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Abstract

Path tracking is a fundamental component of autonomous vehicle control, respon-
sible for ensuring that a vehicle follows a predefined path with high precision.
With the rapid advancement of enabling technologies such as sensor systems, real-
time data processing, and vehicle-to-everything (V2X) communication, modern
autonomous systems can now perceive complex environments and adapt their be-
havior accordingly. These innovations have significantly improved motion planning,
environmental awareness, and overall driving performance. However, accurate
and robust path tracking remains a critical challenge, particularly in dynamic or
uncertain scenarios.

This work focuses on the design and evaluation of path tracking strategies
based on different linear controllers. In particular, the study explores how they
can be effectively integrated with different vehicle actuation mechanisms, such
as Four-Wheel Steering (4WS) and Torque Vectoring (TV), to enhance lateral
and yaw control during path following. These actuation strategies offer additional
degrees of freedom that can be leveraged to improve trajectory adherence, stability,
and manoeuvrability, especially at higher speeds or under demanding conditions.
Through simulation and experimental analysis, the proposed control frameworks
have been fine tuned in order to guarantee a fair comparison and understand how,
with these innovative technologies it is possible to increase the level of precision of
the path tracking strategies.



Table of Contents

List of Figures iii

1 Introduction and State of the Art 1

2 Path Tracking: Definition and Purpose 4
2.1 Cross-Track Error (CTE) . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Heading Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3 Trajectory Generation . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.4 Performance Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3 Description of the System 8
3.1 Automation Level . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.2 Powertrain and Chassis . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.3 Vehicle Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.4 Sensors and Control Platform . . . . . . . . . . . . . . . . . . . . . 10

3.4.1 Simulink Architecture . . . . . . . . . . . . . . . . . . . . . 11

4 Vehicle Dynamics Model Description 13
4.1 Purpose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.2 Degrees of Freedom . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.3 Dynamic Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.4 Tire Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.5 Steering Kinematics . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.6 Experimental Use . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.6.1 Control System Interface . . . . . . . . . . . . . . . . . . . . 18

5 Controllers Architecture 20
5.1 Design Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
5.2 PD + feedworward Controller . . . . . . . . . . . . . . . . . . . . . 22

5.2.1 Controller Formulation . . . . . . . . . . . . . . . . . . . . . 23
5.2.2 Feedforward Term and Understeer Gradient . . . . . . . . . 23

i



5.2.3 Lookahead Distance in Feedforward . . . . . . . . . . . . . . 24
5.2.4 Tuning Procedure . . . . . . . . . . . . . . . . . . . . . . . . 24

5.3 Four-Wheel Steering (4WS) Controller . . . . . . . . . . . . . . . . 26
5.3.1 Enhanced 4WS with Rear Feedforward Contribution . . . . 27

5.4 Torque Vectoring (TV) Controller . . . . . . . . . . . . . . . . . . . 30
5.5 Four-Wheel Steering with Torque Vectoring (4WS + TV) . . . . . . 34
5.6 LQR Controller (Proposal for future application) . . . . . . . . . . 36

5.6.1 LQR Problem Formulation . . . . . . . . . . . . . . . . . . . 36
5.6.2 Choosing Q and R . . . . . . . . . . . . . . . . . . . . . . . 37
5.6.3 Control Structure: Feedback and Feedforward . . . . . . . . 37
5.6.4 2WS Controller . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.6.5 4WS Controller . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.6.6 2WS + TV Controller . . . . . . . . . . . . . . . . . . . . . 39
5.6.7 4WS + TV Controller . . . . . . . . . . . . . . . . . . . . . 40

6 Experimental results 42
6.1 Gain Scheduling Approach . . . . . . . . . . . . . . . . . . . . . . . 42
6.2 PD + FF 2WS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
6.3 4WS pure feedback . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
6.4 4WS with feedforward and feedback . . . . . . . . . . . . . . . . . . 52
6.5 2WS + TV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
6.6 4WS + TV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
6.7 Results of the LQRs . . . . . . . . . . . . . . . . . . . . . . . . . . 74

7 Experimental vs. Simulation Results 78
7.1 1st Montecarlo Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 78
7.2 2nd Montecarlo Analysis . . . . . . . . . . . . . . . . . . . . . . . . 83

8 Conclusions and Future Work 87
8.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
8.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

Bibliography 91

ii



List of Figures

1.1 SAE levels of driving automation, reproduced from [1]. . . . . . . . 2

2.1 Circuits on which the path tracking has been tested. . . . . . . . . 6

3.1 PIX vehicle employed for the experimental activity. . . . . . . . . . 8
3.2 CHCNAV Inertial Measurement Unit . . . . . . . . . . . . . . . . . 10
3.3 Kistler Correvit sensor. . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.4 dSPACE MicroAutoBox III for data processing. . . . . . . . . . . . 11
3.5 Block diagram of the developed Simulink architecture. . . . . . . . 12

4.1 Schematization of the model’s degrees of freedom. . . . . . . . . . . 14
4.2 Ackermann steering geometry scheme [2]. . . . . . . . . . . . . . . . 16
4.3 Comparison between experimental tests and simulation results for

the validation circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.4 Comparison between experimental tests and simulation results for

the validation skidpad. . . . . . . . . . . . . . . . . . . . . . . . . . 18

5.1 Optimization of controller gains via surrogateopt. . . . . . . . . . 21
5.2 Sensitivity analysis of the controller design parameters. . . . . . . . 22
5.3 Rear steering command generated by yaw-rate error feedback in

simulation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5.4 Rear steering command generated by yaw-rate error feedback in

experimental tests. . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5.5 Mz domain. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

6.1 Results obtained from the PD + FF 2WS controller (Soft Circuit). 44
6.2 Results obtained from the PD + FF 2WS controller (Sharp Circuit). 46
6.3 Results obtained from the 4WS controller (Soft Circuit). . . . . . . 48
6.4 Results obtained from the 4WS controller (Sharp Circuit). . . . . . 50
6.5 Results obtained from the 4WS with feedforward (Soft Circuit). . . 52
6.6 Results obtained from the 4WS with feedforward (Sharp Circuit). . 54
6.7 Results obtained from the 2WS + TV controller (Soft Circuit). . . . 56

iii



6.8 Yaw moment command (Soft Circuit). . . . . . . . . . . . . . . . . 57
6.9 Torques at wheel level (Soft Circuit). . . . . . . . . . . . . . . . . . 58
6.10 Results obtained from the 2WS + TV controller (Sharp Circuit). . . 59
6.11 Yaw moment command (Sharp Circuit). . . . . . . . . . . . . . . . 60
6.12 Torques at wheel level (Sharp Circuit). . . . . . . . . . . . . . . . . 61
6.13 Results obtained from the 4WS + TV controller (Soft Circuit). . . . 63
6.14 Results obtained from the 4WS + TV controller (Sharp Circuit). . . 65
6.15 Overlap of results for the soft circuit. . . . . . . . . . . . . . . . . . 70
6.16 Histogram of cross track error, soft circuit. . . . . . . . . . . . . . . 71
6.17 Overlap of results for the sharp circuit. . . . . . . . . . . . . . . . . 72
6.18 Histogram of cross track error, sharp circuit. . . . . . . . . . . . . . 73
6.19 Results obtained from the LQR 2WS (Soft Circuit). . . . . . . . . . 74
6.20 Results obtained from the LQR 4WS (Soft Circuit). . . . . . . . . . 75

7.1 Pairwise scatter of the Monte Carlo parameters. . . . . . . . . . . . 79
7.2 Distribution of the Monte Carlo parameters. . . . . . . . . . . . . . 80
7.3 Peaks of the errors in the first Monte Carlo analysis. . . . . . . . . 81
7.4 Rms of the errors in the first Monte Carlo analysis. . . . . . . . . . 81
7.5 New trajectory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
7.6 Curvature of the new trajectory. . . . . . . . . . . . . . . . . . . . . 84
7.7 Peaks of the errors in the second Monte Carlo analysis. . . . . . . . 85
7.8 Rms of the errors in the second Monte Carlo analysis. . . . . . . . . 85

iv



Chapter 1

Introduction and State of
the Art

In recent years, the development of autonomous vehicle technology has advanced
rapidly, driven by progress in artificial intelligence, sensor systems, and control
theory. Across a wide range of sectors—from agriculture and industry to defence
and disaster response—automation has been adopted to improve efficiency, reduce
human labour, and ensure safety in environments that are hazardous or difficult to
access. While much of the literature and technological focus has traditionally been
centred on wheeled autonomous vehicles, tracked vehicles have gained attention in
off-road and uneven terrain scenarios due to their superior traction, load-bearing
capability, and manoeuvrability. Despite their advantages, a comprehensive review
of path tracking control methods specifically tailored to autonomous tracked vehicles
has been largely absent from the literature, a gap that some recent research efforts
are beginning to address.

In order to classify the degree of automation in vehicles, the Society of Automo-
tive Engineers (SAE) has defined six levels ranging from Level 0 to Level 5. At
Level 0, no automation is provided, and the driver is fully responsible for all driving
tasks, although driver-assistance features such as warnings or emergency braking
may be present. Level 1 systems introduce either steering or acceleration/braking
assistance, but never both simultaneously, requiring the driver’s constant super-
vision. At Level 2, the vehicle can combine steering and acceleration/braking
assistance (e.g., adaptive cruise control with lane centering), yet the driver must
remain engaged and ready to intervene at any time. Level 3 represents conditional
automation, where the system can fully manage driving within specific conditions,
but the driver must be available to take control when requested. Level 4 vehicles
are capable of full driving automation within defined operational domains (e.g.,
urban shuttles), without expecting driver intervention. Finally, Level 5 denotes
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Introduction and State of the Art

complete automation under all conditions, where the vehicle no longer requires any
driver input for its operation.

Figure 1.1: SAE levels of driving automation, reproduced from [1].

The control architecture of autonomous vehicles is typically structured into
three layers: perception, planning, and execution. The perception system acts as
the vehicle’s sensory input, collecting and interpreting data from the environment.
Planning algorithms—responsible for determining the vehicle’s path and making
decisions such as when to overtake or change lanes—constitute the system’s “brain.”
Finally, execution or control modules ensure that the vehicle follows the planned
path accurately, coordinating steering, throttle, and braking mechanisms. As
highlighted across the literature, path tracking lies at the heart of the control layer
and is essential for maintaining accurate trajectory adherence, particularly under
varying road and traffic conditions.

A wide variety of control strategies have been explored for path tracking, ranging
from classical approaches like Pure Pursuit, Stanley, and PID controllers to more
advanced and robust strategies. Model Predictive Control (MPC) has emerged
as a powerful framework due to its ability to anticipate future system states and
manage constraints, although it remains computationally intensive and its stability
properties under uncertain conditions are still active areas of research. Likewise,
Linear Quadratic Regulator (LQR) controllers offer optimal solutions in linearized
scenarios, while robust strategies such as Sliding Mode Control (SMC), H∞ control,

2
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and adaptive methods have been introduced to address modeling uncertainties and
external disturbances. Several hybrid and enhanced variants of SMC have been
proposed in recent studies to reduce chattering and improve convergence time, such
as terminal SMC, super-twisting SMC, and adaptive integral approaches.

A particularly complex case of motion planning and path tracking appears in
autonomous overtaking manoeuvrers. These scenarios require not only lateral
control but also decision-making under uncertainty, where the vehicle must consider
the intentions and trajectories of nearby traffic participants. Overtaking involves a
sequence of sub-manoeuvrers, such as lane changes and passing, each influenced by
traffic laws, real-time sensor data, and road conditions. To handle this, researchers
have employed techniques such as probabilistic models, decision trees, and Markov
Decision Processes, often enhanced with Vehicle-to-Everything (V2X) communica-
tion to extend environmental awareness beyond the sensor range. However, despite
the sophistication of current sensor fusion and communication technologies, most
autonomous systems remain limited to low-speed overtaking due to constraints in
prediction accuracy and communication reliability.

In conclusion, while substantial progress has been made in both planning and
control for autonomous vehicles, the literature continues to evolve, particularly
in terms of robust control strategies and their integration with perception and
decision-making layers. There is a growing recognition of the need for more flexible
and adaptive controllers that can deal with uncertainty, variable terrain, and
complex environments, especially in the case of tracked vehicles and high-level
maneuvers like overtaking. The realization of the newest technologies such as
four-wheel steering or torque vectoring can help in that and, generally speaking, in
all the automotive field in which safety and flexibility have always been a must.
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Chapter 2

Path Tracking: Definition
and Purpose

Path tracking is a fundamental task in autonomous driving and advanced driver-
assistance systems (ADAS), where the objective is to guide the vehicle to follow
a predefined path as accurately as possible. The controller continuously adjusts
steering and/or wheel torques to minimize the deviation between the vehicle’s
current state and the reference trajectory.

A path tracking controller uses feedback from the vehicle’s sensors (e.g.,
position, velocity, orientation) to correct its motion and align it with the desired
path. This process involves minimizing the main types of errors:

2.1 Cross-Track Error (CTE)
The cross-track error, denoted usually as ey, is the lateral distance between the
vehicle’s current position and the closest point on the reference path. It measures
how far the vehicle is from the trajectory, perpendicular to the path direction.

Mathematically:
ey = (Pveh − Pref) · nref (2.1)

Where:
• Pveh is the position of the vehicle.

• Pref is the closest point on the reference path.

• nref is the unit normal vector to the path at Pref.
A positive ey means the vehicle is to the left of the path (in the path’s local

frame), while a negative value indicates it is to the right.
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2.2 Heading Error
The heading error, often denoted eψ, is the difference in orientation between
the vehicle’s current heading and the direction of the reference path at the closest
point.

Mathematically:
eψ = ψ − ψref (2.2)

Where:

• ψ is the vehicle’s current yaw angle.

• ψref is the heading (tangent) of the path at the closest point.

The heading error indicates how well the vehicle is aligned with the path direction.
Even if the vehicle is on the path (zero cross-track error), a non-zero heading error
implies it is not aligned and may deviate in the future.

2.3 Trajectory Generation
The reference trajectory used for path tracking validation consists of a circuit
including segments with varying curvature profiles, such as straights, constant-radius
curves, and clothoids. This trajectory was generated using a custom MATLAB
script designed to allow full customization of the path in a modular way.

The trajectory is defined as a sequence of segments, where each segment can be
independently configured by specifying:

• The segment type: straight line, circular arc (constant curvature), or clothoid
(linearly varying curvature)

• The segment length

• The curvature (for curves and clothoids)

This flexible approach enables the design of realistic test tracks, including
complex combinations of turns and straights, suitable for assessing the performance
of path tracking controllers under diverse dynamic conditions.

The resulting trajectory provides at each point:

• Positional references (x, y)

• Orientation reference (ψref)

• Curvilinear cumulative coordinate (s)

5
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These quantities are essential for computing cross-track and heading errors
during controller evaluation. The s coordinate is also required for the feedforward
term, which will be discussed later.

Figure 2.1: Circuits on which the path tracking has been tested.

From this point forward, we will refer to Track 1 as to "Soft circuit" and to
Track 2 as to "Sharp circuit". The reason is straightforward, the sharp has a knee
curve, harder to follow, which generates higher lateral accelerations.

2.4 Performance Metrics
To quantitatively assess the performance of a path tracking controller, a set of Key
Performance Indicators (KPIs) is adopted. These metrics provide a numerical
evaluation of how accurately the vehicle follows the reference trajectory and how
stable its dynamic behavior remains during the maneuver.

The main KPIs considered are:

• Maximum value of the error signals, which highlights the worst-case devia-
tion from the reference.

6
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• Root Mean Square (RMS) value of the error signals, which gives an
overall measure of the tracking accuracy throughout the entire maneuver.

In particular, the monitored quantities are:

• Cross-Track Error (ey): provides a direct measure of the lateral deviation from
the reference path.

• Heading Error (eψ): indicates the vehicle’s orientation mismatch with respect
to the path tangent.

• Sideslip Angle (β): provides information about the lateral stability of the
vehicle, complementing the tracking accuracy indicators.

The combined analysis of these metrics allows for an objective evaluation of both
trajectory-following performance and vehicle stability, ensuring that the
controller achieves accurate path tracking without compromising dynamic safety.

7



Chapter 3

Description of the System

The case study vehicle is the PIXKIT, a platform equipped with four in-wheel
electric motors and featuring four-wheel steering (4WS) capability. The PIXLOOP
HOOKE drive-by-wire chassis, developed by PIX Moving, is a fully drive-by-wire
platform specifically designed for engineers and researchers working on low-speed
Level 4 autonomous driving applications, particularly in controlled environments
such as the Aeroclub of Turin, where it has been tested since its arrival in Italy.

Figure 3.1: PIX vehicle employed for the experimental activity.

3.1 Automation Level
Level 4 and Level 5 represent the highest degrees of automation in self-driving
vehicles. Level 4, also known as “high automation,” allows the vehicle to drive itself
under specific conditions without human intervention, such as within a defined
area or during certain weather conditions. Level 5, or “full automation,” means

8
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the vehicle can handle all driving tasks in all conditions, without any human input,
effectively removing the human driver from the equation.

For the considered vehicle, an operator was required to remain within the opera-
tional range of the remote controller (50 m), both for monitoring and intervening in
case of unexpected events, and because otherwise the connection with the vehicle
would be lost.

3.2 Powertrain and Chassis
The system is powered by a 72 V main battery pack, complemented by a 12 V
maintenance-free lead-acid battery for auxiliary functions. Constructed from high-
strength steel, the chassis ensures durability and structural integrity under a variety
of operating conditions. Steering and propulsion are fully electronically controlled
and can be managed via remote control or integrated into an autonomous driving
system.

3.3 Vehicle Parameters
The main vehicle parameters are summarized in Table 3.1.

Table 3.1: Main physical parameters of the PIXKIT platform.

Parameter Symbol Value
Vehicle mass m 510 kg
Yaw moment of inertia Iz 948 kg · m2

Roll moment of inertia Ix 325 kg · m2

Wheel radius R 0.305 m
Front axle to CG af 0.975 m
Rear axle to CG ar 0.925 m
Front track width bf 1.470 m
Rear track width br 1.470 m
CG height hCG 0.300 m
Roll center height hroll 0.110 m
Roll stiffness (front/rear) kroll 9048 N · m/rad
Roll damping (front/rear) croll 711 N · m · s/rad
Sprung mass ms 257 kg
Wheel inertia Jw 1.5 kg · m2

Steering ratio – 0.053
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3.4 Sensors and Control Platform
The vehicle is equipped with a comprehensive set of sensors and control hardware
to enable accurate state estimation and advanced control development. The sensor
suite includes:

• CHCNAV Inertial Measurement Unit (IMU) for measuring accelerations
and angular rates.

Figure 3.2: CHCNAV Inertial Measurement Unit .

• Kistler Correvit sensor for measuring longitudinal and lateral velocity
components with high precision.

Figure 3.3: Kistler Correvit sensor.
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• Additional perception sensors, including LiDAR, radar, ultrasonic sensors,
and cameras, which are available on the vehicle but not employed in the
present activity.

For rapid control prototyping, the platform uses a dSPACE MicroAutoBox
III real-time system, which executes the vehicle dynamics control algorithms and
interfaces with the actuators via the drive-by-wire system.

Figure 3.4: dSPACE MicroAutoBox III for data processing.

3.4.1 Simulink Architecture

The Simulink model developed for this work is organized according to the scheme
reported in Figure 3.5. The Inputs block collects the signals provided by the vehicle
sensors. Each of these signals is properly filtered before being processed: in fact, a
sensitivity analysis was performed for all the quantities relevant to path tracking in
order to select the most suitable filtering strategy, taking into account the trade-off
between signal cleanliness and the delay introduced by the filter.

The filtered signals are then fed into the subsequent subsystems. If the input
data generates an emergency condition — for instance, the activation of the anti-
collision bar — the signal is redirected to the Safety System, which forces a safety
stop and overrides the controller outputs. Otherwise, the data is sent to the
Control System block, which represents the core of the path tracking algorithm.
Within this subsystem, the control strategy can be manually selected among
different alternatives, such as a Linear Quadratic Regulator (LQR), a Proportional-
Derivative (PD) controller, or a Neural Network (NN).

Finally, the control actions computed by the selected strategy are transmitted
to the Outputs subsystem, which interfaces with the vehicle actuators and applies
the commanded steering and traction/braking inputs.

11
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Figure 3.5: Block diagram of the developed Simulink architecture.
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Chapter 4

Vehicle Dynamics Model
Description

The vehicle model implemented in MATLAB is a nonlinear 9 degrees-of-freedom
(DOF) representation designed for simulation and experimental validation within
the context of path tracking control. This model captures the essential dynamic
behaviour of a four-wheel vehicle equipped with four-wheel steering (4WS)
and individual wheel torque control, making it suitable for advanced control
strategies such as LQR and MPC for autonomous driving.

4.1 Purpose
This model is used as a high-fidelity simulation tool to replicate experimental
conditions during the development and tuning of automated path tracking algo-
rithms. Its flexibility allows the evaluation of different control strategies, vehicle
configurations (e.g., 4WS, torque vectoring), and actuator commands (steering and
torque inputs).

4.2 Degrees of Freedom
The model includes the following 7 DOFs:

1. Longitudinal velocity Vx

2. Lateral velocity Vy

3. Yaw rate ψ̇

4. Wheel angular speeds ωi for each wheel (FL, FR, RL, RR)

13
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Additionally, derived quantities such as longitudinal and lateral accelerations
(ax, ay) and the vehicle side-slip angle β are computed for accurate motion estimation
and control evaluation.

Figure 4.1: Schematization of the model’s degrees of freedom.

4.3 Dynamic Equations
The nonlinear dynamics of the system are governed by the following differential
equations:

Longitudinal dynamics:

V̇x = 1
m

A 4Ø
i=1

Fxi
cos δi − Fyi

sin δi
B

− Crr4V
2
x + Vyψ̇ (4.1)

Lateral dynamics:

V̇y = 1
m

A 4Ø
i=1

Fxi
sin δi + Fyi

cos δi
B

− Vxψ̇ (4.2)

Yaw dynamics:

ψ̈ = 1
Iz

1Ø
(aiFxi

sin δi + aiFyi
cos δi) −

Ø
(biFxi

cos δi − biFyi
sin δi)

2
(4.3)
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Wheel rotational dynamics:

ω̇i = 1
Jw

(Ti − Fxi
Ri +Myi

) (4.4)

4.4 Tire Modeling

The tire forces Fxi
, Fyi

and aligning moments Myi
are calculated using a reduced

Pacejka 1996 tire model, extended to account for:

• Camber effects

• Load sensitivity

• Combined slip conditions

• Longitudinal and lateral load transfer

Vertical loads are dynamically computed based on vehicle accelerations and roll
motion, influencing tire performance.

4.5 Steering Kinematics

An Ackermann-based steering geometry is implemented, supporting:

• Conventional front-wheel steering (2WS)

• Four-wheel steering (4WS), with both in-phase and counter-phase configura-
tions

Inner and outer wheel angles are corrected according to Ackermann geometry
for both axles.

15
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Figure 4.2: Ackermann steering geometry scheme [2].
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4.6 Experimental Use
This model is used as a digital twin for:

• Simulating vehicle response for given control inputs

• Validating and tuning the control architecture

• System identification and parameter estimation

Its compatibility with sensor data and actuator commands (steering angles and
torques) makes it ideal for Hardware-in-the-Loop (HIL) and Software-in-the-Loop
(SIL) testing.

In order to properly tune all the parameters needed in the model an optimizer
has been adopted in order to achieve, in simulation, the closest results possible to
those obtained in a rounded-like circuit as well as a skidpad manoeuvre with the
real vehicle. The good agreement between simulations and experiments makes the
model a valuable tool for control system assessment.

Figure 4.3: Comparison between experimental tests and simulation results for
the validation circuit.

17
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Figure 4.4: Comparison between experimental tests and simulation results for
the validation skidpad.

4.6.1 Control System Interface
The interface of the control subsystem follows a structure that is common to all
linear controllers and, to a large extent, also to nonlinear ones. The first step
concerns the acquisition of the vehicle position through GPS sensors. However, the
GPS operates at a very low sampling frequency (5 Hz), which results in a sparse and
noisy signal. To improve its effectiveness, a moving average filter is applied to both
latitude and longitude signals. The filtered data are then converted into planar
coordinates (x, y) using the MATLAB function latlon2local, which transforms
geographic coordinates into a local Cartesian reference frame by exploiting relative
differences with respect to a chosen initial point.

Since the trajectory is defined in the (x, y) plane, it is necessary to correctly
initialize the vehicle orientation. The yaw angle ψ is computed at each time step
using the atan2 function, which provides values in the interval [−π, π]. Two issues
must be addressed:

• Initial offset: the value of ψ obtained from latitude and longitude is not zero
at the initial position, but depends on the absolute location. Therefore, the
initial offset ψinit must be subtracted from the instantaneous yaw angle.

18
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• Angle discontinuity: the periodicity of atan2 introduces a jump when
crossing the −π to π boundary. This discontinuity must be handled, since it
propagates into the heading error and especially into its derivative, generating
spurious spikes.

Once the vehicle position (x, y) is available, the reference trajectory point is
selected as the one with the minimum Euclidean distance from the current position.
Consequently, the following variables are available at each time step:

• xGPS, yGPS: current vehicle position in the local frame,

• xref, yref: selected reference point,

• ψ: actual vehicle yaw angle,

• ψref: reference yaw angle,

• s: curvilinear coordinate associated with the chosen reference point.

These variables allow the computation of the path tracking errors (cross-track
error, heading error, etc.), which in turn are exploited by the controller to generate
the desired control actions.
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Chapter 5

Controllers Architecture

5.1 Design Procedure
The design of all the proposed controllers has been carried out starting from the
validated Simulink model, on which a surrogate-based optimization procedure
was performed using the surrogateopt algorithm. A total of 100 iterations were
selected, of which 75 random and 25 adaptive, as a good compromise between
optimization effectiveness and computational cost. These optimizations already
required a considerable amount of time: with more iterations, the computational
effort would have increased substantially without providing significant improvements
in terms of KPI, since the results already obtained can be considered sufficiently
asymptotic.
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Figure 5.1: Optimization of controller gains via surrogateopt.

In any case, the path tracking activity is mainly focused on the experimental
results. Although the model has been properly configured and validated, this
is a matter of centimeter-level precision. Therefore, the results obtained through
such optimization represent an excellent starting point, but they should not be
considered perfect, since a certain discrepancy between the model and the real
experiment will always exist. This is especially true for an application where the
objective is to optimize performance to the centimeter.

So far, two different tuning procedures have been described:

1. Computer-based optimization via surrogateopt.

2. Manual real-life tuning, performed directly on the experimental vehicle.

In addition to these two approaches, another powerful tool was exploited in
simulation: a sensitivity analysis of the main design parameters. Using simple
parfor loops, each parameter was varied individually (no overlapping effects)
with respect to the value returned by the optimizer, according to the following
scaling factors:

0.2 ; 0.4 ; 0.6 ; 0.8 ; 1.0 ; 1.2 ; 1.4 ; 1.6 ; 1.8 .
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Figure 5.2: Sensitivity analysis of the controller design parameters.

This tool proved to be effective for two main reasons:

1. If the resulting trend does not show a V-shape around the optimum (as
in Figure 5.2), it means that the optimizer provided a solution that is only
optimal within the imposed boundaries, but the true optimum could lie outside
the selected domain. In this case, a further optimization could be considered.

2. Beyond the numerical outcome, conducting a sensitivity analysis is a valuable
tool to understand the trend of parameter variations: whether they lead
to instability, whether some changes are more harmful than others, and which
parameters have the strongest influence on performance.

5.2 PD + feedworward Controller

The Proportional-Derivative (PD) controller represents the starting point of the
path tracking activity carried out in this research group. In fact, the first attempts
to achieve reliable automated guidance were based on a PD feedback controller
enriched with a feedforward contribution. Despite its conceptual simplicity, this
architecture proved to be particularly effective and provided a solid basis for
subsequent developments.
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5.2.1 Controller Formulation
The general structure of the PD controller is defined by the following law:

u(t) = Kpect(t) +Kdėct(t) (5.1)

where ect(t) is the cross-track error, i.e. the lateral deviation of the vehicle from the
reference path, and ėct(t) is its time derivative. The proportional term Kpect(t) acts
to reduce the magnitude of the error, while the derivative term Kdėct(t) provides
damping and anticipates variations, thus improving stability and transient response.

In the context of vehicle path tracking, this simple formulation is enriched with
a feedforward component based on the curvature of the reference trajectory. The
complete steering command can therefore be expressed as:

δ = Kpect(t) +Kdėct(t) + δff (5.2)

where δff is the feedforward contribution.

5.2.2 Feedforward Term and Understeer Gradient
The design of the feedforward term is crucial in order to eliminate steady-state
errors. For the PD controller, it was defined according to the classical formulation:

δff = Kl κ (1 +Kusv
2) (5.3)

where κ is the path curvature, v the vehicle longitudinal velocity, Kus the understeer
gradient, and Kl a scaling constant related to the vehicle wheelbase and steering
ratio.

This expression reflects the well-known relation between steering demand and
curvature in steady-state cornering, corrected by the understeer gradient Kus to
account for deviations from neutral steering behavior. In practice:

• If Kus > 0, the vehicle exhibits an understeering tendency, requiring a steering
angle larger than the ideal geometric one.

• If Kus = 0, the vehicle behaves neutrally and δff reduces to the purely
geometric term.

• If Kus < 0, the vehicle shows an oversteering behavior, demanding a smaller
steering angle for the same curvature.

The determination of Kus is not straightforward, since it requires knowledge of
the cornering stiffnesses of both front and rear axles. Ideally, these stiffnesses should
be obtained from experimental α− Fy curves (lateral slip angle vs lateral force).

23



Controllers Architecture

In absence of such direct measurements, an approximate estimation was carried
out starting from the Pacejka tire model. Using the Magic Formula parameters,
the initial slope of the Fy(α) curve can be extracted, which corresponds to the
cornering stiffness Cα. Once Cf and Cr are available, the understeer gradient is
computed as:

Kus = WF

CF
− WR

CR
(5.4)

where WF and WR are the static load distributions on the front and rear axles,
respectively. This activity required a dedicated analysis, since the lack of direct
experimental tire data forced us to rely exclusively on model-based evaluations.

5.2.3 Lookahead Distance in Feedforward
An additional element introduced in the PD + FF controller is the so-called
lookahead distance, denoted here as dshift. Unlike the typical use of lookahead in
feedback control, in this implementation dshift was applied only to the feedforward
term. The rationale is to emulate a more realistic driving behavior, where the
steering input anticipates the curve rather than reacting to it only when the vehicle
reaches a certain deviation. By shifting the reference point forward along the
trajectory, the feedforward contribution δff becomes anticipative, reducing the
delay in steering action and improving the overall smoothness of the maneuver.

5.2.4 Tuning Procedure
A systematic tuning campaign was conducted for the PD + FF controller across the
entire operational velocity range of the vehicle, from 5 km/h up to 30 km/h. This
activity went far beyond a simple gain scheduling procedure. While proportional
and derivative gains were indeed adjusted depending on velocity, additional tuning
was required for the parameters involved in the feedforward term, namely Kus and
the lookahead distance dshift.

In particular:

• At low speeds, the influence of Kus is limited, but the lookahead distance
becomes crucial to prevent late steering actions.

• At higher speeds, the quadratic contribution Kusv
2 significantly affects the

steering angle demand, making the correct tuning of Kus essential for stability
and accuracy.

• The parameter dshift was calibrated so as to balance anticipation and stability:
too small values resulted in delayed steering, whereas excessively large values
led to oscillatory behavior.
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The final result of this tuning activity was a PD + FF controller capable of
handling the entire velocity range, providing a good compromise between simplicity,
robustness, and performance. This controller therefore played a central role in the
initial phase of the research project and remains a reference baseline for evaluating
the more advanced strategies introduced later.

Moreover, the effort invested in this tuning activity is not only relevant to
the specific path tracking task. The PD + FF controller, thanks to its clear
structure and relatively limited computational demand, constitutes a suitable basis
for combined activities involving both path tracking and adaptive cruise control
(ACC). In such a framework, the steering control must be seamlessly integrated with
longitudinal control actions, and the robustness achieved through the tuning process
ensures that lateral and longitudinal dynamics can coexist without introducing
excessive coupling effects or instability risks.

In addition, the availability of a well-documented and extensively validated
controller is of great value for future developments on the PIX platform. Researchers
and engineers working on subsequent stages of the project can rely on this reference
implementation either as a benchmark for evaluating more advanced controllers, or
as a safe fallback solution in case of integration issues. The PD + FF controller
thus represents not only a milestone in the present work, but also a cornerstone for
the continuity and scalability of research activities on the vehicle.

25



Controllers Architecture

5.3 Four-Wheel Steering (4WS) Controller
Starting from the baseline PD + FF architecture, an additional control strategy was
developed by exploiting the rear steering capability of the vehicle. This controller
was designed and validated at a fixed velocity of 30 km/h, which represents the
maximum speed attainable by the platform and, consequently, the most demanding
operational condition. From this point onwards, all comparison activities between
different controllers are therefore restricted to this velocity, as it constitutes the
most meaningful benchmark for assessing performance improvements.

The design philosophy behind the 4WS controller did not involve a complete
rethinking of the previous scheme. On the contrary, the PD + FF formulation was
retained for the front axle, so as to reduce the complexity of the design process
and to ensure a direct comparability with the baseline controller. Specifically:

δf = Kp ect +Kd ėct + δff , (5.5)

where the feedforward contribution δff was implemented through the same spatial
shift approach described earlier.

On the rear axle, the steering command was instead obtained from a proportional-
derivative action on the yaw rate error:

δr = Kr
p eψ̇ +Kr

d ėψ̇, (5.6)

where the reference yaw rate ψ̇ref was computed as the time derivative of the desired
yaw angle ψref , associated with the point of the reference trajectory selected through
the lookahead mechanism, while the actual yaw rate ψ̇ was directly measured by
the Kistler sensor.

During the tuning process, the introduction of a lookahead distance was also
evaluated for the rear control loop. However, the best results were consistently
obtained without any anticipation, as the inclusion of a lookahead term tended to
deteriorate stability. As a consequence, the rear control action remained inherently
reactive, being directly tied to the instantaneous yaw rate error.

This 4WS controller proved to be highly effective in practice, leading to a marked
reduction in lateral error across both tested circuits. Nonetheless, the absence of
lookahead in the yaw rate feedback introduced a slight delay in the corrective action,
which manifested as an increase in the angular error. This suggests that, while
the current configuration already provides a significant performance improvement
with relatively small rear steering angles, further enhancements could be achieved
by complementing the yaw rate regulation with an explicit control action on the
heading error.
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5.3.1 Enhanced 4WS with Rear Feedforward Contribution

While the baseline 4WS controller already proved effective in reducing lateral error,
a more refined version was developed in order to improve the rear steering behaviour
within cornering maneuvers. The analysis of both simulation and experimental
results revealed that the pure yaw-rate-based control law was able to provide
an initial corrective spike in counter-phase at the beginning of the curve, which
effectively amplified the rotational dynamics of the vehicle. However, this beneficial
contribution was not maintained throughout the manoeuvre: the corrective action
tended to vanish after the initial transient and, in some cases, even produced an
in-phase steering input at the end of the curve, counteracting the desired effect. To
overcome this limitation, an additional feedforward contribution was introduced
for the rear steering command:

δr = Kr
p eψ̇ +Kr

d ėψ̇ + δffr , (5.7)
δffr = K · ffGain. (5.8)

The feedforward term δffr was designed to ensure a persistent contribution during
cornering, preventing oscillations and providing a more stable corrective behaviour.
The calibration of the parameter ffGain followed the same procedure already
adopted for the other gains: an initial optimization through surrogateopt, followed
by a sensitivity analysis and finally a fine-tuning through trial-and-error during
experimental tests. Figures 5.3 and 5.4 illustrate the behaviour of the rear steering
command generated by the original yaw-rate feedback controller, both in simulation
and in real-world tests. It can be observed that while the first spike is beneficial,
the subsequent phases of the manoeuvre highlight the necessity of a feedforward
term to sustain the corrective action.
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Figure 5.3: Rear steering command generated by yaw-rate error feedback in
simulation.

Figure 5.4: Rear steering command generated by yaw-rate error feedback in
experimental tests.
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Overall, the introduction of the rear feedforward contribution significantly
improved the behaviour of the 4WS controller. The rear steering action became
more consistent and better aligned with the vehicle dynamics, effectively sustaining
the beneficial counter-phase effect throughout the entire curve. This resulted in
smoother manoeuvres, reduced oscillations, and enhanced path tracking accuracy,
without requiring large steering angles at the rear axle.
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5.4 Torque Vectoring (TV) Controller
Torque Vectoring (TV) is a control strategy aimed at generating an additional yaw
moment Mz through a differentiated distribution of the wheel torques. By actively
shaping the yaw dynamics of the vehicle, torque vectoring significantly increases
stability and robustness, especially under demanding manoeuvres. This technique,
once considered difficult to implement due to the constraints of conventional
powertrains, has become much more feasible with the advent of electric vehicles.
In particular, the adoption of four in-wheel motors unlocks an exceptionally wide
margin of application, since each wheel torque can be commanded independently
and with high bandwidth.

A well-known drawback of in-wheel architectures is the increase in unsprung
masses, as the electric machines are directly integrated into the wheel hubs. Higher
unsprung mass can be potentially detrimental because it amplifies the transmission
of road irregularities to the vehicle body, reducing ride comfort and deteriorat-
ing tire-road contact at high frequencies. These effects may negatively impact
both vertical dynamics and handling performance. However, several studies (see,
for example [3]) have shown that the overall vehicle dynamics of in-wheel and
on-board motor architectures are largely comparable. In particular, the work
by H. de Carvalho Pinheiro, A. Messana and M. Carello demonstrates through
multibody analyses that the impact of increased unsprung mass on lateral and
vertical dynamics remains limited, suggesting that the handling benefits of TV can
be fully exploited without substantial degradation of comfort or safety.

In the present implementation, the TV controller was designed as a dual pro-
portional action:

Mz = Khe eψ +Kyr eψ̇, (5.9)

where eψ is the heading error and eψ̇ is the yaw rate error. The resulting yaw
moment demand Mz is then mapped into individual wheel torques according to
the relation:

Tij = Mz · 2 rw
t

·
è
1 −1 1 −1

é
, (5.10)

where rw denotes the wheel radius and t the track width. The four elements of the
vector correspond respectively to the front-left, front-right, rear-left, and rear-right
wheels.

The obtained wheel torque contributions are superimposed onto the baseline
longitudinal torques generated by the cruise control system. The latter, in the
present work, is implemented as a simple proportional controller on the velocity
tracking error. This choice was considered sufficient, as the focus of the study is
primarily on the lateral dynamics of the vehicle.

Torque Vectoring represents a control strategy aimed at generating an additional
yaw moment through the differential distribution of wheel torques. This technique
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is particularly relevant in the context of electric vehicles, where the presence of
in-wheel motors or, more generally, independent torque control on each axle enables
a fine modulation of the longitudinal forces. In the case of path tracking, however,
the role of the TV must be carefully reconsidered. Unlike steering-based control
actions, a feedforward contribution is not meaningful in this context. The reason
lies in the nature of the yaw moment demand: depending on the specific maneuver,
the control objective may either require the amplification of the vehicle’s natural
yaw response (for instance, to improve agility in tight cornering) or, conversely,
the suppression of the yaw moment (to stabilize the vehicle in conditions close
to instability). Consequently, the control action cannot be defined a priori with
a fixed sign, as the same feedforward law could be beneficial in one scenario and
harmful in another. For this reason, the torque vectoring input must necessarily
follow the instantaneous yaw error, ensuring that the correction is dynamically
adapted to the vehicle’s actual behavior.

This consideration highlights an important conceptual difference between torque
vectoring and steering-based controllers. While the latter can rely on a predictable
geometric relationship between steering angle, curvature and trajectory, torque-
based control acts directly on the balance of lateral forces, which is strongly
influenced by nonlinear effects such as tire saturation, load transfer and road
friction conditions. As a result, the control allocation must remain fully feedback-
driven, with the possibility of integrating adaptive or gain-scheduled structures to
cope with varying operating conditions.

Moreover, the adoption of TV is not without trade-offs. On one side, it offers clear
advantages in terms of stability, maneuverability and the possibility of achieving a
decoupled control of yaw and lateral dynamics. On the other side, the actuation of
differential torques requires high-bandwidth power electronics and accurate current
control of the electric machines, in addition to raising concerns about the additional
energy consumption compared to pure steering interventions. Another practical
limitation lies in the asymmetric thermal load on the electric machines, which could
lead to problems in prolonged maneuvers if not properly managed.

In summary, torque vectoring represents a powerful complement to conventional
steering strategies for path tracking, but its effective integration requires a purely
feedback-oriented formulation. Only by linking the yaw moment demand directly
to the yaw rate error can the controller ensure that the corrective action is properly
aligned with the stability and maneuverability requirements of the vehicle.
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Considering that our vehicle is four-wheel-drive, equipped with an independent
electric motor for each wheel, it is assumed that every motor can provide the same
maximum torque in traction and in regeneration:

T+
i,max(ωi) =

---T−
i,max(ωi)

--- = Ti,max(ωi), i ∈ {FL, FR,RL,RR}.

The sum of the maximum deliverable torques is therefore

S(ω) =
4Ø
i=1

Ti,max(ωi).

Given a reference value of total longitudinal torque T req, the residual margin
available for yaw moment generation results in

Sresidual(ω, T req) = S(ω) −
---T req---,

with the condition Sresidual ≥ 0.
The geometric gain of conversion between lateral torque differences and yaw

moment is defined as
Ktv = t

2Rw

,

where t is the track width and Rw the wheel radius.
Therefore, the yaw moment saturation limits are

Mz,max(ω, T req) = Ktv max
1
0, S(ω) −

---T req---2 ,
Mz,min(ω, T req) = −Mz,max(ω, T req).
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Figure 5.5: Mz domain.

The admissible domain in the (T req,Mz) plane thus takes the form of a diamond-
shaped polygon, centered at the origin and symmetric with respect to both axes. Its
vertices are determined by the available torque limits and by the vehicle geometry.
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5.5 Four-Wheel Steering with Torque Vectoring
(4WS + TV)

The final configuration combines four-wheels steering with torque vectoring, thus
exploiting the simultaneous action of three independent control actuators. This
represents the most complex architecture investigated, since the steering angles of
both axles and the differential torque distribution must be coordinated within a
single control framework.

The rationale behind this integration lies in the complementary benefits offered
by the two approaches. On one side, four-wheel steering (4WS) provides direct
geometric control of the vehicle trajectory, enabling improved maneuverability at
low speeds and enhanced stability at higher speeds. On the other side, torque
vectoring (TV) introduces an additional degree of freedom by directly acting on
the yaw dynamics, allowing the controller to stabilize the vehicle or amplify its
agility in situations where steering alone may not suffice. The synergistic effect
of both actuators promises significant improvements in terms of path tracking
performance, especially in demanding maneuvers where steering authority or tire
saturation would otherwise limit the achievable accuracy.

It must be emphasized, however, that this configuration cannot be obtained
by a simple superposition of the previously designed controllers. The tuning of
gains and the definition of the lookahead distance need to be revisited from scratch,
considering the strong interaction between the two actuators. In fact, parameters
that proved optimal in the standalone 4WS or 2WS+TV architectures may lead
to suboptimal or even conflicting behaviors when combined, as the control action
must now be shared and coordinated across multiple channels. For this reason,
a dedicated optimization process was carried out, including the retuning of the
front axle steering law, to identify a configuration capable of exploiting the joint
potential of steering and torque distribution.

From a control design perspective, this dual-actuation system also poses addi-
tional challenges. The allocation of control effort between steering and yaw moment
generation is not unique and must be carefully balanced to avoid redundancy or
excessive actuation demand. Furthermore, the interaction between lateral force
generation at the tires and the induced yaw moment introduces nonlinear couplings
that require a robust and adaptive approach to guarantee consistent performance
over a wide range of operating conditions.

Despite the higher complexity, the results obtained with the 4WS + TV controller
highlight the promising nature of this technology. The combined use of geometric
trajectory correction and direct yaw moment control allows for the minimization of
both cross-track and heading errors, while maintaining a good compromise between
agility and stability. This architecture therefore represents the most advanced
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solution among those investigated, and it clearly demonstrates the potential of
coordinated multi-actuator control for future autonomous driving applications.

Table 5.1: Controller gains for different architectures.

Controller Kp Front Kd Front Kp Rear Kd Rear KFF Gain Kp TV Kd TV

PD + FF 2WS 40 50 0 0 0 0 0

4WS 70 50 -30 -3 0 0 0

4WS + FF 70 50 -30 -3 -71.11 0 0

2WS + TV 40 50 0 0 0 -120 -70

4WS + TV 25 20 -30 -3 -82.22 -160 -80
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5.6 LQR Controller (Proposal for future applica-
tion)

The Linear Quadratic Regulator (LQR) is an optimal control technique designed
to minimize a cost function that balances two main objectives:

1. Reducing the energy of the state signal, which improves system performance
and reduces oscillations.

2. Reducing the energy of the control input, which helps limit energy consumption
and keep the control effort within acceptable bounds.

These objectives are expressed as two integrals over time:
• The first one measures the weighted energy of the states using the matrix Q.

• The second one measures the weighted energy of the control inputs using the
matrix R.

The weighting matrices Q and R play a crucial role because they allow us to
manage the trade-off between system performance and control effort. Increasing Q
emphasizes the importance of keeping the states small (leading to faster convergence
and fewer oscillations), while increasing R penalizes large control inputs (reducing
energy consumption and command effort).

5.6.1 LQR Problem Formulation
The LQR problem can be formulated as finding the control input u(t) that minimizes
the following cost function:

J(u, x) =
Ú ∞

0

1
x(t)TQx(t) + u(t)TRu(t)

2
dt (5.11)

subject to the system dynamics:

ẋ(t) = Ax(t) +Bu(t), x(0) = x0 (5.12)

The solution of this optimization problem, under the assumption that the pair
(A,B) is controllable, leads to an optimal control law of the form:

u∗(t) = −Kx(t) (5.13)

where the gain matrix K is given by:

K = R−1BTP (5.14)

and P is the solution of the Algebraic Riccati Equation:

ATP + PA+Q− PBR−1BTP = 0 (5.15)
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5.6.2 Choosing Q and R

The initial choice of the elements of Q and R is guided by system requirements:

• If there are specific performance requirements on a state xi, set Qii > 0;
otherwise, Qii = 0.

• If there are constraints on the control input ui, set Rii > 0; otherwise, Rii = 0.

The final tuning is typically done through a trial-and-error process:

• Increasing Qii → reduces state energy → decreases oscillations and convergence
time.

• Increasing Rii → reduces control effort → decreases command energy and
energy consumption.

In MATLAB, the LQR gain can be computed using:

K = lqr(A,B,Q,R) (5.16)

5.6.3 Control Structure: Feedback and Feedforward
In general, the control vector U is composed of two parts:

U = Ub + Uf (5.17)

The feedback component is based on the LQR law:

Ub = −KX (5.18)

The feedforward component is designed to eliminate steady-state errors:

uf = Kff · κ (5.19)

where κ is the path curvature and Kff is the feedforward gain.

Design Principles:

• For the 2WS configuration, the feedforward gain is computed to cancel the
steady-state cross-track error.

• For the 4WS configuration, two feedforward gains are introduced to satisfy
two conditions: zero cross-track error and zero heading error.

• For 2WS + torque vectoring, only the feedforward for the front wheels
steering command is used.
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• For 4WS + torque vectoring, same condition for the 4WS only:

ect = 0, eψ = 0 (5.20)

corresponding to zero cross-track error and zero heading error.

The computation of the feedforward gains has been carried out using MATLAB
Symbolic Toolbox.

5.6.4 2WS Controller
The state-space matrices are defined as:

A =



0 1 0 0

0 −2(cf + cr)
mvx

2(cf + cr)
m

2(bcr − acf )
mvx

0 0 0 1

0 2(bcr − acf )
Jvx

2(cfa− crb)
J

−2(cfa2 + crb
2)

Jvx


(5.21)

B1 =


0

2cf
m
0

2cfa
J

 , B2 =



0

−vx + 2(bcr − cfa)
mvx

0

−2(cfa2 + crb
2)

Jvx


(5.22)

The feedback gain is computed as:

KLQR = lqr(A,B1, Q,R) (5.23)

The steady-state feedforward gain is obtained by solving:

Xss = −(A−B1K)−1(B1Kff +B2vx)KL (5.24)

Solving:
solve

1
[Xss(1) = 0], [Kff ]

2
(5.25)

The resulting analytical expression is:

Kff = mv2
x

(a+ b)

A
b

2cf
− a

2cr
+ a

2cr
k3

B
+ (a+ b− bk3) (5.26)

This gain ensures zero cross-track error at steady state.
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5.6.5 4WS Controller
The A matrix remains the same, while the input matrix B1 becomes:

B1 =



0 0
2cf
m

2cr
m

0 0
2cfa
J

−2crb
J

 (5.27)

The feedforward gains Kff1 and Kff2 are computed by imposing:

Xss = −(A−B1K)−1(B1Kff +B2vx)KL (5.28)

Solving:
solve

1
[Xss(1) = 0, Xss(3) = 0], [Kff1, Kff2]

2
(5.29)

Final expressions:

Kff,f = 2cfa2 + 2bcfa+ bmv2
x

2cf (a+ b) (5.30)

Kff,r = −2crb2 + 2acrb− amv2
x

2cr(a+ b) (5.31)

These gains ensure zero cross-track error as well as zero heading error at steady
state.

5.6.6 2WS + TV Controller
The state-space formulation is extended by including the yaw moment Mz produced
through torque vectoring. The state matrix A remains the same as in Eq. (5.21),
while the input matrix B1 becomes:

B1 =



0 0
2cf
m

0
0 0

2cfa
J

1
J


, (5.32)

where the first column corresponds to the steering angle δ and the second column
to the external yaw moment Mz.
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The relation between Mz and the wheel torques is defined as

Mz = tf
2R (TFR − TFL) + tr

2R (TRR − TRL) , (5.33)

with tf and tr being the front and rear track widths, and R the wheel radius.
Introducing weighting coefficients wf and wr (wf+wr = 1), the torque differences

per axle are

∆Tf = 2R
tf

wf Mz, (5.34)

∆Tr = 2R
tr
wrMz. (5.35)

Finally, the wheel torques are obtained as

TFR = T 0
FR + 1

2∆Tf , TFL = T 0
FL − 1

2∆Tf , (5.36)
TRR = T 0

RR + 1
2∆Tr, TRL = T 0

RL − 1
2∆Tr, (5.37)

where T 0
(·) are the base.

5.6.7 4WS + TV Controller
In this case, the vehicle is equipped with both front and rear steering and torque
vectoring. The state matrix A remains unchanged with respect to the previous
formulations, while the input matrix B1 becomes:

B1 =



0 0 0
2cf
m

2cr
m

0
0 0 0

2cfa
J

−2crb
J

1
J


, (5.38)

where the first and second columns correspond to the steering angles δf and δr,
while the third column corresponds to the external yaw moment Mz generated by
torque vectoring.

The mapping between Mz and the wheel torques is the same as in the 2WS +
TV case:

Mz = tf
2R (TFR − TFL) + tr

2R (TRR − TRL) . (5.39)
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By introducing the front and rear weighting coefficients wf and wr (wf +wr = 1),
the torque differences per axle are:

∆Tf = 2R
tf

wf Mz, (5.40)

∆Tr = 2R
tr
wrMz. (5.41)

The final wheel torques are then obtained as

TFR = T 0
FR + 1

2∆Tf , TFL = T 0
FL − 1

2∆Tf , (5.42)
TRR = T 0

RR + 1
2∆Tr, TRL = T 0

RL − 1
2∆Tr, (5.43)

where T 0
(·) represent the baseline traction/braking torques.

In this case, similarly to what happens for the PD controllers, there is the
need for a whole retuning. The lqr command anyway helps in this sense since
it automatically computes the new state feedback gains taking into account the
influence of the newer added terms.
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Chapter 6

Experimental results

6.1 Gain Scheduling Approach
One of the main challenges in the design of path tracking controllers for autonomous
vehicles is the strong dependence of vehicle dynamics on the longitudinal velocity.
In particular, the effectiveness of control actions applied through steering or torque
vectoring actuators may vary significantly depending on the operating point of
the vehicle. A controller tuned at a fixed speed may therefore result in degraded
performance or even instability when the velocity changes. To overcome this
limitation, a gain scheduling strategy was introduced.

Gain scheduling consists in designing the controller parameters as explicit
functions of a measurable scheduling variable, typically the longitudinal velocity
of the vehicle. Instead of relying on a single set of proportional and derivative
gains, the control law is adapted continuously by interpolating among different
values of the gains, which are pre-tuned at selected operating conditions. This
approach enables the controller to maintain robust and consistent performance
across a wide range of speeds, guaranteeing stability at low velocity and accuracy
at higher velocity, where the path tracking task becomes more demanding.

From a practical standpoint, the gain scheduling procedure adopted in this work
involved the following steps:

1. Identification of the most representative operating points in terms of vehicle
speed (from 5 to 30 km/h, with increments of 5 km/h).

2. Optimization and fine-tuning of the controller gains at each operating point,
using a combination of simulation-based sensitivity analysis and performance
indices (cross-track error, heading error, and sideslip angle).

3. Definition of a set of look-ahead distances, consistently scheduled with ve-
locity, to ensure that the trajectory preview used in the control law scales
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proportionally with the dynamics of the vehicle.

4. Implementation of a continuous interpolation mechanism to guarantee smooth
transitions between different operating points, avoiding discontinuities in
control effort and ensuring a natural adaptation of the vehicle behaviour.

The resulting gain scheduling maps are reported in Table 6.1, where for each
velocity the corresponding gain and look-ahead distance are listed. These values
were later embedded in the Simulink control architecture, enabling automatic
adaptation of the path tracking controller as a function of velocity.

Table 6.1: Gain scheduling maps for path tracking controller.

Velocity [km/h] Kp [-] Kd [-] Look-ahead [m] Max |CTE| [m] RMS CTE [m]

5 500 500 0.00 0.15 0.05

10 300 300 0.10 0.16 0.07

15 150 150 0.65 0.19 0.08

20 60 60 1.70 0.45 0.20

25 45 45 2.40 0.34 0.18

30 40 40 3.50 0.40 0.15

It is important to underline that, although the gain scheduling framework was
developed and validated across a wide range of velocities, the subsequent analyses
presented in this work – concerning the comparison of different control strategies
and actuator configurations – were all conducted at the maximum attainable
speed of the vehicle, namely 30 km/h. This choice was motivated by the fact
that operating at the velocity limit represents the most challenging condition for
path tracking: the vehicle dynamics are more demanding, actuator authority is
more critical, and the sensitivity to modelling uncertainties increases. Therefore,
evaluating the controllers at this operating point allows assessing their robustness
and performance in the most severe scenario, ensuring that any improvement
observed in this condition will also translate into effective performance at lower
speeds.
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6.2 PD + FF 2WS
Soft circuit:

Figure 6.1: Results obtained from the PD + FF 2WS controller (Soft Circuit).

— KPIs —

• Max |CTE| [m] : 0.397

• RMS CTE [m] : 0.148

• Max |β| [deg] : 2.836

• RMS β [deg] : 1.315

• Max |HE| [deg] : 15.613

• RMS HE [deg] : 6.953

• Max |∆Front| [deg] : 186.281

• RMS ∆Front [deg] : 88.710
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• Max |∆Rear| [deg] : 0.000

• RMS ∆Rear [deg] : 0.000
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Sharp circuit:

Figure 6.2: Results obtained from the PD + FF 2WS controller (Sharp Circuit).

— KPIs —

• Max |CTE| [m] : 0.661

• RMS CTE [m] : 0.217

• Max |β| [deg] : 3.500

• RMS β [deg] : 1.349

• Max |HE| [deg] : 15.546

• RMS HE [deg] : 5.552

• Max |∆Front| [deg] : 260.907

• RMS ∆Front [deg] : 98.685

• Max |∆Rear| [deg] : 0.000
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• RMS ∆Rear [deg] : 0.000

From these first two sets of results it is possible to state that the 2WS configu-
ration can be sufficient if the reference trajectory doesn’t provide struggles. As far
as the so called " Sharp circuit ", we reach almost 70 cm of peak in lateral error
which is not at all acceptable. The controller, in its simplicity, can be considered a
good benchmark for other strategies but has to be improved.
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6.3 4WS pure feedback
Soft circuit:

Figure 6.3: Results obtained from the 4WS controller (Soft Circuit).

— KPIs —

• Max |CTE| [m] : 0.330

• RMS CTE [m] : 0.120

• Max |β| [deg] : 2.828

• RMS β [deg] : 1.303

• Max |HE| [deg] : 13.063

• RMS HE [deg] : 4.997

• Max |∆Front| [deg] : 191.721

• RMS |∆Front| [deg] : 88.916
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• Max |∆Rear| [deg] : 26.310

• RMS |∆Rear| [deg] : 4.686
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Sharp circuit:

Figure 6.4: Results obtained from the 4WS controller (Sharp Circuit).

— KPIs —

• Max |CTE| [m] : 0.561

• RMS CTE [m] : 0.195

• Max |β| [deg] : 3.342

• RMS β [deg] : 1.363

• Max |HE| [deg] : 16.300

• RMS HE [deg] : 5.499

• Max |∆Front| [deg] : 247.200

• RMS |∆Front| [deg] : 98.298

• Max |∆Rear| [deg] : 19.784
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• RMS |∆Rear| [deg] : 4.803

For these and the following considerations, the heading error was also evaluated
with a lookahead distance, so that the control action could become in some sense
predictive. This explains the slightly increased values with respect to the benchmark
case.

The 4WS technology proved to be effective in reducing the lateral error, which
represents the main goal of the proposed path tracking task. However, this
improvement comes at the cost of a limited contribution from the rear steering
angle: the imposed control gains were kept small. A detailed sensitivity analysis
was carried out, showing that for larger rear steering feedback contributions, the
system progressively approached instability.

As already mentioned in the reference section, the rear steering control is based
only on a feedback Proportional–Derivative action on the yaw rate error. In order
to provide the rear steering with greater influence on the overall dynamics, it was
therefore considered appropriate to introduce a feedforward contribution, which is
presented in the following.
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6.4 4WS with feedforward and feedback
Soft circuit:

Figure 6.5: Results obtained from the 4WS with feedforward (Soft Circuit).

• Max |CTE| [m] : 0.272

• RMS CTE [m] : 0.094

• Max |β| [deg] : 2.137

• RMS β [deg] : 0.989

• Max |HE| [deg] : 11.251

• RMS HE [deg] : 4.717

• Max |∆Front| [deg] : 184.134

• RMS |∆Front| [deg] : 86.079
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• Max |∆Rear| [deg] : 17.456

• RMS |∆Rear| [deg] : 5.200
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Sharp circuit:

Figure 6.6: Results obtained from the 4WS with feedforward (Sharp Circuit).

— KPIs —

• Max |CTE| [m] : 0.395

• RMS CTE [m] : 0.117

• Max |β| [deg] : 2.762

• RMS β [deg] : 1.079

• Max |HE| [deg] : 16.449

• RMS HE [deg] : 5.180

• Max |∆Front| [deg] : 228.123

• RMS |∆Front| [deg] : 92.881

• Max |∆Rear| [deg] : 27.935
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• RMS |∆Rear| [deg] : 5.762

From the analysis carried out so far, it clearly emerges that the introduction of
a feedforward contribution is not only beneficial, but almost essential for achieving
satisfactory path tracking performance. The main advantage lies in the fact that
the feedforward term directly accounts for the deterministic component of the
trajectory, which is strongly related to the reference curvature. As a consequence,
the feedback loop is relieved from the task of compensating steady-state errors,
and can instead focus exclusively on the suppression of dynamic disturbances and
unpredictable variations. This leads to reduced control effort, smoother actuator
commands, and an overall more stable closed-loop behaviour.

Another aspect worth underlining is that the presence of feedforward makes the
controller inherently more predictive. Rather than reacting to an error that has
already developed, the system anticipates the required steering action based on the
reference geometry. This results in a noticeable reduction of tracking errors, both
in terms of peak and root-mean-square values, as already highlighted by the KPI
analysis.

For these reasons, the feedforward contribution is considered a convenient and
robust design choice. Its use will therefore be retained also in the following
formulations involving torque vectoring. In this context, the combination of an
anticipative control action and the additional yaw moment generation capability is
expected to provide further improvements in terms of lateral error reduction, yaw
stability, and overall robustness of the control architecture.
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6.5 2WS + TV
Soft circuit:

Figure 6.7: Results obtained from the 2WS + TV controller (Soft Circuit).

— KPIs —

• Max |CTE| [m] : 0.236

• RMS CTE [m] : 0.097

• Max |β| [deg] : 2.686

• RMS β [deg] : 1.237

• Max |HE| [deg] : 12.059

• RMS HE [deg] : 4.933

• Max |∆Front| [deg] : 181.641

• RMS |∆Front| [deg] : 86.610
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• Max |∆Rear| [deg] : 0.000

• RMS |∆Rear| [deg] : 0.000

Figure 6.8: Yaw moment command (Soft Circuit).
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Figure 6.9: Torques at wheel level (Soft Circuit).
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Sharp circuit:

Figure 6.10: Results obtained from the 2WS + TV controller (Sharp Circuit).

— KPIs —

• Max |CTE| [m] : 0.463

• RMS CTE [m] : 0.144

• Max |β| [deg] : 3.410

• RMS β [deg] : 1.233

• Max |HE| [deg] : 17.388

• RMS HE [deg] : 5.231

• Max |∆Front| [deg] : 248.245

• RMS |∆Front| [deg] : 94.877

• Max |∆Rear| [deg] : 0.000
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• RMS |∆Rear| [deg] : 0.000

Figure 6.11: Yaw moment command (Sharp Circuit).
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Figure 6.12: Torques at wheel level (Sharp Circuit).
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The results obtained on the Soft Circuit with the 2WS + TV controller represent
the best performance achieved in the entire project, with a maximum lateral
deviation of approximately 23 cm. This clearly demonstrates the effectiveness of
torque vectoring as an additional actuator for enhancing path tracking.

A closer inspection of the results shows that the torque vectoring activity can be
further increased, since the wheel torque differences never reach values of hundreds
of Newton-meters, and the commanded yaw moment remains relatively low. This
observation indicates that the system still has unused potential for generating
additional corrective yaw moments. Nevertheless, the outcome is fully consistent
with the initial design philosophy: starting from a working 2WS controller and
progressively adding one actuator at a time, without altering the original control
action. As a consequence, the majority of the path tracking performance is still
provided by the front steering, while torque vectoring acts as an auxiliary input
that improves stability and error reduction, but in a controlled and limited manner.

A sensitivity analysis was also performed, and it confirmed that increasing
the TV controller gains beyond the chosen values quickly led the system towards
instability. This underlines that the presented tuning already represents the optimal
trade-off for the Soft Circuit. It can therefore be considered the best achievable
result in this scenario. For the Sharp Circuit, there might still be room for further
improvement by exploiting more aggressive torque vectoring actions; however, such
an approach would come at the risk of deteriorating the performance on the Soft
Circuit, and therefore must be evaluated carefully.
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6.6 4WS + TV
Soft circuit:

Figure 6.13: Results obtained from the 4WS + TV controller (Soft Circuit).

— KPIs —

• Max |CTE| [m] : 0.363

• RMS CTE [m] : 0.126

• Max |β| [deg] : 2.092

• RMS β [deg] : 0.906

• Max |HE| [deg] : 11.848

• RMS HE [deg] : 4.532

• Max |∆Front| [deg] : 177.237

• RMS |∆Front| [deg] : 82.894
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• Max |∆Rear| [deg] : 19.490

• RMS |∆Rear| [deg] : 4.901
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Sharp circuit:

Figure 6.14: Results obtained from the 4WS + TV controller (Sharp Circuit).

— KPIs —

• Max |CTE| [m] : 0.2843

• RMS CTE [m] : 0.1295

• Max |HE| [deg] : 14.8841

• RMS HE [deg] : 5.3458

• Max |β| [deg] : 2.9053

• RMS β [deg] : 1.3663

• RMS δf [deg] : 93.3938

• RMS δr [deg] : 6.5184

• RMS δ̇f [deg/s] : 106.8857

• RMS δ̇r [deg/s] : 13.5477
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Global Comparison of Control Architectures
Once the performance indicators have been collected for each controller architecture,
it becomes essential to move from an isolated analysis of the single results to a more
comprehensive overview. The rationale behind this approach is that the numerical
values reported for each configuration, although useful in absolute terms, acquire
their true significance only when placed in direct comparison with one another. In
fact, it is only through such a relative perspective that the role and the contribution
of each actuator can be properly assessed, allowing us to understand whether a
given performance improvement is primarily attributable to front steering, rear
steering, or torque vectoring.

It must be stressed that the objective of the present work is not to identify
an absolute "winner" among the different control logics, but rather to highlight
the relative importance of each actuator within the path tracking problem. This
comparative reading is of particular interest because the present thesis is meant as
a complementary contribution to a parallel research activity, aimed at developing a
neural-network-based controller trained through imitation learning from a Nonlinear
Predictive Model Control (NMPC) policy. The NMPC is widely acknowledged
as the current state-of-the-art solution in terms of path tracking performance;
however, its application is often hindered by the severe computational burden and
the consequent challenges in real-time implementation. The imitation learning
approach aims precisely at overcoming this limitation, transferring the control
policy learned from the NMPC into a neural network that can be deployed efficiently
in real-time environments.

In this context, the results obtained with the more classical linear control
architectures (PD + FF, 4WS, 4WS + FF, 2WS + TV, 4WS + TV) should
not be considered as stand-alone solutions, but as fundamental references for
understanding the dynamics of the system and the respective contribution of each
actuator. For this reason, it is appropriate to plot, alongside the results presented
so far, also the outcomes obtained from the neural network controllers. By placing
the neural networks on the same performance maps as the conventional controllers,
it becomes possible to carry out a truly meaningful comparative analysis, where
the relative weight of each actuator is put into perspective against the behavior
of a learning-based strategy inspired by an NMPC. This holistic view not only
provides clarity on the incremental benefits offered by each actuator, but also helps
frame the classical approaches as a necessary stepping stone towards advanced
machine-learning-based control solutions.
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Table 6.2: KPIs for each controller in the SOFT CIRCUIT.

controller MAX ect [m] RMS ect [m] MAX eh [deg] RMS eh [deg] MAX β [deg] RMS β [deg] RMS δf [deg] RMS δr [deg] RMS δ̇f [deg/s] RMS δ̇r [deg/s]

PD+FF 2WS 0.393 (+0%) 0.157 (+0%) 16.81 (+0%) 7.51 (+0%) 2.89 (+0%) 1.37 (+0%) 94.2 (+0%) - 93 (+0%) -

NN 2WS 0.269 (-32%) 0.123 (-21%) 15.89 (-6%) 7.33 (-2%) 3.29 (+14%) 1.45 (+6%) 94.6 (+0%) - 90 (-3%) -

NN+PD 2WS 0.286 (-27%) 0.120 (-24%) 12.58 (-25%) 5.12 (-32%) 3.49 (+20%) 1.40 (+2%) 92.8 (-1%) - 87 (-7%) -

PD 4WS 0.330 (-16%) 0.120 (-23%) 13.10 (-22%) 4.99 (-34%) 2.83 (-2%) 1.30 (-5%) 93.5 (-1%) 4.6 91 (-2%) 12

PD+FF 4WS 0.272 (-31%) 0.094 (-40%) 11.30 (-33%) 4.72 (-37%) 2.14 (-26%) 0.99 (-28%) 90.2 (-4%) 6.1 89 (-5%) 12

NN 4WS 0.263 (-33%) 0.093 (-41%) 11.58 (-31%) 4.73 (-37%) 1.74 (-40%) 0.40 (-71%) 72.6 (-23%) 24.1 85 (-9%) 27

NN+PD 4WS 0.242 (-38%) 0.109 (-31%) 11.86 (-29%) 4.91 (-35%) 1.14 (-61%) 0.38 (-73%) 71.8 (-24%) 24.4 84 (-10%) 26

PD TV 2WS 0.236 (-40%) 0.097 (-38%) 12.10 (-28%) 4.93 (-34%) 2.69 (-7%) 1.24 (-10%) 91.9 (-2%) - 92 (-2%) -

NN TV 2WS 0.285 (-27%) 0.118 (-25%) 12.26 (-27%) 5.27 (-30%) 3.95 (+36%) 1.47 (+7%) 92.6 (-2%) - 97 (+4%) -

PD TV 4WS 0.363 (-8%) 0.126 (-20%) 11.80 (-30%) 4.53 (-40%) 2.09 (-28%) 0.91 (-34%) 87.4 (-7%) 5.8 90 (-4%) 12

Table 6.3: KPIs for each controller in the SHARP CIRCUIT.

controller MAX ect [m] RMS ect [m] MAX eh [deg] RMS eh [deg] MAX β [deg] RMS β [deg] RMS δf [deg] RMS δr [deg] RMS δ̇f [deg/s] RMS δ̇r [deg/s]

PD+FF 2WS 0.657 (+0%) 0.229 (+0%) 17.50 (+0%) 6.09 (+0%) 3.73 (+0%) 1.48 (+0%) 103.0 (+0%) - 111 (+0%) -

NN 2WS 0.485 (-26%) 0.172 (-25%) 16.42 (-6%) 5.42 (-11%) 3.68 (-1%) 1.60 (+8%) 100.2 (-3%) - 106 (-5%) -

NN+PD 2WS 0.487 (-26%) 0.140 (-39%) 18.21 (+4%) 5.55 (-9%) 3.43 (-8%) 1.51 (+2%) 100.4 (-3%) - 102 (-8%) -

PD 4WS 0.561 (-15%) 0.195 (-15%) 16.30 (-7%) 5.55 (-9%) 3.50 (-6%) 1.35 (-9%) 102.0 (-1%) 5.4 106 (-4%) 13

PD+FF 4WS 0.395 (-40%) 0.117 (-49%) 16.45 (-6%) 5.50 (-10%) 2.76 (-26%) 1.08 (-27%) 97.0 (-6%) 6.3 107 (-4%) 15

NN 4WS 0.333 (-49%) 0.132 (-42%) 16.87 (-4%) 5.40 (-11%) 1.11 (-70%) 0.38 (-74%) 79.9 (-22%) 25.6 100 (-10%) 30

NN+PD 4WS 0.240 (-63%) 0.087 (-62%) 17.22 (-2%) 5.17 (-15%) 1.41 (-62%) 0.51 (-65%) 79.4 (-23%) 23.3 94 (-15%) 29

PD TV 2WS 0.463 (-29%) 0.144 (-37%) 17.39 (-1%) 5.23 (-14%) 3.41 (-9%) 1.23 (-17%) 99.1 (-4%) - 108 (-3%) -

NN 2WS TV 0.362 (-45%) 0.155 (-32%) 18.98 (+8%) 5.67 (-7%) 4.30 (+15%) 1.53 (+3%) 98.9 (-4%) - 121 (+9%) -

PD TV 4WS 0.284 (-57%) 0.130 (-44%) 14.88 (-15%) 5.35 (-12%) 2.91 (-22%) 1.37 (-8%) 93.4 (-9%) 6.5 107 (-4%) 14
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SHARP CURVE

controller MAX ect [m] RMS ect [m] MAX eh [deg] RMS eh [deg] MAX β [deg] RMS β [deg] RMS δf [deg] RMS δr [deg] RMS δ̇f [deg/s] RMS δ̇r [deg/s]

PD+FF 2WS 0.657 (+0%) 0.361 (+0%) 17.50 (+0%) 7.62 (+0%) 3.73 (+0%) 1.66 (+0%) 130.3 (+0%) - 165 (+0%) -

NN 2WS 0.485 (-26%) 0.278 (-23%) 16.42 (-6%) 6.07 (-20%) 3.68 (-1%) 1.71 (+3%) 115.7 (-11%) - 138 (-16%) -

NN+PD 2WS 0.487 (-26%) 0.240 (-33%) 18.21 (+4%) 6.75 (-11%) 3.43 (-8%) 1.53 (-8%) 118.2 (-9%) - 137 (-17%) -

PD 4WS 0.445 (-32%) 0.232 (-36%) 16.85 (-4%) 7.31 (-4%) 3.36 (-10%) 1.68 (+1%) 119.1 (-9%) 6.7 114 (-31%) 52

PD+FF 4WS 0.225 (-66%) 0.102 (-72%) 18.75 (+7%) 6.41 (-16%) 2.98 (-20%) 1.44 (-13%) 119.3 (-8%) 8.6 111 (-33%) 15

NN 4WS 0.229 (-65%) 0.136 (-62%) 16.87 (-4%) 6.34 (-17%) 1.11 (-70%) 0.45 (-73%) 99.2 (-24%) 26.9 144 (-12%) 39

NN+PD 4WS 0.189 (-71%) 0.105 (-71%) 17.22 (-2%) 5.96 (-22%) 1.38 (-63%) 0.60 (-64%) 95.4 (-27%) 25.0 125 (-24%) 38

PD TV 2WS 0.455 (-31%) 0.231 (-36%) 19.14 (+9%) 6.74 (-12%) 3.77 (+1%) 1.78 (+7%) 122.5 (-6%) - 109 (-34%) -

NN TV 2WS 0.362 (-45%) 0.222 (-38%) 18.98 (+8%) 6.51 (-15%) 3.43 (-8%) 1.56 (-6%) 113.2 (-13%) - 138 (-16%) -

PD TV 4WS 0.198 (-70%) 0.098 (-73%) 14.88 (-15%) 5.38 (-29%) 2.91 (-22%) 1.47 (-11%) 110.8 (-15%) 8.6 107 (-35%) 14

The design of the gains for each controller was carried out with the clear intention
of identifying the most appropriate trade-off between the complexity of the design
process and the accuracy of the resulting performance. This principle represents,
in many respects, the very core of the engineering mindset: it is rarely sufficient
to pursue accuracy alone, and it is equally unwise to overemphasize simplicity at
the expense of performance. Instead, the true art of control system design lies
in the balanced compromise between these two aspects. Within the context of
the present work, this philosophy has been reflected in the systematic tuning of
the controllers, where each architecture was carefully adjusted to achieve a fair
balance between computational or structural complexity and the improvement in
path tracking accuracy.

The benefits of this approach are particularly evident in the Sharp Circuit,
where the imposed maneuver can be considered truly demanding and critical. Here,
the refined tuning of the more advanced control strategies has led to remarkable
improvements in performance. In fact, for the most critical curve of the circuit,
the peak lateral error was reduced to an astonishing value of only 20 cm, which
corresponds to an improvement of approximately 70% when compared to the
baseline configuration of the PD + FF 2WS controller used as a benchmark. Such
a drastic reduction not only highlights the effectiveness of the proposed multi-
actuator strategies, but also provides a concrete demonstration of the real value of
integrating multiple control actions in a synergistic manner.

On the other hand, the Soft Circuit presents a less extreme scenario, where
the intrinsic smoothness of the trajectory naturally attenuates the difficulties
encountered by the controllers. In this case, although improvements are still
noticeable when adopting more sophisticated configurations, the margins of gain
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are considerably smaller compared to the Sharp Circuit. In particular, it becomes
evident that configurations such as 2WS + TV or even pure 4WS can already
provide satisfactory results, without requiring the complexity of the full 4WS + TV
formulation. This observation reinforces an important consideration for engineering
practice: in less demanding operational conditions, it can be more convenient to
rely on simpler architectures, which offer adequate performance while minimizing
design, calibration, and implementation costs.

In summary, the comparative reading of the two scenarios demonstrates how the
choice of the control architecture should not be based on absolute principles, but
rather on the specific characteristics of the driving task and the operational context.
Advanced architectures reveal their full potential under harsh and challenging
maneuvers, while simpler configurations may be sufficient—and sometimes even
preferable—in smoother scenarios.

For this reason, a subsequent simulation-based analysis will be carried out,
aiming to further confirm, through a complementary environment, the validity of
the model and the effectiveness of the different controllers. This twofold validation
process, first experimental and then simulated, provides a robust and comprehensive
evaluation framework that strengthens the conclusions drawn and supports the
reliability of the proposed control solutions.
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It is also possible to extend our analysis to a more narrow comparison, only
taking into account the proposed linear controllers. In this way, it results easier
and tidier to plot also the significant quantities instead of just reporting the tables.

Soft circuit:

Figure 6.15: Overlap of results for the soft circuit.
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Figure 6.16: Histogram of cross track error, soft circuit.

It is clear to notice that the 2WS + TV is the best controller, providing the
lowest peak error as well as the highest amount of times in which the vehicle was
close to the zero lateral error condition.
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Sharp circuit:

Figure 6.17: Overlap of results for the sharp circuit.
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Figure 6.18: Histogram of cross track error, sharp circuit.

As far as the sharp circuit is concerned, the situation has to be properly analyzed.
It is true that the highest peak in the histograms is present for the benchmark 2WS
but that controller is also the one that brings the widest range of error, meaning
that the peak, for that controller is way higher with respect to other strategies such
as 4WS + FF or 4WS + TV in which, not only the peak is significantly reduced,
but the amount of times in which the vehicle is close to zero error condition is
significant too.
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6.7 Results of the LQRs
LQR 2WS

Figure 6.19: Results obtained from the LQR 2WS (Soft Circuit).

— KPIs —

• Max |CTE| [m] : 0.533

• RMS CTE [m] : 0.160

• Max |HE| [deg] : 13.720

• RMS HE [deg] : 5.547

• Max |β| [deg] : 3.057

• RMS β [deg] : 1.421

• RMS ∆f [deg] : 100.530

• RMS ∆r [deg] : 0.202
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• RMS ∆pd [deg] : 0.000

• RMS ∆̇f [deg/s] : 107.616

• RMS ∆̇r [deg/s] : 0.543

LQR 4WS

Figure 6.20: Results obtained from the LQR 4WS (Soft Circuit).

— KPIs —

• Max |CTE| [m] : 0.377

• RMS CTE [m] : 0.205

• Max |HE| [deg] : 16.742

• RMS HE [deg] : 7.655

• Max |β| [deg] : 1.117

• RMS β [deg] : 0.346

75



Experimental results

• RMS ∆f [deg] : 69.913

• RMS ∆r [deg] : 25.735

• RMS ∆pd [deg] : 0.000

• RMS ∆̇f [deg/s] : 66.895

• RMS ∆̇r [deg/s] : 26.411

The analysis of the LQR controllers highlights some important considerations.
First of all, it must be remarked that the LQR formulation completely failed when
tested on the sharp circuit, in both the 2WS and the 4WS configurations. For
this reason, the following discussion is restricted to the results obtained on the
soft circuit only. Even in this more favourable scenario, a clear deterioration of
the performance can be observed when comparing the LQR outcomes with those
obtained with the PD controllers. Both in the 2WS and in the 4WS case, the
cross–track error increases significantly, confirming that the tuning flexibility of
the PD formulation provided more robust and effective results.

Despite this general decline in performance, some useful insights can still be
extracted. The addition of the rear steering actuator within the LQR framework
did in fact prove beneficial: the maximum lateral deviation decreased from approx-
imately 53 cm in the 2WS case to about 37 cm in the 4WS case. This confirms
once more that additional actuation is valuable for improving tracking performance.
Nevertheless, when compared with the PD results, where the peak error drops from
39 cm in 2WS to 27 cm in 4WS, the superiority of the PD design becomes evident.
The enhanced tuning freedom associated with proportional–derivative structures
– particularly in their decoupled and intuitive gain design – clearly emerged as a
winning factor, allowing the controller to be successfully deployed also on the more
demanding sharp circuit, unlike the LQR.

Another interesting aspect lies in the different actuator usage patterns between
the two approaches. With the LQR design, steering angles are distributed in a
markedly different way: the front axle requires smaller steering inputs, while the
rear axle becomes more actively engaged, thus moving closer to what would be
considered an “optimal” distribution of control authority. By contrast, in the
PD framework, the philosophy was fundamentally different: the baseline 2WS
architecture was retained as a benchmark, and the influence of additional actuators
was introduced in a limited and gradual manner. As a result, the effect of 4WS or
TV was neither negligible nor dominant, but always complementary to the primary
action of the front steering.

Overall, the LQR exercise underlines two key points: on the one hand, it
confirms that additional actuators are beneficial even within a suboptimal control
architecture; on the other, it reveals the limits of the LQR design in this specific
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context, where the lack of tuning flexibility and the intrinsic coupling of the Riccati
formulation prevented the controller from achieving the same level of robustness
and adaptability that was reached with the PD approach.

77



Chapter 7

Experimental vs. Simulation
Results

7.1 1st Montecarlo Analysis
The experimental campaign provided results of remarkable quality, especially when
considering the demanding conditions under which the tests were performed. The
selected reference velocity of 30 km/h may appear modest in absolute terms, yet it
is rather significant for the considered test track. In fact, the circuit is characterized
by a sharp corner with a radius of curvature of only 10 m, which represents a highly
challenging manoeuvre for any path-tracking controller. Despite these critical
conditions, the controllers exhibited a stable behaviour, managing to keep both
the lateral and heading errors within acceptable limits throughout the tests.

In order to validate and strengthen the comparison between experimental and
numerical results, the latter were not limited to a single deterministic simulation.
Instead, a Monte Carlo analysis was performed entirely within the simulation
environment. This methodology is particularly effective in evaluating the robustness
of the control strategies, as it allows the introduction of variability in key vehicle
and environmental parameters, and consequently the observation of the system
response under perturbed conditions.

The following parameters were identified as the most influential for the considered
application:

• Road friction coefficient µ (scaled with Kµ);

• Longitudinal stiffness Cx (scaled with Kx);

• Lateral stiffness Cy (scaled with Ky);

• Vehicle mass m (increased starting from the nominal value);
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• Actuation delay τ in the steering command.

The parameters were varied according to the following ranges, consistently with
the uncertainties expected in the real system:

Kµ = linspace(0.9, 1.1, 20),
Kx = linspace(0.9, 1.1, 20),
Ky = linspace(0.9, 1.1, 20),
m = linspace(0, 40, 20),
τ = round(linspace(-10, 10, 20)).

Figure 7.1: Pairwise scatter of the Monte Carlo parameters.
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Figure 7.2: Distribution of the Monte Carlo parameters.

For each configuration, the Monte Carlo analysis generated a set of trajectories,
from which the peak and RMS values of both the lateral error and the heading
error were extracted. This procedure ensures a statistically consistent evaluation,
highlighting not only the nominal performance of each controller but also its
robustness with respect to modelling uncertainties and environmental disturbances.

The results presented in the following sections refer to the same track employed
for the experimental campaign, with the identical set of controllers under investi-
gation. This guarantees a direct comparison between experimental measurements
and simulated data, ultimately allowing for a critical assessment of the advantages
and limitations of the proposed control architectures.
The results of the Monte Carlo analysis confirm the expectations associated with
the adopted methodology. Since the perturbed parameters were varied only within
a limited neighbourhood of their nominal values, the resulting point clouds exhibit
a remarkable density and uniformity. This outcome is fully consistent with the
hypothesis of robustness of the proposed controllers: the scattering of the points
remains confined, and only a few outliers can be noticed across the different config-
urations. In other words, despite the intrinsic linearity of the considered control
strategies — which might be regarded as a “classical” approach compared to modern
nonlinear or adaptive formulations — the obtained behaviour demonstrates that
they are capable of ensuring coherent and reliable performance even under multiple
simultaneous parameter variations, both of vehicle dynamics and environmental
conditions.
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Figure 7.3: Peaks of the errors in the first Monte Carlo analysis.

Figure 7.4: Rms of the errors in the first Monte Carlo analysis.
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Another important aspect is the preservation of the same qualitative trends
that were already appreciated in the experimental campaign. Specifically, the
baseline configurations (PD + FF with two-wheel steering, and four-wheel steering
without feedforward) prove to be insufficient, as their associated error values
remain consistently higher than those of the other strategies. The introduction of a
feedforward term on the rear axle already allows for a significant reduction of both
lateral and heading errors, confirming the effectiveness of this design improvement.

Furthermore, torque vectoring once again emerges as a powerful actuator, capable
of enhancing stability and path-tracking accuracy more than the pure four-wheel
steering configuration. Finally, the combined use of both torque vectoring and four-
wheel steering yields the best overall performance, with point clouds clustered in
the lowest-error region of the plot. This final configuration thus represents the most
effective control solution among those tested, providing substantial improvements
at the cost of increased design complexity and the need for synergistic tuning of
multiple actuation channels.

Overall, the Monte Carlo analysis provides strong evidence that the proposed
architectures are not only effective under nominal conditions, but also robust
with respect to variations in vehicle parameters and environmental factors. This
robustness, combined with the observed performance hierarchy among the different
controllers, consolidates the conclusions already drawn from experimental testing
and further supports the adoption of advanced actuation strategies — such as the
integration of four-wheel steering and torque vectoring — for high-performance
path tracking.
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7.2 2nd Montecarlo Analysis
A second Monte Carlo campaign was carried out, this time conducted entirely
in a purely simulation-based environment. The set of controllers implemented at
actuator level remained unchanged, respectively: PD + FF, 2WS, 4WS, 4WS
+ FF, 2WS + TV, and 4WS + TV.

The structure of the Monte Carlo parameters was the same as in the previous
study: small variations were introduced in the friction coefficient, longitudinal and
cornering stiffnesses, total mass, and steering delay.

The reference manoeuvre considered in this second analysis was deliberately
more complex and demanding, not particularly suitable for linear path-tracking
strategies, since it pushes the vehicle dynamics close to the handling limits. The
trajectory consisted of a first straight segment, followed by two consecutive curves
with opposite directions (a right turn immediately followed by a left turn), and
then another straight segment. The two curves were separated by a very short
rectilinear portion of only 5 m and both had a radius of curvature of just 10 m.

Due to time constraints, this activity was restricted to simulation only. The
controller gains were therefore not tuned experimentally but rather extracted
directly from an optimization process, which provided the most effective results
compatible with the considered actuators.

Table 7.1: Gains adopted in the second Monte Carlo analysis.

Controller Kp Front Kd Front Kp Rear Kd Rear KFF Gain Rear Kp TV Kd TV

2WS PD + FF 6.00 21.00 0.00 0.00 0.00 0.00 0.00

4WS 0.00 45.28 -85.00 0.00 0.00 0.00 0.00

4WS + FF 0.00 43.87 0.00 -84.17 -140.88 0.00 0.00

2WS + TV 33.77 50.00 0.00 0.00 0.00 -191.80 -178.39

4WS + TV 2.22 2.91 -12.57 0.00 -55.00 -120.00 -25.85

The reference manoeuvre considered in this second analysis was deliberately
more complex and demanding, not particularly suitable for linear path-tracking
strategies, since it pushes the vehicle dynamics close to the handling limits. The
trajectory consisted of a first straight segment, followed by two consecutive curves
with opposite directions (a right turn immediately followed by a left turn), and
then another straight segment. The two curves were separated by a very short
straight portion of only 5 m and both had a radius of curvature of just 10 m.
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Figure 7.5: New trajectory.

Figure 7.6: Curvature of the new trajectory.
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Figure 7.7: Peaks of the errors in the second Monte Carlo analysis.

Figure 7.8: Rms of the errors in the second Monte Carlo analysis.
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The obtained results are consistent with expectations: the manoeuvre under
investigation is extremely demanding. A basic linear controller based on front
steering only (2WS) – but also its rear-steered counterpart (4WS) – does not achieve
satisfactory tracking performance. The inclusion of a feedforward contribution
at the rear axle significantly enhances the results, highlighting the importance of
anticipatory and constant actions. Torque Vectoring once again proves to be the
most effective actuator in terms of improving stability and accuracy. Finally, the
combined strategy 4WS + TV emerges as the most promising overall solution,
offering the highest performance across the evaluated scenarios.
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Chapter 8

Conclusions and Future
Work

8.1 Conclusions
The experimental campaign, supported by extensive simulation work, has clearly
demonstrated that the use of advanced actuators such as four–wheel steering (4WS)
and torque vectoring (TV) can provide a measurable improvement in path–tracking
performance. What emerges is a picture of high precision: deviations are to be
measured in the order of centimeters, which makes the correlation between the sim-
ulated model and the real vehicle both evident and meaningful. In fact, the model
has proven extremely valuable not only in predicting general performance trends
when parameters are modified, but also in detecting potential instability conditions
before these could manifest themselves during the physical tests. Nevertheless, it is
essential to stress that this correlation must be interpreted as primarily qualitative
rather than quantitative. It is unrealistic to expect that the exact same peak
and RMS errors in terms of cross–track and heading deviations can be obtained
repeatedly in different experimental runs, let alone when comparing simulated
and real–world conditions. Repeatability, therefore, should be considered in terms
of consistency of general behaviour, observable tendencies, and robustness of the
control architecture, rather than strict numerical equivalence. This methodological
approach is aligned with the broader literature on vehicle path tracking, where the
reliability of results is generally understood in this same qualitative framework.
From this perspective, the choice of testing the controllers on two circuits – here
referred to as the “Soft” and the “Sharp” track – has proven extremely functional.
On one side, it ensures the required scientific repeatability of results, validating the
ability of the control schemes to reproduce comparable behaviours under different
yet controlled conditions. On the other, it provides a natural benchmark to assess

87



Conclusions and Future Work

the limits of applicability of classical linear controllers when faced with increas-
ingly demanding manoeuvres. In particular, the soft track allows to appreciate
performance under relatively benign conditions, whereas the sharp track pushes
the architectures closer to their operational boundaries, revealing strengths and
weaknesses that would otherwise remain hidden. The results collected in this work
highlight that classical linear controllers remain a powerful and highly relevant tool
for vehicle path tracking. As shown by the comparative tables, even when tested
against neural networks trained via imitation learning from nonlinear predictive
model control (NMPC) – which currently represents the state–of–the–art albeit
with significant issues in real–time implementation – the gap in terms of peak
lateral and angular errors is surprisingly narrow. This strongly suggests that the
proposed architectures, despite their conceptual simplicity, are still competitive
solutions with excellent robustness and relatively low implementation costs. Fur-
thermore, the experiments confirm that the use of multiple actuators in combination
becomes particularly significant in the most challenging scenarios. For instance,
the 4WS+TV controller achieved an impressive 70% reduction in peak cross–track
error on the sharp circuit compared to the PD+FF 2WS benchmark. Conversely,
in the soft circuit the improvements remained much smaller, with reductions of
only a few percentage points. This dichotomy illustrates that in simpler scenarios a
limited control action is sufficient, and in those cases, relying on a more elementary
and less complex architecture is not only acceptable but even preferable. In other
words, complexity should be introduced only where strictly necessary to guarantee
performance. Finally, it must be recalled that the effectiveness of any controller is
highly dependent on its tuning. Gains must always be designed specifically for the
trajectory, the velocity regime, and the geometric and environmental conditions of
the vehicle. Although the Monte Carlo analysis carried out in this work showed
that, for a fixed trajectory, variations in parameters such as mass, tire stiffness,
or steering delay did not drastically alter the general trends of performance, this
does not hold true for more complex trajectories. In those cases, redesigning the
gains would be required, and similar adaptations would also likely be necessary
under different operational conditions. Therefore, the results presented here should
be regarded as both a confirmation of the robustness of classical controllers under
certain variability, and a reminder of the need for careful re–tuning when moving
towards more challenging environments.
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8.2 Future Work
While the results presented in this thesis already demonstrate the strong potential
of classical controllers enriched by advanced actuation mechanisms, a number of
promising directions remain open for future research and development. These
possibilities extend from refinements of the existing approaches to the exploration
of entirely new control paradigms, all aimed at further enhancing the effectiveness,
robustness, and adaptability of vehicle path tracking architectures.

A first natural extension concerns the exploitation of the gain scheduling frame-
work, which had already been outlined in the early stages of this project. Such an
approach could provide a valuable starting point for developing combined control
strategies capable of simultaneously managing both longitudinal and lateral dy-
namics. In this context, a more advanced tuning process would likely be necessary
in order to maximize performance across a wide range of operating conditions.
A gain–scheduled controller could, for instance, adapt the actuation strategy as
a function of vehicle speed, progressively shifting the emphasis between steering
and yaw moment generation. This perspective opens the door to an even more
ambitious line of research: the integration of path tracking objectives with lap–time
optimization. In other words, the actuators investigated in this work could be
exploited not only to ensure trajectory fidelity, but also to minimize lap times while
preserving stability, thereby bridging the gap between classical control theory and
performance–oriented driving tasks.

A second line of research, still focused on pure path tracking, involves the
introduction of an integral term in the controller design. Integral action is well
known to be effective in eliminating steady–state errors, as it accounts for the
history of the deviation rather than its instantaneous value. This could provide a
decisive improvement in trajectory fidelity, ensuring an almost perfect tracking of
the reference path. In the present activity, integral action was deliberately omitted
for two main reasons. First, the combination of proportional–derivative action with
feedforward terms (in the steering–based controllers) already yielded satisfactory
results, reducing the perceived need for additional complexity. Second, the use of
an integral term would necessarily require the design and tuning of an anti–windup
strategy, indispensable to avoid the uncontrolled accumulation of error when the
actuator inputs reach saturation. Several techniques are available for this purpose,
such as progressively reducing the integral contribution as saturation is approached,
or entirely disabling it by multiplying the integral gain by zero whenever saturation
occurs. The design and optimization of such anti–windup mechanisms, together
with the tuning of both the integral and discharge gains, could significantly improve
performance, especially in highly constrained scenarios.

A third and highly relevant proposal concerns the systematic implementation of
all the controllers developed in this thesis within an LQR framework. A preliminary
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formulation of an LQR controller has already been discussed in the dedicated
section, and its extension to the complete set of control architectures represents
a promising avenue for future work. However, two major challenges need to be
addressed. The first relates to the fidelity of the vehicle model: the standard linear
tire formulation embedded in the MATLAB lqr command is a useful starting point,
but it requires extensive refinement to accurately represent the cornering stiffness
behaviour under varying lateral accelerations. It is well established that Cf and Cr
decrease with increasing ay, and this variation can be modelled either linearly or
quadratically. To ensure realistic performance, however, a direct dependency on ay
should be incorporated, which would require a dedicated experimental campaign to
characterize the cornering stiffness as a function of lateral acceleration. The second
challenge lies in the limited flexibility of the LQR tuning process. Unlike direct
state–feedback designs, in which individual gains can be adjusted independently,
LQR tuning operates through the weighting matrices Q and R. Altering one of these
parameters inevitably modifies the entire set of Riccati equations, thus affecting all
feedback gains simultaneously. For example, increasing the weight q1 associated
with the cross–track error does not only amplify the corresponding feedback gain
K1, but also alters the complete set of gains in a non–trivial and non–bijective
way. This makes intuitive manual tuning particularly difficult. Overcoming this
limitation would require a highly reliable MATLAB/Simulink environment, capable
of accurately reproducing real–world issues such as the low–frequency sampling rate
of GPS sensors and other noise sources. Once such a model is available, numerical
optimizers such as fmincon or surrogateopt could be employed to determine the
most effective configuration in simulation, and then transfer it to experimental tests.
Preliminary attempts in this direction have already proven promising, but issues
with derivative–based correlations – especially given the step–like nature of GPS
signals sampled at only 5 Hz – have made validation challenging. A refined LQR
approach, combined with a carefully characterized stiffness model, could therefore
emerge as a powerful tool for future vehicle path tracking controllers.

In summary, the future development of this research may proceed along three
main lines: (i) the integration of gain scheduling to harmonize longitudinal and lat-
eral control and pursue lap–time optimization; (ii) the design and implementation
of integral action with robust anti–windup strategies to further improve tracking
fidelity; and (iii) the systematic application and refinement of LQR–based con-
trollers, supported by accurate modelling of tire behaviour and simulation–driven
optimization. Together, these directions could significantly extend the scope and
robustness of the present work, providing valuable insights not only for academic
research but also for the practical deployment of advanced control strategies in
real–world autonomous and high–performance vehicles.
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