4 %? >y
07 n i A

A ¢ Politecnico

\f.i?ii“ﬂﬁm... " .iiuiﬂﬁﬁ’y: di To rino

Politecnico di Torino

Master’s Degree in Aerospace Engineering
Academic Year 2024/2025
Graduation Session October 2025

Development of an ECSS-SMP-Compliant
Satellite Digital Twin

Supervisor:
Prof. Paolo Maggiore

Tutor: Candidate:
Ing. Carlo Maria Paccagnini Lorenzo Bernardi

Abstract

The persistent fragmentation of software tools in spacecraft simulation has long
hindered the reusability of high-value models, introducing programmatic risks for
complex, multi-partner missions. To mitigate these issues, the European space
industry has mandated compliance with the European Cooperation for Space
Standardization Simulation Model Portability standard, promoting interoperabil-
ity and long-term model sustainability.

This thesis applies this standards-driven methodology to the Italian Space
Agency’s In-Orbit Servicing mission, documenting the complete development and
validation of the mission’s Electric Power System Digital Twin. The model en-
compasses the Solar Array Wings, Solar Array Drive Assembly, Battery, and the
central Power Control and Distribution Unit. Implemented in C++ using an object-
oriented design, it accurately represents both the system’s electrical behavior
and its MIL-STD-1553 data bus interfaces. The Digital Twin was integrated into
a dual-machine virtualized environment based on the ESA-reference SIMULUS
10.3.0 framework, replicating the operational separation between the spacecraft
simulation and the ground control console.

Validation was conducted through comparative analysis against authoritative
reference profiles from the official mission Power and Energy Budget document.
In a nominal multi-orbit scenario (Case 1-2a), the predicted minimum bus volt-
age during eclipse stabilized at 53 V. In the more demanding high-power ren-
dezvous scenario conducted entirely in eclipse (Case 6.2), the model accurately
predicted a minimum voltage of approximately 52 V. Both results remained com-
fortably above the 50 V mission-success threshold, confirming the model’s fidelity
in the system’s most critical, power-limited regimes.

This thesis therefore delivers a robust, validated, and fully SMP-compliant en-
gineering asset, fit for its intended purpose as the foundational power source
for the integration of future Digital Twin subsystem models. Beyond supporting
upcoming mission-level verification activities, the work establishes a verifiable,
standards-aligned framework that contributes a durable and reusable component
to the broader European space simulation ecosystem.

Contents

1_Intr ion 10
(1.1 The Digital Twin in the Space Domain| 10
1.2 The In-Orbit Servicing Project 11
(1.3 Scope and Objectives ofthe Thesis| 13
2__Foundations and State of the Art 15
2.1 ECSS-SMP Standard 15
2.2 Space Simulation Frameworks| oo 16
[2.2.1 SIMULUS: The Development and Validation Environment| . 17
[2.2.2 CNES ISIS: The Operational Target Environment| 18
[2.2.3 Model Litecycle: From Validation to Operations| 18
2.3 Object-Oriented Programmingl 19
2.4 C++ Programming Language| 20
[2.5 State of the art in Aerospace Digital Twins| 22
[2.6 Synthesis and Technology Selection Rationale| 24
[3 System Architecture and Simulation Environment| 26
3.1 Virtualized System Architecture| 26
2 The Simulation Host VM| 28
3.3 TheECHOVM 29
3.4 _Simulation Workflow and Data Flowl 30

4 NModel Development 32
4.1 The In-Orbit Servicing Electric Power System: Architectural Con-

| ceptand lechnologies| 32
4.2 Modeling Philosophy and Abstraction|. 34
4.3 T'he Solar Array Wing and Solar Array Drive Assembly Moadel . . . 35

4.3.1 The Solar Array Wing Model 35
[4.3.2 The Solar Array Drive Assembly Model| 37
4.4 TheBatteryMoadel| 0oL 38
4.5 The Power Control and Distribution Unit Model 39

©_Model Validation and Results| 42

(0.1 Validation Strategy and lest Procedures| 42
(2 TestCases 43
[5.2.1 Nominal Operation: TestCase1-2a 44
[5.2.2 Special Operation: Test Case 6.2/. 45

0.3 Discussion of Results and Model Limitations| 46
[5.3.1 Nominal Operation: Test Case 1-2a| 46
[5.3.2 Special Operation: Test Case 6.2/. 47
[0.3.3 Analysis of Discrepancies| 49
©.3.4 Model Limitations and Validation Conclusion| 49
6__Conclusion 51
6.1 Summaryof Work| 51
.2__Limitations and L nslearned 52
Future Work an lookl 52

List of Figures

1 Render of the 10S Servicer pertorming a Capture Operation on a |

largetSatellite| oo 12
[2 High-Level Architecture of the Virtualized Simulation Environment| 27
3 Architectural Concept of the Electric Power System|. 32
4 MP _Model Simulation Results for T 1-2a 47
b C++/SMP Model Simulation Results for lest Case 6.2 48

List of Tables

1 Power Deman

nd Duration for

h Ph

2 Power Deman

nd Duration for

h Ph

Acronyms

AOCS Attitude and Orbit Control System

API Application Programming Interface

ARP Avionics and Robotics Platform

ASI ltalian Space Agency

BCM Battery Charge Management

BOL Beginning-of-Life

BTA Battery

CC/CV Constant Current / Constant Voltage

CCSDS Consultative Committee for Space Data Systems
CNES French Space Agency

DOD Depth-of-Discharge

ECSS European Cooperation for Space Standardization
EOL End-of-Life

EOCV End-of-Charge Voltage

EPS Electric Power System

ESA European Space Agency

GNC Guidance, Navigation, and Control

GUI Graphical User Interface

HITL Human-in-the-Loop

HMI Human-Machine Interface

IDE Integrated Development Environment

10S In-Orbit Servicing

ISIS Initiative for Space Innovative Standards
JPL Jet Propulsion Laboratory

JSF Joint Strike Fighter

LCL Latching Current Limiter

LEO Low Earth Orbit

MDE Model-Driven Engineering

NASA National Aeronautics and Space Administration
NEA Non-Explosive Actuator

OBC On-Board Computer

OOP Object-Oriented Programming

OSPM Orbital Propulsion and Support Module
PCDU Power Control and Distribution Unit
PDR Preliminary Design Review

PNRR National Recovery and Resilience Plan
PUS Packet Utilization Standard

RAIl Resource Acquisition Is Initialization
S3R Sequential Switching Shunt Regulator
SADA Solar Array Drive Assembly

SADE Solar Array Drive Electronics

SADM Solar Array Drive Mechanism

SAW Solar Array Wing

SIMSAT Software Infrastructure for the Modeling of Satellites
SITL Software-in-the-Loop

SLES SUSE Linux Enterprise Server
SMP Simulation Model Portability
SOC State-of-Charge

SVE Software Validation Environment
TEMU Terma Emulator

TRL Technology Readiness Level
UMF Unified Modeling Framework
UML Unified Modeling Language

VM Virtual Machine

VOC Open-Circuit Voltage

1 Introduction

In aerospace engineering, a system simulator is a software platform used to
model the dynamic interactions among subsystems and reproduce the behavior
of an entire system. This virtual environment enables engineers to study complex
phenomena, validate control strategies, and test operational scenarios that would
otherwise be impractical, risky, or too costly to perform on physical hardware.

The effectiveness of a simulator depends on a fundamental trade-off between
two key aspects: model fidelity, the accuracy with which physical reality is rep-
resented, and computational performance, the efficiency of execution and re-
source utilization. Managing this balance is a strategic consideration throughout
the product lifecycle. During early design stages, engineers often rely on lower-
fidelity models to rapidly explore different configurations. In later phases, how-
ever, high-fidelity simulations become essential for detailed verification and vali-
dation, helping identify design flaws and integration issues before committing to
physical prototypes. By enabling early fault detection, simulation accelerates de-
velopment, reduces technical and programmatic risks, and lowers overall project
costs, making it a cornerstone of modern aerospace engineering.

Nevertheless, treating simulation purely as an offline tool for design and analy-
sis is no longer sufficient for today’s increasingly complex and autonomous space
systems. These systems can evolve and face unforeseen conditions during oper-
ation, demanding continuous, real-time insight into their health and performance.
Addressing this need has given rise to a new paradigm: the Digital Twin, which
forms the central focus of this thesis.

1.1 The Digital Twin in the Space Domain

Unlike a traditional simulator, which is primarily used for design and pre-flight
analysis, a Digital Twin in the space domain functions as a living model. It main-
tains a persistent, two-way data link with its physical counterpart, allowing it to
continuously reflect the asset’s actual operational state and evolve in real time.
The conceptual roots of this technology can be traced back to the Apollo 13
mission of the National Aeronautics and Space Administration (NASA). Following
the critical oxygen tank explosion, ground engineers adapted the existing training

10

simulators by feeding them with the limited telemetry data received from the dam-
aged spacecraft. This data-driven, ground-based replica effectively served as an
early form of a Digital Twin, enabling mission control to test and validate recov-
ery procedures within a virtual environment that closely mirrored the spacecraft’s
compromised condition. This pioneering approach demonstrated the immense
value of coupling a physical asset with a synchronized virtual model to resolve
complex operational challenges.

Building on this foundation, the Digital Twin has become an integral compo-
nent of modern space missions, acting as a dynamic counterpart throughout a
system’s operational life. In system evolution, it provides a validated, high-fidelity
environment for testing software updates and new operational procedures before
deployment to the physical asset. In health management, it enables continuous
state monitoring and early anomaly detection. It also plays a key role in mission
safety and planning by simulating orbital environments, evaluating collision avoid-
ance maneuvers, and providing a “safe-to-fail” environment for command valida-
tion. Furthermore, the Digital Twin supports performance optimization by allowing
engineers to simulate and assess operational adjustments, such as changes in
power consumption or thermal behavior, to extend mission life. Finally, it serves
as a valuable training tool, offering an always up-to-date platform that helps oper-
ators remain proficient as the system evolves.

Collectively, these applications mark a significant shift from the traditional use
of simulation as a pre-flight design and verification tool to its modern role as a
continuous, data-driven resource for through-life operational support. As such,
the Digital Twin represents a pivotal technology for enhancing the safety, longevity,
and overall value of space assets. However, the absence of standardized method-
ologies for its development and integration remains a key challenge, that under-
scores the importance of adopting models aligned with established engineering
standards.

1.2 The In-Orbit Servicing Project

The In-Orbit Servicing (I0S) project, led by the Italian Space Agency (ASI), is
a strategic mission aimed at fostering a sustainable space ecosystem through
the development of advanced in-orbit maintenance technologies. Its primary ob-

11

jective is to demonstrate autonomous capabilities across a range of critical ser-
vicing operations, including satellite repair and refueling, the assembly of large
orbital structures, and the active removal of space debris. These capabilities are
intended to address the growing issue of orbital congestion in Low Earth Orbit
(LEO) and to extend the operational lifespan of high-value space assets.

Mission success depends on the integration of highly autonomous systems
that leverage artificial intelligence and advanced Guidance, Navigation, and Con-
trol (GNC) technologies. Such systems must enable a servicing spacecraft to
perform complex proximity operations, such as approaching and maneuvering
around a target object, with exceptional precision and minimal risk, thereby re-
ducing reliance on continuous Human-in-the-Loop (HITL) control. A key techno-
logical innovation within the mission is the development of a sophisticated robotic
manipulator for capturing the target vehicle, as conceptually depicted in Figure
In the long term, these tools could revolutionize the construction of space in-
frastructure, making it possible to assemble large platforms incrementally in orbit
rather than launching them as monolithic structures.

Figure 1: Render of the IOS Servicer performing a Capture Operation on a Target
Satellite

To achieve these objectives, ASI has established a strong industrial part-
nership. Thales Alenia Space serves as the prime contractor, supported by
Leonardo, Telespazio, Avio, and D-Orbit as key partners. Together, this con-

12

sortium brings extensive expertise in satellite systems, robotics, propulsion, and
space operations, enabling the joint development and qualification of the IOS ser-
vicing spacecraft.

The mission is funded under Italy’s National Recovery and Resilience Plan
(PNRR), underscoring its national strategic significance. Scheduled for launch in
2026, the I0S mission aims to validate essential servicing technologies in a repre-
sentative orbital environment. A core goal is to advance their Technology Readi-
ness Level (TRL) from ground-tested maturity (TRL 5-6) to flight-proven status
(TRL 7-8) through in-orbit demonstration. This milestone will lay the groundwork
for future commercial satellite servicing activities and contribute to a more sus-
tainable long-term human presence in space.

However, the combination of high autonomy, complex robotic operations, and
the inherent risks of close-proximity maneuvers presents significant challenges
for ground-based verification, validation, and operations. Conventional ground
test campaigns cannot fully replicate the dynamic conditions of in-orbit interac-
tion. This limitation highlights the critical need for a high-fidelity Digital Twin, a
vital tool for mission simulation, operator training, real-time monitoring, and deci-
sion support. The development of this Digital Twin forms the central focus of this
thesis.

1.3 Scope and Objectives of the Thesis

This thesis, conducted in collaboration with Thales Alenia Space in Turin, docu-
ments the development and validation of the first functional version of the Digital
Twin for the 10S mission. The scope of this work extends beyond subsystem
modeling to include the setup and configuration of the virtualized simulation envi-
ronment required to host, execute, and validate the developed models. The final
simulation environment is intended for delivery to Telespazio, the organization
responsible for mission control, for direct use in upcoming mission-level activities.

A fundamental requirement guiding this work is strict compliance with the Eu-
ropean Cooperation for Space Standardization (ECSS) Simulation Model Porta-
bility (SMP) standard. Adhering to this standard ensures that all developed mod-
els are modular, reusable, and interoperable, transforming them from project-
specific implementations into long-term assets that can support future develop-

13

ments within the wider European space industry.
Within this framework, and in alignment with the principles of the SMP stan-
dard, the main objectives of this thesis are as follows:

1. Configuration of the simulation environment: To set up a virtualized simu-
lation environment based on the SIMULUS framework, capable of hosting
and executing SMP-compliant models.

2. Design and implementation of the Electric Power System (EPS) model:
To develop a functional, SMP-compliant model of the satellite’s EPS. The
model focuses on simulating the electrical behavior of the core EPS compo-
nents and their communication interfaces over the MIL-STD-1553 data bus.
The EPS model is composed of the following interconnected sub-models:

» Solar Array Wing (SAW): Simulates electrical power generation as a
function of sun exposure and orbital position.

» Solar Array Drive Assembly (SADA): Controls the orientation of the
SAW to maximize solar incidence, based on telecommands received
from the On-Board Computer (OBC) via the MIL-STD-1553 data bus.

» Battery (BTA): Manages energy storage and provides power during
eclipse periods or prior to SAW deployment.

» Power Control and Distribution Unit (PCDU): Regulates power distri-
bution and switches electrical loads in response to telecommands re-
ceived from the OBC via the MIL-STD-1553 data bus.

3. Validation of the EPS Digital Twin: To define and execute a comprehensive
set of test procedures that verify the EPS Digital Twin’s behavior against
expected operational scenarios.

To maintain a focused and achievable scope, other satellite subsystems, such as
the Attitude and Orbit Control System (AOCS), communications, and propulsion,
are excluded from this work. Likewise, detailed physical modeling beyond the
electrical and communication behavior described above (for instance, thermal
analysis) is intentionally omitted.

14

2 Foundations and State of the Art

2.1 ECSS-SMP Standard

The ECSS is a collaborative initiative involving the European Space Agency (ESA),
national space agencies, and European industry. Its mission is to establish a co-
herent and harmonized set of standards that enhance the efficiency, consistency,
and competitiveness of the European space sector. Within this framework, the
SMP standard, formalized as ECSS-E-ST-40-07, was introduced to address a
longstanding challenge of software fragmentation and limited model reusability in
space system simulation.

Historically, the European simulation landscape was highly fragmented. Sim-
ulation models, often representing substantial investments in development and
validation, were typically tied to proprietary software environments. This vendor
lock-in severely limited interoperability between tools and organizations. As a re-
sult, models could not easily be reused or exchanged among different partners,
even within the same mission. For large, collaborative programs, this inefficiency
led to higher development costs, slower progress, and considerable duplication of
effort. Moreover, it made the reuse of validated models across mission phases,
such as transitioning from a software validation facility to an operational simulator,
virtually impossible.

The SMP standard directly addresses these issues by defining a platform-
independent architecture that separates the simulation model from the simulation
environment. It does so by introducing a formal contract in the form of stan-
dardized software interfaces. Under this standard, each model is treated as a
self-contained software component that must comply with a predefined commu-
nication protocol. This contract specifies how a model exposes its data and func-
tionality to the outside world, distinguishing three key interaction types:

» Properties: Configurable parameters that act as “adjustment knobs” for the
model (e.g., the maximum capacity of a battery).

» Operations: Commands that modify the model’s behavior, functioning like
“control buttons” (e.g., a switchOn() command).

» Telemetry: Data outputs that report the model’s internal state, serving as

15

“dashboard gauges” (e.g., the current voltage output).

In addition to defining this standardized interface, SMP prescribes a well-structured
component lifecycle managed by the simulator. During the Publish phase, the
model declares all of its properties, operations, and telemetry elements. In the
Configure phase, the simulator assigns initial values to these properties, typically
sourced from configuration files. The Connect phase then links model interfaces,
enabling telemetry from one model to drive property inputs in another. Finally,
in the Execute phase, the simulator enters the main runtime loop, periodically
invoking each model’s update functions to advance its state in time.

To coordinate the integration of multiple standardized components, SMP em-
ploys a catalog-based system. Each model is described through XML files that
specify its metadata, including its properties, interfaces, and dependencies. A
higher-level assembly file defines how these individual components, potentially
developed by different suppliers, are interconnected to form a complete space-
craft simulation.

By enforcing a standardized interface, data model, and lifecycle, the SMP
standard creates an open and interoperable simulation ecosystem. It transforms
models from isolated, project-specific code into reusable and portable assets that
can be shared across organizations and missions. The effectiveness of this ap-
proach has been demonstrated through successful model exchanges between
major European simulation frameworks, such as SIMULUS and SimTG. For the
IOS mission, compliance with the SMP standard ensures that the Digital Twin
models developed in this thesis are not merely mission-specific prototypes, but
durable, reusable assets that contribute to the broader European space engi-
neering community.

2.2 Space Simulation Frameworks

The development and deployment of a standardized simulation model, as man-
dated by ECSS-SMP, depend on a robust ecosystem of software frameworks.
This section reviews the two principal environments that define the lifecycle of the
model developed in this thesis. The first, SIMULUS, serves as the development
framework in which the model is created, integrated, and validated. The sec-
ond, the Initiative for Space Innovative Standards (ISIS) developed by the French

16

Space Agency (CNES), represents the operational ground segment framework
and the ultimate deployment target for the model. Understanding the distinct roles
and complementary relationship of these frameworks provides essential context
for the engineering work presented herein.

2.2.1 SIMULUS: The Development and Validation Environment

SIMULUS is a reference framework developed by ESA for building high-fidelity,
real-time operational simulators for European space missions. It functions not
only as a simulation runtime, but as a comprehensive Model-Driven Engineer-
ing (MDE) ecosystem grounded in rigorous software engineering principles. The
version employed in this thesis is 10.3.0.

At the core of SIMULUS lies the Unified Modeling Framework (UMF), which
implements the MDE approach. In this paradigm, a formal visual design cre-
ated in a compatible modeling tool serves as the master blueprint of the model.
From this single design, the UMF toolchain automatically generates the nec-
essary project artifacts, including the foundational software code structure, the
ECSS-SMP XML catalogs, and the initial build system files. This workflow en-
sures that all components of the simulation remain synchronized with the central
model definition throughout development.

Once these artifacts are generated, Apache Maven is used for build automa-
tion and dependency management. The compiled, SMP-compliant models are
then executed within SIMSAT (Software Infrastructure for the Modeling of Satel-
lites), the core runtime engine of the SIMULUS platform. SIMSAT’s kernel is a
service-oriented engine that provides essential SMP services such as time man-
agement, event scheduling, and synchronization, creating the live environment in
which the Digital Twin operates.

Interaction with the running SIMSAT kernel can occur through several inter-
faces. A graphical Human-Machine Interface (HMI) enables direct monitoring and
control, while a Scripting Service supports the automated assembly and execu-
tion of simulations. Most importantly, a Remote Connector exposes the simulation
over a TCP/IP network interface, allowing external ground control software to con-
nect to and interact with the live model. This network link forms a key element
of the Digital Twin architecture, enabling real-time data exchange between the
simulated and operational environments.

17

To ensure the integrity of this workflow, SIMULUS provides an integrated ver-
ification and validation framework supporting a structured testing hierarchy en-
compassing unit, integration, and system tests. The highest level of this process
is Software-in-the-Loop (SITL) validation, in which the actual flight software is
executed on an emulated space-grade processor and interacts directly with the
simulated hardware models.

Within the scope of this thesis, this model-driven and validation-oriented envi-
ronment provides the foundation for developing the EPS model, not merely as a
code implementation, but as a robust, well-documented, and verifiable engineer-
ing asset fully compliant with the ECSS-SMP standard.

2.2.2 CNES ISIS: The Operational Target Environment

While SIMULUS serves as the development platform, the ISIS framework, devel-
oped by CNES, functions as a mission control system. Unlike SIMULUS, ISIS
is not a simulator, but a complete ground segment infrastructure designed for
satellite command, control, and monitoring. It provides all core control center
services, telemetry acquisition and processing, telecommand management, and
data archiving, built upon modern standards such as ECSS and the Consultative
Committee for Space Data Systems (CCSDS).

Of particular relevance to this thesis is ISIS’s ability to integrate and interact
with SMP-compliant models. This interoperability enables a validated model de-
veloped in SIMULUS to be seamlessly integrated into the operational ground seg-
ment. Within this environment, the model can be driven by live spacecraft teleme-
try for predictive analysis, or used offline by operators to validate new procedures
in a safe, controlled setting before their deployment to the actual spacecraft.

2.2.3 Model Lifecycle: From Validation to Operations

The relationship between SIMULUS and ISIS defines the two-stage lifecycle of
the Digital Twin model. The ECSS-SMP standard serves as the critical bridge
ensuring smooth transition between these stages. |Initially, the model is devel-
oped, integrated, and validated within the high-fidelity engineering environment
of SIMULUS. Once its behavior and performance are verified, the resulting stan-

18

dardized model, self-contained and fully compliant, is delivered as a portable as-
set ready for integration into the ISIS operational framework without modification.

This workflow transforms the model from a development artifact into a fully
operational asset. Accordingly, the work presented in this thesis focuses on the
first and most critical stage of this lifecycle: the development and validation of a
robust, SMP-compliant model within the SIMULUS environment, engineered from
the outset for eventual deployment in the operational ecosystem provided by ISIS.

2.3 Object-Oriented Programming

Object-Oriented Programming (OOP) serves as the foundational software paradigm
for this thesis, providing a logical and scalable framework for modeling complex
physical systems such as satellites. The core idea behind OOP is to structure
software in a manner that reflects the physical architecture of the hardware, com-
prising discrete, interacting components. In this paradigm, each satellite sub-
system, such as a battery, solar array, or actuator, is represented as an object:
a self-contained entity that encapsulates both data (attributes) and functionality
(methods).

OOP is built upon four key principles, encapsulation, inheritance, polymor-
phism, and abstraction, each of which plays a central role in the development of
the 10S Digital Twin.

» Encapsulation involves grouping an object’s data and methods together, ef-
fectively treating it as a “black box.” For example, the SAW model encapsu-
lates the internal logic governing power generation. Other subsystems, such
as the PCDU, do not need to understand this internal logic; they simply in-
teract with the SAW through its public interface using well-defined methods
like setVoltage(v) or getCurrent(). This approach hides internal complexity,
reduces coupling between components, and prevents unintended interac-
tions within the system.

* Inheritance allows for the creation of a class hierarchy that promotes code
reuse and structural consistency. A base class, such as Object, can define
common attributes (e.g., name, description, parent) and generic methods
shared across all subsystem models. Specific components. such as SAW,

19

BTA, or PCDU, then inherit from this base class, extending it with their own
specialized behaviors. This mechanism minimizes code redundancy and
ensures a coherent architectural structure across all models.

» Polymorphism, meaning “many forms,” enables different objects to be ac-
cessed through a shared interface, with each object responding according
to its own implementation. For instance, the simulation scheduler can iterate
through a collection of subsystem models and call a common method, such
as updateState(deltaTime), on each one. The outcome varies by object:
the BTA model updates its state-of-charge, while the SAW model computes
its power output. This capability simplifies the simulation’s control logic and
enhances extensibility.

« Abstraction focuses on managing complexity by exposing only the essential
aspects of an object while concealing its internal details. For example, the
SADA model does not need to reveal the detailed mechanics of its stepper
motor. Instead, this complexity is encapsulated behind a high-level method
such as rotateToAngle(angle). This abstraction makes the model easier to
use and allows its internal fidelity to be increased later without affecting
other parts of the simulation.

By adhering to these OOP principles, the software architecture of the Digital Twin
mirrors the modular structure of the physical satellite. This approach yields a
system that is intuitive to design, straightforward to maintain, and highly scalable.
New components can be integrated into the simulation by simply implementing
new classes that conform to established interfaces, often requiring minimal or no
modification to the existing codebase.

2.4 C++ Programming Language

The selection of C++ as the implementation language for the 10S Digital Twin is a
deliberate engineering choice informed by stringent technical requirements, such
as computational performance and resource determinism, as well as essential
programmatic constraints, including standards compliance and ecosystem com-
patibility.

20

High-performance execution is a fundamental requirement for a Digital Twin
that must process real-time telemetry without introducing latency. As a compiled
language, C++ offers low-level control over memory and processor resources
while enabling aggressive compiler optimizations. This results in execution speeds
that far exceed those of interpreted languages such as Python. Such perfor-
mance is critical to maintaining synchronization between the simulation and the
live data streams received from the spacecraft. A notable precedent is the CADAC++
architecture developed by the U.S. Air Force Research Laboratory, which demon-
strates how object-oriented C++ simulations can effectively manage complex,
multi-vehicle environments in real time.

Equally vital in mission-critical applications is deterministic control over sys-
tem resources. Unlike languages that employ automatic garbage collection (e.g.,
Java), C++ provides developers with explicit control over memory allocation and
deallocation. This eliminates the risk of unpredictable pauses caused by back-
ground memory management, an unacceptable behavior during time-sensitive
operations such as satellite communication passes. The language’s support for
the Resource Acquisition Is Initialization (RAIl) paradigm further enforces deter-
ministic resource handling, ensuring that the simulation operates with consistent
timing and reliability.

Compliance with industry standards also directly necessitates the use of C++.
The ECSS-SMP standard, which underpins this work, defines its model-to-simulator
interfaces explicitly in C++ through the use of abstract base classes. Implement-
ing the models in C++ is therefore essential to achieve full compliance. This
decision aligns the project with established best practices across major space
organizations, including ESA and NASA, where C++ remains the dominant lan-
guage for simulation and flight software. The robustness of C++ in safety-critical
applications is further reflected in the existence of formalized coding standards,
such as the Joint Strike Fighter (JSF) Air Vehicle C++ Coding Standard, devel-
oped to ensure software reliability and maintainability in aerospace systems.

Finally, C++ is indispensable for ecosystem compatibility. Both the SIMU-
LUS simulation platform and the ISIS operational framework, core to this project,
are natively implemented in C++ and expose their primary Application Program-
ming Interfaces (APIs) through the language. Developing the Digital Twin in C++
ensures seamless integration with these frameworks and guarantees long-term

21

maintainability. Moreover, C++ provides access to a mature ecosystem of sci-
entific and engineering libraries, such as Eigen for linear algebra and NASA’s
SPICE toolkit for astrodynamics. These tools enable the efficient implementa-
tion of complex physical and orbital models, further enhancing the fidelity of the
simulation.

In summary, the adoption of C++ is not a matter of preference, but a direct
response to the demanding performance, reliability, and integration requirements
of the IOS Digital Twin. Its selection ensures that the developed models meet
both the technical and programmatic standards necessary for their role within the
broader European space simulation ecosystem.

2.5 State of the art in Aerospace Digital Twins

To properly contextualize the work presented in this thesis, it is essential to review
the evolution and current state of Digital Twin technology within the aerospace
sector. This overview traces the transition from static simulators to dynamic, data-
driven models and highlights the key technological trends and applications that
define the modern Digital Twin paradigm.

Although the practice of “twinning” can be traced back to NASA’s Apollo pro-
gram, as discussed in Section [1.1] the formal concept was first articulated by
Dr. Michael Grieves in 2002 and later refined by NASA in 2011. This contempo-
rary definition describes a multi-physics, multi-scale digital replica of an “as-built”
physical asset that continuously ingests sensor data to mirror, predict, and op-
timize its operational life. This represented a fundamental shift from traditional
simulators, transforming them into living models that evolve in parallel with their
physical counterparts.

The continued maturation of the Digital Twin concept has been driven by the
convergence of several key enabling technologies. Foremost among these is the
integration of artificial intelligence and machine learning, which elevate the Digital
Twin from a passive mirror to an active predictive system capable of forecasting
failures and optimizing performance through proactive maintenance. This pre-
dictive capability is supported by advances in real-time data fusion, combining
inputs from onboard sensors, physics-based models, and historical datasets into
a unified, continuously updated system representation. Such high-fidelity, data-

22

driven environments provide the ideal foundation for developing and validating the
sophisticated logic required for autonomous operations, a capability of particular
relevance to the IOS mission.

The operational significance of Digital Twin technology is best demonstrated
through its application in pioneering space missions and within the commercial
aerospace industry.

One notable European example is ESA’s OPS-SAT mission, the first in-orbit
laboratory dedicated to testing new mission control technologies. The OPS-SAT
Digital Twin was not confined to pre-flight testing; it became an integral opera-
tional asset, enabling experimental software to be safely validated on the ground
before uplink to the live spacecraft. This approach significantly reduced risk and
enabled more than 280 successful in-orbit experiments, exemplifying the potential
of Digital Twins to foster innovation in mission operations.

Another benchmark comes from NASA’s Mars rover missions. At the Jet
Propulsion Laboratory (JPL), a full-scale engineering model of the Perseverance
rover, known as OPTIMISM, operates within a simulated Martian environment.
Coupled with high-fidelity software models, this physical twin allows operators to
test every command sequence, from mobility planning to robotic arm operations,
before transmitting them to Mars. Given the inherent communication delays, this
methodology has proven indispensable for ensuring mission safety and reliability
in remote and inaccessible environments.

In the commercial aerospace sector, companies such as Boeing and Rolls-
Royce have demonstrated the lifecycle value of Digital Twin technology. Boeing’s
T-7A Red Hawk program, for example, improved the first-time quality of manufac-
tured components by over 40% through the use of integrated digital twins, while
Rolls-Royce’s IntelligentEngine initiative employs real-time digital twins for predic-
tive maintenance, reducing downtime and optimizing engine performance. These
examples underscore the growing role of Digital Twins in improving efficiency,
safety, and overall system economics across the aerospace domain.

Building upon this established foundation, the work presented in this thesis
synthesizes these state-of-the-art principles to address the novel challenges of
autonomous in-orbit servicing. It aims to extend the remote operations paradigm,
as exemplified by NASA’s rover missions, to the validation of complex, autonomous
robotic activities where direct human intervention is impossible. Furthermore, it

23

draws inspiration from ESA’'s OPS-SAT mission by employing a Digital Twin as
a safe, in-orbit validation environment for deploying new capabilities throughout
a mission’s lifetime. Finally, by emphasizing standardization and reusability, this
work aspires to deliver the same lifecycle benefits, spanning pre-flight verifica-
tion, operational monitoring, and post-mission analysis, that have already proven
transformative in commercial aerospace.

2.6 Synthesis and Technology Selection Rationale

The preceding review of standards, frameworks, and programming paradigms
culminates in the technology selection that underpins this thesis. This selection
does not represent a set of isolated technical decisions, but rather a coherent
engineering strategy in which each component logically derives from the funda-
mental requirements of the project.

The strategy originates from the highest-level programmatic constraint: the
need to ensure that the developed model constitutes a reusable, interoperable,
and enduring asset within the European space ecosystem. This requirement di-
rectly mandates compliance with the ECSS-SMP standard. Adherence to this
standard, in turn, necessitates the use of a compatible software ecosystem. Ac-
cordingly, the SIMULUS framework has been selected as the development and
validation platform, given its role as ESA’s reference implementation of the SMP
standard, while the CNES ISIS framework has been identified as the operational
deployment target.

With the standard and frameworks established, attention shifts to the imple-
mentation methodology. The challenge of representing a complex, modular satel-
lite system naturally aligns with the principles of OOP, which provides a logical
and scalable structure for modeling discrete, interacting subsystems. To real-
ize this OOP architecture with the computational performance and deterministic
behavior demanded by a mission-critical Digital Twin, C++ emerges as the defini-
tive choice. Its compiled nature, low-level memory control, and maturity within
aerospace applications deliver the efficiency and reliability essential for real-time
and safety-critical operations.

In synthesis, the chosen technology stack embodies a structured response
to the requirements of modern European space missions. ECSS-SMP ensures

24

portability and standardization; SIMULUS provides a professional, validation-ready
development environment; OOP offers a logical and extensible modeling struc-
ture; and C++ delivers the computational rigor necessary for high-fidelity, real-
time execution. Together, these technologies form a cohesive and future-proof
foundation for developing a Digital Twin that is not only technically robust, but
also sustainable, interoperable, and fully aligned with established best practices
in the European space industry.

25

3 System Architecture and Simulation Environment

This chapter presents the architecture of the simulation environment developed
for the design, integration, and validation of the 10S Digital Twin. The entire sys-
tem is hosted on a Dell Pro Max Tower T2 workstation equipped with an Intel Core
Ultra 9 285K processor, 128GB of RAM, and a 2TB solid-state drive, operating
under Windows 11 as the primary system.

Built upon this physical infrastructure, the environment adopts a virtualized
dual-machine architecture derived from the IOS Software Validation Environment
(SVE). Implemented through a hypervisor, this setup ensures a realistic separa-
tion of concerns between the satellite simulation and the ground control subsys-
tems.

A distinctive feature of the Intel Core Ultra 9 285K processor is its hybrid ar-
chitecture, combining eight high-performance Performance-cores (P-cores) with
sixteen energy-efficient Efficiency-cores (E-cores). Unlike many modern proces-
sors, this model does not support Hyper-Threading, a characteristic that intro-
duces specific configuration challenges for simulation workloads. To prevent the
host operating system from scheduling computationally demanding processes
on the lower-performance E-cores, a processor affinity mask was applied. This
configuration binds all hypervisor processes exclusively to the P-cores, ensuring
that the virtual machines consistently access the highest-performing hardware
resources. This measure is essential for maintaining the deterministic, real-time
behavior required by the simulation.

The following sections describe in detail the configuration of this virtualized
environment, the functional roles of each virtual machine, and the data flow mech-
anisms that govern their interaction.

3.1 Virtualized System Architecture

The simulation architecture is implemented using VMware Workstation Pro 17,
enabling the creation of a self-contained, portable, and easily reproducible vir-
tualized environment. This environment is structured around two distinct virtual
machines (VMs) that replicate the operational separation between the spacecraft
and its ground control segment. The first VM, referred to as the Simulation Host,

26

runs SUSE Linux Enterprise Server (SLES) 15.2, while the second VM, desig-
nated ECHO, serves as the Operator Console and operates under Windows 10.

To ensure stable and isolated communication, the two VMs are interconnected
through a private VMware LAN Segment. This setup establishes a dedicated
virtual network completely segregated from any external connectivity, thereby
preventing interference and ensuring secure data exchange. Within this private
LAN, both virtual machines are assigned static IP addresses, guaranteeing a
predictable and reliable TCP/IP connection. In this client-server configuration,
the ECHO VM functions as the client, initiating communication with the SIMSAT
kernel running on the Simulation Host, which acts as the server and listens on a
predefined network port.

Physical Host: Dell Pro Max Tower T2

Hypervisor: VMware Workstation Pro 17

VM 1: Simulation Host VM 2: ECHO

OS: SLES 15.2 0S: Windows 10
TCP/IP Connection

Role: Model Role: Telecommand
Development and Dispatch and Telemetry,
Simulation Execution Reception

Private Virtual Network (LAN Segment)

Host OS: Windows 11

Figure 2: High-Level Architecture of the Virtualized Simulation Environment

A high-level representation of this architecture is provided in Figure |2, which
illustrates the physical host containing the two virtual machines, their respective
operating systems and software roles, and the private virtual network facilitating
their interaction.

27

3.2 The Simulation Host VM

The Simulation Host serves as the computational core of the entire simulation
environment. This virtual machine is specifically configured to deliver the per-
formance, stability, and software ecosystem required for the development and
execution of the IOS Digital Twin.

To accommodate the demanding computational load, the Simulation Host is
provisioned with 16 virtual CPU cores, 64GB of RAM, and a 200GB virtual hard
drive. The operating system, SLES 15.2, is employed as it is a mandatory pre-
requisite for the installation and reliable operation of the core simulation software.

The software environment deployed on this machine comprises the complete
MDE toolchain necessary for Digital Twin development. This includes the SIMU-
LUS 10.3.0 framework, Visual Studio Code as the primary Integrated Develop-
ment Environment (IDE), and MagicDraw 2021x for model design. The latter
tool is used to create the master blueprint of the model, previously described in
Subsection [2.2.1] using the Unified Modeling Language (UML), a standardized
graphical notation for specifying and visualizing software architectures.

A critical element of this setup is the Terma Emulator (TEMU), which provides
high-fidelity, instruction-level emulation of space-grade processors based on the
SPARC architecture, including the ERC32, LEON2, LEON3, and LEON4. For the
IOS mission, TEMU is configured to emulate the LEON4 processor, which rep-
resents the spacecraft's OBC. Integrated within the SIMSAT environment, TEMU
enables SITL validation by executing the actual flight software on the emulated
processor. This capability allows the interaction between the onboard software
and the simulated hardware models to be tested with a high degree of realism
prior to deployment.

All project-related files are organized under a primary directory, /ios, on the
virtual machine’s file system. This directory is logically divided into two main
subfolders:

» /ios/tasi.sve: Contains the development environment, including all build scripts,
source code, and UML design files that form the master blueprint of the Dig-
ital Twin.

* /ios/Simulator: Serves as the runtime directory, containing the compiled li-
braries and configuration files necessary to launch and operate a simulation

28

session within the SIMSAT kernel.

In operational mode, this VM functions as the simulation server. An operator
initiates this server from the command-line, which launches the SIMSAT kernel.
The kernel then loads the compiled satellite model, pauses the simulation at T =
0, and begins listening for a TCP/IP connection from the Operator Console VM on
a dedicated network port, ready to receive telecommands and transmit telemetry
data in real time.

3.3 The ECHO VM

The second virtual machine, referred to as ECHO, serves as the Operator Con-
sole. Its primary function is to provide the HMI for interacting with the live simula-
tion, effectively representing the ground segment within this virtualized architec-
ture.

ECHO operates on a Windows 10 system and is configured with 8 virtual CPU
cores, 32GB of RAM, and a 100GB virtual hard drive. It hosts a proprietary suite
of Thales Alenia Space software applications developed for mission control and
testing. These applications work together to manage the command and control
loop. The main components of this suite are described below:

» Cortex Interface (iride_if.exe): This application acts as the primary com-
munication gateway. It establishes and maintains separate TCP/IP client
connections to the SIMSAT server for both the telecommand uplink and
telemetry downlink. Its configuration file, iride_if.ini, defines the network pa-
rameters required to connect to the Simulation Host.

* On-Board Environment (OBE4.exe): This tool provides real-time telemetry
visualization and monitoring. It receives, decodes, and displays telemetry
packets from the SIMSAT kernel, allowing operators to assess the satellite’s
status. It serves as the main interface for confirming the reception and exe-
cution of telecommands through corresponding acknowledgment and status
telemetry messages.

» Telecommand Console (Tcc.exe): This is the operator’'s main command in-
terface. The Tcc enables “online” mode for command transmission and pro-

29

vides functionality for sending both predefined library telecommands and
custom raw hexadecimal telecommands to the simulated spacecraft.

» Message Transport Protocol (Mtp): This background service manages the
message transport layer required by the higher-level Tcc application. Proper
operation of Mtp is essential for ensuring reliable command transmission.

Together, these applications form a cohesive command and control environment.
They allow an operator on the ECHO VM to send telecommands, monitor the
satellite’s health and status in real-time, and verify the outcome of their actions,
thus enabling a complete and realistic simulation of mission operations. The de-
tailed workflow for using these tools to conduct a simulation run will be described
in the following section.

3.4 Simulation Workflow and Data Flow

The dual-machine architecture described in the previous sections enables a re-
alistic simulation workflow that closely replicates an actual mission operations
scenario. This workflow can be divided into a series of phases, spanning from
system initialization to the execution of the command and control loop, each gov-
erned by a well-defined flow of data between the two virtual machines.

The process begins with the initialization and handshake phase. On the Simu-
lation Host VM, the operator first launches the SIMSAT kernel using a command-
line script. At this stage, the kernel loads the satellite model and begins listening
for incoming network connections, while the simulation time remains paused at T
= 0. Next, on the ECHO VM, the operator starts the Cortex interface (iride_if.exe),
which establishes the TCP/IP connections for both the telecommand and teleme-
try channels with the waiting SIMSAT kernel. A successful handshake is con-
firmed once the connection indicators turn green and corresponding connection
messages appear in the SIMSAT log.

Once the network link is established, the operator sets up the ground control
environment on the ECHO VM by launching the required applications, primarily
the telemetry display (OBE4.exe) and the telecommand console (Tcc.exe), and
bringing them to an online state.

The execution phase begins on the Simulation Host VM. Although the kernel
is initiated via the command line, the simulation clock is started from the SIMSAT

30

Graphical User Interface (GUI). Starting the clock triggers the simulation, prompt-
ing the satellite model to begin generating a continuous stream of telemetry data.
This marks the start of the primary telemetry flow: telemetry packets are pro-
duced by the SIMSAT kernel, transmitted across the virtual LAN, received by the
Cortex interface on the ECHO VM, and finally decoded and displayed in real time
by the OBE4 application.

With the simulation running and telemetry streaming, the operator can per-
form the core command and control loop. The data flow for a single command
sequence unfolds as follows:

1. Telecommand Uplink: The operator composes and sends a telecommand
using the Tcc application on the ECHO VM.

2. Telecommand Transmission: The telecommand packet is transmitted over
the virtual network to the SIMSAT kernel on the Simulation Host VM.

3. Model Execution: The SIMSAT kernel routes the command to the relevant
SMP interface of the satellite model, which processes it and updates its
internal state accordingly.

4. Telemetry Feedback: In response, the model generates acknowledgment
and completion telemetry packets (e.g., TM(1,1) for validation and TM(1,7)
for execution).

5. Verification: These telemetry packets return to the ECHO VM via the es-
tablished telemetry data flow and are displayed in the OBE4 event log. The
operator confirms successful command execution by observing this feed-
back.

This workflow establishes a complete and interactive simulation loop, enabling
thorough end-to-end testing of the Digital Twin. From the issuance of operator
commands to the verification of model responses, the system provides a robust
framework for validating mission operations within a controlled, virtual environ-
ment.

31

4 Model Development

4.1 The In-Orbit Servicing Electric Power System: Architec-
tural Concept and Technologies

The EPS is a critical subsystem located within the Orbital Propulsion and Support
Module (OSPM) of the IOS satellite. It is responsible for generating, storing, con-
ditioning, and distributing the electrical power required by all subsystems across
both the OSPM and the Avionics and Robotics Platform (ARP). As the IOS mis-
sion remains in the developmental phase, the architectural concept presented
here represents the technical reference upon which the digital twin model is con-
structed. This reference has been synthesized from key project documentation,
including system architecture concepts, avionics design definitions, and the tech-
nical requirement specifications of the primary EPS components.

MIL-STD-1553 Data Bus MIL-5TD-1553 Data Bus

Essential Loads 28 V

Non-Essential Loads 28 V

m—— Non-Essential Loads Unregulated s

Internal Bus

Figure 3: Architectural Concept of the Electric Power System

32

The EPS employs a hybrid power architecture managed by a central PCDU.
At its core lies a main unregulated power bus, operating within a nominal voltage
range of 45V to 63V, supplied directly by the solar arrays and the main battery.
From this primary bus, the PCDU also generates a stable and fault-tolerant 28V
regulated bus, which powers the spacecraft’s essential avionics. The complete
architectural concept of the EPS, including the interconnection of power genera-
tion, energy storage, and power distribution functions is illustrated in Figure 3|

The power generation function is provided by two identical SAWSs, each con-
sisting of four deployable panels equipped with triple-junction Gallium Arsenide
(GaAs) solar cells. The photovoltaic assembly is highly sectioned to improve re-
liability and regulation efficiency. Each array is organized hierarchically, with 31
cells in series per string, 8 strings in parallel per section, and 2 sections per
panel. In total, the system comprises 16 independent sections (8 per wing), each
connected to a dedicated Sequential Switching Shunt Regulator (S3R) within the
PCDU.

To maximize energy harvesting, each solar array wing is mounted on a SADA,
which continuously orients the panels toward the Sun. The assembly consists of
a central Solar Array Drive Electronics (SADE) unit that controls two Solar Array
Drive Mechanisms (SADMs). The SADE functions as the intelligent controller of
the system, receiving sun-pointing commands and transmitting telemetry data,
both its own and that of the SADMs, via the MIL-STD-1553 data bus.

The energy storage function is provided by the main BTA, composed of two
redundant packs built from Lithium-ion cells. Each pack is arranged in a 15-
series, 24-parallel (15s24p) configuration, delivering a nominal capacity of 84Ah
at Beginning-of-Life (BOL) and operating within the unregulated bus voltage range.
The battery system is capable of a maximum charge rate of 42A and exhibits high
round-trip efficiency, with charge and discharge efficiencies of 86% and 98%, re-
spectively.

At the center of the EPS, the PCDU acts as both the intelligent controller and
the functional core of the system, performing power conditioning and distribu-
tion. It regulates power flow from the 16 solar array sections via the S3R mod-
ule, shunting excess power to maintain bus voltage stability. The Battery Charge
Management (BCM) function controls the battery’s State-of-Charge (SOC), imple-
menting a Constant Current / Constant Voltage (CC/CV) charging algorithm. For

33

power distribution, the PCDU provides the 28V regulated bus and delivers power
to all spacecraft loads, including essential and non-essential avionics, heaters,
and propulsion units, through a network of fault-tolerant output lines protected by
various types of Latching Current Limiters (LCLs). The PCDU is fully command-
able, and its operational status is continuously monitored via the MIL-STD-1553
data bus interface.

4.2 Modeling Philosophy and Abstraction

The development of the EPS model followed a design philosophy emphasizing
behavioral fidelity over detailed physical simulation. Since the parent satellite de-
sign is still under development, the primary objective was to produce a model that
is functionally and behaviorally accurate at its external interfaces. The aim is to
provide a sufficiently realistic representation of the EPS to serve as a foundation
for future subsystem models, specifically enabling their connection to a standard-
ized power line interface, rather than to perform in-depth physical analyses of the
underlying hardware.

To achieve this, several abstractions were intentionally introduced to man-
age model complexity and ensure alignment with its intended purpose. Physi-
cal effects such as thermal dependencies on component performance, long-term
degradation due to radiation or charge/discharge cycling, detailed internal elec-
tronic behavior, and high-frequency electrical transients were excluded from the
current scope. The model instead focuses strictly on the logical, electrical, and
communication behavior of the subsystem components.

The model’s software architecture directly implements the SMP and OOP prin-
ciples introduced in Chapter 2l Each major hardware component, SAW, SADA,
BTA, and PCDU, is encapsulated in its own C++ class, with internal states and
logic hidden from the outside. To ensure seamless integration with the host en-
vironment and facilitate code reuse, these classes inherit from standard SIMU-
LUS base classes: GenericModel for core SMP functionality, GenericCyclicModel
for components requiring periodic updates, and GenericRemoteTerminal for MIL-
STD-1553 bus communication.

The model leverages polymorphism to handle state updates. Each component
class implements a specialized version of the virtual PulseRaisingPort() method,

34

inherited from GenericCyclicModel. This method, periodically invoked by the SIM-
SAT scheduler, contains the key logic responsible for updating the component’s
internal state. The system’s interfaces follow the SMP data paradigm, in which
configurable parameters are exposed as Properties and commandable functions
as Operations. While the public interfaces were fully defined, the specific teleme-
try outputs were not yet implemented in this version, pending the definition of the
higher-level software architecture.

The resulting engineering trade-offs prioritize the immediate utility of estab-
lishing a robust power distribution framework, enabling future models to be readily
integrated and validated against the power line interface. For instance, whereas
earlier simplified models treated certain subsystems as perpetually powered, the
new EPS model provides a dynamic power distribution network, enabling future
subsystem models to be connected to and interact with individual power lines.
This functional approach provides a substantial improvement in validation capa-
bility, offering realistic testing conditions while maintaining flexibility to adapt as
the hardware design continues to evolve.

4.3 The Solar Array Wing and Solar Array Drive Assembly
Model

The power generation subsystem is modeled through two primary, interconnected
components: the SAW model, which simulates the conversion of solar energy
into electrical current, and the SADA model, which controls the orientation of the
wings. This section presents the conceptual logic and C++/SMP implementation
of both models.

4.3.1 The Solar Array Wing Model

Concept The SAW model provides a behaviorally accurate representation of
the wing’s electrical output. Its core logic is based on an empirically derived
current-voltage (I-V) function, developed from End-of-Life (EOL) performance re-
quirements under a comprehensive set of worst-case conditions. These condi-
tions include minimum solar irradiance, extreme operating temperatures, a single-
string failure, and radiation-induced degradation.

35

The power output of the model depends on three primary factors:

1. Bus voltage, which determines the current supplied according to the |-V
function.

2. Eclipse state, modeled as a binary switch that alternates between sunlight
and shadow phases of a simplified orbital cycle, enabling or disabling power
generation accordingly.

3. Sun incidence angle, provided as a pointing error from the SADA model,
which modulates the generated current using a cosine law to account for
off-nominal pointing.

The model also incorporates key operational logic. The wing deployment se-
quence is explicitly represented, ensuring that no power is generated before the
wing is released. Deployment is simulated by activating Non-Explosive Actuators
(NEAs) upon receiving a valid command pulse from the PCDU, which triggers a
release flag after a defined delay. Additionally, to support fault scenario testing,
the model allows any individual solar string to be commanded into a failed state,
removing its contribution to the total output current.

Implementation The SAW model is implemented using a hierarchical compos-
ite pattern that mirrors the physical hardware structure. The top-level SolarAr-
rayWingModel acts as a container for instances of SolarPanelModel and Gener-
icPyroModel (representing the NEAs). Each SolarPanelModel contains several
SolarSectionModel instances, and each section, in turn, contains the lowest-level
SolarStringModel objects. All subcomponents are instantiated and managed dur-
ing the configuration phase.

» SolarStringModel: Inheriting from GenericModel, this class represents the
fundamental power-generation element. It computes the output current by
linearly interpolating values from a static I-V lookup table (defined in the
SMP configuration file SawConfig.h) based on the input voltage. It also
exposes an SMP operation, FailString(), to simulate string-level failures.

» SolarSectionModel and SolarPanelModel: Both classes, derived from Gener-
icModel, serve as aggregators. Their primary function is to sum the currents

36

from their child components and pass the result upward through the hierar-
chy.

» GenericPyroModel: A pre-existing library class used to represent the NEAs.
It is configured to respond to power pulses received through the IPower-
PulseLinelF interface and manages the deployment timer.

» SolarArrayWingModel: The top-level class, inheriting from GenericCyclic-
Model, aggregates the total current from all panels, monitors deployment
status via the contained GenericPyroModel instances, and applies the ef-
fects of eclipse state and sun incidence angle. lts main logic executes within
the overridden PulseRaisingPort() method, which is periodically invoked by
the SIMSAT scheduler. The model interacts with the PCDU through a stan-
dardized power line, instantiated as a subcomponent.

Integration with SMP is finalized in the assembly file (saw.xml), where the SAW _1
and SAW_2 instances are declared and their power line subcomponents are con-
nected to the PCDU, demonstrating catalog-based integration within the SMP
framework.

4.3.2 The Solar Array Drive Assembly Model

Concept Based on the preliminary documentation available, the SADA model
is implemented as a simplified behavioral representation derived from key tech-
nical requirements: a minimum angular precision of £1°and a constant minimum
angular velocity of 0.01%s. The model receives a target angle and simulates ro-
tation by updating its current angle at each simulation step until it falls within the
specified tolerance band of the target position.

Implementation The SADA model follows a distributed architecture that cleanly
separates functionality across distinct components. The top-level SadeModel
acts as a container for a SadeRemoteTerminalModel, which handles bus commu-
nication, and maintains aggregation relationships with two SadmModel instances
representing the physical drive mechanisms.

« SadeRemoteTerminalModel: Inheriting from GenericRemoteTerminal, this
class serves as the interface between the model and the MIL-STD-1553

37

bus, managing low-level data exchange through the BcToRt() and RtToBc()
methods.

+ SadeModel: Inheriting from GenericModel, this class acts as the control unit
of the SADA. It interprets commands received from the remote terminal, as-
sembles telemetry packets (including those compliant with the Packet Uti-
lization Standard (PUS)), and issues drive commands to the mechanisms.

» SadmModel: Inheriting from GenericCyclicModel, this class represents the
physical mechanism. lts PulseRaisingPort() method performs the slew ma-
neuver and includes logic for both nominal and redundant actuators. It com-
putes the current pointing error and communicates this information to the
SolarArrayWingModel through an SMP data flow field.

The assembly of the SADA model is defined in its sada.xml file. This file in-
stantiates the both nominal and redundant electronics as SADE_N and SADE_R,
creates a SADM model for each of the two SAWSs and links each remote terminal
to the MIL-STD-1553 bus model, ensuring a modular and realistic implementation
of the complete drive assembly.

4.4 The Battery Model

The BTA model simulates the energy storage subsystem, which is responsible for
supplying power during orbital eclipses and storing excess energy generated by
the solar arrays.

Concept The core of the BTA model is designed to track its SOC over time using
a coulomb-counting algorithm. At each simulation step, the Depth-of-Discharge
(DOD) is updated by integrating the net current flowing into or out of the battery.
This process explicitly incorporates the energy losses specified in the hardware
documentation, applying a charge efficiency of 86% to incoming current and a
discharge efficiency of 98% to outgoing current.

The Open-Circuit Voltage (VOC) is modeled as a linear function of the DOD,
ranging from a maximum of 4.2V per cell pack at 0% DOD (fully charged) to a
minimum of 3.1V per cell pack at 100% DOD (fully discharged). A key abstraction
in this model is that the terminal voltage is assumed to be equal to the VOC.

38

Voltage drops due to internal or harness resistance are neglected to simplify the
model while preserving an accurate representation of the overall energy balance.
The model’s state evolution is driven by the net current provided by the PCDU,
which determines whether the battery is in a charging or discharging mode.

Implementation The BTA model is implemented using a hierarchical composite
pattern, reflecting the modular structure of the physical battery. The top-level
BtaModel class acts as a container that instantiates and manages a collection of
BtaCellPack objects.

 BtaCellPack: Inheriting from the GenericModel base class, this component
represents a single pack of parallel cells. Its main responsibility is to com-
pute the pack’s VOC based on its current DOD.

» BtaModel: The top-level class, derived from GenericCyclicModel, governs
the behavior of the entire battery. Its main logic is executed in the PulseRais-
ingPort() method, which is called periodically by the SIMSAT scheduler.
During each update cycle, the class iterates through all contained BtaCell-
Pack instances, supplying them with the current value and commanding
them to update their internal states. The resulting voltages are then aggre-
gated to determine the total terminal voltage of the battery. The model’'s
interaction with the PCDU is handled through a standardized power line,
instantiated as a subcomponent.

Integration of the model into the broader simulation is defined in the assembly file
(bta.xml). This file instantiates the top-level battery as BTA and specifies the con-
nection between its power line subcomponent and the corresponding interface
on the PCDU model. This configuration demonstrates the catalog-based archi-
tecture of SMP, which enables physical interconnection of components within the
virtual simulation environment.

4.5 The Power Control and Distribution Unit Model

The PCDU forms the functional core of the EPS, acting as the central hub for
energy management and distribution. Within the Digital Twin, the PCDU model is

39

the most complex component, as it governs the interactions between the power
sources (SAW and BTA) and the spacecraft loads.

Concept The conceptual design of the PCDU model is built around a power
balance algorithm that executes at each simulation step. The model first deter-
mines the total power available from the solar arrays and compares it with the
total power demand from all active spacecraft loads. Based on this comparison, it
dynamically establishes the operational mode of the EPS and manages the flow
of energy to maintain the stability of the unregulated bus.

A central part of this logic is the BCM. When excess power is available from
the solar arrays, the model initiates a battery charging sequence that follows a
full CC/CV algorithm. During this phase, the battery is charged at its maximum
allowable current until the terminal voltage reaches a predefined End-of-Charge
Voltage (EOCV) threshold. At that point, the model transitions into a constant-
voltage tapering phase, gradually reducing the charge current to prevent over-
charging. Conversely, during eclipse periods or high-load conditions, the model
identifies the resulting power deficit and draws the required current from the bat-
tery to maintain power supply continuity.

The behavior of the S3Rs within the solar array’s interface is modeled ab-
stractly: rather than simulating individual switching operations, any solar power
not consumed by the loads or used for battery charging is treated as shunted and
effectively discarded.

Finally, the PCDU model simulates power distribution by managing the state
of individual switches. Each power line can be switched on or off via the MIL-
STD-1553 bus, providing a commandable interface that allows future models to
draw power from specific, controlled sources within the simulation.

Implementation The PCDU model employs a composite design pattern, in
which the main Pcdu class acts as an orchestrator for several specialized sub-
components, each responsible for a distinct function. The top-level Pcdu class
contains instances of Pcdu1553, PcduPowerSupplier, PcduBatPowerConsumer,
and PcduSAPowerConsumer.

» Pcdu1553: Inheriting from GenericRemoteTerminal, this class serves as
the exclusive interface between the PCDU and the MIL-STD-1553 bus. It

40

receives and decodes raw command words from the bus and translates
them into executable actions, such as turning specific switches on or off.

» PcduPowerSupplier: Derived from GenericModel, this class manages the
on or off state of all power distribution lines. It maintains an internal map of
connected loads and, when commanded by the main Pcdu class, delivers
either the regulated 28V or the unregulated bus voltage to the corresponding
power line.

» PcduSAPowerConsumer and PcduBatPowerConsumer: Both inherit from
GenericPowerConsumer and act as interface adapters. They implement
the standardized IPowerLinelF interface, through which the main Pcdu class
exchanges current and voltage data with the solar arrays and the battery.

* Pcdu: The top-level class, inheriting from GenericCyclicModel, coordinates
all subsystem functions. Its primary logic resides in the PulseRaisingPort()
method, called periodically by the SIMSAT scheduler. This method reads
inputs from the consumer components, calculates the bus voltage and re-
quired battery current, and issues commands to the relevant sub-models.
Key operational parameters, such as the battery’s EOCV and maximum
charge current, are defined in the SMP configuration file PcduConfig.h

The complete system integration is defined in the assembly file (pcdu.xml). This
file not only instantiates the main Pcdu and its subcomponents, but also defines
the critical interface links between the consumer classes and the SAW and BTA
models, as well as the connection between the remote terminal and the MIL-STD-
1553 bus model. This configuration demonstrates the modular, scalable, and fully
SMP-compliant architecture of the implemented system.

41

5 Model Validation and Results

5.1 Validation Strategy and Test Procedures

This section presents the validation of the EPS model developed in this thesis.
The primary objective of the validation campaign is not to demonstrate that the
model is a perfect physical replica of the hardware, but rather to confirm that it is
fit for purpose. In this context, "fit for purpose" means verifying that the model’s
behavior aligns closely with that of an authoritative high-fidelity reference and
that its accuracy is sufficient for its intended application: to provide a stable and
validated power source for the development and integration of future Digital Twin
subsystem models.

Given that no physical flight hardware is currently available, the validation
strategy relies on a comparative analysis against a trusted, high-fidelity refer-
ence: the official mission Power and Energy Budget document. This document
contains the full set of performance specifications and expected data profiles for
the EPS. Due to the confidential nature of this reference, the specific methods
used to generate its data cannot be disclosed. Accordingly, the adopted strategy
involves executing identical test scenarios on the C++/SMP model and compar-
ing the resulting output against the reference data and the corresponding success
criteria defined in the budget document.

The test cases used for this validation were selected from the comprehensive
set of mission scenarios analyzed in the Power and Energy Budget. The selec-
tion was guided by the requirements established following the Preliminary Design
Review (PDR), which specify two key operational profiles to be sustained by the
EPS:

* A nominal cyclic phase, with an average load of 1800W for 36 minutes of
discharge, and

* A special flight operation, with a load of 2100W sustained for 3000 seconds.

Two scenarios from the budget analysis were identified as representative of these
profiles:

« Case 1-2a: A sequence simulating the early mission phases, from launch
to a stable in-orbit condition, representing nominal cyclic operation.

42

» Case 6.2: A scenario simulating a rendezvous operation conducted entirely
during eclipse, representing a high-power special phase.

To ensure a meaningful one-to-one comparison, a set of common initial conditions
and modeling assumptions, derived from the reference document, was applied to
the C++/SMP simulations. These included the simulation of a single solar array
string failure per section and the use of a constant average sun incidence angle
of 28.7°, with no active SADA rotation commanded. Furthermore, the power de-
mand for each phase was modeled as a constant average value, without explicit
switching of individual loads. During each simulation run, key output variables
were recorded to data files for post-processing and analysis.

The model’'s performance was evaluated using both qualitative and quanti-
tative criteria. Qualitatively, the time evolution and overall trends of the outputs
generated by the C++/SMP model, such as battery State of Charge (SOC) and
bus voltage, were compared visually against the corresponding reference plots
from the Power and Energy Budget. Quantitatively, the model results were as-
sessed against the formal success criteria defined in the reference analysis. The
most critical of these criteria requires that the minimum bus voltage at the PCDU
interface remains above 50V under all test conditions.

5.2 Test Cases

All validation tests described in this chapter were executed within the specific
hardware and software environment detailed in Chapter [3] The test campaigns
were performed on the Dell Pro Max Tower T2 workstation, which hosts the dual
virtual machine architecture via VMware Workstation Pro 17. This configura-
tion consists of a SUSE Linux-based Simulation Host VM, running the SIMULUS
10.3.0 framework and the C++/SMP model, and a Windows-based Operator Con-
sole VM used for command and control. The following subsections describe the
specific test cases conducted within this environment to validate the behavior of
the EPS model against the reference data provided in the Power and Energy
Budget document.

43

5.2.1 Nominal Operation: Test Case 1-2a

The first test case validates the performance of the EPS model during a nominal
multi-phase operational sequence, with emphasis on the overall power balance
and the charge/discharge dynamics of the battery across multiple orbits. This
scenario is based on Case 1-2a as defined in the mission’s Power and Energy
Budget document.

The simulation begins with the spacecraft in its post-launch configuration and
progresses through five distinct mission phases:

» Phase 1: Ground Chronologies & Launch

» Phase 2: Launcher Separation to SA Deployment (Sun Acquisition)

Phase 2b: SA Deployment to Target Release
» Phase 3: In-Orbit Phase (S-band Tx only)
» Phase 4: In-Orbit Phase (S-band + X-band Tx)

The initial conditions are defined with the SAWs stowed (no power generation)
and the battery initialized at a voltage of 61.5V, corresponding to its EOCV. The
spacecraft power demand follows a representative mission profile: moderate dur-
ing launch, increasing after separation, and peaking during the target release
phase. Thereafter, the power consumption stabilizes at a sustained high opera-
tional level for the in-orbit phases, as summarized in Table [{]

Phase 1 | Phase 2 | Phase 2b | Phase 3 | Phase 4
Power Demand [W] 805 1058 1806 1609 1650
Duration [s] 4760 3181 6144 55200 55200

Table 1: Power Demand and Duration for each Phase of Case 1-2a

According to the Power and Energy Budget reference data, the expected out-
come of this test is a dynamic evolution of the EPS state. The solar arrays re-
main inactive during Phases 1 and 2, with the spacecraft drawing exclusively
from the battery, resulting in a substantial initial discharge. Upon solar array de-
ployment at the start of Phase 2b, power generation begins, initiating a sequence
of charge/discharge cycles synchronized with the sunlit and eclipse portions of

44

each orbit. In the subsequent steady orbital phases (3 and 4), the SOC of the
battery is expected to oscillate between approximately 90% at the end of sunlit
periods and 65% at the end of eclipse. Correspondingly, the unregulated bus
voltage should remain well within operational limits, stabilizing near the EOCV
during sunlight and dropping to roughly 56V during eclipse, safely above the 50V
minimum requirement.

5.2.2 Special Operation: Test Case 6.2

The second test case validates the EPS model under a high-power, battery-
dominant operational scenario, simulating a critical rendezvous sequence exe-
cuted entirely within an orbital eclipse. In this condition, the spacecraft must rely
solely on the battery for power supply. The scenario is derived from an aggrega-
tion of the high-power “special phases” defined in the Power and Energy Budget
document.

The simulation progresses through the following five mission phases:

Phase 18: S4 Hold (a nominal in-orbit phase)

Phase 19: Approach/Distancing Near range (S4) to Proximity (S5)

Phase 19b: Approach/Distancing Proximity (S5) to Ready 4 Docking

Phase 20: Capturing & Berthing

Phase 21: Mated

A defining aspect of this scenario is that Phases 19 through 20, the most power-
intensive maneuvers, occur consecutively within a single eclipse period. The
initial conditions are set with the solar arrays fully deployed, but with the battery
initialized at a reduced SOC of 45% to simulate a stressed pre-operation state.
The power demand profile begins with a nominal load during the hold phase and
increases sharply through the approach and capture phases, reaching its maxi-
mum during the “Capturing & Berthing” phase, as summarized in Table [2]

Phase 18 | Phase 19 | Phase 19b | Phase 20 | Phase 21
Power Demand [W] 1828 2024 2172 2451 1689
Duration [s] 53040 660 300 1200 55200

Table 2: Power Demand and Duration for each Phase of Case 6.2

45

According to the Power and Energy Budget reference data, the expected out-
come of this test is a rapid, deep discharge of the battery during the eclipse-bound
operations. The battery current is expected to peak at approximately —-50A during
the highest power-draw phase. Consequently, the battery SOC is predicted to
decrease steeply, reaching a minimum of about 50% by the end of the berthing
phase. The unregulated bus voltage should follow a similar trend, falling from
its nominal level to a minimum of approximately 52V. Despite this significant dis-
charge, the voltage is expected to remain above the 50V mission success thresh-
old, thereby confirming the system’s ability to sustain high-demand operations
under eclipse conditions.

5.3 Discussion of Results and Model Limitations

This section presents the results obtained from the C++/SMP model for the two
test cases defined previously. The outputs from the model, illustrated in the fig-
ures below, are compared against the reference data and performance criteria
defined in the Power and Energy Budget document. This comparison forms the
basis for assessing the model’'s performance and validating its suitability for its
intended purpose.

5.3.1 Nominal Operation: Test Case 1-2a

The results for the nominal operations scenario, shown in Figure |4, demonstrate a
strong correlation with the reference data, particularly during the initial discharge
phases. The load profile and sun/eclipse flag are accurately synchronized with
the test conditions. During the initial battery-only period (Phases 1 and 2), the
model correctly reproduces the expected discharge trend, with the Battery SOC,
Battery Current, and Bus Voltage curves closely matching the reference behavior.

A noticeable deviation appears at the onset of the first charging phase (Phase
3). The C++/SMP model predicts a charge current approximately 10% higher
than the reference, resulting in a faster battery recharge. The battery reaches its
EOCYV within roughly four orbital cycles, compared to six cycles in the reference
data. This accelerated charging is reflected in the SOC and Bus Voltage trends.
Nevertheless, during the subsequent stable eclipse phases, the model’s predic-
tions for minimum SOC (50%) and minimum Bus Voltage (53V) remain quan-

46

titatively consistent with the reference, confirming the

discharge conditions.

model’'s accuracy during

Figure 4: C++/SMP Model Simulation Results for Test Case 1-2a

5.3.2 Special Operation: Test Case 6.2

A similar behavior is observed in the high-power rendezvous scenario, shown
in Figure During the initial “S4 Hold” phase, the model’s higher charge rate

47

again results in a faster approach to the EOCV, reaching it within seven orbital
cycles, whereas the reference data indicates no full charge within the ten-cycle
test window.

““““““““““““““““

T A A A AN A AANANAANANANAAN

AN NSNS NSNS / /\/\/ \//\//\/\/\/\/\
ori—/ / / / // / / / / // / / / / / /
"“/ / /oy i

~ﬂﬂﬂﬂﬂﬂﬂﬂﬂﬁﬁhﬁhﬁhﬁﬂ
R T

Figure 5: C++/SMP Model Simulation Results for Test Case 6.2

The main focus of this test, however, lies in the high-power discharge that
occurs during the rendezvous and berthing maneuvers. In this phase, the model
demonstrates excellent correlation with the expected behavior. The simulation
accurately reproduces the steep drop in SOC and Bus Voltage associated with the

48

high load demand. Quantitatively, the results are well aligned with the reference:
the peak discharge current reaches nearly —-50A, the minimum SOC at the end
of the maneuver stabilizes around 50%, and the minimum Bus Voltage remains
safely above the mission threshold at approximately 52V.

5.3.3 Analysis of Discrepancies

The validation results reveal a consistent pattern: the model performs with high
accuracy during discharge phases, while a systematic discrepancy appears dur-
ing charging periods. This difference originates from the simplified representation
of the S3R logic within the PCDU.

In the current implementation, the C++/SMP model applies an idealized power
balance algorithm. At each simulation step, it calculates the total available so-
lar power, subtracts the spacecraft load demand, and assumes that any surplus
power can be instantaneously and perfectly directed to the battery, constrained
only by the battery’s voltage-dependent acceptance rate.

In contrast, a real S3R operates through sequential switching of solar array
sections and exhibits finite control-loop response times. These dynamics intro-
duce small inefficiencies and transient effects that slightly reduce the effective
average charge current delivered to the battery. The reference data, which cap-
tures these real-world behaviors, therefore shows a slower charging response.
The simplified approach used in the C++/SMP model leads to a theoretically op-
timal charge transfer at each time step, resulting in the observed approximately
10% faster charge rate. Importantly, this discrepancy is confined to charging be-
havior; the strong agreement during discharge phases confirms the validity of the
core battery model.

5.3.4 Model Limitations and Validation Conclusion

The validation campaign confirms the robustness and operational realism of the
EPS Digital Twin while also highlighting the following limitations:

» The predictive accuracy during battery charging phases is reduced due to
the idealized S3R regulation logic.

49

« Thermal and degradation effects on component performance are not mod-
eled.

» The simulation operates in discrete time steps and does not capture high-
frequency electrical transients, making it unsuitable for analyses of phenom-
ena such as inrush currents during load activation.

» The eclipse and sun-pointing models are based on simplified, hardcoded
values and do not account for real-world orbital perturbations.

Despite these limitations, the EPS model is considered validated and fit for pur-
pose. The results demonstrate that it accurately reproduces the behavior of the
system during the mission’s most critical operational regimes, nominal eclipse
operation and high-power discharge scenarios. Since these conditions represent
the dimensioning cases for the satellite’s power system, the proven fidelity of the
model in these areas confirms its suitability as a reliable power source for test-
ing the behavior of future interconnected models under nominal and special load
conditions. The identified limitations, particularly in the charging model, do not
undermine this purpose but rather define clear directions for future refinement
and fidelity enhancement.

50

6 Conclusion

This final chapter synthesizes the work undertaken in this thesis. It begins by
summarizing the main objectives, the adopted methodology, and the principal
outcomes of the project. It then provides a critical reflection on the limitations
of the developed model and the lessons learned from the engineering trade-offs
made during its development. Finally, it outlines a strategic roadmap for future
work, positioning this thesis as a foundational step toward the creation of a com-
prehensive, operational Digital Twin for the IOS mission.

6.1 Summary of Work

This thesis addressed the critical need for a standards-compliant simulation en-
vironment to support the verification and validation of flight software for the 10S
mission. The work was conducted within a rigorous, industry-aligned framework
to ensure that the resulting Digital Twin would be not only technically robust but
also reusable and interoperable across future European space programs.

The selected technological foundations directly reflected these objectives. The
ECSS-SMP standard was adopted to ensure model portability and a clear separa-
tion between the model and its simulation environment. A dual-machine virtual ar-
chitecture was configured using the ESA-reference SIMULUS framework, estab-
lishing a professional ecosystem for model development and validation, with the
CNES ISIS environment identified as the final operational deployment platform.
The subsystem models were implemented in C++ following an OOP paradigm,
providing the performance, determinism, and modularity required to accurately
represent a complex spacecraft power system.

The core contribution of this work is the design and implementation of a func-
tional, behaviorally accurate model of the satellite’s EPS, encompassing the SAWSs,
SADA, BTA, and PCDU. The model was successfully integrated into the virtu-
alized simulation environment, enabling full end-to-end testing from a ground-
operator console. Validation against reference data from the official Power and
Energy Budget document confirmed that the model is fit for purpose and suffi-
ciently accurate for its intended use as a foundational component for the integra-
tion and testing of future Digital Twin models.

51

6.2 Limitations and Lessons Learned

A central design philosophy of this work was to prioritize behavioral fidelity over
deep physical simulation, a pragmatic decision reflecting the early stage of the
IOS mission’s hardware design. This approach enabled the rapid delivery of a
useful, functional model, but also introduced a number of limitations that provide
valuable lessons for future development.

The most significant limitation, identified during the validation campaign, con-
cerns the reduced accuracy of the model during battery charging phases. This
discrepancy arises from the idealized abstraction of the S3R logic within the
PCDU. The key lesson learned is a clear example of an engineering trade-off:
simplifying the control logic accelerated model delivery and reduced complexity
but introduced a deviation in non-critical operational regimes. The strong ac-
curacy observed during discharge phases confirms that this was an acceptable
trade-off, as those scenarios represent the dimensioning cases for power sys-
tem performance, thereby providing a robust baseline for evaluating the power
consumption of future integrated models.

Other limitations stem from the defined modeling scope. The exclusion of ther-
mal dependencies, long-term degradation effects, and high-frequency electrical
transients means the model represents the logical and electrical behavior of the
EPS, not its full physical dynamics. This distinction reinforces an important les-
son: the value of a model is determined by its purpose. By focusing strictly on the
behaviors relevant to power generation and distribution, the model achieves its
intended utility as a stable and reliable foundation for integrating other subsystem
models, without unnecessary complexity. These limitations do not detract from
its engineering value but instead define its valid operating envelope and highlight
clear directions for further refinement.

6.3 Future Work and Outlook

This thesis establishes a solid foundation for the continued development of the
IOS Digital Twin. The next steps can be organized as a roadmap for progressive
fidelity enhancement and functional expansion.

The immediate priority is to refine the regulation logic of the PCDU to resolve
the charging-current discrepancy identified during validation. As the physical

52

satellite design evolves, the model should undergo iterative fidelity upgrades to
maintain synchronization with its hardware counterpart. A key enhancement will
be the integration of thermal models, leveraging the capabilities of the SIMULUS
framework to enable a coupled electro-thermal simulation. In the longer term, the
EPS model should be integrated with other subsystem models, such as GNC and
AQOCS, to enable holistic, end-to-end spacecraft simulations.

Ultimately, the long-term vision for this work is the connection of the validated
model to the real-time telemetry stream of the in-orbit satellite following launch.
Achieving this would complete the transition from a ground-based validation tool
to a true, operational Digital Twin, enabling real-time health monitoring, predictive
diagnostics, and on-the-fly procedure validation during the mission. This thesis
thus represents the first and essential step toward that vision, delivering a sus-
tainable and high-value engineering asset for the future of in-orbit servicing.

53

References

[1] B. D. Allen, “Digital twins and living models at NASA”,
NASA Technical Reports Server (NTRS), Nov. 03, 2021.
https://ntrs.nasa.gov/citations/20210023699

[2] M. Proietti, “Firmato il contratto ASI-Thales Alenia Space per la
prima missione italiana di In-Orbit Servicing”, ASIl, May 16, 2023.
https://www.asi.it/2023/05/firmato-il-contratto-asi-thales-alenia-space-
per-la-prima-missione-italiana-di-in-orbit-servicing

[3] Q. Kong, T. Siauw and A. Bayen, Python programming and Numerical Meth-
ods: A Guide for Engineers and Scientists. Academic Press, 2020.

[4] P. Zipfel, “A C++ architecture for unmanned aerial vehicle simulations”,
AlAA Infotech@Aerospace 2007 Conference and Exhibit, May 2007, doi:
10.2514/6.2007-2945.

[5] “Joint Strike Fighter Air Vehicle C++”, QA Systems. https://www.qga-
systems.com/solutions/joint-strike-fighter-air-vehicle-jsf-av-c

[6] “ECSS-E-ST-40-07C Rev.1 - Simulation Modelling Platform - Level 17,
European Cooperation for Space Standardization, Aug. 05, 2025.
https://ecss.nl/standard/ecss-e-st-40-07c-rev-1-simulation-modelling-
platform-level-1-5-august-2025

[7] “SIM website”, SIMULUS project. https://sim.space-codev.org

[8] J.-M. Georger, “CNES-ISIS, Design of future ground system operations over
a fully automatized stack of CCSDS-MO Services”, 2018 SpaceOps Confer-
ence, May 2018, doi: 10.2514/6.2018-2573.

[9] “Mission OPS-SAT”, ESA. https://esoc.esa.int/content/ops-sat

[10] N. Hartono, “NASA Readies Perseverance Mars Rover's Earthly Twin”,
NASA, Sep. 20, 2023. https://www.nasa.gov/centers-and-facilities/jpl/nasa-
readies-perseverance-mars-rovers-earthly-twin

54

https://ntrs.nasa.gov/citations/20210023699
https://www.asi.it/2023/05/firmato-il-contratto-asi-thales-alenia-space-per-la-prima-missione-italiana-di-in-orbit-servicing
https://www.asi.it/2023/05/firmato-il-contratto-asi-thales-alenia-space-per-la-prima-missione-italiana-di-in-orbit-servicing
https://www.qa-systems.com/solutions/joint-strike-fighter-air-vehicle-jsf-av-c
https://www.qa-systems.com/solutions/joint-strike-fighter-air-vehicle-jsf-av-c
https://ecss.nl/standard/ecss-e-st-40-07c-rev-1-simulation-modelling-platform-level-1-5-august-2025
https://ecss.nl/standard/ecss-e-st-40-07c-rev-1-simulation-modelling-platform-level-1-5-august-2025
https://sim.space-codev.org
https://esoc.esa.int/content/ops-sat
https://www.nasa.gov/centers-and-facilities/jpl/nasa-readies-perseverance-mars-rovers-earthly-twin
https://www.nasa.gov/centers-and-facilities/jpl/nasa-readies-perseverance-mars-rovers-earthly-twin

[11] “Let's Connect: Digital Thread Advances manufacturing”, Boeing.
https://www.boeing.com/innovation/innovation-quarterly/2022/10/let-s-
connect-digital-thread-advances-manufacturing

[12] B. Goldenberg, “Driving Innovation: Rolls Royce’s Success with Digital
Twins,” ISM, Mar. 05, 2025. https://ismguide.com/rolls-royce-use-of-digital-
twin-technology-case-study

[13] “Digital Twins: Accelerating aerospace innovation from design to operations,”
Airbus, Apr. 23, 2025. https://www.airbus.com/en/newsroom/stories/2025-
04-digital-twins-accelerating-aerospace-innovation-from-design-to-
operations

55

https://www.boeing.com/innovation/innovation-quarterly/2022/10/let-s-connect-digital-thread-advances-manufacturing
https://www.boeing.com/innovation/innovation-quarterly/2022/10/let-s-connect-digital-thread-advances-manufacturing
https://ismguide.com/rolls-royce-use-of-digital-twin-technology-case-study
https://ismguide.com/rolls-royce-use-of-digital-twin-technology-case-study
https://www.airbus.com/en/newsroom/stories/2025-04-digital-twins-accelerating-aerospace-innovation-from-design-to-operations
https://www.airbus.com/en/newsroom/stories/2025-04-digital-twins-accelerating-aerospace-innovation-from-design-to-operations
https://www.airbus.com/en/newsroom/stories/2025-04-digital-twins-accelerating-aerospace-innovation-from-design-to-operations

	Introduction
	The Digital Twin in the Space Domain
	The In-Orbit Servicing Project
	Scope and Objectives of the Thesis

	Foundations and State of the Art
	ECSS-SMP Standard
	Space Simulation Frameworks
	SIMULUS: The Development and Validation Environment
	CNES ISIS: The Operational Target Environment
	Model Lifecycle: From Validation to Operations

	Object-Oriented Programming
	C++ Programming Language
	State of the art in Aerospace Digital Twins
	Synthesis and Technology Selection Rationale

	System Architecture and Simulation Environment
	Virtualized System Architecture
	The Simulation Host VM
	The ECHO VM
	Simulation Workflow and Data Flow

	Model Development
	The In-Orbit Servicing Electric Power System: Architectural Concept and Technologies
	Modeling Philosophy and Abstraction
	The Solar Array Wing and Solar Array Drive Assembly Model
	The Solar Array Wing Model
	The Solar Array Drive Assembly Model

	The Battery Model
	The Power Control and Distribution Unit Model

	Model Validation and Results
	Validation Strategy and Test Procedures
	Test Cases
	Nominal Operation: Test Case 1-2a
	Special Operation: Test Case 6.2

	Discussion of Results and Model Limitations
	Nominal Operation: Test Case 1-2a
	Special Operation: Test Case 6.2
	Analysis of Discrepancies
	Model Limitations and Validation Conclusion

	Conclusion
	Summary of Work
	Limitations and Lessons Learned
	Future Work and Outlook

