
MASTER THESIS

Use of Convolutional Neural
Network for multi-fidelity CFD

problems

Candidate:
Sebastiano G. I. Marcì

Supervisors:
Prof. Andrea Ferrero
Ph.D. Luca Muscarà

Ph.D. Lorenzo Folcarelli

Department of Mechanical and Aerospace Engineering

October 2025

https://www.polito.it/personale?p=andrea_ferrero
https://www.polito.it/personale?p=luca.muscara
https://www.polito.it/personale?p=lorenzo.folcarelli
https://www.dimeas.polito.it/en/

Abstract

Use of Convolutional Neural
Network for multi-fidelity CFD

problems
Candidate: Sebastiano G. I. Marcì

POLITECNICO DI TORINO
Master degree in Aerospace Engineering

Department of Mechanical and Aerospace Engineering

In recent years, there has been a growing interest in applying deep learn-
ing techniques to Computational Fluid Dynamics (CFD), particularly for
accelerating simulations and enhancing data resolution. This work ex-
plores the use of Convolutional Neural Networks (CNNs) to reconstruct
high-resolution CFD fields from low-resolution inputs. A U-Net architec-
ture was selected due to its proven ability to capture both global context
and fine-scale features through its encoder-decoder structure combined with
skip connections, facilitating detailed reconstructions. The study focuses
on two canonical CFD problems: a bump-in-a-duct configuration and a
hydrogen combustion chamber. These cases were chosen to encompass
both non-reactive and reactive flow regimes and to test the generaliza-
tion capability of the model under different physical conditions. The net-
work was trained to predict high-resolution pressure, axial velocity, and
heat of reaction fields from their corresponding low-resolution versions,
thus performing a super-resolution task. Due to the limited size of the
available dataset, several regularization techniques were employed to im-
prove model robustness, including Dropout layers and Batch Normaliza-
tion. Additionally, different data normalization strategies were tested, such
as Z-normalization and Min-Max scaling, to enhance training stability and
ensure faster convergence. A multi-network approach was also developed
to separately handle the prediction of pressure fields and that of axial ve-
locity and heat release rate, mitigating the risk of feature mixing and allow-
ing each network to specialize in learning specific patterns. The datasets
were generated using two solvers: a custom Fortran-based code solving the
non-dimensional Euler equations, and the commercial CFD software An-
sys Fluent for more complex reactive flow simulations. This combination
enabled the creation of a multi-fidelity database, covering a wide range
of fluid dynamic behaviors and ensuring better generalization capabili-
ties during training and validation phases. The training process involved
careful hyperparameter optimization, early stopping strategies, and loss
function selection to prevent overfitting and maximize prediction quality.
Quantitative assessments demonstrated prediction errors on the order of

HTTPS://WWW.POLITO.IT/
https://www.polito.it/en/education/master-s-degree-programmes/aerospace-engineering
https://www.dimeas.polito.it/en/

a few percent, while qualitative analyses confirmed the ability of the mod-
els to accurately reconstruct the flow structures, even in complex reacting
flows. The final phase of the project focused on identifying potential fu-
ture developments of the proposed framework, particularly exploring the
capability of the U-Net architecture to address a broader class of prob-
lems. One promising direction involves extending the methodology to cor-
rect two-dimensional solutions in order to approximate three-dimensional
flow fields. This approach consist of training the network with the 2D
planes extracted from the full 3D simulations. Furthermore developments
could be searching for techniques aimed at enhancing training performance
such as data augmentation, especially in cases involving limited datasets
could be implemented to improve the model’s generalization and robust-
ness. The individual contribution to this thesis project includes the gen-
eration of the datasets, the design and full implementation of the U-Net
architecture within a complete Python framework featuring a structured-
to-unstructured (and vice versa) grid interpolator, the definition of train-
ing strategies, the extension to a multi-network architecture, and the sys-
tematic evaluation of the model performance. The work highlights the
promising role of deep learning techniques, particularly CNN-based sur-
rogate models, in enhancing CFD simulation capabilities and accelerating
future engineering workflows by enabling fast and accurate predictions
across different fidelity levels.

Acknowledgements
I would like to express my sincere gratitude to Professor Andrea Ferrero and
to PhD students Luca Muscarà and Lorenzo Folcarelli for giving me the op-
portunity to explore such a stimulating and challenging topic. I also wish
to thank them for their constant availability and proactive attitude during
our discussion sessions, which have been extremely valuable throughout this
journey.
Finally, I would like to thank all those who have supported me over the years
and have always been there for me my family, friends, and colleagues. Their
presence has been essential in reaching this important milestone.

Contents

1 The Rise and Role of Deep Learning in Engineering 1
1.1 From Artificial Intelligence to Deep Learning 1
1.2 The Shift: Why Deep Learning? 1
1.3 Clarifying the Terminology . 2
1.4 Why It Matters for Engineering 3
1.5 Growth of Artificial Intelligence in the Aerospace Sector . . . 4
1.6 Deep Learning in Computational Fluid Dynamics 5

1.6.1 Motivation and Applications 5
1.6.2 Advantages Over Traditional CFD 6
1.6.3 Limitations and Challenges 6

1.7 Introduction to Artificial Neural Networks 6
1.8 Interconnection Examples for Artificial Neurons 7
1.9 Activation Functions . 9

1.9.1 Identity Function . 9
1.9.2 Binary Threshold Function 9
1.9.3 Piecewise Linear Function 10
1.9.4 Sigmoid (Logistic) Function 11
1.9.5 ReLU (Rectified Linear Unit) 11
1.9.6 ELU (Exponential Linear Unit) 12

1.10 Supervised Learning . 13
1.11 Gradient Descent . 14
1.12 The Delta Rule (Widrow-Hoff Rule) 14
1.13 Equivalence Between Delta Rule and Gradient Descent 15
1.14 Backpropagation . 16
1.15 Learning Rate . 19
1.16 Momentum . 21

1.16.1 Optimization Algorithms in Practice 22
1.17 Regularization Techniques . 23

1.17.1 L2 Regularization (Weight Decay) 23
1.17.2 Dropout . 23
1.17.3 Batch Normalization as Implicit Regularization 24
1.17.4 Early Stopping . 24
1.17.5 Data Augmentation . 24

2 U-Net: A Convolutional Architecture for Scientific Computing 25
2.1 Understanding Convolutional Neural Networks 25

2.1.1 Input Layer . 26
2.1.2 Convolutional Layers and Core Hyperparameters . . . 26
2.1.3 Output Layer . 31

2.2 The Classical U-Net Architecture 32
2.3 Core Operations in U-Net . 33
2.4 Activation Functions in U-Net 34
2.5 The Effectiveness of U-Net Architectures in Computational Fluid

Dynamics . 35

3 Development of a Python-Based U-Net Framework for Predicting
CFD Simulation Fields 37
3.1 General code workflow . 38
3.2 Customizable U-Net Architecture 39

3.2.1 Model Options . 39
3.2.2 Building Blocks . 39
3.2.3 Model Architecture . 40
3.2.4 Model Visualization . 40

4 Case Study I: Euler-Based Simulation of a Bump Geometry using a
Fortran Solver 43
4.1 Fortran Code Background: Governing Equations 43
4.2 Computational Domain and Boundary Condition 44
4.3 Code Workflow . 46
4.4 Training . 47
4.5 Bump: Results . 49
4.6 Issue encountered and final comment 50

5 Case Study II: AHEAD Hydrogen Burner 53
5.1 High Fidelity Database . 54
5.2 Summary of Governing Equations 55
5.3 Code Workflow . 59
5.4 Normalization Strategies and U-Net Model Enhancements . . 60
5.5 Training Procedure and Convergence 62
5.6 Results . 63
5.7 Comparison Between Model Variants 65
5.8 Computational Cost Analysis 66

6 Future Developments 69
6.1 GPU and Heterogeneous Hardware Support 69
6.2 From 2D to 3D Fields . 70
6.3 Artificial Data Augmentation 71
6.4 Increase in Physical Model Complexity 72

Conclusions 75

Bibliography 76

List of Figures

1.1 Diagram showing the relationship between Artificial Intelli-
gence, Machine Learning and Deep Learning. Image from [1]. 2

1.2 Size of the Aerospace Artificial Intelligence (AI) Market. Im-
age from [2]. 4

1.3 Biological neuron. Image from [3]. 6
1.4 Artificial neuron diagram. Image from [3]. 7
1.5 Fully Connected NN. Image from [4] 8
1.6 Recurrent NN. Image from [5]. 8
1.7 Recurrent NN.. Image from [6]. 8
1.8 Identity activation function. 9
1.9 Binary threshold activation function. 10
1.10 Piecewise linear activation function. 11
1.11 Sigmoid (logistic) activation function. 11
1.12 ReLU activation function. 12
1.13 ELU (Exponential Linear Unit) activation function. 12
1.14 Loss function surface example. Image from [7] 14
1.15 Forward and Backward passes. 16
1.16 Learning rate effects during training. Image from [8] 20

2.1 CNN structure . 25
2.2 Typical input representation with multiple channels. 26
2.3 Typical convolutional operation 27
2.4 Examples of different convolution outputs. Each image repre-

sents a localized result Oi,j from the application of the kernel
over the input tensor. Note that the stride is 1 28

2.5 Example of padding: the original 3x3 matrix (light grey) is ex-
panded in a 5x5 . 29

2.6 Kernel (in rose) size 3x3 and relative output 29
2.7 Kernel size 4x4 and relative output 29
2.8 Example of convolution with stride = 2. The kernel skips two

position at each step, reducing the output resolution. 30
2.9 Kernel size 4x4 and relative output 30
2.10 U-net Network. Image from [9] 32
2.11 Skip connection example in a i-th layer of U-net NN 34

3.1 Goal of the code: from coarse mesh CFD solution to U-net-
based high-resolution prediction. 37

3.2 General code workflow . 38

3.3 The U-net strcture generated by the code. In this case, the in-
put images are 256 x 256 with a maximum filter number of 128.
The output layer activation function is linear 41

4.1 Low fidelity mesh (lc = 0.03) with approximately 3k nodes.
Used as input data for the neural network. 45

4.2 High fidelity mesh (lc = 0.01) with approximately 30k nodes.
Used as output data for the neural network. 45

4.3 Workflow for the Bump case. The process begins with data
generation using an Euler Fortran solver, followed by grid in-
terpolation, .npz dataset creation, U-Net training, and final re-
mapping onto the original mesh. No normalization is needed
for this case. 46

4.4 Training and validation loss trends for different learning rates.
Left: learning rate = 10−4. Right: use of restarts using learning
rates = 5 · 10−5 and 4 · 10−5. 47

4.5 Visualization of the feature maps across different layers of the
U-Net during training. This technique helps to understand the
inner workings of the model by highlighting how information
is processed at each stage. 48

4.6 Standard visual comparison between coarse input, U-Net pre-
diction, and high-resolution CFD target for pressure (P), axial
velocity (u), and transverse velocity (v). Images are flipped
due to interpolator transformations 49

4.7 Same results as in Figure 4.6, with contrast enhancement to
highlight fine details. Images are flipped due to interpolator
transformations . 49

4.8 Wall pressure comparison between coarse CFD input, U-Net
prediction, and high-resolution CFD output along x ∈ [0.35, 0.65]. 50

4.9 Feature maps from one of the intermediate convolutional lay-
ers. Some filters (circled) exhibit very low or null activation. . 51

4.10 Illustration of the post-processing mask applied to predicted
outputs. The bump region is masked out to ensure correct val-
ues during interpolation. 52

5.1 2D axisymmetric geometry of the AHEAD combustor, box do-
main for neural network training, and mesh comparison (fine
vs coarse). 53

5.2 40k nodes mesh. 54
5.3 200k nodes mesh. 54
5.4 Summary of the 53 high-fidelity simulations. In manual split

mode, validation cases are highlighted in red, the test case in
green. Adapted from [10]. 55

5.5 General workflow for the U-Net training and inference pipeline
applied to the hydrogen burner dataset. 59

5.6 Aarchitectural improvements to the U-Net model. 61

5.7 Parallel execution of two U-Net models, each predicting dif-
ferent subsets of physical quantities from normalized coarse
input snapshots. 61

5.8 Training and validation loss history for both neural networks.
Left: pressure prediction. Right: axial velocity and heat of re-
action. 62

5.9 Radial pressure profiles at three axial positions (z = 0.134 m,
z = 0.140 m and z = 0.150 m). 63

5.10 Radial axial velocity profiles at three axial positions. 64
5.11 Radial profiles of heat of reaction at three axial positions. . . . 65

6.1 Example of an NVIDIA multiple GPU workstation 69
6.2 Tensorflow python library supports NVIDIA Cuda platform . 70
6.3 Conceptual representation of the 2D slice extraction from the

original three-dimensional field. 70
6.4 Data Augmentation techniques. Image from IBM. 71
6.5 Supersonic velocity flow-field example. Work from [11] 73

List of Tables

3.1 Effect of BatchNormalization and Dropout on the model’s num-
ber of parameters . 41

5.1 Summary of the final training parameters. 62
5.2 Comparison of relative norm errors for Pressure. 63
5.3 Comparison of relative norm errors for Axial Velocity. 64
5.4 Comparison of relative norm errors for Heat of Reaction. . . . 64
5.5 Model architecture and training setup for each tested case. . . 65
5.6 Comparison of relative errors for all tested configurations and

coarse baseline. 65
5.7 Computational cost in terms of wall-clock time and CPU-hours.

Training times are approximate, as runs were stopped once a
satisfactory accuracy was reached and also depend on hyper-
parameter settings. 67

Chapter 1

The Rise and Role of Deep
Learning in Engineering

Artificial Intelligence (AI), Machine Learning (ML), Deep Learning (DL), and
Neural Networks (NNs) are often used interchangeably in common discourse,
but they represent different layers of abstraction and specialization in the
field of intelligent systems. Understanding their relationship is crucial, espe-
cially when analyzing the motivations behind the recent surge of deep learn-
ing applications in engineering.

1.1 From Artificial Intelligence to Deep Learning

Artificial Intelligence is the overarching field that encompasses any tech-
nique enabling machines to mimic human intelligence. This includes logic-
based systems, symbolic reasoning, expert systems, and data-driven learn-
ing approaches. Within AI, Machine Learning emerged as a major subfield
focused on developing algorithms that allow machines to improve their per-
formance by learning from data, without being explicitly programmed.

Machine learning systems are characterized by their ability to generalize
from past examples. However, for many years, their success relied heavily on
the quality of input features, a process known as feature engineering. Human
experts were responsible for designing the most relevant, informative, and
quantifiable characteristics of raw data in order to make it interpretable for
models such as decision trees, support vector machines (SVM), or shallow
neural networks.

For instance, in a typical classification task, data points would be pro-
jected into a space defined by two handcrafted features (e.g., (x, y)), and a
classifier would learn a rule to separate different classes by a decision bound-
ary. This traditional pipeline was effective but limited in scalability and gen-
eralization, especially in high-dimensional data like images, speech, or sen-
sor data.

1.2 The Shift: Why Deep Learning?

Around the early 2010s, a dramatic shift occurred in how learning systems
were built. Deep Learning, a subfield of machine learning based on deep

Chapter 1

artificial neural networks, began to outperform traditional approaches across
a range of tasks, from image recognition to natural language understanding
and even scientific computing [12].

This transition was not purely theoretical; it was driven by three practical
revolutions:

• The availability of massive labeled datasets, such as ImageNet, en-
abled models to learn complex patterns from millions of examples [13].

• The rise of GPU computing provided the computational power needed
to train large neural networks efficiently.

• Advances in training techniques (e.g., better weight initialization, reg-
ularization methods like dropout, and new activation functions like
ReLU) made it feasible to train deep architectures that were previously
unstable or inefficient [14].

Most importantly, deep learning models introduced a powerful innova-
tion: automatic feature learning. Instead of relying on handcrafted features,
deep networks learn hierarchical representations of data — where lower layers
capture simple patterns (e.g., edges in an image), and deeper layers compose
these into increasingly abstract concepts (e.g., object parts or categories). This
eliminated the bottleneck of manual feature engineering and allowed models
to generalize better across tasks.

"Deep learning shifted the focus from manual feature engineering to automated
feature learning."[12]

1.3 Clarifying the Terminology

To better understand this evolution, it is useful to clarify how the four main
terms — AI, ML, DL, and NNs — are related. These concepts are hierarchi-
cally nested:

FIGURE 1.1: Diagram showing the relationship between Artifi-
cial Intelligence, Machine Learning and Deep Learning. Image

from [1].

2

Chapter 1

Artificial Intelligence ⊃ Machine Learning ⊃ Deep Learning ⊃
Neural Networks

• AI includes all methods that aim to replicate intelligent behavior, whether
symbolic (based on logic and explicit rules) or data-driven (based on
pattern recognition and statistical inference). It is important to note that
many modern AI systems, especially those based on machine learning,
are fundamentally predictive rather than reasoning-based. That is, they
learn correlations from data to forecast outcomes, but they do not per-
form reasoning in the traditional symbolic or causal sense [15].

"Prediction is not reasoning"

• ML is a subset of AI focused on learning patterns from data, enabling
predictions and decisions based on experience.

• DL is a further specialization within ML that uses multi-layered neural
networks to learn complex representations from raw data.

• NNs are the fundamental computational structures used in both shal-
low and deep learning systems, inspired by the biological structure of
the brain.

1.4 Why It Matters for Engineering

The adoption of deep learning in engineering stems from its ability to address
longstanding limitations in traditional modeling approaches. Engineering
problems often involve complex physical systems governed by partial differ-
ential equations, nonlinear interactions, and vast volumes of sensor or simu-
lation data. Traditional solvers and empirical models are sometimes too slow
or inaccurate for real-time applications or design optimization.

Deep learning offers a data-driven, flexible, and efficient alternative:

• It reduces the reliance on manual feature design and physical assump-
tions.

• It provides faster inference once trained, enabling real-time deploy-
ment.

• It integrates well with existing numerical frameworks, especially through
hybrid models (e.g., physics-informed neural networks).

From fluid dynamics and structural analysis to robotics and material sci-
ence, deep learning is increasingly seen not just as a predictive tool, but as a
core component of modern engineering methodologies.

3

Chapter 1

1.5 Growth of Artificial Intelligence in the Aerospace
Sector

According to a recent report by Technavio, the global Artificial Intelligence
(AI) market in the aerospace sector is expected to grow significantly in the
coming years. Specifically, it is estimated to increase by approximately USD
4.69 billion between 2024 and 2028, with a compound annual growth rate
(CAGR) of 43.6% [2].

FIGURE 1.2: Size of the Aerospace Artificial Intelligence (AI)
Market. Image from [2].

This growth is driven by the rising adoption of AI technologies for pro-
cess automation, predictive maintenance, flight route optimization, and en-
hanced operational safety. In the defense sector, AI is increasingly applied in
advanced robotics, autonomous drones, and real-time data analysis systems.

Italy plays a strategic role in this landscape, both through its participation
in European space programs (such as those promoted by the European Space
Agency) and the presence of companies engaged in AI-driven aerospace re-
search and development.

Among the leading global companies active in this sector, the report high-
lights:

• Airbus SE

• Boeing Co.

• Lockheed Martin Corp.

• Thales SA

• IBM Corp.

• Intel Corp.

4

Chapter 1

• Microsoft Corp.

• NVIDIA

These technological and industrial giants are investing heavily in the de-
velopment of intelligent systems capable of processing large volumes of data
from sensors, satellites, and complex avionics platforms.

1.6 Deep Learning in Computational Fluid Dynam-
ics

Computational Fluid Dynamics (CFD) plays a central role in modern engi-
neering, enabling the simulation and analysis of fluid flows across a variety
of applications, from aerospace and automotive design to biomedical and
environmental engineering. Traditional CFD methods rely on numerically
solving the Navier–Stokes equations using finite volume, finite element, or
finite difference schemes. While accurate, these approaches are computation-
ally expensive and often prohibitively slow for high-resolution problems or
real-time applications.

In recent years, deep learning has emerged as a promising complemen-
tary tool for accelerating CFD simulations, reconstructing high-fidelity flow
fields, and enabling data-driven turbulence modeling.

1.6.1 Motivation and Applications

The high computational cost of CFD simulations, especially in unsteady, tur-
bulent, or three-dimensional flows, has led researchers to explore surrogate
modeling approaches. Deep learning models, particularly Convolutional
Neural Networks (CNNs) and encoder–decoder architectures, have been used
to learn mappings between low-resolution and high-resolution flow fields, or
between input conditions and output fields.

Several applications have demonstrated the feasibility and advantages of
this approach:

• Super-resolution flow reconstruction: CNN-based models can recon-
struct fine-scale structures of velocity or pressure fields from coarse or
downsampled simulations [16].

• Reduced-order modeling: Autoencoders and recurrent neural networks
(RNNs) are used to build compact representations of flow dynamics for
real-time control or parameter studies [17].

• Turbulence modeling: Deep learning is being explored as an alter-
native to traditional subgrid-scale models in Large Eddy Simulation
(LES) [18].

5

Chapter 1

1.6.2 Advantages Over Traditional CFD

Deep learning models, once trained, can offer several advantages:

• Speed: Inference times are several orders of magnitude faster than solv-
ing PDEs numerically.

• Flexibility: The same architecture can be adapted across geometries
and boundary conditions (given appropriate training data).

• Integration: DL models can be embedded within hybrid frameworks,
such as Physics-Informed Neural Networks (PINNs) [19], which en-
force physical laws during training.

1.6.3 Limitations and Challenges

Despite the promising results, several challenges remain:

• Generalization: Neural networks may fail to generalize to flow regimes
or geometries not seen during training.

• Data requirements: High-fidelity CFD data are expensive to generate
and may limit scalability.

• Physical consistency: Purely data-driven models can violate conserva-
tion laws or produce non-physical artifacts if not properly constrained.

Ongoing research is addressing these limitations through physics-aware
architectures, uncertainty quantification, and transfer learning strategies. Nev-
ertheless, deep learning is increasingly becoming a valuable tool in the CFD
toolbox, complementing traditional solvers and enabling new capabilities in
simulation, optimization, and control.

1.7 Introduction to Artificial Neural Networks

Artificial neural networks are among the foundational concepts in the field of
machine learning. Their structure and functioning are inspired by biological
neurons:

FIGURE 1.3: Biological neuron. Image from [3].

6

Chapter 1

A biological neuron is mainly composed of three elements: the soma (cell
body), the dendrites, which receive signals from surrounding neurons, and
the axon, which transmits electrical impulses outward. When the sum of
stimuli received by the dendrites exceeds a certain activation threshold, the
neuron generates an electrical impulse, called a spike. This spike travels along
the axon to a structure called the synapse, where the signal is transmitted to
a subsequent neuron—known as the post-synaptic neuron—via neurotrans-
mitters. Depending on the type of neurotransmitter, the signal can have an
excitatory or inhibitory effect. The human brain contains approximately 10
billion neurons, each connected, on average, to 10,000 other neurons through
synapses.

To mimic the information processing and learning capabilities of biologi-
cal neurons, the concept of the artificial neuron is introduced.

FIGURE 1.4: Artificial neuron diagram. Image from [3].

An artificial neuron receives a set of inputs x1, x2, . . . , xn, each associated
with a synaptic weight w1, w2, . . . , wn. The weighted sum of these inputs is
computed and passed through an activation function f , which determines the
neuron’s output. Depending on the chosen function, the output may be a
continuous value (e.g., between 0 and 1, or between -1 and 1) or a discrete
value (e.g., 0 or 1, or -1 or +1). The simplest case occurs when the activation
function is the identity, in which case the output equals the weighted sum
of the inputs. So, a single neuron receives multiple inputs x1, x2, ..., xn, each
multiplied by an associated weight wi. The output is computed as:

y = f

(
n

∑
i=1

wixi

)
, (1.1)

where f is a non-linear activation function (e.g., sigmoid, ReLU).

1.8 Interconnection Examples for Artificial Neurons

Artificial neurons can be interconnected in various topologies. The three
main types are:

7

Chapter 1

• Fully connected network: Every neuron is connected to all other neu-
rons in the network. This architecture is less commonly used compared
to others.

FIGURE 1.5: Fully Connected NN. Image from [4]

• Feedforward network: Composed of at least three layers—an input
layer, one or more hidden layers, and an output layer. Data flows in one
direction only, from input to output, without forming cycles.

FIGURE 1.6: Recurrent NN. Image from [5].

• Recurrent neural network (RNN): Characterized by feedback connec-
tions, where one or more outputs are reintroduced as inputs through a
set of additional neurons. This architecture is particularly well-suited
for processing signals or sequential information.

FIGURE 1.7: Recurrent NN.. Image from [6].

These structures enable artificial neural networks to learn complex rep-
resentations from data. In subsequent sections, we will examine activation
functions in more detail, as they play a crucial role in defining the behavior
of artificial neurons.

8

Chapter 1

1.9 Activation Functions

What is an activation function? As previously mentioned, the activation
function f is the function that allows us to compute the output y of the i-
th neuron. This function f receives as input the weighted sum of the inputs
xj, where j is the index of the inputs connected to the i-th neuron, and wj are
the weights associated with each connection between input j and neuron i:

a =
n

∑
j=1

wjixj

We can make a broad distinction between types of activation functions:
we separate the identity function from non-linear activation functions.

1.9.1 Identity Function

The identity activation function is the simplest case, where the output y of
the neuron coincides with the weighted sum of its inputs:

f (a) = a

This function does not introduce any non-linearity into the network.

3 2 1 0 1 2 3
a

3

2

1

0

1

2

3

f(a
)

Identity Activation Function

FIGURE 1.8: Identity activation function.

1.9.2 Binary Threshold Function

The binary threshold function returns an output of 1 when the weighted sum
a exceeds a given threshold θ, and 0 otherwise:

yi =

{
1 if a ≥ θ

0 if a < θ

9

Chapter 1

Graphically, the function has a flat value of 0 for all a < θ and jumps to
1 for all a ≥ θ. When θ = 0, this jump occurs exactly at the origin, but in
general θ can take any real value, shifting the step point accordingly.

To better integrate the threshold into the function, we can rewrite it as:

yi = f

(
n

∑
j=1

wjixj − θ

)

This expression introduces the notion of the bias. The bias term θ allows
us to shift the activation threshold and can be modeled as an additional in-
put x0 = 1 with an associated weight w0i = −θ. Thus, the neuron output
becomes:

yi = f

(
n

∑
j=0

wjixj

)

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
a

0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

f(a
)

Binary Threshold Activation Function
Binary Threshold

FIGURE 1.9: Binary threshold activation function.

However, this function is not differentiable at a = θ, which can create
issues in gradient-based learning. For this reason, differentiable activation
functions are often preferred.

1.9.3 Piecewise Linear Function

One such differentiable function is the piecewise linear function, defined as:

f (a) =


0 if a < −1
0.5(a + 1) if − 1 ≤ a ≤ 1
1 if a > 1

10

Chapter 1

6 4 2 0 2 4 6
a

0.0

0.2

0.4

0.6

0.8

1.0

f(a
)

Piecewise Linear Activation Function

FIGURE 1.10: Piecewise linear activation function.

This function is differentiable (except at the boundary points) and maps
input values into the range [0, 1].

1.9.4 Sigmoid (Logistic) Function

Another commonly used differentiable function is the sigmoid (or logistic)
function:

f (a) =
1

1 + e−a

This function smoothly transitions from 0 to 1, and is differentiable ev-
erywhere, including at 0. It also maps all real-valued inputs to the range
(0, 1).

6 4 2 0 2 4 6
a

0.0

0.2

0.4

0.6

0.8

1.0

f(a
)

Sigmoid (Logistic) Activation Function

FIGURE 1.11: Sigmoid (logistic) activation function.

1.9.5 ReLU (Rectified Linear Unit)

ReLU is another widely used activation function, defined as:

f (a) = max(0, a)

11

Chapter 1

6 4 2 0 2 4 6
a

0

1

2

3

4

5

6

f(a
)

ReLU Activation Function

FIGURE 1.12: ReLU activation function.

ReLU outputs zero for negative inputs and is linear for positive inputs.
Though not differentiable at zero, it performs well in practice and is compu-
tationally efficient.

1.9.6 ELU (Exponential Linear Unit)

The ELU function is defined as:

f (a) =

{
a if a ≥ 0
α(ea − 1) if a < 0

where α is a positive parameter that controls the value to which an ELU sat-
urates for negative inputs. ELUs help avoid the issue of dying neurons en-
countered with ReLU and provide a smoother gradient for negative values.

3 2 1 0 1 2 3
a

1.0
0.5
0.0
0.5
1.0
1.5
2.0
2.5
3.0

f(a
)

ELU (Exponential Linear Unit) Activation Function

FIGURE 1.13: ELU (Exponential Linear Unit) activation func-
tion.

12

Chapter 1

The Role of Bias

The bias term θ allows each neuron to shift its activation threshold. As seen
earlier, it can be implemented as an additional input x0 = 1 with a trainable
weight w0i = −θ, enabling the neuron to generalize better and adapt to more
complex data distributions.

This formulation leads to a more uniform structure for all neurons and
simplifies the learning process, especially when using optimization algorithms
like backpropagation.

1.10 Supervised Learning

One of the main paradigms for training neural networks is supervised learn-
ing. In this framework, the network is presented with a set of examples
composed of input–output pairs, where the output represents the desired
response (also called target). The goal of learning is to adjust the synaptic
weights so that the network produces outputs that closely match the targets.

Learning, in this context, means modifying the weights of the connections
between neurons. A neural network is said to be learning when the values of
its weights are being updated.

Consider a network with n input neurons and p output neurons. Let the
output vector of the network be:

y = [y1, y2, . . . , yp]
T

and the corresponding target vector for a given input pattern be:

t = [t1, t2, . . . , tp]
T

If we are given a training set composed of M input–output pairs (also
called patterns), the error for a single pattern k is defined as:

E(k) =
1
2

p

∑
j=1

(t(k)j − y(k)j)2

This is called MSE. The total error over the entire training set is then:

E =
M

∑
k=1

E(k) =
1
2

M

∑
k=1

p

∑
j=1

(t(k)j − y(k)j)2

In supervised learning the loss function E (or cost function), quantifies the
discrepancy between the predicted outputs of the network and the corre-
sponding target values. The choice of the loss function is crucial, as it directly
influences how the network learns.

From a geometrical perspective, the loss function defines a multidimen-
sional surface over the space of all possible weight configurations. This sur-
face typically presents numerous peaks and valleys, corresponding to local
maxima and minima.

13

Chapter 1

FIGURE 1.14: Loss function surface example. Image from [7]

Training a neural network becomes, therefore, an optimization problem,
where the objective is to find a configuration of weights that minimizes the
loss function.

In practical terms, minimizing the loss means adjusting the synaptic weights
so that the outputs of the network approach the target values as closely as
possible across all input patterns. Various optimization algorithms, such as
gradient descent, are employed to iteratively update the weights in the direc-
tion that most reduces the loss, ideally reaching a (local or global) minimum
of the error surface.

1.11 Gradient Descent

As said before, the learning process can be formulated as an optimization
problem where the objective is to minimize the error function E with respect
to the weights. A common method to perform this minimization is the Gra-
dient Descent algorithm.

Gradient Descent updates the weights in the direction opposite to the gra-
dient of the error:

∆wji = −η
∂E

∂wji

where:

• wji is the weight connecting input i to output neuron j,

• η is the learning rate,

• ∂E
∂wji

is the partial derivative of the error with respect to the weight.

1.12 The Delta Rule (Widrow-Hoff Rule)

In order to understand how training works, the Delta Rule is a particular
case of gradient descent applied to a linear neuron. It states that the weight

14

Chapter 1

update should be proportional to the product of the input and the error sig-
nal:

∆wji = ηδjxi

where:

• δj = tj − yj is the error term for neuron j,

• xi is the i-th input.

• η is called learning rate

1.13 Equivalence Between Delta Rule and Gradi-
ent Descent

We now show the equivalence between the Delta Rule and Gradient Descent
for a linear neuron. Suppose the output of neuron j is:

yj =
n

∑
i=1

wjixi

Then, the derivative of the error E with respect to weight wji is:

∂E
∂wji

=
∂E
∂yj
·

∂yj

∂wji

From the definition of E, we have:

∂E
∂yj

= −(tj − yj) = −δj

and:

∂yj

∂wji
= xi

Combining the two:

∂E
∂wji

= −δjxi ⇒ ∆wji = ηδjxi

which is exactly the Delta Rule. Therefore, the Delta Rule can be seen as
a specific application of the Gradient Descent method for linear neurons.

Weight update

In practice, different strategies can be used to update weights:

• Batch learning: weights are updated after the entire training set has
been processed.

15

Chapter 1

• Online (stochastic) learning: weights are updated after each individ-
ual training example.

Further refinements to this rule include techniques such as momentum
and adaptive learning rates, which will be discussed in the next section.

1.14 Backpropagation

While the Delta Rule and gradient descent provide a foundation for under-
standing learning in single-layer networks, training deep neural networks
requires a more general approach. The backpropagation algorithm extends
these ideas to multilayer architectures by efficiently computing the gradient
of the loss function with respect to all weights in the network.

The core idea behind backpropagation is to apply the chain rule of cal-
culus to propagate the error from the output layer back through the hidden
layers. This allows the network to assign blame to each weight according to
its contribution to the final output error.

Let us denote the loss function as L, typically the mean squared error or
cross-entropy, depending on the task. The update rule for a generic weight
wij is:

∆wij = −η
∂L

∂wij

where η is the learning rate. Backpropagation makes this computation
feasible by recursively calculating gradients, layer by layer, starting from the
output.

The algorithm proceeds in two main phases:

• Forward pass: The input is propagated through the network to com-
pute the output and the corresponding loss.

• Backward pass: The gradients of the loss with respect to the weights
are computed by applying the chain rule, and the weights are updated
accordingly.

FIGURE 1.15: Forward and Backward passes.

Backpropagation became a cornerstone of modern deep learning with the
rise of computational resources and large datasets, enabling the training of
deep architectures such as convolutional neural networks and recurrent neu-
ral networks [20, 12].

16

Chapter 1

An example: linear unit backpropagation

Consider a simple linear unit, where the output is computed as:

y = wx + b

Given a loss function L(y, t), where t is the target, we compute the gra-
dients with respect to the parameters w, b, and the input x. Using the chain
rule:

∂L
∂w

=
∂L
∂y
· ∂y

∂w
=

∂L
∂y
· x

∂L
∂b

=
∂L
∂y
· ∂y

∂b
=

∂L
∂y

∂L
∂x

=
∂L
∂y
· ∂y

∂x
=

∂L
∂y
· w

These derivatives show how the error signal ∂L
∂y , computed at the output,

is propagated backward to update both weights and bias, and to pass the
gradient with respect to x for use in earlier layers.

Weight and bias update rule

Once the gradients have been computed, the weights and biases are updated
using gradient descent. With learning rate η:

w← w− η
∂L
∂w

= w− η · ∂L
∂y
· x

b← b− η
∂L
∂b

= b− η · ∂L
∂y

This update reduces the loss by adjusting parameters in the direction of
steepest descent.

Adding a non-linear activation: sigmoid case

In most networks, the output passes through a non-linear activation. Con-
sider the sigmoid activation:

y = σ(z) =
1

1 + e−z , with z = wx + b

The derivative of the sigmoid function is a well-known expression. Given:

σ(z) =
1

1 + e−z ,

its derivative with respect to z is:

17

Chapter 1

σ′(z) =
d
dz

(
1

1 + e−z

)
= σ(z)(1− σ(z)).

This compact form is particularly useful during backpropagation, as it
allows us to express the derivative in terms of the output y = σ(z):

σ′(z) = y(1− y).

So, computing:

∂L
∂z

=
∂L
∂y
· dy

dz
=

∂L
∂y
· σ(z)(1− σ(z)) =

∂L
∂y
· y(1− y)

Then, using the chain rule again:

∂L
∂w

=
∂L
∂z
· x,

∂L
∂b

=
∂L
∂z

These expressions demonstrate how the activation function modulates
the gradient during backpropagation.

Vanishing gradient problem

The vanishing gradient problem occurs when gradients become extremely
small as they are propagated backward through deep networks. This is com-
mon with activation functions like sigmoid or tanh, whose derivatives are
bounded between 0 and 1.

As the gradient is passed backward through multiple layers, each with
small derivative terms, the product of these terms can become very small.
For example, in a network with multiple layers using sigmoid activations,
the gradient with respect to the input of an early layer takes the form:

∂L
∂x

=
∂L

∂y(n)
·

n

∏
l=1

σ′(z(l)) · w(l)

Since each term σ′(z(l)) ∈ (0, 0.25], the product tends to zero as the num-
ber of layers n increases, leading to vanishing gradients.

This results in negligible updates in early layers, slowing or even pre-
venting learning. To mitigate this, modern architectures often use alternative
activation functions such as ReLU, or structural techniques like residual con-
nections to preserve gradient flow.

Automatic differentiation

Modern deep learning frameworks such as PyTorch and TensorFlow imple-
ment automatic differentiation, which computes gradients efficiently and
accurately by recording the sequence of operations during the forward pass
and applying the chain rule in reverse. This allows the training of complex
networks without the need for manual gradient derivation.

18

Chapter 1

1.15 Learning Rate

The learning rate η is a fundamental hyperparameter in training neural net-
works using gradient-based optimization. It determines the size of the steps
taken in the direction of the negative gradient of the error function.

The generic weight update rule using gradient descent is:

∆wji = −η
∂L

∂wji

where:

• wji is the weight from input i to neuron j,

• L is the loss function,

• ∂L
∂wji

is the partial derivative of the error with respect to wji,

• η is the learning rate.

Impact of Learning Rate

Choosing an appropriate learning rate is critical for effective and efficient
training:

• Too large η: The updates may overshoot the minimum of the error
function, potentially leading to divergence or oscillatory behavior. This
is particularly problematic in regions of the error surface that are steep
or narrow.

• Too small η: The updates become very small, slowing down the con-
vergence significantly. Although the training process may remain sta-
ble, it becomes inefficient and may take a large number of iterations to
reach an acceptable minimum.

The following schematic illustrates these behaviors:

• Large η: unstable convergence or divergence.

• Small η: slow but steady convergence.

• Moderate η: optimal balance between speed and stability.

19

Chapter 1

FIGURE 1.16: Learning rate effects during training. Image from
[8]

Adaptive Learning Rate Strategies

In practice, instead of using a fixed learning rate, various adaptive strategies
are often employed to improve performance:

• Learning rate scheduling: Start with a higher learning rate and grad-
ually decrease it as training progresses. This allows for rapid conver-
gence in early phases and fine-tuning near the minimum. Examples
include:

– Step decay

– Exponential decay

– Inverse time decay

• Learning rate warm-up: Start with a very small learning rate and grad-
ually increase it during the initial iterations. This can help stabilize
training in networks with high variance in gradients.

• Per-parameter adaptive methods: Algorithms like AdaGrad, RMSProp,
and Adam automatically adjust the learning rate for each weight in-
dividually based on past gradients. These methods often yield faster
convergence, especially in large-scale and sparse problems.

Learning rate Selection

In simpler models or academic examples, the learning rate is often chosen
empirically. A typical range for η might be:

η ∈ [10−4, 10−1]

However, the optimal value depends heavily on the architecture, dataset,
loss surface, and presence of other optimization techniques.

20

Chapter 1

Summary

The learning rate is one of the most influential hyperparameters in training
neural networks. It governs the trade-off between convergence speed and
training stability. An effective learning rate strategy, whether fixed, decaying,
or adaptive, is crucial for successful model training.

In the next section, we will address other challenges in training, such as
how to organize and present the data to the network, including techniques
like batch and online learning.

1.16 Momentum

One of the main challenges when using gradient descent is its inefficiency in
navigating complex error surfaces, especially in regions with narrow valleys
or where the gradient frequently changes direction. A widely adopted solu-
tion to mitigate these issues is the introduction of a momentum term in the
weight update rule. In fact, standard gradient descent may exhibit slow con-
vergence, particularly when the error surface has steep but narrow ravines.
In such cases, the gradient may point in a zig-zag pattern, resulting in in-
efficient updates. Momentum helps by accumulating a velocity vector that
continues to move in the consistent direction of past gradients.

Mathematical Formulation

Let ∆w(n)
ji denote the weight update at iteration n. The update rule with

momentum is:

∆w(n+1)
ji = ηδjxi + α∆w(n)

ji

w(n+1)
ji = w(n)

ji + ∆w(n+1)
ji

where:

• η is the learning rate,

• δj is the error signal for neuron j,

• xi is the input to the neuron,

• α ∈ [0, 1) is the momentum coefficient,

• ∆w(n)
ji is the previous weight update.

Effect of Momentum

The momentum term α effectively smooths the trajectory of weight updates.
If the gradient continues to point in the same direction, the accumulated up-
date becomes larger, allowing the network to move faster in that direction.

21

Chapter 1

Conversely, if the gradient direction changes, momentum helps to dampen
oscillations.

The benefits of momentum include:

• Faster convergence in shallow but consistently sloped regions.

• Improved ability to escape from small local minima.

• Reduction of oscillations in directions with high curvature.

Practical Considerations

Typical values of α range from 0.5 to 0.9. When momentum is used, it is com-
mon to slightly reduce the learning rate η to avoid overly large updates. The
combination of a moderate learning rate and well-tuned momentum often
results in significantly improved training performance.

Momentum is also a key component of more sophisticated optimization
algorithms, such as Nesterov Accelerated Gradient (NAG) and Adam, which
adapt the momentum concept in more advanced ways.

1.16.1 Optimization Algorithms in Practice

In practical applications, gradient descent is rarely used in its basic form.
Instead, training is typically performed using more advanced optimization
algorithms, which extend or improve the basic gradient descent rule by in-
corporating additional information such as gradient history, per-parameter
adaptation, or momentum.

Some of the most widely used optimizers include:

• Stochastic Gradient Descent (SGD): A basic version of gradient de-
scent where the weights are updated after each training sample. It is
often combined with momentum to improve convergence.

• SGD with Momentum: Enhances standard SGD by adding a fraction
of the previous weight update to the current one, helping to accelerate
convergence in consistent directions and dampen oscillations.

• RMSProp: Adjusts the learning rate for each weight individually based
on a moving average of squared gradients, making it suitable for non-
stationary objectives and deep networks.

• Adam (Adaptive Moment Estimation): Combines the benefits of RM-
SProp and momentum. It maintains both a moving average of the gra-
dients and the squared gradients, and adapts the learning rate accord-
ingly. Adam is widely used due to its efficiency and robustness in many
different tasks.

These optimizers automatically handle many aspects of the training dy-
namics, often making the learning process more stable and faster compared
to plain gradient descent.

22

Chapter 1

1.17 Regularization Techniques

Deep neural networks are powerful function approximators, but they are
also prone to overfitting, a situation in which the model performs well on the
training data but poorly on unseen test data. This typically occurs when the
network has too many parameters relative to the amount of available data,
allowing it to memorize the training set instead of learning general patterns.

Regularization refers to a set of techniques that constrain or penalize
model complexity during training. The goal is to improve the generalization
ability of the network by discouraging overly flexible or sensitive solutions.

A Motivating Example: Suppose we train a neural network to fit a small
dataset of noisy measurements. Without regularization, the network may
learn to interpolate all training points perfectly, including noise, leading to
high variance and poor performance on new data. Regularization techniques,
such as L2 penalty or Dropout, force the network to learn smoother or more
robust representations, yielding better test accuracy.

1.17.1 L2 Regularization (Weight Decay)

L2 regularization adds a penalty proportional to the square of the weights to
the loss function:

Etotal = Edata + λ ∑
i,j

w2
ji

This encourages the network to keep the weights small, which generally
leads to simpler models and improved generalization [21].

1.17.2 Dropout

Dropout is a stochastic regularization technique introduced by Srivastava et
al. [22]. During training, each neuron (except for output neurons) is tem-
porarily "dropped" with a probability p, meaning its output is set to zero:

• This forces the network to learn redundant pathways and discourages
reliance on specific neurons.

• At inference time, the full network is used, and the activations are
scaled to account for dropout during training.

Mathematically, for each hidden unit hi during training:

h′i = hi · zi where zi ∼ Bernoulli(1− p)

Here:

• hi is the original output of the i-th hidden unit.

23

Chapter 1

• zi is a random binary variable drawn from a Bernoulli distribution with
probability 1− p of being 1 (i.e., the unit is kept) and p of being 0 (i.e.,
the unit is dropped).

• h′i is the output after dropout is applied.

This means:

h′i =

{
hi with probability 1− p
0 with probability p

During training, dropout is applied by randomly setting some units to
zero at each forward pass. During testing, dropout is not applied.

Dropout is especially effective in large networks and prevents co-adaptation
of neurons. It will be used in later chapters to regularize U-Net architectures.

1.17.3 Batch Normalization as Implicit Regularization

Batch Normalization (BN), originally introduced to accelerate training [23],
has also been found to have a regularizing effect. BN normalizes the ac-
tivations of each mini-batch (a small subset of the training dataset used to
compute an estimate of the gradient during one iteration of training) to have
zero mean and unit variance:

x̂(k) =
x(k) − µB√

σ2
B + ϵ

y(k) = γx̂(k) + β

where µB and σ2
B are the batch mean and variance, and γ, β are learnable

parameters.
BatchNorm improves gradient flow, stabilizes training, and adds noise

due to mini-batch statistics, which acts as an implicit form of regularization.
We will make use of BN in convolutional architectures like U-Net to improve
generalization and convergence speed.

1.17.4 Early Stopping

Early stopping halts the training process when performance on a validation
set starts to degrade. It prevents overfitting by stopping before the network
begins to memorize noise in the training data.

1.17.5 Data Augmentation

Data augmentation enriches the training set by applying transformations to
the input data (e.g., rotations, flips, scaling). While not a model-based regu-
larization method, it improves generalization by exposing the network to a
broader variety of examples. Insights will be discussed in Chapter 6.

24

Chapter 2

U-Net: A Convolutional
Architecture for Scientific
Computing

U-Net is a convolutional neural network (CNN) architecture originally de-
veloped for biomedical image segmentation, but its design has proven highly
effective across a wide range of image-to-image translation tasks. In par-
ticular, its use in scientific domains such as Computational Fluid Dynamics
(CFD) has recently gained significant traction, due to its ability to efficiently
approximate complex spatial mappings. U-Net was introduced in 2015 by
Ronneberger et al. [9], extending the concept of Fully Convolutional Net-
works (FCNs) [24]. Unlike traditional CNNs aimed at classification, U-Net
was designed specifically for pixel-wise prediction tasks. Its architecture en-
abled accurate segmentations even when trained on small datasets, a critical
requirement in medical imaging. In order to understand how U-net works it
is useful to present how a CNN works.

2.1 Understanding Convolutional Neural Networks

Convolutional Neural Networks (CNNs) are designed to process data with a
grid-like structure, making them particularly effective for visual data analy-
sis. This section introduces the fundamental components and operations that
define CNNs and how they relate to U-Net’s architecture [25].

FIGURE 2.1: CNN structure

Chapter 2

A CNN works with:

• Tensors: Data in CNNs are represented as tensors, which are generaliza-
tions of matrices to higher dimensions. A typical image input is a 3D
tensor of shape (H ×W × C), where H and W denote spatial dimen-
sions and C is the number of channels (e.g., RGB or physical variables
like velocity and pressure in CFD).

• Neurons and Layers: A neuron performs a weighted sum of inputs,
adds a bias, and applies a non-linear activation function. Neurons are
organized in layers, with each layer performing a specific transforma-
tion on the input tensor. Layers can be convolutional, pooling, or fully
connected, depending on their role.

• Learnable Parameters: The learnable parameters in CNNs are the weights
(or kernels) and biases. In convolutional layers, each filter (kernel) slides
across the input tensor, detecting spatial features. These parameters are
optimized during training.

2.1.1 Input Layer

The input layer holds the raw data without performing computations. In
classical CNN, each channel may represent RGB layers. In CFD, inputs chan-
nels may represent fields like pressure or velocity, with each channel corre-
sponding to a different variable.

FIGURE 2.2: Typical input representation with multiple chan-
nels.

2.1.2 Convolutional Layers and Core Hyperparameters

Convolutional layers are the core building blocks of CNNs. Each layer ap-
plies a set of learnable filters (or kernels) that slide over the input, computing
dot products between the filter weights and local patches of the input. This
operation captures local spatial features such as edges, corners, or patterns.

26

Chapter 2

As we go deeper into the network, these filters learn to detect increasingly
complex and abstract features. Each convolution operation reduces or main-
tains the spatial resolution depending on the stride and padding used.

FIGURE 2.3: Typical convolutional operation

Each convolutional neuron performs an elementwise dot product between
a filter (kernel) and a local patch of the input tensor, followed by summing
the results and applying an optional bias. This operation is repeated spatially
across the input, producing a two-dimensional activation map. Multiple fil-
ters result in multiple activation maps, which are then stacked to form the
output tensor.

Worked Example: Understanding the Convolution Mechanism Let us con-
sider a simple example with a 3× 3 input matrix and a 2× 2 kernel, using a
stride of 1 and no padding. The kernel is applied (or slid) across the input
matrix from left to right and top to bottom, extracting localized features. At
each position, the overlapping elements of the kernel and the input region are
multiplied elementwise, then summed. This result forms a single element in
the output activation map.

Input I:

I =

1 2 0
3 1 2
1 0 1

 , K =

[
1 0
−1 1

]
The stride of 1 means the kernel moves one cell at a time, resulting in a

2× 2 output. We compute the output values as follows:

O1,1 = (1 · 1) + (2 · 0) + (3 · (−1)) + (1 · 1) = 1 + 0− 3 + 1 = −1
O1,2 = (2 · 1) + (0 · 0) + (1 · (−1)) + (2 · 1) = 2 + 0− 1 + 2 = 3
O2,1 = (3 · 1) + (1 · 0) + (1 · (−1)) + (0 · 1) = 3 + 0− 1 + 0 = 2
O2,2 = (1 · 1) + (2 · 0) + (0 · (−1)) + (1 · 1) = 1 + 0 + 0 + 1 = 2

Output O:

O =

[
−1 3
2 2

]

27

Chapter 2

O1,1 O1,2

O2,1 O2,2

FIGURE 2.4: Examples of different convolution outputs. Each
image represents a localized result Oi,j from the application of

the kernel over the input tensor. Note that the stride is 1

This output is the activation map generated by the convolution with the
given kernel. The stride determines how far the kernel shifts in each step: a
stride of 1 allows overlapping regions to be scanned, producing high-resolution
outputs. Larger strides would skip over more positions, reducing the output
size accordingly.

With multiple filters, this process is repeated for each filter, and the result-
ing activation maps are stacked along the depth dimension.

Multi-Channel Convolution

In convolutional layers with multiple input channels (e.g., RGB images with
3 channels), each filter consists of multiple k× k kernels—one per input chan-
nel. Each kernel is convolved with its corresponding input channel, and the
results are summed elementwise to form the final activation map.

For example, in the TinyVGG architecture, a convolutional layer with 10
output channels applied to an input with 3 channels requires 3 × 10 = 30
unique kernels. Each output channel aggregates contributions from all input
channels, resulting in rich and expressive learned features [25].

Padding

Padding is used to control the spatial size of the output tensor.

28

Chapter 2

FIGURE 2.5: Example of padding: the original 3x3 matrix (light
grey) is expanded in a 5x5

Without padding, the convolution operation reduces the spatial resolu-
tion of the input. Zero-padding is the most common approach, which adds
rows and columns of zeros around the input tensor. This allows for:

• Preservation of input dimensions (“same” convolution)

• Inclusion of edge information

• Deeper architectures without rapid spatial reduction

Zero-padding is widely used in architectures such as AlexNet and ResNet [25].

Kernel Size

The kernel size, or filter size, determines the receptive field of the convolu-
tion. Small kernels such as 3 × 3 are widely used as they allow capturing
fine details while maintaining a manageable number of parameters. Stack-
ing several small-kernel layers can simulate the effect of a larger receptive
field while maintaining efficiency.

FIGURE 2.6: Kernel (in rose) size 3x3 and relative output

FIGURE 2.7: Kernel size 4x4 and relative output

Larger kernels (e.g., 7× 7) cover more spatial area but may lose local in-
formation and reduce output size more aggressively. The choice of kernel
size depends on the dataset and task but is a critical architectural hyperpa-
rameter.

29

Chapter 2

Stride

The stride defines the number of pixels the filter moves at each step. A
stride of 1 performs dense scanning of the input and produces large acti-
vation maps. Larger strides skip over input positions, reducing the output
size and computational cost at the expense of detail.

In TinyVGG, for instance, convolutional layers typically use a stride of 1
to maximize feature resolution [25].

FIGURE 2.8: Example of convolution with stride = 2. The kernel
skips two position at each step, reducing the output resolution.

Pooling Layer

Pooling layers follow convolutional layers to reduce the spatial resolution
of activation maps while retaining dominant features. The most common
form is max pooling, which selects the maximum value within a local window
(e.g., 2× 2). Other pooling operations are min pooling or mean pooling. Pool-
ing improves computational efficiency and introduces translation invariance,
helping the model generalize to shifted versions of patterns.

MaxPooling
[

1 3
2 4

]
= 4 (for window 2× 2)

FIGURE 2.9: Kernel size 4x4 and relative output

This operation is typically performed with a stride equal to the window
size, ensuring non-overlapping downsampling.

Relation Between Hyperparameters and Output Dimensions The spatial
dimension of the output feature map produced by a convolutional layer de-
pends on four key hyperparameters: the input size (I), the kernel size (K),
the padding (P), and the stride (S). The relationship is given by the formula:

O =

⌊
I + 2P− K

S

⌋
+ 1

30

Chapter 2

where O is the size of the output feature map along one spatial dimension.
Padding (P) allows the network to preserve spatial dimensions by adding
a border of zeros around the input (there are many padding tecniques). A
larger kernel (K) reduces the output size, as it spans a wider region of the in-
put. Stride (S) controls the step with which the kernel moves across the input;
increasing the stride reduces the output resolution. Understanding this rela-
tionship is essential when designing convolutional networks, particularly for
tasks like segmentation or scientific computing where spatial fidelity is im-
portant.

Example Let us consider an example with the following values:

• Input size I = 3

• Padding P = 1

• Kernel size K = 3

• Stride S = 1

Applying the formula:

O =

⌊
3 + 2 · 1− 3

1

⌋
+ 1 =

⌊
3 + 2− 3

1

⌋
+ 1 = ⌊2⌋+ 1 = 3

So the output size is 3× 3. This example illustrates how using padding can
preserve the spatial resolution of the input when combined with appropri-
ate kernel size and stride settings.

2.1.3 Output Layer

After passing through several convolutional and pooling layers, the output
tensor reaches the final stage of the network: the output layer. At this point,
the network must translate the high-level features it has extracted into mean-
ingful predictions, depending on the task at hand.

For classification tasks, such as the one illustrated in Figure 2.1, the feature
maps generated by the final convolutional layer are first flattened into a one-
dimensional vector. This vector is then passed through one or more fully
connected layers, which act as a traditional feedforward neural network.

The final fully connected layer typically ends with a softmax activation
function:

softmax(zi) =
ezi

∑C
j=1 ezj

where C is the number of output classes and zi is the logit (raw score) associ-
ated with class i. The softmax function converts these logits into a probability
distribution over all possible classes, ensuring that:

C

∑
i=1

softmax(zi) = 1

31

Chapter 2

This probability distribution indicates how confident the network is in
classifying the input as belonging to each class. The final predicted label
corresponds to the class with the highest probability.

In regression tasks, such as those frequently encountered in CFD, the out-
put layer may instead use a linear activation function. In this case, the out-
put consists of one or more continuous values, directly representing physical
quantities such as pressure, velocity, or temperature fields.

Thus, the design of the output layer and its activation function is highly
dependent on the nature of the task: classification requires probabilistic out-
puts, while regression demands continuous-valued predictions.

2.2 The Classical U-Net Architecture

FIGURE 2.10: U-net Network. Image from [9]

The classic U-Net follows a symmetric encoder-decoder structure with skip
connections. It consists of two main parts:

• Contracting path (encoder): This path captures context through succes-
sive applications of 3x3 convolutions, each followed by a non-linear ac-
tivation function and a 2x2 max-pooling operation for downsampling.
With each downsampling step, the number of feature channels doubles.

• Expanding path (decoder): This path performs upsampling of the fea-
ture maps using interpolation methods (e.g., nearest-neighbor or bilin-
ear) followed by convolutional layers. Each step halves the number
of channels and concatenates the result with the corresponding feature
maps from the contracting path (skip connections). This fusion helps
the network localize features accurately.

The network ends with a 1x1 convolution to map each 64-component fea-
ture vector to the desired number of output classes or regression values. This
architecture allows the U-Net to combine coarse contextual information with
fine spatial details.

32

Chapter 2

2.3 Core Operations in U-Net

The U-Net architecture relies on a sequence of well-established operations in
deep learning, we treated many of them in the previous section:

• Convolution (Conv2D): Each convolutional layer applies learnable fil-
ters (typically 3x3) to the input feature maps. The result is a set of out-
put channels (feature maps) [26].

• Max Pooling: A downsampling operation where a window (commonly
2x2) slides over the input, and only the maximum value within the win-
dow is retained.

• Upsampling (Up-convolution): In the decoder, spatial resolution is in-
creased using learned Upsampling, nearest neighbor or bilinear inter-
polation. This is followed by convolutional layers to refine the upsam-
pled features [27]. The first strategy for upsampling, is to insert zeros
between the original values, and then apply a learnable filter, such as
a convolutional layer, to fill the missing values. For example, given a
3× 3 input matrix:

X =

1 2 3
4 5 6
7 8 9


we can create a 5× 5 grid by inserting zeros between rows and columns:

1 0 2 0 3
0 0 0 0 0
4 0 5 0 6
0 0 0 0 0
7 0 8 0 9


At this point, a learnable filter (such as a 3× 3 convolution kernel) is
applied to the enlarged grid to generate the final upsampled output,
filling those zeros. This allows the network to learn how to best in-
terpolate and combine nearby values during training. This approach
provides more flexibility than fixed interpolation methods.

Alternatively, simpler techniques such as nearest-neighbor upsampling,
where each value is repeated into a block of fixed size, and bilinear in-
terpolation, which computes intermediate values as weighted averages,
can also be used especially when learnable parameters are not required
or desired.

For example, using nearest-neighbor upsampling with a scaling factor
of 2 on the following 2× 2 matrix:

X =

[
1 2
3 4

]

33

Chapter 2

produces the upsampled output:

X̃ =


1 1 2 2
1 1 2 2
3 3 4 4
3 3 4 4


In this case, each pixel value is simply copied to a 2× 2 block, leading
to visible square-shaped regions of constant value. These blocky arti-
facts, sometimes referred to as “pixelation,” can degrade visual quality,
especially in image generation or segmentation tasks, where smooth
transitions are often desired.

• Concatenation (Skip Connections): Encoder feature maps are concate-
nated with decoder maps at matching resolution. This preserves fine
details lost during downsampling and facilitates gradient propagation.
They help preserve spatial details by directly passing features from the
encoder to the decoder, which is especially useful for preventing the
vanishing gradient problem. By providing a shortcut for gradient flow,
skip connections ensure efficient training even in deep networks, main-
taining crucial information during backpropagation. The model’s skip
connections combine low-level spatial information from the encoder
with high-level contextual information from the decoder, also, they al-
low for precise segmentation, even when only a limited number of la-
beled examples are available.

FIGURE 2.11: Skip connection example in a i-th layer of U-net
NN

2.4 Activation Functions in U-Net

As said in the previous Chapter, activation functions introduce non-linearity
into neural networks, enabling them to learn complex mappings. In U-Net,
several activation functions may be used depending on the context and task:

• ReLU (Rectified Linear Unit): ReLU is widely used due to its simplicity
and ability to mitigate the vanishing gradient problem. It is the default
choice in most U-Net layers [28].

• ELU (Exponential Linear Unit): ELU provides smoother transitions
and improves learning in deeper networks [29].

34

Chapter 2

• Sigmoid: Maps inputs to the (0, 1) interval, useful in binary segmenta-
tion tasks. However, it is prone to saturation and vanishing gradients.
It could be a good choice before the output layer if the entire dataset is
normalized in the range [0,1] in order to prevent outliers.

• Linear Activation: Used in regression tasks, especially in the final layer
when the network must predict continuous values (e.g., pressure or ve-
locity fields).

The choice of activation function plays a crucial role in determining the
network’s convergence behavior and performance.

2.5 The Effectiveness of U-Net Architectures in Com-
putational Fluid Dynamics

In recent years, deep learning architectures have shown great promise in ad-
dressing complex problems in Computational Fluid Dynamics (CFD). Among
these, the U-Net architecture has emerged as one of the most effective and
widely adopted models. Its strength lies in the ability to learn spatially coher-
ent representations from structured data. Originally developed for biomedi-
cal image segmentation, U-Net [9] has naturally extended into scientific com-
puting, where many tasks involve mapping between different spatial resolu-
tions or reconstructing complete physical fields from partial inputs.

CFD problems often require predicting high-resolution flow fields (e.g.,
pressure, velocity, or temperature distributions) starting from low-resolution
or sparse data. These problems are inherently spatial and demand models
capable of capturing both local features and global context. U-Net is par-
ticularly well-suited for this purpose, thanks to the following architectural
strengths:

• Encoder-decoder structure: Enables the model to extract hierarchical
features at multiple scales.

• Skip connections: Allow fine-scale spatial details to be retained, which
is crucial for accurate flow field reconstruction.

• Progressive upsampling: Facilitates effective mapping from coarse to
fine resolutions.

This architecture has been successfully applied across a wide range of
CFD tasks:

• Super-resolution reconstruction: U-Net models enhance coarse veloc-
ity and pressure fields, learning the missing fine-scale dynamics.

• Field prediction from sparse data: Given limited measurements, such
as inlet conditions or scattered sensor data, U-Net can infer the com-
plete flow field [30].

35

Chapter 2

• Turbulence modeling: U-Net variants reconstruct or predict turbulent
structures, offering a data-driven alternative to traditional closure mod-
els [31], [32].

A major advantage of U-Net in this context is its ability to act as an ef-
ficient surrogate model. Traditional CFD solvers are computationally ex-
pensive, particularly for high-resolution or time-dependent simulations. In
contrast, a trained U-Net model can generate accurate flow predictions in a
fraction of the time, making it suitable for tasks such as:

• Real-time flow field estimation,

• Optimization and control loops,

• Rapid design space exploration.

In conclusion, the architectural features of U-Net including its deep encoder-
decoder pathway, the use of skip connections, and strong spatial general-
ization align remarkably well with the demands of CFD tasks. Its demon-
strated success in super-resolution, field completion, and turbulence mod-
eling underscores its versatility and effectiveness as a learning-based surro-
gate model. As data-driven methods continue to evolve, U-Net stands out as
a cornerstone architecture bridging the gap between classical physics-based
solvers and modern machine learning approaches.

36

Chapter 3

Development of a Python-Based
U-Net Framework for Predicting
CFD Simulation Fields

The developed code is designed to enhance the resolution of computational
fluid dynamics (CFD) solutions by leveraging a deep learning-based super-
resolution approach. As illustrated in Figure 3.1, the workflow begins with
a coarse 2D mesh used to generate low-fidelity flow field solutions via a tra-
ditional CFD solver. These low-resolution outputs serve as input for a U-net
model trained to infer high-resolution approximations of the flow field.

The U-net model performs a super-resolution task, mapping the low-
fidelity solution to a high-fidelity prediction that corresponds to the results
obtained using a fine 2D mesh. The ultimate goal of this code is to approx-
imate high-fidelity CFD solutions with reduced computational cost by by-
passing the need for solving the Navier-Stokes equations on a refined grid.
This approach enables fast and efficient inference while preserving the es-
sential physical features of the simulated field.The final goal is to achieve the
workflow illustrated below:

FIGURE 3.1: Goal of the code: from coarse mesh CFD solution
to U-net-based high-resolution prediction.

The concept of multifidelity can refer either to an enhancement in the res-
olution of the predicted field or to an improvement in the underlying phys-
ical model. In the latter case, the high-fidelity model may represent a more
complex physical representation, such as a 2D section extracted from a 3D
RANS simulation or even from a Large Eddy Simulation (LES), thus involv-
ing higher physical accuracy and computational cost.

In the final application of the workflow, the user is only required to gener-
ate the computational meshes and compute the low-fidelity solution using a
standard CFD solver. The rest of the process is handled automatically by the
code, which has been previously trained on a dedicated dataset. If the use

Chapter 3

of a finer mesh is foreseen, it is assumed to be included during the training
phase, allowing the model to learn the mapping from low- to high-fidelity
representations accordingly.

3.1 General code workflow

FIGURE 3.2: General code workflow

Figure 3.2 illustrates the general structure of the developed code, which au-
tomates the data preparation, training, and inference processes for the super-
resolution of CFD fields.

The process begins with a traditional CFD solver, which generates flow
field solutions. These solutions are stored in a database and then interpo-
lated from the original unstructured computational mesh onto a structured
grid. Typically, the interpolation process is carried out over a limited portion
of the domain; therefore, the code allows defining a spatial region in which
to perform the extrapolation of nodal values and subsequently interpolate
them into an N x M matrix. If the selected box exceeds the domain bound-
aries, the interpolation returns a mask matrix as output, with values of 0 cor-
responding to nodes outside the domain and 1 to those within the domain.
This step ensures compatibility with convolutional neural networks, which
require structured input data. The interpolated fields are saved in .npz files,
containing both low-fidelity and high-fidelity versions of the fields.

Next, the data is normalized in a proper way, depending on the specific
task, to ensure efficient neural network training. The dataset is then split into
training, validation, and testing subsets. During the training phase, a U-net
architecture is employed. Two operational modes are supported:

• Training a single model that learns to predict all target fields simulta-
neously.

• Training separate models for each physical output (e.g., pressure, ve-
locity, reaction heat).

38

Chapter 3

Hyperparameter tuning may require restarting the training phase, depend-
ing on the user’s performance evaluation.

Once trained, the model is used for prediction on the test dataset. The out-
put is then denormalized and interpolated back from the structured grid to
the original high-fidelity unstructured grid. This results in a high-resolution
prediction that matches the format and fidelity of a traditional CFD output,
but with significantly reduced computational cost.

3.2 Customizable U-Net Architecture

The code implements a flexible version of the U-Net architecture, adaptable
to a wide range of tasks such as image segmentation, text recognition, or the
prediction of physical fields in Computational Fluid Dynamics (CFD) prob-
lems. Below is a detailed explanation of its core components.

3.2.1 Model Options

The initial section of the script defines several configurable parameters that
govern the model’s behavior:

• flat_class: if set to True, the network ends with a fully connected
classifier, suitable for tasks such as text recognition or image classifica-
tion. This option was included because, in the first version of the code,
the model was benchmarked on an image classification task. It was
nonetheless kept to make the code versatile for various case studies.

• constant_channels: when True, the number of filters remains constant
across all convolutional layers; otherwise, it increases with depth.

• filter_max_dim: specifies the number of filters at the bottom layer of
the U-Net.

• activation_conv: defines the activation function used in convolutional
layers (e.g., ELU).

• activation_output: specifies the activation function for the output layer
(e.g., Linear, Sigmoid).

• dropout_rates: a list that assigns dropout rates to each depth level,
useful for regularization.

• Batch_normalization: enables or disables the use of batch normaliza-
tion layers.

3.2.2 Building Blocks

The core component of the model is the block() function, which serves both
encoding and decoding roles. Each block consists of:

39

Chapter 3

• One or more convolutional layers with optional batch normalization
and dropout.

• A max pooling operation (for encoder blocks) or an upsampling opera-
tion (for decoder blocks).

• Skip connections, which can be optionally enabled using the skip flag.

Decoder blocks additionally concatenate their upsampled output with the
corresponding encoder features via skip connections to preserve spatial in-
formation, a fundamental principle in U-Net design.

3.2.3 Model Architecture

The function build_unet() constructs the entire network given the input
shape and number of output classes.

• Encoder path: A series of four downsampling blocks that progressively
reduce spatial dimensions while increasing feature depth.

• Bridge: A central block that connects the encoder and decoder. This
section has the highest number of filters and no pooling.

• Decoder path: Four upsampling blocks that reconstruct spatial resolu-
tion and merge features from the encoder via concatenation.

• Output:

– If flat_class=True, the decoder output is flattened and passed
through dense layers for classification.

– Otherwise, a final convolution projects the output to the desired
number of channels, with an activation function like Sigmoid for
segmentation.

3.2.4 Model Visualization

If the script is executed directly, a model instance is created with a predefined
input shape and number of classes. A summary of the model architecture is
printed, and a visual representation is saved, which is particularly useful for
understanding the topology and debugging. A tipycal structure of a U-net
generated by this model is the following:

40

Chapter 3

FIGURE 3.3: The U-net strcture generated by the code. In this
case, the input images are 256 x 256 with a maximum filter

number of 128. The output layer activation function is linear

The total number of parameters depends on the complexity of the model.
In particular, it can be observed that, once the encoder layers and convolu-
tional blocks are fixed (which must necessarily match those of the decoder),
the number of parameters is largely influenced by the number of filters.

TABLE 3.1: Effect of BatchNormalization and Dropout on the
model’s number of parameters

Filter’s number Batch
Normalization Dropout

Trainable
Parameters x103

Non-trainable
Parameters x103

32 off off 21 0
64 off off 86 0
128 off off 344 0
256 off off 1375 0
512 off off 5496 0
128 on on 345 1
256 on on 1377 2.4
512 on on 5500 5

It can be observed that the increase is exponential as the number of filters
is doubled.

41

Chapter 4

Case Study I: Euler-Based
Simulation of a Bump Geometry
using a Fortran Solver

The first case study was selected in order to test the network’s behavior on
the simplest possible simulation scenario. For this reason, an Euler-type
solver was chosen to simulate the bump geometry. The code was developed
in Fortran during the course "Computational Fluid Dynamics of Propulsion
Systems", and both simulations and results had already been validated. This
provided a reliable foundation for testing, developing, and improving the
Python code responsible for handling interpolations, network training, and
back-interpolation.

4.1 Fortran Code Background: Governing Equa-
tions

In this section, we introduce the set of equations used to simulate the first
test case. The solver is based on the 2D Euler equations, which are solved
in non-dimensional form. The non-dimensionalization allows for improved
numerical stability and generalization across different flow conditions. It also
makes it possible to omit data normalization in the Python code workflow.

Reference Quantities

The following reference quantities are used to non-dimensionalize the equa-
tions:

• Reference length: Lref

• Reference velocity: uref =
√

γRTref

• Reference density: ρref

• Reference pressure: pref = ρrefu2
ref

• Reference temperature: Tref

Chapter 4

• Reference time: tref =
Lref
uref

Using these, we define the non-dimensional variables as follows:

x̄ =
x

Lref
, t̄ =

t
tref

, ū =
u

uref
, ρ̄ =

ρ

ρref
, T̄ =

T
Tref

, p̄ =
p

pref
(4.1)

Non-dimensional Euler Equations

The conservative form of the 2D Euler equations in non-dimensional vari-
ables is written as:

∂U⃗
∂t̄

+
∂F⃗
∂x̄

+
∂G⃗
∂ȳ

= 0 (4.2)

with the conservative variable vector U⃗ and flux vectors F⃗ and G⃗ defined
as:

U⃗ =


ρ̄

ρ̄ū
ρ̄v̄
ρ̄Ē

 , F⃗ =


ρ̄ū

ρ̄ū2 + p̄
ρ̄ūv̄

ū(ρ̄Ē + p̄)

 , G⃗ =


ρ̄v̄

ρ̄ūv̄
ρ̄v̄2 + p̄

v̄(ρ̄Ē + p̄)

 (4.3)

Total Energy and Ideal Gas Law

The non-dimensional total energy per unit volume is expressed as:

ρ̄Ē =
p̄

γ− 1
+

1
2

ρ̄(ū2 + v̄2) (4.4)

And the ideal gas law in non-dimensional form becomes:

p̄ = ρ̄T̄ (4.5)

These equations form the complete non-dimensional system used in the
simulation of the first test case with the Fortran-based Euler solver. The
fluxes are calculated with the ROE method.

4.2 Computational Domain and Boundary Condi-
tion

The computational meshes were generated using the open-source software
GMSH. Two levels of fidelity were considered:

• Low fidelity mesh: characteristic length lc = 0.03, corresponding to
approximately 3k nodes.

• High fidelity mesh: characteristic length lc = 0.01, corresponding to
approximately 30k nodes.

44

Chapter 4

The domain is a 2D channel with the following dimensions:

• Length: 1 [–]

• Height: 0.3 [–]

• Bump height b: [0.01, 0.02, . . . , 0.10]

The first important aspect is identifying each simulation case, naming
them in a proper way. It has been chosen to identify all simulations using the
notation 0(b)0(lc*100), combining the bump height and mesh resolution.
The dataset includes both the coarse (low fidelity) and fine (high fidelity)
results, grouped into single files. Example: 0203, 0201, 0303, 0301, etc.

FIGURE 4.1: Low fidelity mesh (lc = 0.03) with approximately
3k nodes. Used as input data for the neural network.

FIGURE 4.2: High fidelity mesh (lc = 0.01) with approximately
30k nodes. Used as output data for the neural network.

U-Net box cordinate: Chosen in order to select the portion of domain
where the fields change. This permit to interpolate a 256x256 matrix image
for each field.

• Along the channel: (0.35, 0.65)

• Height: (0, 0.3)

Database split:

• 7 training cases (including the highest and lowest bump height)

• 2 validation cases

45

Chapter 4

• 1 test case

Boundary conditions: Fixed for each situation,

• Walls: tangency condition

• Inlet: P∗ = 1, T∗ = 1, α = 0◦, M = 0.3

• Outlet: P∗ = 1, T∗ = 1, α = 0◦, Pexit = 0.9395

In order to build the dataset the total number of simulation done are 20.
Therefore, what varies between the different simulations is the height of the
bump, while the boundary conditions remain the same. Naturally, a greater
pressure drop will be observed as the bump height increases. The goal of the
U-net will be to improve the quality of the solution after performing a first-
attempt simulation on the coarse grid, and to correct it in order to interpolate
it onto the fine grid, avoiding the need for a full simulation. All of this, during
nominal usage, is carried out within a few seconds.

4.3 Code Workflow

FIGURE 4.3: Workflow for the Bump case. The process begins
with data generation using an Euler Fortran solver, followed
by grid interpolation, .npz dataset creation, U-Net training, and
final re-mapping onto the original mesh. No normalization is

needed for this case.

The workflow shown in Figure 4.3 summarizes the complete pipeline devel-
oped to enhance the fidelity of Bump case simulations using the supervised
learning approach.

The main steps are as follows:

1. CFD Data Generation: flow fields are computed using the Euler solver
presented, and the simulation results are stored in .plt and later con-
verted in .vtu format.

46

Chapter 4

2. Grid Interpolation (Unstructured to Structured): the unstructured sim-
ulation output is interpolated onto a structured 256× 256 uniform grid
using a mask points strategy to handle the computational domain bound-
aries and later exclude void regions.

3. Dataset Creation: each .npz file contains both input and target vari-
ables such as Mach number (M), pressure (P), density (ρ), and velocity
components (u, v), along with a binary mask defining the valid domain.
At this stage the mask is stored in order to be used subsequently.

4. Model Training: a U-Net convolutional neural network is trained to
map low-fidelity inputs to high-fidelity outputs. The architecture uses
128 filters at the bottleneck, a batch size of 1, and a learning rate that
decays from 10−3 to 10−5. The training can be restarted based on con-
vergence behavior. At this stage, there is no need for Dropout or Batch
Normalization. The network receives a 7×256×256×3 tensor, where the
first dimension corresponds to the number of bump simulations, the
second and third represent the spatial dimensions of the snapshot, and
the fourth dimension contains the snapshot channels: pressure, and the
u and v velocity components. The rest 2x256x256x3 tensor is used as
Validation dataset.

5. Testing: the trained model P is tested on a separate test case. The input
consists of 3-channel structured grid data (256× 256× 3), and the out-
put is the corresponding high-fidelity prediction with the same shape.

6. Final Grid Interpolation (Structured to Unstructured): the predicted
output on the structured grid is mapped back onto the original high-
resolution unstructured mesh using a closest point interpolation strat-
egy. This ensures consistency with the original CFD geometry and
mesh.

4.4 Training

The training process was monitored by visualizing both the loss functions
and the feature maps at various levels of the U-Net architecture.

FIGURE 4.4: Training and validation loss trends for different
learning rates. Left: learning rate = 10−4. Right: use of restarts

using learning rates = 5 · 10−5 and 4 · 10−5.

47

Chapter 4

At the end of the training, the following values were achieved:

• train_loss = 3.72e-6

• validation_loss = 5.9e-5

The training is stopped once high non-zero values inside the bump disap-
pear. t may happen that the values inside the bump are very close to zero,
but not exactly zero. This issue can be mitigated by changing the activation
function in the output layer, provided that the entire dataset contains values
within the range [0,1]. Alternatively, by keeping a linear activation in the
output layer, the previously saved mask was applied before performing the
backward interpolation. For this type of dataset, this typically occurs when
the validation loss drops below 6 · 10−5.

The possibility of restarting the training with different learning rates al-
lows for controlled experimentation. This approach enables the user to save
only the best models, ensuring better control over the final results.

FIGURE 4.5: Visualization of the feature maps across different
layers of the U-Net during training. This technique helps to
understand the inner workings of the model by highlighting

how information is processed at each stage.

Figure 4.5 shows the feature maps extracted from various levels of the U-
Net. These maps serve as a tool to partially open the so-called "black box"
of deep learning models, providing insight into how the network processes
and transforms the input data through its layers. The level of abstraction
increases along the encoder path and decreases again through the decoder.
As the implementation becomes more complex, having access to these inter-
mediate outputs is essential to debug and detect potential anomalies during
training.

48

Chapter 4

4.5 Bump: Results

The performance of the model was evaluated by comparing its predictions
with high-resolution CFD results. In the following figures, we assess the
model’s ability to reconstruct fine-scale flow fields from coarse inputs.

FIGURE 4.6: Standard visual comparison between coarse input,
U-Net prediction, and high-resolution CFD target for pressure
(P), axial velocity (u), and transverse velocity (v). Images are

flipped due to interpolator transformations

Figure 4.6 shows the predicted fine-scale fields for pressure (P), axial ve-
locity (u), and transverse velocity (v), given coarse input fields. The U-Net
predictions closely resemble the target CFD solutions, capturing both large-
scale structures and finer gradients, especially in the velocity fields.

FIGURE 4.7: Same results as in Figure 4.6, with contrast en-
hancement to highlight fine details. Images are flipped due to

interpolator transformations

49

Chapter 4

To highlight the detailed flow features, Figure 4.7 shows the same results
with enhanced contrast. This allows a better visualization of complex spatial
variations, especially in regions with steep gradients or swirling flow. The
domain appears flipped due to PyVista’s resampling process; however, this
will be automatically corrected during post-processing.

FIGURE 4.8: Wall pressure comparison between coarse CFD in-
put, U-Net prediction, and high-resolution CFD output along

x ∈ [0.35, 0.65].

Figure 4.8 provides a quantitative assessment of model accuracy by com-
paring the wall pressure distribution along a segment of the domain (x ∈
[0.35, 0.65]). The U-Net prediction (red crosses) matches very closely with
the high-resolution CFD data (blue circles), significantly improving over the
coarse input (green squares). The model achieves a maximum relative error
of 0.61% and a mean relative error of 0.23%, confirming its effectiveness in
super-resolving flow fields.

4.6 Issue encountered and final comment

During the training and evaluation of the U-Net model, two main issues were
identified that deserve further attention and discussion.

Inactive Kernels

An observed phenomenon during training is the presence of inactive kernels
in the convolutional layers. These filters do not activate or produce nearly-
zero outputs across the validation set. While not necessarily a malfunction, it

50

Chapter 4

raises concerns about potential inefficiencies in the learned representations.
This behavior can be attributed to:

• Filter Redundancy: Some filters might become redundant or less useful
for image reconstruction. The network might find an efficient represen-
tation without utilizing all available filters.

• Sparse Activation: Certain filters may specialize in detecting specific
features, and thus remain inactive unless such features are present in
the input.

• Dominance of Other Filters: Strongly activated filters early in training
might dominate the reconstruction, reducing the contribution of less
active ones.

This issue was visually confirmed by inspecting feature maps from a spe-
cific convolutional layer, where several filters showed little to no activation
(highlighted in Figure 4.9).

FIGURE 4.9: Feature maps from one of the intermediate convo-
lutional layers. Some filters (circled) exhibit very low or null

activation.

51

Chapter 4

Role of the Mask During Post-Processing

Another challenge was found during post-processing. Despite achieving low
validation losses, the predicted values inside the geometric bump occasion-
ally deviated from the expected zero value. To prevent propagation of these
artifacts during interpolation to the original mesh, a binary mask is applied
after prediction. This operation nullifies values inside the bump area to en-
force consistency.

This approach serves as a precaution and may be reconsidered if the
model learns to correctly reproduce the internal zero values within the bump,
making the mask unnecessary in future stages.

FIGURE 4.10: Illustration of the post-processing mask applied
to predicted outputs. The bump region is masked out to ensure

correct values during interpolation.

An alternative approach, which was not pursued at this stage of code
development, could be to apply an activation function such as the sigmoid,
since all values passed during training fall within the range [0,1]. This would
allow the suppression of values inside the bump that might be negative and
very close to zero. However, this step becomes necessary only if those values
are positive and very close to zero.

52

Chapter 5

Case Study II: AHEAD Hydrogen
Burner

The second case study focuses on a lean premixed hydrogen burner, specifi-
cally the AHEAD combustor. This configuration was selected due to its rele-
vance in the current research landscape and the availability of a solid dataset
of results. The case is particularly suitable for data-driven approaches and
machine learning applications thanks to the extensive numerical simulation
campaign performed under well-documented conditions. All simulations
are carried out in a two-dimensional steady-state axisymmetric framework.

FIGURE 5.1: 2D axisymmetric geometry of the AHEAD com-
bustor, box domain for neural network training, and mesh com-

parison (fine vs coarse).

The geometry used in this study is a 2D axisymmetric simplification of the
AHEAD combustor, preserving the total inlet cross-sectional areas to ensure
velocity consistency with the original 3D configuration. The U-Net-based
neural network is trained and evaluated on a specific rectangular region of
the domain, highlighted in red in Fig. 5.1, with the following physical dimen-
sions:

• Axial direction: (0.127, 0.265) [m]

• Height: (0, 0.0525) [m]

The simulation database comprises 53 different operating conditions. For
each configuration, two different mesh resolutions are generated: a fine mesh
with approximately 200k nodes and a coarse mesh with approximately 40k
nodes:

Chapter 5

FIGURE 5.2: 40k
nodes mesh.

FIGURE 5.3: 200k
nodes mesh.

As a result, the total number of CFD simulations required is 106. These
cases are organized as follows:

• 44 training cases

• 8 validation cases

• 1 test case

The naming convention used for the dataset is:

burner_h2_(number_of_cells) _(ID_case) .

For example: burner_h2_200000_33.

5.1 High Fidelity Database

The high-fidelity dataset used in this study is based on 2D simulation results
obtained from the AHEAD combustor, originally published in “Multi-Fidelity
Modeling of a Lean Premixed Swirl-Stabilized Hydrogen Burner With Axial Air
Injection” [10]. The dataset includes 53 operating points, each characterized
by different inlet air mass flow rate, air temperature, and equivalence ratio.
The corresponding flame position, normalized with respect to the diameter
of the mixing tube, is used as the target quantity.

Each case in the dataset is uniquely identified by an ID and labeled with
its operating parameters and resulting normalized flame distance (xF/D).
This high-fidelity dataset serves as the reference for evaluating the accuracy
of both the CFD simulations and the multi-fidelity models.

The dataset has been divided as follows:

• 44 training cases

• 8 validation cases – selected manually or randomly to ensure coverage
of the input domain

• 1 test case – selected to preserve model generalization

54

Chapter 5

The figure below shows the full table of cases, with red-highlighted IDs
corresponding to the manually selected validation set and the green-highlighted
ID corresponding to the test case.

FIGURE 5.4: Summary of the 53 high-fidelity simulations. In
manual split mode, validation cases are highlighted in red, the

test case in green. Adapted from [10].

Given the limited size of the dataset, a specific effort was made to eval-
uate the most effective strategy for splitting the database into training and
validation sets. Two approaches were tested: a manual split, aimed at en-
suring proper coverage of the parameter space, and a purely random split.
The impact of both strategies on model accuracy is analyzed and discussed
in the results section. This evaluation helps determine whether a manually
guided selection provides advantages over a simpler, automated approach
when data availability is limited.

5.2 Summary of Governing Equations

As discussed in [10], the computational model is based on the solution of the
compressible Reynolds-Averaged Navier–Stokes (RANS) equations in axisym-
metric coordinates, assuming steady-state conditions and neglecting azimuthal
derivatives. Favre-averaged quantities are used throughout the formulation,
ensuring consistency between mass-weighted averaging and the nonlinear
convective terms.

55

Chapter 5

The assumption of axisymmetry implies that all variables are indepen-
dent of the azimuthal coordinate θ, i.e.,

∂(·)
∂θ

= 0 (5.1)

This allows for a two-dimensional formulation in the (r, z) plane while re-
taining the contribution of the tangential velocity component vθ. Such an as-
sumption is valid for geometries and boundary conditions that are rotation-
ally symmetric around the axis, a common configuration in nozzles, burners
and ducted flows.

Continuity Equation

∇ · (ρṽ) = 0 (5.2)

The continuity equation expresses the conservation of mass. It ensures
that the rate of mass entering and leaving any control volume is balanced,
reflecting the incompressible or compressible nature of the fluid through the
density ρ. In the Favre-averaged form, it guarantees the correct treatment of
density fluctuations, which are non-negligible in compressible and reacting
flows.

Momentum Equation

∇ · (ρṽṽ) = −∇p +∇ · τ (5.3)

This equation represents the conservation of momentum. The first term
on the right-hand side accounts for the pressure gradient, while the second
term involves viscous and turbulent stresses through the total stress tensor
τ.

The stress tensor is defined as:

τij = 2(µ + µt)

(
Sij −

1
3

δij
∂ṽk
∂xk

)
− 2

3
ρkδij (5.4)

where the effective viscosity (µ + µt) includes the molecular and turbulent
contributions. The last term−2

3 ρkδij represents the isotropic part of the Reynolds
stress tensor, proportional to the turbulent kinetic energy k.

The strain-rate tensor is given by:

Sij =
1
2

(
∂ṽi

∂xj
+

∂ṽj

∂xi

)
(5.5)

and quantifies the rate of deformation of the fluid elements. The accurate
computation of τ is essential for capturing shear layers, recirculation zones
and mixing phenomena typical of confined reacting flows.

56

Chapter 5

Energy Equation

∇ ·
[

ρṽ
(

h̃ +
ṽ2

2

)]
= ∇ ·

(
keff∇T −∑

j
h̃jJj + τ · ṽ

)
+ Ω (5.6)

The energy equation describes the conservation of total enthalpy, includ-
ing both thermal and kinetic contributions. On the right-hand side, the first
term represents conductive and turbulent heat fluxes through the effective
thermal conductivity keff, while the second accounts for enthalpy diffusion
due to mass transport of individual species. The term τ · ṽ denotes viscous
dissipation, and Ω is a generic volumetric heat source, which in reacting
flows is associated with chemical heat release. This equation couples ther-
mal, chemical and mechanical effects, making it central to the correct predic-
tion of temperature and heat-release distributions.

Species Transport

For M− 1 chemical species, the transport equation reads:

∇ · (ρṽYj) = −∇ · Jj + Rj (5.7)

where Yj is the mass fraction of species j. The left-hand side represents con-
vection of each species, while the right-hand side includes molecular and
turbulent diffusion (Jj) and the local rate of production or consumption Rj
due to chemical reactions.

The species diffusion flux is defined as:

Jj = −
(

Dj,m +
µt

Sct

)
∇Yj − DT,j∇T (5.8)

Here, Dj,m is the molecular diffusivity, while µt/Sct accounts for turbulent
diffusion through an effective turbulent Schmidt number Sct. The last term,
proportional to the temperature gradient, represents thermal diffusion (Soret
effect), which can be relevant in hydrogen or light-mass species transport.

Turbulence and Reaction Modeling

Turbulence is modeled using the k–ω SST (Shear Stress Transport) model,
which blends the near-wall accuracy of the k–ω formulation with the robust-
ness of the k–ϵ model in the free stream. This approach provides a good
compromise between accuracy and computational cost, particularly suited
for separated and recirculating flows in combustors and diffusers.

Combustion is treated using the Eddy Dissipation Concept (EDC), where
finite-rate chemistry and turbulence–chemistry interaction are combined:

Rj =
ρκ f s

τ∗
(Y∗j −Yj) (5.9)

57

Chapter 5

The source term Rj expresses the relaxation of the local mass fraction Yj to-
wards its fine-scale equilibrium value Y∗j over a characteristic time scale τ∗.
The fine-scale volume fraction κ f s and time scale are defined as:

κ f s =
ξ2

1− ξ2 , ξ = Cξ

(νϵ

k2

)1/4
(5.10)

τ∗ = Cτ

(ν

ϵ

)1/2
(5.11)

These relations link the turbulence parameters k and ϵ to the chemical time
scales, enabling the model to capture the effect of local turbulence intensity
on the rate of chemical reactions. In the present formulation, the constants
Cξ and Cτ are calibrated following the standard EDC formulation by Mag-
nussen.

Thermophysical Properties

The specific heat of each species is calculated using NASA7 polynomials:

cp,j(T)
R

= a0,j + a1,jT + a2,jT2 + a3,jT3 + a4,jT4 (5.12)

This formulation allows accurate representation of temperature-dependent
specific heats over wide thermal ranges.

The mixture sensible enthalpy is obtained as:

h̃ = ∑
j

Yjh̃j, h̃j =
∫ T

Tre f

cp,jdT (5.13)

ensuring thermodynamic consistency between species enthalpies and mix-
ture energy balance.

The effective conductivity includes both molecular and turbulent contri-
butions:

keff = k +
cpµt

Prt
(5.14)

where Prt is the turbulent Prandtl number, typically assumed constant and
calibrated for high-Reynolds reactive flows.

The chemical kinetics follow the Ó Conaire mechanism, which includes
10 species and 19 elementary reactions, optimized for hydrogen–air com-
bustion. This mechanism accurately reproduces the chain-branching behav-
ior and ignition characteristics of hydrogen flames, maintaining manageable
computational complexity.
Overall, this formulation provides a consistent framework for simulating re-
active, compressible, and turbulent flows in axisymmetric configurations.

58

Chapter 5

The coupling between RANS turbulence modeling, detailed thermochem-
istry, and multi-species transport enables the solver to capture both aero-
dynamic structures and chemical heat release phenomena with reasonable
computational effort.

5.3 Code Workflow

FIGURE 5.5: General workflow for the U-Net training and in-
ference pipeline applied to the hydrogen burner dataset.

The code workflow generally remains consistent with previous implementa-
tions, although some additions have been made to handle the specifics of this
case study, as illustrated in Fig. 5.5. The primary new step is the normaliza-
tion of the dataset, which plays a crucial role due to the dimensional nature
of the simulation results obtained from Ansys Fluent.

The raw CFD data are generated in both .plt and .vtu formats for 53 sim-
ulation cases, which are then categorized into 44 training, 8 validation, and
1 test case. Each simulation is run at two mesh resolutions (fine and coarse),
and results are converted into NumPy-compatible .npz files containing sev-
eral physical fields, such as:

• Pressure

• Axial velocity

• Heat of reaction

These fields are then used to construct input and target arrays for super-
vised training. The data are interpolated from the original unstructured mesh
onto a structured uniform grid of size 128× 48, using a masking strategy to
identify valid physical regions.

The structured data are normalized to account for differences in units and
scales between variables. This step is essential for stable and efficient training
of the neural network.

59

Chapter 5

A U-Net architecture is employed, with 128 filters at the bottleneck, a
batch size of 1, and a variable learning rate ranging from 10−3 to 10−7. The
model is trained using the normalized dataset, and predictions are generated
on the test case using the same format (input shape 128× 48× 3).

The model output is then reverse-normalized and mapped back onto the
original fine unstructured grid using a closest-point interpolation strategy.
This allows the comparison between the network predictions and the original
high-fidelity CFD results on the native mesh.

The final output includes the predicted high-resolution fields for pres-
sure, axial velocity, and heat of reaction, visually and quantitatively evalu-
ated against the reference solution.

5.4 Normalization Strategies and U-Net Model En-
hancements

The preprocessing of CFD data prior to training the U-Net model includes
a crucial normalization step, necessary due to the dimensional nature of the
quantities output by the Ansys simulations. Without normalization, the large
scale differences between physical variables could impair training stability
and convergence.

In early versions of the model, the normalization strategy applied to the
pressure field did not lead to satisfactory results in terms of prediction ac-
curacy. This prompted a search in the literature for more effective normal-
ization approaches specifically designed for CFD datasets. An alternative
strategy was identified and adapted, inspired by the method proposed in
[33], though not applied identically.

The normalization strategies adopted are variable-specific:

• Pressure: Taking inspiration from [33], each pressure field snapshot is
normalized based on its input mean value, then scaled within the range
[0, 1] using the global minimum and maximum values across the entire
dataset.

• Axial velocity: Normalized globally to the range [0, 1] using the mini-
mum and maximum values from all cases.

• Heat of reaction: Similarly normalized globally to [0, 1].

60

Chapter 5

FIGURE 5.6: Aarchitectural improvements to the U-Net model.

Model Additions
To improve generalization and model robustness, the following architec-

tural and training strategies were introduced in the U-Net:

• Dropout: A regularization technique that randomly deactivates a frac-
tion of neurons during training, mitigating overfitting.

• Sigmoid Activation in Output Layer: Since the outputs are scaled to
the [0, 1] range, a sigmoid activation function is applied at the final layer
to enforce this constraint naturally.

• Batch Normalization: Applied after each convolutional layer, this helps
stabilize and accelerate training by ensuring that activations maintain
zero mean and unit variance across mini-batches. It also reduces inter-
nal covariate shift.

In addition, the prediction is performed in parallel using two separate U-
Net models. Each model is trained independently on a subset of the output
variables and is executed concurrently during inference. This design choice
enables a modular and scalable architecture, allowing the model to focus on
specific physical fields and optimize the learning process.

FIGURE 5.7: Parallel execution of two U-Net models, each pre-
dicting different subsets of physical quantities from normalized

coarse input snapshots.

61

Chapter 5

5.5 Training Procedure and Convergence

The training of the neural network models was conducted separately for two
tasks: one for pressure prediction, and another for the simultaneous predic-
tion of axial velocity and heat of reaction. Each model was trained using the
Adam optimizer with adaptive learning rate scheduling. The loss function
adopted was the Mean Squared Error (MSE), calculated between the pre-
dicted and true values on the normalized data.

A custom learning rate scheduler was implemented within the training
code to manage the variation of the learning rate at different epoch stages.
This scheduler allows predefined learning rate decay across user-defined
epoch steps, contributing to smoother convergence and enhanced model gen-
eralization.

The final hyperparameters selected for training are reported in Table 5.1.

Parameter Value
Batch size 6
Max filters number 128
Dropout Active in the 3rd and 4th U-Net layers
Random state 1
Learning rate From 2× 10−4 to 5× 10−5

Epoch steps [150, 2000, 2000, 2000]

TABLE 5.1: Summary of the final training parameters.

The convergence of the models is reported in Fig. 5.8, where both training
and validation losses are plotted as a function of epochs. The model pre-
dicting the pressure field shows a smooth and rapid convergence, reaching a
low validation loss early and stabilizing. The model trained on axial veloc-
ity and heat of reaction exhibits a more irregular early behavior due to the
complexity of learning two coupled quantities, but stabilizes as the training
progresses.

FIGURE 5.8: Training and validation loss history for both neural
networks. Left: pressure prediction. Right: axial velocity and

heat of reaction.

Overall, the training configuration led to stable convergence in both cases,
with the model reaching satisfactory accuracy without signs of overfitting.

62

Chapter 5

The use of dropout and batch normalization contributed significantly to train-
ing robustness.

5.6 Results

The performance of the trained models was evaluated on the test case us-
ing relative norm errors computed against the high-resolution CFD solution
(fine grid). Two norm metrics were used: the ℓ2 norm (global error) and the
ℓ∞ norm (maximum local error). Results were also compared to the origi-
nal coarse grid solution to highlight the improvement offered by the neural
network.

Among all predicted quantities, the axial velocity consistently showed the
best agreement with the reference solution. This behavior can be attributed
to its smoother spatial distribution and less abrupt gradients compared to
pressure and heat of reaction. Pressure predictions followed closely, while
heat of reaction proved to be the most challenging due to its high spatial
variability and sharp peaks.

Metric ∥ · ∥2 (%) ∥ · ∥∞ (%)
Neural Network vs Fine Grid 0.82 3.13
Coarse Grid vs Fine Grid 8.11 38.57

TABLE 5.2: Comparison of relative norm errors for Pressure.

The pressure variable presented significant challenges during training.
Only with the improved architecture and the use of parallel networks was
it possible to achieve the results shown in Fig. 5.9. The three selected axial
sections are those where most of the discrepancies tend to occur. The model
demonstrates a substantial improvement over the coarse simulation, achiev-
ing a much closer match to the fine grid data.

FIGURE 5.9: Radial pressure profiles at three axial positions
(z = 0.134 m, z = 0.140 m and z = 0.150 m).

63

Chapter 5

Metric ∥ · ∥2 (%) ∥ · ∥∞ (%)
Neural Network vs Fine Grid 0.71 1.45
Coarse Grid vs Fine Grid 1.51 6.08

TABLE 5.3: Comparison of relative norm errors for Axial Veloc-
ity.

As shown in Fig. 5.10, axial velocity is the variable that is most accurately
predicted by the model. This is consistent with its behavior in CFD sim-
ulations, where axial velocity tends to exhibit smoother and more regular
structures. Nevertheless, the network’s prediction still provides a meaning-
ful reduction in error compared to the coarse mesh.

FIGURE 5.10: Radial axial velocity profiles at three axial posi-
tions.

Metric ∥ · ∥2 (%) ∥ · ∥∞ (%)
Neural Network vs Fine Grid 3.25 3.96
Coarse Grid vs Fine Grid 855.76 631.89

TABLE 5.4: Comparison of relative norm errors for Heat of Re-
action.

Finally, the heat of reaction results, illustrated in Fig. 5.11, represent the
most remarkable achievement. The U-Net model is capable of predicting
flame front localization and intensity far better than the coarse CFD simula-
tion, resulting in error reductions that are orders of magnitude lower. This
highlights the model’s capacity to generalize even complex, highly localized
phenomena.

64

Chapter 5

FIGURE 5.11: Radial profiles of heat of reaction at three axial
positions.

5.7 Comparison Between Model Variants

To analyze the impact of model architecture and training choices, several
configurations were tested. Table 5.5 summarizes the setup parameters for
five cases, including filter count, batch size, dropout use, and learning rate.
The most effective configuration (Case 5) combined parallel U-Net models
with improved normalization.

Case options 1 2 3 4 (Only Pressure) 5 (Parallel U-net)
Filters 128 128 256 512 128
Batchsize 8 8 8 6 6
Dropout off on on [0, 0.1, 0.1, 0.1] [0, 0.0, 0.1, 0.1]
Learning rate 1e-4 1e-4 1e-4 [4e-4, 2e-4] [2e-4 : 5e-5]

TABLE 5.5: Model architecture and training setup for each
tested case.

The relative error performance for each configuration is shown in Ta-
ble 5.6, along with baseline errors from the coarse grid.

case rel error coarse 1 2 3 4 5
ℓ2 - Pressure 8.1 1.75 717 13.26 3.23 0.82
ℓ∞ - Pressure 38.57 239.55 1613 29.25 1.2 3.13
ℓ2 - Axial velocity 1.51 2.89 12.72 / / 0.71
ℓ∞ - Axial velocity 6.08 0.54 13.57 / / 1.45
ℓ2 - Heat of reaction 855.76 2.63 109 / / 3.25
ℓ∞ - Heat of reaction 631.89 28.94 23.27 / / 3.96

TABLE 5.6: Comparison of relative errors for all tested configu-
rations and coarse baseline.

65

Chapter 5

This comparative analysis confirms the effectiveness of the final selected
model in Case 5. It achieves the lowest error in all metrics while keeping a
reasonable computational cost thanks to its dual-stream U-Net design and
refined normalization strategy.

5.8 Computational Cost Analysis

The construction of the high-fidelity database required a total of 24 hours of
CFD simulation on a laptop equipped with an Intel Core i7-8565U (8th Gen,
4 physical cores / 8 threads). The wall-clock execution time was 24:00:00, cor-
responding to about 96 CPU-hours of computational effort on 4 CPU cores.
This step represents the offline cost of the methodology: it is performed once,
prior to the neural network training, and provides the ground-truth data
used for supervised learning.

The subsequent training of the neural networks was performed on the
same hardware configuration. All times reported here correspond to mea-
sured wall-clock times, with TensorFlow automatically exploiting multi thread-
ing across CPU cores. It should be stressed that these times are approximate,
since the training runs were manually stopped once a satisfactory accuracy
was reached rather than at full convergence. Furthermore, the exact compu-
tational cost is influenced not only by the model size but also by the choice
of hyperparameters (e.g., batch size, learning rate schedule, dropout, and
number of epochs), meaning that the reported values should be interpreted
as indicative rather than absolute. The computational cost is strongly depen-
dent on the model size, specifically on the number of convolutional filters. In
particular:

• A U-Net with 128 filters (∼340k trainable parameters) required approx-
imately 03:00:00 of training (∼24 CPU-hours).

• A U-Net with 512 filters (∼5 million trainable parameters) required
about 13:00:00 (∼104 CPU-hours).

• The parallel U-Net configuration (two independent networks, each
with 128 filters, ∼2 × 340k parameters) required about 06:00:00 (∼48
CPU-hours).

These results show that the training cost scales with the number of param-
eters, but not linearly: the 512-filter model, while significantly larger, benefits
from improved efficiency of multi-threaded operations, reducing the aver-
age time per parameter. It should be noted that all training was performed
on CPU only; the use of GPU acceleration would drastically reduce the com-
putational cost, enabling larger architectures and faster experimentation. A
direct comparison highlights that the offline CFD phase (96 CPU-hours) re-
quired a similar order of magnitude of resources as the heaviest ML training
run (104 CPU-hours), confirming that database generation is the true compu-
tational bottleneck of the workflow. However, once the dataset is available,

66

Chapter 5

multiple training runs can be performed at a much lower additional cost.
Moreover, once the network is trained, the inference cost to obtain a high-
fidelity field from a low-resolution input is practically negligible, requiring
only 0.1–0.2 seconds per field on CPU. This represents a drastic speed-up
compared to running a new CFD simulation.

Task / Model Parameters Wall-clock Time CPU-hours
High-fidelity database (CFD) – ∼24:00:00 96
U-Net (128 filters) ∼340x103 ∼03:00:00 ∼24
Parallel U-Net (2 × 128 filters) ∼2 × 340x103 ∼06:00:00 ∼48
U-Net (512 filters) ∼5x106 ∼13:00:00 ∼104

TABLE 5.7: Computational cost in terms of wall-clock time
and CPU-hours. Training times are approximate, as runs were
stopped once a satisfactory accuracy was reached and also de-

pend on hyperparameter settings.

67

Chapter 6

Future Developments

The work presented in this thesis opens the way to several possible devel-
opments, both in terms of methodology and practical applications. In the
following, some research directions are discussed that could significantly ex-
tend the current framework.

6.1 GPU and Heterogeneous Hardware Support

One of the most immediate improvements concerns the implementation of
support for GPU computing. At present, the training has been performed
using CPUs, which makes the process particularly time-consuming. The
adoption of GPUs, or even heterogeneous hardware such as multi-GPU clus-
ters, would considerably reduce the computational time required for train-
ing. This acceleration would make it possible to increase the size of the
training datasets, to explore deeper and more complex architectures, and to
perform more extensive hyperparameter optimization, ultimately enhanc-
ing both the accuracy and the generalization capability of the network.

FIGURE 6.1: Example of an NVIDIA multiple GPU workstation

Furthermore, GPU acceleration would open the door to more advanced
training strategies that are currently limited by CPU performance. These in-
clude large-scale data augmentation, multi-resolution learning, and the use
of ensemble methods that require repeated model training. Parallelization
across multiple GPUs could also allow distributed training, making it pos-
sible to handle three-dimensional datasets of significant size, which are oth-
erwise impractical on standard hardware.

Chapter 6

FIGURE 6.2: Tensorflow python library supports NVIDIA Cuda
platform

In addition, GPU-enabled workflows would facilitate the integration of
more sophisticated deep learning techniques, such as adversarial training or
transfer learning, which can further improve model robustness and adapt-
ability to new flow configurations. From a practical perspective, this com-
putational upgrade would also shorten the experimental cycle, allowing for
faster iterations between model development, testing, and validation against
CFD simulations. Such efficiency gains would not only accelerate research
but also increase the feasibility of applying these models to industrial prob-
lems, where quick turnaround times are often essential.

6.2 From 2D to 3D Fields

Another promising development is the extension from two-dimensional to
three-dimensional fields. A possible strategy consists in extracting two-
dimensional slices from a three-dimensional dataset, training the U-Net
on these slices, and then reconstructing the 3D solution by combining the
learned features. This slice-based strategy would allow reusing the well-
established two-dimensional architectures, while progressively approaching
the complexity of three-dimensional learning without requiring a complete
redesign of the model.

FIGURE 6.3: Conceptual representation of the 2D slice extrac-
tion from the original three-dimensional field.

70

Chapter 6

Such an approach would make it possible to address more realistic prob-
lems in computational fluid dynamics, such as three-dimensional turbu-
lent flows, vortex interactions, or reactive combustion phenomena, while
maintaining acceptable computational costs. It would also provide a flexible
compromise between model accuracy and computational feasibility, since the
training process could be distributed across a large number of slices, enabling
efficient parallelization.

In addition, the reconstruction of three-dimensional solutions from two-
dimensional predictions could be enriched by consistency constraints across
adjacent slices, ensuring physical continuity and coherence in the final vol-
umetric fields. This idea could be further extended by employing hybrid
strategies, where a first stage reconstructs 3D volumes from 2D slices and a
second stage refines them using a dedicated 3D network.

The transition to 3D also opens up the possibility of directly applying
three-dimensional convolutional neural networks, which, although more
computationally demanding, can naturally capture volumetric structures,
correlations, and anisotropies of fluid flows. Combined with GPU or multi-
GPU acceleration, this would pave the way for handling complex simula-
tions of industrial relevance, such as combustors, nozzles, or turbomachinery
components, where three-dimensional effects are dominant.

6.3 Artificial Data Augmentation

Given the limited size of the available dataset, a valuable improvement would
be the implementation of artificial data augmentation techniques. Transfor-
mations such as rotations, reflections, scaling, noise injection or synthetic per-
turbations consistent with physical symmetries could be applied to the train-
ing samples. These operations would enrich the dataset without requiring
additional CFD simulations, thereby reducing the computational cost associ-
ated with data generation.

FIGURE 6.4: Data Augmentation techniques. Image from IBM.

Beyond simple geometric transformations, domain-specific augmentation
strategies could be introduced to better capture the physics of fluid dynamics

71

Chapter 6

problems. For instance, perturbations in boundary conditions, variations in
inlet profiles, or controlled modifications of local flow features could be arti-
ficially embedded in the data to mimic the natural variability of CFD fields.
Such tailored augmentations would not only increase the effective size of the
dataset, but also expose the network to a broader diversity of flow patterns,
turbulence structures, and nonlinear interactions.

Moreover, data augmentation could serve as a regularization technique,
mitigating the risk of overfitting when training on relatively small datasets.
By presenting the network with slightly different but physically consistent
versions of the same sample, the model would be encouraged to focus on in-
variant and generalizable flow features rather than memorizing case-specific
details. This in turn would improve the robustness of predictions and facili-
tate extrapolation to new geometries or flow regimes.

6.4 Increase in Physical Model Complexity

Another possible development concerns the extension of the methodology
towards models of increasing physical complexity. In the present work, the
neural network was trained to reproduce high-resolution solutions within a
fixed physical framework. A natural evolution would consist in exploiting
the learned mapping capability of the U-Net to correct or bridge between
different levels of physical modeling.

For instance, the network could be trained to infer the correction terms
needed to transform a solution computed with the inviscid Euler equations
into an equivalent field that accounts for viscous or turbulent effects, as de-
scribed by RANS or LES formulations. Similarly, it could learn to enhance
RANS-based predictions by approximating sub-grid features typical of DES
or LES simulations.

Such an approach would allow the network to act as a data-driven clo-
sure model, capable of enriching low-fidelity simulations with information
learned from higher-fidelity databases. This would open the way to hy-
brid physics–machine learning frameworks, where neural networks provide
physical corrections rather than merely spatial resolution enhancements, ul-
timately improving the predictive capability of CFD tools across multiple
modeling levels.

A further step could involve the application of this methodology to more
challenging flow regimes, such as supersonic and hypersonic flows, where
strong shocks and discontinuities are present. In these regimes, standard
convolutional networks may struggle to represent sharp gradients or capture
discontinuous features accurately, often leading to excessive smoothing of
shock waves or spurious oscillations near discontinuities.

72

Chapter 6

FIGURE 6.5: Supersonic velocity flow-field example. Work
from [11]

Overcoming these limitations may require tailored architectures or loss
functions explicitly designed to preserve discontinuities and ensure physical
consistency in the presence of shocks. Successfully addressing such chal-
lenges would greatly expand the applicability of deep-learning-based super-
resolution techniques to high-speed aerodynamics and aerospace propul-
sion, where accurate handling of compressibility effects and shock–boundary
layer interactions is of critical importance.

73

Conclusions

The work presented in this thesis has explored the application of convolu-
tional neural networks, and in particular the U-Net architecture, to problems
of computational fluid dynamics (CFD) with the aim of achieving multi-
fidelity super-resolution.

An important outcome of this work is the demonstration that, once the
offline training stage is completed, the online prediction phase is extremely
fast compared to traditional CFD solvers. This feature confirms the potential
of machine learning methods as powerful tools for accelerating design and
analysis in fluid dynamics, reducing the need for costly simulations while
maintaining a satisfactory level of accuracy.

The separation of outputs into different networks (e.g. pressure versus
coupled velocity and heat release) has also been shown to improve stability
and convergence, offering a modular approach adaptable to different physi-
cal contexts. In addition, preliminary strategies for dataset augmentation and
extrapolation towards three-dimensional fields have been outlined, opening
the way to more realistic applications in aerospace propulsion and energy
systems.

In summary, the thesis confirms the feasibility of applying deep learning
architectures such as U-Net to CFD, bridging the gap between low- and high-
fidelity solutions. The results are promising and suggest that, with larger
datasets and more advanced hardware resources, these methods could be-
come a standard complement to classical numerical solvers. Future devel-
opments may include GPU-based training on heterogeneous hardware, sys-
tematic artificial data augmentation, and the extension to full three-dimensional
geometries with increasing physical complexity.

Final remark: This work represents a first step towards the integration of
machine learning within CFD workflows. Although many challenges remain
to be addressed, particularly in terms of generalization and physical consis-
tency, the results obtained highlight a research direction of great potential,
both from an academic and an industrial perspective.

Bibliography

[1] Mitesh.pilot, “Ai-ml-dl.svg.” https://commons.wikimedia.org/wiki/
File:AI-ML-DL.svg, 2022. Licensed under CC BY-SA 4.0. Accessed on
2025-03-28.

[2] Technavio, “Aerospace artificial intelligence (ai) market - growth analy-
sis 2024–2028,” 2024. Accessed on April 1, 2025.

[3] Wikimedia Commons contributors, “Neuron diagram,” 2008. Accessed:
2025-03-30.

[4] Wikimedia Commons contributors, “Fully connected neural network,”
2018. Accessed: 2025-03-30.

[5] Wikimedia Commons contributors, “Multi-layer neural network dia-
gram (english),” 2017. Accessed: 2025-03-30.

[6] Wikimedia Commons contributors, “Recurrent neural network diagram
(english),” 2017. Accessed: 2025-03-30.

[7] H. Li, Z. Xu, G. Taylor, C. Studer, and T. Goldstein, “Visualizing the loss
landscape of neural nets,” in Neural Information Processing Systems, 2018.

[8] J. Jordan, “A visual explanation of learning rate in neural networks.”
https://www.jeremyjordan.me/nn-learning-rate/, 2017. Accessed:
2025-03-31.

[9] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks
for biomedical image segmentation,” International Conference on Medical
image computing and computer-assisted intervention, pp. 234–241, 2015.

[10] L. Folcarelli, A. Spagnolo, F. Dicech, A. Ferrero, F. Masseni, and D. Pas-
trone, “Multi-fidelity modeling of a lean premixed swirl-stabilized hy-
drogen burner with axial air injection,” in AIAA SCITECH 2025 Forum,
p. 0941, 2025.

[11] A. Hussain, “Image-based cfd using deep learning.” https://github.
com/afzalhussain23/Image-Based-CFD-Using-Deep-Learning, 2021.
GitHub repository.

[12] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521,
no. 7553, pp. 436–444, 2015.

https://commons.wikimedia.org/wiki/File:AI-ML-DL.svg
https://commons.wikimedia.org/wiki/File:AI-ML-DL.svg
https://www.jeremyjordan.me/nn-learning-rate/
https://github.com/afzalhussain23/Image-Based-CFD-Using-Deep-Learning
https://github.com/afzalhussain23/Image-Based-CFD-Using-Deep-Learning

Chapter 6

[13] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Advances in Neural Infor-
mation Processing Systems, vol. 25, pp. 1097–1105, 2012.

[14] I. Goodfellow, Y. Bengio, and A. Courville, “Deep learning,” MIT Press,
2016. Book.

[15] G. Marcus, “The next decade in ai: Four steps towards robust artificial
intelligence,” arXiv preprint arXiv:2002.06177, 2020.

[16] K. Fukami, K. Fukagata, and K. Taira, “Super-resolution reconstruction
of turbulent flows with machine learning,” Journal of Fluid Mechanics,
vol. 870, pp. 106–120, 2019.

[17] A. T. Mohan, D. V. Gaitonde, and R. W. Grout, “Deep learning for
compact and interpretable reduced-order models of fluid flows,” AIAA
Scitech 2018 Forum, 2018.

[18] K. Duraisamy, G. Iaccarino, and H. Xiao, “Turbulence modeling in the
age of data,” Annual Review of Fluid Mechanics, vol. 51, pp. 357–377, 2019.

[19] M. Raissi, P. Perdikaris, and G. E. Karniadakis, “Physics-informed neu-
ral networks: A deep learning framework for solving forward and in-
verse problems involving nonlinear partial differential equations,” Jour-
nal of Computational Physics, vol. 378, pp. 686–707, 2019.

[20] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning represen-
tations by back-propagating errors,” Nature, vol. 323, no. 6088, pp. 533–
536, 1986.

[21] C. M. Bishop, Neural Networks for Pattern Recognition. Oxford University
Press, 1995.

[22] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdi-
nov, “Dropout: A simple way to prevent neural networks from overfit-
ting,” Journal of Machine Learning Research, vol. 15, pp. 1929–1958, 2014.

[23] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep net-
work training by reducing internal covariate shift,” in International Con-
ference on Machine Learning, pp. 448–456, PMLR, 2015.

[24] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks for
semantic segmentation,” Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 3431–3440, 2015.

[25] H. S. Kim and Tobias, “Cnn explainer: Learn convolutional neural net-
works.” https://poloclub.github.io/cnn-explainer/, 2020.

[26] V. Dumoulin and F. Visin, “A guide to convolution arithmetic for deep
learning,” arXiv preprint arXiv:1603.07285, 2016.

78

https://poloclub.github.io/cnn-explainer/

Chapter 6

[27] A. Odena, V. Dumoulin, and C. Olah, “Deconvolution and checkerboard
artifacts,” Distill, 2016.

[28] V. Nair and G. E. Hinton, “Rectified linear units improve restricted
boltzmann machines,” in Proceedings of the 27th international conference
on machine learning (ICML-10), pp. 807–814, 2010.

[29] D.-A. Clevert, T. Unterthiner, and S. Hochreiter, “Fast and accurate
deep network learning by exponential linear units (elus),” arXiv preprint
arXiv:1511.07289, 2015.

[30] K. Fukami, K. Fukagata, and K. Taira, “Machine-learning-based spatio-
temporal super resolution reconstruction of turbulent flows,” Journal of
Fluid Mechanics, vol. 909, p. A9, 2021.

[31] S. Lee and D. You, “Modeling of turbulent wake flows using deep learn-
ing with embedded physical invariance,” Physics of Fluids, vol. 32, no. 3,
p. 035104, 2020.

[32] L. Muscarà, M. Cisternino, A. Ferrero, A. Iob, and F. Larocca, “A com-
parison of local and global strategies for exploiting field inversion on
separated flows at low reynolds number,” Applied Sciences, vol. 14,
no. 18, p. 8382, 2024.

[33] L. Q. Tuyen, P.-H. Chiu, and C. Ooi, “U-net-based surrogate model for
evaluation of microfluidic channels,” arXiv preprint arXiv:2105.05173,
2021.

79

	The Rise and Role of Deep Learning in Engineering
	From Artificial Intelligence to Deep Learning
	The Shift: Why Deep Learning?
	Clarifying the Terminology
	Why It Matters for Engineering
	Growth of Artificial Intelligence in the Aerospace Sector
	Deep Learning in Computational Fluid Dynamics
	Motivation and Applications
	Advantages Over Traditional CFD
	Limitations and Challenges

	Introduction to Artificial Neural Networks
	Interconnection Examples for Artificial Neurons
	Activation Functions
	Identity Function
	Binary Threshold Function
	Piecewise Linear Function
	Sigmoid (Logistic) Function
	ReLU (Rectified Linear Unit)
	ELU (Exponential Linear Unit)

	Supervised Learning
	Gradient Descent
	The Delta Rule (Widrow-Hoff Rule)
	Equivalence Between Delta Rule and Gradient Descent
	Backpropagation
	Learning Rate
	Momentum
	Optimization Algorithms in Practice

	Regularization Techniques
	L2 Regularization (Weight Decay)
	Dropout
	Batch Normalization as Implicit Regularization
	Early Stopping
	Data Augmentation

	U-Net: A Convolutional Architecture for Scientific Computing
	Understanding Convolutional Neural Networks
	Input Layer
	Convolutional Layers and Core Hyperparameters
	Output Layer

	The Classical U-Net Architecture
	Core Operations in U-Net
	Activation Functions in U-Net
	The Effectiveness of U-Net Architectures in Computational Fluid Dynamics

	Development of a Python-Based U-Net Framework for Predicting CFD Simulation Fields
	General code workflow
	Customizable U-Net Architecture
	Model Options
	Building Blocks
	Model Architecture
	Model Visualization

	Case Study I: Euler-Based Simulation of a Bump Geometry using a Fortran Solver
	Fortran Code Background: Governing Equations
	Computational Domain and Boundary Condition
	Code Workflow
	Training
	Bump: Results
	Issue encountered and final comment

	Case Study II: AHEAD Hydrogen Burner
	High Fidelity Database
	Summary of Governing Equations
	Code Workflow
	Normalization Strategies and U-Net Model Enhancements
	Training Procedure and Convergence
	Results
	Comparison Between Model Variants
	Computational Cost Analysis

	Future Developments
	GPU and Heterogeneous Hardware Support
	From 2D to 3D Fields
	Artificial Data Augmentation
	Increase in Physical Model Complexity

	Conclusions
	Bibliography

