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Chapter 1

Introduction

The following thesis work is based on the study, through virtual manufacturing,

of composite structures with embedded piezoelectric sensors.

Virtual manufacturing is a technique that allows simulating the production

processes of a given material and makes it possible to analyze materials and

their behavior under certain conditions. This allows for cost reduction and

process optimization much faster than would be possible through real-world

experiments alone.

Composites usually present different types of defects during or after the

manufacturing phase. In this thesis work, an attempt will be made to better

analyze them by inserting a piezoelectric sensor inside the composites. This

could, however, lead to other issues such as interaction with the tool, shrinkage,

a mismatch in the thermal expansion coefficients between the composite material

and the piezoelectric element, non-optimal temperature distribution, and other

kinds of problems.

The goal, therefore, is to modify the existing MUL2 Polito code, developed

at the Politecnico di Torino, to obtain a program capable of simulating this new
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Introduction

scenario, which involves piezoelectric sensors embedded within the composite

materials, and can thus be described as a multi-field problem involving the

interaction of mechanical stresses and electric fields.

In this thesis work, it is assumed that the piezoelectric sensor is embedded

within the composite during the manufacturing process. This could make it

possible to monitor what happens inside the composite during the production

phase and consequently optimize the curing steps of the composite materials.

Furthermore, once the manufacturing phase is complete, the sensor would remain

embedded in the composite, providing continuous monitoring even during the

operational life, which would significantly improve the maintenance of the

composites.

The thesis will begin with a brief description of composite materials and man-

ufacturing processes, focusing on specific types of composites particularly used

in the aerospace field. This will be followed by a description of the current state

of the art regarding structural health monitoring using piezoelectric materials.

Then, the theory behind the MUL2 Polito code will be described, including a

brief explanation of the Carrera Unified Formulation (CUF), with a specific focus

on one-dimensional models. The next step will be the implementation of the

electromechanical part into the code. Subsequently, an assessment chapter will

help to become familiar with the code. By studying two different problems—a

double-clamped beam and a multilayer beam—a comparison of some results

will be presented, using different models proposed by the code. These results

will be compared both with analytical solutions and with a case study taken

from a scientific paper, in order to demonstrate the validity and effectiveness of

the code.

Following this, an electromechanical problem involving a piezoelectric material

2



Introduction

is studied. This piezoelectric material, along with a beam of isotropic material,

is analyzed for both actuator and sensor applications.

The calculation of the capacitance of a free-standing sensor is then examined,

both analytically and directly from the FEM. Subsequently, the variation in

capacitance of a sensor integrated into a plate made of isotropic material with

a variable elastic modulus is observed.

Finally, the variation in capacitance of a sensor integrated into a 10-layer

laminate composite is studied, using the various elastic modulus values assumed

by the composite laminate during the manufacturing process as reported in the

literature.

3



Chapter 2

State of the Art

2.1 Composites 1

A composite material can be described as a combination of two or more materials

that, when combined, provide superior properties compared to those of the

individual components used separately. The various types of composites are

shown in the figure Fig. 2.1:

Figure 2.1: Composites 2

1Much of the information presented in this section was taken from the course slides [2]
and [3]
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Composite structures are recognized for their lightness and high mechanical

strength (Fig 2.2). Additionally, composites are resistant to corrosion and they

have fatigue resistance, excellent fire resistance, and the ability to design the

material for optimal performance. This combination makes composite materials

ideal for designing high-performance structures intended for specific applications,

such as in aeronautics and space .

Figure 2.2: Specific Modulus - Specific Strength 3

The Fiber is the primary load-carrying element in a composite material. The

composite is strong and stiff only in the direction of the fibers. Unidirectional

composites exhibit predominant mechanical properties in one direction and

are referred to as anisotropic, meaning they have mechanical and physical

properties that vary with direction relative to the material’s natural reference

axes. Components made with fiber-reinforced composites can be designed so

2Figure was taken from the course slides [2].
3Figure was taken from the course slides [2].
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that the fiber orientation provides optimal mechanical properties, but they can

only approximate the truly isotropic nature of metals such as aluminum and

titanium.

There are many different type of fibers: Carbon fibers are very strong and

stiff, used in primary aircraft structures but are expensive and need lightning

protection. Glass fibers are cheaper and used in secondary structures like fairings

and rotor blades. Kevlar is lightweight and impact-resistant but absorbs moisture

and is weak in compression. Ceramic fibers resist very high temperatures, used

in turbine blades. Boron fibers are extremely stiff and strong, but expensive,

inflexible, and used mainly in military aviation.

Resins are the other fundamental elements in composite materials, as they

act as the matrix that holds the reinforcing fibers together. There are different

types of resins, each with specific characteristics and applications: Polymer

matrix, which is divided into Thermosetting and Thermoplastic types; ceramic

matrix; and metal matrix. In this thesis work, the focus will be mainly on

composites with polymer resins; therefore, a description of thermosetting and

thermoplastic resins will follow.

2.1.1 Thermosetting resins

Thermosetting resins, once cured, cannot be remelted or reshaped.

• Polyimide and phenolic resins have the best thermal properties, but they

are brittle and expensive;

• Polyester resins are usually combined with glass fibers. They have low

mechanical performance, low thermal resistance, but also low cost.

• Epoxy resins are usually combined with carbon fiber; they offer the best

6
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performance and are the most expensive. The curing process is crucial, as

will be discussed below;

2.1.2 Thermoplastics resins

Thermoplastics resins are soft and moldable when heated, and solidify upon

cooling, a process that can be repeated multiple times without significant

degradation. Unlike thermosetting resins, they do not undergo a permanent

chemical change during heating.

• Polycarbonate (PC) is a thermoplastic known for its impact resistance and

amorphous structure and it has excellent thermal resistance.

• Polyetheretherketone (PEEK) is another high-performance thermoplastic

that performs exceptionally well under extreme pressure and temperature

conditions. It is characterized by outstanding mechanical properties and

excellent thermal and dimensional stability. PEEK offers excellent dielectric

properties.

• Polyphenylene Sulfide (PPS) is a thermoplastic known for its ability to

resist high temperatures and maintain its integrity under prolonged stress.

It exhibits excellent creep resistance and a high elastic modulus, giving it

rigidity and mechanical strength.

7
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2.2 Curing Process

The curing process consists of the reticulation of the polymer resin through

temperature increase, pressure, and chemical agents. With the curing process is

possible to make solid and stable structures with great mechanical properties.

During polymerization, thermosetting matrices be subjected to several distinct

phases as the chemical reactions progress ( Fig. 2.3 ).

Figure 2.3: Fases of polimerization 4

A key parameter in this process is the Degree of Cure (DoC), which indicates

the extent of polymerization that is, the formation of chemical bonds within

the polymer network. The DoC ranges from 0 to 1 (or 0% to 100%). A value of

1 means the matrix is fully cured and the polymerization process is complete.

In practice, most thermosetting matrices reach a DoC of around 90%, which is

generally sufficient to achieve the desired material properties.

The higher the Degree of Cure, the better the mechanical properties of the

final composite component, such as stiffness, strength, and dimensional stability.

The DoC is primarily influenced by two factors: the external temperature and

the curing time ( Fig. 2.4 ).

4Figure was taken from the course slides [2].
5Figure was taken from the course slides [2].
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Figure 2.4: DOC 5

To accelerate the polymerization process, autoclaves are typically used to

increase the temperature, promoting faster and more uniform curing throughout

the composite material. During the autoclave processing of thermosetting com-

posite materials, two main objectives are pursued. The first is to eliminate voids

and residual gases, thereby improving the compactness of the laminate through

the application of vacuum and pressure. The second objective is to promote

the chemical reaction between the monomers, transforming them into a three-

dimensional, highly cross-linked polymer structure through a polymerization

process.

During the curing process, the resin undergoes a reduction in volume, a

phenomenon known as shrinkage ( Fig. 2.5 ). This volumetric shrinkage can

lead to final deformations in the composite component, potentially compromising

its dimensional accuracy and structural integrity. Shrinkage also induces internal

stresses within the material, which, if not properly managed, may result in

cracking or failure of the component during manufacturing. These internal

stresses are especially critical in high-performance applications where precision

and reliability are essential.

9
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Figure 2.5: Shrinkage 6

For epoxy resins, typical volumetric shrinkage values range from 2% to 8%,

depending on the specific formulation and curing conditions. The following

images illustrate a typical curing cycle.

Figure 2.6: Curing cycle 7

The glass transition temperature (Tg) increases progressively with the Degree

6Figure was taken from the course slides [2].
7Figure was taken from the course slides [2].
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of Cure (DoC). The Di Benedetto equation (2.1) make a description of this

behavior.

Tg − Tg0

Tg∞ − Tg0

= λx

1 − (1 − λ)x (2.1)

The process is divided into 3 part:

• At ambient temperature, the resin exhibits high viscosity. As the tem-

perature increases, its viscosity decreases significantly. This behavior is

governed by a temperature-dependent relationship that can be described

by an Arrhenius-type equation:

µ = Ae
∆E
RT f(x) (2.2)

Viscosity also increases markedly with the Degree of Cure (DoC), partic-

ularly near the transition from liquid to solid. In the liquid state, shear

stresses are primarily supported by the fiber bed, while normal stresses are

shared between the resin—mainly via hydrostatic pressure—and the fiber

network. Under autoclave conditions of heat and pressure, the prepreg

is compacted and consolidated, facilitating the removal of volatiles and

trapped air. A key material parameter that evolves during this process is

the fiber volume fraction, which rises as the prepreg thickness decreases

during curing. For typical epoxy systems, gelation begins at a DoC between

0.5 and 0.6.

• During gelation, the resin’s viscosity increases from a finite value to virtually

infinite. At this stage, the resin develops a modulus and begins to behave

viscoelastically. It starts to form chemical bonds with the fibers. The

emergence of stiffness in the resin, combined with strain mismatches between

11
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resin and fibers, results in the development of residual stresses. These

stresses are due to differing mechanical responses during the cure.

• As polymerization advances, the glass transition temperature (Tg) also

increases. Full transition into the glassy phase typically occurs around

Tg + 25◦C. Beyond this point, the cure reaction slows considerably, and the

increase in modulus becomes more gradual. In a single-step cure cycle, this

stage can be divided into two phases: the isothermal hold (soak) period

and the cooling stage. The final Degree of Cure usually falls within the

range of 0.85 to 0.95.

Curing cycle and temperature profile must be carefully controlled to ensure

that the material properties are fully developed throughout the entire structure.

Equally important is the fiber orientation, which must precisely follow the

specified directions dictated by structural requirements to guarantee optimal

mechanical performance. Another key parameter is the fiber volume fraction,

which must be consistent across the component to ensure the correct ratio of

fiber to resin in every region. Additionally, porosity levels must be minimized,

as the presence of voids can significantly degrade the mechanical properties

of the composite. Finally, dimensional accuracy, including shape, angularity,

and thickness, is essential to ensure that each part fits correctly within the

surrounding structure during assembly.

12
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2.2.1 Manifacturing process and Defects

There are three main Manifacturing Process for combining resin and fiber:

• Wet processes, where liquid resin is mixed with dry fibers directly within

the mold. This method is typically used for processes that allow in-situ

impregnation during shaping.

• Liquid Composite Molding (LCM) processes, where dry fiber fabrics are

placed into the mold and subsequently infused with resin by applying

a pressure gradient, such as in vacuum-assisted resin transfer molding

(VARTM).

• Prepreg processes, where the resin and fibers are already pre-combined into

semi-finished sheets or tapes. These are then laid up onto the tool in the

desired orientation and consolidated during the cure cycle.

There are several Defects that must be carefully considered during the

manufacturing of composite materials. These can be classified into three main

categories:

• Deposition and cure defects: delamination, voids, under-cure and improper

material deposition;

• Geometrical defects, including disbonding, spring-in, and poor surface finish;

• Post-processing defects, which may arise from machining, assembly, or

handling errors.

13
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2.3 SHM with Embedded Piezoelectric Sensors

As just seen, composite materials can exhibit numerous defects both during the

manufacturing process and throughout their operational life. To assess their

structural integrity, constant Structural Health Monitoring (SHM) is necessary.

In recent years, Non-Destructive Testing (NDT) techniques have been widely

used for this purpose [4]. However, these are generally external methods, which

often require the structure to be taken out of service .

As explained in paper [5], there has been a growing interest in recent years

in the development of in-situ SHM systems. This is made possible by the piezo-

electric sensors (Fig. 2.7). It was demonstrated that embedding piezoelectric

devices, as opposed to surface mounting, enhances their effectiveness and these

sensors are less likely to degrade quickly, as they are protected by the sur-

rounding material [6]. However, this approach often results in a complex stress

concentration around the transducer area, leading to improved coupling and

greater sensitivity, but at the expense of local structural strength [7]. Sensors

integrated directly into the structure would allow for real-time monitoring of

the material’s health not only during its operational life but also throughout

the manufacturing process.

Figure 2.7: Piezolectric sensors 8

8Figure was taken from the slides [8].
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Piezoelectricity is the ability of certain materials to generate an electric field

in response to applied mechanical stress or to generate a mechanical stress

in response to applied electric field. In the direct mode, microscopic electric

dipoles can form within these materials, and their orientation can change

depending on the external force applied to them, resulting in the generation

of an electric charge [3]. Accurately measuring this electric charge from the

integrated piezoelectric sensors could enable continuous and precise monitoring

of the composite en- capsulating the piezoelectric sensor. It is a device that

converts mechanical stress into electrical charge or voltage (Fig. 2.8), allowing

the measurement of pressure, acceleration, or force.

Figure 2.8: Piezolectric sensor 9

In according to [8] Piezosensor can be considered a capacitor since it produces

a concentration of positive and negative charges on the opposite electrodes when

undergoes to a mechanical load. The amount of charge that a capacitor can

store is defined as capacitance and depends by the geometrical property of

the capacitor. So the Capacitance is ‘stress-dependent’ and can be used to

generate sensing capabilities ( For more details, refer to Section 3.2.1).

This thesis will therefore investigate the relationship between mechanical

stresses and the electrical response of the piezoelectric material embedded in

9Figure was taken from the slides [8].
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the composite through virtual manufacturing techniques.

2.3.1 Piezoelectrics Materials

In according to [8], this section presents the most commonly used piezoelectric

materials in electromechanical experiments of this type. In particular, PZT

(Lead Zirconate Titanate) of 4 different types: PZT-4, PZT-5H, PZT-5A and

PZT-8. They are ceramics piezoelectrics materials with high piezoelectric

constants and mechanical stiffness, widely used in sensors due to its high

sensitivity. However, they are brittle and their minimum thickness can locally

affect the mechanical properties of the structure.

Property PZT-4 PZT-5H PZT-5A PZT-8 Unit
E1 81.3 60.3 60.6 93.63 GPa
E2 81.3 60.3 60.6 93.63 GPa
E3 64.5 47.8 53.2 74.23 GPa
ν12 0.329 0.287 0.352 0.281 —
ν13 0.432 0.516 0.438 0.433 —
ν23 0.432 0.516 0.438 0.433 —
G12 25.6 23.5 22.5 29.32 GPa
G13 25.6 23.0 21.0 29.32 GPa
G23 30.6 23.0 21.0 29.32 GPa
e15 12.72 17.04 12.26 7.08 C/m2

e24 12.72 17.04 12.26 7.08 C/m2

e31 -5.2 -6.55 -5.3 -0.557 C/m2

e32 -5.2 -6.55 -5.3 -0.557 C/m2

e33 15.88 22.97 15.8 8.659 C/m2

χ11 1.31e-8 1.50e-8 1.53e-8 1.14e-8 F/m
χ22 1.31e-8 1.50e-8 1.53e-8 1.14e-8 F/m
χ33 1.15e-8 1.33e-8 1.50e-8 8.85e-9 F/m

Table 2.1: Mechanical, piezoelectric, and dielectric properties of PZT-4, PZT-5H,
PZT-5A, and PZT-8. 10
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2.3.2 Temperature’s effect

Temperature is described as a key factor in the curing processes of both ther-

mosetting and thermoplastic resins. However, when dealing with composites

that incorporate piezoelectric sensors, the curing temperature is limited by the

Curie Temperature. If the temperature exceeds the Curie temperature, Tc , the

permanent polarization of the piezoelectric material is lost. Nevertheless, the

piezoelectric material may undergo depolarization even at temperatures below

Tc, due to electrical or mechanical stresses.

Due to the impurities present in these materials or their different compositions,

it is difficult to estimate precise Curie temperatures for each of them. In fact,

the literature has noted that slightly different Curie temperature values exist

from case to case. For the analyses conducted in this work, however, it will be

important to work with sensors with the highest possible Curie temperature

so that the temperature does not affect a key parameter used to calculate

capacitance: Absolute Permittivity χ .

Absolute permittivity is easily calculated starting from the dielectric constant

K with the following formula:

ε = K · ε0 = K · 8.854 · 10−12F/m (2.3)

After having found the trend of the dielectric constant as a function of tem-

perature from the document [12], we then calculated the absolute permittivity

as a function of temperature for the three materials: PZT-4, PZT-5H, and

10The mechanical and piezoelectric characteristics of PZT-4, PZT-5H and PZT-5A were
obtained from paper [9]. The reported values of PZT-8 were estimated by applying the analytical
expressions provided in Zhang et al. [10]. The dieletric properties of PZT-4, PZT-5H, PZT-5A
and PZT-8 were estimated by [11]. Since the values are not directly reported by the authors,
but rather extrapolated through independent calculation, their numerical accuracy cannot be
fully guaranteed.
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PZT-5A. The absolute permittivity values of PZT-8 were estimated by applying

the analytical expressions provided in Zhang et al. [10].

Figure 2.9: Permittivity of PZT-4, PZT-5H, PZT-5A and PZT-8

It is observed that the permittivity of PZT-5H explodes near 180°C, which

is probably the Curie temperature of this type of piezoelectric material.

From a thermal perspective, the best piezoelectric material among the four

considered is probably the PZT-8, which exhibits a fairly stable permittivity

trend as the temperature increases.

The permittivity of the PZT-4 and PZT-5A exhibits a very similar trend as a

function of temperature but it is not stable as the permittivity trend of PZT-8.
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Chapter 3

Carrera Unified

Formulation (CUF)

In this section is introduced the Carrera Unified Formulation (CUF) which

was developed at Politecnico di Torino within the Department of Mechanical

and Aerospace Engineering..

It is a multifunctional and robust technique used in structural engineering to

analyze the behavior of complex structures, such as beams and plates.

With CUF, it is possible to model and solve structural problems of various

kinds with high accuracy and it allows working with 3D, 2D, and 1D models. A

fundamental feature of CUF is that it allows the derivation of the matrices and

vectors involved in structural analysis into Fundamental Nuclei.

The Fundamental Nuclei (FN) are expressed in terms of four indexes

: τ , s, i, and j. This FN is a 3 × 3 array (3 × 1 in the case of a vector) and

its form does not change for 1D, 2D, or 3D problems. If the problem needs to

an Electro-Mechanical Model the fundamental nucleus becomes 4x4. For this
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thesis work, the focus will be on the study of the CUF applied to 1D models. It

will be used MUL2 code developed at POLITO and it will be described in the

next chapter.

3.1 One-Dimensional Model1

Classical 1D models are based on the dependence of their variables on a single

coordinate (typically y), with x and z representing the coordinates of the cross-

section. This is convenient for models with a compact cross-section, but it

becomes less effective for models with a more complex geometry. Some methods

for approximating the cross-section will be analyzed, which will determine their

accuracy.

The displacement field of 1D models is described using the classical FE

approach Ni(y) along the axis and functions ui(x, z) over the cross-section:

u(x, y, z) = Ni(y)ui(x, z) (3.1)

Where:

• Ni(y), used to approximate the displacements along the y-axis. The total

number of elements is NBE, each consisting of NNE number of nodes.

• ui(x, z) is functions of the cross-section coordinates. It can be approximated

by introducing a generic expansion for the cross-section. It can be written

1Much of the content discussed in this section are taken from [13], especially from Chapters
8 and 9, which are dedicated to one-dimensional models employing Taylor and Lagrange
expansions.
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as the sum of the generic functions Fτ (x, z):

ui(x, z) =Fτ (x, z)uτi

=F1(x, z)u1i + F2(x, z)u2i + · · · +

+ Fτ (x, z)uτi + · · · + FM (x, z)uMi

(3.2)

where M is the number of terms in the expansion.

So the displacement field of 1D models (Fig 3.1) is described:

Figure 3.1: 1D Model 2

u(x, y, z) = Ni(y)Fτ (x, z)uτi (3.3)

Fτ (x, z) can be obtained using both Taylor Expansion and Lagrange

Expansion. Both will be analyzed, and then the fundamental nuclei of the

stiffness matrix, obtained from the displacement fields, will be investigated.

2Figure was taken from [13].
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3.1.1 Taylor Expansion (TE)

This section discusses classical models like Euler–Bernoulli beam Theory and

Timoshenko beam Theory and introduces 1D elements based on Taylor-like

expansions of displacement variables.

Classical Theory

The Euler–Bernoulli beam Theory (Fig.3.2), was derived from the following

a priori assumptions:

Figure 3.2: Euler-Bernoulli beam model 3

1. The cross-section is rigid on its plane.
ϵxx = ux,x = 0

ϵzz = uz,z = 0

γxz = ux,z + uz,x = 0

⇒


ux(x, y, z) = ux1(y)

uz(x, y, z) = uz1(y)
(3.4)

2. The cross-section rotates around a neutral surface, remaining plane.

uy(x, y, z) = uy1(y) + ϕz(y)x + ϕx(y)z (3.5)

3Figure was taken from [13].
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where ϕz and ϕx are the rotation angles along the z- and the x-axis (negative

direction), respectively.

3. The cross-section remains perpendicular to the neutral surface during

deformation.
γxy = uy,x + ux,y = ϕz + ux1,y = 0

γyz = uy,z + uz,y = ϕx + uz1,y = 0
⇒


ϕz = −ux1,y

ϕx = −uz1,y

(3.6)

The displacement field is given by:

ux = ux1

uy = uy1 − ux1,yx − uz1,yz

uz = uz1

(3.7)

In Timoshenko beam Theory (Fig. 3.3), the cross-section is still rigid

on its plane, it rotates around a neutral surface, remaining plane, but it is no

longer constrained to remain perpendicular to it. So Shear deformations γxy

and γyz are accounted for.

Figure 3.3: Timoshenko beam model 4

4Figure was taken from [13].
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The displacement field of Timoshenko beam Theory is:



ux(x, y, z) = ux1(y)

uy(x, y, z) = uy1(y) + ϕz(y)x + ϕx(y)z

uz(x, y, z) = uz1(y)

(3.8)

Complete Linear Expansion Case

The complete linear expansion model includes a first-order (N = 1) Taylor-like

polynomial to describe the cross-section displacement field

ux = ux1 + xux2 + zux3

uy = uy1 + xuy2 + zuy3

uz = uz1 + xuz2 + zuz3

(3.9)

• The first terms in 1: rigid translations (if the y-direction it is taken into

account only , it would be a rod);

• The second terms in x: linear displacement in x/y/z with respect to x (

contraction, bending and torsion );

• The third terms in z: linear displacement in x/y/z with respect to z

If a Taylor expansion have an order N greater than 1, the formulation can

be written using the terms present in is in Table 3.1.

3.1.2 Lagrange Expansion (LE)

The Lagrange Expansion 1D models represent the second class of 1D models

developed in the framework of the CUF. In an LE model, the Fτ expansion

functions coincide with the Lagrange polynomials. The use of LE as Fτ does not
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N M Fτ

0 1 F1 = 1
1 3 F2 = x, F3 = z
2 6 F4 = x2, F5 = xz, F6 = z2

3 10 F7 = x3, F8 = x2z, F9 = xz2, F10 = z3

... ... ...
N (N+1)(N+2)

2 FN2+N+2
2

= xN , . . . , F (N+1)(N+2)
2

= zN

Table 3.1: Taylor-like polynomials

imply a reformulation of the problem equations and matrices, which is typical

in the CUF environment.

In Fig. 3.4 are shown three type of Lagrange polynomials: L3, L4 and L9:

Figure 3.4: Lagrange Polynomials: L3, L4, L9 5

Lagrange polynomials are usually given in terms of normalized or natural

5Figure was taken from [13].
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coordinates. This choice is not compulsory since LE polynomials can also

be implemented in terms of actual coordinates. However, the normalized

formulation was preferred since it offers many advantages.

Example: L9 Element

L9 polynomials and point coordinates are given by these Equations and Table

3.2:



Fτ = 1
4(α2 + αατ )(β2 + ββτ ), τ = 1, 3, 5, 7

Fτ = 1
2β2

τ (β2 + ββτ )(1 − α2) + 1
2α2

τ (α2 + αατ )(1 − β2), τ = 2, 4, 6, 8

Fτ = (1 − α2)(1 − β2), τ = 9
(3.10)

Point ατ βτ

1 -1 -1
2 0 -1
3 1 -1
4 -1 0
5 0 0
6 1 0
7 -1 1
8 0 1
9 1 1

Table 3.2: Coordinates of the points with ατ and βτ

The L9 displacement field is given by
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

ux = F1ux1 + F2ux2 + F3ux3 + F4ux4 + F5ux5 + F6ux6 + F7ux7 + F8ux8 + F9ux9

uy = F1uy1 + F2uy2 + F3uy3 + F4uy4 + F5uy5 + F6uy6 + F7uy7 + F8uy8 + F9uy9

uz = F1uz1 + F2uz2 + F3uz3 + F4uz4 + F5uz5 + F6uz6 + F7uz7 + F8uz8 + F9uz9

(3.11)

Cross-section Multi-elements and Locally Refined Models

Cross-sections can be discretized by means of multiple LE elements. This is a

fundamental function of LE elements ( this function will be explained in more

detail in the assessment chapter). Multi-elements are generally adopted for

three main purposes:

1. To refine the cross-section displacement field without increasing the poly-

nomial expansion order.

2. To impose the geometrical discontinuities above the cross-section.

3. To refine the structural model locally.

3.1.3 Fundamental Nucleus

Starting from:

u(x, y, z) = Ni(y)Fτ (x, z)uτi (3.12)

it is possible to introduce the virtual variation using the s index instead of τ :

δu(x, y, z) = Nj(y)Fs(x, z)δusj (3.13)

The shape functions Ni and Nj expand the solution from the nodes to the axis.

Expansions Fτ and Fs expand the solution from the nodes to the cross-section

of the bar (Fig.3.5).
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Figure 3.5: Axial approximation (Ni, Nj), cross-section expansion (Fτ , Fs) 6

It is necessary to remember that Strains can be given in vectorial form,

ϵ = bu (3.14)

where b is a differential operator matrix of size 6 × 3 which contains the

geometrical relation between the displacements and strains:

b =



∂
∂x 0 0

0 ∂
∂y 0

0 0 ∂
∂z

∂
∂z 0 ∂

∂x

0 ∂
∂z

∂
∂y

∂
∂y

∂
∂x 0


(3.15)

In this case, ε and σ are vectors that contain all the strain and stress

6Figure was taken from [13].
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components:

ε =



εxx

εyy

εzz

εxz

εyz

εyx


and σ =



σxx

σyy

σzz

σxz

σyz

σyx


(3.16)

The physical relationship between stress and strain components, in terms of

stiffness coefficients, is

σ = C ϵ (3.17)

where C is a 6 × 6 matrix with all the material coefficients. It’s provided an

example of C for an isotropic material:

C =



C11 C12 C12 0 0 0

C21 C11 C12 0 0 0

C21 C21 C11 0 0 0

0 0 0 C44 0 0

0 0 0 0 C44 0

0 0 0 0 0 C44


(3.18)

So the strain, the virtual strain and the stress can be derived using the

differential operator b and the material coefficient matrix C staring from

δu(x, y, z) = Nj(y)Fs(x, z)δusj (3.19)

to:

ϵ(x, y, z) = bNi(y)Fτ (x, z)uτi (3.20)
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δϵ(x, y, z) = bNj(y)Fs(x, z)δusj (3.21)

σ(x, y, z) = CbNi(y)Fτ (x, z)uτi (3.22)

The governing equations are derived by applying the Principle of Virtual

Displacements (PVD). For a static problem:

δLint = δLext (14)

where Lint represents the strain energy due to the deformation, and Lext

stands for the work done by the external loads on the virtual displacement. δ

indicates the virtual variation. The internal work can be expressed as:

δLint =
Ú

V
δϵT σ dV

= δuT
sj

Ú
V

è
Fs(x, z)Nj(y)bT CbNi(y)Fτ (x, z)

é
dV uτi

(3.23)

If all the components of the displacement are considered

bT Cb = [3 × 6][6 × 6][6 × 3] = 3 × 3

and the Fundamental nucleus becomes a 3 × 3 matrix :

kτsij =
Ú

V
Fs(x, z)Nj(y)bT CbNi(y)Fτ (x, z) dV (3.24)

This FN does not change for 1D, 2D, or 3D problems. The use of the

CUF makes the assembly of the matrices a trivial operation that can be easily

implemented in computer code. The assembly of the matrix consists of four

loops on indices i, j, τ , and s, and an FN is calculated for each combination of

these indices. The FN is the core, and the loops on τ and s build the matrix

30



Carrera Unified Formulation (CUF)

for a given pair of i and j(Fig. 3.6 [a]). The loops on i and j give the matrix

of the elements( Fig. 3.6 [b]), and the loop on the elements gives the global

stiffness matrix (Fig. 3.6 [c]). It shows how it is possible to build a matrix of

the node, of the element, and, finally, of the global stiffness matrix by exploiting

the nucleus.

[a] [b]

[c]

Figure 3.6: [a] Nodal stiffness matrix, [b] Element stiffness matrix, [c] Global
stiffness matrix7

7Figure was taken from [13].
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FE governing equations

Once the fundamental nuclei (3x3 matrices) are calculated and the global

stiffness matrix is assembled, it is possible to derive the governing equations

through the Principle of Virtual Displacements (PVD).

The internal work can be expressed as:

δLint = δuT
sjkτsijuτi (3.25)

The loading vector in the case of a generic concentrated load P is

P =


Px

Py

Pz


(3.26)

and the work due to P is

δLext = P δuT (3.27)

Thus, the governing equation can be written as:

δLext = δLint (3.28)

δuT
sjkτsijuτi = P δuT (3.29)

DOFs and Comparing TE with LE

The Total number of DOFs of the structural model will be given by:

DOFs = (3 × M) × [(NNE − 1) × NBE + 1] (3.30)

where:

32



Carrera Unified Formulation (CUF)

• (3 × M): number of DOFs per node.

M depends on the choice made to approximate the Fτ :

– If TE (Tensor Expansion) has been chosen:

∗ It depends on the order up to which the polynomial has been

expanded.

– If LE (Lagrange Elements) has been chosen:

∗ It depends on which element has been used on the section (L3, L4,

L9, . . . ).

∗ It also depends on how many subsections the section has been

divided into.

• NNE: number of nodes per element (along the length);

• NBE: total number of beam elements along the length (y-axis).
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3.2 Electro-Mechanical Model8

Considering the electric potential ϕ as a primary variable in a coupled piezo-

electric model, a generalised 4 × 1 displacement vector q can be adopted:

q =



ux

uy

uz

ϕ


(3.31)

The 3 × 1 electric field vector E can be derived as:

E =


Ex

Ey

Ez

 =


∂

∂x

∂
∂y

∂
∂z

ϕ (3.32)

The generalized 9 × 1 strain vector ε̄ can be written as:

ε̄ =



εxx

εyy

εzz

εxz

εyz

εxy

Ex

Ey

Ez



= D̄q (3.33)

where the general matrix of the differential operator D̄ is a 9 × 4 matrix

given by:

8Much of the content discussed in this section are taken from [9]
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D̄ =



∂
∂x 0 0 0

0 ∂
∂y 0 0

0 0 ∂
∂z 0

∂
∂z 0 ∂

∂x 0

0 ∂
∂z

∂
∂y 0

∂
∂y

∂
∂x 0 0

0 0 0 − ∂
∂x

0 0 0 − ∂
∂y

0 0 0 − ∂
∂z



(3.34)

In the case of the principle of virtual displacement (PVD), the electrome-

chanical constitutive equations (stress–charge form or e-form) can be expressed

by:

σ = Cε − eT E

De = eε + χSE
(3.35)

where De is the 3 × 1 electric displacement vector

De =


Dx

Dy

Dz

 , σ is the 6 × 1 mechanical stress vector,

C is the 6 × 6 stiffness matrix of mechanical material coefficients, and ε is the

6 × 1 strain vector. The superscripts E and S indicate evaluation at constant

electric field and strain, respectively.

The 3 × 3 dielectric permittivity matrix evaluated at constant stress, χS, is

given by:
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χS =


χS

11 χS
12 0

χS
21 χS

22 0

0 0 χS
33

 (3.36)

The piezoelectric stiffness coefficient matrix e is a 3 × 6 matrix given by:

e =


e11 e12 e13 e14 e15 e16

e21 e22 e23 e24 e25 e26

e31 e32 e33 e34 e35 e36

 (3.37)

The generalized stress vector can be definited as:



σxx

σyy

σzz

σxz

σyz

σxy

Dx

Dy

Dz



=



CE
11 CE

12 CE
13 0 0 CE

16 −e11 −e21 −e31

CE
21 CE

22 CE
23 0 0 CE

26 −e12 −e22 −e32

CE
31 CE

32 CE
33 0 0 CE

36 −e13 −e23 −e33

0 0 0 CE
44 CE

45 0 −e14 −e24 −e34

0 0 0 CE
54 CE

55 0 −e15 −e25 −e35

CE
61 CE

62 CE
63 0 0 CE

66 −e16 −e26 −e36

e11 e12 e13 e14 e15 e16 χS
11 χS

12 0

e21 e22 e23 e24 e25 e26 χS
21 χS

22 0

e31 e32 e33 e34 e35 e36 0 0 χS
33





εxx

εyy

εzz

εxz

εyz

εxy

Ex

Ey

Ez


(3.38)

and in compact form as:

σ̄ = H̃ ε̄ (3.39)

36



Carrera Unified Formulation (CUF)

where H̃ is a generalized material property matrix that couples the mechanical

and electrical fields.

If the piezoelectric components are poled in the third material axis, the

dielectric permittivity matrix χS simplifies to:

χS =


χS

11 0 0

0 χS
22 0

0 0 χS
33

 (3.40)

and the piezoelectric stiffness coefficient matrix e reduces to the following

form:

e =


0 0 0 e15 0 0

0 0 0 0 e24 0

e31 e32 e33 0 0 0

 (3.41)

The displacement field of 1D models in the mechanical case was described as:

u(x, y, z) = Ni(y)Fτ (x, z)uτi (3.42)

Extending this equation into the electromechanical case one can obtain :

q(x, y, z) = Ni(y)Fτ (x, z)qτi(y) (3.43)

3.2.1 Capacitance Variation

The electromechanical constitutive equations given by Equation 3.35 could be

manipolated ([9]) and it can be obtain:

ε = sE σ + dT E

De = d σ + χt E
(3.44)
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where:

• σ, ε are the 6 × 1 stress and strain vectors

• sE =
1
CE

2−1
is the 6 × 6 compliance matrix (at constant electric field)

• d = e
1
CE

2−1
is the 3 × 6 electromechanical coupling matrix

• χt = e
1
CE

2−1
eT + χS is the 3 × 3 permittivity matrix at constant stress

• E is the 3 × 1 electric field vector

• De is the 3 × 1 electric displacement vector

It is important to emphasize that the coupling coefficient "d" (or "e" in the

previous notation) remains nonzero as long as the Curie temperature is not

exceeded. Once this temperature is surpassed, the piezoelectric effect is lost.

In a simplified case where d15 = d24 = 0, and where:

• The piezoelectric material is poled along the 3-direction

• The 1–2 plane is coated with electrodes (normal to the 3-axis)

• The electric field is applied only in the thickness (3) direction

• The material has symmetry about the 3-axis

The expanded form of the piezoelectric constitutive equations under the given

assumptions becomes:
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

ε1

ε2

ε3

ε4

ε5

ε6

D3



=



sE
11 sE

12 sE
13 0 0 0 d31

sE
12 sE

11 sE
13 0 0 0 d31

sE
13 sE

13 sE
33 0 0 0 d33

0 0 0 sE
44 0 0 0

0 0 0 0 sE
55 0 0

0 0 0 0 0 sE
66 0

d31 d31 d33 0 0 0 χt
33





σ1

σ2

σ3

σ4

σ5

σ6

E3



(3.45)

where:

• sE
ij are the elements of the mechanical compliance matrix (at constant

electric field),

• dij are the electromechanical coupling coefficients,

• D3 and E3 are the electric displacement and electric field components in

the 3-direction,

• χt
33 is the permittivity at constant mechanical stress in the 3-direction.

In the Cartesian coordinate system, the blocked (or embedded) capacitance

is described as:

C = Q

V
=

HA

j
A

Dz dx dy

V
(3.46)

where:

• Q is the total free charge,

• V is the applied potential difference,

• Dz is the electric displacement in the thickness (3) direction,
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• HA is a constant depending on electrode configuration or integration area

(optional).

substituting the value of the electrical displacement from Equation (3.45) in

Equation 5.8, we get:

C =
s s

A (d31σ1 + d31σ2 + d33σ3) +
1
χt

33 · V
t

2
dx dy

V
(3.47)

where t is the thickness of the piezoelectric layer,

In this expression:

• The first part of the integrand, involving σ1, σ2, σ3, represents the capaci-

tance variation due to mechanical loading.

• The second term in the integrand, χt
33· V

t , corresponds to the free capacitance

of a parallel plate piezoelectric capacitor.
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Chapter 4

Assessment

In the following chapter, After a brief description of the numerical model

MUL 2 developed at Polito, several assessments will be analyzed to verify the

effectiveness and characteristics of the numerical code MUL 2 Polito. This

chapter will allow for the comparison of the different models proposed by this

code for FEM simulation and provide insight into its advantages and limitations.

In the First assessment, a comparison will be made between the analyt-

ical and numerical calculations of the displacement w of a doubly clamped

beam loaded at mid-span. Furthermore, the displacement w will be obtained

considering both the Lagrange-Expansion model and the Taylor-Expansion

model.

In the Second assessment, the problem of an eight-layered cantilever

composite beam from paper [14] will be replicated. This problem involves a

multilayer beam loaded at the free end, considering both the LE and TE models,

and comparing the results. In this case, not only will the displacements w be

compared, but also some stresses at specific points.

In the Third assessment, a multi-physics problem from paper [1] will be
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reproduced. In this case, a piezoelectric patch will be used as an actuator,

bonded to a clamped aluminum beam, in order to replicate the results presented

in the paper and to correctly model the problem. Subsequently, the beam will

be loaded at its free end, and the piezoelectric patch will act as a sensor. The

results will be obtained in terms of voltage V and electric field Ez, using both

Q9 and Q4 elements to observe the differences between the two formulations.

4.1 MUL 2 Polito

MUL2 is a software developed by the MUL2 research group at Politecnico di

Torino.

Figure 4.1: Codice MUL 2

The software is composed of several input files that, before each analysis,

will be modified according to the characteristics of the proposed problems.

Afterwards, once the code is launched through the command prompt, it will be

possible to view the results from the output files using either a text editor or a

graphical program (such as Paraview).

The input files are illustrated below:

• NODES: contains the geometric coordinates of the nodes used in the

structural model, defined in the global reference system, and defines the
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type of implemented expansion (TE: Taylor Expansion, LE: Lagrange

Expansion, etc.), and, if necessary, the corresponding expansion order;

• CONNECTIVITY: defines the type and number of finite elements used

to construct the model;

• BC: allows the definition of boundary conditions related to a point or a

plane (constraints or loads);

• EXP_CONN: contains the type of element used to describe the cross-

section;

• EXP_MESH_NN: allows the definition of the geometric coordinates of

the nodes in a certain local reference system of the cross-section;

• VERSORS: defines the unit vectors used to characterize the directions of

the axes of the local reference system;

• MATERIAL: describes the material used and its related properties. It is

possible to use isotropic and orthotropic materials;

• LAMINATION: allows the definition of the characteristics of the various

material layers;

• ANALYSIS: allows the selection of the type of analysis to be performed

(101: static analysis);

• POSTPROCESSING: returns the requested outputs.

The software will first be used for static analyses of very simple structures in

the two proposed assessments. Later, it will be modified to allow multi-field

static analyses (with integrated piezoelectric sensors), in which displacement

fields and electric fields interact.
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4.2 Assessment 1

In the first assessment, a simple problem of a doubly clamped beam subjected to

a central load will be simulated. The displacement of the beam will be evaluated

both analytically and numerically. The analytical solution will be derived using

classical beam theory, while the numerical analysis will be performed using the

MUL 2 FEM code through static analysis. Once both results are obtained, they

will be compared in order to assess the accuracy and reliability of the numerical

model. The material of the beam shown above is isotropic, and in this case,

Figure 4.2: Modello Assessment 1

aluminum is chosen and its properties are shown in Tab.4.1 .

It is loaded at its midpoint on the upper part by a force F = −1000 N and is

doubly supported at the ends.

As the first step, the maximum displacement is calculated analytically (non

trovo la fonte attendibile ma solo un sito online). Since the load is applied

at the midpoint, the maximum displacement will also occur at the midpoint.

Considering the section of the beam, the moment of inertia is calculated first,
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Properties of Aluminum Value
Young’s Modulus (E) 73000 MPa
Poisson’s Ratio (ν) 0.3
Density (ρ) 2700.0 kg/m3

Table 4.1: Properties of Aluminum

followed by the maximum deflection that can be derived using the (4.2), derived

from beam theory:

I = bh3

12 = (100mm)(20mm3)
12 = 66666.66mm4 (4.1)

δmax = FL3

192EI
= (−1000N)(200mm)3

192(73000N/mm2)(66666.66mm4) = 8.56µm (4.2)

Once the analytical solution is calculated, the same solution will be computed

numerically using the Mul 2 code to perform a comparison and verify its accuracy.

4.2.1 Modeling

Several results were obtained by performing a static analysis using both Taylor

Expansion models and Lagrange Expansion models along the Length and

along the Width of the beam, by carefully examining the displacements of the

points placed at the center of the beam along its length and along its width

and interpolating the corresponding results of uz.

In the case of the Lagrange Expansion models, numerical simulations were

then carried out using sections with 1, 2, or 3 sub-sections, where the original

section was divided vertically. This three section of LE models are shown in

the following and every subsection uses an element L9 well described in 3.1.2:
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Figure 4.3: LE with 1,2 or 3 Subsections (With L9 elements)
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4.2.2 Displacement uz along the Length of the Beam

In this section, the difference in displacements uz at certain points along the

length of the beam will be observed, and some considerations will be made. It

has been decided to take as reference the vertical section located at the center

of the beam. The uz displacements at different points of this section, located at

z = 0, x = 0, and variable y, will be plotted and interpolated.

Figure 4.4: Displacement w [µm]

The main differences observed are around the midpoint of the beam, where

the maximum displacement occurs.

Therefore, the following is provided a zoom of the differences in the displacement

at the midpoint in Fig.4.8. The numerical results of the maximum displacement

for each type of model are provided in Tab.4.2
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Figure 4.5: Zoom of Displacement w [µm]

Model Maximum Deflection [µm] DOFs
Analytical Solution −8.561 −
TE -1 −8.562 279
TE 0 −9.452 279
TE 1 −9.452 279
TE 2 −8.757 558
TE 3 −8.926 930
TE 4 −9.353 1395
LE (1 Subsection) −8.759 837
LE (2 Subsection) −9.432 1395
LE (3 Subsection) −9.338 1953

Table 4.2: Maximum Deflection for each type of model

Several observations can be made:

• The result of TE -1, which corresponds to the Euler-Bernoulli beam the-

ory, is identical to the result obtained analytically from the beam theory

previously.
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• The result of TE 0 is equal to TE 1 because, in TE 0, which corresponds

to Timoshenko theory, it is approximated as in formula (4.3), while in TE

1, it is approximated as in formula (4.4). Since it is a 1D model, this does

not lead to any substantial difference.



ux = ux1(y)

uy = uy1(y) + xuy2 + zuy3

uz = uz1(y)

(4.3)



ux = ux1 + xux2 + zux3

uy = uy1 + xuy2 + zuy3

uz = uz1 + xuz2 + zuz3

(4.4)

• Additionally, it is noted that as the order of TE increases, it converges

towards the same result obtained with LE with 3 subsections, the most

precise of the three LEs since it is the one in which more DOFs have been

used.

In Fig.4.6 and in Fig.4.7 the displacement is shown along the beam both

for the case with TE of order 4 and for the case with LE with 3 subsec-

tions. It can be observed that there is a substantial difference in how the

displacements are displayed due to the different models used.
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Figure 4.6: Displacement (TE 4)

Figure 4.7: Displacement (LE with 3 Subsections)

4.2.3 Displacement uz along the Width of the Beam

In the same way as done in the previous section, the trend of displacements uz

along the median line of a section can be observed. It has been decided to take

as reference the vertical section located at the center of the beam, which will

experience the largest displacements. The uz displacements at different points

of this section, located at z = 0, y = L/2, and variable x, will be plotted and

interpolated.

50



Assessment

Figure 4.8: Displacement w along the width[m]

4.2.4 Considerations

It is therefore possible to observe from the Fig. 4.8 substantial differences

between the different models used to model the beam. Many more differences

are observed compared to what was previously observed in the section on the

displacements uz along the length of the beam.

Several observations can be made:

• First of all, TE-1, TE 0, and TE 1 are all linear displacement models,

unable to capture how the section actually deforms, but rather give an

overall idea of the deformation. In this case as well, TE 1 obviously

coincides with Timoshenko, and TE 0 = TE 1, since the model considered

is one-dimensional (1D) as seen previously.

• LE 1 coincides with TE 2, thus demonstrating that the two are equivalent

under these modeling assumptions.
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It can be observed that TE 2 uses the following 6 terms in the approxima-

tion:

1

x + z

x2 + 2xz + z2

LE 1, on the other hand has the result that is very similar to that of TE 2.

But it uses the following 9 terms:

1

x + z

x2 + 2xz + z2

3x2z + 3xz2

6x2z2

• LE 2 and LE 3 converge towards the correct solution due to their high

number of nodes. LE 3 is more accurate than LE 2, at the cost of a

significantly higher number of nodes (LE 3: 1953 DOFs, LE 2: 1395 DOFs).

• It can also be observed that increasing the order of the Taylor expansion

(from TE 2 to TE 3) increases the central displacement of the section.

However, only with TE 4 does the result become very close to that of LE 3.

• With TE 4, an anomalous behavior is noticed at the ends of the section

when compared to the more accurate behavior observed with LE 3. It is

therefore hypothesized that a fourth-order Taylor expansion can accurately

approximate the displacement at the center, but not at the ends of the

section.
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4.3 Assessment 2

In the second assessment, the problem of a multilayer beam is reproduced from

the paper [14]. The goal will be to reproduce the same results presented in the

paper in order to understand how the Mul2 Polito code works. Some further

considerations will then be discussed.

The beam will be fixed at one end and loaded at the free end with a force

of 0.2 N at the center, as shown in the figure: The beam consists of 8 layers,

Figure 4.9: Model Assessment 2 1

and the materials used are 2 orthotropic materials with the properties listed in

Tab.4.3.

EL [GPa] ET [GPa] νLT GLT

Mat-1 30 1 0.25 0.5
Mat-2 5 1 0.25 0.5

Table 4.3: Properties of the Materials

1Figure was taken from [14].
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4.3.1 Modeling

In Fig.4.10 is shown the material composition of each layer of the multilayer

beam.

Figure 4.10: Materials (Blue=1, Red=2)

To compare the results with the paper, it is decided to evaluate the results

at points A, B, C, and D, the coordinates of which are shown in Tab.4.4.

Point Coordinates
A [0,0, h/2]
B [0, b/2, h/2]
C [0, b/2,0]
D [0, b,0]

Table 4.4: Points A,B,C and D
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The numerical results of each model in each Point are reported in Tab.4.5. It

can be observed that the results are almost identical to those presented in paper

[14]. The results obtained using the Lagrange expansion method, as reported in

the paper, are also included in the table to allow for a better comparison.

Model A: σyy [MPa] B: σyy × 103 [MPa] C: σyz × 102 [MPa] D: w × 10−2 [mm] DOFs
LE 1.708 730.168 −2.792 −3.054 4743
LE - Paper [14] 1.689 729.600 −2.794 −3.049 4743
TE 2 1.461 730.139 −2.006 −2.991 588
TE 3 1.610 730.169 −2.821 −3.035 930
TE 4 1.610 730.156 −2.821 −3.039 1395
TE 5 1.691 730.173 −2.750 −3.040 1953

Table 4.5: Stress evaluation at Points A, B, C, displacement w at point D and
DOFs

4.3.2 Analysis through the thickness of a multilayer beam

For an analysis through the thickness of a multilayer beam is considered the

section at the free estremities of the beam (Fig. 4.11).

Figure 4.11: Section across z-axis

The displacement w along the z-axis is shown in Fig. 4.12. It can be observed

that the displacement w obtained using the LE model is piecewise continuous,

while the displacement w obtained with the TE models is continuous. As the

55



Assessment

order of the Taylor expansion increases, the approximation of the displacement w

improves. It is noticeable that with a third-order expansion, the result becomes

quite close to the expected behavior, although it does not fully capture the

detailed behavior, especially in the central laminae where the displacement w is

more significant. On the contrary, the displacements u and v exhibit a linear

trend across all the models considered (Fig. 4.13 and Fig. ??).

Figure 4.12: Displacement w

Figure 4.13: Displacements v and u

The deformations ϵyy, ϵzz, ϵyz and the stress σyy, σzz, σyz are therefore shown

according to the respective models used:
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Figure 4.14: Strain εyy, TE5

Figure 4.15: Strain εzz, TE5

Figure 4.16: Strain εyz, TE5
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Figure 4.17: Stress σyy, TE5

Figure 4.18: Stress σzz, TE5

Figure 4.19: Stress σyz, TE5
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4.3.3 Considerations

It can be observed that the TE model approximates the entire section more

uniformly compared to the LE model. On the other hand, the LE model allows

for a more precise representation of the deformations and stresses.

The linear behavior of the normal strains εyy and εzz, combined with the

parabolic shape of the shear strain εyz, confirms that the beam undergoes

classical bending with shear deformation effects. This is consistent with higher-

order theories, where transverse shear strains are not neglected.

The piecewise continuity of the stress components σyy, σzz, and σyz reflects

the presence of material interfaces in the multilayered beam. Although the

stresses are continuous within each individual layer, they exhibit jumps in slope

at the interfaces due to differences in mechanical properties between materials 1

and 2.

Overall, the mechanical response is consistent with the expected behavior of

a composite laminated beam subjected to bending.
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4.4 Assessment 3

In the third assessment, a multi-physics problem is introduced. The problem,

studied in paper [1], is illustrated in Figure 4.20. It involves a clamped aluminum

beam, to which a patch of piezoelectric material PZT-4 is applied near the

clamped upper end.

Figure 4.20: Side View

Figure 4.21: Top View

The properties of the piezoelectric material are listed in Tab.2.1.

Initially, the piezoelectric patch will act as an actuator. To this end, an

electric potential of 1V is applied to its top surface and 0V to the bottom. Once

the results are compared with those reported in the paper and the model is

verified to be correctly implemented, the patch will be used as a sensor instead

of an actuator.

In this second configuration, the aluminum beam will be loaded at its free

end with an external force, and the resulting variation in voltage V and electric

field Ez within the patch will be measured. Finally, a comparison will be made
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between the results obtained using Q9 and Q4 elements in the section.

4.4.1 Actuator

A finer mesh of B4 elements was chosen (as in paper [1]) in the region of the

piezoelectric patch and in the area immediately adjacent to it, up to 2 cm from

the clamped end. The remaining 8 cm of the beam were modeled with a lower

density of B4 elements. For the cross-section, Q9 elements were used—one for

the aluminum beam section and one for the piezoelectric patch section.

In this assessment case, the piezo-patch acts as an actuator, and an electrical

potential of 1V is defined on its top surface and 0V on the bottom. This

configuration is shown in Figure 4.22:

Figure 4.22: Voltage [V]

The potential difference applied to the piezoelectric patch generates an

electric field.

This causes the patch to deform, and consequently, since the patch is bonded
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Figure 4.23: Ez

to the beam, the beam will deform as well (Fig. 4.24).

Figure 4.24: Displacement w[m]

Tab. 4.6 shows a comparison between the results obtained in this work and

those reported in Paper [1]. The small differences observed can be attributed

to the use of a mesh with approximately 1000 fewer degrees of freedom (DOFs),

resulting in a significantly simplified model. The model used in Paper [1]

employs 2LE9 elements in both the piezoelectric and mechanical cross-sections,

with each consisting of 2 × 1 (x × z) sub-domains.

Figure 4.25 also show the trends of the displacement w and the stress

component σyy along the y-axis of the beam. It can be observed that they follow
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Mesh DOFs −uz[10−8m] −uz[10−8m] −σyy[KPa] −σyz[KPa]
(0, b/2,0) (0, b,0) (0, c/2, −h/2) (a/2, c/2,0)

Paper 2250 2.482 5.192 5.878 0.5149
Results 1350 2.5 5.2 4.8 0.45

Table 4.6: Comparison with Results from the Paper [1]

the same trend as the results reported in [1].

Figure 4.25: Displacement w(0,y,0) and σyy (0,y,-h/2)
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4.4.2 Sensor - Model with elements Q9

In the sensor case, the exact same mesh as in the actuator case was used.

In this case, however, the aluminum beam was modeled as a piezoelectric

material with high electrical conductivity, so that it effectively acts as an

electrode on the bottom surface of the piezoelectric patch. Moreover, the

electric potential on the top surface of the piezoelectric patch was set to zero,

ensuring a constant voltage across the thickness and thus simulating the presence

of an electrode on the top surface as well.

As a first step, a force of 20N is applied at the center of the free end, and

the resulting displacements are observed in Fig. 4.26

Figure 4.26: Displacement w

Due to the piezoelectric effect, a mechanical stress along the y-axis generates

an electric field along the z-axis (i.e., through the thickness of the patch) via the

piezoelectric coefficient d32. The direction of the resulting electric field depends

on whether the material is under tension or compression, as well as on the

polarization direction of the piezoelectric material.
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Figure 4.27: Ez

The electric field Ez, when integrated across the patch thickness, generates a

potential difference (Fig. 4.28) between the two electrodes ( the top and bottom

surfaces of the patch):

Figure 4.28: Voltage V

By considering only the piezoelectric patch (Fig. 4.29) , it is possible to

analyze the relationship between the electric field and the resulting voltage.

Figure 4.29: Patch Piezoelettrica
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Figure 4.30: Ez

Figure 4.31: Voltage V

For the graphs shown above, the central axis of the piezoelectric patch along

the thickness direction (along z) was taken as the reference point. Indeed, it

can be observed that the behavior is not uniform across the entire width of the

plate, making the choice of the reference point for the measurements of Ez and

voltage crucial.

In Fig. 4.30, it can be observed how the Q9 elements on the section allow us

to visualize a linear electric field that decreases from 0.001 mm (contact point

between the piezoelectric patch) to 0.002 mm (thickness of the piezoelectric

patch).

Considering a one-dimensional electric field along the thickness direction of
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the piezoelectric patch (the z-axis), the following relation holds:

E(z) = −dV

dz

If the electric field E(z) varies linearly along the thickness, it can be expressed

as:

E(z) = az + b

where a and b are constants determined by boundary conditions. Integrating

this expression, we obtain the Voltage V (z):

V (z) = −
Ú

E(z) dz = −
Ú

(az + b) dz = −a

2z2 − bz + C

It follows that, if the electric field is linear through the thickness, the electric

potential assumes a quadratic profile, as can indeed be observed in Fig. 4.31.
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Sensor - Model with elements Q4

The same problem was modeled using Q4 elements along the cross-section (Fig.

5.7), instead of the previously used Q9 elements. This was done in order to

observe the differences between linear elements (Q4) and quadratic elements

(Q9), and to assess whether both types of elements are capable of accurately

representing a quadratic field such as the electric potential V . In this case,

Figure 4.32: Q4 Element

the force was still applied at the free end of the beam, but not at the center

of the cross-section, as Q4 elements do not allow for this positioning directly.

As a result, the displacement ( Fig. 4.33) differs from the previous case (with

element Q9), which is expected. However, this discrepancy is not of interest

in the present analysis, as the objective is solely to compare the qualitative

behavior of the electric field Ez and the electric potential V when using Q4

elements.

Figure 4.33: Displacement w (with element Q4)
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Figure 4.34: Ez

Figure 4.35: Voltage V

It can be observed that the Q4 elements, which are linear-type elements, are

not able to capture the quadratic behavior of the electric potential, which is

instead interpreted by these elements as linear. The electric field, on the other

hand, which is expected to be linear, is captured as constant at all by these

elements.

For this reason, in piezoelectric analyses, it is necessary to use Q9 elements.
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Capacitance

To study the composite manufacturing process using integrated piezoelectric

sensors, a variable that is easily calculable is required. The capacitance, de-

scribed in Section 3.2.1, is chosen as a useful variable for this purpose. We

will therefore attempt to observe the capacitance trend as a function of the

composite’s elastic modulus.

This would provide more precise information on the composite’s state during

the manufacturing process, which, as we have previously seen, can lead to

numerous defects.

5.1 Capacitance of a free sensor

Before studying composite manufacturing, it is necessary to calculate capacitance

in a much simpler case. Suppose we have a free-standing sensor subjected to a

potential difference of 100 V. Its capacitance will be calculated both analytically

and by FEM to ensure the method is correct.

As seen previously, capacitance is calculated with the following formula:
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C = Q

V
=

j
A

Dz dx dy

V
(5.1)

where the eletrical displacement D is:

Dz = (d31σ1 + d31σ2 + d33σ3) +
A

χt
33 · V

t

B
(5.2)

The d31, d33 coefficients are the electromechanical coupling coefficients and

were obtained from d = e
1
CE

2−1
that is the 3 × 6 electromechanical coupling

matrix

In the case of a free sensor, there will be no stresses, so the formula of

Capacitance is reduced to:

C =
Ú Ú

A

3
χt

33 · 1
t

4
dx dy (5.3)

Let’s assume we have a square sensor with dimensions of 1 cm on each side

and a height of 2 mm, made of PZT-4 material (the same material used in the

previous evaluations). We subject this sensor to a potential difference, so we

set 100 V at the bottom and 0 V at the top. The capacitance calculation is as

follows:

C =
3

χt
33 · 1

t

4
· Area = 1.15 · 10−8F/m

0.002m
· (0.01m)2 = 5.75 · 10−10F (5.4)

Once we have analytically calculated the capacitance we recreate this problem

with a FEM model and obtain the capacitance directly from it:
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Figure 5.1: Free sensor subjected to a potential difference

Once we have obtained the electric displacement D (which in the case of a

free sensor depends only on the electric field along z), we integrate it into the

surface at the top of the sensor directly via the graphic visualization program

and we obtain that the capacitance coincides with that calculated analytically.

C = 5.75 · 10−10F (5.5)
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5.2 Isotropic plate with integrated piezoelectric

sensor

In the following section we will model a 5 x 5 x 2 cm isotropic plate with the

piezoelectric sensor described in the previous section integrated in the center as

shown in the figures below:

Figure 5.2: Isotropic plate with embedded piezoeletric system - Plane xy

Along the z-axis the sensor will be positioned between 1 cm and 1.2 cm:

Figure 5.3: Isotropic plate with embedded piezoeletric system - Plane xz

As regards the mesh it was decided to use 5 B4 elements along the y-axis

and 9 Q9 elements across the section.
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The material used in the case of the sensor is the same as previously used:

PZT-4 (refer to 2.1).

The properties of the isotropic plate are in Tab. (5.1) and the elastic modulus

E was varied from 0.1 GPa to 320 GPa.

Properties of Isotropic Material Value
Young’s Modulus (E) 0.1 − 320 GPa
Poisson’s Ratio (ν) 0.3
Density (ρ) 2700.0 kg/m3

Table 5.1: Properties of Isotropic Material

For each value of Elastic Modulus, the capacitance observed by the embedded

piezoelectric sensor was calculated:

C = Q

V
=

j
A

Dz dx dy

V
=

j
A

(d31σ1 + d31σ2 + d33σ3) +
A

χt
33 · V

t

B
dx dy

V
(5.6)

The results obtained are shown below in Fig. 5.4:

The dots in the graph represent the points that were evaluated, while the

red line is an interpolation of these data.
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Figure 5.4: Capacitance as a function of the elastic modulus (isotropic case)

It can be observed that the capacitance value decreases very rapidly as the

elastic modulus of the isotropic plate housing the sensor increases for low elastic

moduli. As the elastic modulus increases, the capacitance no longer decreases

and settles around a value of 300 pF.
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5.3 Laminated composite with embedded piezo-

electric sensor

In the following section, the behavior of a piezoelectric sensor integrated into a

symmetric composite laminate (10 layers) during the manufacturing process is

analyzed. To do this, the 5x5x0.2 cm composite is modeled with 10 layers (each

0.02 cm thick) of orthotropic material with 0-90-0-90-0-90-0-90-0 orientation.

Figure 5.5: Laminated Composite

For the mechanical characteristics of the orthotropic material, present with

2 different orientations in the composite, the values of Elastic Modulus E,

Poisson ν and Shear Stress G in the 3 directions at different times during the

manufacturing process with a Curie temperature of 180°C are obtained from

the literature (in particular from paper [15]).

Fig. 5.6 shows the trend of the Degree of Cure and the Elastic Moduli as a

function of time with the data extrapolated from paper [15]).

Tab.5.2 instead shows the DOC values with the respective characteristics of

the orthotropic material in which it was decided to calculate the capacitance

for a study of its trend as a function of the DOC.
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Figure 5.6: Curing Cycle

DOC 0.54 0.59 0.67 0.74 0.80 0.85 0.89
T [°C] 168.88 171.60 176.71 180.00 180.00 180.00 20.00
E1 [GPa] 119.70 119.70 119.70 119.71 119.85 120.77 121.75
E2 [MPa] 0.25 1.13 14.56 144.62 1429.67 6689.40 9674.51
E3 [MPa] 0.25 1.13 14.56 144.62 1429.67 6689.40 9674.51
ν12 0.329 0.329 0.329 0.329 0.324 0.297 0.269
ν13 0.329 0.329 0.329 0.329 0.324 0.297 0.269
ν23 0.999 0.999 0.999 0.991 0.911 0.600 0.441
G12 [MPa] 0.06 0.28 3.64 36.50 393.25 2763.29 5163.91
G13 [MPa] 0.06 0.28 3.64 36.50 393.25 2763.29 5163.91
G23 [MPa] 0.06 0.28 3.64 36.32 373.98 2091.03 3357.54

Table 5.2: Material properties for different DOC and temperatures.

At the center of the laminate, in the sixth layer, an embedded piezoelectric

sensor with dimensions 1 x 1 x 0.02 cm is inserted.

Figure 5.7: Piezoeletric Sensor embedded in laminated composite
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For the piezoelectric material, it was decided to carry out various analyses

with 4 different types of piezoelectric materials: PZT-4, PZT-5H, PZT-5A and

PZT-8. The mechanical, piezoelectric and dielectric characteristics are reported

in the Tab 2.1.

As a starting point, the capacitance of the sensor is calculated in free-standing

conditions, meaning what, without any mechanical stress acting on it. These

values will be used for comparison later.

C =
3

χt
33 · 1

t

4
· Area (5.7)

PZT-4 PZT-5H PZT-5A PZT-8
Capacitance [pF] 5750 6650 7500 4450

Table 5.3: Capacitance of 4 sensors in free conditions: PZT-4, PZT-5H, PZT-5A
and PZT-8

5.3.1 Capacitance with Permittivity fixed

At this point, various analyses are performed at different degrees of cure on

the composite using the three types of embedded piezoelectric sensors. The

capacitance is calculated as a function of the DOC cure degree using the following

formula, keeping the permittivity values shown in the table fixed:

C =

j
A

Dz dx dy

V
=

j
A

(d31σ1 + d31σ2 + d33σ3) +
A

χt
33 · V

t

B
dx dy

V
(5.8)

The results are shown in Fig. 5.8.
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Figure 5.8: Capacitance of PZT-4, PZT-5H, PZT-5A and PZT-8 as a function
of the Degree of Cure

The results show that at a fixed permittivity, capacitance is only affected by

mechanical stress in all three directions, which causes capacitance to decrease.

This occurs because, as the degree of cure increases, the generation of mechanical

stresses due to the hardening of the composite decreases. It is noted that the

PZT-8 has a rather stable capacitance trend, probably due both to the fact that

it has a stable permittivity as a function of temperature and because, having

lower mechanical couplings, it is less sensitive to mechanical stress.
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5.3.2 Capacitance with Permittivity as a function of the

Temperature

In this section, we decided to investigate the role of permittivity within the

capacitance formula. It is known that permittivity increases near the Curie

temperature of the respective piezoelectric material.

Previously, the permittivity of the 4 piezoelectric materials was calculated as

a function of temperature (2.9). It was observed that the permittivity of PZT-5H

explodes near 180°C, while PZT-5H and PZT-5A showed a similar permittivity

trend which probably suggests that they have a higher curie temperature than

PZT-5H.

At this point, the analyses for calculating the capacitance are performed

again, this time with the permittivity as a function of temperature:

Figure 5.9: Capacitance of PZT-4, PZT-5H, PZT-5A and PZT-8 with permit-
tivity variable as a function of the Temperature

As expected, it is observed in Fig. 5.9 that the capacitance calculated with
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the permittivity as a function of temperature is significantly affected by this

factor. Although the capacitance trend calculated with a fixed permittivity

was very similar between the 4 sensor types, in this case it is observed that

the capacitance trend is strongly influenced by the permittivity trend as a

function of temperature. This is demonstrated by the fact that the PZT-5H

has a capacitance that reaches an order of magnitude higher than the other two

and is due to the fact that the permittivity, near the Curie temperature of the

PZT-5H, increases significantly.

Figure 5.10: Zoom of Capacitance of PZT-4, PZT-5H, PZT-5A and PZT-8 with
permittivity variable as a function of the Temperature

The capacitance trend of PZT-4 and PZT-5H is quite similar. It can be

observed that both are slightly variable when compared to PZT-8, which exhibits

a stable trend. The capacitance trend of PZT-8 is due both to the fact that,

from a thermal point of view, the permittivity of this material is not affected

by any variation, but also to the fact that, having a lower mechanical coupling

(refer to Tab. 2.1), it is less affected by variations in mechanical stress and is

therefore less sensitive than PZT-4 and PZT-5A.
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Figure 5.11: Percentage change calculated with respect to the first real capaci-
tance value

Fig. 5.11 shows a comparison between the percentage change in capacitance

with respect to the first calculated value both in the case of the PZT-8 and in

the case of the PZT-4.

It can be observed that the capacitance calculated with the PZT-8 sensor is

much less variable than that calculated with the PZT-4 sensor, demonstrating

what was said previously.
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5.3.3 Comparison between PZT-4 and PZT-5A

In this section, we choose to make a more in-depth comparison between PZT-4

and PZT-5A. These two materials were chosen because the results reported

previously showed that they represent the right compromise between good

sensitivity to mechanical stress and a permittivity that is little affected by the

temperature at which the curing process is carried out, thanks to a high Curie

temperature.

Comparison of the 3 capacitances: analytical, with fixed permittiv-

ity and with permittivity as a function of temperature

First, we compare the capacitance trend as a function of DOC. The capacitances

considered are: the analytical capacitance, the capacitance calculated with a

fixed permittivity, and the capacitance calculated with a variable permittivity

as a function of temperature.

The analysis shows in Fig. 5.12 that, in the case of the PZT-5A, the three

capacitance trends (analytic, fixed permittivity, and variable permittivity)

generate very similar patterns. This is attributable to the greater thermal

stability of the permittivity of the PZT-5A, which undergoes smaller variations

with temperature than the PZT-4. In contrast, the PZT-4 exhibits a greater

dependence of its permittivity on temperature, which significantly affects the

measured capacitance, making the three models very different.
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Figure 5.12: Comparison of the 3 capacitances: analytical, with fixed permittiv-
ity and with permittivity as a function of temperature
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Percentage change calculated with respect to the first real capaci-

tance value

Secondly, it was decided to compare the trend of the percentage variation

calculated with respect to the first capacitance value measured in the two cases.

Figure 5.13: Percentage change calculated with respect to the first real capaci-
tance value
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The fact that, in the case of PZT-5A, the percentage change in capacitance is

similar with both fixed and variable permittivity suggests that the permittivity

of PZT-5A is more stable than the permittivity of PZT-4. This is demonstrated

in Fig. X. This implies that the influence of temperature on permittivity in

the case of PZT-5A is less than that of other piezoelectric materials (such as

PZT-4), and therefore the measured capacitance is more sensitive to mechanical

stress rather than thermal variations.

Conversely, in the case of PZT-4, the marked difference between the two

curves indicates that the permittivity of the material varies significantly with

temperature. This makes it more difficult to interpret the change in capacitance

as an effect of the composite alone, since a significant portion of the observed

variation is due to the thermal behavior of the sensor itself.

From this analysis it emerges that the PZT-5A represents a more robust

choice for capacitance monitoring applications during the curing phase, as it

allows to better isolate the effect of the composite hosting the piezoelectric

sensor.
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Comparison of the capacitance obtained in the case of lower Curing

Temperatures

For a further comparison of the performances of PZT-4 and PZT-5A, it was

decided to calculate the trend of the capacitance as a function of the DOC in

the case of a cure with a maximum temperature lower than the previous one.

This is the case for composites used in sectors requiring simpler processing,

lower costs, or where high temperatures are not compatible with the process.

In the first case the maximum curing temperature is 150 °C and the holding

time is 800 minutes:

Figure 5.14: Maximum Curing Temperature: 150°C

In the second case the maximum curing temperature is 165 °C and the

holding time is 600 min.

Figure 5.15: Maximum Curing Temperature: 165°C
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The capacitance at various DOCs is then calculated in the two cases. The

following Fig. 5.16 shows the different capacitance trends as a function of

DOC, also compared with the capacitance trend in the case of maximum curing

temperature at 180°C (the previous case).

Figure 5.16: Capacitance trend as a function of DOC in the 3 cases at different
maximum curing temperatures

88



Capacitance

In all three cases, the capacitance was calculated with the permittivity

varying as a function of temperature.

In the case of curing process at 150°C and 165°C, both sensors (PZT-4 and

PZT-5A) show a higher capacitance stability as a function of DOC, probably

because at those temperatures the sensors undergo less thermal stress and also

less mechanical stress.

With the curing process at 180°C, the composite is subjected to greater stress

and more marked relaxation phenomena, which is reflected in a more variable

capacitance.
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Conclusions

This thesis therefore sought to analyze the capacitance behavior measured by

the piezoelectric sensor integrated within a composite structure during the man-

ufacturing process. To achieve this, however, we began by using the Mul2polito

code for very simple, purely mechanical problems such as those analyzed in

Assessment 1 (the doubly fixed beam loaded at the center) and Assessment 2

(the multilayer beam loaded at the ends). After this initial part, we moved on

to a more complex electromechanical problem in Assessment 3 (isotropic beam

+ piezoelectric patch for both the actuator and sensor cases). At this point,

the capacitance value of a piezoelectric sensor was calculated in free-standing

conditions. Subsequently, the capacitance behavior of a piezoelectric sensor

embedded in a plate of isotropic material with increasing elastic modulus was

analyzed. Finally, the capacitance behavior of the piezoelectric sensor embed-

ded in a multilayer composite laminate was analyzed during the manufacturing

process. Finally, the literature was searched for an ideal piezoelectric material

for this type of operation at very high temperatures during the composite curing

process.

90



Conclusions

The most important conclusions that emerged from this study are:

• Significant differences are observed between the various models used to

represent the beam’s behavior. In particular, Taylor Expansion (TE)

models provide a more uniform representation of the cross-section, but

simplify the distribution of strains and stresses. Lagrange Expansion (LE)

models, on the other hand, allow for a more precise description of local

phenomena, thanks to their ability to better capture the actual deformation

of the cross-section. Lower-order TE models (TE-1, TE 0, TE 1) are unable

to accurately represent the cross-section deformation, while starting from

TE 2, results comparable to those of LE models are obtained. Increasing

the expansion order (up to TE 4) further improves accuracy, especially at

the center of the cross-section, although discrepancies remain at the ends.

LE 2 and LE 3 models show good convergence towards the correct solution,

with LE 3 offering the greatest accuracy but requiring a high number of

degrees of freedom.

• Regarding the elements used on the cross-section, it was observed that

in the case of piezoelectric analyses, it is necessary to use Q9 elements. In

Assessment 3, in fact, it was agreed that the Q4 elements, which are linear,

are not able to capture the quadratic behavior of the electric potential,

which is instead interpreted by these elements as linear. The electric field,

on the other hand, which is expected to be linear, is captured as constant

at all by these elements.

• From the study of the Isotropic plate with the integrated piezoelectric

sensor, it was found that the capacitance shows an exponential decrease

behavior, with a rapid initial increase followed by a progressive stabilization
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as the Elastic Modulus of the isotropic material hosting the piezoelectric

sensor increases.This is likely due to the fact that as the elastic modulus E

of the plate increases, the structure becomes more rigid and offers greater

resistance to the deformation imposed by the sensor. Consequently, the

mechanical deformations in the piezoelectric sensor decrease. This reduces

the change in electrical charge generated by the piezoelectric deformation,

also influencing the piezoelectric sensor’s capacitance response.

• Studying the Composite laminate during its curing process, a decreasing

behavior of capacitance is observed as a function of the Degree of Cure if

the permittivity value is considered fixed (not as a function of temperature).

In this case, despite the comparison between different piezoelectric sensors

(PZT-4, PZT-5H, PZT-5A and PZT-8), the capacitance trend is quite

similar. However, considering permittivity as a function of temperature,

which varies from sensor to sensor, it is observed that the capacitance of

the piezoelectric sensor has a quite different trend based on the type of

piezoelectric material used. This demonstrates how the choice of piezoelec-

tric sensor material is of fundamental importance. It was noted that in

the three piezoelectric materials analyzed, the permittivity has an increas-

ing trend around the composite’s curing temperature. This is due to the

proximity to the respective Curie temperature of each piezoelectric mate-

rial, the point at which permittivity explodes. The piezoelectric material

selected for this type of composite monitoring during the polymerization

process must have both a permittivity that is as constant as possible at

the polymerization temperature (i.e., a high Curie temperature) and high

sensitivity to mechanical stress.

It has been shown that PZT-5H is not the right material for this type
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of monitoring due to its low Curie temperature and, consequently, a per-

mittivity that increases exponentially around 180°C, the temperature of

interest for the composite curing process.

It has been observed that PZT-8, despite its constant permittivity, does

not possess great mechanical sensitivity due to its low mechanical coupling.

The final comparison between PZT-4 and PZT-5A led to the conclusion

that PZT-5A is more suitable for this type of monitoring because it has

been shown to be less affected by permittivity as a function of temperature

in the capacitance calculation. PZT-5A therefore has a greater sensitivity

to mechanical stress than PZT-4 and this allows us to understand more

clearly what happens during the curing process in the composite laminate

that houses the sensor.

• Finally, it was observed that the capacitance of composites with lower

curing temperatures is less variable than that of those with higher curing

temperatures. This would therefore make the piezoelectric materials ana-

lyzed in this work more suitable as integrated sensors for composites with

medium curing temperatures, and therefore not high-performance.

93



Bibliography

[1] G. Li E. Carrera, E. Zappino. Analysis of beams with piezo-patches by

node-dependent kinematic fem models. Journal of Intelligent Material

Systems and Structures, 2017.

[2] E. Zappino. The slides from the course: " aerospace technologies". Politec-

nico di Torino, 2024/2025.

[3] Sara Biamino. The slides from the course: "materials for aerospace applica-

tions". Politecnico di Torino, 2024/2025.

[4] Mahto D. Kumar S. Recent trends in industrial and other engineering

applications of non destructive testing: a review. Int J Sci Eng Res, 2013.

[5] Z. Aboura Y. Meyer K. Khellil R. Lachat C. Tuloup, W. Harizi. On

the use of in-situ piezoelectric sensors for the manufacturing and struc-

tural health monitoring of polymer-matrix composites: A literature review.

www.elsevier.com/locate/compstruct, 2019.

[6] Croxford AJ Bond IP Chilles JS, Koutsomitopoulou AF. Monitoring cure

and detecting damage in composites with inductively coupled embedded

sensors. Compos Sci Technol, 2016.

94



BIBLIOGRAPHY

[7] Zappino E. Carrera E. Advanced modeling of embedded piezo-electric

transducers for the health-monitoring of layered structures. 2020.

[8] D. Scano E. Zappino, E. Carrera. The slides: "advanced tailored kinematic

models for multi-field analysis of laminated structures". XI ECCOMAS

Thematic Conference on Smart Structures and Materials SMART 2025,

Linz, Austria, 2025.

[9] Erasmo Carrera Walid Harizi Jamal Najd, Enrico Zappino and Zoheir

Aboura. A variable kinematic model for the prediction of capacitance

variations in embedded pzt sensors. Journal of Intelligent Material Systems

and Structures, 2017.

[10] Hua Tian Jiyang Wang Wenwu Cao Yang Zhang, Liguo Tang and Zhongwu

Zhang. Determination of temperature dependence of full matrix material

constants of pzt-8 piezoceramics using only one sample. Journal of Alloys

and Compounds, 714:20–25, 2017. doi: 10.1016/j.jallcom.2017.04.124. URL

https://doi.org/10.1016/j.jallcom.2017.04.124.

[11] Boston Piezo-Optics. Ceramic materials – pzt (material data for pzt ceram-

ics). URL https://bostonpiezooptics.com/ceramic-materials-pzt.

[12] Virginia Matthew W. Hooker Lockheed Martin Engineering Sciences Co.,

Hampton. Properties of pzt-based piezoelectric ceramics between-150 and

250°c. Langley Research Center, 1998.

[13] E. Zappino M. Petrolo E. Carrera, M. Cinefra. Finite element analysis of

structures through unified formulation. Politecnico di Torino, 2014.

[14] G. Li E. Carrera, E. Zappino. Finite element models with node-dependent

kinematics for the analysis of composite beam structures. MUL2 Group,

95

https://doi.org/10.1016/j.jallcom.2017.04.124
https://bostonpiezooptics.com/ceramic-materials-pzt


BIBLIOGRAPHY

Department of Mechanical and Aerospace Engineering, Politecnico di Torino,

2017.

[15] M. Petrolo R. Vaziri E. Carrera A. Poursartip E. Zappinoa, N. Zobeiry.

Analysis of process-induced deformations and residual stresses in curved

composite parts considering transverse shear stress and thickness stretching.

www.elsevier.com/locate/compstruct, 2020.

96


	List of Tables
	List of Figures
	Introduction
	State of the Art
	Composites
	Thermosetting resins
	Thermoplastics resins

	Curing Process
	Manifacturing process and Defects

	SHM with Embedded Piezoelectric Sensors
	Piezoelectrics Materials
	Temperature's effect


	Carrera Unified Formulation (CUF)
	One-Dimensional Model
	Taylor Expansion (TE)
	Lagrange Expansion (LE)
	Fundamental Nucleus

	Electro-Mechanical Model
	Capacitance Variation


	Assessment
	MUL 2 Polito
	Assessment 1
	Modeling
	Displacement uz along the Length of the Beam
	Displacement uz along the Width of the Beam
	Considerations

	Assessment 2
	Modeling
	Analysis through the thickness of a multilayer beam
	Considerations

	Assessment 3
	Actuator
	Sensor - Model with elements Q9


	Capacitance
	Capacitance of a free sensor
	Isotropic plate with integrated piezoelectric sensor
	Laminated composite with embedded piezoelectric sensor
	Capacitance with Permittivity fixed
	Capacitance with Permittivity as a function of the Temperature
	Comparison between PZT-4 and PZT-5A


	Conclusions

