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Summary

The use of Tethered Satellite Systems (TSS) has emerged as an attractive alterna-
tive for space-based radar sounding missions. Recent studies have demonstrated
that a TSS enables the realization of large antenna apertures while reducing the
propulsion requirements typically associated with traditional Formation Flying.
Although this solution can significantly enhance sensing performance, it is inher-
ently affected by dynamical instability, which makes the analysis of its dynamics
and deployment phase an interesting aspect for system design.

To this end, the research begins with the formulation of a comprehensive mathe-
matical model relying on two of the main modeling methods for Tethered Satellite
Systems: the rod model and the discrete model. Subsequently, the numerical
simulation framework is introduced and studied to enable systematic simulation
of the system’s dynamics across different configurations and operational environ-
ments. After an initial analysis of the dynamics of the TSS at a constant tether
length, attention is shifted to the deployment process, highlighting the difficulties
associated with this phase. In particular, the free system’s deployment along the
radial, along-track, and cross-track directions is investigated.

Subsequently, for each of these strategies, a preliminary control analysis is per-
formed on the rod model, and relative control accelerations are derived and sub-
sequently applied to the higher-fidelity system representation using the discrete
model. This approach provides a comparison of each deployment strategy, high-
lighting both the stability challenges and the control resources associated with
each option. Beyond providing practical guidelines for TSS mission design, the
results establish a preliminary foundation for deeper study on control strategies
for the deployment phase.
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Chapter 1

Introduction to space
tethers

1.1 Introduction
Space exploration and exploitation have grown exponentially over the past few
decades, and this trend is expected to continue in the foreseeable future. Key
areas of interest include communications, navigation and geo-localization, Earth
remote sensing, planetary exploration, and space mining.

Equally important are the development of the space industry and the expansion
of the space economy, as well as growing concerns related to security and defense
- and increasingly, offensive capabilities. These developments highlight how space
is rapidly evolving beyond being merely the ”upper limit” of our world or the
”house” of our stars; it has actually become a critical domain for human activity
with economic, geopolitical and strategic implications. However, the current state
of the art in space technologies cannot yet be considered fully mature to achieve the
ambitious goals set by space research. Significant advancements are still needed,
to make these objectives materially feasible and, above all, to improve mission
scenarios in terms of cost-efficiency and risk reduction.

Both the high cost of launches and the growing issue of space debris are at-
tracting increasing interest, as they are key factors in improving accessibility to
space. Despite the progress made in recent years by reusable launch systems, the
financial burden associated with sending payloads into orbit remains one of the
barriers to widespread access to space. At the same time, the proliferation of
space debris poses serious threats to the safety and sustainability, of current and
future missions. Collisions with even small fragments can compromise satellites or
crewed spacecraft, increasing operational risks and costs linked to collision avoid-
ance systems. These two factors - launch expenses and space debris - exemplify the
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Introduction to space tethers

kind of challenges that must be addressed to ensure a more accessible, secure, and
economically viable space environment. Another critical aspect to be considered
alongside these two issues is the overall cost of the missions themselves, partic-
ularly in terms of the required ΔV and, consequently, the amount of propellant
needed. This requirement has a direct economic impact on the mission - not only
due to the cost of the propellant itself, but also because of the additional mass,
volume, and structural components necessary to store the propellant and support
the propulsion system.

In this context, the concept of tethers is introduced. Tethers are high-strength,
low density cables designed to connect satellites, probes and potentially even space
stations. Tethers are structures with a relative small diameter, usually just few mil-
limeters thick, and a length ranging from hundreds of meters to few kilometers. In
order to ensure the structural integrity and satisfy the requirements in terms of me-
chanical properties, the choice of the material is of critical importance. This aspect
- the choice of the material - will not be considered in this work, however a brief
overview is given in the next few lines. Tethers are typically made of low-density,
high-strength polymers. Among the requirements the most relevant are a high
strength-to-weight ratio, radiation resistance, thermal resistance, flexibility and
long-term life. Indeed, the choice has to allow to meet the stringent requirements
regarding the total mass while still ensuring the required performance, enough
resistance against the space radiations and temperature variations. In addition to
that, flexibility and toughness are important for compact stowage, smooth deploy-
ment and the ability to absorb vibrations. A last, yet very important, material
property is electrical conductivity which may or may not be required depending
on the type of mission for which the tether is designed.

This property allows for the classification of space tethers into two main cate-
gories: conductive and non-conductive tethers. The first type features a conductive
core which permit the tether to interact with the Earth’s magnetic field, these are
named Electrodynamic Tethers (EDT). On the other hand, non-conductive teth-
ers serve a variety of purposes, such as Momentum Exchange devices or structural
connectors in Tethered Satellite Systems (TSS).

1.2 Electrodynamic Tethers
The Earth possesses a geomagnetic field whose magnetic poles are approximately
aligned with the geographic poles. The fundamental principle underlying the con-
cept of electrodynamic tethers is to exploit the interaction between the system
and the Earth’s magnetic field. The key feature lies in the conductive core, which
allows electric current to flow through it, enabling the system to interact with the
geomagnetic field. It is possible to exploit the electric current generated within the

2
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tether as a power supply for systems, scientific instruments or electric thrusters,
thereby reducing or even eliminating the need for bulky onboard batteries. How-
ever, the most significant application arises from the interaction between this cur-
rent and the Earth’s magnetic field. According to the Lorentz force law, a force is
exerted on a charged particle when it moves through a magnetic field. According
to [1], the electric energy derives from a transfer of energy from the orbital mo-
tion of the system, effectively extracting the tether’s kinetic energy and causing
a gradual decrease in orbital altitude. In scenarios where the primary goal of em-
ploying an electrodynamic tether is to generate auxiliary electrical power during
a mission, this altitude loss may represent an undesired side effect that must be
actively compensated. Conversely, this phenomenon becomes particularly advan-
tageous when the electrodynamic tether is employed for post-mission disposal or
the controlled deorbiting of space debris. In such cases, the tether functions as
a passive, propellant-free system capable of inducing atmospheric reentry solely
through electromagnetic interaction, thereby offering a sustainable and efficient
solution for orbital debris mitigation.

1.2.1 Space debris digression
In recent years, the issue of space debris has garnered increasing attention
within the space community. A notable example and key turning point can
be identified in the first-ever accidental in-orbit collision between two satellites
[2]. In 2009 a private communication American satellite, Iridium-33, and a
Russian military satellite, Kosmos2251, collided at 11,7 [km/s]. The collision
resulted in the generation of more than 2300 trackable fragments. For the
first time, the space community witnessed the consequences of an collision
in orbit, which helped underscore the severity of the orbital debris problem
- a byproduct of about sixty years of human activity in space. According
to [3]: in more than 60 years of space activities, more than 6050 launches
led to 56450 tracked objects in orbit for a total mass of more than 9300
tonnes. About 24% of the cataloged objects are satellites, and only 8% are
intact and operational - about 4000. This means that roughly 90% of space
objects belong to the uncontrolled satellite class. About 11% are spent upper
stages. Moreover, since 1961, over 560 in-orbit fragmentation events have
been recorded. Of these, only seven were caused by collisions, while the vast
majority resulted from explosions of spacecraft or upper stages. The main
cause of these explosions is the presence of residual fuel in tanks or fuel lines,
or other remaining energy sources still on board. However, collisions are
expected to become the primary source of space debris in the future.
As an effort to mitigate this effects, the international space community has
collaborated over the past decade to formulate and adopt guidelines aimed at
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limiting the generation and accumulation of debris. Despite these efforts, re-
cent analyses of the orbital environment have revealed a troubling trend, par-
ticularly in Low Earth Orbit (LEO) and Geostationary Earth Orbit (GEO).
Many simulations, in fact, suggest that, due to collisions caused by fragments
generated by other collisions, the number of objects in orbit might grow, even
when no further objects are added to space, [4]. This collisional cascading,
highlighted for the first time in 1978 by Kessler and Cour-Palais [5] and
become popular as Kessler syndrome, may potentially lead to a chain reaction
situation, with no further possibility of human intervention.
Lately, studies conducted by Liou and Johnson [6] indicate that the LEO de-
bris population has entered an unstable regime in which collisions among ex-
isting objects will continue to generate new debris, leading to a self-sustaining
growth of the population over the next two centuries, even in the absence of ad-
ditional launches. In practice, the outlook is more severe than the “no future
launches” scenario, as satellite deployments are expected to persist and un-
expected catastrophic breakups may still occur. Consequently, to ensure the
long-term sustainability of near-Earth space activities, active debris removal
(ADR) and post-mission disposal is now regarded as a necessary component
of orbital debris management.

Within this context, electrodynamic tethers represent a promising solution for
post-mission disposal. Their low cost, simplicity, and passive operation make them
particularly attractive for rapid and efficient deorbiting, especially for satellites in
low Earth orbit. The force generated by the interaction between the current flow-
ing through the conductive core and the Earth’s magnetic field represents a highly
promising tool for enabling low-power atmospheric reentry. It is noteworthy that
the direction of resulting magnetic force depends on the polarity of the current: if
the polarity is inverted, the force can also accelerate the spacecraft in the direction
of its orbital velocity. Generally, this capability would enable orbital maneuvers
without the use of propellant and has promising applications especially in what
concerns satellite end-of-life strategies. The operational effectiveness of such sys-
tems, however, is strongly influenced by the orbital parameters of the mission.
In particular, the altitude and inclination of the orbit determine the intensity of
the local Earth’s magnetic field and the density of the ambient plasma in which
the system operates. This parameter is of critical importance, since the current
induced along the tether is generated through interaction with the surrounding
plasma. The plasma, in fact, acts as a medium to complete the electrical circuit,
functioning both as the source from which electrons are collected and the sink into
which they are emitted.

Related to the presence and density of plasma required for the operation of
electrodynamic tethers, an interesting potential application can be highlighted. In
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fact, applications of electrodynamic tethers have also been explored for other plane-
tary environments. For instance, Gallagher et al. (1998) [7] investigated feasibility
of the use of an electrodynamic tether for propulsion and power generation for a
spacecraft in the Jovian system, leveraging Jupiter’s strong magnetic field and the
high relative velocities between the magnetic field itself and the spacecraft.

1.3 Momentum exchange tethers
Momentum Exchange Tethers (METs) can be considered as an innovative alterna-
tive for space propulsion systems. The system is based on the use of long, rotating
or stationary cables to transfer momentum between the payloads at the ends of the
tether. Unlike conventional propulsion methods, METs rely on angular momen-
tum transfer to enable orbital changes for payloads without requiring on-board
propellant, thereby significantly reducing mission mass and launch costs. Two
notable types of momentum exchange tethers include the following:

• Spinning momentum exchange tethers:
Since the semilatus rectum of the orbit is proportional to the square of the
angular momentum magnitude, the larger its value, the farther the orbit
passes from the attracting center. During the rotation of a space tether system
of constant length, its total angular momentum remains constant, while the
angular momenta of each of the bodies connected by the tether change. There
is a continuous redistribution of the magnitude of the angular momentum
between the connected bodies, while the overall angular momentum of the
system, which coincides with the value of angular momentum of the Center
of Mass, remains constant. Cutting the tether stops this redistribution, and
the further free motion of the bodies is determined by the magnitude of the
angular momentum that they had at the time of cutting.

Figure 1.1: Spinning based Momentum Exchange Tether System

This effect can be used to increase or decrease the height of the end bodies’
orbits. For instance, when the upper payload is released from a tether, it
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carries more angular velocity than it requires to stay on that circular orbit
of the Center of Mass of the system. Since the upper payload does not have
enough energy to escape the Earth’s gravity, and considering that there is an
excess of angular momentum, the upper payload goes into an elliptical orbit
with the release point being the perigee of the orbit. [8]

Figure 1.2: Orbit release representation of spinning MET system

Similarly, once part of the system has been released, what remains of the
system does not have enough angular velocity to stay on its circular orbit
when it is released and so the lower end body and the tether go into an
elliptical orbit, too, but this time the release point would be the apogee of
the orbit. One of the alternatives to restore the orbit of the system after the
release of the upper payload, would be to explore the use of an electrodynamic
tether as a spinning momentum exchange tether.
Nevertheless, it remains noteworthy that this system allows for the upward
and downward transfer of masses released from a hanging tether
An example of a potential application of METs is in the development of space
transportation systems. A space systems architecture was developed to enable
repeated payload transport between low Earth orbit and the lunar surface
with minimal reliance on propellant by Hoyt and Uphoff [9]. A system, for
orbital transfers between Earth and Mars, comprising two rotating tethers in
highly elliptical orbits around each planet has been devised by L. Forward and
Nordley [10] . According to their work, at Earth the payload is picked up near
periapsis and, following half a rotation it is released at a velocity sufficient
to place it on a high-speed transfer trajectory toward Mars. Upon arrival,
the payload is intercepted near Mars periapsis and subsequently released on
a suborbital reentry path.
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• Variable length exchange momentum tethers:
The redistribution of the angular momentum between the elements of a space
tether system can be carried out also by changing the tether length. The
greater the length of the tether, the stronger the redistribution of the angular
momentum between the connected bodies [11]. It is noteworthy also that
varying the tether’s length leads to the appearance oscillations of the system.
These oscillations must be carefully analyzed and controlled, as they can
significantly influence the stability and efficiency of the tether dynamics.

Overall, whether the objective is to enable orbital transfers or to facilitate atmo-
spheric re-entry and post-mission disposal, tethers have demonstrated considerable
potential as green, propellant-less solutions. In addition, tethers can also serve as
structural components within distributed space systems. In particular, they are a
distinctive feature of Tethered Satellite Systems (TSS), where two or more satel-
lites are physically connected via long cables.

1.4 Distributed Space Systems
A Distributed Space System is a system composed of several spacecrafts. Unlike
traditional missions, where all the goals and requirements are integrated into a sin-
gle central spacecraft, in a Distributed Space System functions are decentralized
across the multiple elements composing the system, which work together to ac-
complish the given mission. During the last decades these systems have attracted
increasing interest, since they offer significant improvements both in terms of cost
and performance optimization. Usually, these systems are composed by small satel-
lites, instead of the more known large spacecrafts. As an immediate consequence
the missions would be able to accomplish the goals being much less expensive in
all the aspects and stages of the mission, from launch to orbit control and eventual
maneuvers. With the proliferation of CubeSats and other small satellites, DSSs
have become increasingly attractive for both governmental and commercial space
missions.

As highlighted by Aliberti in his work [12], from an operational point of view
the intrinsic characteristics of this architecture guarantee a major flexibility and
robustness. Indeed such an architecture could be easily scaled, adapted and recon-
figured for different scenarios and missions with different requirements, keeping the
same level of efficiency, reliability and fault-tolerance. Especially, it is noteworthy
that given the independence of the spacecrafts, the failure of the single element
of a constellation does not necessarily compromise the functions of the remaining
elements. In this context, the loss of a single element may indeed degrade overall
mission performance; however, such degradation is significantly less severe com-
pared to the failure of a centralized satellite that concentrates all functionalities
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into a single platform.
Distributed Space Systems are commonly classified into four main categories,

based on the level of coordination and interdependence among the elements:

• Constellation:
The most known and common type are satellite constellation. This typology
is already active, widely used and plays a key role in our quotidian life. A
constellation consists of a group of satellites whose orbits are designed in
order to have a coordinate coverage without having a control of the relative
positions. The orbits of the satellites are designed to ensure the desired
spatial and temporal coverage. These type of DSS finds the most important
application in what concerns global positioning and communications.

Figure 1.3: Representation of the GPS constellation. Credits: The Aerospace
Corporation

• Swarm:
Space swarms are large-scale type of distributed space system composed of a
very high number of small, relatively simple satellites that operate collectively
to accomplish a common objective [13].

• Formation:
Formation flights are quite similar to constellations, but with a key differ-
ence: the monitoring of relative positions. Formation flight, in fact, refers to
a class of distributed space systems in which multiple satellites orbit in coor-
dination while maintaining precise relative positions. The objective of such
an arrangement is to enable the satellites to function collectively as a single,
large-scale virtual instrument, thereby achieving performance and capabilities
that would be difficult or impossible for a single spacecraft to achieve on its
own.
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Figure 1.4: Representation of the LISA mission. Credits: NASA

• Tethered:
This specific type of DSS is particularly interesting, as the satellites that make
up the system are physically connected to each other through a cable, and it
will be at the heart of the analysis conducted in this thesis.

Figure 1.5: Illustrative TSS representation. European Space Agency ESA

The concept emerges from mission scenarios in which the system components
are required to maintain significantly closer relative distances compared to
the previous DSS architectures. Moreover, these missions typically demand
precise control of the relative positions between the elements. In such cases,
implementing a formation-flying or swarm-based configuration would result
in substantial control effort and complexity. This is primarily due to the
high level of precision typically required, combined with the fact that each
element is individually subject to perturbations that influence its dynamics.
Consequently, this would necessitate extremely accurate position and attitude
determination systems, as well as high-performance control mechanisms, both
of which would incur considerable costs. The use of a mechanical connection,
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such as a tether, offers a promising alternative. It effectively eliminates the
need for complex and expensive relative position control systems, since the
relative positions and distances between the various elements are physically
constrained aside from potential structural deformations of the system, which
can be addressed with a lower expenditure.
However, despite the advantages, the dynamics of tethered systems are inher-
ently complex. The presence of long, flexible cables introduces nonlinearities,
coupling between translational and rotational motion, and sensitivity to exter-
nal perturbations. The following section presents a comprehensive overview
of the modeling approaches for these systems.

1.4.1 Tethered Satellite Systems
As shown in 1.5, a Tethered Satellite System (TSS) consists fundamentally of a
space tether connecting two masses. Based on the mission profile and goals, the
end-masses of the system could either be two satellites of similar or even identical
size and mass. Alternatively, in a different scenario, the system may include a
mother satellite and a sub-satellite, equipped with the appropriate instrumentation
and systems to perform specific tasks defined within the mission.

Figure 1.6: Tethered Satellite System representation

To gain insight into the dynamics of the system and analyze how it behaves
under operational conditions, it is essential to develop a reference model able to
accurately represent the system. Such a model serves as the foundation for both
analytical investigations and numerical simulations, allowing to study system re-
sponses, assess performance, and evaluate the impact of external disturbances or
control strategies. In fact, the space environment is characterized by a large num-
ber of perturbation factors - e.g., air drag force, the Earth’s oblateness, represented
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by the J2 perturbation, solar pressure, heating effect. In addition to these exter-
nal factors, attention must also be given to internal phenomena, primarily related
to the tether. The tether itself exhibits inherently complex mechanical behavior,
mainly due to elastic deformation and internal damping.

The choice of the modeling approach depends on the aspects to be analyzed,
the level of accuracy required, and the computational effort considered acceptable.
For the TSS, three reference models are typically considered [14], [15], [16]:

- Rod model:
The model - commonly referred to as dumbbell model - is considered to be the
simplest approach developed over decades of research on space tether systems.
A graphical representation is given in 1.7. In its basic formulation, the model
reduces the system to two point masses connected by a rigid rod. Depending
on the specific needs of the research, it is possible to assume either a massless
tether - where the rod connecting the end masses is considered to have no
mass - or a massive tether. In the second case, the tether is assumed to be
straight and inextensible, uniform in mass and a slight modification of the
initial parameters leads to a more complex - yet still relatively simple - set of
governing equations. Typically three degrees of freedom are considered: the
in-plane angle θ, the out-of-plane angle ϕ, and the deployed tether length L.
These three parameters are usually selected as the generalized coordinates,
leading to three dynamics equations that will be discussed in detail in 3.3.2.

Figure 1.7: Rod model scheme

By modeling the tether as a rigid body, the main advantage lies in the sim-
plicity of the system, resulting in a significant reduction in the complexity
of the governing equations. This model is typically employed for simplified
analyses when the tether remains taut due to an appropriate external force
(e.g., a control force or gravity gradient), a condition that is not always guar-
anteed in realistic scenarios. Therefore, while it provides a useful framework
for preliminary studies, its validity must be carefully assessed depending on
the specific operational context. In cases where the application is particularly
demanding in terms of accuracy and the need to understand the deformation
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of the tether the rod model - given its inherent inability to account for internal
elastic phenomena - would not be adequate.

- Discrete model:
To overcome the limitations of the rod model, the discrete model is intro-
duced, as it represents a more suitable compromise between the fidelity of the
system representation and the associated computational and analytical cost.
As represented in 1.8, the model is developed by dividing the tether into a
series of mass points connected by massless spring-damper elements. Usually,
the tether is divided into a series of segments of equal length. Each segment is,
then, represented by a point mass - located at its center of mass - correspond-
ing to the total mass of the segment. The parameters of the spring-damper
elements are selected based on the mechanical properties of the material from
which the tether is made. These aspects will be further examined in a 3.3.1.

Figure 1.8: Discrete model scheme

Within this framework, the total number of degrees of freedom under analy-
sis is directly related to the number of lumped masses chosen for the tether
discretization, with each mass contributing three translational degrees of free-
dom. Consequently, this approach enables the analysis not only of the motion
of the end bodies, but also of the response of each individual lumped mass,
thereby capturing the overall behavior of the tether. Gaining insight into
a greater number of degrees of freedom automatically enables a more accu-
rate and comprehensive characterization of the system’s dynamic behavior,
capturing not only the influence of external perturbations but also internal
effects such as elastic deformations, configuration changes, and variations in
deployment velocity, all of which may induce significant distortions in the
tether shape.
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- Continuous model:
Finally, by further increasing the level of fidelity in the system representation,
we find the continuous model. In this formulation, the tether is modeled as
a truly continuous entity, without mass lumping or segmentation. While this
approach would offer the most accurate theoretical description of the tether’s
behavior, it leads to a highly complex dynamic analysis and a significantly
higher computational cost. For these reasons, the continuous model finds
limited applications.

1.5 Further suggested applications of tethers
As outlined in the previous introductory sections, tether systems represent a
promising solution to few important challenges in the space sector: post-mission
disposal or active space debris removal, as well as the development of sustain-
able propulsion alternatives and the construction of tethered platforms . However,
tether systems also hold potential as a possible solution to a broader range of
research questions. Among these, it worth mentioning the detection of gravity
waves, measurement of the Earth’s atmospheric properties or other explored al-
ternatives as generation of electromagnetic waves by an orbiting electrodynamic
tether [17], collection of samples from micro-meteoroids, comets and asteroids [18],
novel tether-based approaches for docking and close rendezvous maneuvers [19],
and passive attitude stabilization of spacecraft [20].

Very interesting, in addition to what has just been mentioned, is the use of space
tethers for the so called space elevators. Around the 1960s Yu Artsutanov, inspired
by an idea originally proposed by Tsiolkovsky in 1895 [21], formulated for the first
time the concept of such a system [22]. The concept of a space elevator essentially
involves a space tether system connecting the Earth’s surface to a space station
positioned beyond the geostationary orbit. The function of moving a payload
from the first station at the Earth’s surface to the second one in orbit is carried
out by special climbers that move along the tether. This operating mechanism
implies that the primary energy expenditure is associated with the movement of
the climbers. In essence, the main energy cost lies in changing their gravitational
potential energy as they ascend or descend along the tether.

The first studies that have been conducted concluded that the available technol-
ogy was not yet mature enough to develop materials with the required properties
to ensure the structural integrity of the system [22],[23]. In addition to material
limitations, several critical challenges could be identified, including the generation
of sufficient energy to change the altitude of the climbers, as well as the need
to address environmental threats such as impacts with micro-meteoroids or low-
Earth orbit debris and lightning strikes [24]. More recent studies, however, have
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addressed the main challenges by proposing innovative solutions, analyzing the dy-
namics and stability, and introducing new concepts, as the partial space elevator,
which is a radially oriented space tether system connecting two space stations [25],
[26].

Finally, it is both appropriate and preparatory to the core analysis of this
thesis to mention, among the potential applications of tethers, space-based radar
sounding. A more in-depth analysis will be provided in the following section.

1.6 Space based radar sounding
This thesis will primarily draw upon the work of Aliberti, Quadrelli, and Romano
on a distributed space-based radar sounder [27]. Nonetheless, it is important to
acknowledge the existence of other studies related to space-based radar sounding,
which have explored alternative approaches to addressing challenges in this field
[28].

Fundamentally, the idea is to observe planetary bodies using sensors placed in
orbit, leveraging the privileged point of view that such a position can offer. Among
the various options for observing the Earth from above, orbital observation is un-
doubtedly the most complex and expensive to implement, especially when com-
pared to alternatives that allow for closer range sensing - such as drones or other
aerial platforms (e.g., high-altitude balloons). However, it is considered a highly
promising approach and has seen significant advancements in recent years. More-
over, for observations of other celestial bodies - such as the Moon, Mars, and, in
the future, potentially other planets and their satellites - orbital sensing represents
the most viable and effective option available. Depending on the type of antenna
used, and more specifically the frequency band selected for sensing operations,
different objectives can be pursued. For instance, low-frequency sensing enables
sub-surface analysis, which serves as the primary application considered in this
work to motivate the subsequent analysis of dynamics and deployment strategies
discussed in later sections. Examples of missions that employed radar sounders for
subsurface investigations include the Apollo Lunar Sounder Experiment (ALSE)
[29], the Mars Advanced Radar for Subsurface and Ionosphere Sounding (MARSIS)
onboard ESA’s Mars Express mission [30], and the Japanese SELENE (Kaguya)
lunar orbiter [31]. On the other hand, higher-frequency sensing is typically used
for surface remote sensing, allowing for the acquisition of highly detailed satellite
imagery.
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Figure 1.9: Artistic representation of MARSIS mission. Credits: NASA

The technological landscape in which this concept evolved has traditionally re-
lied on systems consisting of an antenna mounted on a single orbiting satellite.
However, achieving the desired performance with such systems would require an-
tennas of large dimensions that would be incompatible with the constraints of a
space mission in terms of mass and size. For this reason, research efforts have fo-
cused on developing solutions able to improve, by relying on innovative concepts,
the performance of such systems. In particular, thanks to the recent technological
advancements, these efforts have led to the conception of an approach based on syn-
thesizing large antenna apertures by employing arrays of small satellites flying in
carefully coordinated orbital formations. For example, Carrer and Rovolo in their
paper [28] have demonstrated that such a configuration improves performance in
the following areas:

- 1. reduce the influence of surface clutter;

- 2. increase the across-track resolution;

- 3. increase the signal-to-noise ratio (SNR)

- 4. provide greater flexibility in the processing of signals acquired by the
different sensors.

In line with the ongoing need to improve the performance of such systems and
to propose innovative solutions, Aliberti, Quadrelli and Romano have proposed an
alternative designed to address the main challenges associated with a formation
flying radar sounding system. These challenges can be summarized as follows:
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- 1. Precise determination of the relative positions between the satellites within
the formation is needed in order to enable proper signal processing and ensure
the overall performance of the radar system;

- 2. The temporal evolution of aperture is inherently constrained by orbital
dynamics, especially by external perturbations such as atmospheric drag, solar
radiation pressure, and gravitational anomalies;

- 3. The temporal evolution of the dynamics is, moreover, constrained by the
inherently limited availability of onboard propellant, which restricts the extent
of active maneuvering and the capability to compensate for configuration
deviations;

- 4. Achieving the high level of precision required typically necessitates the use
of advanced satellite platforms properly equipped to perform accurate and
coordinated adjustments.

The solution explored in their work is able to address the aforementioned is-
sues through the use of a Tethered Satellite System (TSS). Indeed, the structural
mechanical connection provided by the tether acts as a much stronger constraint
significantly reducing, or even eliminating, the costs required to maintain the
relative positioning of the individual elements within a typical formation flying
configuration.

The innovative aspect in their approach lies in the specific configuration in-
tended for the system during the data acquisition phase of the mission. Unlike
earlier studies, which primarily focused on naturally stable configurations - more
precisly the naturally gravity gradient stabilized radial configuration - Aliberti
explored and confirmed the feasibility of maintaining the system stability in the
cross-track configuration, which is oriented perpendicularly to both the radial and
along-track directions. In particular, in [27] two stabilization strategies are proved
to be reliable: gyroscopic stabilization and aerodynamic stabilization, the latter
being particularly effective at low altitudes. However, the feasibility of such a
mission still depends on a second factor of no less importance: a successful deploy-
ment to the final configuration. Building upon their analysis, this thesis further
investigates the dynamics of tethered systems with a focus on the study of the
deployment phase, aiming to contribute to overcoming this critical obstacle.

1.7 Tethered Satellite Systems Deployment
Regardless of the specific configuration or intended application, all tasks involv-
ing a Tethered Satellite System (TSS) begin with the deployment of the tether,
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which is therefore the first essential step to achieve the system’s operational con-
figuration. However, the deployment phase is often the most critical in missions
involving TSS. Indeed, numerous tether missions have failed due to incomplete or
unsuccessful deployment. These failures and difficulties in the deployment have
significantly hindered the broader adoption of tether technology in space missions.
Consequently, research interest in this area remains particularly strong, as it is
considered crucial to open the door to a large-scale use of tether systems in space
missions. To contextualize this ongoing effort, the following subsections will first
examine two well-known mission failures directly related to unsuccessful deploy-
ment, and will then present the current state of the art in strategies aimed at
ensuring the stabilization of this crucial phase.

1.7.1 Notable Cases of Deployment Failure in TSS Mis-
sions

The first mission to give concrete expression to interest in Tethered Satellite Sys-
tems (TSS) was the NASA/ASI (Italian Space Agency) Tethered Satellite System
(TSS-1). In 1984, an agreement between the two space agencies was signed, out-
lining the mission objectives as follows: to evaluate the capability for deploying,
controlling and retrieving a tethered satellite; to validate predictions of the dy-
namic forces in such systems; to investigate the electrodynamic interaction of a
conductive core, and to demonstrate the capability of the system to serve as a facil-
ity for research in geophysical and space physics. The Tethered Satellite System-1
(TSS-1) consisted of a satellite, a 20 km long tether - with electrically conducting
copper strands in its core - with a 2.54 mm diameter, and a deployer in the Shut-
tle’s cargo bay. Specifically, the mission was conducted during the STS-46 Shuttle
Flight. Given the technology available at the time, it was impossible to predict
exactly how the system would perform in space prior to the mission. The deploy-
ment and retrieval of the tether relied on a tether control mechanism schematized
in 1.10, and these stages represented the greatest sources of uncertainty for the
designers.
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Figure 1.10: TSS1 tether control mechanism. Credits: NASA

As it turned out, the fatal obstacle to the success of the mission was, indeed,
the deployment phase. The mission failed primarily because full deployment of
the tethered satellite was not achieved. The investigation committee, which was
tasked with analyzing the mission (TSS-1 CIB), identified five flight anomalies, all
related to the tether and its deployment. According to the NASA report [32] the
three main failures are here reported as follows:

- Unplanned Tether Deployment Stop at 179 Meters;

- Unplanned Tether Deployment Stop at 256 Meters;

- Failure to Move Tether in Either Direction at 224 Meters;

The review focused mainly on structural aspects, identifying a series of mechanical
blockages - related to the wind-level mechanism - as the cause of the failures. It
also recommended a more careful and precise analysis of the loads, taking into
account the interactions among the various system components, as well as the use
of ground testing procedures that more accurately replicate the in-orbit scenario.

Even with its limited deployment, TSS-1 provided significant information re-
garding the deployment and retrieval phases, and it paved the way for subsequent
missions aimed at more successfully testing the use of tethered satellite systems.
In this context, it is worth mentioning the TSS1-R mission [33], a reflight of the
first mission conducted four years later, which achieved improved results but failed
shortly before reaching the final tether length due to tether breakage caused by
electrical discharge. The investigation committee, in this case, affirmed that the
high-voltage systems must be better understood and managed in missions involv-
ing electrodynamic tether applications. More recent missions include the Young
Engineers’ Satellite 2 (YES2) of ESA and DLR[34] and the JAXA’s Konotori Inte-
grated Tethered Experiment (KITE) [35]. The former was a demonstrative mission
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for the re-entry of a light-weight capsule by the use of a tether rather than a conven-
tional retro-rocket and was launched after the failure of Young Engineers’ Satellite
(YES) mission. The latter was intended to deploy a 700 m length tether from the
H-II Transfer Vehicle(HTV), but it failed to accomplish its mission objectives due
to a technical malfunction.

These missions collectively highlight the technical challenges associated with
tether deployment, ranging from mechanical blockages and system malfunctions
to tension management and electrical discharge. They underscore the critical need
for robust and reliable control strategies capable of handling systems dynamics,
as well as ensuring stability under different operational conditions. Thus, the
next subsection presents the state of the art and the main advancements in tether
deployment control and stabilization.

1.7.2 State of the Art in Tether Deployment and Stabiliza-
tion

In recent years, substantial progress has been achieved through numerical simula-
tions and ground-based testing, contributing to a deeper understanding of tether
dynamics under real orbital conditions. Furthermore, building upon the achieve-
ments and failures of previous space tether missions, various control methods for
tether deployment have been devised.

One of the earliest approaches proposed for stabilizing tether deployment was
the tension control law developed by Rupp [36], which became a cornerstone in the
early studies on tethered systems. Many controllers subsequently developed follow-
ing this work proved effective, yet most of them were primarily designed to regulate
deployment in planar motion, thus limiting their applicability. Following this line,
for example, Aslanov introduced a tether length control law based on the swing
principle for payload delivery to Earth’s surface [37]. Among the tension-based
approaches, Pradeep proposed a linear tether tension control law that successfully
addressed some of the main limitations of earlier methods [38]. This controller
was further refined by Zhu and Murugathasan, who optimized its performance by
tuning the control gains, thereby achieving a faster deployment rate [39]. Despite
these advancements, optimized linear tension controllers remained sensitive to ini-
tial conditions and exhibited only a limited domain of stability. In the past decade,
more advanced controllers have been introduced. The Linear Quadratic Regulator
(LQR) approach, applied by Kojima and Taruoka, demonstrated effective con-
trol and deployment of the tether, although the process remained relatively slow
[40]. More recently, significant progress has been achieved with Sliding Mode Con-
trollers (SMC), which are particularly well-suited for handling the nonlinearities
inherent in tether dynamics. Building upon this framework, Kang et al. proposed
a fractional-order SMC that further enhanced robustness and adaptability [41].
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The aim of all of this advancements, together with the progressive introduction
of increasingly accurate system models, is not only to reduce the risk of mission
failure but also to establish more reliable methodologies for predicting and manag-
ing tether behavior across the wide range of operational scenarios. Nevertheless,
one of the challenges that remains only partially addressed is tether deployment
outside the orbital plane of motion, which represents an essential step for the ap-
plication from which this research originates. Accordingly, the primary objective
of this thesis - and its main original contributions - would be to further investigate
the deployment dynamics of a tethered satellite system, with the ultimate goal
of achieving a fully deployed cross-track configuration - in which the tether is ori-
ented perpendicularly to the orbital plane. The study will not be strictly confined
to deployment along the cross-track direction; nevertheless, alternative pathways
will also be explored, taking under consideration more stable and cost-effective
options, such as the deployment in the orbital plane already explored in the lit-
erature. This will be done with the aim of characterizing the system dynamics
in terms of control effort and stability for each of these alternatives. Ultimately,
the results presented may serve as a foundation for more detailed future analyses
of control algorithms and potentially for a experimental validation phase, thereby
providing the necessary foundation for future in-orbit demonstrations.

1.8 Work Subdivision
The research was carried out out partly in Turin and partly in Buffalo, under the
supervision of PhD candidate Stefano Aliberti and Dr. Eleonora Botta, Associate
Professor at the State University of New York at Buffalo; it also follows part
of the projects led by Dr. Marcello Romano - former full-time Professor at the
Polytechnic University of Turin - within the activities of the ASTRADORS group.

This section is intended to provide an outline of the workflow followed in this
research, to help guide the reader through the various chapters, and to briefly
summarize the content of each chapter. The content of this thesis is divided into
the following chapters:

• Chapter 1 – Introduction: provided a general overview of space tethers
and their applications, starting from Electrodynamic Tethers (EDTs) up to
Tethered Satellite Systems (TSS). This progression leads to the application
that motivates the present study, namely space-based radar sounding using
tethered satellite systems, and introduces the main challenges related to their
deployment.

• Chapter 2 – Notation and Mathematical Tools: introduces the math-
ematical framework and notation employed throughout the analysis.

20



Introduction to space tethers

• Chapter 3 – Mathematical Model: develops the dynamic modeling of
the tethered satellite system, including external and internal forces, different
tether representations, and the formulation of the equations of motion, with
specific attention to deployment effects.

• Chapter 4 – Numerical Simulation: describes the implementation of the
simulation environment, detailing the code structure in its main phases: the
initialization of parameters, the integration of the equations of motion, and
the post-processing procedures.

• Chapter 5 – Numerical Results: after a brief introduction of the physical
parameters of the system under analysis, presents and discusses the outcomes
of the first simulations, offering a baseline picture of the inherent tendencies of
the system. It analyzes the system dynamics in the absence of deployment ma-
neuvers and subsequently in different deployment configurations, highlighting
the main challenges that arise in each case.

• Chapter 6 – Deployment Strategies: explores potential deployment
strategies, first by evaluating the required control effort through a simplified
preliminary simulation of the dynamics using the rod model. Subsequently,
an equivalent control action is applied to the lumped-masses model to as-
sess its effectiveness within a framework that more faithfully reproduces the
system’s actual behavior under real conditions.

• Chapter 7 – Conclusions and Future Work: briefly summarizes the main
activities carried out throughout the work, focusing on the key findings, while
also suggesting possible directions for further investigations on the Tethered
Satellite Systems.
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Chapter 2

Notation and Mathematical
Tools

In order to carry out a rigorous and accurate analysis of any phenomenon or
system, it is fundamental to clearly define and understand the set of tools that
will be employed throughout the study. Relying on mathematics enables us to
comprehend the physics of the system and to understand its behavior and responses
to both internal and external agents, arising from the environment in which it
operates. The purpose of this chapter is, therefore, to introduce the tools that
make up the the mathematical framework adopted to represent the system, along
with the notation that will be used to denote each of these tools.

2.1 Vectors and Unit Vectors
We begin by introducing the basic mathematical tools employed in this analysis.
Vectors represents a certain quantity characterized by an amplitude and direction,
and they play a central role in the representation of physical phenomena within
a three-dimensional space. They are typically expressed through three distinct
components, defined with respect to a given reference system. On the other hand,
unit vectors, commonly referred to as versors, are a specific category of vectors.
They are characterized by having unit magnitude and, like all vectors, must be
defined with respect to a reference frame. Their primary function is to identify
a particular direction and consequently they are fundamental to construct and
define reference frames.

The notation used in this work is the following:

- A bold letter, v, represents vectors;

- Versors will be represented with the notation: v̂.

22



Notation and Mathematical Tools

2.2 Reference Frames
Reference frames are the indispensable elements for orienting ourselves in analyt-
ical studies. It is essential to define each reference frame clearly and consistently,
ensuring coherence throughout the analysis. Indeed, the choice and formulation
of these reference frames can significantly simplify both the initial setup of the
analysis and the subsequent post-processing phase, enhancing clarity and compu-
tational efficiency. By establishing a set of mutually orthogonal unit vectors, one
can define a reference frame suitable for the analysis of physical phenomena. Each
reference frame, generally denoted by F , will be distinguished by a subscript that
identifies the specific frame being referred to. While the vectrix representation
of a reference frame F , used to indicate the set of unit vectors that define its
orientation in space, is denoted by the symbol F̂ .

Considering a set of three perpendicular unit vectors, â1, â2, â3, the vectrix
formulation is the following:

F̂a ≜
[
â1 â2 â3

]T (2.1)

All the vector quantities that will be discussed in this study will be expressed
according to one of the following reference systems.

2.2.1 Earth Centered Inertial (ECI)
The Earth-Centered Inertial (ECI) reference frame is a quasi-inertial reference
system. The unit vectors used to define this reference frame are the following:

- ê1, which points toward the Vernal Equinox;

- ê3, which points toward the celestial North Pole;

- ê2, which lies on the equatorial plane, completes the right-handed triad and
is defined as ê2 = ê3 × ê1.

F̂ECI ≜
[
ê1 ê2 ê3

]T (2.2)
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Figure 2.1: ECI reference frame

It is note worthy to remember that, since this geocentric system is attached
to the Earth, it is subject to continuous acceleration and, therefore, theoretically
cannot be considered as a proper inertial reference frame. In fact, the Earth orbits
the Sun on its almost circular orbit and in turn the Sun orbits the center of the
Milky Way along an approximately circular path. However, since the accelerations
are relatively small, in this study, as an acceptable approximation, FECI is assumed
to be fixed with respect to the distant stars. Therefore, it is considered acceptable
to treat FECI as an inertial frame.

It should be noted, finally, that the Earth is in rotation with respect to this
reference frame.

2.2.2 Perifocal
This reference frame is the second Earth-centered reference frame that is taken into
consideration in this study. Actually, by definition the Perifocal reference frame
FP is centered on the focus of the analyzed orbit. This focus, however, exactly
coincides with the Earth’s center.

- p̂1, points towards the perigee of the reference orbit;

- p̂3, is normal to the orbital plane, parallel to the angular momentum vector,
and inclined with respect to ê3 by an angle equal to the orbital inclination i;

- p̂2, is advanced by 90 degrees in the direction of orbital motion and completes
the right-handed triad.
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Figure 2.2: Perifocal reference frame

F̂P ≜
[
p̂1 p̂2 p̂3

]T (2.3)
Given the initial Orbital Coordinates - orbit inclination i, eccentricity e, semi-

major axis a, Right Ascension of the Ascending Node Ω (RAAN), argument of
perigee ω, true anomaly ν - this reference frame provides a more straightforward
mean of computing the initial state vector of the system’s Center of Mass (CoM) -
position and velocity at instant zero - enabling a generalizable and easily scalable
analysis with respect to varying orbital conditions.

2.2.3 Local Vertical - Local Horizontal (L)
This is a non-inertial Cartesian Coordinate System (CCS). Specifically, it is an
Orbital Reference Frame centered and oriented according to the instantaneous
position - with respect to the Earth - of the center of mass of the system under
consideration, which, in our case, is the Tethered Satellite System. This reference
frame proves particularly useful, as Earth-Centered Inertial (ECI) frames are well
suited for modeling orbital dynamics, but they are not equally effective when it
comes to describing the relative motion between satellites, which constitutes the
primary focus of our study.

It is defined as follows:
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- ℓ̂1 =
R

∥R∥ , is pointed toward the instantaneous radial direction;

- ℓ̂3 = R×Ṙ
∥R×Ṙ∥ ,perpendicular to the orbital plane and coincident with the direc-

tion of the system’s angular momentum. This direction will be referred to as
the cross-track direction;

- ℓ̂2 completes the right-handed triad as ℓ̂2 = ℓ̂3 × ℓ̂1. This will be referred to
as the along-track direction.

F̂L ≜
[
ℓ̂1 ℓ̂2 ℓ̂3

]T (2.4)

Figure 2.3: Local Orbital Reference Frame

This is the reference frame that will be adopted to analyze and represent the
relative motion between the elements of the model used to represent the Tethered
Satellite System.

Once the reference frames have been introduced, it is now possible to complete the
overview of vector notation and their representation. To this end, let us consider
a generic vector v. The expression of this vector within the ECI reference frame
is the following:

vECI = vECI
x ê1 + vECI

y ê2 + vECI
z ê3 (2.5)

where vECI
x , vECI

y and vECI
z are the components of v along the unit vectors ê1,

ê2, and ê3.
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vECI =
[
v1 v2 v3

]T (2.6)

Recalling the vectrix formulation of the ECI reference frame provided in Equation
2.1, it is possible to write the vector v alternatively as:

vECI = F̂T
ECIv (2.7)

The same vector can be conceptually represented in an analogous manner within
the other two reference frames. For instance, the expression of the vector v in the
Local Vertical - Local Horizontal reference frame FL is the following:

vL = vLx ℓ̂1 + vLy ℓ̂2 + vLz ℓ̂3 (2.8)

The physical quantity represented by the vector remains the same across all ref-
erence frames. However, the vector representations differ depending on the CCS
in which they are expressed. The most intuitive difference arises from the relative
distance with respect to the origin of the chosen reference frame. An equally im-
portant distinction, nevertheless, lies in the rotational relationship between these
reference frames. In the following section, we will examine how to perform trans-
formations between each of these reference systems.

2.3 Rotation Matrices
Rotation matrices represent a fundamental tool for transforming vector quantities
between different reference frames. In many applications, physical quantities are
more easily observed or computed within a specific reference frame; however, for
operational purposes and to ensure consistency across analyses, it is often necessary
to express them with respect to another CCS. This necessity makes the use of
appropriate rotation matrices essential to correctly transform variables between
frames.

Let us consider a generic reference frame FA, represented by the vectrix nota-
tion:

F̂A =
[
â1 â2 â3

]
(2.9)

We can observe the following fundamental properties that arise from the or-
thonormality of its basis vectors:

F̂A · F̂T
A =

â1 · â1 â1 · â2 â1 · â3
â2 · â1 â2 · â2 â2 · â3
â3 · â1 â3 · â2 â3 · â3

 =

1 0 0
0 1 0
0 0 1

 = I3 (2.10)
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F̂A × F̂T
A =

â1 × â1 â1 × â2 â1 × â3
â2 × â1 â2 × â2 â2 × â3
â3 × â1 â3 × â2 â3 × â3

 =

 0 â3 −â2
−â3 0 â1
â2 −â1 0

 (2.11)

Specifically, the dot product of the vectrix with its transpose yields the identity
matrix, reflecting both the orthogonality and the unit norm of the basis vectors.
Similarly, the structure of the cross product reveals the intrinsic right-handedness
of the frame.

Let us now consider once again the generic vector v, whose expression in the
generic reference frame FA can be can be written according to the equation 2.5:

vA = F̂A · v (2.12)

Considering the expression of the same vector in a second, generic reference frame
FB and recalling the equations 2.5 and 2.12:

vB = F̂B · v = F̂B · F̂T
A · vA (2.13)

This final expression, reveals how the vector v expressed in the reference frame FB

is nothing more than the same vector expressed in frame FA, pre-multiplied by a
rotation matrix, which we can identify as:

Rba = F̂B · F̂T
A (2.14)

This notation refers to the rotation matrix which, when pre-multiplied to a vector
expressed in reference frame FA, yields the same vector expressed in FB. It is both
intuitive and demonstrable that the inverse transformation - the conversion from
vB back to vA - can be performed using the rotation matrix:

Rab = F̂A · F̂T
B (2.15)

By elaborating the equations 2.14 and 2.15 the following property, concerning the
relationship between a rotation matrix and the matrix that performs the inverse
rotation, is obtained:

Rab = R−1
ba (2.16)

and, given the orthonormality of the basis vectors:

RT
ba = R−1

ba ⇒ Rab = RT
ba (2.17)

28



Chapter 3

Mathematical Model

This chapter is intended to present the reference mathematical model developed
to analyze the dynamics of the Tethered Satellite System. It has been structured
to progressively introduce the various ingredients required to define the character-
istic equations of motion of the system - starting from the external disturbances
and forces, moving on to the internal forces and tether modeling, and finally ad-
dressing deployment-related issues. This step-by-step approach ultimately leads
to full formulation of the equations by distinguishing between two main modeling
approaches: the discrete model, in which the tether is represented as a chain of
interconnected elements, and the dumbbell model. Throughout the chapter, the
reader is also guided through the procedure that enables the tether to be repre-
sented using either approach.

3.1 Rotating Reference Frame
In the previous chapter reference frames have been introduced, however the behav-
ior of the reference frames themselves has not been explicitly taken into account.
This aspect becomes crucial, especially when dealing with non-inertial reference
frames. In particular, special attention must be paid to the relative rotation be-
tween the reference frames. For example, in our analysis the Local reference frame
FL rotates with respect to the Earth-centered CCS FECI . Such rotation gives rise
to additional terms in both the first and second time derivatives of vector quanti-
ties and we should not neglect this effect in order to formulate the kinematic and
dynamic equations correctly and consistently.

Let us call in action the two generic reference frames used in the previous
chapter, FA and FB, together with the generic vector v. We assume now that FB

is rotating with angular velocity ωba relative to FA: For the sake of simplicity and
clarity for the reader, the following is specified:
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- The notation vA, refers to the vector v expressed in FA;

- The notation vB, refers to the vector v expressed in FB;

Assuming now that the vector v represents the position of a material point P.

- The notation va, refers to the position of P with respect to the origin of FA;

- The notation vb, refers to the position of P with respect to the origin of FB;

- The notation v̇A
a , refers to the velocity of P with respect to the origin of FA

expressed in the reference frame FA;

- The notation v̇B
a , refers to the velocity of P with respect to the origin of FA

expressed in the reference frame FB;

The same considerations apply to the velocity of P with respect to the origin
of FB, v̇b, and later to the accelerations. The relationship between v̇a and v̇b is
given by:

v̇a = v̇b + ωba × vb (3.1)

By further deriving the equation 3.1, we obtain the expression of the second
time derivative:

v̈a = v̈b + ω̇ba × vb + ωba × ωba × vb + 2ωba × v̇b (3.2)

In the last expression, the following inertial terms appear:

- The centrifugal acceleration: 2ωba × v̇b ;

- The Coriolis acceleration: ωba × ωba × vb;

- The Euler acceleration: ω̇ba × vb.

The expressions of these derivatives, which highlight the significance of the effect
of the rotating frame, can be conveniently represented either in the coordinates of
one reference frame or in those of the other.
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Figure 3.1: Rotating reference frames

3.2 Modeling of the external forces

One of the intrinsic challenges of space missions arises from the fact that, once the
launch countdown is completed and the orbital insertion phase of the spacecraft
begins, human intervention and the ability to actively respond to potential ma-
neuvering needs, trajectory deviations, or system malfunctions become virtually
nonexistent - unless such scenarios have been accurately anticipated and studied.
In essence, improvisation and emergency interventions are not viable options in
space operations. Therefore, it becomes immediately evident how crucial it is to
conduct a thorough analysis of the operational environment of the mission and
of all the factors that may perturb the spacecraft’s motion during its operational
phase. Among the perturbative effects that must be accounted for in a space
mission - beyond the dominant gravitational attraction of the central body - are
aerodynamic drag, perturbation of the gravitational potential field, solar radiation
pressure, and third-body gravitational effects.
In this work, based on the chosen altitude and mission application, only the gravita-
tional field perturbations and aerodynamic drag will be considered as disturbances
affecting the system dynamics. The effects of solar radiation pressure and third-
body interactions - specifically with the Moon - will be neglected. The following
subsections will introduce the mathematical formulation of these perturbations,
along with the parameters required for their evaluation.

The notation with the ’ECI’ superscript - vECI - will be omitted in these sub-
sections; however, unless otherwise specified, all quantities presented herein are
intended to be defined with respect to the FECI reference frame.
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3.2.1 Earth’s Gravitational Potential Perturbation
The first perturbation considered is that of the terrestrial gravitational potential.
As a starting point, we present the formulation commonly used when evaluating
the acceleration exerted by a massive body on an orbiting object:

aG = −GM⊕

∥R∥3
R (3.3)

here, G denotes the gravitational constant, M⊕ represents the mass of the Earth,
and R is the position vector from the Earth’s center to the center of mass of
the body under consideration. In this case, the acceleration due to the earth’s
gravitational field is modeled by the gravitational force of a point mass positioned
at the center of the earth. However, this formulation is based on the simplifying
assumption that the attracting body - in this case, the Earth - is perfectly spherical
and has a uniform mass distribution. In reality, the Earth is neither spherical nor
homogeneous, and therefore the expression previously introduced in 3.3 does not
represent the most accurate model. For higher fidelity, especially when analyzing
the motion of bodies in proximity to Earth, it becomes necessary to rely on more
sophisticated models able to account for the gravitational contribution of each
infinitesimal volume element dv, depending on its position and density, according
to the following equation:

aG = −G

∫
ρ(r)
∥R∥3

Rdv (3.4)

where dv is infinitesimal volume element located at position r, and ρ(r) represents
the density of the Earth in the infinitesimal volume element dv.
This work adopts as reference the expression of the gravitational potential for-
mulated using the spherical harmonic analysis and Legendre function [42], [43],
[44].

V (R, ϕ, λ) =
GM⊕

R

∞∑
n=0

n∑
m=0

(
R⊕

R

)n

Pnm(sinϕ) [Cnm cos(mλ) + Snm sin(mλ)]

(3.5)
R⊕ indicates the earth radius, R is norm of the position vector from the Earth’s
center to the center of mass of the body under consideration, ϕ is the latitude, and
λ the longitude.
Specifically, depending on the desired level of precision, one may choose appro-
priate values of degree n and order m, and consequently compute the function
Pnm and the spherical harmonics Cnm and Snm. The general expressions for the
Legendre function Pnm is given as follows:
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Pnm(u) =
1

2nn!
(1− t2)m/2 d(n+m)

du(n+m)
(u2 − 1)n (3.6)

where u is a simple substitution: u = sinϕ.
Spherical harmonics refers to the following set of expressions:

Cnm = (2− δ)
M⊕

Rn
⊕

(n−m)!

(n+m)!

∫
ρ(r) rn Pnm(sinϕ′) cos(mλ′) dr (3.7)

Snm = (2− δ)
M⊕

Rn
⊕

(n−m)!

(n+m)!

∫
ρ(r) rn Pnm(sinϕ′) sin(mλ′) dr (3.8)

here r is again the position of the infinitesimal volume element, and ρ(r) represents
its the density. Finally, δ is defined as follows:

δ =

{
1, m = 0

0, m ̸= 0
(3.9)

Particular attention will be given to the J2 effect, associated with the zonal
harmonic coefficient C20 and accounts for the oblateness of the Earth. Among the
higher-order perturbative components of the gravitational potential, the J2 term
represents the most significant deviation from the ideal spherical model.
Let us now present the derivation of the polynomial and the subsequent transition
from the gravitational potential expression to the corresponding gravity accelera-
tion, expressed in the form that will be employed in our code.The contribution of
the J2 term corresponds to the spherical harmonic component of degree n = 2 and
order m = 0. Legendre functions of degree (m = 0), represent a special case and
are commonly referred to as Legendre polynomials with the following simplified
form:

Pn(u) =
1

2nn!

dn

dun
(u2 − 1)n (3.10)

Specifying the expression in the case of n = 2:

Pn=2(u) =
1

2

(
3u2 − 1

)
(3.11)

For the sake of completeness, it is worth noting that, conventionally, for n = 0:
P0 = 1 and C00 = 1; while for n = 1: P1 = u and C10 = 0.

According to equations 3.5 – 3.11, we thus have the following expression for the
gravitational potential of the Earth:

V (r, ϕ, λ) = −µ⊕

R

[
1− J2

(
R⊕

R

)2
1

2

(
3 sin2 ϕ− 1

)]
(3.12)
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Finally, it is possible to obtain the perturbative acceleration, by computing the
gradient of the potential:

aG = ∇V (3.13)

the final expression is:

ag = − µ⊕

∥R∥3
R+ J2factor

µ⊕

∥R∥3
R (3.14)

where µ⊕ is defined as µ⊕ = GM⊕. All the variable here are to be considered
measured and expressed in the FECI reference frame. The term J2factor is as
follows:

J2factor =
3

2
J2

(
R⊕

∥R∥

)2


5
(

Rz

∥R∥

)2

− 1 0 0

0 5
(

Rz

∥R∥

)2

− 1 0

0 0 5
(

Rz

∥R∥

)2

− 3

 (3.15)

3.2.2 Aerodynamic drag
We now turn to the second perturbation considered in this work. Although the
spacecraft operates beyond the boundaries of the Earth’s atmosphere, it still en-
counters a residual presence of atmospheric particles, especially in low Earth orbits.
Aerodynamic drag thus becomes the most prominent perturbative effect acting on
satellites in such orbits. This is primarily due to the combination of the high
orbital velocities with a low, but still non-negligible, atmospheric density.

To balance physical realism and computational efficiency, a simplified model is
adopted in our simulations to approximate these effects without excessive numer-
ical cost. Therefore, the expression used to compute the acceleration associated
with this perturbation is the following:

aD = −1

2

ρatmCdA

m
v2r v̂r (3.16)

where ρatm is the atmospheric density - evaluated according to the Harris-
Priester model [43] - Cd is the drag coefficient, A is the reference cross-sectional
area of the satellite, m is the satellite mass, and vr is the relative velocity between
the satellite and the surrounding atmosphere. The combination of the orders of
magnitude of the atmospheric density and the orbital velocity results in a residual
acceleration that is not negligible. This acceleration corresponds to a force acting
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in the direction opposite to the motion of the spacecraft. Its primary effects in-
clude a gradual decrease in the semi-major axis and a progressive circularization
of the orbit.
It is important to note that the velocity appearing in the drag expression refers to
the relative velocity. This quantity represents the velocity of the spacecraft with
respect to the atmospheric particles impacting its surface. Its expression is given
by:

vr = v − vatm (3.17)

Indeed, it must be taken into account that the atmospheric particles are not sta-
tionary at the moment of impact; rather, they are rotating along with the Earth,
with a velocity equal to the Earth’s rotational velocity. We have that:

vatm = ω⊕ × R (3.18)

where ω⊕ is the earth’s angular velocity and R is the position vector from the
Earth’s center to the center of mass of the body under consideration.

3.3 Modeling of the internal forces
In order to enable a complete and accurate analysis, especially in systems such as
a TSS, it is fundamental not only to consider the effects of the external factors,
but also to account for the internal forces.
First and foremost, in almost all space systems it is necessary to implement control
forces to ensure the maintenance of the desired position and attitude. These
control forces are classified as internal forces, since they are generated by actuation
mechanisms that are integral part of the system, such as thrusters and reaction
wheels. In addition to these forces, tether tension plays a fundamental role in TSSs
and significantly influences the system dynamics.

Section 1.4.1 provided an overview on the different modeling approaches used
to analyze a TSS and, as previously mentioned, the choice of one model over an-
other directly affects the ability to accurately capture the internal dynamics of
the system. In this thesis, two models were employed for different purposes. The
study and understanding of the system’s dynamics has been entrusted to the dis-
crete model. Subsequently, regarding the study of deployment strategies, an initial
analysis was carried out using the dumbbell model. This choice was motivated by
its simplicity and allowed for a faster and less computationally demanding assess-
ment of the necessary control action; these were subsequently transferred to the
discrete model by extracting and applying the corresponding control accelerations.
Consequently, in this section both tether models will be introduced.
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3.3.1 Tether discrete model
Among the presented alternatives, the lumped-masses model turns out to be the
best compromise between accuracy and computational efficiency. Accordingly, the
choice of reference for interpreting the system’s dynamics falls on this model. In
this section we address the construction process of the model and the represen-
tation of the tether, thereby laying the groundwork for formulating the system’s
dynamic equations. This study is built upon to the discretization process proposed
by Quadrelli [45], [46]. Let us consider the following reference representation for
the system under analysis:

Figure 3.2: Modeling scheme of the tethered satellite system

Delving into details, let us start by specifying that, for the sake of simplicity, the
two satellites at the ends of the tether are modeled as point masses concentrated at
the extremities, but for simplicity of visualization they are represented as squares.
In relation to Figure 3.2, we now introduce the generalized coordinate s. Below,
a representation of a general case is provided. Indeed, the subdivision approach
proposed by Quadrelli is particularly well-suited for describing general system
configurations, including the deployment process, and will prove especially useful
later in the analysis.

s = 0 s = LtotsA sB

Figure 3.3: Schematic representation at a generic instant during the deployment
process

It is important to precise that, as will be discussed later, the system is designed to
be launched in a compact configuration with the tether initially reeled - half within
one satellite and half within the other. In this context, Figure 3.3 becomes easier
to interpret. The coordinate s is simply a material coordinate used to identify the
different portions of the tether. Specifically:
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- the part of tether reeled in spacecraft A at instant t is identified by :

0 ≤ s ≤ sA(t) (3.19)

- the portion of tether reeled in spacecraft B at instant t is identified by :

sB(t) ≤ s ≤ Ltot (3.20)

Ltot is here the total tether length.

- while the part of tether deployed at instant t, ℓ̄(t), is identified by:

sA(t) ≤ s ≤ sB(t) (3.21)

Let us now consider the case in which the tether is fully deployed, which will
also serve as the initial reference case for analyzing and discussing the system’s
dynamics. In this case the reference values are: sA = 0, sB = Ltot and ℓ̄ = Ltot.

sA = 0 sB = Ltot

Figure 3.4: Schematic representation of the fully deployed system

For the purposes of our analysis, we adopt a reference discretization of the tether
into 10 lumped masses. Let us now outline, step by step, the procedure through
which the continuous tether is reduced to a set of N point masses - 10 in our case -
connected by spring-damper elements. First, the tether is divided into N segments
by defining a series of nodes that divide it into equal parts. At the center of mass
of each segment, a point mass is placed, corresponding in value to the mass of that
segment. Each point mass thus represents a portion of the tether. As a result, the
system consists of N lumped masses standing for the tether itself, in addition to
the two satellite masses located at the ends.
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j = 2 j = Ntot − 1

s(i=1) = sA s(i=Nnodes) = sB

Figure 3.5: Modeling and discretization process

Furthermore, Let us now specify for the sake of clarity the following notation:

- Nint indicates the number of the internal lumped masses representing the
tether. Nint = 10 in our reference case. It should be remembered that the
number of lumped masses corresponds to the number of segments N into
which the tether has been divided.

- Nnodes = Nint + 1 refers to the number of nodes used in the discretization
process. In our reference case Nnodes = 11.

- Ntot = Nint + 2 is the total number of masses included in the system model.
Ntot = 12 in our reference case.

- Nthreads is used for the sake of clarity and simplicity to identify the number
spring-damper connective elements.

Before proceeding with the computation of the tension, let us take a further step
into the details of the adopted model. First of all, from this point onward, the
symbol ρj will be used to denote the position vector of each of the just defined
masses with respect to the origin of the local orbital reference frame.
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Figure 3.6: TSS discretized model

Secondly, in order to formulate the equations for the deployment scenario, which
will be addressed later in Section 3.4.1, it is useful, within the current discretization,
to identify the subdivision nodes along the tether. These nodes correspond to
the endpoints of the N segments, and will be indexed using the notation i. In
association with this indexing, we define a dimensionless coordinate ranging from
0 to 1:

ξi =
i− 1

Nnodes − 1
i = 1,2, ..., Nnodes (3.22)

Based on this definition, the coordinate s for each node can be written as follows:

si = sA + ξil̄(t) (3.23)

Moreover, it is now possible to identify each segment as the collection of infinites-
imal tether elements corresponding to the portion of the material coordinate s
between two adjacent nodes, si and si+1. Consequently, the j-th point mass asso-
ciated with that segment can be expressed as:

mj = µt∆sj = µt(si+1 − si) (3.24)

where a relationship between index j and index i can be identified, given by the
following expression: i = j − 1 for j = 2, 3, ..., Ntot. In this formula, µt refers to
the linear density of the tether.

To account for the effects of internal forces, we finally introduce the use of
spring-damper systems as connections between the lumped masses. Each mass is,
in fact, connected to its adjacent ones through a spring-damper system.
Here the index k is used to identify each thread. The force developed within each
k-th spring-damper element can be formulated as follows:
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Tk =

{
K (ϵk + cϵ̇k) τ̂k ϵk > 0 & ϵ̇k > 0

0 ϵk ≤ 0
(3.25)

where K = EA, with E Young’s modulus and A reference cross-sectional area,
while c is a proportionality coefficient such that cK represents the damping coef-
ficient. Finally, τ̂k is the unit vector identifying the direction of the tension. In
addition to material and geometric properties, the strain, the strain rate, and the
orientation of each thread needs to be defined. To obtain the latter quantities, the
following parameters must be considered:

- The undeformed length of the thread:

l̄k =


1
2
Ltot

N
for the external threads ( k = 1, Nthreads)

Ltot

N
for all the internal threads (k = 2, ..., Nthreads − 1)

(3.26)

- The orientation of the thread, given as:

τ̂k =
(ρk+1 − ρk)

∥ρk+1 − ρk∥
k = 1,2, ..., Nthreads (3.27)

- The mechanical stretch lm:

lm,k = ∥ρk+1 − ρk∥ − l̄k k = 1,2, ..., Nthreads (3.28)

- The mechanical stretch rate l̇m, defined as:

l̇m,k = (ρ̇k+1 − ρ̇k) · τ̂k k = 1,2, ..., Nthreads (3.29)

Once this values have been computed it is possible to obtain the strain and the
strain rate, respectively, as:

εk =
lm,k

l̄k
(3.30)

ε̇k =
l̄k l̇m,k − ˙̄lk lm,k

l̄2k
(3.31)

Given the tension in each thread it is important to note that each mass element
experiences the tension force exerted by the spring-damper element on its right
and the tension force exerted by the spring-damper element on its left; except for
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the masses at the two ends of the tether, which are subjected to only one tension
force.
Finally, it is important to emphasize that this formulation deliberately neglects
the compressive capacity of the tether system. Specifically, it is assumed that
the force developed along any segment of the tether instantaneously drops to zero
as soon as a negative strain is detected, i.e., as soon as the segment undergoes
compression. From a physical perspective, this implies that the tether is assumed
to undergo immediate buckling as soon as it experiences a compressive load. This
assumption is consistent with the actual behavior of cables, which exhibit tensile
forces only when stretched and shows no resistance under compression.

3.3.2 Tether dumbbell model
Having access to a fast and low-cost alternative is a significant advantage that
should not be overlooked, particularly in the early stages of analysis or when
testing control strategies. With this in mind, and considering the computational
burden associated with the lumped-masses approach once the deployment phase
is introduced, this section introduces the rod modeling of the Tethered Satellite
System. The difference compared to the previous case is substantial and imme-
diately evident: the system is now reduced - regardless of the tether’s flexibility
and elasticity - to two point masses connected by a rod of infinite stiffness, which
neither bends nor twists.

Figure 3.7: TSS rod model

The reduction in complexity becomes clearly apparent also at the level of the
equations of motion, as will be shown later. In this formulation, the number of
degrees of freedom is drastically reduced when compared to the discrete model: in
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fact, only three coordinates are required to fully describe the state of the system.
Therefore, despite this simplification clearly reduces the level of detail captured, it
provides a useful framework for preliminary studies, enabling rapid development
and testing of deployment strategies and control laws without the computational
burden associated with lumped masses model. In this way, the rod model serves
as a practical compromise, offering insights into the overall system behavior while
maintaining an acceptable level of consistency with the actual mission scenario.

3.3.3 Control forces
To conclude this section, we introduce the concept of control forces. In order to
guide the system from the packed configuration to a desired operational configura-
tion, to enable transitions between different configurations, or to ensure that the
system remains stable once a target configuration is achieved, it is necessary to
provide the system with actuators. In particular, thrusters and reaction wheels
are the subsystems used to act on both the position and attitude dynamics, and
the forces or torques exerted by these actuators must be properly modeled.

As a first step, the analysis will focus exclusively on the control of the sys-
tem’s position. For this reason, reaction wheels and relative torques will not be
considered at this stage.

3.4 Equations of motion for the discrete model
Having addressed all the necessary components - ranging from the basic elements
of the mathematical model to the formulation of internal forces - it is now time to
undertake a deeper investigation of the equations of motion implemented in our
code. The equations of motion are formulated in the FECI reference frame, given
that many of the relevant quantities are defined in this CCS. However the results
illustrating the system’s dynamics will be later presented with respect to the local
orbital frame FL; thus, special attention must be paid to the transformations
between the two main reference frames.

Let us now take into consideration the expression of the position vector of the
j-th mass of the system, ρj.
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Figure 3.8: Main elements of the mathematical model

According to the representation given in Figure 3.8 and to the notation previously
explored:

rj = R + ρj → ρj = rj − R (3.32)

To obtain the kinematic and dynamic equations, it is now sufficient to accurately
differentiate the equation 3.32 in FECI . By performing the first derivation:

ρ̇j,ECI = ṙj,ECI − ṘECI (3.33)

By further deriving this equation, again in the ECI frame:

ρ̈j,ECI = r̈j,ECI − R̈ECI (3.34)

Let us now take a step forward towards the final formulation. We need to integrate
the equations representing the motion of the j-th mass with respect to the local
reference frame FL. Remembering that FL rotates with respect to FECI with
an angular velocity Ω, we can express the time derivatives of ρj in the inertial
reference frame - ρ̇j,ECI and ρ̈j,ECI - as function of the time derivatives of the
same vector in the non-inertial reference frame - denoted by ρ̇j,L and ρ̈j,L. To the
equations 3.33 and 3.34 respectively correspond:

ρ̇j,ECI = ρ̇j,L +Ω× ρj (3.35)
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ρ̈j,ECI = ρ̈j,L +Ω×Ω× ρj + Ω̇× ρj + 2Ω× ρ̇j,L (3.36)
By simply inverting these equations we obtain:

ρ̇j,L = ρ̇j,ECI −Ω× ρj (3.37)

ρ̈j,L = ρ̈j,ECI −Ω×Ω× ρj − Ω̇× ρj − 2Ω× ρ̇j,L (3.38)
And now, by substituting the expression in 3.34 into 3.38:

ρ̈j,L = (r̈j − R̈)−Ω×Ω× ρj − Ω̇× ρj − 2Ω× ρ̇j,L (3.39)
In order to ensure consistency in the analysis, all quantities must be expressed in
the same reference frame, in our case FL:

ρ̈L
j,L = (r̈j − R̈)L −ΩL ×ΩL × ρL

j − Ω̇
L × ρL

j − 2ΩL × ρ̇L
j,L (3.40)

In certain cases, the variables are inherently defined and expressed in the FL

reference frame. In contrast, other quantities - such as the angular velocity, angular
acceleration, and the accelerations of the center of mass as well as of each j-th mass
- are defined and evaluated in the FECI reference frame. Thus, a transformation
is needed, as expressed here:

(r̈j − R̈)L = RL,ECI(r̈j − R̈)ECI (3.41)
and analogously for all quantities defined in the FECI reference frame. Here,
RL,ECI refers to the rotation matrix which pre-multiplied by a quantity expressed
in the FECI frame, yields the same quantity expressed in the FL. It is defined as
follows:

RL,ECI = F̂LF̂T
ECI (3.42)

The inverse transformation, as previously explored in Section 3.1, is easily per-
formed by RECI,L = RT

L,ECI .
At this stage, we still need to specify the accelerations of both the center of

mass and each j-th mass in the ECI reference frame. In the simulations conducted
in this work the Earth’s gravity potential and aerodynamic drag perturbations
have been considered together with the internal forces. We write the acceleration
of the j-th mass as:

r̈j = aG,j + aD,j + Tj + uj (3.43)
Here, Tj is the resultant force from the balance of tensions acting on the mass -
corresponding to the adjacent threads.
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Regarding the center of mass, the corresponding quantities in terms of drag and
gravitational acceleration can also be consistently calculated - excluding tension
forces, whose resultant can be shown to be zero. Alternatively, it is possible to
resort to the definition of Center of Mass:

R̈ =
1∑
j mj

∑
j

mj r̈j → j = 1,2, ..., Ntot (3.44)

Finally, by substituting in 3.40 the equation to be integrated in the code for
each mass assumes the following form:

ρ̈L
j,L = (aG,j+aD,j− R̈)L−ΩL×ΩL×ρL

j − Ω̇
L×ρL

j −2ΩL× ρ̇L
j,L+

Tj

mj

+uj (3.45)

The superscripts L have been added in this final form to specify that the equation
is written in the local reference frame FL.

In the next section, the final step toward the complete formulation of the equa-
tions is taken by introducing the deployment and its effects, as well as specifying
the assumptions adopted.

3.4.1 Deployment’s effect on the equations of motion
As anticipated in the previous sections, the focus of this work will be shifted to-
ward the analysis of the system’s deployment starting from a packed configuration.
In this case, the system evolves from an initial condition where the tether is par-
tially wound around each of the two satellites to a state in which the tether is fully
deployed. The most challenging aspect to handle from the equations’ perspective
is the time variability of the deployed mass. There are essentially two alternatives.
The first assumes a constant mass for each lumped mass element composing the
tether, while considering the number of such lumped masses as variable. The sec-
ond approach, instead, assumes a constant number of elements and allows their
mass to vary. The choice falls on the second alternative for computational sim-
plicity, since it is easier to manage a state vector with a fixed number of variables
rather than having to deal with a state vector whose dimensions change progres-
sively.
In order to maintain the consistency of the analysis it is important to correctly
account for both the mass and length variability, which lead to the appearance
of new terms in the kinematic and dynamic equations - which will be referred to
as ’convective terms’. In particular, the variation of the tether deployed length,
and consequently of the mass distribution, essentially affects the dynamics of the
internal masses and must be correctly accounted for in order to ensure the proper
formulation of the equations of motion.
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Let us now recall the node-based subdivision proposed in 3.5 and apply it to
the case of a generic instant in time:

0 Ltot

s(i=1) = sA s(i=11) = sB

Figure 3.9: TSS modeling at a generic instant

Each of the previously defined material coordinates si is now time-varying. Con-
sequently, the position vector of the j-th mass ρj will vary over time not only as
a result of the orbital dynamics, but also as a function of the evolution of the s
coordinate.

ρj(s(t), t) (3.46)
Let us now differentiate with respect to time the latter expression. Unlike the case
of a constant tether length, we have:

ρ̇j(s(t), t) =
d

dt
(ρj(s(t), t)) =

∂ρj

∂t
+

∂ρj

∂s

∂s

∂t
(3.47)

By appropriately developing the final expression in 3.47, the new kinematic equa-
tion is obtained:

ρ̇j =
∂ρj

∂t
+

1

l̄∆ξ

[
dsA
dt

r̃(ξ, t) +
dl̄

dt
ξr̃(ξ, t)

]ξj
ξj−1

(3.48)

Taking a step forward, according to the Newton’s second law:

Fext,j =
dpj

dt
=

d(mjρ̇j)

dt
= mj

dρ̇j

dt
+ ρ̇j

dmj

dt
(3.49)

where, Fj is the vector of the resultant forces acting on the system, pj is the linear
momentum of the j-th mass, and mj its mass. By inverting the last equation and
isolating the acceleration term:

d2

dt2
(ρj(s(t), t)) =

Fext,j

mj

− ρ̇j
ṁj

mj

(3.50)

A proper development of this formulation yields the final form of the dynamic
equation:

ρ̈L
j,L = (aG,j + aD,j − R̈)L − ILterms,j + CL

D,terms,j +
TL

j

mj

+ uL
j (3.51)
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For compactness, the following terms have been introduced: Iterms,j that contains
the contributions arising from the rotational inertial effects, CK,terms,j who repre-
sents the convective term of the kinematic equation, and CD,terms,j which comprises
the convective terms of the dynamic equation.

Iterms,j = Ω×Ω× ρj + Ω̇× ρj + 2Ω× ρ̇j,L (3.52)

CK,terms,j =
1

l̄∆ξ

[
dsA
dt

r̃(ξ, t) +
dl̄

dt
ξr̃(ξ, t)

]ξj
ξj−1

(3.53)

CD,terms,j = −ṁj

mj

ρ̇j,L +
µt

mj

[
dsj
dt

ṽ(sj, t)−
dsj−1

dt
ṽ(sj−1, t)

]
(3.54)

We can specify here that r̃ and ṽ refer, respectively, to the position and velocity of
the nodes si. These positions and velocities correspond to points whose dynamics
are not integrated into the system. They are obtained using a finite element
approximation that relies on the positions and velocities of the lumped masses,
according to which:

r̃ = r̃(s(ξj), t) =
1

2
(ρj + ρj+1) (3.55)

ṽ = ṽ(s(ξj), t) =
1

2
(ρ̇j + ρ̇j+1) (3.56)

It should be recalled here that the index j refers to the masses that actually
compose our model, whereas the index i refers to the nodes used to subdivide the
tether. However, for the sake of clarity the equations written in these section rely
solely on the index j. It is possible, nevertheless, to identify a relationship between
the two indexes: each of the j-th internal mass (j = 2,3, ..., Ntot − 1) is preceded
by a node si whose index i is equal to j − 1 and followed by a node whose index
i+ 1 is equal to j.

Regarding the end masses it is necessary to account for the mass of the satellite
itself and for the mass of the portion of tether coiled inside the satellite. Con-
sequently as the tether is deployed, the end masses decrease. Accordingly, the
equation of motion for j = 1 and j = N should be changed by adding a term that
accounts for the variation in satellite mass. However, given the order of magni-
tude of the tether mass compared to that of the satellite itself, it is considered a
reasonable approximation to leave the equations unchanged, without introducing
additional terms. The kinematic and dynamic equations, for j = 1 and j = Ntot,
are therefore as follows:

ρ̇L
j =

dρL
j

dt
(3.57)
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ρ̈L
j,L = (aG,j + aD,j − R̈)L − ILterms,j −

ṁj

mj

ρ̇j,L +
TL

j

mj

+ uL
j (3.58)

Let us now specify a few assumption that were made during the writing of the
code. First of all the system is destined to be used only in circular or near cir-
cular orbit. Thus, in the orbital parameters the eccentricity e is allowed to vary
between 0 and 0.01. Considering such values it is reasonable to assume negligible
the Euler contribution in the inertial terms (3.52), since Ω̇ ≃ 0 is accepted to be a
correct approximation. Secondly, it is important to precise that the control action
can be applied only on the satellites at the extremities of the tether. While the
lumped masses conceptually also represent the small antenna elements composing
the space-based radar sounder, these sensors are too small to be treated as inde-
pendent satellite entities capable of housing an internal control system. Finally,
the mass of the tethered lumps neglects the weight of the actual remote sensing
system, as defining this mass falls entirely outside the scope of this study.

Given this assumptions we can now rewrite the final form of the equations of
motion integrated in the code for each of the masses of the system. For the two
end masses the equations are:

ρ̇L
j =

dρL
j

dt
(3.59)

ρ̈L
j,L = (aG,j + aD,j − R̈)L − ILterms,j + CL

D,terms,j +
TL

j

mj

+ uL
j (3.60)

while for the Nint lumped masses representing the tether, the kinematic and dy-
namic equations are given as follows:

ρ̇j =
∂ρj

∂t
+ CK,terms,j (3.61)

ρ̈L
j,L = (aG,j + aD,j − R̈)L − ILterms,j −

ṁj

mj

ρ̇j,L +
TL

j

mj

(3.62)

where:

Iterms,j = Ω×Ω× ρj + 2Ω× ρ̇j,L (3.63)

CK,terms,j =
1

l̄∆ξ

[
dsA
dt

r̃(ξ, t) +
dl̄

dt
ξr̃(ξ, t)

]ξj
ξj−1

(3.64)

CD,terms,j = −ṁj

mj

ρ̇j,L +
µt

mj

[
dsj
dt

ṽ(sj, t)−
dsj−1

dt
ṽ(sj−1, t)

]
(3.65)
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As will be better specified in the next chapter - specifically in Section 4.1.1 -, the
code is structured in a way that the user can specify in the initialization phase the
type of analysis to be conducted leading to the activation - or not - of the different
terms in the equations of motion.

Finally, the system of Ordinary Differential Equations can be written in a com-
pact form as follows:

Ẋ =



ṘECI

R̈ECI

ρ̇L
1,L

ρ̈L
1,L

...
ρ̇L
j,L

ρ̈L
j,L

...
ρ̇L
Ntot,L

ρ̈L
Ntot,L



=



ṘECI = dRECI

dt
R̈ECI = 1∑

j mj

∑
j mj r̈j

ρ̇L
1 =

dρL
1

dt

ρ̈L
Ntot,L

= (aG,Ntot + aD,Ntot − R̈)L − ILterms,Ntot
+ CL

D,terms,Ntot
+

TL
Ntot
mj

+ uL
Ntot

...

...
ρ̇j =

∂ρj

∂t
+ CK,terms,j

ρ̈L
j,L = (aG,j + aD,j − R̈)L − ILterms,j − ṁj

mj
ρ̇j,L +

TL
j

mj

...

...

ρ̇L
Ntot

=
dρL

Ntot
dt

ρ̈L
Ntot,L

= (aG,Ntot + aD,Ntot − R̈)L − ILterms,Ntot
+ CL

D,terms,Ntot
+

TL
Ntot
mj

+ uL
Ntot


(3.66)

3.5 Equations of motion for the dumbbell model
The difference in the modeling of the system inevitably extends to the equations
of motion, where, as previously mentioned, the simplification becomes once again
evident. The common thread linking the two formulations lies in the fact that
the dynamics of the TSS are interpreted with respect to the local reference frame
centered on the center of mass. Nevertheless, the resulting mathematical structure
assumes a completely different form, reflecting the different assumptions adopted.

Let us first of all recall the system’s representation given in 3.7 and place it
within the global reference frame identifying at the same time the elements required
for the formulation of the equations of motion.
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Figure 3.10: Rigid tether model

This figure includes the coordinates required to describe the state of the TSS
in the dumbbell model. Three of these coordinates are related to the orbit: the
orbital radius R, the latitude of the Center of Mass θ and its altitude δ. The other
three are directly related to the tether: the tether length L, the in-plane angle ϕ
and the out-of-plane α. Based on these coordinates - referred to as generalized
coordinates - , the first step is to formulate and define the position vectors of the
two satellites in the global reference frame.

R1 =
(
R cos θ + L

2
cosα cos(ϕ+ θ)

)
ê1

+
(
R sin θ + L

2
cosα sin(ϕ+ θ)

)
ê2

+
(
R sin δ + L

2
sinα

)
ê3 (3.67)

R2 =
(
R cos θ − L

2
cosα cos(ϕ+ θ)

)
ê1

+
(
R sin θ − L

2
cosα sin(ϕ+ θ)

)
ê2

+
(
R sin δ − L

2
sinα

)
ê3 (3.68)

This represents the starting point for determining the kinetic and potential energy
terms, which are then used within a Lagrangian formulation leading to the final
form of the equations of motion.
As the end masses are modeled as point masses, the kinetic energy of the system
accounts only for to the translational motion of the two bodies. Hence, it can be
written as:
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Ek =
1

2
m1∥Ṙ1∥2 +

1

2
m2∥Ṙ2∥2 (3.69)

The gravitational potential energy is simply given by the contribution of the two
end masses interacting with the Earth’s gravity field, and can be written as:

Ep = −µ⊕m1

∥R1∥
− µ⊕m2

∥R2∥
(3.70)

Finally, to formulate the equations of motion it is sufficient to define the Lagrange
function and substitute it into the Lagrange equations:

L = Ek − Ep (3.71)

d

dt

(
∂L

∂q̇i

)
− ∂L

∂qi
= Qi, (3.72)

where qi is the generalized coordinate and Qi is the generalized force.
By performing this derivation for each of the generalized coordinates, a set

of differential equations describing the system’s dynamics is obtained. In this
section, the transition from the set of six time-dependent differential equations to
a set of three equations with respect to the true anomaly is omitted; nevertheless,
by carrying out this change of variable, the final formulation can be expressed as
follows:

ϕ′′ = 2(ϕ′ + 1)

(
e sin ν

1 + e cos ν + ϕ′ tanα− L′

L

)
− 3

2

sin 2ϕ

1 + e cos ν (3.73)

α′′ =
2e sin ν

1 + e cos να
′ − 2

L′

L
α′ − 1

2

(
(ϕ′ + 1)2 +

3 cos2 ϕ
1 + e cos ν

)
sin 2α (3.74)

L′′ =
2e sin ν

1 + e cos νL
′ + L

(
α′2 + (ϕ′ + 1)2 cos2 α +

3 cos2 ϕ cos2 α− 1

1 + e cos ν

)
(3.75)

This set of equations corresponds to a set of assumptions in which the tether’s
mass is considered negligible, and therefore its contribution to the kinetic and
potential energy terms is ignored. If the tether’s mass were to be included, only
a few additional terms and minor modifications of some coefficients would be re-
quired; however, the overall system dynamics would remain essentially unchanged.
Similarly, all energy contributions related to external disturbances - such as solar
radiation, aerodynamic drag, and electrodynamic forces, as well as gravitational
perturbations caused by the Earth’s oblateness - are considered negligible. This
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last assumption is considered to be acceptable for the use of this model, as it is
intended solely for a preliminary analysis.

Regarding the implementation of the deployment, it is sufficient to impose the
desired law in terms of L̇(t). Finally, as done in the previous section, the system
of Ordinary Differential Equations is reported in compact form:

Ẋ =



ϕ̇

ϕ̈
α̇
α̈

L̇

L̈

 =



ϕ′ = dϕ
dν

ϕ′′ = 2(ϕ′ + 1)
(

e sin ν
1+e cos ν + ϕ′ tanα− L′

L

)
− 3

2
sin 2ϕ

1+e cos ν
α′ = dα

dν

α′′ = 2e sin ν
1+e cos να

′ − 2L′

L
α′ − 1

2

(
(ϕ′ + 1)2 + 3 cos2 ϕ

1+e cos ν

)
sin 2α

L′ = dL
dν

L′′ = 2e sin ν
1+e cos νL

′ + L
(
α′2 + (ϕ′ + 1)2 cos2 α+ 3 cos2 ϕ cos2 α−1

1+e cos ν

)


(3.76)
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Chapter 4

Numerical Simulation

The main stage in the analysis of space system dynamics is the development of ded-
icated software for the simulation of the system’s behavior. Such software enables
the correct implementation of the mathematical model and provides a means to
extract and interpret the solutions it can deliver. These systems are usually rather
complex, often involving a large number of equations to be integrated - equations
that, as in our case, may also be stiff. The objective at this stage is therefore to
design a code capable of consistently integrating the differential equations that
govern the evolution of the system’s state, ensuring the required accuracy while,
at the same time, minimizing as much as possible the computational cost.

In this chapter, following the previous ones in which the system under analysis
and the mathematical tools adopted to describe it have been introduced, the ar-
chitecture of the code developed in MATLAB for the study of the dynamics of the
Tethered Satellite System is presented. Following the initialization of the system
parameters and orbital conditions, the code integrates the differential equations
governing the system’s motion, consistently accounting for both the internal dy-
namics and the external perturbations - depending on the tether model selected.
Then, to facilitate a comprehensive understanding of the system behavior, the
output data of the simulation are subsequently processed through a dedicated
post-processing framework. This phase allows for the extraction of key indicators
and the elaboration of graphical representations, such as for relative positions and
velocities, or in-plane and out-of-plane angles.
It is noteworthy to highlight that code structure also facilitates the scalability,
enabling the analysis of the system under different configurations and scenarios.
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4.1 Code Structure
An intelligent structuring of the code allows each phase of the analysis to be
examined independently, in a manner that is both simple and intuitive. The
code can be decomposed into three main parts, within which different functions
are called to execute specific tasks, ensuring ease of maintenance throughout the
simulation workflow. It should be noted that in this section the discussion refers
exclusively to the use of the discrete model; however, the basic structure remains
the same for the dumbbell model, with a significant reduction in the complexity
of each stage.

4.1.1 Initialization
First of all, the user can define the various available simulation options. This begins
with the input of the initial data required to determine the state vector under the
initial conditions: the orbital parameters. By defining the orbital parameters, the
reference orbit that the system’s center of mass is intended to follow, as well as its
initial position along this orbit, are determined. This also establishes the position
of the Local Orbital Reference Frame FL. During this phase, it is also necessary
to specify the configuration in which the system is to be studied, as well as the
model to be used to study the system’s dynamics and, eventually, the number of
lumped masses used to discretize the tether. This completes the second step in
the formulation of the initial state vector: it is now possible to define the position
and velocity, within the local reference frame, of each mass composing the system
in the case of the lumped-masses model. The state vector assumes the following
form:

X =


Xcm

X1

X2
...

XNtot

 (4.1)

here the state of each mass is composed by six elements:

Xj =
[
xj yj zj ẋj ẏj żj

]T (4.2)

The size of this vector is directly proportional to the number of lumped masses
considered. Specifically, the first six elements represent the state - in terms of
position and velocity - of the system’s Center of Mass with respect to the Earth
in the FECI reference frame, while each of the masses representing the tether
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corresponds to six elements describing its position and velocity relative to the
Center of Mass in the local reference frame FL, for a total of 6+6N state variables.
For clarity during the various stages of the simulation, once the details regarding
the configuration and the number of lumped masses for the tether have been
provided, two indexing vectors are generated. These vectors allow the positions
and velocities of the individual masses to be extracted separately, yielding the
following vectors:



x1

y1
z1
x2

y2
z2
...
xN

yN
zN





ẋ1

ẏ1
ż1
ẋ2

ẏ2
ż2
...
ẋN

ẏN
żN


(4.3)

These index vectors allow to accurately assign and extract the state of each in-
dividual mass, a step that proves useful throughout all stages of the analysis,
from initialization to integration and post-processing. Furthermore, during the
initialization all the necessary data and parameters - ranging, for example, from
the initial mass values to the specific perturbation coefficients - are defined and
collected into a single structure array, which is then passed to the integrator.

Finally, it is possible to specify the type of analysis to be conducted. This
includes selecting which of the previously introduced perturbations to account for,
defining the number of orbital periods over which the system will be simulated,
and deciding whether to investigate the transition from the compact configuration
to the fully deployed state or, alternatively, to focus on the dynamics and stability
at a fixed deployed tether length. Furthermore, the user is required to select which
deployment strategy is to be adopted, and whether or not active control should
be included, specifying also which of the available controllers is to be employed.
Similarly, it is also necessary to specify which analyses are to be included during
the post-processing stage.

In the case of the dumbbell model, this initialization is again simpler, since it is
sufficient to know the desired configuration and the tether parameters to establish
the initial state vector.
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4.1.2 Integration
The second phase starts by passing all the variables defined during initialization
to the integration function through a structure array. The use of structure arrays
ensures both compactness and clarity, and the same approach is adopted for the
storage of output parameters. The integration function constitutes the core of
the code, as it performs the numerical integration of the system dynamics and
provides, as output, the time evolution of the state vector. Within this phase,
all the necessary functions are activated to compute the accelerations governing
the dynamics of the Tethered Satellite System. These include contributions from
external perturbations, inertial terms, and, in the case of deployment, convective
terms, as well as possible control accelerations. In this way, the complete set of
differential equations that govern the system’s motion is formulated and integrated.

These derivatives,- equal in number to the system states and corresponding
to the time derivative of the state vector itself - are then integrated using the
variable-step numerical integration algorithms provided by the coding environ-
ment. The choice of integration algorithm is particularly significant for problems
characterized by complex dynamics; in this work, the MATLAB integrator ode113
has been adopted as the reference. Such integrators are designed to integrate the
differential equations from time zero to the final time specified by the user during
the initialization phase, employing a variable number of steps that automatically
adapt to the stiffness of the equations being solved. By default, MATLAB stores
all integration steps performed. In our case, however, given the dimension of the
state vector, the stiffness of the ODEs, and the upper limits imposed on matrix
sizes within MATLAB, it was necessary to restrict the number of stored steps by
explicitly specifying the time instants to be saved. However, this adjustment does
not compromise the accuracy of the integration; it only reduces the frequency with
which the data are stored.

Each iteration, furthermore, begins by computing the position and orientation
of the local reference frame from the data contained in the first six state variables -
those associated with the center of mass - before proceeding with the calculations
required to determine the relevant accelerations. Once all iterations are completed,
the output of this phase consists of a vector containing the time instants and a
matrix containing the corresponding state evolution. In this way, the complete
time history of the system state is obtained, from the initial instant to the final
time specified. These data, appended to the input structure array, serve as the
basis for the post-processing phase.

4.1.3 Post-processing
The integration phase is the most computationally demanding. However, it is as
central as it is sterile if not followed by a post-processing phase capable of giving
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concrete form to the obtained results. The purpose of this section, therefore, is
to generate plots that allow for a clear and intuitive visualization of the system’s
dynamic evolution. Furthermore, this phase serves to verify the correctness of the
implemented equations and the simulation itself. Among other checks, it ensures
compliance with fundamental physical principles, such as the conservation laws,
the work-energy principle, but also the cancellation of the net tether forces acting
on the center of mass and of convective terms, all of which correspond to internal
forces.

After completing the post-processing of the data, the primary outputs are rep-
resented through the following plots:

- Evolution with respect to time of radial, along-track and across-track position
of different bodies, represented with respect to the center of mass of the
system;

- Evolution with respect to time of radial, along-track and across-track velocity
of different bodies with respect to the center of mass of the system;

- Evolution with respect to time of total tether length;

- In the case where the system is controlled, the evolution of forces acting on
each satellite.

In conclusion, a schematic representation of the code structure, as described in
this section, is presented below.

Figure 4.1: Schematic representation of the code’s structure
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Chapter 5

Numerical Results

Once the theoretical framework has been established - with the definition of the
mathematical tools, the formulation of the equations, and the implementation of
the simulation code - it is now time to perform the actual simulations. In order to
do so, this chapter presents in detail the system under investigation, providing its
reference data and parameters and then moving forward towards the presentation
of the first indicative results, that are reported to offer a preliminary interpretation
of the system’s dynamics. By observing the simulated dynamics, it becomes possi-
ble to assess the effects of external perturbations, internal forces, and generally the
system’s response under different operating conditions. First, the natural dynam-
ics of the system are examined, offering a baseline picture of its orbital behavior
in the absence of deployment maneuvers and providing an insight into the inher-
ent tendencies of the system. Each of the known configurations will be analyzed,
thereby, confirming which one tends to exhibit stable behavior and which, on the
contrary, proves to be naturally unstable. In the second stage, attention shifts to
the deployment phase, where the system’s modeling and simulation are subjected
to an additional level of complexity. The results presented in this chapter, there-
fore, represent a first step towards the understanding of the TSS dynamics, which
is essential for the subsequent design and implementation of control strategies.

5.1 Simulation set-up
Delving into a more specific section, the selection of the system to be analyzed and
the orbital parameters are guided by the initial motivation behind this research:
the use of a tethered satellite system - in a cross-track configuration - for space
based radar sounding. Thus, in this section, the Tethered Satellite System un-
der analysis, its defining characteristics, and the orbital conditions chosen for the
simulation are presented. Subsequently, the first results obtained are illustrated,
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providing the reader with an understanding of the system’s behavior in different
scenarios, both in terms of configuration and deployment process. As a final re-
mark, it is important to highlight that the analysis reported here relies on the
lumped-masses model.

As a first instance we specify the orbital parameters that determine the position
the Local Orbital Frame FL - centered on the system’s Center of Mass:

Orbital Parameters Values Unit
Right Ascendind of the Ascensione Node (RAAN) 0 [deg]
Inclination (i) 0 [deg]
Semi Major Axis (a) 6578.5 [Km]
Eccentricity (e) 0 [-]
Argument of Periapsis (w) 0 [deg]
True Anomaly (ν) 0 [deg]

Table 5.1: Orbital Parameters

These data are, first of all, used to determine the Perifocal Frame FP associated
with the system’s orbit. Within this frame, the initial position and velocity of the
system’s Center of Mass relative Earth are established, and subsequently trans-
formed into the ECI reference frame. Secondly, the orbital parameters serve as
essential inputs for defining the characteristics of the surrounding environment,
particularly the drag-related parameters Cd and ρ. In this study, however, this
aspect is not investigated in detail, and standard values for these parameters are
assumed. In particular, Cd is taken as a constant equal to 2, and ρ is considered
constant as well, estimated from a reference table of the Harris-Priester model [43].

Satellite A Satellite B
Mass (m) 100 [Kg] 100 [Kg]
Surface (S) 1 [m2] 1 [m2]

Table 5.2: Satellites Parameters

Table 5.2 presents the data for the two main satellites. In addition, the tether data
are included in the table 5.3.
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Values Unit
Length (Ltot) 1000 m
Diameter (d) 1.7 mm
Linear density (ρT ) 10 Kg/Km
Young Modulus (E) 20.844 GPa
Damping (c) 47.312 Ns
Lumped masses number 10 [-]

Table 5.3: Tether Parameters

These values are based on the same parameters employed by Quadrelli and Loren-
zini in their analysis of a Kevlar tether [47].

Values Unit
Mass (m) 1 Kg
Surface (S) 0.17 m2

Table 5.4: Lumped masses Parameters

It should be noted that, in this study, the analysis simulates a space-based radar
sounding system composed of arrays of small sensors connected by a structural
tether. In this context, the lumped masses of the tether are also considered to
physically represent the system’s sensors. From the perspective of the equations
of motion, they are treated as point masses. However, for the definition of certain
accelerations - such as drag acceleration, or effects like solar radiation pressure,
which is not considered here - it is necessary to assign a physical shape to these
masses. Accordingly, the lumped masses are assumed to be cubic, and their char-
acteristic parameters vary with the changes in the system. Specifically the varia-
tion is associated with the evolution of the tether’s deployed length and thus the
tether’s deployed mass. The relevant parameters, namely mass and surface area,
are expressed as functions of the deployed tether length as follows:

mj = ρT∆ξjl (5.1)

Sj = ∆ξjld (5.2)

5.2 TSS free dynamics propagation
In this section, in order to provide a concise overview of the intrinsic dynamic be-
havior of a TSS - when subject exclusively to environmental perturbations, without
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the influence of control actions - we present the results of a simulation carried out
for the case of a fully deployed tether kept at a fixed length . All the perturba-
tions previously introduced are considered, while the system is left in free evolution.
Consequently, no convective terms arise, since no mass flow is present along the
tether. The simulations have been performed over two orbital periods for each
of the three reference configurations of a tethered system, which will be better
illustrated in the following subsections.

5.2.1 Radial Configuration
In the radial configuration, the system deploys the tether along the radial direc-
tion, corresponding to the unit vector ℓ̂1 of the local reference frame FL (2.2.3). A
schematic representation is provided below to facilitate visualization of the config-
uration.

Figure 5.1: Illustrative representation of the radial configuration

In this case, the initial coordinates in the local reference frame that describe the
positions of the two satellites are given by:

ℓ̂1 (xL) ℓ̂2 (yL) ℓ̂3 (zL)
Satellite A 500 0 0
Satellite B −500 0 0

Table 5.5: Reference coordinates for the radial configuration

All the lumped masses representing the tether are consistently arranged along the
line connecting the two end satellites.

Once the system’s dynamics have been simulated, post-processing allows for
the generation of plots that illustrate the evolution of each mass’s position over
time. These plots provide a clear visualization of the time history of the three
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coordinates of each mass, expressed relative to the system’s Center of Mass within
the local reference frame FL.

Figure 5.2: Radial configuration: evolution of the x–coordinate (ℓ̂1)
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Figure 5.3: Radial configuration: evolution of the y–coordinate (ℓ̂2)

Figure 5.4: Radial configuration: evolution of the z–coordinate (ℓ̂3)
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As shown by the plots, each mass maintains an almost constant position. This
configuration is, in fact, the naturally stable arrangement for tethered satellite
systems. This stability originates from the gravity-gradient effect: the satellite
closer to the Earth is attracted more strongly than the one farther away. The
resulting net force keeps the tether under tension, thereby ensuring that the relative
distances between the masses remain constant.
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5.2.2 Along-track Configuration
In this configuration, the tether is deployed along the direction of motion of the
system’s Center of Mass, namely the along-track direction identified by the unit
vector ℓ̂2 of the local reference frame FL (2.2.3).

Figure 5.5: Illustrative representation of the along-track configuration

In this case, the coordinates that describe the positions of the two satellites in the
local reference frame are the following:

ℓ̂1 (xL) ℓ̂2 (yL) ℓ̂3 (zL)
Satellite A 0 500 0
Satellite B 0 −500 0

Table 5.6: Reference coordinates for the along-track configuration

Once again, the lumped masses representing the tether are arranged along the
line connecting the two end satellites. The system dynamics are illustrated in the
following plots:
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Figure 5.6: Along-track configuration: evolution of the x–coordinate (ℓ̂1)

Figure 5.7: Along-track configuration: evolution of the y–coordinate (ℓ̂2)
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Figure 5.8: Along-track configuration: evolution of the z–coordinate (ℓ̂2)

The along-track configuration is inherently unstable. As can be inferred from
the plots, the system immediately begins to oscillate with respect to the direction
of the angular momentum vector. In principle, the system exhibits a restoring
tendency toward its naturally stable equilibrium, namely the radial configuration,
although this attempt proves unsuccessful, with the dynamics persisting in oscil-
lations between the two configurations
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5.2.3 Cross-track Configuration
Finally, the configuration that will receive the greatest attention is the cross-track
configuration. In this case, the tether is deployed in the direction perpendicular to
the orbital plane, parallel to the unit vector ℓ̂3 of the reference frame FL (2.2.3).

Figure 5.9: Illustrative representation of the cross-track configuration

The initial positions of the satellites are thus described by the following coordi-
nates:

ℓ̂1 (xL) ℓ̂2 (yL) ℓ̂3 (zL)
Satellite A 0 0 500
Satellite B 0 0 −500

Table 5.7: Reference coordinates for the cross-track configuration
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Figure 5.10: Cross-track configuration: evolution of the x–coordinate (ℓ̂1)

Figure 5.11: Cross-track configuration: evolution of the y–coordinate (ℓ̂2)
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Figure 5.12: Cross-track configuration: evolution of the z–coordinate (ℓ̂3)

Even in this case, the instability of the system is readily observable. This
behavior can be demonstrated even in the absence of perturbative accelerations.
Specifically, the masses in this configuration tend to behave as independent satel-
lites on slightly inclined orbits relative to each other. The inclusion of perturbative
accelerations merely amplifies this behavior, further reducing the system’s overall
stability. From the plots presented in the previous two subsections, it can be ob-
served that the instabilities - primarily affecting the along-track and cross-track
configurations - are not limited to small deviations from the ideal positions. For
instance, by simulating the cross-track configuration over a longer duration - five
orbital periods - it becomes evident, as shown in 5.15, how the system’s motion is
progressively altered and increasingly dominated by the perturbations.
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Figure 5.13: Cross-track configuration: evolution of the x–coordinate (ℓ̂1) over
5 periods

Figure 5.14: Cross-track configuration: evolution of the y–coordinate (ℓ̂2) over
5 periods
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Figure 5.15: Cross-track configuration: evolution of the z–coordinate (ℓ̂3) over
5 periods

The cross-track configuration presents the greatest challenges and, at the same
time, plays a central role in the application around which this thesis is developed.
Recently, Aliberti [27]. conducted a study demonstrating the possibility of stabiliz-
ing the system in the cross-track configuration, primarily proposing two strategies.
The first strategy relies on aerodynamic surfaces and takes advantage of resid-
ual atmospheric particles to generate lift, thereby maintaining the tether under
tension. The second strategy, instead, is based on a Tethered Satellite System
spinning around its center of mass, generating the necessary tension through the
centrifugal force induced by the rotation.
Up to this point, a preliminary overview of the basic dynamics of the tethered
satellite system under analysis has been provided. With the reference to the pre-
viously explored stabilization techniques for the desired final configuration also
established, we can now turn our attention to the process that brings the system
into its operational state: the deployment.
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5.3 TSS free deployment analysis

Once the feasibility of maintaining a stable tether in the cross-track configuration
has been confirmed, the next step is to identify the optimal strategy for transition-
ing from the packed configuration to the fully deployed cross-track configuration.
In a preliminary analysis, all possible alternatives are considered, ranging from
the most intuitive approach—deploying the tether directly along the cross-track
direction—to more creative solutions, such as deploying along the radial or along-
track directions followed by a specifically designed reconfiguration maneuver to
bring the system from one of the aforementioned configurations to the target con-
dition. Thus, in this section the general characteristics of deployment control
within our model are presented, along with the first generic results illustrating the
system’s behavior during free propagation - in the absence of control forces - of
the deployment along each of the three reference configurations.

Sections 3.3.1 and 3.4.1 provide information regarding the model used to rep-
resent the tether and how it is exploited in the study of deployment. First, it
should be noted that this work does not consider the physical mechanism of de-
ployment itself; rather, the focus is placed solely on the rate at which the tether
is released. Additionally, as previously specified, it is assumed that in the initial
packed configuration the tether is coiled equally between the two leader satellites
of the formation. Consequently, the transition to the fully deployed configuration
occurs by progressively increasing the portion of tether exposed until the entire
available length is released. In this model - based on the approach proposed by
Quadrelli [45]- this process is implemented by assigning time-varying profiles to the
coordinates sA and sB. Let us recall that sA and sB are the material coordinates
identifying the positions of the leader satellites along the tether, and indirectly
represent the portions of tether coiled within these satellites.

0 Ltot

s(i=1) = sA s(i=11) = sB

Figure 5.16: TSS modeling at a generic instant

Imposing a time-varying law on these coordinates thus constitutes the actual im-
plementation of a deployment law, which quantifies the rate at which the tether
is released and the speed at which the deployed portion of the tether increases.

Specifically, the preliminary deployment law used in the initial simulations of
the system’s deployment is presented below [16].
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ṡA(t) = −0.0643 [m/s] (5.3)

ṡB(t) = +0.0643 [m/s] (5.4)

l̇(t) = ṡB(t)− ṡA(t) (5.5)

The deployment rate was set according to a linear deployment law, in which the
release speed gradually decreases as the tether is progressively deployed. The fol-
lowing presents the satellites material coordinates profile along with the evolution
of the tether’s deployed length.

Figure 5.17: Time evolution of the material coordinates describing the position
of the satellites along the tether
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Figure 5.18: Time evolution of the tether length

According to the deployment law just presented, the following subsections aim
to provide the reader with an understanding of the TSS behavior during the de-
ployment in the three configurations previously introduced. Before proceeding, it
should be noted that the deployment evolution is studied starting from a condition
in which the tether is already partially deployed. Specifically, the initial conditions
from which the simulations begin are as follows:

Values
Initial tether length 100 [m]
Final tether length 1000 [m]
Tether deployment rate 0.1286 [m/s]

Table 5.8: Deployment’s initial and target conditions

5.3.1 Radial Configuration
Let us begin with the radial configuration. The plots are presented below.
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Figure 5.19: Radial configuration: evolution of the x–coordinate (ℓ̂1)

Figure 5.20: Radial configuration: evolution of the y–coordinate (ℓ̂2)
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Figure 5.21: Radial configuration: evolution of the z–coordinate (ℓ̂3)

The dynamics have been simulated over two orbital periods. In the case of
the radial configuration, the results show an interesting tendency of the system to
progress toward a complete tether deployment, mainly favored by the gravitational
gradient effect. This can be regarded as a positive feature compared to the other
configurations. At the same time, however, the system displays a very high level
of instability, manifested on one side by strong oscillations along ℓ̂1 (xL) the axis,
and on the other by a progressive loss of stability along the ℓ̂2 (yL) direction.

5.3.2 Along-track Configuration
The evolution of the dynamics of the masses during the deployment in the along-
track direction is reported in Figures 5.22, 5.23 and 5.24.

As can be observed from these results, the imposition of a control law on the
tether release velocity once again ensures that the tether length increases success-
fully. However, in addition to the slower rate at which full deployment is achieved,
the system also falls into the same oscillatory motion around the ℓ̂3 (zL) axis that
characterizes the along-track configuration discussed in 5.2.2. This confirms, once
more, that such oscillations represent the key effect to be overcome in order to
stabilize the system under these conditions
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Figure 5.22: Along-track configuration: evolution of the x–coordinate (ℓ̂1)

Figure 5.23: Along-track configuration: evolution of the y–coordinate (ℓ̂2)
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Figure 5.24: Along-track configuration: evolution of the z–coordinate (ℓ̂3)

5.3.3 Cross-track Configuration
Finally the post-processing of the simulation data of the cross-track deployment
gives the results reported in Figures 5.25, 5.26 and 5.27.

In the case of the cross-track configuration, the behavior of the system proves
to be completely unstable. The imposed deployment law does not succeed in
driving the tether toward the desired opening; instead, the system continuously
collapses onto itself, preventing any effective extension. This outcome highlights
how, under such an arrangement, the tethered system cannot sustain deployment
and remains trapped in a persistently unstable regime. It is precisely this obstacle
that becomes the essential challenge to address, since the initial application that
motivated this work relies on the feasibility of reaching and then operating the
system in the cross-track configuration. Therefore, the next chapter will focus on
this issue, aiming to identify possible strategies to achieve the final state and to
determine the control action required.
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Figure 5.25: Cross-track configuration: evolution of the x–coordinate (ℓ̂1)

Figure 5.26: Cross-track configuration: evolution of the y–coordinate (ℓ̂2)
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Figure 5.27: Cross-track configuration: evolution of the z–coordinate (ℓ̂3)
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Chapter 6

Deployment Strategies

The deployment phase - representing both the indispensable initial stage of the
mission and the principal focus of the present study - is widely recognized as one of
the most critical stages in tether-based missions. As reported in the first chapter,
a considerable number of missions have failed due to incomplete or unsuccessful
deployment of the tether; among these, NASA’s Tethered Satellite System (TSS-1)
has been presented as one of the first remarkable cases [32]. Given this central
importance, the topic has drawn considerable attention from researchers, prompt-
ing numerous investigations aimed at identifying effective strategies to mitigate
instabilities and ensure the stabilization of the Tethered Satellite System [48].

The present chapter builds on this research need by focusing on the specific
challenge at hand: the attainment of the final desired configuration, namely a
fully deployed system that maintains dynamic stability in the cross-track orienta-
tion. To this end, a range of deployment strategies is explored, with each approach
evaluated in terms of the stability it provides and the resource requirements - the
required acceleration and therefore the propellant mass necessary for execution.
Given the complexity and computational demand of the lumped-masses model, it
has been decided to employ the dumbbell model as a more straightforward tool to
implement and test control laws. This choice allows for a faster implementation
of the proposed strategies, significantly reducing the effort required to analyze the
possible solutions. The loop is closed by extracting the control accelerations ob-
tained from these tests and applying them to the lumped-masses model, which is
retained in its role as the high-fidelity representation of the system, allowing for a
verification of the consistency with a more realistic description of the TSS.
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6.1 Deployment Strategies
The first intuitive approach would be to start the deployment along the cross-track
direction, once orbital insertion has been completed. However, this is not the only
feasible path. As previously noted, the cross-track configuration is intrinsically
unstable, and it may therefore be of interest to exploit the contribution of the
gravitational gradient to perform a radial deployment at a reduced cost. Once the
desired final length has been reached, a subsequent maneuver can be carried out to
shift the tether from the radial to the cross-track orientation. A similar approach
may also be adopted using the along-track configuration as an intermediate step:
the system is first deployed in the along-track direction and then reoriented to
achieve the final cross-track configuration.

These three approaches therefore represent the principal strategies identified
for reaching the desired state. For each strategy a PID (Proportional-Integral-
Derivative) controller has been employed, chosen for its simplicity and the avail-
ability of benchmark results in the literature. This choice is considered sufficient
for the purposes of this study, as the main goal is to preliminarily assess the
behavior of each deployment strategy within the discrete model.

6.2 Proportional-Integral-Derivative Control
The Proportional-Integral-Derivative (PID) feedback control mechanism is widely
used primarily thanks to its ease of implementation and low computational cost;
these features make it particularly attractive in contexts where resources are lim-
ited and simplicity is preferred. An additional advantage lies in the availability of
numerous tuning rules - both analytical and heuristic - that allow the controller
parameters to be adjusted without the explicit need for the mathematical model of
the system under consideration. Nevertheless, the simplicity that makes the PID
controller attractive also comes with drawbacks such as the lack of robustness
against variations in system parameters and initial conditions, and the potential
difficulty of selecting appropriate control gains. In particular, the tuning process
can be non-trivial, especially when the designer has limited prior experience with
the dynamics of the controlled system. These limitations underscore the fact that,
although the PID controller is a versatile and effective tool, its performance may
be significantly affected in scenarios where the system exhibits strong uncertainties
or rapid parameter changes.
The standard structure of this controller can be represented as follows:
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Figure 6.1: Conceptual scheme of the PID controller

The control law is fundamentally based on the computation of the error signal, de-
fined as the difference between the desired and the actual state. The proportional
term generates a control action directly proportional to this error, thereby pro-
viding an immediate corrective response to deviations from the desired trajectory.
To enhance the accuracy and effectiveness of the control, two additional contribu-
tions are introduced. The integral term accounts for the cumulative history of the
error, enabling the controller to eliminate steady-state offsets and improve long-
term accuracy. Conversely, the derivative term anticipates the future trend of the
error by responding to its rate of change, thereby contributing to the damping of
oscillations and enhancing system stability.

6.2.1 Implementation within the reference model
In this preliminary analysis, where the rod model has been employed, the state
of the system is fully captured by three variables: the in-plane angle, the out-of-
plane angle, and the tether length. Within this framework, therefore, the study of
the evolution of these parameters is sufficient to fully characterize the dynamics
of the TSS within this framework. As for the implementation of the deployment,
it is enough to prescribe the desired law in terms of l̇, which governs the rate of
change of the tether length. Beyond the progressive increase in tether length, the
system’s behavior is interpreted with respect to the evolution of the in-plane and
out-of-plane angles.

As a brief digression, aimed at providing a clearer contextualization and facil-
itating the understanding of the comparison between the two models, we report
here the case of the radial configuration, whose plots were presented in Section
5.3.1. In this scenario, it is possible to confirm that the dynamics are charac-
terized by an in-plane angle that remains essentially constant at zero, together
with an out-of-plane angle steadily equal to zero, as illustrated in the figure below.
Drawing a parallel with the analysis carried out using the lumped-masses model,
this behavior is confirmed, except for small oscillations in the in-plane angle. These
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deviations arise from the presence of perturbations, which are not accounted for
in the case of the dumbbell model.

Figure 6.2: Rod model: In-plane and out-of-plane angle

Figure 6.3: Discrete model: In-plane and out-of-plane angle

This behavior is also confirmed in the case of the along-track configuration.
In contrast, for the cross-track configuration, in addition to the oscillations of
the in-plane angle, significant oscillations of the out-of-plane angle are observed,
consistently with the findings discussed in the previous sections regarding the
inherent instability of the TSS in this latter configuration.

Building upon the discussion above, the need for an active control on the two
characteristic angles - aimed at suppressing oscillations and maintaining each con-
figuration in its nominal orientation - can be addressed by introducing suitable
control torques. In this model, two control terms are therefore introduced, acting
respectively in the equations of the second and fourth state variables of the ODE
system presented at the end of Section 3.5. By employing a PID controller, and
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considering that the variables to be controlled are the two angular coordinates, the
control action is represented by two torques computed as follows:

uϕ = KP eϕ +KDėϕ +KI

∫
eϕdt (6.1)

uα = KP eα +KDėα +KI

∫
eαdt (6.2)

uϕ and uα are torques acting along axes parallel to ℓ̂1 and ℓ̂3, respectively.

6.3 Radial PID controlled deployment
Let us now consider what appears to be the simplest and most stable deployment
configuration, the one in which the system, due to its intrinsic characteristics,
naturally exhibits a more stable behavior: the radial configuration. This is also
the configuration that has received the greatest attention in the literature to date,
making it easier to find comparable results for validation. In our analysis, relying
on the simplified rod model, the control gains are defined as follows:

KP = 2.5 KD = 3 KI = 0 (6.3)

The choice of the initial gain values has been performed according to what has been
previously explored in the literature concerning the studies about the dumbbell
model of the Tethered Satellite System. Building upon these established references,
minor adjustments were introduced to tune the controller’s response and achieve
the most favorable system behavior within the framework of the present analysis.

The time evolution of the system’s characteristic coordinates in this case is
shown in the following figures:
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Figure 6.4: Radial configuration: time evolution of the in-plane angle

Figure 6.5: Radial configuration: time evolution of the out-of-plane angle
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Figure 6.6: Radial configuration: time evolution of the tether length

Below are shown the time evolution of the control torques that ensure the
system’s stability in the case of the PID controller.
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Figure 6.7: Radial configuration: in-plane control torque

Figure 6.8: Radial configuration: out-of-plane control torque
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6.3.1 Validation on the discrete model: Radial Configura-
tion case

In line with what was anticipated in both the introduction of this thesis and
the introduction of the present chapter, the final step consists of extracting the
control acceleration obtained from this simulation phase to verify its validity by
applying it to a more faithful representation of the system, namely the discrete
model. Keeping in mind that the motivation for using the dumbbell model as a
preliminary analysis tool stems from the difficulty of implementing active control
directly within the simulation environment of the discrete model, as well as the
associated computational cost, a mean value of the control acceleration is extracted
from the results presented above and applied in the discrete model simulations as
a constant control input.

First of all, it must be clarified that the control quantity obtained as output from
the dumbbell model simulations corresponds to a generalized torque. According
to the derivation presented in Section 3.5 and the definition of generalized forces
in this context, the following relation holds:

Q = τ (6.4)

where Q represents the generalized torque derived from the simulations, and τ
denotes the actual torque applied to the system. Starting from this point, by
recalling the definition of torque generated by two opposing forces, it is possible to
extract from the average control torque values reported in Figures 6.7 and 6.8 the
equivalent control forces to be applied to the two leading satellites of the discrete
model. These forces, in the present case, are defined as follows:

Fcontr,1 =

−0.2
0
0

 [N ] Fcontr,Ntot =

0.20
0

 [N ] (6.5)

By introducing these forces - after properly scaling them into accelerations -
into the system of ODEs presented in Section 3.4.1, the dynamics obtained are
illustrated in the following plots:
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Figure 6.9: Controlled radial configuration: time evolution of the x-coordinate
ℓ̂1

Figure 6.10: Controlled radial configuration: time evolution of the y-coordinate
ℓ̂2
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Figure 6.11: Controlled radial configuration: time evolution of the z-coordinate
ℓ̂3

As shown in the plots, the system assisted by the control forces is able to com-
plete the deployment successfully and reach the desired final extension. However,
it is evident that the constant, non-optimized magnitude of the applied control
produces noticeable residual instabilities, particularly in the coordinate along the
ℓ̂2 axis. These oscillations indicate that a time-varying or better-tuned control
profile would be required to suppress the remaining oscillations and improve post-
deployment stability.

6.4 Along-track PID controlled deployment
In this section, we turn our attention to the alternative deployment on the along-
track direction. The same procedure as in the previous section is followed, up
to the point of evaluating the system behavior using the lumped-masses model.
Relying once again on the simplified rod model, the control gains are defined as
follows:

KP = 5 KD = 2.5 KI = 0 (6.6)

The results obtained for the in-plane and out-of-plane angles are as follows:
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Figure 6.12: Along-track configuration: time evolution of the in-plane angle

Figure 6.13: Along-track configuration: time evolution of the out-of-plane angle
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The following shows the time history of the PID control torques maintaining the
system stability.

Figure 6.14: Along-track configuration: in-plane control torque

Figure 6.15: Along-track configuration: out-of-plane control torque
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6.4.1 Validation on the discrete model: Along-track Con-
figuration case

Following the same approach outlined for the radial configuration, the control
accelerations derived from the simplified dumbbell model are applied to the dis-
crete model to evaluate the system’s behavior. The procedure remains unchanged:
generalized torques obtained from the dumbbell simulations are converted into
equivalent forces for the leading satellites and then introduced into the system of
ODEs described in Section 3.4.1.

The control forces in this case are, therefore, defined as follows:

Fcontr,1 =

 0
−0.25

0

 [N ] Fcontr,Ntot =

 0
0.25
0

 [N ] (6.7)

The application of these control forces leads to the dynamics described by the
following plots.

Figure 6.16: Controlled along-track configuration: time evolution of the x-
coordinate ℓ̂1
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Figure 6.17: Controlled along-track configuration: time evolution of the y-
coordinate ℓ̂2

Figure 6.18: Controlled along-track configuration: time evolution of the z-
coordinate ℓ̂3
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As the previous one, also this configuration is characterized by an essentially
in-plane motion, which explains why the deployment success can be achieved with
a control force very similar in magnitude to that used in the radial case. However,
the same considerations discussed earlier still apply: the approximate nature of
the control magnitude derived from the simplified model results in still noticeable
oscillations - especially in the in-plane direction where no active control is applied.
These oscillations represent a non-negligible source of instability, which could be
effectively mitigated through the development of a more accurate control strategy.

6.5 Cross-track PID controlled deployment
Finally, we turn our attention to the cross-track configuration to assess the mag-
nitude of control required to ensure system stability in this scenario. Differently,
in this case the analysis begins from an initial condition in which the system is
not already in the cross-track orientation, but rather lies approximately within
the orbital plane. This approach is adopted for two main reasons. First, it al-
lows us to evaluate the system starting from a less favorable state. Second, it
provides a useful estimate of the control effort necessary to transition the system
from one of the planar configurations - radial or along-track - to the out-of-plane
cross-track configuration. This latter consideration is particularly relevant when
evaluating the deployment maneuvers explored in Sections 6.3 and 6.4, given that
the ultimate objective of this study is tied to an application requiring the system
to operate in the cross-track configuration. As such, the analysis must account not
only for the in-plane deployment but also for the additional control effort needed
to achieve the desired out-of-plane orientation.

Returning now to the implementation of the control within the simulation envi-
ronment of the dumbbell model, it should be noted that the cross-track configura-
tion is characterized by significant oscillations, which involve also the out-of-plane
angle. In this case, the need to stabilize the out-of-plane motion necessitates the
introduction of a second control torque acting directly on the angle α. The control
torques are once again computed according to Equations 6.1 and 6.2, while the
control gains are defined as follows:

KP,ϕ = 3 KD,ϕ = 2.5 KI,ϕ = 1 (6.8)

KP,α = 5 KD,α = 3 KI,α = 0 (6.9)

Based on the control gains defined above, the system demonstrates a satisfactory
dynamic response, as illustrated in the following figures, which show the time
evolution of the in-plane and out-of-plane angles.
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Figure 6.19: Cross-track configuration: time evolution of the in-plane angle

Figure 6.20: Cross-track configuration: time evolution of the out-of-plane angle
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The time evolution of the PID control torques stabilizing the system is shown
below.

Figure 6.21: Cross-track configuration: in-plane control torque

Figure 6.22: Cross-track configuration: out-of-plane control torque
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6.5.1 Validation on the discrete model: Cross-track Con-
figuration case

The last step, as done for the previous two configurations, is again verifying the
results on the lumped-masses model. In this case the control action comprises two
torques, and therefore two corresponding pairs of equal-magnitude and opposite-
direction forces are applied to the leader satellites. One pair acts in-plane, while
the other acts out-of-plane, parallel to the direction defined by ℓ̂3.

Fcontr,1 =

 0.05
−0.05
−0.45

 [N ] Fcontr,Ntot =

−0.05
0.05
0.45

 [N ] (6.10)

After scaling these forces to accelerations and inserting them into the lumped-
masses ODE system, the TSS response obtained is shown in the following plots.

Figure 6.23: Controlled cross-track configuration: time evolution of the x-
coordinate ℓ̂1
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Figure 6.24: Controlled cross-track configuration: time evolution of the y-
coordinate ℓ̂2

Figure 6.25: Controlled cross-track configuration: time evolution of the z-
coordinate ℓ̂3
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In this set of simulations, as well as in the previous cases, the achievement of the
desired final deployed length can be considered satisfactory. However, it should be
noted that, similarly to the other two configurations, the system still experiences
oscillations. Although their amplitude is two orders of magnitude smaller than the
overall final length of the system, they remain non-negligible and, in applications
such as space-based radar sounding, could potentially introduce inaccuracies in
the measurements.

Furthermore, the overall cost associated with performing the deployment in the
cross-track configuration is higher than in the other two cases - approximately
twice as large. Nevertheless, considering that this configuration represents the
final operational state to be achieved in this analysis, and that transitioning from
a planar configuration to this perpendicular one would entail additional complexity
and potential risks, this higher expenditure may represent an acceptable trade-off
for performing the deployment directly in the cross-track configuration.
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Chapter 7

Conclusions and future work

At the conclusion of this work, this brief closing chapter summarizes the main
findings achieved throughout the study and outlines potential directions for further
research that could build upon the results presented here.

7.1 Conclusion
At the core of the present study lies the MATLAB code, which served as the pri-
mary tool for the analysis. The code was developed with a structure that ensures
scalability, enabling its application to a wide range of mission scenarios. This flexi-
bility facilitated a systematic investigation of the Tethered Satellite System across
different configurations and operational conditions, while also making it possible
to modify or extend specific components of the code in a precise and isolated man-
ner whenever required. As the model was progressively developed and validated
through the analysis of the system’s dynamics and deployment behavior under
various conditions, this process also highlighted the inherent challenges associated
with the high-fidelity model of the TSS, both in terms of computational cost and
in the complexity associated with capturing the full range of factors influencing
the system’s dynamic response. Indeed, the stiffness and complexity of the gov-
erning equations, the high number of degrees of freedom, the sensitivity of the
system to external perturbations, the inclusion of tether flexibility, and the intri-
cate handling of deployment-related terms, are all factors that together contribute
to the creation of a framework within which developing solutions that are both
computationally efficient and practically implementable becomes highly challeng-
ing. These challenges motivated the adoption of a reduced-order model - the rod
model - which enables simplified preliminary assessments while retaining sufficient
fidelity to capture the essential system dynamics.

Building upon the works of Aliberti, Quadrelli, and Romano [27] on space based

103



Conclusions and future work

radar sounding, this study sets the objective of exploring alternatives for achieving
a fully deployed Tethered Satellite System cross-track configuration. Therefore,
keeping in mind the challenges discussed above, the simplified rod model was
employed to enable a less costly and more straightforward analysis of the three
main deployment strategies, deriving an estimation of the corresponding control
accelerations required to guarantee the system’s stability. Subsequently, these
control accelerations were given as input to the high-fidelity lumped masses model
to assess their effectiveness in a more realistic representation of the TSS and to
analyze the resulting system response under such control action.

The analysis revealed that in-plane maneuvers - namely the radial and the
along-track deployment - are less demanding in terms of control effort and overall
complexity. However, these approaches require a subsequent maneuver to achieve
the desired cross-track configuration, which was not investigated in detail; initial
trials indicate that such maneuvers exhibit significant instability. In contrast, di-
rect cross-track deployment, although approximately twice as costly in terms of
control effort, allows the system to reach the target configuration directly, exhibit-
ing comparable levels of dynamical instability throughout the transition from the
stowed to the fully deployed state. For this reason, the direct cross-track deploy-
ment emerges as the most promising and therefore the most deserving of further
research efforts. This approach enables the execution of the deployment maneuver
by concentrating the control effort into a single phase, maintaining the system
directly in the out-of-plane configuration. In contrast, the other two strategies
require an equivalent, if not greater, expenditure of effort to perform the subse-
quent transition from an in-plane arrangement to the cross-track configuration,
after already demanding a non-negligible control action to ensure stability during
the initial deployment phase.

Overall, based on these findings, it can be stated that, despite the higher initial
control cost, direct cross-track deployment represents the most recommendable
pathway for achieving the desired operational configuration. By concentrating the
stabilization effort into a single, straightforward maneuver, this strategy stands
out as the one worth pursuing. Leveraging the provided framework to design more
accurate and efficient control laws would represent the final step toward successfully
bringing the space-based radar sounding system into its operational configuration,
ready to begin data acquisition.

7.2 Possible extension and future research
Over the months during which this research was carried out, several opportunities
for further investigation have emerged, building upon the findings presented in this
thesis. These include both directions aimed at improving the accuracy and realism
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of the obtained results, and others that may represent natural subsequent stages in
the broader study of the Tethered Satellite System. This section, therefore, briefly
outlines the most promising directions for future development.

• Enhancement of the discrete model fidelity:
Although the discretized mass tether model provides a high-fidelity approxi-
mation of the system, its realism could be further improved by incorporating
torsional and bending stiffness. Such an extension would allow for a more
accurate representation of the tether’s flexibility and internal dynamics, cap-
turing effects that are currently neglected but could be crucial for the precise
pointing and overall performance of the system.

• Inclusion of satellite attitude dynamics:
In order to gain a more complete understanding of the system’s operational
behavior, it is necessary to include the analysis of the attitude of the satel-
lites composing the system. Introducing attitude degrees of freedom for the
end satellites, and potentially for intermediate sensor elements along the
tether, would substantially increase the complexity of the equations of motion.
Nonetheless, to meet the performance requirements, this step would be fun-
damental for such applications that require precise pointing and alignment.

• More accurate control estimation within the rod model:
While the dumbbell model is primarily intended for preliminary assessments,
it would be beneficial to explore more advanced control strategies available in
the state of the art. Such an investigation could refine the initial estimation of
control efforts, therefore improving the guidance for subsequent high-fidelity
simulations.

• Active control within the discrete model:
Implementing active control in the high-fidelity framework has proven to be
challenging, as partially explored in this work. Although this was omitted
from the chapters of this thesis, active controllers were indeed developed for
the end satellites’ positions using both PID and LQR approaches. During
this process, the main obstacles encountered were the difficulty in tuning the
controller parameters and the excessive computational time required by the
code to complete the dynamic simulations. Nonetheless, further efforts in
this direction could be highly valuable, focusing on identifying systematic
approaches for control parameter selection and optimizing computation time
to ensure both the feasibility and sustainability of on-board implementation.
Additionally, considering the inherent nonlinearities of the TSS dynamics, it
could be valuable to explore alternative control strategies better suited for
handling such nonlinear behavior, such as sliding mode control.
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• Detailed study of the deployment mechanism:
A factor that has only been vaguely mentioned during this research is the phys-
ical tether release mechanism itself. This component represents a key player
within the deployment process and, therefore, it is essential to incorporate
a detailed study of the chosen release mechanism into the system modeling.
Consequently, a natural next step for future work would be to begin by ana-
lyzing existing tether release mechanisms, including known failure cases and
lessons learned. Subsequently, in the context of the specific application un-
der consideration - Tethered Satellite System for space based radar sounding
- a suitable mechanism could be selected among existing options, or an inno-
vative design may be proposed. Once identified, this choice should then be
consistently integrated into the system model, allowing for a thorough evalu-
ation of its effects on the deployment process, benefits, and potential pitfalls,
such as impacts on maintaining tether tension during deployment.

• Experimental validation:
Technological advancements have made it possible to simulate orbital dynam-
ics with a high degree of fidelity, and it would be a missed opportunity not
to take advantage of such capabilities. For instance, facilities such as granite-
based testbeds allow for a realistic reproduction of space system dynamics, en-
abling the inclusion of both environmental perturbations and control inputs.
Ultimately, experimental testing would constitute the final step in validating
the simulation results, providing a bridge between theoretical analysis and
practical mission readiness.

• Collision avoidance analysis:
Given the extended length of the tether, it would be interesting to investigate
potential collision scenarios, assessing the associated risks and, if necessary,
identifying the need for a dedicated Collision Avoidance System (CAS) specif-
ically tailored for this Tethered Satellite System.
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