubsteps && substeps > 0)
238 {
239 // In XPBD , compliance scales with (dt/S)^2
240 effectiveCompliance = compliance / (substeps * substeps);
241 }
242

243 // For simplicity , it assumes equal mass per free point (
anchored /wound points effectively infinite mass).

244 float totalMass = linearMass * ropeLengthMeters ;
245 float freePoints = Mathf.Max (1, segmentCount - (

lockFirstPoint ? 1 : 0) - (lockLastPoint ? 1 : 0));
246 invMassPerPoint = freePoints > 0 ? freePoints / totalMass : 0

f;
247 }
248

249

250 private void AllocateSolverBuffers ()
251 // It allocates and initializes solver buffers : Lagrange

multipliers (lambdas) and per - segment tensions .
252 {
253 for (int i = 0; i < segmentCount ; i++)
254 {
255 lambdas [i] = 0f;
256 SegmentTensions [i] = 0f;
257 segmentLengths [i] = segmentRestLength ;
258 }
259 }
260

261

262 private void Integrate (float dt)
263 // Verlet integration step for free (non -anchored , non -wound)

points .
264 {
265 float dt2 = dt * dt;
266 for (int i = 0; i <= segmentCount ; i++)
267 {
268 if (ropePoints [i]. locked || ropePoints [i]. wound) continue

;
269

270 Vector3 x = ropePoints [i]. currentPosition ;
271 Vector3 prev = ropePoints [i]. previousPosition ;
272

273 // Gravity
274 Vector3 acc = new Vector3 (0f, gravity , 0f);
275 // External forces could be added into ropePoints [i].

force

91

VerletRope.cs

276

277 Vector3 next = x + (x - prev) * damping + acc * dt2 +
ropePoints [i]. force * dt2 * invMassPerPoint ;

278 ropePoints [i]. previousPosition = x;
279 ropePoints [i]. currentPosition = next;
280

281 ropePoints [i]. force = Vector3 .zero;
282 }
283 }
284

285

286 private void SolveTimeStep_Tolerance (float dt2)
287 // It iterates constraint solving and collisions until the error

falls below tolerance or iterations cap.
288 {
289 int iter = 0;
290 float maxErr ;
291 do
292 {
293 HandleSegmentCollisions ();
294 ApplyXPBDConstraints (dt2);
295 maxErr = ComputeMaxConstraintError ();
296 iter ++;
297 }
298 while (iter < xpbdIterations && maxErr > constraintTolerance)

;
299

300 // Light decay on lambdas for stability
301 for (int i = 0; i < segmentCount ; i++)
302 lambdas [i] *= lambdaDecay ;
303 }
304

305 private void ApplyXPBDConstraints (float dt2)
306 // It applies XPBD distance constraints to enforce segment rest

lengths and accumulate lambdas .
307 {
308 float alpha = effectiveCompliance / dt2; // XPBD parameter
309

310 for (int i = 0; i < segmentCount ; i++)
311 {
312 int a = i;
313 int b = i + 1;
314

315 Vector3 pa = ropePoints [a]. currentPosition ;
316 Vector3 pb = ropePoints [b]. currentPosition ;
317

318 Vector3 delta = pb - pa;
319 float dist = delta. magnitude ;
320 if (dist <= 1e-8f) continue ;
321

322 float C = dist - segmentRestLength ;
323 Vector3 n = delta / dist;
324

325 float wA = (ropePoints [a]. locked || ropePoints [a]. wound)
? 0f : invMassPerPoint ;

92

VerletRope.cs

326 float wB = (ropePoints [b]. locked || ropePoints [b]. wound)
? 0f : invMassPerPoint ;

327

328 float wSum = wA + wB;
329 if (wSum <= 0f) continue ;
330

331 // XPBD lambda update
332 float denom = wSum + alpha;
333 float dlambda = (-C - alpha * lambdas [i]) / denom;
334 lambdas [i] += dlambda ;
335

336 Vector3 corr = dlambda * n;
337 if (wA > 0f) ropePoints [a]. currentPosition += corr * (wA

/ wSum);
338 if (wB > 0f) ropePoints [b]. currentPosition -= corr * (wB

/ wSum);
339

340 // Current segment length
341 segmentLengths [i] = dist;
342 }
343 }
344

345

346 private float ComputeMaxConstraintError ()
347 // It computes the maximum constraint violation (distance error)

across all segments .
348 {
349 float maxErr = 0f;
350 for (int i = 0; i < segmentCount ; i++)
351 {
352 float dist = Vector3 . Distance (ropePoints [i].

currentPosition , ropePoints [i + 1]. currentPosition);
353 float err = Mathf.Abs(dist - segmentRestLength);
354 if (err > maxErr) maxErr = err;
355 }
356 return maxErr ;
357 }
358

359

360 private void HandleSegmentCollisions ()
361 // It handles segment collisions by sampling subpoints and

projecting them outside colliders .
362 {
363 if (samplesPerSegment < 1) return ;
364

365 for (int i = 0; i < segmentCount ; i++)
366 {
367 Vector3 a = ropePoints [i]. currentPosition ;
368 Vector3 b = ropePoints [i + 1]. currentPosition ;
369

370 for (int s = 0; s < samplesPerSegment ; s++)
371 {
372 float t = (s + 0.5f) / samplesPerSegment ;
373 Vector3 p = Vector3 .Lerp(a, b, t);
374

93

VerletRope.cs

375 // Sphere overlap test; if penetration , it pushes out
along normal

376 Collider [] hits = Physics . OverlapSphere (p,
collisionRadius , collisionMask);

377 foreach (var h in hits)
378 {
379 if (!h) continue ;
380 Vector3 closest = h. ClosestPoint (p);
381 Vector3 dir = p - closest ;
382 float d = dir. magnitude ;
383 if (d < collisionRadius && d > 1e-6f)
384 {
385 Vector3 n = dir / d;
386 Vector3 correction = n * (collisionRadius - d

);
387

388 // It distributes correction to the two
endpoints proportionally

389 float wA = (ropePoints [i]. locked ||
ropePoints [i]. wound) ? 0f : 1f;

390 float wB = (ropePoints [i + 1]. locked ||
ropePoints [i + 1]. wound) ? 0f : 1f;

391 float wSum = wA + wB;
392

393 if (wSum > 0f)
394 {
395 ropePoints [i]. currentPosition +=

correction * (wA / wSum) * (1f - t);
396 ropePoints [i + 1]. currentPosition +=

correction * (wB / wSum) * t;
397 }
398 }
399 }
400 }
401 }
402 }
403

404

405 private void ComputeTensionFromLambdas (float dt2)
406 // It recovers segment tensions from Lagrange multipliers after

XPBD.
407 {
408 float alpha = effectiveCompliance / dt2;
409 float Tmax = 0f;
410

411 for (int i = 0; i < segmentCount ; i++)
412 {
413 float T = Mathf.Abs(lambdas [i]) / (Mathf.Sqrt(dt2) +

alpha);
414 SegmentTensions [i] = T;
415 if (T > Tmax) Tmax = T;
416 }
417 Tension = Tmax;
418 }
419

94

VerletRope.cs

420

421 private void ApplyBackReactionForces ()
422 // It applies equal and opposite reaction forces to the endpoints

(rigidbodies).
423 {
424 if (! floaterRb && ! spoolRb) return ;
425

426 // It approximates total rope force along the end segments
427 Vector3 fStart = Vector3 .zero;
428 Vector3 fEnd = Vector3 .zero;
429

430 if (segmentCount >= 1)
431 {
432 Vector3 d0 = ropePoints [1]. currentPosition - ropePoints

[0]. currentPosition ;
433 Vector3 d1 = ropePoints [segmentCount]. currentPosition -

ropePoints [segmentCount - 1]. currentPosition ;
434

435 float len0 = d0. magnitude ;
436 float len1 = d1. magnitude ;
437

438 if (len0 > 1e-6f) fStart = (d0 / len0) * SegmentTensions
[0];

439 if (len1 > 1e-6f) fEnd = -(d1 / len1) * SegmentTensions [
segmentCount - 1];

440 }
441

442 if (floaterRb) floaterRb . AddForce (fStart , ForceMode .Force);
443 if (spoolRb) spoolRb . AddForce (fEnd , ForceMode .Force);
444 }
445

446

447 private void DrawRope ()
448 // It draws the rope polyline through the current point positions

using a LineRenderer .
449 {
450 for (int i = 0; i <= segmentCount ; i++)
451 lineRenderer . SetPosition (i, ropePoints [i]. currentPosition

);
452 }
453

454

455 private void ValidateAndMaybeClampRopeLength ()
456 // It ensures ropeLengthMeters is not shorter than the anchor

distance ; optionally clamp.
457 {
458 if (!(startPointTransform && endPointTransform)) return ;
459

460 float d = Vector3 . Distance (startPointTransform .position ,
endPointTransform . position);

461

462 if (clampRopeLengthToAnchors && ropeLengthMeters < d)
463 {

95

VerletRope.cs

464 Debug. LogWarning ($"[Rope] ropeLengthMeters ({
ropeLengthMeters :F4} m) < anchor distance ({d:F4} m). Clamp at
distance .");

465 ropeLengthMeters = d;
466 }
467 else if (ropeLengthMeters < d)
468 {
469 Debug. LogWarning ($"[Rope] ropeLengthMeters ({

ropeLengthMeters :F4} m) < anchor distance ({d:F4} m). Impossible
state: increase the length or bring the anchors closer .");

470 }
471 }
472

473

474 private float MaxSagFromChord ()
475 // It estimates the maximum sag based on chord length and slack (

approximate catenary).
476 {
477 if (!(startPointTransform && endPointTransform)) return 0f;
478

479 // Chord length (straight line between anchors)
480 float d = Vector3 . Distance (startPointTransform .position ,

endPointTransform . position);
481 float L = ropeLengthMeters ;
482 if (L <= d) return 0f;
483

484 float slack = L - d;
485

486 // Simple approximation : sag = k * sqrt(slack * d) with tuned
factor

487 float sag = Mathf.Sqrt(Mathf.Max (0f, slack * d)) * 0.5f;
488 return sag;
489 }
490

491

492 private void SanityCheck ()
493 // It performs consistency checks (arc length vs. target , sag

limits , constraint error) and log summaries .
494 {
495 if (! enableSanityCheck) return ;
496

497 frameCounter ++;
498 if (frameCounter % logEveryNFrames != 0) return ;
499

500 // 1) Arc length vs. target length
501 float arc = CurrentArcLength ();
502 float d = Vector3 . Distance (startPointTransform .position ,

endPointTransform . position);
503 float slack = Mathf.Max (0f, ropeLengthMeters - d);
504 float maxSag = MaxSagFromChord ();
505

506 if (Mathf.Abs(arc - ropeLengthMeters) > Mathf.Max(arcTolAbs ,
arcTolRel * ropeLengthMeters))

507 {

96

VerletRope.cs

508 Debug. LogWarning ($"[Rope] Arc !=L: arc ={ arc:F6} m differs
by {arc - ropeLengthMeters :+0.000000; -0.000000} m, tolAbs ={
arcTolAbs :E2}, tolRel ={ arcTolRel :P2}");

509 }
510

511 // 2) Segment sum vs rope target length
512 float segSum = 0f;
513 for (int i = 0; i < segmentCount ; i++)
514 segSum += Vector3 . Distance (ropePoints [i]. currentPosition ,

ropePoints [i + 1]. currentPosition);
515

516 if (Mathf.Abs(segSum - ropeLengthMeters) > Mathf.Max(
arcTolAbs , arcTolRel * ropeLengthMeters))

517 {
518 Debug. LogWarning ($"[Rope] Inconsistent : segmentLengthSum

={ segSum :F6} m different from ropeLengthMeters ={ ropeLengthMeters :
F6} m");

519 }
520

521 // 3) Excessive sag vs slack (heuristic)
522 float sagLim = Mathf.Max (0.001f, maxSagFraction *

ropeLengthMeters);
523 if (maxSag > Mathf.Max(sagLim , sagVsSlackFactor * slack))
524 {
525 Debug. LogWarning ($"[Rope] Excessive sag: maxSag ={ maxSag :

F4} m exceeds limit { sagLim :F4} m, slack ={ slack:F4} m. MaxTension
={ Tension :F2} N");

526 }
527

528 // 4) High constraint error -> use a higher factor for the
warning .

529 if (warnOnHighConstraintError)
530 {
531 float maxErr = ComputeMaxConstraintError ();
532 if (maxErr > warnConstraintFactor * constraintTolerance)
533 Debug. LogWarning ($"[Rope] Constraints error: { maxErr :

E3} m (>{ warnConstraintFactor }xtol). Increase iterations / substeps
or rigidity (E).");

534 }
535

536 // Compact informational log
537 Debug.Log($"[Rope] d={d:F4} L={ ropeLengthMeters :F4} arc ={

arc:F4} slack ={ slack:F4} sag ={ maxSag :F4} Tmax ={ Tension :F2}N");
538 }
539

540

541 public float CurrentArcLength ()
542 // It computes the current rope arc length by summing segment

distances .
543 {
544 float L = 0f;
545 for (int i = 0; i < segmentCount ; i++)
546 L += Vector3 . Distance (ropePoints [i]. currentPosition ,

ropePoints [i + 1]. currentPosition);
547 return L;

97

VerletRope.cs

548 }
549 }

98

Appendix C

PIDTensionController.cs -
Deployed case

1 /*
2 * Project : A digital twin of an air - bearing platform for tethered

satellite systems :
3 from tether deployment to post - deployment control
4 * File : PIDTensionController .cs
5 * Author : Edoardo De Blasi
6 * Supervisors : Prof. Paolo Maggiore , Dr. Giuseppe Governale , Prof.

Stephanie Lizy - Destrez
7 * Date : September 2025
8 * Notes : Developed in Unity using C# scripting .
9 * License : This code is intended for academic and research

purposes only.
10 */
11

12 using UnityEngine ;
13 using System .IO;
14 /// <summary >
15 /// PID tension controller component .
16 /// Computes roll/pitch commands for the floater each frame.
17 /// </summary >
18

19 public class PIDTensionController : FloaterController
20 {
21 [Header ("Scene Objects ")]
22 public VerletRope tetherRope ;
23 public Rigidbody floater ;
24 public Transform bench;
25 public Transform tetherAnchor ;
26

27 [Header ("PID Control Settings ")]
28 public float desiredTension = 50f;
29 public float Kp = 1.0f;
30 public float Ki = 0.1f;
31 public float Kd = 0.2f;
32

33 [Header (" Scaling ")]
34 public bool applyScaling = true;

99

PIDTensionController.cs - Deployed case

35 public enum ScalingScenario { HCW_Emulation , Tether_Deployed }
36 public ScalingScenario scenario = ScalingScenario . Tether_Deployed

;
37 [Tooltip (" Override lambdaL and lambdat . Leave 0 to auto -fill from

scenario .")]
38 public float lambdaL = 0f; // length scale (real/table)
39 public float lambdaT = 0f; // time scale (real/table)
40

41 [Header (" Simulation Settings ")]
42 public float maxAngleDeg = 3.0f;
43

44 [Header ("PID Safeguards & Filters ")]
45 [Tooltip ("Clamp for the integral term to prevent windup (in

tension units x s)")]
46 public float integralClamp = 1000f;
47 [Tooltip (" Simple low -pass filter cutoff (Hz) applied to measured

tension to reduce noise")]
48 public float tensionLPFCutoffHz = 3f;
49 [Tooltip (" Optional clamp on commanded acceleration magnitude (m/s

^2)")]
50 public float outputAccClamp = 5f;
51

52 private float filteredTension = 0f;
53

54 private float integral = 0f;
55 private float previousError = 0f;
56

57 // CSV logging
58 private StreamWriter csvWriter ;
59 public string fileName = " FloaterTensionData .csv";
60 private string filePath ;
61

62 [Header (" Actuator Simulation ")]
63 public float actuatorSmoothTime = 0.2f; // Time (in seconds) to

reach the target : lower = faster
64 // It simulates the actuators inertia
65

66 // SmoothDamp variables
67 private float currentRoll , currentPitch ;
68 private float rollVelocity , pitchVelocity ;
69

70 void Start ()
71 {
72 if (applyScaling)
73 {
74 if (lambdaL <= 0f || lambdaT <= 0f)
75 {
76 if (scenario == ScalingScenario . HCW_Emulation)
77 {
78 // Scaling factors with only HCW equations , no

tether
79 lambdaL = 700f;
80 lambdaT = 500f;
81 }
82 else

100

PIDTensionController.cs - Deployed case

83 {
84 // In case of tethered floater
85 lambdaL = 50f;
86 lambdaT = 20f;
87 }
88 }
89 }
90

91 if (tetherRope != null) filteredTension = tetherRope . Tension ;
92

93 // It sets CSV file path in the specified folder
94 string folderPath = "/Users/ edoardodeblasi / Desktop / Documenti

vari/ Universit à/Tesi Magistrale / Digital twin/ Risultati tensione ";
95

96 // It checks if the folder exists ; if not , creates it
97 if (! Directory . Exists (folderPath))
98 {
99 Directory . CreateDirectory (folderPath);

100 Debug.Log(" Folder created : " + folderPath);
101 }
102

103 filePath = Path. Combine (folderPath , fileName);
104

105 try
106 {
107 FileStream fileStream = new FileStream (filePath , FileMode

.Create , FileAccess .Write , FileShare . ReadWrite);
108 csvWriter = new StreamWriter (fileStream);
109 csvWriter . WriteLine ("Time ,PosX ,PosY ,PosZ , Tension ");
110 Debug.Log("CSV created at: " + filePath);
111 }
112 catch (System . Exception e)
113 {
114 Debug. LogError ("CSV file open error: " + e. Message);
115 enabled = false;
116 }
117 }
118 /// <summary >
119 /// Main control step: reads current state , computes desired

acceleration ,
120 /// maps acceleration to small roll/pitch angles , and applies

smoothed commands .
121 /// </summary >
122

123 public override void ComputeControl ()
124 {
125 if (tetherRope == null || floater == null || bench == null ||

tetherAnchor == null) return ;
126

127 // It uses the actual dt of the current frame/step
128 float dt = Time. inFixedTimeStep ? Time. fixedDeltaTime : Time.

deltaTime ;
129 if (dt <= 0f) return ;
130

101

PIDTensionController.cs - Deployed case

131 // Exponential low -pass filter on the tension measurement (
reduces noise/crazy derivative)

132 float cutoff = Mathf.Max (0f, tensionLPFCutoffHz);
133 if (cutoff > 0f)
134 {
135 float alpha = Mathf.Exp (-2f * Mathf.PI * cutoff * dt); //

0..1 , closer to 0 = faster filter
136 filteredTension = filteredTension + (1f - alpha) * (

tetherRope . Tension - filteredTension);
137 }
138 else
139 {
140 filteredTension = tetherRope . Tension ;
141 }
142

143 // PID on tension error
144 float error = desiredTension - filteredTension ;
145

146 // Integrator with anti - windup (clamp)
147 integral += error * dt;
148 if (integralClamp > 0f)
149 integral = Mathf.Clamp(integral , -integralClamp ,

integralClamp);
150

151 float derivative = (error - previousError) / dt;
152 previousError = error;
153

154 // Control acceleration computation
155 float outputAcceleration = Kp * error + Ki * integral + Kd *

derivative ;
156

157 // Direction : from the anchor point to the floater
158 Vector3 directionToPush = floater . position - tetherAnchor .

position ;
159 directionToPush .y = 0f;
160 if (directionToPush . sqrMagnitude > 1e-9f)
161 directionToPush . Normalize ();
162 else
163 directionToPush = Vector3 .zero;
164

165 Vector3 controlAcceleration = directionToPush *
outputAcceleration ;

166

167 // Scaling for emulation (a_table = (lambdat ^2/ lambdaL) *
a_real)

168 if (applyScaling)
169 {
170 float scaleAcc = (lambdaT * lambdaT) / Mathf.Max (1e-6f,

lambdaL);
171 controlAcceleration *= scaleAcc ;
172 }
173

174 // Optional clamp on commanded acceleration to avoid extreme
saturation

175 if (outputAccClamp > 0f)

102

PIDTensionController.cs - Deployed case

176 {
177 float mag = controlAcceleration . magnitude ;
178 if (mag > outputAccClamp)
179 {
180 controlAcceleration = controlAcceleration * (

outputAccClamp / mag);
181 }
182 }
183

184 float g = 9.81f;
185 float maxAngleRad = Mathf. Deg2Rad * Mathf.Max (0.1f,

maxAngleDeg);
186

187 // Conversion of the control acceleration into angles (in
radians)

188 // small angle: a = g * theta
189 float targetRollRad = Mathf.Clamp(controlAcceleration .z / g

, -maxAngleRad , maxAngleRad);
190 float targetPitchRad = Mathf.Clamp(- controlAcceleration .x / g

, -maxAngleRad , maxAngleRad);
191

192 // Basic anti - windup
193 {
194 float desiredRollRad = controlAcceleration .z / g;
195 float desiredPitchRad = -controlAcceleration .x / g;
196 float satErr = (desiredRollRad - targetRollRad) + (

desiredPitchRad - targetPitchRad);
197 // small coefficient to avoid destabilizing (tuning):
198 integral -= 0.1f * satErr * dt;
199 }
200

201 // Actuator smoothing working in degrees to use
SmoothDampAngle

202 float targetRollDeg = targetRollRad * Mathf. Rad2Deg ;
203 float targetPitchDeg = targetPitchRad * Mathf. Rad2Deg ;
204

205 float currentRollDeg = currentRoll * Mathf. Rad2Deg ;
206 float currentPitchDeg = currentPitch * Mathf. Rad2Deg ;
207

208 currentRoll = Mathf. SmoothDampAngle (currentRollDeg ,
targetRollDeg , ref rollVelocity , actuatorSmoothTime) * Mathf.
Deg2Rad ;

209 currentPitch = Mathf. SmoothDampAngle (currentPitchDeg ,
targetPitchDeg , ref pitchVelocity , actuatorSmoothTime) * Mathf.
Deg2Rad ;

210

211 // It applies the smoothed rotation
212 bench. rotation = Quaternion .Euler(currentRoll * Mathf.Rad2Deg

, 0f, currentPitch * Mathf. Rad2Deg);
213

214 // Log CSV
215 if (csvWriter != null)
216 {
217 Vector3 pos = floater . position ;

103

PIDTensionController.cs - Deployed case

218 csvWriter . WriteLine ($"{Time.time:F3},{ pos.x:F4},{ pos.y:F4
},{ pos.z:F4},{ tetherRope . Tension :F4}");

219 }
220 }
221

222 void OnApplicationQuit ()
223 {
224 if (csvWriter != null)
225 {
226 csvWriter .Flush ();
227 csvWriter .Close ();
228 Debug.Log("CSV saved at: " + filePath);
229 }
230 }
231 }

104

Appendix D

PIDPositionController.cs -
Deployed case

1 /*
2 * Project : A digital twin of an air - bearing platform for tethered

satellite systems :
3 from tether deployment to post - deployment control
4 * File : PIDPositionController .cs
5 * Author : Edoardo De Blasi
6 * Supervisors : Prof. Paolo Maggiore , Dr. Giuseppe Governale , Prof.

Stephanie Lizy - Destrez
7 * Date : September 2025
8 * Notes : Developed in Unity using C# scripting .
9 * License : This code is intended for academic and research

purposes only.
10 */
11 using UnityEngine ;
12 using System .IO;
13 /// <summary >
14 /// PID position controller component .
15 /// Computes roll/pitch commands for the floater each frame.
16 /// </summary >
17

18 public class PIDPositionController : FloaterController
19 {
20 [Header ("Scene Objects ")]
21 public VerletRope tetherRope ;
22 public Rigidbody floater ;
23 public Transform bench;
24 public Transform tetherAnchor ;
25

26 [Header (" Tether Properties ")]
27 public float tetherRestLength = 5.0f;
28 public float tetherStiffness = 100f;
29

30 [Header ("PID Control Settings ")]
31 public Vector3 desiredPos = new Vector3 (-5f, 0f, 1.7f);
32 public float Kp = 100f;
33 public float Ki = 0f;
34 public float Kd = 20f;

105

PIDPositionController.cs - Deployed case

35

36 [Header (" Scaling (per paper)")]
37 public bool applyScaling = true;
38 public enum ScalingScenario { HCW_Emulation , Tether_Deployed }
39 public ScalingScenario scenario = ScalingScenario . HCW_Emulation ;
40 [Tooltip ("If true , desiredPos is given in REAL (orbital) meters

and will be divided by lambdaL to map onto the table. If false ,
desiredPos is already in table meters .")]

41 public bool desiredPosIsReal = false;
42

43 [Tooltip (" Override lambdaL and lambdat . Leave 0 to auto -fill from
scenario .")]

44 public float lambdaL = 0f; // length scale (real/table)
45 public float lambdaT = 0f; // time scale (real/table)
46

47 [Header (" Simulation Settings ")]
48 public float maxAngleDeg = 2.0f;
49

50 private Vector3 integral ;
51 private Vector3 previousError ;
52 private float deltaT ;
53

54 // CSV logging
55 private StreamWriter csvWriter ;
56 public string fileName = " FloaterTensionData .csv";
57 private string filePath ;
58

59 [Header (" Actuator Simulation ")]
60 public float actuatorSmoothTime = 0.2f; // Time (in seconds) to

reach the target : lower = faster
61 // It simulates the actuators inertia
62

63 // SmoothDamp variables
64 private float currentRoll , currentPitch ;
65 private float rollVelocity , pitchVelocity ;
66

67 void Start ()
68 {
69 deltaT = Time. fixedDeltaTime ;
70 if (deltaT == 0)
71 {
72 Debug. LogError ("Time. fixedDeltaTime is zero. Ensure you

are in a FixedUpdate context .");
73 enabled = false;
74 return ;
75 }
76

77 if (applyScaling)
78 {
79 if (lambdaL <= 0f || lambdaT <= 0f)
80 {
81 if (scenario == ScalingScenario . HCW_Emulation)
82 {
83 // Scaling factors with only HCW equations , no

tether

106

PIDPositionController.cs - Deployed case

84 lambdaL = 700f;
85 lambdaT = 500f;
86 }
87 else
88 {
89 // In case of tethered floater
90 lambdaL = 50f;
91 lambdaT = 20f;
92 }
93 }
94 if (desiredPosIsReal)
95 {
96 // Conversion from real coordinates to table

coordinates
97 desiredPos /= lambdaL ;
98 }
99 }

100

101 // It sets CSV file path in the specified folder
102 string folderPath = "/Users/ edoardodeblasi / Desktop / Documenti

vari/ Universit à/Tesi Magistrale / Digital twin/ Risultati tensione ";
103

104 // It checks if the folder exists ; if not , creates it
105 if (! Directory . Exists (folderPath))
106 {
107 Directory . CreateDirectory (folderPath);
108 Debug.Log(" Folder created : " + folderPath);
109 }
110

111 filePath = Path. Combine (folderPath , fileName);
112

113 try
114 {
115 FileStream fileStream = new FileStream (filePath , FileMode

.Create , FileAccess .Write , FileShare . ReadWrite);
116 csvWriter = new StreamWriter (fileStream);
117 csvWriter . WriteLine ("Time ,PosX ,PosY ,PosZ , Tension ");
118 Debug.Log("CSV created at: " + filePath);
119 }
120 catch (System . Exception e)
121 {
122 Debug. LogError ("CSV file open error: " + e. Message);
123 enabled = false;
124 }
125 }
126 /// <summary >
127 /// Main control step: reads current state , computes desired

acceleration ,
128 /// maps acceleration to small roll/pitch angles , and applies

smoothed commands .
129 /// </summary >
130

131 public override void ComputeControl ()
132 {
133 Vector3 pos = floater . position ;

107

PIDPositionController.cs - Deployed case

134 Vector3 velocity = floater . linearVelocity ;
135

136 // Errors computation
137 Vector3 error = desiredPos - pos;
138 integral += error * deltaT ;
139 Vector3 derivative = (error - previousError) / deltaT ;
140

141 previousError = error;
142 // Control acceleration computation
143 Vector3 controlAcceleration = Kp * error + Ki * integral + Kd

* derivative ;
144 if (applyScaling)
145 {
146 float scaleAcc = (lambdaT * lambdaT) / Mathf.Max (1e-6f,

lambdaL);
147 controlAcceleration *= scaleAcc ;
148 }
149

150 // Conversion of the control acceleration into angles (in
radians)

151 // small angle: a = g * theta
152 float g = 9.81f;
153 float maxAngleRad = Mathf. Deg2Rad * maxAngleDeg ;
154 float targetPitchRad = Mathf.Clamp(- controlAcceleration .x / g

, -maxAngleRad , maxAngleRad);
155 float targetRollRad = Mathf.Clamp(controlAcceleration .z / g,

-maxAngleRad , maxAngleRad);
156

157 // It applies SmoothDamp to the angles (works in degrees)
158 float currentRollDeg = currentRoll * Mathf. Rad2Deg ;
159 float currentPitchDeg = currentPitch * Mathf. Rad2Deg ;
160

161 currentRoll = Mathf. SmoothDampAngle (currentRollDeg ,
targetRollRad * Mathf.Rad2Deg , ref rollVelocity ,
actuatorSmoothTime) * Mathf. Deg2Rad ;

162 currentPitch = Mathf. SmoothDampAngle (currentPitchDeg ,
targetPitchRad * Mathf.Rad2Deg , ref pitchVelocity ,
actuatorSmoothTime) * Mathf. Deg2Rad ;

163

164 // It applies the smoothed rotation
165 bench. rotation = Quaternion .Euler(currentRoll * Mathf.Rad2Deg

, 0f, currentPitch * Mathf. Rad2Deg);
166

167 // It writes data to CSV
168 if (csvWriter != null)
169 {
170 csvWriter . WriteLine ($"{Time.time:F3},{ floater . position .x:

F4},{ floater . position .y:F4},{ floater . position .z:F4},{ tetherRope .
Tension :F4}");

171 }
172 }
173

174 void OnApplicationQuit ()
175 {
176 if (csvWriter != null)

108

PIDPositionController.cs - Deployed case

177 {
178 csvWriter .Close ();
179 Debug.Log("CSV saved at: " + filePath);
180 }
181 }
182

183 }

109

Appendix E

LQRPositionController.cs -
Deployed case

1 /*
2 * Project : A digital twin of an air - bearing platform for tethered

satellite systems :
3 from tether deployment to post - deployment control
4 * File : LQRPositionController .cs
5 * Author : Edoardo De Blasi
6 * Supervisors : Prof. Paolo Maggiore , Dr. Giuseppe Governale , Prof.

Stephanie Lizy - Destrez
7 * Date : September 2025
8 * Notes : Developed in Unity using C# scripting .
9 * License : This code is intended for academic and research

purposes only.
10 */
11 using UnityEngine ;
12 using System .IO;
13 using MathNet . Numerics . LinearAlgebra ;
14 using MathNet . Numerics . LinearAlgebra . Double ;
15 /// <summary >
16 /// LQR position controller component .
17 /// Computes roll/pitch commands for the floater each frame.
18 /// </summary >
19

20 public class LQRPositionController : FloaterController
21 {
22 [Header ("Scene Objects ")]
23 public VerletRope tetherRope ;
24 public Rigidbody floater ;
25 public Transform bench;
26 public Transform tetherAnchor ;
27

28 [Header (" Tether Properties ")]
29 public float tetherRestLength = 5.0f;
30 public float tetherStiffness = 100f;
31

32 [Header ("LQR Control Settings ")]
33 public Vector3 desiredPos = new Vector3 (-5f, 0f, 1.7f);
34 public float omega = 0.1f;

110

LQRPositionController.cs - Deployed case

35 private Vector3 previousPosition ;
36 private Vector3 velocity ;
37 private float deltaT ;
38 private Matrix <double > K;
39

40 [Header (" Scaling (per paper)")]
41 public bool applyScaling = true;
42 public enum ScalingScenario { HCW_Emulation , Tether_Deployed }
43 public ScalingScenario scenario = ScalingScenario . HCW_Emulation ;
44 [Tooltip ("If true , desiredPos is given in REAL (orbital) meters

and will be divided by lambdaL to map onto the table. If false ,
desiredPos is already in table meters .")]

45 public bool desiredPosIsReal = false;
46

47 [Tooltip (" Override lambdaL and lambdat . Leave 0 to auto -fill from
scenario .")]

48 public float lambdaL = 0f; // length scale (real/table)
49 public float lambdaT = 0f; // time scale (real/table)
50

51 [Tooltip ("If you provide the real mean motion Omega [rad/s],
enabling this will compute omega = Omega * lambdat as in the paper
. If disabled , the public field ’omega ’ is used as -is.")]

52 public bool useOmegaFromReal = false;
53 public float realOmega = 0f; // Omega [rad/s]
54

55 [Header (" Simulation Settings ")]
56 public float maxAngleDeg = 2.0f;
57

58 [Header ("Q (4x4) - Diagonal Values ")]
59 public float q11 = 1000f;
60 public float q22 = 1000f;
61 public float q33 = 100f;
62 public float q44 = 100f;
63

64 [Header ("R (2x2) - Diagonal Values ")]
65 public float r11 = 1000f;
66 public float r22 = 1000f;
67

68

69 // CSV logging
70 private StreamWriter csvWriter ;
71 public string fileName = " FloaterTensionData .csv";
72 private string filePath ;
73

74 [Header (" Actuator Simulation ")]
75 public float actuatorSmoothTime = 0.2f; // Time (in seconds) to

reach the target : lower = faster
76 // It simulates the actuators inertia
77

78 // SmoothDamp variables
79 private float currentRoll , currentPitch ;
80 private float rollVelocity , pitchVelocity ;
81

82 void Start ()
83 {

111

LQRPositionController.cs - Deployed case

84 deltaT = Time. fixedDeltaTime ;
85 if (deltaT == 0)
86 {
87 Debug. LogError ("Time. fixedDeltaTime is zero. Ensure you

are in a FixedUpdate context .");
88 enabled = false;
89 return ;
90 }
91

92 // --- Scaling factors definition ---
93 if (applyScaling)
94 {
95 if (lambdaL <= 0f || lambdaT <= 0f)
96 {
97 if (scenario == ScalingScenario . HCW_Emulation)
98 {
99 // Scaling factors with only HCW equations , no

tether
100 lambdaL = 700f; // real/table
101 lambdaT = 500f; // real/table
102 }
103 else
104 {
105 // In case of tethered floater
106 lambdaL = 50f;
107 lambdaT = 20f;
108 }
109 }
110 if (useOmegaFromReal && realOmega > 0f)
111 {
112 // Omega scales with time: omega = RealOmega *

lambdat
113 omega = realOmega * lambdaT ;
114 }
115 if (desiredPosIsReal)
116 {
117 // Conversion from real coordinates to table

coordinates
118 desiredPos /= lambdaL ;
119 }
120 }
121

122 var A = DenseMatrix . OfArray (new double [,] {
123 { 0, 0, 1, 0 },
124 { 0, 0, 0, 1 },
125 { 3 * omega * omega , 0, 0, 2 * omega },
126 { 0, 0, -2 * omega , 0 }
127 });
128

129 var B = DenseMatrix . OfArray (new double [,] {
130 { 0, 0 },
131 { 0, 0 },
132 { 1, 0 },
133 { 0, 1 }
134 });

112

LQRPositionController.cs - Deployed case

135

136 // Creation of the Q and R matrices from the inserted
diagonal values

137 var Q = DenseMatrix . OfDiagonalArray (new double [] { q11 , q22 ,
q33 , q44 });

138 var R = DenseMatrix . OfDiagonalArray (new double [] { r11 , r22
});

139

140 var P = SolveCARE (A, B, Q, R);
141 K = R. Inverse () * B. TransposeThisAndMultiply (P); //

Computation of the gain matrix K
142

143 Debug.Log(" Computed K matrix (LQR):\n" + K. ToString ());
144

145 previousPosition = floater . position ;
146

147 // It sets CSV file path in the specified folder
148 string folderPath = "/Users/ edoardodeblasi / Desktop / Documenti

vari/ Universit à/Tesi Magistrale / Digital twin/ Risultati tensione ";
149

150 // It checks if the folder exists ; if not , creates it
151 if (! Directory . Exists (folderPath))
152 {
153 Directory . CreateDirectory (folderPath);
154 Debug.Log(" Folder created : " + folderPath);
155 }
156

157 filePath = Path. Combine (folderPath , fileName);
158

159 try
160 {
161 // FileStream fileStream = new FileStream (filePath ,

FileMode .Create , FileAccess .Write , FileShare . ReadWrite);
162 csvWriter = new StreamWriter (filePath);
163 csvWriter . WriteLine ("Time ,PosX ,PosY ,PosZ , Tension ");
164 Debug.Log("CSV created at: " + filePath);
165 }
166 catch (System . Exception e)
167 {
168 Debug. LogError ("CSV file open error: " + e. Message);
169 enabled = false;
170 }
171 }
172 /// <summary >
173 /// Main control step: reads current state , computes desired

acceleration ,
174 /// maps acceleration to small roll/pitch angles , and applies

smoothed commands .
175 /// </summary >
176

177

178 public override void ComputeControl ()
179 {
180 Vector3 pos = floater . position ;
181 Vector3 velocity = floater . linearVelocity ;

113

LQRPositionController.cs - Deployed case

182

183 // State/error vector definition
184 Vector <double > stateError = DenseVector . OfArray (new double []

{
185 desiredPos .x - pos.x,
186 desiredPos .z - pos.z,
187 velocity .x,
188 velocity .z
189 });
190

191 // Control acceleration computation
192 Vector <double > controlAcceleration = -K * stateError ;
193 float accX = (float) controlAcceleration [0];
194 float accZ = (float) controlAcceleration [1];
195 if (applyScaling)
196 {
197 // a_table = (lambdat ^2/ lambdaL) * a_real
198 float scaleAcc = (lambdaT * lambdaT) / Mathf.Max (1e-6f,

lambdaL);
199 accX *= scaleAcc ;
200 accZ *= scaleAcc ;
201 }
202

203 // Conversion of the control acceleration into angles (in
radians)

204 // small angle: a = g * theta
205 float g = 9.81f;
206 float maxAngleRad = Mathf. Deg2Rad * maxAngleDeg ;
207 float targetRollRad = Mathf.Clamp(accZ / g, -maxAngleRad ,

maxAngleRad);
208 float targetPitchRad = Mathf.Clamp(accX / g, -maxAngleRad ,

maxAngleRad);
209

210

211 // It applies SmoothDamp to the angles (works in degrees)
212 float currentRollDeg = currentRoll * Mathf. Rad2Deg ;
213 float currentPitchDeg = currentPitch * Mathf. Rad2Deg ;
214

215 currentRoll = Mathf. SmoothDampAngle (currentRollDeg ,
targetRollRad * Mathf.Rad2Deg , ref rollVelocity ,
actuatorSmoothTime) * Mathf. Deg2Rad ;

216 currentPitch = Mathf. SmoothDampAngle (currentPitchDeg ,
targetPitchRad * Mathf.Rad2Deg , ref pitchVelocity ,
actuatorSmoothTime) * Mathf. Deg2Rad ;

217

218 // It applies the smoothed rotation
219 bench. rotation = Quaternion .Euler(currentRoll * Mathf.Rad2Deg

, 0f, -currentPitch * Mathf. Rad2Deg);
220

221 // It writes data to CSV
222 if (csvWriter != null)
223 {
224 csvWriter . WriteLine ($"{Time.time:F3},{ floater . position .x:

F4},{ floater . position .y:F4},{ floater . position .z:F4},{ tetherRope .
Tension :F4}");

114

LQRPositionController.cs - Deployed case

225 }
226 }
227

228 Matrix <double > SolveCARE (Matrix <double > A, Matrix <double > B,
Matrix <double > Q, Matrix <double > R)

229 {
230 var Rinv = R. Inverse ();
231 var P = Q.Clone ();
232

233 for (int i = 0; i < 100; i++)
234 {
235 var Pdot = A. TransposeThisAndMultiply (P) + P * A - P * B

* Rinv * B. TransposeThisAndMultiply (P) + Q;
236 P -= Pdot * 0.001;
237 }
238

239 return P;
240 }
241

242 void OnApplicationQuit ()
243 {
244 if (csvWriter != null)
245 {
246 csvWriter .Close ();
247 Debug.Log("CSV saved at: " + filePath);
248 }
249 }
250 }

115

Appendix F

XPBDTetherWithSpool.cs -
Deployment

1 /*
2 * Project : A digital twin of an air - bearing platform for tethered

satellite systems :
3 from tether deployment to post - deployment control
4 * File : XPBDTetherWithSpool .cs - Deployment case
5 * Author : Edoardo De Blasi
6 * Supervisors : Prof. Paolo Maggiore , Dr. Giuseppe Governale , Prof.

Stephanie Lizy - Destrez
7 * Date : September 2025
8 * Notes : Developed in Unity using C# scripting .
9 * License : This code is intended for academic and research

purposes only.
10 */
11 using UnityEngine ;
12 using System . Collections ;
13 using System . Collections . Generic ;
14 using System .IO;
15 using System . Globalization ;
16 using System .Text;
17

18 [DefaultExecutionOrder (10000)]
19 [RequireComponent (typeof (LineRenderer))]
20

21 /// <summary >
22 /// XPBD -based tether /rope with optional kinematic spool deployment ,

simple collisions , and CSV logging .
23 /// </summary >
24 public class XPBDTetherWithSpool : MonoBehaviour
25 {
26 // -------- Anchors --------
27 [Header (" Anchors ")]
28 public Transform startPointTransform ; // spool side
29 public Transform endPointTransform ; // floater side
30

31 // === Back - reaction & COM ===
32 [Header ("Back - reaction & Floater COM")]
33 [SerializeField] private bool applyBackReaction = true;

116

XPBDTetherWithSpool.cs - Deployment

34 [SerializeField] private bool autoFindRigidbodies = true;
35 public Rigidbody startRB ; // spool
36 public Rigidbody endRB; // floater
37 [SerializeField] private bool setEndRbCenterOfMass = true;
38 [SerializeField] private Vector3 endRbCenterOfMassLocalOffset =

new Vector3 (0f, -0.2f, 0f); // lowers the CoM
39 [SerializeField] private bool setStartRbCenterOfMass = false;
40 [SerializeField] private Vector3 startRbCenterOfMassLocalOffset =

Vector3 .zero;
41

42 // -------- Spool Deployment --------
43 [Header ("Spool Deployment ")]
44 [Tooltip (" Cylinder (spool) Transform . Required for kinematic

deployment .")]
45 public Transform spoolTransform ;
46 [Tooltip ("Spool RigidBody (optional). Used to stop the spool at

the end of deployment .")]
47 public Rigidbody spoolRB ;
48

49 [Tooltip (" Effective radius on which the tether adheres while it
is wound .")]

50 public float spoolRadius = 0.15f;
51

52 [Tooltip (" Helical pitch per turn (m) - adjustable in the
Inspector .")]

53 public float helixPitch = 0.02f;
54

55 [Tooltip ("If true , the code rotates the spool kinematically
during deployment .")]

56 public bool driveSpoolRotation = true;
57

58 [Tooltip (" Angular velocity (rad/s) when driven by code.")]
59 public float spoolAngularSpeed = 2.5f;
60

61 [Tooltip (" Angular window around the ’lowest point ’ to release a
segment (degrees).")]

62 [Range (2f, 45f)] public float releaseWindowDeg = 10f;
63

64 [Tooltip ("Extra margin to avoid pre - tension in the estimate of
the excess length .")]

65 public float extraSlackMargin = 0.02f;
66

67 [Tooltip (" Always pin point 0 on the spool; release all others .")]
68 public bool keepFirstPointAttached = true;
69

70 // -------- Tether --------
71 [Header (" Tether Settings ")]
72 [SerializeField , Min (2)] private int segmentCount = 35;
73

74 [Tooltip (" Tether length ")]
75 [SerializeField , Min (1e-4f)] private float ropeLengthMeters = 1f;
76

77 [Tooltip ("If false , it assigns the tether a length equal to the
distance between the anchors ")]

78 [SerializeField] private bool useInspectorRopeLength = true;

117

XPBDTetherWithSpool.cs - Deployment

79

80 [Tooltip ("If true and the anchors are farther apart than
ropeLength , adjust ropeLength to the distance to avoid an
impossible state")]

81 [SerializeField] private bool clampRopeLengthToAnchors = true;
82

83 [SerializeField] private bool snapStraightAtStart = true;
84 [SerializeField] private float gravity = -9.81f;
85 [SerializeField , Range (0.90f, 1f)] private float damping = 0.997f

;
86

87 // -------- Material --------
88 [Header (" Material (Hooke)")]
89 [SerializeField] private float youngModulus = 8.0 e9f; // Pa
90 [SerializeField] private float ropeDiameter = 0.00016 f; // m
91 [SerializeField] private float density = 1540f; // kg/m^3
92

93 // -------- Collisions --------
94 [Header (" Collisions ")]
95 [SerializeField] private bool handleCollisions = true;
96 [SerializeField] private LayerMask collisionLayers = ~0;
97

98 // -------- Solver --------
99 [Header (" Solver ")]

100 [SerializeField , Range (1, 8)] private int solverSubsteps = 4;
// substeps

101 [SerializeField , Min (1)] private int iterations = 180;
// max iterations per substep

102 [SerializeField] private float constraintTolerance = 1e-5f;
// max error (m) per substep

103 [SerializeField , Range (1f, 1.99f)] private float sor = 1.85f;
// over - relaxation (Gauss - Seidel)

104 [SerializeField] private bool warmstart = true;
// Does not reset lambda between substeps

105 [SerializeField , Range (0.9f, 1f)] private float lambdaDecay =
0.98f; // lambda decay each frame

106 [SerializeField] private bool scaleComplianceWithSubsteps = true;
// c’ = c / S^2

107

108 // -------- CSV Logging (NEW) --------
109 [Header ("CSV Logging ")]
110 [Tooltip (" Abilita il salvataggio su CSV di Time ,PosX ,PosY ,PosZ ,

Tension .")]
111 public bool enableCsvLogging = true;
112

113 [Tooltip (" Cartella di destinazione del CSV.")]
114 public string csvDirectory = " ’/Users/ edoardodeblasi / Desktop /

Documenti vari/ Universit à/Tesi Magistrale / Digital twin/ Risultati ";
115

116 [Tooltip ("Base file name (without extension). The file will be <
Name >. csv")]

117 public string csvBaseFileName = " FloaterTensionData ";
118

119 [Tooltip ("If true , it appends to the existing file; otherwise , it
overwrites it by writing the header .")]

118

XPBDTetherWithSpool.cs - Deployment

120

121 private string csvFullPath ;
122 private StreamWriter csvWriter ;
123

124 // -------- Sanity check --------
125 [Header (" Sanity Check (log)")]
126 [SerializeField] private float arcTolAbs = 1e-3f; // 1 mm
127 [SerializeField] private float arcTolRel = 2e-3f; // 0.2% of

L
128 [SerializeField] private float sagVsSlackFactor = 3.5f;
129 [SerializeField] private float warnConstraintFactor = 20f;
130 [SerializeField] private bool enableSanityCheck = true;
131 [SerializeField , Min (1)] private int logEveryNFrames = 30;
132

133 [Tooltip (" Afflosciamento massimo ammesso (frazione della
lunghezza totale).")]

134 [SerializeField , Range (0.01f, 0.75f)] private float
maxSagFraction = 0.35f;

135

136 [Tooltip ("If true , logs a warning when the average constraint
error is high for multiple consecutive substeps .")]

137 [SerializeField] private bool warnOnHighConstraintError = true;
138

139 [Header (" Output ")]
140 [HideInInspector] public float Tension { get; private set; }
141 [HideInInspector] public float [] SegmentTensions { get; private

set; }
142

143

144 private LineRenderer lineRenderer ;
145

146 private struct RopePoint
147 {
148 public Vector3 currentPosition ;
149 public Vector3 previousPosition ;
150 public bool isLocked ; // true if the point is constrained (

anchor or spool)
151 }
152

153 private readonly List <RopePoint > ropePoints = new List <RopePoint
>();

154 private float segmentLength ;
155 private float [] lambdas ; // XPBD multipliers
156 private float [] compliance ; // c per segment
157 private float [] invMass ; // 1/m per point
158 private float crossSectionArea ; // A = pi r^2
159 private float linearDensity ; // mu = A * rho
160 private float lastDt2Sub = 0f; // ComputeTension
161 private int _frameCount = 0;
162

163 // ---- Deployment state ----
164 private int wrappedPointCount = 0; // how many points are

still wound on the spool
165 private bool deploymentActive = false;
166 private bool deploymentComplete = false;

119

XPBDTetherWithSpool.cs - Deployment

167 private float angleOffset = 0f; // angular offset
168 private float helixTurnLength = 0f; // helix turn length
169 private Vector3 spoolAxis ; // helix axis
170 private Vector3 spoolRadial0 ; // radial reference

direction
171 private Vector3 bottomDir ; // radial direction

toward the lowest point
172 private int minWrappedPoints => keepFirstPointAttached ? 1 : 0;

// the last segment is kept attached
173

174 // ------------- Unity -------------
175 void Awake ()
176 {
177 lineRenderer = GetComponent < LineRenderer >();
178 if (lineRenderer) lineRenderer . useWorldSpace = true;
179

180 if (autoFindRigidbodies)
181 {
182 if (! startRB && startPointTransform) startRB =

startPointTransform . GetComponentInParent <Rigidbody >();
183 if (! endRB && endPointTransform) endRB =

endPointTransform . GetComponentInParent <Rigidbody >();
184 }
185

186 ValidateAndMaybeClampRopeLength ();
187 InitializeSpoolGeometry ();
188 InitializeRope ();
189 RecomputeMaterialAndMass ();
190 AllocateSolverBuffers ();
191 DrawRope ();
192 }
193

194 private IEnumerator Start ()
195 {
196 // It waits for other scripts to have positioned the anchors
197 yield return null;
198 yield return new WaitForFixedUpdate ();
199

200 if (! useInspectorRopeLength)
201 {
202 if (startPointTransform && endPointTransform)
203 {
204 float d = Vector3 . Distance (startPointTransform .

position , endPointTransform . position);
205 ropeLengthMeters = Mathf.Max (1e-5f, d);
206 segmentLength = ropeLengthMeters / Mathf.Max (1,

segmentCount);
207 RecomputeMaterialAndMass ();
208 InitializeSpoolGeometry (); // if segmentLength

changes
209 InitializeWrappedCountFromExcess (); // It recomputes

with the new L
210 DrawRope ();
211 }
212 }

120

XPBDTetherWithSpool.cs - Deployment

213 else
214 {
215 ValidateAndMaybeClampRopeLength ();
216 }
217

218 if (setEndRbCenterOfMass && endRB)
219 {
220 endRB. centerOfMass = endRbCenterOfMassLocalOffset ;
221 endRB. WakeUp ();
222 }
223 if (setStartRbCenterOfMass && startRB)
224 {
225 startRB . centerOfMass = startRbCenterOfMassLocalOffset ;
226 startRB . WakeUp ();
227 }
228

229 // CSV init
230 InitializeCsv ();
231

232 // It activates the deployment if there are wrapped points
beyond the minimum

233 deploymentActive = (wrappedPointCount > minWrappedPoints);
234 deploymentComplete = ! deploymentActive ;
235

236 yield return new WaitForFixedUpdate ();
237 }
238

239 void OnValidate ()
240 {
241 segmentCount = Mathf.Max (2, segmentCount);
242

243 if (! lineRenderer) lineRenderer = GetComponent < LineRenderer
>();

244

245 if (! Application . isPlaying)
246 {
247 ValidateAndMaybeClampRopeLength ();
248 InitializeSpoolGeometry ();
249 InitializeRope ();
250 RecomputeMaterialAndMass ();
251 AllocateSolverBuffers ();
252 DrawRope ();
253 }
254 }
255

256 void FixedUpdate ()
257 {
258 if (ropePoints .Count == 0) return ;
259

260 // ------ It updates spool rotation + release ------
261 UpdateSpoolAndRelease ();
262

263 // ------ SUBSTEPS ------
264 int S = Mathf.Max (1, solverSubsteps);
265 float dtSub = Time. fixedDeltaTime / S;

121

XPBDTetherWithSpool.cs - Deployment

266 float dt2Sub = dtSub * dtSub;
267 lastDt2Sub = dt2Sub ;
268

269 if (warmstart && lambdas != null)
270 {
271 float k = Mathf. Clamp01 (lambdaDecay);
272 for (int i = 0; i < lambdas . Length ; i++) lambdas [i] *= k;
273 }
274 else
275 {
276 System .Array.Clear(lambdas , 0, lambdas . Length);
277 }
278

279 for (int s = 0; s < S; s++)
280 {
281 // It imposes the positions of the wrapped points before

integration
282 ApplySpoolLockPositions ();
283

284 Integrate (dtSub);
285 SolveTimeStep_Tolerance (dt2Sub);
286

287 // It re -sets the positions of the wrapped points after
solving to ensure adherence

288 ApplySpoolLockPositions ();
289 }
290

291 ComputeTensionFromLambdas (lastDt2Sub);
292

293 if (applyBackReaction) ApplyBackReactionForces ();
294

295 DrawRope ();
296

297 // ---- CSV sample write ----
298 CsvWriteSample ();
299

300 if (enableSanityCheck) SanityCheck ();
301 }
302

303 private void OnDestroy ()
304 {
305 CloseCsv ();
306 }
307

308 private void OnApplicationQuit ()
309 {
310 CloseCsv ();
311 }
312

313 // ------------- CSV helpers -------------
314 private void InitializeCsv ()
315 {
316 if (! enableCsvLogging) return ;
317 if (string . IsNullOrEmpty (csvDirectory))
318 {

122

XPBDTetherWithSpool.cs - Deployment

319 csvDirectory = Application . persistentDataPath ;
320 Debug. LogWarning ($"[Rope CSV] Directory non impostata .

Uso: { csvDirectory }");
321 }
322

323 try
324 {
325 Directory . CreateDirectory (csvDirectory);
326 csvFullPath = Path. Combine (csvDirectory , $"{

csvBaseFileName }. csv");
327

328

329 if (File. Exists (csvFullPath))
330 File. Delete (csvFullPath);
331

332 csvWriter = new StreamWriter (csvFullPath , append : false ,
Encoding .UTF8);

333 csvWriter . AutoFlush = true;
334

335

336 csvWriter . WriteLine ("Time ,PosX ,PosY ,PosZ , Tension ");
337

338 Debug.Log($"[Rope CSV] (overwrite) Logging to: {
csvFullPath }");

339 }
340 catch (System . Exception ex)
341 {
342 Debug. LogError ($"[Rope CSV] CSV initialization error: {ex

. Message }");
343 enableCsvLogging = false;
344 }
345 }
346

347

348 private void CsvWriteSample ()
349 {
350 if (! enableCsvLogging || csvWriter == null) return ;
351

352 Vector3 pos;
353 if (endPointTransform) pos = endPointTransform . position ;
354 else if (ropePoints .Count > 0) pos = ropePoints [segmentCount

]. currentPosition ;
355 else pos = Vector3 .zero;
356

357 float t = Time.time;
358

359 string line = string . Format (CultureInfo . InvariantCulture ,
360 "{0: F6 } ,{1: F6 } ,{2: F6 } ,{3: F6 } ,{4: F6}",
361 t, pos.x, pos.y, pos.z, Tension);
362

363 try
364 {
365 csvWriter . WriteLine (line);
366 }
367 catch (System . Exception ex)

123

XPBDTetherWithSpool.cs - Deployment

368 {
369 Debug. LogError ($"[Rope CSV] CSV write error: {ex. Message }

");
370 }
371 }
372

373 private void CloseCsv ()
374 {
375 try
376 {
377 if (csvWriter != null)
378 {
379 csvWriter .Flush ();
380 csvWriter . Dispose ();
381 csvWriter = null;
382 // Debug.Log($"[Rope CSV] File cloifd : { csvFullPath

}");
383 }
384 }
385 catch (System . Exception ex)
386 {
387 Debug. LogError ($"[Rope CSV] CSV close error: {ex. Message }

");
388 }
389 }
390

391 // ------------- Spool helpers -------------
392 private void InitializeSpoolGeometry ()
393 /* It is responsible for constructing the helical geometry that

governs the tether ’s adhesion to and
394 unwinding from the spool. It also identifies the physical

reference directions necessary for the
395 deployment logic */
396 {
397 // Helix axis
398 if (spoolTransform)
399 {
400 spoolAxis = spoolTransform .up. normalized ;
401

402 // radial direction
403 spoolRadial0 = spoolTransform .right. normalized ;
404

405 // helix turn length
406 float circ = 2f * Mathf.PI * Mathf.Max (1e-5f, spoolRadius

);
407 helixTurnLength = Mathf.Sqrt(circ * circ + helixPitch *

helixPitch);
408

409 // radial direction toward the lowest point
410 bottomDir = Vector3 . ProjectOnPlane (Vector3 .down ,

spoolAxis);
411 if (bottomDir . sqrMagnitude < 1e-8f)
412 {
413 bottomDir = -spoolRadial0 ;
414 }

124

XPBDTetherWithSpool.cs - Deployment

415 else bottomDir . Normalize ();
416 }
417 else
418 {
419 spoolAxis = Vector3 .up;
420 spoolRadial0 = Vector3 .right;
421 bottomDir = Vector3 .down;
422 helixTurnLength = Mathf.Max (1e-5f, 2f * Mathf.PI * Mathf.

Max (1e-5f, spoolRadius)); // pitch ignored if there is no spool
423 }
424

425 InitializeWrappedCountFromExcess ();
426 }
427

428 private void InitializeWrappedCountFromExcess ()
429 // It determines the number of tether segments that are wound on

the spool at the beginning of the simulation
430 {
431 // It computes the excess : L_rope - distanza_anchor -

extraSlackMargin
432 float d = 0f;
433 if (startPointTransform && endPointTransform)
434 d = Vector3 . Distance (startPointTransform .position ,

endPointTransform . position);
435

436 float excess = Mathf.Max (0f, ropeLengthMeters - d - Mathf.Max
(0f, extraSlackMargin));

437 int segExcess = Mathf.Clamp(Mathf. FloorToInt (excess / Mathf.
Max (1e-5f, segmentLength)), 0, segmentCount - 1);

438

439 // wrappedPointCount = how many points are wound on the spool
440 wrappedPointCount = segExcess ;
441 if (wrappedPointCount < minWrappedPoints) wrappedPointCount =

minWrappedPoints ;
442 }
443

444 private Vector3 HelixPosition (float sAlongHelix , float
extraAngleOffsetRad)

445 // It computes the spatial position of tether points constrained
to lie on the surface of the spool

446 {
447 // Helical parametrization
448 float theta = (sAlongHelix / Mathf.Max (1e-5f, helixTurnLength

)) * (2f * Mathf.PI) + extraAngleOffsetRad ;
449

450 Vector3 axis = spoolAxis ;
451 Vector3 u = spoolRadial0 ;
452 Vector3 v = Vector3 .Cross(axis , u). normalized ;
453

454 float R = Mathf.Max (1e-5f, spoolRadius);
455 float z = (sAlongHelix / Mathf.Max (1e-5f, helixTurnLength)) *

helixPitch ;
456

457 Vector3 radial = (Mathf.Cos(theta) * u + Mathf.Sin(theta) * v
) * R;

125

XPBDTetherWithSpool.cs - Deployment

458 Vector3 axial = axis * z;
459

460 return (spoolTransform ? spoolTransform . position : (
startPointTransform ? startPointTransform . position : transform .
position)) + radial + axial;

461 }
462

463 private Vector3 HelixRadialDir (float sAlongHelix , float
extraAngleOffsetRad)

464 /* It computes the direction associated with a tether point at a
given arclength along the helix.

465 This direction vector is critical for the release logic */
466 {
467 float theta = (sAlongHelix / Mathf.Max (1e-5f, helixTurnLength

)) * (2f * Mathf.PI) + extraAngleOffsetRad ;
468 Vector3 axis = spoolAxis ;
469 Vector3 u = spoolRadial0 ;
470 Vector3 v = Vector3 .Cross(axis , u). normalized ;
471 Vector3 radial = (Mathf.Cos(theta) * u + Mathf.Sin(theta) * v

). normalized ;
472 return radial ;
473 }
474

475 private void ApplySpoolLockPositions ()
476 /* It enforces the kinematic adhesion of the wound portion of the

tether to the spool surface at the
477 beginning and end of each physics substep */
478 {
479 // Points [0 .. wrappedPointCount -1] are adhering and locked

on the spool
480 for (int i = 0; i < wrappedPointCount ; i++)
481 {
482 float s = i * segmentLength ;
483 Vector3 pos = HelixPosition (s, angleOffset);
484 RopePoint p = ropePoints [i];
485 p. currentPosition = pos;
486 p. previousPosition = pos;
487 p. isLocked = true;
488 ropePoints [i] = p;
489 invMass [i] = 0f; // locked
490 }
491

492 // It ensures that point 0 always remains attached
493 if (keepFirstPointAttached && wrappedPointCount <= 0 &&

ropePoints .Count > 0)
494 {
495 RopePoint p0 = ropePoints [0];
496 p0. currentPosition = HelixPosition (0f, angleOffset);
497 p0. previousPosition = p0. currentPosition ;
498 p0. isLocked = true;
499 ropePoints [0] = p0;
500 invMass [0] = 0f;
501 }
502 }
503

126

XPBDTetherWithSpool.cs - Deployment

504 private void UpdateSpoolAndRelease ()
505 /* It advances the spool kinematics and decides whether the

outermost wound point should be
506 released during the current physics step */
507 {
508 if (! spoolTransform) return ;
509

510 // 1) Kinematic rotation
511 if (driveSpoolRotation && deploymentActive && !

deploymentComplete)
512 {
513 float dAngle = spoolAngularSpeed * Time. fixedDeltaTime ;
514 spoolTransform . Rotate (spoolAxis , Mathf. Rad2Deg * dAngle ,

Space.World);
515 angleOffset += dAngle ; // It updates offset for the

points on the spiral
516 }
517

518 // 2) If there are wrapped points beyond the minimum , checks
the outermost point to be released

519 if (deploymentActive && wrappedPointCount > minWrappedPoints)
520 {
521 int iOuter = wrappedPointCount - 1;
522

523 float s = iOuter * segmentLength ;
524 Vector3 radial = HelixRadialDir (s, angleOffset);
525 float dot = Vector3 .Dot(radial , bottomDir);
526

527 float cosWindow = Mathf.Cos(releaseWindowDeg * Mathf.
Deg2Rad);

528 if (dot >= cosWindow)
529 {
530 // Release
531 RopePoint p = ropePoints [iOuter];
532 p. isLocked = false;
533 p. previousPosition = p. currentPosition ;
534 ropePoints [iOuter] = p;
535

536 float massPerPoint = linearDensity * segmentLength ;
537 invMass [iOuter] = (massPerPoint > 0f ? 1f /

massPerPoint : 0f);
538

539 wrappedPointCount --;
540

541 if (wrappedPointCount <= minWrappedPoints)
542 {
543 FinishDeployment ();
544 }
545 }
546 }
547 }
548

549 private void FinishDeployment ()
550 /* When the number of wound points falls to the minimum value ,

the code marks deployment as inactive

127

XPBDTetherWithSpool.cs - Deployment

551 and complete */
552 {
553 deploymentActive = false;
554 deploymentComplete = true;
555

556 // It stops the spool
557 if (spoolRB)
558 {
559 spoolRB . angularVelocity = Vector3 .zero;
560 spoolRB .Sleep ();
561 }
562 if (driveSpoolRotation)
563 {
564 spoolAngularSpeed = 0f;
565 }
566 }
567

568 // ------------- Core -------------
569 private void InitializeRope ()
570 {
571 ropePoints .Clear ();
572

573 segmentLength = Mathf.Max (1e-5f, ropeLengthMeters / Mathf.Max
(1, segmentCount));

574

575 Vector3 a = startPointTransform ? startPointTransform .
position : transform . position ;

576 Vector3 b = endPointTransform ? endPointTransform . position :
transform . position + Vector3 .right * ropeLengthMeters ;

577

578 InitializeSpoolGeometry ();
579

580 for (int i = 0; i <= segmentCount ; i++)
581 {
582 RopePoint rp = new RopePoint ();
583

584 if (i < wrappedPointCount)
585 {
586 float s = i * segmentLength ;
587 Vector3 pos = HelixPosition (s, angleOffset);
588 rp. currentPosition = pos;
589 rp. previousPosition = pos;
590 rp. isLocked = true;
591 }
592 else
593 {
594 Vector3 exitPos ;
595 if (wrappedPointCount > 0)
596 exitPos = HelixPosition (wrappedPointCount *

segmentLength , angleOffset);
597 else
598 exitPos = a;
599

600 float t = (i - wrappedPointCount) / Mathf.Max (1f, (
segmentCount - wrappedPointCount));

128

XPBDTetherWithSpool.cs - Deployment

601 Vector3 target = snapStraightAtStart ? Vector3 .Lerp(
exitPos , b, t) : Vector3 . LerpUnclamped (exitPos , b, t);

602 rp. currentPosition = target ;
603 rp. previousPosition = target ;
604 rp. isLocked = (i == segmentCount); // the last one is

anchor B
605 }
606

607 if (i == 0)
608 rp. isLocked = true;
609

610 ropePoints .Add(rp);
611 }
612 }
613

614 private void RecomputeMaterialAndMass ()
615 /* It computes effective cross - section area , linear mass density ,

Young modulus * area (EA),
616 and XPBD compliance . */
617 {
618 float r = Mathf.Max (1e-6f, ropeDiameter * 0.5f);
619 crossSectionArea = Mathf.PI * r * r;

// A = pi r^2
620 linearDensity = crossSectionArea * Mathf.Max (1f, density); //

mu = A*rho
621

622 float EA = Mathf.Max(youngModulus * crossSectionArea , 1e-9f);
623 float cBase = segmentLength / EA;
624

625 int S = Mathf.Max (1, solverSubsteps);
626 float cEff = scaleComplianceWithSubsteps ? (cBase / (S * S))

: cBase;
627

628 compliance = new float[segmentCount];
629 for (int i = 0; i < segmentCount ; i++)
630 compliance [i] = cEff;
631

632 invMass = new float[segmentCount + 1];
633 float massPerPoint = linearDensity * segmentLength ;
634 for (int i = 0; i <= segmentCount ; i++)
635 {
636 bool endLocked = (i == 0 || i == segmentCount);
637 bool onSpool = (i < wrappedPointCount) || (

keepFirstPointAttached && i == 0);
638 invMass [i] = (endLocked || onSpool) ? 0f : (massPerPoint

> 0f ? 1f / massPerPoint : 0f);
639 }
640 }
641

642 private void AllocateSolverBuffers ()
643 // It allocates and initializes solver buffers : Lagrange

multipliers (lambdas) and per - segment tensions .
644 {
645 lambdas = new float[segmentCount];
646 SegmentTensions = new float[segmentCount];

129

XPBDTetherWithSpool.cs - Deployment

647 }
648

649 private void Integrate (float dt)
650 // Verlet integration step for free points (non -anchored , non -

wound).
651 {
652 Vector3 gravityStep = new Vector3 (0f, gravity * dt * dt , 0f);
653

654 // pin start/end anchors
655 if (startPointTransform)
656 {
657 var p = ropePoints [0];
658 p. currentPosition = HelixPosition (0f, angleOffset);
659 p. previousPosition = p. currentPosition ;
660 ropePoints [0] = p;
661 }
662 if (endPointTransform)
663 {
664 var p = ropePoints [segmentCount];
665 Vector3 pos = endPointTransform . position ;
666 p. currentPosition = pos;
667 p. previousPosition = pos;
668 ropePoints [segmentCount] = p;
669 }
670

671 // Verlet for free points
672 for (int i = 1; i < segmentCount ; i++)
673 {
674 if (ropePoints [i]. isLocked) continue ;
675

676 RopePoint p = ropePoints [i];
677 Vector3 vel = (p. currentPosition - p. previousPosition) *

damping ;
678 Vector3 old = p. currentPosition ;
679 p. currentPosition += vel + gravityStep ;
680 p. previousPosition = old;
681 ropePoints [i] = p;
682 }
683 }
684

685 private void SolveTimeStep_Tolerance (float dt2)
686 // It iterates constraint solving and collisions until the error

falls below tolerance or iterations cap.
687 {
688 float maxErr = float. PositiveInfinity ;
689 int it = 0;
690

691 while (it < iterations && maxErr > constraintTolerance)
692 {
693 if (handleCollisions) HandleSegmentCollisions ();
694 ApplyXPBDConstraints (dt2);
695

696 maxErr = ComputeMaxConstraintError ();
697 it ++;
698 }

130

XPBDTetherWithSpool.cs - Deployment

699

700 // It re -pins the ends to prevent any drift
701 if (startPointTransform)
702 {
703 var p = ropePoints [0];
704 p. currentPosition = HelixPosition (0f, angleOffset);
705 p. previousPosition = p. currentPosition ;
706 ropePoints [0] = p;
707 }
708 if (endPointTransform)
709 {
710 var p = ropePoints [segmentCount];
711 p. currentPosition = endPointTransform . position ;
712 p. previousPosition = p. currentPosition ;
713 ropePoints [segmentCount] = p;
714 }
715 }
716

717 private void ApplyXPBDConstraints (float dt2)
718 // It applies XPBD distance constraints to enforce segment rest

lengths and accumulate lambdas .
719 {
720 float omega = Mathf.Clamp(sor , 1f, 1.99f);
721

722 for (int i = 0; i < segmentCount ; i++)
723 {
724 Vector3 xi = ropePoints [i]. currentPosition ;
725 Vector3 xj = ropePoints [i + 1]. currentPosition ;
726

727 Vector3 d = xi - xj;
728 float dist = d. magnitude ;
729 if (dist < 1e-9f) continue ;
730

731 float C = dist - segmentLength ; // bilateral
732 Vector3 n = d / dist;
733

734 float w1 = invMass [i];
735 float w2 = invMass [i + 1];
736 float wsum = w1 + w2;
737 if (wsum <= 0f) continue ;
738

739 float alpha = compliance [i] / dt2; // alpha = c_eff /
dt_sub ^2

740 float dlambda = (-C - alpha * lambdas [i]) / (wsum + alpha
);

741 dlambda *= omega; // SOR
742

743 lambdas [i] += dlambda ;
744

745 if (w1 > 0f) { var p = ropePoints [i]; p. currentPosition
+= w1 * dlambda * n; ropePoints [i] = p; }

746 if (w2 > 0f) { var p = ropePoints [i + 1]; p.
currentPosition += -w2 * dlambda * n; ropePoints [i + 1] = p; }

747 }
748 }

131

XPBDTetherWithSpool.cs - Deployment

749

750 private float ComputeMaxConstraintError ()
751 // It computes the maximum constraint violation (distance error)

across all segments .
752 {
753 float maxErr = 0f;
754 for (int i = 0; i < segmentCount ; i++)
755 {
756 float dist = Vector3 . Distance (ropePoints [i].

currentPosition , ropePoints [i + 1]. currentPosition);
757 float err = Mathf.Abs(dist - segmentLength);
758 if (err > maxErr) maxErr = err;
759 }
760 return maxErr ;
761 }
762

763

764 private void HandleSegmentCollisions ()
765 // It handles segment collisions by sampling subpoints and

projecting them outside colliders .
766 {
767 float ropeRadius = Mathf.Max (1e-5f, ropeDiameter * 0.5f);
768

769 for (int i = 0; i < segmentCount ; i++)
770 {
771 if (ropePoints [i]. isLocked && ropePoints [i + 1]. isLocked)

continue ;
772

773 Vector3 A = ropePoints [i]. currentPosition ;
774 Vector3 B = ropePoints [i + 1]. currentPosition ;
775 Vector3 mid = (A + B) * 0.5f;
776

777 float r = ropeRadius * 0.6f;
778

779 // Sphere overlap test; if penetration , it pushes out
along normal

780 var cols = Physics . OverlapSphere (mid , r, collisionLayers ,
QueryTriggerInteraction . Ignore);

781 foreach (var col in cols)
782 {
783 if (spoolTransform && col. transform . IsChildOf (

spoolTransform)) continue ;
784

785 Vector3 closest = col. ClosestPoint (mid);
786 Vector3 dir = mid - closest ;
787 float sq = dir. sqrMagnitude ;
788 if (sq < 1e -12f) dir = mid - col. bounds . center ;
789 if (dir. sqrMagnitude < 1e -12f) continue ;
790

791 float dist = dir. magnitude ;
792 float pen = r - dist;
793 if (pen <= 0f) continue ;
794

795 Vector3 corr = (dir / dist) * pen;
796

132

XPBDTetherWithSpool.cs - Deployment

797 if (! ropePoints [i]. isLocked)
798 {
799 var p = ropePoints [i];
800 p. currentPosition += corr * 0.5f;
801 ropePoints [i] = p;
802 }
803 if (! ropePoints [i + 1]. isLocked)
804 {
805 var p = ropePoints [i + 1];
806 p. currentPosition += corr * 0.5f;
807 ropePoints [i + 1] = p;
808 }
809 }
810 }
811 }
812

813 private void ComputeTensionFromLambdas (float dt2)
814 // It recovers segment tensions from Lagrange multipliers after

XPBD.
815 {
816 float tMax = 0f;
817

818 for (int i = 0; i < segmentCount ; i++)
819 {
820 float Ti = (- lambdas [i]) / dt2; // Tension
821 if (Ti < 0f) Ti = 0f;
822 SegmentTensions [i] = Ti;
823 if (Ti > tMax) tMax = Ti;
824 }
825

826 Tension = tMax;
827 }
828

829

830 private void ApplyBackReactionForces ()
831 // It applies equal and opposite reaction forces to the endpoints

(rigidbodies).
832 {
833 float dt2 = lastDt2Sub > 0f ? lastDt2Sub : (Time.

fixedDeltaTime * Time. fixedDeltaTime);
834

835 // START side (i=0)
836 if (startRB && ! startRB . isKinematic && segmentCount >= 1)
837 {
838 Vector3 p0 = ropePoints [0]. currentPosition ;
839 Vector3 p1 = ropePoints [1]. currentPosition ;
840 Vector3 n0 = (p1 - p0). sqrMagnitude > 1e -12f ? (p1 - p0).

normalized : Vector3 .zero;
841

842 float T0 = Mathf.Max (0f, -lambdas [0] / dt2); // [N]
843 if (T0 > 0f && n0 != Vector3 .zero)
844 startRB . AddForceAtPosition (+T0 * n0 , p0 , ForceMode .

Force); // Toward tether
845 }
846

133

XPBDTetherWithSpool.cs - Deployment

847 // END side (i= ifgmentCount -1)
848 if (endRB && !endRB. isKinematic && segmentCount >= 1)
849 {
850 Vector3 pn_1 = ropePoints [segmentCount - 1].

currentPosition ;
851 Vector3 pn = ropePoints [segmentCount]. currentPosition ;
852 Vector3 nN = (pn - pn_1). sqrMagnitude > 1e -12f ? (pn -

pn_1). normalized : Vector3 .zero;
853

854 float TN = Mathf.Max (0f, -lambdas [segmentCount - 1] / dt2
); // [N]

855 if (TN > 0f && nN != Vector3 .zero)
856 endRB. AddForceAtPosition (-TN * nN , pn , ForceMode .

Force); // Toward tether
857 }
858 }
859

860 private void DrawRope ()
861 // It draws the rope polyline through the current point positions

using a LineRenderer .
862 {
863 if (! lineRenderer) return ;
864

865 int n = ropePoints .Count;
866 if (lineRenderer . positionCount != n)
867 lineRenderer . positionCount = n;
868

869 for (int i = 0; i < n; i++)
870 lineRenderer . SetPosition (i, ropePoints [i]. currentPosition

);
871 }
872

873 // --------- Sanity ----------
874 private void ValidateAndMaybeClampRopeLength ()
875 // It ensures ropeLengthMeters is not shorter than the anchor

distance ; optionally clamp.
876 {
877 if (!(startPointTransform && endPointTransform)) return ;
878

879 float d = Vector3 . Distance (startPointTransform .position ,
endPointTransform . position);

880

881 if (clampRopeLengthToAnchors && ropeLengthMeters < d)
882 {
883 Debug. LogWarning ($"[Rope] ropeLengthMeters ({

ropeLengthMeters :F4} m) < anchor distance ({d:F4} m). Clamp at
distance .");

884 ropeLengthMeters = d;
885 }
886 else if (ropeLengthMeters < d)
887 {
888 Debug. LogWarning ($"[Rope] ropeLengthMeters ({

ropeLengthMeters :F4} m) < anchor distance ({d:F4} m). Unfeasible
state: increase the length or bring the anchors closer .");

889 }

134

XPBDTetherWithSpool.cs - Deployment

890 }
891

892 private float MaxSagFromChord ()
893 // It estimates the maximum sag based on chord length and slack (

approximate catenary).
894 {
895 if (!(startPointTransform && endPointTransform)) return 0f;
896

897 Vector3 a = startPointTransform . position ;
898 Vector3 b = endPointTransform . position ;
899

900 float maxSag = 0f;
901 for (int i = 0; i <= segmentCount ; i++)
902 {
903 float t = i / (float) segmentCount ;
904 Vector3 onLine = Vector3 .Lerp(a, b, t);
905 float sag = (onLine .y - ropePoints [i]. currentPosition .y);
906 if (sag > maxSag) maxSag = sag;
907 }
908 return maxSag ;
909 }
910

911 private void SanityCheck ()
912 // It performs consistency checks (arc length vs. target , sag

limits , constraint error) and log summaries .
913 {
914 _frameCount ++;
915 if (_frameCount % Mathf.Max (1, logEveryNFrames) != 0) return ;
916 if (!(startPointTransform && endPointTransform)) return ;
917

918 float d = Vector3 . Distance (startPointTransform .position ,
endPointTransform . position);

919 float L0 = segmentLength * segmentCount ;
920 float arc = CurrentArcLength ();
921 float deltaL = arc - ropeLengthMeters ;
922 float slack = Mathf.Max (0f, ropeLengthMeters - d);
923 float maxSag = MaxSagFromChord ();
924 float sagLim = maxSagFraction * ropeLengthMeters ;
925

926 float arcErrAbs = Mathf.Abs(deltaL);
927 float arcErrRel = Mathf.Abs(deltaL) / Mathf.Max(

ropeLengthMeters , 1e-6f);
928 if (arcErrAbs > arcTolAbs && arcErrRel > arcTolRel)
929 Debug. LogWarning ($"[Rope] Arc !=L: arc ={ arc:F6} m, L={

ropeLengthMeters :F6} m, Delta ={ deltaL :+0.000000; -0.000000} m,
tolAbs ={ arcTolAbs :E2}, tolRel ={ arcTolRel :P2}");

930

931 if (Mathf.Abs(L0 - ropeLengthMeters) > 1e-6f)
932 Debug. LogWarning ($"[Rope] Inconsistent : segmentLength *

count ={L0:F6} m different from ropeLengthMeters ={ ropeLengthMeters :
F6} m");

933

934 bool sagTooLarge = (maxSag > sagLim) || (slack > 0f && maxSag
> sagVsSlackFactor * slack);

935 if (sagTooLarge)

135

XPBDTetherWithSpool.cs - Deployment

936 Debug. LogWarning ($"[Rope] Excessive sag: maxSag ={ maxSag :
F4} m, sagLim ={ sagLim :F4} m, slack ={ slack:F4} m. MaxTension ={
Tension :F2} N");

937

938 if (warnOnHighConstraintError)
939 {
940 float maxErr = ComputeMaxConstraintError ();
941 if (maxErr > warnConstraintFactor * constraintTolerance)
942 Debug. LogWarning ($"[Rope] Constraints error: max|dist

-L0 |={ maxErr :E3} m (> { warnConstraintFactor }xtol). Increase
iterations / substeps or rigidity (E).");

943 }
944

945 // Compact informational log
946 Debug.Log($"[Rope] d={d:F4} L={ ropeLengthMeters :F4} arc ={

arc:F4} slack ={ slack:F4} sag ={ maxSag :F4} Tmax ={ Tension :F2}N
wrapped ={ wrappedPointCount }");

947 }
948

949 public float CurrentArcLength ()
950 // It computes the current rope arc length by summing segment

distances .
951 {
952 float L = 0f;
953 for (int i = 0; i < segmentCount ; i++)
954 L += Vector3 . Distance (ropePoints [i]. currentPosition ,

ropePoints [i + 1]. currentPosition);
955 return L;
956 }
957 }

136

Appendix G

PIDTensionController_Deployment.cs
- Deployment

1 /*
2 * Project : A digital twin of an air - bearing platform for tethered

satellite systems :
3 from tether deployment to post - deployment control
4 * File : PIDTensionController .cs - Deployment case
5 * Author : Edoardo De Blasi
6 * Supervisors : Prof. Paolo Maggiore , Dr. Giuseppe Governale , Prof.

Stephanie Lizy - Destrez
7 * Date : September 2025
8 * Notes : Developed in Unity using C# scripting .
9 * License : This code is intended for academic and research

purposes only.
10 */
11 using UnityEngine ;
12 using System ;
13 using System . Reflection ;
14

15

16 /// <summary >
17 /// PID controller that regulates tether tension in real time and can

stop the spool at a deployed - length threshold .
18 /// </summary >
19 public class PIDTensionController : MonoBehaviour
20 {
21 [Header ("Scene Objects ")]
22 public XPBDTetherWithSpool tetherRope ;
23 public Rigidbody floater ;
24 public Transform bench;
25 public Transform tetherAnchor ;
26

27 [Header ("PID Control Settings ")]
28 public float desiredTension = 50f;
29 public float Kp = 1.0f;
30 public float Ki = 0.1f;
31 public float Kd = 0.2f;
32

33 [Header (" Scaling ")]

137

PIDTensionController_Deployment.cs - Deployment

34 public bool applyScaling = true;
35 public enum ScalingScenario { HCW_Emulation , Tether_Deployed }
36 public ScalingScenario scenario = ScalingScenario . Tether_Deployed

;
37 [Tooltip (" Override lambdaL e lambdat . Lascia 0 per auto -fill

dallo scenario .")]
38 public float lambdaL = 0f; // length scale (real/table)
39 public float lambdaT = 0f; // time scale (real/table)
40

41 [Header (" Simulation Settings ")]
42 public float maxAngleDeg = 3.0f;
43

44 [Header ("PID Safeguards & Filters ")]
45 [Tooltip ("Clamp integrale per evitare windup (tensione x s)")]
46 public float integralClamp = 1000f;
47 [Tooltip ("Low -pass filter (Hz) on the measured tension ")]
48 public float tensionLPFCutoffHz = 3f;
49 [Tooltip (" Optional clamp on the commanded acceleration (m/s^2)")]
50 public float outputAccClamp = 5f;
51

52 [Header ("Spool stop by deployed length ")]
53 [Tooltip ("Stop the spool when the deployed length (free segments

* L0) exceeds this threshold (m).")]
54 public bool stopSpoolByLength = true;
55 public float deployedLengthStopMeters = 1.0f;
56 public bool stopOnce = true;
57

58 [Header (" Actuator Simulation ")]
59 public float actuatorSmoothTime = 0.2f; // time to reach the

target (s)
60

61 [Header ("Debug / Probe")]
62 public bool verboseLogs = true;
63 public int logEveryNFrames = 10;
64 public bool dryRunThreshold = false;
65

66 // --- Debug visibile da Inspector ---
67 [SerializeField] private float dbgSegLen = -1f;
68 [SerializeField] private int dbgSegmentCount = -1;
69 [SerializeField] private int dbgWrappedNow = -1;
70 [SerializeField] private int dbgFreeSegments = -1;
71 [SerializeField] private float dbgDeployedLen = 0f;
72 [SerializeField] private bool dbgThresholdReached = false;
73

74 // Actuator state
75 private float currentRoll , currentPitch ;
76 private float rollVelocity , pitchVelocity ;
77

78 // PID state
79 private float filteredTension = 0f;
80 private float integral = 0f;
81 private float previousError = 0f;
82

83 private bool stopIssued = false;
84 private int frameCounter = 0;

138

PIDTensionController_Deployment.cs - Deployment

85 private bool thresholdLoggedOnce = false;
86

87 private PropertyInfo piWrappedCount , piSegmentLength ,
piSegmentCount ;

88 private FieldInfo fiWrappedCount , fiSegmentLength , fiSegmentCount
;

89 private MethodInfo miForceStopSpoolPublic ;
90

91 void Start ()
92 {
93 if (applyScaling)
94 {
95 if (lambdaL <= 0f || lambdaT <= 0f)
96 {
97 if (scenario == ScalingScenario . HCW_Emulation) {

lambdaL = 700f; lambdaT = 500f; } // Scaling factors with only HCW
equations , no tether

98 else { lambdaL = 50f; lambdaT = 20f; } // In case
of tethered floater

99 }
100 }
101

102 if (tetherRope != null) filteredTension = tetherRope . Tension ;
103

104 CacheRopeIntrospection ();
105 }
106

107 void FixedUpdate ()
108 {
109 ComputeControl ();
110 }
111

112 private void ComputeControl ()
113 {
114 if (tetherRope == null || floater == null || bench == null ||

tetherAnchor == null) return ;
115

116 float dt = Time. fixedDeltaTime ;
117 if (dt <= 0f) return ;
118

119 // === PID ===
120 float cutoff = Mathf.Max (0f, tensionLPFCutoffHz);
121 if (cutoff > 0f)
122 {
123 float alpha = Mathf.Exp (-2f * Mathf.PI * cutoff * dt);
124 filteredTension += (1f - alpha) * (tetherRope . Tension -

filteredTension);
125 }
126 else
127 {
128 filteredTension = tetherRope . Tension ;
129 }
130

131 // Errors computation
132 float error = desiredTension - filteredTension ;

139

PIDTensionController_Deployment.cs - Deployment

133 integral += error * dt;
134 if (integralClamp > 0f) integral = Mathf.Clamp(integral , -

integralClamp , integralClamp);
135 float derivative = (error - previousError) / dt;
136 previousError = error;
137

138 // Control acceleration computation
139 float outputAcceleration = Kp * error + Ki * integral + Kd *

derivative ;
140

141 Vector3 dir = floater . position - tetherAnchor . position ;
142 dir.y = 0f;
143 dir = (dir. sqrMagnitude > 1e-9f) ? dir. normalized : Vector3 .

zero;
144

145 Vector3 controlAcceleration = dir * outputAcceleration ;
146

147 // Scaling for emulation (a_table = (lambdat ^2/ lambdaL) *
a_real)

148 if (applyScaling)
149 {
150 float scaleAcc = (lambdaT * lambdaT) / Mathf.Max (1e-6f,

lambdaL);
151 controlAcceleration *= scaleAcc ;
152 }
153

154 // Optional clamp on commanded acceleration to avoid extreme
saturation

155 if (outputAccClamp > 0f)
156 {
157 float mag = controlAcceleration . magnitude ;
158 if (mag > outputAccClamp) controlAcceleration *= (

outputAccClamp / mag);
159 }
160

161 float g = 9.81f;
162 float maxAngleRad = Mathf. Deg2Rad * Mathf.Max (0.1f,

maxAngleDeg);
163

164 // Conversion of the control acceleration into angles (in
radians)

165 // small angle: a = g * theta
166 float targetRollRad = Mathf.Clamp(controlAcceleration .z / g

, -maxAngleRad , maxAngleRad);
167 float targetPitchRad = Mathf.Clamp(- controlAcceleration .x / g

, -maxAngleRad , maxAngleRad);
168

169 // Basic anti - windup
170 {
171 float desiredRollRad = controlAcceleration .z / g;
172 float desiredPitchRad = -controlAcceleration .x / g;
173 float satErr = (desiredRollRad - targetRollRad) + (

desiredPitchRad - targetPitchRad);
174 // small coefficient to avoid destabilizing (tuning):
175 integral -= 0.1f * satErr * dt;

140

PIDTensionController_Deployment.cs - Deployment

176 }
177

178 // Actuator smoothing working in degrees to use
SmoothDampAngle

179 float targetRollDeg = targetRollRad * Mathf. Rad2Deg ;
180 float targetPitchDeg = targetPitchRad * Mathf. Rad2Deg ;
181

182 float currentRollDeg = currentRoll * Mathf. Rad2Deg ;
183 float currentPitchDeg = currentPitch * Mathf. Rad2Deg ;
184

185 // It applies SmoothDamp to the angles (works in degrees)
186 currentRoll = Mathf. SmoothDampAngle (currentRollDeg ,

targetRollDeg , ref rollVelocity , actuatorSmoothTime) * Mathf.
Deg2Rad ;

187 currentPitch = Mathf. SmoothDampAngle (currentPitchDeg ,
targetPitchDeg , ref pitchVelocity , actuatorSmoothTime) * Mathf.
Deg2Rad ;

188

189 // It applies the smoothed rotation
190 bench. rotation = Quaternion .Euler(currentRoll * Mathf.Rad2Deg

, 0f, currentPitch * Mathf. Rad2Deg);
191

192 // deployedLen = freeSegments * ifgmentLength
193 frameCounter ++;
194

195 float segLen = GetSegmentLength (tetherRope);
196 int segmentCount = GetSegmentCount (tetherRope);
197 int wrappedNow = GetWrappedPointCount (tetherRope);
198

199 int freeSegments = -1;
200 float deployedLen = -1f;
201

202 if (segLen > 0f && segmentCount >= 0 && wrappedNow >= 0)
203 {
204 freeSegments = Mathf.Clamp(segmentCount - wrappedNow , 0,

segmentCount);
205 deployedLen = freeSegments * segLen ;
206

207 bool reached = deployedLen >= deployedLengthStopMeters ;
208

209 // debug -> Inspector
210 dbgSegLen = segLen ;
211 dbgSegmentCount = segmentCount ;
212 dbgWrappedNow = wrappedNow ;
213 dbgFreeSegments = freeSegments ;
214 dbgDeployedLen = deployedLen ;
215 dbgThresholdReached = reached ;
216

217 // periodic log
218 if (verboseLogs && (logEveryNFrames <= 0 || (frameCounter

% logEveryNFrames) == 0))
219 {

141

PIDTensionController_Deployment.cs - Deployment

220 Debug.Log($"[PID] Deployed probe: segLen ={ segLen :F4}
segCount ={ segmentCount } wrapped ={ wrappedNow } free ={ freeSegments

} deployedLen ={ deployedLen :F3} thr ={ deployedLengthStopMeters :F3}
");

221 }
222

223 // one -shot log when threshold is exceeded
224 if (reached && ! thresholdLoggedOnce)
225 {
226 thresholdLoggedOnce = true;
227 Debug. LogWarning ($"[PID] *** THRESHOLD REACHED ***

deployedLen ={ deployedLen :F3} m >= { deployedLengthStopMeters :F3} m
=> {(dryRunThreshold ? "DRY -RUN" : "STOP")}");

228 }
229

230 // stop
231 if (stopSpoolByLength && ! stopIssued && reached && !

dryRunThreshold)
232 {
233 StopSpool (tetherRope);
234 if (stopOnce) stopIssued = true;
235 }
236 }
237 else
238 {
239 if (verboseLogs && (logEveryNFrames <= 0 || (frameCounter

% logEveryNFrames) == 0))
240 {
241 Debug.Log($"[PID] Deployed probe NOT EVALUABLE :

segLen ={ segLen }, segCount ={ segmentCount }, wrapped ={ wrappedNow }");
242 }
243 }
244 }
245

246 // === Stops the spool ===
247 private void StopSpool (XPBDTetherWithSpool rope)
248 {
249 if (miForceStopSpoolPublic != null)
250 {
251 try
252 {
253 miForceStopSpoolPublic . Invoke (rope , null);
254 if (verboseLogs) Debug.Log("[PID] ForceStopSpool ()

invoked (public).");
255 return ;
256 }
257 catch (Exception ex)
258 {
259 Debug. LogWarning ($"[PID] ForceStopSpool () invocation

failed : {ex. Message }");
260 }
261 }
262

263 // fallback hard
264 try

142

PIDTensionController_Deployment.cs - Deployment

265 {
266 rope. spoolAngularSpeed = 0f;
267 rope. driveSpoolRotation = false;
268 if (rope. spoolRB != null)
269 {
270 rope. spoolRB . angularVelocity = Vector3 .zero;
271 rope. spoolRB .Sleep ();
272 }
273 Debug. LogWarning ("[PID] Hard stop fallback applied .");
274 }
275 catch (Exception ex)
276 {
277 Debug. LogWarning ($"[PID] Hard stop fallback error: {ex.

Message }");
278 }
279 }
280

281

282 private void CacheRopeIntrospection ()
283 {
284 if (tetherRope == null) return ;
285 var t = typeof (XPBDTetherWithSpool);
286 const BindingFlags PUB = BindingFlags . Instance | BindingFlags

. Public ;
287 const BindingFlags NP = BindingFlags . Instance | BindingFlags

. NonPublic ;
288

289

290 piWrappedCount = t. GetProperty (" WrappedPointCount ", PUB);
291 piSegmentLength = t. GetProperty (" SegmentLengthMeters ", PUB);
292 piSegmentCount = t. GetProperty (" SegmentCount ", PUB);
293

294 // private fields for fallback
295 fiWrappedCount = t. GetField (" wrappedPointCount ", NP);
296 fiSegmentLength = t. GetField (" segmentLength ", NP);
297 fiSegmentCount = t. GetField (" segmentCount ", NP);
298

299 // preferred public method
300 miForceStopSpoolPublic = t. GetMethod (" ForceStopSpool ", PUB);
301 }
302

303 private int GetWrappedPointCount (XPBDTetherWithSpool rope)
304 {
305 try
306 {
307 if (piWrappedCount != null) return (int) piWrappedCount .

GetValue (rope , null);
308 if (fiWrappedCount != null) return (int) fiWrappedCount .

GetValue (rope);
309 }
310 catch { }
311 return -1;
312 }
313

314 private float GetSegmentLength (XPBDTetherWithSpool rope)

143

PIDTensionController_Deployment.cs - Deployment

315 {
316 try
317 {
318 if (piSegmentLength != null) return Convert . ToSingle (

piSegmentLength . GetValue (rope , null));
319 if (fiSegmentLength != null) return (float)

fiSegmentLength . GetValue (rope);
320 }
321 catch { }
322 return -1f;
323 }
324

325 private int GetSegmentCount (XPBDTetherWithSpool rope)
326 {
327 try
328 {
329 if (piSegmentCount != null) return (int) piSegmentCount .

GetValue (rope , null);
330 if (fiSegmentCount != null) return (int) fiSegmentCount .

GetValue (rope);
331 }
332 catch { }
333 return -1;
334 }
335 }

144

	List of Tables
	List of Figures
	Introduction
	Thesis outline
	Literature review on tethered satellite missions
	Overview of deployment systems technologies and air-bearing platform experiments
	3D simulation software for tethered satellite systems digital twin
	Research questions

	Optimal architecture for tethered satellite survivability and deployment reliability
	Introduction to the AHP analysis
	Comparative study of tether materials
	Comparative study of tether shapes
	Comparative study of deployment systems
	Summary of the selected architecture
	Assessment of environmental and dynamic risks for tethered satellites in LEO

	Selection of 3D modeling software and methodologies for tether modeling
	Digital twin software selection
	Implementation of scaling laws for experimental and digital twin representations
	Methodologies for tether modeling
	Euler and Verlet integration methods
	PBD and XPBD methods
	Collision handling

	Deployed tether and deployment phase: characteristics, challenges, and key aspects

	Scene creation in Unity™
	Fundamental components of Unity™ for physical simulations
	Simulation scene composition: implemented objects
	Full scene

	Software implementation of the deployed tether case
	Tether implementation - VerletTether.cs
	Description of the implemented functions
	PID tension controller for deployed tether
	PID position controller for deployed tether
	LQR position controller for deployed tether

	Software implementation of the deployment case
	Deployment implementation - XPBDTetherWithSpool.cs
	Desctiption of new implemented functions
	PID tension control during deployment phase

	Conclusions and future perspectives
	Bibliography
	Results video
	VerletRope.cs
	PIDTensionController.cs - Deployed case
	PIDPositionController.cs - Deployed case
	LQRPositionController.cs - Deployed case
	XPBDTetherWithSpool.cs - Deployment
	PIDTensionController_Deployment.cs - Deployment

