
Politecnico di Torino

Automotive Engineering

A.Y. 2024/2025

Graduation Session October 2025

Improving Models and Simulations
for Automotive Drag Predictions

Supervisors:

Je! DEFOE

Luca MIRETTI

Candidate:

Philippe PESSION

III

DECLARATION OF ORIGINALITY

I hereby certify that I am the sole author of this thesis and that no part of this thesis

has been published or submitted for publication.

I certify that, to the best of my knowledge, my thesis does not infringe upon anyone’s

copyright nor violate any proprietary rights and that any ideas, techniques, quotations, or any

other material from the work of other people included in my thesis, published or otherwise,

are fully acknowledged in accordance with the standard referencing practices. Furthermore,

to the extent that I have included copyrighted material that surpasses the bounds of fair

dealing within the meaning of the Canada Copyright Act, I certify that I have obtained a

written permission from the copyright owner(s) to include such material(s) in my thesis and

have included copies of such copyright clearances to my appendix.

I declare that this is a true copy of my thesis, including any final revisions, as approved

by my thesis committee and the Graduate Studies o!ce, and that this thesis has not been

submitted for a higher degree to any other University or Institution.

IV

ABSTRACT

CFD simulations for automotive blu” bodies often rely on simplified models for both the

vehicle and the computational domain. Current models maintains simplified shape but fail

in capturing the full flow behaviour over a real vehicle.

A model including vehicle body and tunnel geometry is presented in the literature and

has been modified in order to improve its fidelity and reduce the di”erences with real life

facilities. This model features an easy approach for the generation of the vehicle and wind

tunnel models through 21 parameters as well as an automatic process for the setup of CFD

cases, from meshing to simulation. Changes to the numerical schemes used by the CFD

software are made to account for the variable quality of the grid. Moreover a moving ground

system has been included to replicate the real system present in some automotive wind

tunnels.

Another key aspect for the prediction of drag coe!cient for automotive blu” bodies is that

the same vehicle in di”erent facilities often leads to di”erent drag coe!cients, with an average

discrepancy of 6 to 10%. A parametric setup based on the improved models is carried out

and a correction method is proposed by combining new sampling points with the results

obtained previously in the literature. This new combined correction shows promising results

while featuring a significanlty lower amount of samples, reducing the standard deviation by

43% compared to the current state of art when applied to a small dataset of 10 experimental

points (5 for each vehicle in 2 di”erent wind tunnels).

V

ACKNOWLEDGEMENTS

I want to thank my family for supporting me over these years, for believing in me and

for giving me the chance to chase my dreams.

Thanks to the people I met in Canada and to my friends back home, you have been there

to give me good memories during the study breaks.

Many thanks to Dr. Defoe for providing academic support for this work with his knowl-

edge, allowing me to broaden my skills on this field of study. He provided amazing feedback

and insights, improving the outcome of this work.

Finally, thank to Hannah for being so supportive to me, pushing me to be the best version

of myself. You made me feel special and you filled my heart with a lot of memories that I

will never forget.

TABLE OF CONTENTS

DECLARATION OF ORIGINALITY III

ABSTRACT IV

ACKNOWLEDGEMENTS V

LIST OF TABLES IX

LIST OF FIGURES X

LIST OF ABBREVIATIONS XIII

1 Introduction 1

1.1 Problem Statement . 3

1.2 Objectives . 4

1.3 Overview of Contributions . 4

1.4 Outline . 4

2 Literature Review 6

3 Methodology 17

3.1 Setup of the Cases . 17

3.2 Boundary Conditions . 20

3.3 Numerical Schemes . 21

3.4 Convergence and Performance Metrics . 24

3.5 Inclusion of 5 Belts Moving Ground System 27

3.6 Setup of Parametric Study . 32

VI

Table of Contents VII

4 Results 39

4.1 Steady Simulations With Stationary Ground 39

4.2 Steady Simulations With Moving Ground . 42

4.3 Simulations for Parametric Study . 46

4.4 Improved Correction Method . 51

5 Conclusion 56

5.1 Summary . 56

5.2 Thesis Contributions . 57

5.3 Future Work . 57

REFERENCES 63

APPENDICES 64

A Appendix A . 65

A.1 Breakdown of model parameters . 65

B Appendix B . 66

B.1 Boundary conditions for wind tunnel domain 66

B.2 Boundary conditions for open domain 66

B.3 Grid quality metrics for a generic configuration in the tunnel domain 67

B.4 fvSchemes . 70

B.5 Python code for geometries generation 72

B.6 Equations to compute Principal Components 121

B.7 PC values for new sampling points of parametric study 122

B.8 MATLAB code for the generation of geometry parameters for para-
metric study . 123

C Appendix C . 129

C.1 MATLAB script for data analysis . 129

Table of Contents VIII

C.2 Terms of dynamic pressure correction 132

C.3 Drag coe!cient values for parametric study 134

C.4 #Cd values for of the parametric dataset 135

C.5 #Cd values for of the experimental dataset 136

C.6 #Cd between tunnels for di”erent correction methods 137

C.7 #Cd between tunnels combining correction methods 138

VITA AUCTORIS 139

LIST OF TABLES

2.1 Summary of researches . 15

3.1 Flow conditions . 20

3.2 Equations for the origin of belts for moving ground system 29

3.3 Equations for the origin of rotating wheels 31

3.4 Cell count for computational domains . 36

4.1 E”ect of moving ground system - Drag values 42

4.2 Cd for experimental dataset corrected with new RBF 53

A.1 Parameters for simplified model . 65

B.1 Boundary conditions for wind tunnel domain 66

B.2 Boundary conditions for open road domain 66

B.3 Principal Component values for configurations of the parametric study . . . 122

C.1 Values of drag coe!cient for each configuration in the di”erent domains . . 134

C.2 #Cd for configurations of the parametric study 135

C.3 #Cd for experimental dataset . 136

C.4 Cd,q,T1 → Cd,q,T2 values for di”erent correction methods 137

C.5 Comparison of Cd,q,T1 → Cd,q,T2 by combining the di”erent RBFs 138

IX

LIST OF FIGURES

1.1 Representation of frontal area for a vehicle 1

1.2 Resistance to motion for a general vehicle traveling on a flat road 2

2.1 Symmetry plane of a computational grid for CFD simulation 7

2.2 Ahmed body . 7

2.3 DrivAer model . 7

2.4 Tunnel parameters . 9

2.5 Vehicle parameters . 9

2.6 Open-jet wind tunnel . 9

2.7 Wind tunnel e”ects . 11

2.8 Mock-up vehicle in the upgraded wind tunnel of Stellantis US 12

2.9 Sampling points. a) RBF10+10, b) RBF30 14

3.1 Example of hatchback model (XZ view) . 18

3.2 Example of sedan model (XZ view) . 18

3.3 Surface patches for wind tunnel . 20

3.4 Skewness . 21

3.5 Non-orthogonality . 21

3.6 Upwind scheme . 22

3.7 Minmod scheme . 24

X

List of Figures XI

3.8 linearUpwind scheme . 24

3.9 Example of convergence for a generic case 26

3.10 Schematic top view of 5 belts system . 27

3.11 Highlights of di”erent patches for vehicle body and wheels (mirrored side view) 30

3.12
U

U→
for a generic configuration (mirrored side view) 31

3.13
Ux

U→
for a generic configuration (mirrored side view) 32

3.14 RBF50 behaviour in the principal component space 33

3.15 Dataset variance . 34

3.16 LHS sampling points in the PC space . 35

3.17 configuration 1 - Tunnel domain . 37

3.18 configuration 2 - Tunnel domain . 37

3.19 configuration 3 - Tunnel domain . 37

3.20 configuration 4 - Tunnel domain . 37

3.21 configuration 5 - Tunnel domain . 38

3.22 configuration 6 - Tunnel domain . 38

3.23 configuration 7 - Tunnel domain . 38

3.24 configuration 8 - Tunnel domain . 38

3.25 configuration 9 - Tunnel domain . 38

3.26 configuration 10 - Tunnel domain . 38

4.1 Percentage di”erence between current and previous drag coe!cients 40

List of Figures XII

4.2 Percentage di”erence between current and previous drag coe!cients. a) pres-

sure drag contribution, b) viscous drag contribution 41

4.3 Umean/U→ at y/l = 0. a) stationary ground, b) moving ground 43

4.4 Umean/U→ at z/l = 0.08. a) stationary ground, b) moving ground 43

4.5 cp at y/l = 0. a) stationary ground, b) moving ground 44

4.6 k/kinlet at z/l = 0. a) stationary ground, b) moving ground 45

4.7 Percentage di”erence in drag contributions between stationary and moving

ground . 46

4.8 Location of pressure probes in empty test chamber for a generic configuration 47

4.9 Results for drag coe!cient in the di”erent domains 48

4.10 cp distribution on the back of the vehicle. a) configuration 1, b) configuration 9 49

4.11 cp at y/l = 0 for configuration 1. a) tunnel domain, b) open domain 50

4.12 #Cd for configurations of parametric study 52

4.13 Cd,q,T1 → Cd,q,T2 for di”erent correction methods 53

4.14 Position of sampling points in the PC space 54

4.15 Cd,q,T1 → Cd,q,T2 including the combination of di”erent correction methods . 55

LIST OF ABBREVIATIONS

CAD Computer Aided Design

CFD Computational Fluid Dynamics

LHS Latin Hypercubic Sampling

PCA Principal Component Analysis

RBF Radial Basis Function

XIII

1. Introduction

Aerodynamic resistance is also called drag force as it acts in opposite direction with

respect to vehicle motion and it is defined as:

Fd =
1

2
ωCdAV 2 (1.1)

where Cd is the drag coe!cient and depends on multiple contributions:

• pressure drag: also called form drag, resulting from the pressure distribution per-

pendicular to the surface of the body;

• skin friction drag: resulting from viscous shear stresses over the contact surface due

to the presence of the boundary layer.

Regarding automotive bodies, pressure drag is the leading e”ect with the skin friction drag

contributing for around 10% to the total drag [1]. For this reason, optimization of body shape

is of main importance during car design and can be used to reduce energy consumption.

In Figure 1.1, A is called projection area or frontal area and is defined as the area of the

vehicle projected on a wall behind the body.

Fig. 1.1: Representation of frontal area for a vehicle [2]

1

1. Introduction 2

ω is the density of the fluid through which the object is moving and V is the speed of the

fluid with respect to the vehicle.

Aerodynamics is becoming increasingly more important in the automotive industry due

to its direct relationship with fuel/energy consumption and passenger comfort. Power re-

quired to overcome the aerodynamic resistance becomes the leading contribution to motion

resistance at high speed as shown in Figure 1.2.

Fig. 1.2: Resistance to motion for a general vehicle traveling on a flat road

Accurate prediction of the drag coe!cient is a key aspect for the design of a vehicle: Cd

is used to assess fuel consumption as increasingly stricter regulations have forced the auto-

motive industry to reduce vehicle emissions year by year. Moreover, with the introduction

and increasing popularity of Battery Electric Vehicles, accurate prediction of drag coe!cient

becomes critical for range improvement of such vehicles.

Studies have shown that a 10% drag reduction can lead to a fuel consumption reduced by

5% at highway speeds, highlighting the importance of this quantity also for more traditional

vehicles [3].

In the modern era, drag coe!cient is measured by means of wind tunnel tests used to

1. Introduction 3

replicate real road conditions by employing a fixed vehicle with air blown towards it. These

tests are also used to validate design choices aimed at reducing the resistance to motion.

While useful, these type of tests require ad-hoc facilities and they are extremely time con-

suming as they require not only the setup of the vehicle within the test chamber but also the

run-time of the test. Another problem is that to visualize certain aerodynamic quantities,

specific transducers have to be used (for example pressure transducer to visualize pressure

distribution on certain areas of the vehicle), requiring even more e”ort.

For these reasons, Computational Fluid Dynamics is used to have a first estimation of aero-

dynamic quantities prior to validate the results using the wind tunnel. This tool allows to

setup a computational domain in which the full vehicle, or a part of it, can be simulated in

a controlled environment in order to estimate drag coe!cient or visualize flow behavior in

an easier way.

1.1 Problem Statement

The biggest problem concerning wind tunnels tests is that the drag coe!cient measured

in a specific facility is highly dependent on its geometry: test performed using the same

vehicle tested in di”erent wind tunnels can lead to di”erences in drag coe!cients ranging

from 6 to 10% [4].

In addition, most of CFD simulations performed in the automotive industry rely on simplified

domains, often failing in replicating the test geometries, e”ectively leading to di”erent results

when comparing real tests and simulations [5].

This study aims at improving the fidelity of simulation models, to reduce at minimum

the di”erences between current wind tunnel facilities and computational domains. This

improved approach is then used to retrieve a data-driven drag correction method which aim

is to reduce the standard deviation of drag di”erence for the same vehicle in di”erent wind

tunnel facilities.

The performance of the correction method presented in this work is assessed on a small set

of experimental data composed of drag values for 5 vehicles in 2 di”erent wind tunnels but

the approach presented can be applied also on datasets composed by an higher number of

1. Introduction 4

vehicle and tunnel combinations.

1.2 Objectives

The work presented in this thesis has the objective of identifying the main sources of

discrepancy between real tests and simulations models and addressing them by investigating

the following objectives:

• Investigate the e”ect of changes in numerical schemes, improving the discretization

approach used by the CFD software;

• Investigate the e”ect of the inclusion of a moving ground system in a wind tunnel

domain;

• Define an improved data-driven correction approach, able to achieve similar results of

the current state of art by reducing time requirements.

1.3 Overview of Contributions

This thesis proposes an automatic approach able to generate simulations models including

features that allows to have computational domains as close as possible to real cases, while

maintaining parametric variation for the generation of multiple di”erent cases.

Moreover, an improved drag correction approach is presented in detail; this approach can be

used as a baseline for future studies on the same topic.

1.4 Outline

Chapter 2 explains the current state of art of wind tunnel testing and CFD simulations,

focusing on the models available in the literature.

The same chapter presents the current state of drag corrections, explaining why they are

needed and for what e”ects they account for.

Chapter 3 focuses on the study cases performed, focusing on model generation and cases

1. Introduction 5

setup with details about numerical schemes and the changes made to these latter.

Implementation of the moving ground and derivation of the drag correction are also investi-

gate in this chapter.

Chapter 4 presents the results of the work by investigating the e”ects of numerical schemes

and implementation of the moving ground. Finally the results of the new correction approach

are presented and compared to the current state of art.

2. Literature Review

Computing drag forces on objects from first principles requires solving the Navier-Stokes

equations. Drag depends on pressure distribution and wall shear stresses [6]:

Fd =

!

A

(→p cosε+ ϑw sinε) dA (2.1)

where p is the pressure, ϑw is the wall shear stress and ε is the angle between the normal to

the object surface and the freestream flow direction. As already pointed out in the previous

chapter, in case of blu” bodies, pressure drag dominates on wall shear stress drag.

Experimentally the overall force can be measured, while numerical approach either require

evaluation of local pressure and shear or the use of a control volume approach.

The aerodynamic loads that a model experiences during a wind tunnel test are measured

through the usage of a wind tunnel balance (Julian et al. [7]). This device is composed by a

single or multiple force transducers, capable of measuring forces and moments along several

axes.

The main concern with wind tunnel testing is the high cost and time needed for wind

tunnel experiments as presented by Ross et al. [8]. For this reason, CFD is an extremely

important tool that can be applied in support of wind tunnel experiments to provide a

complete description of external aerodynamics of an automotive blu” body. CFD employs a

CAD representation of the vehicle model and a discretization of a fluid domain. The system

of governing equations is solved iteratively for each cell in the computational domain, until a

certain convergence criteria is met. An example of computational grid is given in Figure 2.1.

In the automotive industry good e”ort is put on the generation of the vehicle model, with

this latter usually being a simplified version of a real production vehicle in order to minimize

simulation time. The Ahmed body, presented by Ahmed et al. [9] and shown in Figure 2.2,

6

2. Literature review 7

Fig. 2.1: Symmetry plane of a computational grid for CFD simulation

is one of the most common bodies used in the automotive literature but, while being simple,

this model fails to accurately represent full flow behaviour around real production cars.

Fig. 2.2: Ahmed body [9]

An improvement is shown using the DrivAer model presented by Heft et al. [10] and shown

in Figure 2.3. This model includes multiple features of real production vehicles, increasing

the accuracy of results. Unfortunately this body has limited room for parameters variation,

limiting the variety of geometries that can be simulated or tested.

Simplified vehicle models with parametric dimensional variability would thus be of use to

qualitatively represent the complex geometry of a production vehicle while preserving a

simplified shape for CFD simulations.

Fig. 2.3: DrivAer model [11]

2. Literature review 8

Among all the possible CFD methods, Reynolds averaged Navier-Stokes (RANS) simula-

tions are the most used in the automotive sector due to their reasonable accuracy and low

computational cost. RANS employs an empirical turbulence model to allow for a reduced

mesh size and critically, steady simulations. Blu” bodies involves large regions of separated

flow and at high enough Reynolds numbers the separations are fundamentally unsteady.

Ashton and Revell [12] found this method to be inaccurate in predicting the magnitude of

aerodynamics quantities in such cases, requiring the need of more in deep studies on how to

improve models to accurately predict aerodynamic quantities.

Additionally, Ljungskog et al. [5] have shown important improvements in drag predictions

when the wind tunnel model is included in the virtual environment, showing good comparison

with drag results measured in the actual wind tunnel prior to any correction. It has also

been shown that, in comparison to a wind tunnel simulation, the base pressure for an open

road domain is generally higher due to the finite nature of wind tunnels.

Fujs [4] developed a simplified model able to capture salient features of both vehicle body

and tunnel geometry while retaining simplicity and parametric variation. This model is

based on 21 parameters (12 for the tunnel and 9 for the vehicle), shown in Figure 2.4 and

Figure 2.5. Only the tunnel and vehicle length are specified directly; all the other parameters

are non-dimensionalised with respect to these two quantities. The number of parameters is

minimized to have a compromise between simplicity and application scope.

The list of parameters with their description is presented in Appendix A.1.

A spoiler is added to the vehicles in order to enforce a physical point of separation.

Since the model is able to generate di”erent vehicle types, an additional parameter is cal-

culated to di”erentiate the generation of minivan geometry from the sedan model for which

the spoiler location is di”erent. t gives an estimate of the non-dimensional size of the trunk.

t =
1

l

" v

w · h + h
#

(2.2)

If t > 0.62 the minivan (or hatchback) geometry is generated, with 0.62 being the approxi-

mate change between sedan and hatchback.

2. Literature review 9

Fig. 2.4: Tunnel parameters Fig. 2.5: Vehicle parameters

Only open-jet wind tunnels can be generated with this model. This type of tunnels is

characterized by an open test section, as shown in Figure 2.6, which has the aim of reducing

interference e”ects (Schuetz [13]). Wind tunnels are composed by 3 main sections:

• nozzle: this section has the aim of accelerating the flow and improve the quality of

the flow at its outlet;

• test section: is the section in which the test object is placed;

• collector: this section has the aim of slowing down the flow and consequently recover

pressure.

Fig. 2.6: Open-jet wind tunnel adapted from Schuetz [13]

2. Literature review 10

The limited length of wind tunnels and the vehicle proximity to the tunnel walls create

a discrepancy in the flow field compared to a real situation, resulting in di”erent measured

drag. The particular e”ects schematically shown in Figure 2.7 are listed here in detail:

• jet expansion: when a vehicle is present in the test section a jet of finite dimensions

behaves di”erently to a jet of infinite extent;

• jet deflection: the limited distance between nozzle and vehicle can cause a deflection

of the flow;

• nozzle blockage: the limited cross-section of the nozzle leads to di”erences in the

flow field around the vehicle when compared to a free-stream case. Blockage ratio is

defined as the ratio between frontal area of the test vehicle and nozzle cross-section

area:

B =
Avehicle

Anozzle
(2.3)

As B increases, the e”ects on the test vehicle become more pronounced.

• collector blockage: interaction of the wake of the vehicle entering the collector;

• horizontal buoyancy: due to non-constant static pressure distribution within the

test section. This e”ect leads to an additional drag force, called horizontal buoyancy

force, that can be positive or negative.

Due to the presence of these e”ects, various correction methods are employed to reduce

the discrepancies of drag coe!cient for the same vehicle measured in di”erent wind tunnels.

Among all possible methods, the classic correction and the two-measurements correction are

the most employed.

Classic correction, presented by Mercker et al. [14] includes a dynamic pressure correction

dependent on 5 distinct velocity perturbations. Moreover, horizontal buoyancy is defined

based on the frontal area and volume of the vehicle as well as the longitudinal rate of change

of the static pressure coe!cient.

Two-Measurements correction, presented by Mercker and Cooper [15], proposes a new

approach to calculate the pressure gradient within the wind tunnel by means of an additional

test with the vehicle in a perturbed pressure field (obtained through a physical blockage

2. Literature review 11

behind the vehicle) with the revised correction that can be obtained by measuring the drag

coe!cient in both conditions. This method is generally adopted only for some reference

dataset as it becomes impractical to double the measurements for each tested vehicle. Even

if reference datasets demonstrate good relationships between corrected and measured drag

coe!cients (Lounsberry and Walter [16]), there is still a disparity in corrected drag coe!cient

for the same vehicle measured across di”erent facilities; average di”erence across tunnels

settles around 6%, but can go up to 10% for some vehicles.

Fig. 2.7: Wind tunnel e!ects [17]

Fujs [4] developed a data-driven correction approach, aimed at reducing the dataspread

of drag coe!cient between di”erent wind tunnels. This new correction method is based on

2. Literature review 12

the di”erence between the drag coe!cient in an open-road domain and the one measured in

the wind tunnel, both quantified by means of CFD simulations.

The correction is derived upon the outcomes of a parametric analysis of several vehicle and

tunnel combinations that frequently occur in industry.

A short-come of this approach is that simulations performed in the tunnel domain lacks the

inclusion of a moving ground system and rotating wheels, e”ectively introducing some major

discrepancies when compared to the real facility of Stellantis US, which has been upgraded

with a 5 belts system, as can be seen in Figure 2.8.

Additionally, numerical schemes used for the discretization of quantities in the CFD software

can be changed to improve the robustness of the simulations. More insights about this steps

are given in Chapter 3.

Fig. 2.8: Mock-up vehicle in the upgraded wind tunnel of Stellantis US [18]

Although the number of parameters of the simplified model presented by Fujs [4] is a sig-

nificant reduction compared to real geometry, it is still too high to pursue a direct parametric

study. For this reason, Principal Component Analysis (PCA) presented by Bro and Smilde

[19] is used to identify linear combinations of the parameters able to capture the maximum

variance within the data.

To identify principal components, an experimental dataset was built using data of 5

di”erent vehicle in 2 wind tunnels. PCA led to the result that the first 4 principal components

2. Literature review 13

are able to capture 99.4% of the dataset variance and are thus the only ones considered.

This PCs are only a linear combination of the input parameters; in particular PC1 contains

parameters related only to the wind tunnel geometry, while PC2 through PC4 are responsible

for the vehicle geometry. This independence between tunnel and vehicle geometries in terms

of principal components derives from the fact that only data from two tunnels was used for

the analysis, suggesting that a broader dataset can lead to di”erent coe!cients values for

all components. Reliance on the initial data though is not very significant as the process for

the derivation of the correction method will remain the same in any case.

A Latin Hybercubic Sampling approach, presented by Loh [20], is used to retrieve new

sampling geometries within the principal components space by using a stratified approach

to increase input space coverage.

A total of 50 sampling points is generated and for each of them 3 simulations are carried

out, namely in open road domain, in the wind tunnel domain and in an empty wind tunnel

domain (used to retrieve pressure correction for the given tunnel geometry).

For each sample, the drag coe!cient di”erence between the open domain and the wind tunnel

domain, with pressure corrections applied, is calculated.

#Cd = Copen
d → C tunnel

d,q (2.4)

Radial Basis Functions (RBFs) are used to approximate functions of multiple variables;

this type of function is used to fit scattered data and can be applied independently from the

number of variables [21]. In our case, the values of #Cd from the CFD simulations on the

sample geometries are interpolated using RBFs to create a 4D surface that returns the drag

di”erence value based only on the four PC values of a particular geometry:

#Cd = RBFn (PC1, PC2, PC3, PC4) (2.5)

where n denotes the number of sampling points used for the definition of the given RBF.

A set of 3 RBFs were defined, based on a di”erent number of sampling points, as shown in

Figure 2.9. In particular:

2. Literature review 14

• RBF10+10: based on sampling points taken by maintaining the same wind tunnel

geometries (10 points for each tunnel in the initial dataset). This function is aimed at

defining a correction tailored to the single wind tunnel geometries given the fact that

open-jet facilities are limited.

• RBF30: based on a reduced set of points and aimed at proposing a universal correction

applicable to any vehicle and tunnel combination.

• RBF50: based on the entire set of sampling points and aimed at showing the improve-

ment of sampling density within PC space.

It is shown that RBF50 is able to reduce the standard deviation by 59% compared the

Two-Measurements method across the available experimental dataset.

(a) (b)

Fig. 2.9: Sampling points used by Fujs [4]. a) RBF10+10, b) RBF30

Studies on the inclusion of moving ground in the wind tunnel domain do not show clear

results. In particular, Krajnović and Davidson [22] quantified a drag di”erence of 8% while

including ground simulation on an Ahmed body. Moreover, they found the presence of two

lower vortices arising close to the ground, which were not found with stationary ground

simulations. On the other hand, Wang et al. [23] recently studied the e”ect of ground

simulation on the estate-DrivAer model, finding a variation within 3% on drag coe!cient

results. The inclusion of ground motion showed significant di”erences only in proximity of

2. Literature review 15

the ground, altering the surface pressure on the under-body of the vehicle. Due to this

discrepancy, additional studies are required to quantify the e”ect of the inclusion of moving

ground.

Table 2.1 shows a summary of the literature, showing the key findings and limitations for

each research.

Table 2.1: Summary of researches

Authors Key findings Limitations

Ahmed et al. [9] Most simple model in the litera-
ture

Lack in representation of full flow
behaviour

Heft et al. [10] Improved model that reduces dif-
ference to real vehicles

Limited parameters variation

Ashton and Rev-
ell [12]

RANS are useful to assess trends
of aerodynamic quantities

RANS fails in predicting the ab-
solute magnitude of such quanti-
ties

Mercker and
Cooper [15]

Improved correction approach
for the calculation of horizontal
buoyancy

Increased amount of measure-
ments for each test vehicle

Lounsberry and
Walter [16]

TM approach improves the corre-
lation between measured and cor-
rected drag

Discrepancy in corrected drag
coe!cient for the same vehicle
across di”erent wind tunnels

Fujs [4] Simplified model for both tunnel
and vehicle with complete para-
metric variability

No moving ground for the tunnel
and no rotating wheels for vehicle

Fujs [4] Automated approach for setup of
simulations

Numerical schemes do not ac-
count for possible poor quality of
the grid

Fujs [4] Improved performance of RBFs
when used to reduce drag di”er-
ence for the same vehicle in dif-
ferent wind tunnels

RBFs based on models which can
be significantly improved

Previous studies highlights the evolution of models and drag corrections for simulations

and test in the automotive industry. In general, automotive models presented in the litera-

2. Literature review 16

ture fails in capturing full flow behaviour or they do not present full parametric variability.

The approach presented by Fujs [4] provides good improvements compared to previous stud-

ies but, at the same time, introduces some more limitations that needs to be addressed in

order to further improve the overall approach.

3. Methodology

The work presented in this thesis is a direct continuation of the project presented by

Fujs [4]. In particular, the current work has the aim of improving the fidelity of models and

simulations as well as updating the correction method presented previously to reduce the

drag coe!cient di”erence for the same vehicle in di”erent wind tunnel facilities.

The previous work has shown really promising results suggesting that the overall process

can be used systematically. The real advantage of the process presented is the fact that

the setup of any case is fully automatic, from the model generation to the meshing of the

computational domain, allowing to save time and resources.

3.1 Setup of the Cases

Cases presented previously include simulations of the vehicle in an open-road domain as

well as in a wind-tunnel domain. While being completely di”erent flow fields, the process

for their setup is quite similar.

Vehicle and tunnel geometries are generated starting from 21 parameters, chosen as their

values are publicly available for all passenger vehicles and tunnels. This choice enables the

generation of all kind of geometries as the models do not require specific parameters known

only to vehicle manufacturers.

The parameters are used to define 3D representation of the geometries using an open-source

CAD software called SALOME. The advantage of using this software is the possibility of

saving the generation process in a Python script which can then be modified accordingly in

order to generate all kind of di”erent models while only using the 21 parameters as input

quantities.

In the model presented by Fujs [4], hatchback and sedan models are generated using slightly

di”erent processes due to di”erent spoiler locations. The generation of the vehicle type is

17

3. Methodology 18

determined using the trunk size parameter, with examples shown in Figure 3.1 and Figure 3.2.

Fig. 3.1: Example of hatchback model (XZ view)

Fig. 3.2: Example of sedan model (XZ view)

Aerodynamic simulations are performed in OpenFOAM, a free open-source CFD soft-

ware. This software allows for extensive customization of each case, from solver settings to

numerical discretization schemes.

Reynolds averaged Navier-Stokes steady state simulation are performed as this type of ap-

proach is the most commonly used in the automotive industry for its ability in accurately

predicting numerous flow characteristics. Reynolds decomposition and time-averaging are

used on the set of Navier-Stokes equations to obtain RANS equations [24].

This approach relies on a complete approximation of turbulence by means of a set of trans-

port equations. Multiple empirical models to analytically describe turbulence are available

3. Methodology 19

in the literature but k→ϖ Shear Stress Transport model has shown better results compared

to other turbulence models when performing RANS simulations on automotive blu” bodies

[12]. This model is a blending of k → ϱ in the far field and k → ϖ for cells near the wall

[25], where k is the turbulent kinetic energy, ϱ is the turbulent dissipation rate and ϖ is the

specific turbulent dissipation rate, defined starting from k and ϱ:

ϖ =
ϱ

Cµk
(3.1)

where Cµ is a constant equal to 0.09 [26].

To perform CFD simulations the domain has to be divided in a set of cells, calledmesh, in

which fluid dynamics equations are solved for each element. For the specific cases presented

in this thesis the meshing process is composed of 2 steps:

• blockMesh: generates structured meshes starting from a dictionary file. This tool

divides the domain in groups of one or more hexahedral blocks having straight or

curved edges. The mesh is specified as a number of cells in each direction.

In the cases studied in this work, this tool is used to generate a 3D block that encloses

the desired domain. In case of tunnel simulations, the domain encloses the entire tunnel

geometry while in case of open domain the enclosure generated by this tool coincides

with the desired domain;

• snappyHexMesh: generates 3-dimensional meshes starting from triangulated-surface

geometries (specified in STL format). A generic starting mesh is iteratively shaped to

the object’s surface. This tool needs a background mesh defining the boundaries of

the domain (generated using blockMesh). This tool is used to carve the block domain

to match the geometry of the tunnel but it is also used to refine the grid in some

important regions for both tunnel and open cases.

Once the mesh is ready, the simpleFoam solver is used to perform a steady-state simulation

for each case.

3. Methodology 20

3.2 Boundary Conditions

Boundary conditions change depending on the domain to be simulated as patches for the

tunnel domain are di”erent compared to the ones used for the open-road domain. In this

section, boundary conditions used for the previous study are presented, in order to have a

clear picture of what is the state of simulations before making changes.

Flow conditions are presented in Table 3.1. It is important to notice that the inlet velocity

for the wind tunnel domain di”ers from the free-stream velocity as there is the nozzle which

accelerates the flow prior to entering the test chamber.

Table 3.1: Flow conditions [4]

Domain U→ [m/s] Uinlet [m/s] I [%]

Wind tunnel 30.56 5.53 3

Open road 30.56 30.56 0.1

Boundary conditions for the wind tunnel domain including the ones used for rotating

wheels and moving ground system are available in Appendix B.1. Figure 3.3 shows the slip

and no-slip surfaces for the tunnel domain.

Fig. 3.3: Surface patches for wind tunnel

The ground patch in the open road domain has been set to have the same speed of the

freestream flow in order to accurately represent a real situation.

3. Methodology 21

Boundary conditions for each patch of the open domain are available in Appendix B.2.

3.3 Numerical Schemes

The set of partial di”erential equations known as governing equations, is defined for

continuous fields and it thus must be discretized into a group of linear equations in order to

work with the finite nature of the computational domain used in simulations.

The choice of numerical schemes a”ects how coe!cients for these equations are calculated

and consequently determines the characteristics of the solution.

Accuracy of the results depends on the quality and refinement of the computational grid: a

grid independence study has been pursued by Fujs [4] and the refinement of the grid chosen

previously has been used also in this case. Mesh properties can be used to assess grid quality

and the most relevant for our case are:

• skewness: measures the relative distance between face centre and the line connecting

neighboring cell centres (Figure 3.4)

• non-orthogonality: measures the angle between the surface normal to the face and

the line connecting neighboring cell centres (Figure 3.5)

Fig. 3.4: Skewness [27] Fig. 3.5: Non-orthogonality [27]

The automatic meshing process compromises mesh quality. Because the mesh is generated

using a uniform approach, without tailoring it to the specific geometry of the vehicle or

tunnel, skewness and non-orthogonality can be significantly high with respect to ideal values.

Due to the previously performed grid independence study, grid refinement is considered

su!cient for the scope of this work. However, high values of skewness and non-orthogonality

3. Methodology 22

translate in a poor mesh quality that will impacts numerical convergence and accuracy of

the results. Numerical schemes can be changed to improve the robustness of CFD cases by

maximizing the accuracy of simulations given the grid quality. An example of checkMesh

output to get a sense of the grid quality is available in Appendix B.3

OpenFOAM uses a finite volume numerical method in order to solve the partial di”erential

equations: instead of using a single control volume, the domain of interest is divided into

connected finite volumes and the set of Navier-Stokes equations is then applied to each small

volume, ensuring that mass and momentum fluxes across surfaces are consistent between the

connected volumes. The discretization of the governing equations transforms equations for

continuous fields into a system of linear equations applicable to discrete fields. The choice

of numerical schemes influences the computation of coe!cients for this discretization and

determines the characteristics of the solution [28].

Discretization schemes are used to discretize each term in the governing equations: diver-

gence schemes are numerical schemes used to discretize terms of the form↑ ·!, where! is a

generic field quantity. In the CFD software, values for the quantities are stored at cell-centre

so the key issue is the derivation of $ at face centre. In the work of Fujs [4], divSchemes

were set to 1st order upwind for both velocity and turbulence quantities (namely k and ϖ).

This scheme represents the value at the cell face by the value of the upwind cell, as shown

in Figure 3.6. Even though it can ensure boundedness of $, pure upwind is highly di”usive

due to the fact sharp gradients cannot form, which can lead to poor accuracy of the results

[29].

Fig. 3.6: Upwind scheme [29]

Numerical di”usivity arises from the truncation error introduced by first order approxi-

3. Methodology 23

mation of pure upwind scheme: this e”ect results in a non-physical di”usion of a particular

quantity, a”ecting the accuracy of the results. Low di”usion is desired to avoid capturing

non-physical behaviour of the flow.

In order to improve the accuracy of the simulations given the grid quality, divSchemes for

the velocity field have been changed to linearUpwindV limited. This scheme defines the face

value as an extrapolation of the upwind cell value to the face, employing the upwind cell

gradient, ↑!, and a vector from the cell centre to the face centre, dP, as shown in Figure 3.8.

This approximates a 2nd order upwind approach on unstructured meshes.

linearUpwind schemes reduces the di”usivity of upwind and naturally corrects for skewness

as it has a contribution in the direction between upwind cell centre and face centre [30].

The V-scheme is used to remove non-physical oscillations, by using the direction of the

steepest gradient for vector quantities.

Furthermore, limited entry is employed to ensure that if the face value exceeds the boundary

of the neighboring cell centre, the gradient is modified to match the bounding value [31].

The increase in accuracy for the linearUpwind scheme comes with a reduction in numeri-

cal stability due to oscillations possibly introduced by higher order schemes. Total Variation

Diminishing (TVD) schemes are used as a compromise of boundedness and accuracy where

a limiter ς is used to calculate the value at the face:

$f = (1→ ς)$U + ς$L (3.2)

where $U and $L are the value of the quantity from upwind interpolation and linear in-

terpolation, respectively [32]. ς factor is calculated based on the change of gradient of $

between face and upwind cell. For the simulations performed in this thesis, linearUpwind

scheme applied to turbulence quantities lead to divergence of the solution so the Minmod

scheme is used instead. This option is a TVD scheme which limits to pure upwind, as shown

in Figure 3.7. It is more di”usive than linearUpwind but still more accurate than the pure

upwind scheme used previously [33].

The fvSchemes file for numerical schemes is available in Appendix B.4.

3. Methodology 24

Fig. 3.7: Minmod scheme [32]
Fig. 3.8: linearUpwind scheme

[30]

3.4 Convergence and Performance Metrics

The aerodynamics of a vehicle is highly complex due to the three-dimensional flow and

extensive turbulent wake zones, generally defined by longitudinal rotating vortices [9].

In this study, steady state simulations are performed on a fundamentally unsteady problem.

Using RANS simulations, turbulence is simulated by means of empirical models, which are

not able to fully capture the real behaviour of the flow, especially in the wake where turbu-

lence is significant thus a”ecting drag results. The choice of steady simulations leads to drag

values that are oscillating as the number of iterations increase, without reaching a single

convergent value.

Since drag coe!cient is of primary interest for this study, we need to define an approach

to assess whether the simulation can be considered converged. In this case convergence of

the cases is of major interest in order to be able to compare di”erent simulations: the same

criteria used for each case will ensure that results are comparable to each other. In addition,

we need to determine a single value for the drag coe!cient, which will then be used to obtain

the correction based on the discussion in the previous chapter.

Experimental uncertainty on drag coe!cient measured in real wind tunnels is approxi-

mately ±0.002 [34]: considering that modern passenger cars have Cd between 0.2 and 0.3,

this uncertainty ranges around 1%. The convergence criteria chosen for this study is co-

herent with the experimental uncertainty: the minimum to maximum di”erence of Cd,mean

has to be within 1% of its value for the simulation to be considered converged. An addi-

tional metric is defined to ensure that the local behaviour of Cd,mean remains stable for a

3. Methodology 25

su!ciently high number of iterations. More insights about these criteria are given in the

following paragraphs.

Drag coe!cient is averaged over a 10,000 iteration moving window. The movmean function

on MATLAB has been used to perform this action: when there are insu!cient elements to

fill the window, the size is automatically chopped at the endpoints and the average is taken

over just the items that populates the window. For this reason, the first 10,000 iterations

are only used to populate the function with the right amount of values, and it is important

for the convergence point to not fall in within this ”transient” region, where the behaviour

of the mean drag coe!cient can be stable but its value can be inaccurate.

To assess the convergence point, multiple metrics have been defined. First, a normalized

drag variation coe!cient is defined as the ratio between the minimum-to-maximum di”erence

of the mean drag coe!cient over a 10,000 iteration window and the mean drag coe!cient

averaged on the same number of iterations:

C↑
d,mean =

#min↓to↓max(Cd,mean)

Cd,mean
(3.3)

This metric is not su!cient to assess convergence as its absolute value does not give any

insight on C↑
d,mean local behaviour as the iterations increase. For this reason, the minimum-

to-maximum di”erence over a smaller iteration window of 3,000 iterations is computed:

#C↑
d,mean = #min↓to↓max(C

↑,max
d,mean → C↑,min

d,mean) (3.4)

For the simulation to be considered converged, two conditions on these metrics have to be

satisfied. The value for #C↑
d,mean has been chosen based on the minimum value among all

simulations and the same limits have been used for all cases in order to have comparable

results. 




C↑
d,mean < 0.01

#C↑
d,mean < 1 · 10↓4

(3.5)

From Figure 3.9 we can better understand how this double condition works.

3. Methodology 26

The first metric ensures that the convergence point does not fall into the first 10,000 iteration

span, where the MATLAB function is calculating the mean drag coe!cient with a reduced

amount of iterations. The second metric then ensures that the behaviour of C↑
d,mean remains

stable for a su!cient amount of iterations, meaning that the simulation has reached a local

convergence where the drag value remains stable.

Fig. 3.9: Example of convergence for a generic case

For this specific case, it is important to notice that the simulation with the improved

numerical schemes started from the 50,000th iteration as this was the ending point of the

previous simulations carried out by Fujs [4].

A similar approach is used to assess the convergence of simulations performed in the

empty wind tunnel.

In this case drag coe!cient cannot be used as no vehicle is present in the test chamber

and pressure is used instead. Equation 3.6 follows the same approach used for convergence

assessment of drag, with the only di”erence that in this case the normalization is now done

on the dynamic pressure at nozzle exit.

p↑mean =
#min↓to↓max (pmean)

(p0 + 1/2ωU2)N
(3.6)

3. Methodology 27

where pmean is calculated at the location where the front of the vehicle lies when it is placed

in the tunnel and p0 is the value of static pressure taken at nozzle exit. The value of U used

to calculate the dynamic pressure is taken at the same location of p0.

Equation 3.7 also uses the same approach used for drag, where the quantity is calculated

on a smaller iterations window of 3,000 iterations.

#p↑mean = #min↓to↓max

(
p↑,max
mean → p↑,min

mean

)
(3.7)

Pressure has higher absolute values compared to drag, so conditions for the convergence

are more relaxed, as shown in Equation 3.8. It is important to point out that in this case,

the check is performed on the absolute value of p↑mean and #p↑mean as a consequence of the

pressure being able to have negative values.






|p↑mean| < 1

|#p↑mean| < 0.5
(3.8)

3.5 Inclusion of 5 Belts Moving Ground System

To further reduce di”erences between the wind tunnel domain and real life environment, a

moving ground system can be used to replicate road movement underneath the vehicle. This

system is usually implemented by means of 5 belts: four Wheel Driving Units (or WDUs)

under each of the 4 wheels and one center belt placed below the under-body of the vehicle.

A schematic view of the system is shown in Figure 3.10.

Fig. 3.10: Schematic top view of 5 belts system

3. Methodology 28

Studies pursued in the literature do not show a particular trend for the inclusion of the

moving ground even if this system attempts in reducing di”erences between CFD and real

road cases.

In this case, the implementation in OpenFOAM doesn’t require major e”ort and so there

was no reason why the system shouldn’t be implemented. Technical drawings of the system

used by Stellantis US have been provided in order to ensure a correct implementation in the

computational domain.

Computational domains used in this study aim at simulating only half of the vehicle, with

a symmetry boundary condition applied at the cutting plane, thus only half of the 5 belts

system has to be implemented.

OpenFOAM o”ers a very useful function, called searchablePlate, that allows to implement

two dimensional plates in the computational domain. The plate is defined through two

quantities:

• origin: specifies the corner of the plate;

• span: specifies the dimensions in the 3 directions, where one of them has to be a 0

entry.

For example, for a plate defined on the xy plane:






origin = (Ox, Oy, Oz)

span = (Sx, Sy, 0)
(3.9)

The plate will be from (Ox, Oy, Oz) to (Ox + Sx, Oy + Sy, Oz).

This function has to be implemented in the snappyHexMeshDict file, where settings for

snappyHexMesh are defined.

Based on the dimensions given by our industrial partner, a mathematical generalization can

be retrieved in order to adjust the position of the system to accommodate di”erent types

of vehicles. Dimensions of the system are also generalized in order to maintain the same

proportions of the real system independently from the length of the test chamber.

Equations for the origin are shown in Table 3.2, where:

3. Methodology 29

• xshift: represents a shift of the system towards the nozzle exit plane (upstream), calcu-

lated based on tunnel length:

xshift =
0.738

LAAWT
· LgenericTunnel (3.10)

where 0.738 is the shift of the system in the AAWT tunnel, LAAWT is the length of

AAWT test section and LgenericTunnel is the length of the test section for any generic

tunnel configuration;

• lgenericBelt: represents the length of the considered belt based on tunnel length.

Table 3.2: Equations for the origin of belts for moving ground system

searchablePlate x y

centerBelt →x→ lcenterBelt

2
→ xshift 0

frontLeftBelt →x→ l

*
1

2
→ of

l

+
→ lFrontLeftBelt

2

w

3

rearLeftBelt →x+ l

*
1

2
→ or

l

+
→ lrearLeftBelt

2

w

3

Span of each plate is defined by using the dimensions calculated based on tunnel length

according to Equation 3.11 where j represents a general parameter of the system, LAAWT is

the test section length of the wind tunnel used by Stellantis US and Ltunnel is the length of

the test section for any tunnel configuration.

j =
jAAWT

LAAWT
· Ltunnel (3.11)

For example, for the center belt:

lcenterBelt =
lAAWT
centerBelt

LAAWT
· Ltunnel = 0.416 · Ltunnel (3.12)

where, by substituting any value of Ltunnel, the span of the center belt for that specific tunnel

3. Methodology 30

configuration can be retrieved.

In order to fully implement the moving ground system, changes to the vehicle model had

to be carried out. Up to this point the CAD representation of the vehicle was a single model,

including body and wheels. This approach allows to assign a single boundary condition thus

cannot accomodate the implementation of rotating wheels.

Wheels need to be split from the body and they have to be exported in di”erent files that will

then be defined in the computational domain using di”erent boundary conditions compared

to the vehicle body. Since the 3D model is entirely defined on SALOME, this step can

be done interactively on the software and saved to a new Python script to facilitate the

generation of future models.

Moreover, a region emulating the contact patch of the wheel has been removed as the meshing

process already creates that region when merging the wheel patch to the WDU. The updated

Python code used for the generation of the improved models is available in Appendix B.5

Visualization of the di”erent patches is shown in Figure 3.11.

Fig. 3.11: Highlights of di!erent patches for vehicle body and wheels (mirrored side view)

Rotating wheels are implemented through rotatingWallVelocity, an OpenFOAM bound-

ary condition for the velocity field. This condition is defined by origin, axis and rotational

speed.

Mathematical relationships are retrieved in order to accommodate di”erent types of vehi-

cles, as done for the 5 belts system; in this way the whole process can be generalized and

automated to facilitate the creation of new study cases.

Equations for the origin of rotating wheels patches are shown in Table 3.3.

3. Methodology 31

Table 3.3: Equations for the origin of rotating wheels

Patch x y z

frontWheels →x→ l

2
+ of

w

2

5

12
hf + 0.066l

rearWheels →x+
l

2
→ or

w

2

5

12
hf + 0.066l

Rotation occurs around the →y axis, where the negative value is needed to have the rotation

in the right direction. The axis of rotation remains the same for all configurations as all of

them share the same orientation of the axes.

Wheels are considered rigid bodies so rotational speed is set through:

ϖ =
U→

rwheels
(3.13)

where rwheels =
5

12
hf .

The results of this implementation are shown in Figure 3.12 and Figure 3.13 for a generic

configuration.

Fig. 3.12:
U

U→
for a generic configuration (mirrored side view)

Figure 3.12 shows clearly how the rotation is implemented: the velocity of the wheel

grows from the center toward the outside, with the external part having the same speed as

the moving ground.

Figure 3.13 highlights the direction of rotation of each wheel, by showing the magnitude of

3. Methodology 32

Fig. 3.13:
Ux

U→
for a generic configuration (mirrored side view)

the velocity in the longitudinal direction: the bottom half of the wheel and the belts shares

the same magnitude and direction of the normalized velocity while the top half has the

same value but with opposite direction, thus showing how the wheels are rotating correctly

compared to the direction of the flow.

3.6 Setup of Parametric Study

The aim of this study is the definition of a new correction method based on the improved

models discussed up to now. The approach previously used by Fujs [4] has been found to be

particularly good in reducing the standard deviation of the di”erence in drag for the same

vehicle in di”erent wind tunnels and for this reason the same procedure has been used.

Due to time limitations, the amount of sample geometries used previously cannot be

replicated, thus a correction based on a reduced amount of sampling points has to be carried

out.

Figure 3.14 demonstrates how RBF50 behaves in the principal component space. A grid of

two-dimensional plots with axes PC3 and PC4 at each specific (PC1, PC2) value can be

seen. It can be seen that the function doesn’t highlight any sudden variation in the space,

with gradual variations in all directions. This detail suggests that a smaller set of sampling

points can still capture important information within the used dataset, and can thus be

employed to retrieve a good correction method.

The same experimental dataset used previously, based on data from 5 vehicles in 2 dif-

3. Methodology 33

Fig. 3.14: RBF50 behaviour in the principal component space from Fujs [4]

ferent wind tunnel facilites, has been rebuilt in MATLAB. Principal Component Analysis is

performed again as the coe!cients of PC equations listed in the previous thesis have been

found to be inaccurate, leading to unexpected results in the next steps. New equations to

compute the PCs are listed in Appendix B.6.

In order to have the data as close as possible as the one used before, a Z-score normal-

ization of the dataset is performed prior to PCA, using MATLAB zscore function [35].

This method, presented in Equation 3.14, transforms the data to have zero mean and unity

standard deviation, so that each parameter has the same scale.

x↑ =
x→ x

xω
(3.14)

where x is a generic parameter, x is the mean value of parameters in the dataset and xω

refers to the standard deviation.

Coe!cients found for PC2 to PC4 are slightly di”erent to the ones found previously but

again the first 4 Principal Components have been found to be able to capture 99.4% of the

dataset variance, as shown in Figure 3.15, thus will be the ones considered from now on.

Latin Hypercubic Sampling has been performed on the experimental dataset in order to

identify new sampling points in the PC component space. Coe!cients found from PCA are

3. Methodology 34

Fig. 3.15: Dataset variance

used on the initial dataset to retrieve a set of PC values for each experimental geometry: a

combination of a certain vehicle in a particular wind tunnel will lead to a set of 4 values, one

for each PC. These PC values are then plotted on the same figure as the sampling points

to have a comparison between the values of the experimental dataset and the values of new

geometries.

lhsdesign function on MATLAB [36] has been used to perform the sampling step: the

function requires the number of sampling points and the ranges of PCs of the reference

dataset. The function returns values from 0 to 1 so the outcome of the function has to be

scaled to match the range of PCs of the experimental dataset.

A set of 10 sampling points is generated and all of them have been found to be well spaced

within the PC space, as shown in Figure 3.16 where the red and green points represent

experimental data for the 5 vehicles in the first and second wind tunnel, respectively while

the yellow points are the new samples defined by LHS. PC values for each sampling point

are listed in Appendix B.7.

The next step is translating the values of LHS points from PC space to parameters space.

In particular, an under-determined problem has to be faced as only 4 equations are available

(one for each Principal Component) but 21 parameters have to be estimated.

In order to solve this issue, an optimization algorithm aimed at minimizing a certain metric

can be used. lsqnonlin on MATLAB has been used [37]; this function solves non-linear

3. Methodology 35

Fig. 3.16: LHS sampling points in the PC space

least-squares problems and requires the definition of metric to be minimized in vector-valued

form. The function internally performs the sum of squares for each vector value.

The quantity used for the algorithm is the di”erence between the PC values of a single

sampling point and the PC values calculated with the estimated parameters:

J = PCLHS → PCestimated (3.15)

The optimization function also requires lower and upper boundaries for each parameter.

Ranges have been taken from the previous work and have been tweaked in order to ac-

commodate some limitations of the geometry generation process: stricter ranges have been

defined in order to avoid errors when model were generated through SALOME with the

improved Python code.

In addition, an initial guess is required by the MATLAB function: the algorithm starts from

the initial guess and finds a minimum of the sum of squares of the objective function J . Since

the mathematical problem is underdetermined, an infinite amount of set for the geometry

parameters can be found for a specific set of PC values. By keeping the same initial guess

for all the sampling points, very similar set of parameters are given by the optimization

3. Methodology 36

algorithm.

A di”erent initial guess for each sample leads to di”erent sets of parameters and consequently

to di”erent geometries. This step is achieved by choosing the initial value of each parameter

to be a random value between the lower and upper boundaries. To have consistent results

every time the code is executed, MATLAB’s random number generator is locked to the de-

fault value.

Complete MATLAB code used for this step is listed in Appendix B.8.

Once parameters are retrieved for each sampling point, geometries for each of them can be

generated using the improved Python script developed as described in the previous chapter.

For each configuration 3 di”erent simulations have to be performed in 3 di”erent domains:

open road, wind tunnel and empty wind tunnel, with this latter performed in order to

retrieve dynamic pressure correction and horizontal buoyancy correction. Open-road domain

is characterized by the ground patch having a movingWallVelocity boundary condition, in

order to replicate as close as possible a real situation.

Drag coe!cient is calculated through forces function object available in OpenFOAM

[38]. Frontal area is needed by the function in order to calculate drag coe!cient for each

configuration. Its value is quantified using pArea [39] package on Python starting from the

STL model.

Table 3.4 shows the average cell count for each of the simulated domain.

Table 3.4: Cell count for computational domains

Domain Number of cells [·106]

Tunnel 15

Empty tunnel 10

Open 40

Sample images for all configurations in the wind tunnel domains are shown from Fig-

ure 3.17 to Figure 3.26. It is important to notice that geometries di”ers not only for the

di”erent types of vehicles but also for di”erent wind tunnel geometries and positions of the

3. Methodology 37

vehicle within the test chamber.

In some of these configurations the vehicle is placed in close proximity of collector entry;

while not being realistic configurations these cases are useful to check the performance of

pressure corrections.

Fig. 3.17: configuration 1 - Tunnel
domain

Fig. 3.18: configuration 2 - Tunnel
domain

Fig. 3.19: configuration 3 - Tunnel
domain

Fig. 3.20: configuration 4 - Tunnel
domain

3. Methodology 38

Fig. 3.21: configuration 5 - Tunnel
domain

Fig. 3.22: configuration 6 - Tunnel
domain

Fig. 3.23: configuration 7 - Tunnel
domain

Fig. 3.24: configuration 8 - Tunnel
domain

Fig. 3.25: configuration 9 - Tunnel
domain

Fig. 3.26: configuration 10 - Tunnel
domain

4. Results

4.1 Steady Simulations With Stationary Ground

In order to quantify the e”ect of the change in numerical schemes, reference cases have

been ran from the previous end-point with the improved schemes presented in Section 3.3.

By comparing the drag coe!cient at the new convergence points with the one at the end of

the previous simulations, the e”ect of numerical schemes can be isolated and studied.

In particular, 2 di”erent types of vehicles have been chosen: a minivan model and a sedan

model. Both of them have been simulated in 2 di”erent domains, namely open-road and a

generic tunnel geometry. This set of cases provided a good range of geometries on which the

e”ects of the updated numerics have been quantified.

Figure 4.1 shows the percentage di”erence of drag coe!cient between the current conver-

gence point and the one at the end of previous simulations. It can be seen that di”erences

depends not only on the vehicle but also on the computational domain of the simulation.

In the open-road domain, both configurations show a drag increase compared to the previous

results, with the sedan model having a more significant change.

The minivan model shows a drag reduction for the case in the generic tunnel while the sedan

model in the same domain shows a drag increase.

An additional case for the minivan vehicle model has been simulated using the AAWT wind

tunnel geometry. This case allows to generally quantify the e”ect of numerical schemes when

changing only the wind tunnel domain, while maintaining the same vehicle type.

By comparing results for the minivan between the generic tunnel and the AAWT tunnel we

can see how the change in tunnel domain leads to changes in drag, suggesting that the e”ect

of numerical schemes is significant when compared to previous results but its absolute value

cannot be predicted, as it depends on multiple factors.

A trend for the e”ect of numerical schemes cannot be highlighted, suggesting that the study

done before has to be carried out again, by implementing these changes for all future simu-

39

4. Results 40

lations.

Fig. 4.1: Percentage di!erence between current and previous drag coe”cients

Di”erent vehicle shapes and di”erent domains result in di”erent pressure gradients which

significantly a”ect the drag coe!cient. Figure 4.2 shows the percentage di”erence between

the current and previous drag considering the two contributions: pressure drag and viscous

drag.

The changes in numerical schemes can be related to the behaviour of these two components.

For the minivan case, the change in numerical schemes follows the same trend of the viscous

drag: the higher the change in viscous contribution between current and previous cases

and the greater is the e”ect of the numerics in absolute terms. The sedan model instead

follows a trend more similar to the one highlighted by the pressure drag contribution: a

greater absolute percentage di”erence for the pressure drag translates in a greater e”ect of

the change in numerical schemes.

Even by considering this additional trends, the e”ect of the improved numerics cannot

be predicted. Moreover, only general trends can be highlighted but the magnitude of these

e”ects is strictly dependent on the vehicle and on the computational domain; no correlation

between drag contributions and the sign of the e”ects of the numerics can be found comparing

these quantities. This behaviour suggests once again that the change in numerics has to be

implemented not only for robustness and convergence speed but also because its e”ect cannot

4. Results 41

be predicted and a”ects each case in a di”erent way.

(a)

(b)

Fig. 4.2: Percentage di!erence between current and previous drag coe”cients. a) pressure
drag contribution, b) viscous drag contribution

4. Results 42

4.2 Steady Simulations With Moving Ground

A preliminary case including the moving ground system described in Section 3.5 has been

carried out on the minivan model in the AAWT tunnel model, in order to quantify the e”ect

of the inclusion of the moving ground system.

This case has been simulated with the improved numerics and the value at convergence has

been compared to the value of the same simulation without the moving ground.

Table 4.1: E!ect of moving ground system - Drag values

Configuration AAWT - Stationary ground AAWT - Moving ground

Minivan 0.2378 0.2389

Table 4.1 shows the results of the same wind tunnel domain both with and without the

inclusion of the moving ground.

Typical uncertainty of drag coe!cient is approximately ±0.002 as reported by Walter et al.

[34]. In this case, #Cd = Cd,MG → Cd,SG = 0.0011; this value lies within the measurement

uncertainty, suggesting that the e”ect of the implementation of the moving ground system

can be di!cult to validate experimentally.

While not translating in a huge di”erence in drag coe!cient, the implementation of this

system significantly a”ects the flow behaviour around the vehicle. Figure 4.3 shows the

magnitude of normalized velocity on the symmetry plane for stationary and moving ground,

respectively. Some di”erences in the wake region can be seen, with the moving ground case

having a low-velocity region which occupies a greater portion of space, justifying the increase

drag experienced by this configuration. In the case of stationary ground the wake region

rejoins the flow in contact with the ground after about half a vehicle length downstream the

model. This behaviour does not happen in case of moving ground, where the flow remains

detached from the ground probably due to more momentum given by the flow coming from

the underbody.

An additional slice at z/l = 0.08 is shown in Figure 4.4. It can be noticeable that for

4. Results 43

the case with the moving ground, there is a region of flow deceleration on the whole side of

the vehicle. This region is due to the fact that this second case implements wheel rotation

which a”ects the behavior of the flow not only in correspondence of the wheels but also

downstream. This region of reduced speed increases the aerodynamic resistance experienced

by the model, again explaining the greater drag coe!cient highlighted previously.

(a)

(b)

Fig. 4.3: Umean/U→ at y/l = 0. a) stationary ground, b) moving ground

(a)

(b)

Fig. 4.4: Umean/U→ at z/l = 0.08. a) stationary ground, b) moving ground

Additional comparison is done considering the pressure coe!cient distribution on the

symmetry plane, as shown in Figure 4.5.

4. Results 44

Minor di”erences can be noticed: the presence of the moving ground system reduces the

pressure coe!cient in correspondence of the di”user (i.e. the end part of the underbody).

While this behaviour would mostly a”ect the lift, the shape of the di”user makes this pressure

distribution a”ect also the drag: a negative cp translates in a pressure vector directed outward

from the surface, so exerting a force component directed opposite to vehicle motion.

(a)

(b)

Fig. 4.5: cp at y/l = 0. a) stationary ground, b) moving ground

The e”ect of wheel rotation can be seen more clearly looking at Figure 4.6 which shows

the behaviour of turbulent kinetic energy, normalized using its inlet value.

It can be noticeable how for the moving ground case, there is an injection of energy coming

from the front wheels, as expected from the previous discussion. This e”ect is progressing

also downstream of the vehicle and a”ects the shape of the wake which appears to be more

elongated in the longitudinal direction. Moreover, the stationary ground case highlights

some high energy regions within the wake, probably due to some mixing vortices arising in

that area.

4. Results 45

(a)

(b)

Fig. 4.6: k/kinlet at z/l = 0. a) stationary ground, b) moving ground

To better assess the e”ects of the inclusion of the moving ground, the di”erence in drag

contributions between stationary and moving ground has been computed and shown in Fig-

ure 4.7. Pressure drag decreases in the case of moving ground, due to the reduced dimensions

of the wake region in the lateral direction and due to the flow momentum from the under-

body of the vehicle which a”ects the behaviour of the flow on the back of the car. On the

other hand, viscous drag increases as there is an additional region of flow deceleration on

the side of the vehicle, increasing the wall shear stresses in that region. In this specific case,

the increase in viscous drag contribution is the one a”ecting the total drag: the increase in

this contribution outplays the decrease in pressure drag and consequently translates in an

higher total drag.

In conclusion, the inclusion of moving ground leads to a small di”erence in terms of drag

coe!cient for the minivan model. As highlighted in Chapter 2, the literature does not show

a specific trend in the simulations including this system but it is useful to implement it

to reduce the di”erences between computational domain and real wind tunnels. Its imple-

mentation visibly a”ects the flow around the test vehicle, in terms of velocity, pressure and

turbulence.

4. Results 46

The integration of the system doesn’t require any additional CAD geometries but is directly

implemented through OpenFOAM functions, thus requiring minimum e”orts. In addition,

there is no increase in computational resources required so that the system can be easily

implemented in all cases considered in the future.

Fig. 4.7: Percentage di!erence in drag contributions between stationary and moving ground

4.3 Simulations for Parametric Study

Following the same approach pursued by Fujs [4], a parametric study has been carried

out using the geometries generated as explained in Section 3.6.

All vehicle models have been simulated in 2 di”erent computational environments: open-

road and wind tunnel. An additional simulation of an empty wind tunnel has been carried

out for each configuration; this latter being useful to retrieve dynamic pressure corrections

and horizontal buoyancy corrections.

The corrected drag coe!cient computed following the classic approach is

Cd,q =
Cd +#Cd,HB

q/q→
(4.1)

4. Results 47

where Cd is the drag coe!cient computed in the tunnel while #Cd,HB is defined as:

#Cd,HB =

*
1.75

A

+*
V

2

+
G (4.2)

where A is the frontal area of test vehicle, V is the volume of the test vehicle and G is the

Glauert factor:

G =

*
dcp
dx

+

N

+

*
dcp
dx

+

C

(4.3)

This factor is calculated by central di”erence with respect to the vehicle center by means

of probes in the empty wind tunnel domain, at positions equivalent to vehicle front, center

and rear. Figure 4.8 shows the location of probes for a generic configuration where the

vehicle model has been included only for clarity.

Fig. 4.8: Location of pressure probes in empty test chamber for a generic configuration

Referring back to Equation 4.1,
q

q→
is the dynamic pressure correction defined as:

q

q→
= (1→ ϱQN + ϱQP + ϱS + ϱN + ϱC)

2 (4.4)

where each term is defined in Section C.2.

Results for drag coe!cients for each configuration in the di”erent domains are presented

in Figure 4.9. Numerical values are included in Appendix C.3.

4. Results 48

Fig. 4.9: Results for drag coe”cient in the di!erent domains

It is noticeable how some configurations, in particular config2, config8 and config9, show

a very low in-tunnel Cd when compared to the results of the other configurations.

Looking at Figure 3.18, Figure 3.24 and Figure 3.25 it can be seen that these configurations

share a common detail: their position in the test chamber is really close to the collector. In

this zone there is a favorable pressure gradient with an high pressure region upstream of the

collector entry; this gradient reduces significantly the drag force experienced by the vehicle,

translating in a lower drag coe!cient computed for these specific cases.

In particular, Figure 4.10 show the pressure coe!cient distribution at the back of the vehicle:

cp =
p→ p→
1/2 ωU2

→
(4.5)

where p→ and U→ are taken in a point upstream of the vehicle where flow is undisturbed. ω

is a constant as cases are incompressible.

Configuration 1 is a more ”standard” configuration where the vehicle is placed close to

the center of the test section: for this configuration, cp highlights values close to zero on

the whole back of the vehicle, meaning that the pressure across that area is close to the

free-stream value. On the other hand configuration 9 shows positive cp values translating in

a pressure force acting in the same direction of motion, reducing the drag experienced by

4. Results 49

the vehicle.

(a) (b)

Fig. 4.10: cp distribution on the back of the vehicle. a) configuration 1, b) configuration 9

While these 3 configurations are not realistic as in real tests the vehicle will never be

placed so further in the test section, they appear to be useful to assess the performance of

the classic pressure correction approach. Configuration 9 is an extreme case as the pressure

gradient is so significant that it almost cancels out the drag force experienced by the vehicle.

Even in this extreme case the correction approach is able to well correct the drag, bringing

its value more in line with the the ones of other configurations.

It can be seen how the pressure corrections are able to significantly correct the configu-

rations having a too low coe!cient prior to this operation.

These corrections are very useful and perform well for all types of configurations, specifically

the ones having a low drag coe!cient in the tunnel domain prior to any correction; on the

other hand there is no way to know if the corrected drag coe!cient is the same as the one

of the vehicle on open-road domain despite the good performance of the classic correction

method. Indeed, it can be noticed how the drag coe!cient computed for the open domain is

constantly overshooting the corrected drag coe!cient in the majority of the cases, suggest-

ing that the pressure corrections are somehow limited in their performance. To justify the

greater value in the open domain it is useful to look at the pressure coe!cient distribution

around the vehicle for both simulated domains, shown in Figure 4.11, where the lower bound

of cp scale has been limited to better show the di”erences.

4. Results 50

(a)

(b)

Fig. 4.11: cp at y/l = 0 for configuration 1. a) tunnel domain, b) open domain

The first di”erence to be noticed is a slightly larger high pressure region at the front of the

vehicle for the open domain: this translates to a higher pressure force working against the

direction of vehicle motion, causing a higher drag coe!cient for the vehicle.

A larger region of negative cp can be seen at the trailing edge of the roof for the open domain:

this distribution leads to a pressure force directed away from the body. In this area the pres-

sure vector can be decomposed in the vehicle reference’s frame: its horizontal component is

opposite to the direction of motion, thus generating a force that increases the drag experi-

enced by the vehicle. Some other di”erences in cp distribution can be noticed underneath

the car, where in the open domain a larger negative value region can be highlighted at the

start and end sides of the underbody.

4. Results 51

4.4 Improved Correction Method

To derive the improved correction the process presented in the previous work has been

followed once again.

Fujs [4] found that drag coe!cient computed for the simplified model consistently overshoots

the one of the detailed model, allowing to retrieve a linear fit able to correlate the two values:

Cd,detailed =
Cd,parametric

mCd,parametric + b+ 1
(4.6)

where m = 0.22002 and b = 0.02715.

This function is able to predict values for the detailed model with negligible error. By using

this equation, a conversion factor describing the di”erence of drag between the parametric

and detailed models can be retrieved:

f = Cd,parametric → Cd,detailed = Cd,parametric

*
1→ 1

mCd,parametric + b+ 1

+
(4.7)

The correction method previously used is based on the di”erence of drag coe!cient be-

tween open domain and tunnel domain, corrected following the classic approach. This met-

ric is computed from the results of the parametric study presented in Section 3.6, following

Equation 4.9. Subtracting the factor f to Cd of the parametric model allows to have results

for the detailed vehicle, improving the performance of the correction when considering real

vehicles.

#Cd = Copen
d,detailed → C tunnel

d,detailed (4.8)

=
(
Copen

d,parametric → fopen
)
→
(
C tunnel

d,parametric → f tunnel
)

(4.9)

A set of 10 #Cd values is computed from the parametric study and used to retrieve a Radial

Basis Function able to interpolate the scattered data. The idea behind this step is that those

10 points can be related to the values of PCs of each simulated geometry, leading to them

being placed within the 4D PC space. RBF is used to retrieve a surface which interpolates

4. Results 52

this points and that is able to return the value of #Cd for any configuration using as an

input only the values of PCs, computed from the geometric parameters using the equations

listed in Appendix B.6.

#Cd = RBFn (PC1, PC2, PC3, PC4) (4.10)

Figure 4.12 shows the values of #Cd for the configurations of the parametric study, with

exact values listed in Appendix C.4. It can be seen how all values are positive, highlighting

once again that the open-road drag is always overshooting the corrected drag coe!cient

computed from the tunnel domain. This behaviour remains the same even after subtracting

the f factor but the values are much closer to each other and di”erences remains in the range

of about 50 to 75 drag counts for the majority of the cases (apart from the configurations

pointed out before for their peculiarity of being close to the collector).

Fig. 4.12: #Cd for configurations of parametric study

Once the RBF function is obtained, it can be applied on the experimental dataset used

initially in order to retrieve the values of #Cd for those configurations and to check the

performance of the correction in terms of mean value and standard deviation.

These values are added to the drag coe!cient computed experimentally and corrected fol-

lowing the classic correction approach, leading to the results shown in Table 4.2. Values of

#Cd for the experimental dataset are available in Appendix C.5.

At this point results can be compared to the other correction methods, applied on the

4. Results 53

Table 4.2: Cd for experimental dataset corrected with new RBF

Configuration Tunnel 1 Tunnel 2 Cd,q,T1 →Cd,q,T2

vehicle 1 0.3838 0.3323 0.0516

vehicle 2 0.3953 0.3367 0.0586

vehicle 3 0.3818 0.3364 0.0453

vehicle 4 0.4155 0.3459 0.0697

vehicle 5 0.4487 0.3659 0.0827

µ 0.0616

φ 0.0149

same experimental dataset. RBF10 is the label used for the new correction method.

Results are shown in Figure 4.13 while numerical values for each correction method are given

in Appendix C.6.

Fig. 4.13: Cd,q,T1 → Cd,q,T2 for di!erent correction methods

Considering each correction individually, RBF10 does not provide any improvement com-

pared to the other approaches: indeed its standard deviation is the highest among all con-

sidered methods.

RBF10 and RBF30 share a similar sampling approach, where the points are inter-tunnel sam-

4. Results 54

plings (i.e. not having any samples in the tunnel geometries considered in the experimental

dataset). By comparing these two correction approaches we can see how the standard de-

viation of RBF10 is close to the one computed for RBF30 despite using only a third of the

sampling points. While the mean value is much greater in the case of RBF10, this is not of

major interest as its e”ect can be easily canceled out by o”setting all results by µ.

Standard deviation is much more important as it quantifies the spread of the corrected drag

di”erence across the considered configurations. In an ideal case where φ = 0, the drag dif-

ference between the two tunnels is constant across all vehicles, allowing for a simple o”set

correction that will lead to the same drag coe!cient for a given vehicle independently from

the tunnel geometry in which the test is performed.

This observation suggests that increasing the sampling density in the central region of the PC

space does not provide significant benefits for the correction approach, since the vehicles to

which the correction is applied lie at the extreme ends of the PC space (i.e. PC1 = ±3.2863),

as it can be seen from Figure 4.14.

Fig. 4.14: Position of sampling points in the PC space

Previously defined RBFs can be used in order to improve the performance of RBF10. In

particular, RBF30 is based on 30 points distributed within the PC space, away from the

edges of the domain and RBF10+10 is based on 20 points (10 for each tunnel geometry of

the experimental dataset) placed exactly at the two extremes of PC1. RBF50 is a function

4. Results 55

based on the combination of these two.

Since the points of the experimental dataset lie on the edges of the PC space, a finer sampling

in correspondence of these regions is beneficial for the performance of the correction when

applied to the same dataset used previously. Figure 4.15 shows a comparison between the

correction methods, including a new RNF defined from the combination of some of them.

Fig. 4.15: Cd,q,T1 → Cd,q,T2 including the combination of di!erent correction methods

(RBF50 → RBF30) is calculated to isolate the e”ect of the additional 20 sampling points

at the edges of the PC domain, while preserving the behavior of the function in the central

region.

Adding this residual correction to RBF10 leads to a significant improvement in the results:

standard deviation is reduced by 43% when compared to the one of RBF10 only. This

improvement is likely because (RBF50 → RBF30) is close to zero far from the edges of PC

space, yet maintains a smooth blend across the entire domain. The results of this combined

correction confirms that the sampling strategy used for RBF10 is well designed and can be

more beneficial if additional experimental data is available.

A similar combination using RBF10+10 results in worse performance than using RBF10

alone. This is due to the fact that RBF10+10 contains no information about #Cd in the

central region of the PC space and therefore fails to blend properly with RBF10.

5. Conclusion

5.1 Summary

The work presented in this thesis aimed at improving the simulation models and drag

predictions for automotive blu” bodies in open-jet wind tunnels.

CFD RANS steady-state simulations have been the focus, with numerous changes that have

been implemented in order to achieve better accuracy of the results while increasing robust-

ness of the cases and convergence speed required by each simulation. Significant work has

been done on top of what was presented previously in the literature; first of all, being the

work based on an automatic approach for the meshing of the computational grid, grid quality

was often not excellent and numerical schemes have thus been changed to better perform in

case of high skewness and high non-orthogonality. It was noticed how these changes do not

present any clear trend, with the change in drag coe!cient depending on both the vehicle

and on the simulation domain. In all simulated cases the e”ect was not negligible, suggesting

that the approach used can have significant e”ects on the results.

Subsequently, an improvement of the fidelity of the models used for simulations has been

implemented. This improvement refers to the implementation of a moving ground system

in the tunnel domain used for simulations. This system is defined starting from the same

system available in the AAWT tunnel of Stellantis US and the approach has been generalized

in order to implement the same system in the same way independently from the size of the

car or the geometry of the tunnel, thus ensuring reproducibility.

The presented approach also includes the implementation of rotating wheels for the vehicle

model. The simplicity of the model allowed for the rotation of these being implemented by

using specific boundary conditions, without requiring the usage of MRFs. Also for this step

a generalization is given in order to enable the inclusion of this feature by only using vehicle

dimensions.

56

5. Conclusion 57

Finally, a parametric study has been performed using the improved models. A reduced

number of configurations has been selected due to time limitations but results were promising,

suggesting that the proposed approach can be used for future applications.

5.2 Thesis Contributions

The work pursued in this thesis contributes in many ways to the automotive literature.

The main contribution is the update to a complete automatic approach, able to generate

simulation geometries by only starting from data widely available for each vehicle and/or

open-jet tunnel configurations. This tool allows to not only save time when performing

CFD simulations but also to have a good estimation of the real flow behaviour around

an automotive blu” body, while maintaining the advantage of RANS simulations without

sacrificing accuracy. Specifically, robustness enhancements have been integrated so that the

models successfully generate over a large range of inputs. Vehicle and tunnel models have

been modified to allow the implementation of a rolling road system in the computational

domain. The generalization of each step allows the use of the same model independently

from the geometry of interest, increasing the capability of the approach to satisfy a wide

range of cases.

In addition, the approach followed for the correction highlighted the importance of the

sampling strategy. This aspect has to be designed in function of the aim of the correction.

Generally speaking, better performance for a given dataset is found when sampling points are

already close to the geometry used for the experiments; a more universal approach is more

di!cult to achieve but performance can be highly satisfactory when compared to the current

state of art, thus o”ering powerful tools to reduce the tunnel-to-tunnel drag variation.

5.3 Future Work

The study presented in this thesis highlights some trade-o”s due to the limited available

time for the work.

5. Conclusion 58

The e”ect of numerical schemes can be compared to experimental data in order to check

if their change improves the correlation between CFD and real tests. Moreover, further

validation on experimental data should be carried out in order to validate the improvements

done on the simulations.

The correction approach can be improved by increasing the number of reference geometries

in the initial dataset. This increase in initial information will lead to a more universal

improved correction rather than one tailored for only the tunnel geometries presented.

An increase in the number of samples, focused on a finer sampling in the PC regions closer

to the PC values of the reference dataset, will help in defining a more robust correction when

using the same reference dataset used in this thesis.

Finally, the performance of the approach can be better assessed by using higher fidelity

simulations, for example by performing unsteady simulations.

REFERENCES

[1] Alamaan Altaf, Ashraf A. Omar, and Waqar Asrar. Passive drag reduction of square

back road vehicles. Journal of Wind Engineering and Industrial Aerodynamics, 134:

30–43, 2014. ISSN 0167-6105.

[2] Michal Fabian, Róbert Huňady, Frantǐsek Kupec, and Tomáš Mlaka. E”ect of the

aerodynamic elements of the hatchback tailgate on the aerodynamic drag of the vehicle.

Advances in Science and Technology Research Journal, 16:73–87, 12 2022.

[3] Elton Nyoni and Primrose Chigumba. Aerodynamics and its role in enhancing fuel

e!ciency in automotive engineering. International Journal of Automobile Engineering,

5(2):32–35, 2024. ISSN 2707-8213.

[4] Matthew Fujs. Parametric automobile and open-jet wind tunnel models and their ap-

plication to improved drag coe!cient corrections. Electronic Theses and Dissertations,

9330, 2023. URL https://scholar.uwindsor.ca/etd/9330.

[5] Emil Ljungskog, Simone Sebben, and Alexander Broniewicz. Inclusion of the physical

wind tunnel in vehicle cfd simulations for improved prediction quality. Journal of Wind

Engineering and Industrial Aerodynamics, 197, 2020. ISSN 0167-6105.

[6] Alessandro Bottaro. Meccanica dei fluidi, 2019. University course taught at Univeristà

di Genova.

[7] James Julian, Tulus Hidayat Yusanto, Adi Winarta, Fitri Wahyuni, Muhammad Ilham

Adhynugraha, and Fadilah Hasim. Numerical analysis of 6-dof independent external

balance for subsonic wind tunnel. Engineering Science and Technology, an International

Journal, 54:101704, 2024.

[8] Jim Ross, Matthew Rhode, Bryan Falman, Karl Edquist, Mark Schoenenberger, Greg

Brauckmann, William Kleb, Thomas West, Stephen Alter, and David Witte. Evaluation

59

References

of cfd as a surrogate for wind-tunnel testing for mach 2.4 to 4.6 - project overview. 08

2021.

[9] S. R. Ahmed, G. Ramm, and G. Faltin. Some salient features of the time -averaged

ground vehicle wake. SAE Transaction, 93, 1984.

[10] Angelina I. Heft, Thomas Indinger, and Nikolaus A. Adams. Introduction of a new

realistic generic car model for aerodynamic investigations. SAE Technical Paper, 2012.

[11] Mohamed Sukri Mat Ali, Jafirdaus Jalasabri, Anwar Sood, Shuhaimi Mansor, Haziqah

Shaharuddin, and Sallehuddin Muhamad. Wind noise from a-pillar and side view mirror

of a realistic generic car model, driaver. International Journal of Vehicle Noise and

Vibration, 14:38, 01 2018.

[12] Neil Ashton and Alistair Revell. Comparison of RANS and DES methods for the drivaer

automotive body. SAE Technical Papers, 2015, 04 2015.

[13] Thomas Schuetz. Aerodynamics of Road Vehicles (5th Edition). SAE International,

2016.

[14] Edzard Mercker, Gerhard Wickern, and Jochen Weidemann. Contemplation of nozzle

blockage in open jet wind-tunnels in view of di”erent ’q’ determination techniques. SAE

Transactions, 106:283–292, 1997.

[15] E. Mercker and K.R. Cooper. A two-measurement correction for the e”ects of a pressure

gradient on automotive, open-jet, wind tunnel measurements. SAE Transactions, 115,

2006.

[16] T. Lounsberry and J. Walter. Practical implementation of the two-measurement cor-

rection method in automotive wind tunnels. SAE International Journal of Passenger

Cars–Mechanical Systems, 8(2):676–686, 2015.

[17] Oliver Fisher. Investigation of correction methods for interference e”ects in open-jet

wind tunnels. Springer Fachmedien Wiesbaden, 2018.

References

[18] Adithya Gopal. Stellantis invests in wind tunnel technology for evs. Au-

tomotive Testing Technology International, October 2024. URL https:

//www.automotivetestingtechnologyinternational.com/news/aerodynamics/

stellantis-invests-in-wind-tunnel-technology-for-evs.html.

[19] Rasmus Bro and Age K. Smilde. Principal component analysis. Analytical Methods, 6:

2812–2831, 2014.

[20] Wei-Liem Loh. On Latin hypercube sampling. The Annals of Statistics, 24(5):2058 –

2080, 1996.

[21] Martin D. Buhmann. Radial Basis Functions: Theory and Implementations. Cambridge

Monographs on Applied and Computational Mathematics. Cambridge University Press,

2003.

[22] Sinǐsa Krajnović and Lars Davidson. Influence of floor motions in wind tunnels on the

aerodynamics of road vehicles. Journal of Wind Engineering and Industrial Aerody-

namics., 2005. ISSN 0167-6105.

[23] Shibo Wang, Terence Avadiar, Mark C. Thompson, and David Burton. E”ect of moving

ground on the aerodynamics of a generic automotive model: The drivaer-estate. Journal

of Wind Engineering and Industrial Aerodynamics, 195, 2019. ISSN 0167-6105.

[24] Vesselina Roussinova. Advanced fluid mechanics MECH 8290-23, A.Y. 2024-2025. Uni-

versity course taught at University of Windsor.

[25] Chunhui Zhang, Charles Patrick Bounds, Lee Foster, and Mesbah Uddin. Turbulence

modeling e”ects on the cfd predictions of flow over a detailed full-scale sedan vehicle.

Fluids, 4(3), 2019.

[26] Quentin Carré. Turbulence modelling for CFD. Eindhoven University of Technology,

2023.

[27] SimScale. Mesh quality, 2024. URL https://www.simscale.com/docs/

simulation-setup/meshing/mesh-quality/.

References

[28] Chris Greenshields and Henry Weller. Notes on Computational Fluid Dynamics: Gen-

eral Principles – 3.6 Overview of discretisation. CFD Direct Ltd, 2022. URL https://

doc.cfd.direct/notes/cfd-general-principles/overview-of-discretisation.

[29] Chris Greenshields and Henry Weller. Notes on Computational Fluid Dynamics:

General Principles – 3.10 Upwind scheme. CFD Direct Ltd, 2022. URL https:

//doc.cfd.direct/notes/cfd-general-principles/upwind-scheme.

[30] Chris Greenshields and Henry Weller. Notes on Computational Fluid Dynamics: Gen-

eral Principles – 3.14 Linear upwind scheme. CFD Direct Ltd, 2022. URL https:

//doc.cfd.direct/notes/cfd-general-principles/linear-upwind-scheme.

[31] Chris Greenshields and Henry Weller. Notes on Computational Fluid Dynam-

ics: General Principles – 3.22 Bounded advection discretisation. CFD Di-

rect Ltd, 2022. URL https://doc.cfd.direct/notes/cfd-general-principles/

bounded-advection-discretisation.

[32] Chris Greenshields and Henry Weller. Notes on Computational Fluid Dynamics: Gen-

eral Principles – 3.11 Limited advection schemes. CFD Direct Ltd, 2022. URL https:

//doc.cfd.direct/notes/cfd-general-principles/limited-advection-scheme.

[33] Chris Greenshields and Henry Weller. Notes on Computational Fluid Dynam-

ics: General Principles – 3.23 Recommended discretisation schemes. CFD Di-

rect Ltd, 2022. URL https://doc.cfd.direct/notes/cfd-general-principles/

recommended-discretisation-schemes.

[34] J. Walter, V. Canacci, R. Rout, W. Koester, and M. Simon. Uncertainty analysis of

aerodynamic coe!cients in an automotive wind tunnel. SAE Technical Paper 2005-01-

0870, SAE International, 2005.

[35] MathWorks. zscore. The MathWorks, Inc., . URL https://www.mathworks.com/help/

stats/zscore.html.

[36] MathWorks. lhsdesign. The MathWorks, Inc., . URL https://www.mathworks.com/

help/stats/zscore.html.

References

[37] MathWorks. lsqnonlin. The MathWorks, Inc., . URL https://www.mathworks.com/

help/stats/zscore.html.

[38] OpenCFD Ltd. Forces function object. OpenFOAM Foundation, 2021. OpenFOAM

User Guide v2112.

[39] Nathan A. Rooy. parea: The easiest way to calculate the projected/frontal area of an

stl. Python package (PyPI), 2020. Released December 17, 2020.

[40] Chris Greenshields and Henry Weller. Notes on Computational Fluid Dynamics: Gen-

eral Principles – 3.12 Useful TVD schemes. CFD Direct Ltd, 2022. URL https:

//doc.cfd.direct/notes/cfd-general-principles/useful-tvd-schemes.

APPENDICES

64

A. Appendix A

A.1 Breakdown of model parameters

Table A.1: Parameters for simplified model [4]

Description Symbol

Tunnel

Test section length L

Test section width W

Test section height H

Nozzle exit width WN

Nozzle exit height HN

Nozzle depth into test section DN

Collector exit width WC

Collector exit height HC

Collector depth into test section DC

Collector angle ω

Di!user angle ε

Vehicle placement x

Vehicle

Length l

Width w

Height h

Internal volume, passenger compartment and trunk v

Front overhang of

Rear overhang or

Front wheel well height hf

Front wheel well height hr

Ride height r

65

B. Appendix B

B.1 Boundary conditions for wind tunnel domain

Table B.1: Boundary conditions for wind tunnel domain

Patch U p k ε ϑt

Inlet fixedValue zeroGradient fixedValue fixedValue calculated

Outlet zeroGradient fixedValue zeroGradient zeroGradient calculated

Walls noSlip zeroGradient kqRWallFunction omegaWallFunction nutUSpaldingWallFunction

Nozzle
bottom
surface and
final tunnel
portion

slip zeroGradient kqRWallFunction omegaWallFunction nutUSpaldingWallFunction

Vehicle
model and
wheels

noSlip zeroGradient kqRWallFunction omegaWallFunction nutUSpaldingWallFunction

Wheels rotatingWallVelocity zeroGradient kqRWallFunction omegaWallFunction nutUSpaldingWallFunction

Moving
ground
system

movingWallVelocity zeroGradient kqRWallFunction omegaWallFunction nutUSpaldingWallFunction

B.2 Boundary conditions for open domain

Table B.2: Boundary conditions for open road domain

Patch U p k ε ϑt

Inlet fixedValue zeroGradient fixedValue fixedValue calculated

Outlet zeroGradient fixedValue zeroGradient zeroGradient calculated

Ground movingWallVelocity zeroGradient kqRWallFunction omegaWallFunction nutUSpaldingWallFunction

Vehicle
model

noSlip zeroGradient kqRWallFunction omegaWallFunction nutUSpaldingWallFunction

Wheels rotatingWallVelocity zeroGradient kqRWallFucntion omegaWallFunction nutUSpaldingWallFunction

66

Appendix B 67

B.3 Grid quality metrics for a generic configuration in

the tunnel domain

/* ---*\

| ========= | |

| \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

| \\ / O peration | Version: 2312 |

| \\ / A nd | Website: www.openfoam.com |

| \\/ M anipulation | |

---/

Build : _1d8f0d55f7 -20231221 OPENFOAM =2312 version=v2312

Arch : "LSB;label =32; scalar =64"

Exec : checkMesh

Date : Jul 05 2025

Time : 10:38:40

Host : nl20101

PID : 134413

I/O : uncollated

Case : /home/philpess/scratch/Tunnel /001 _config1_TUNNEL

nProcs : 1

trapFpe: Floating point exception trapping enabled (FOAM_SIGFPE).

fileModificationChecking : Monitoring run -time modified files using timeStampMaster

(fileModificationSkew 5, maxFileModificationPolls 20)

allowSystemOperations : Allowing user -supplied system call operations

// * //

Create time

Create mesh for time = 0

Check mesh ...

Time = 0

Mesh stats

points: 16218770

faces: 46932873

internal faces: 46036753

cells: 15362055

faces per cell: 6.0519

boundary patches: 11

point zones: 1

face zones: 0

Appendix B 68

cell zones: 0

Overall number of cells of each type:

hexahedra: 14853766

prisms: 107194

wedges: 10265

pyramids: 1

tet wedges: 8236

tetrahedra: 46

polyhedra: 382547

Breakdown of polyhedra by number of faces:

faces number of cells

4 3897

5 4173

6 49449

7 90698

8 11991

9 177173

10 176

11 9

12 39760

13 1

14 1

15 5044

18 174

21 1

Checking topology ...

Boundary definition OK.

Cell to face addressing OK.

Point usage OK.

Upper triangular ordering OK.

Face vertices OK.

Number of regions: 1 (OK).

Checking patch topology for multiply connected surfaces ...

Patch Faces Points Surface topology

symmetry 125896 130039 ok (non -closed singly connected)

inlet 17378 18080 ok (non -closed singly connected)

outlet 8740 9085 ok (non -closed singly connected)

wallsslip 109606 112470 ok (non -closed singly connected)

wallsnoslip 439427 446389 ok (non -closed singly connected)

vehicleBody 162034 163686 ok (non -closed singly connected)

frontWheels 10496 11117 ok (non -closed singly connected)

rearWheels 10383 11015 ok (non -closed singly connected)

Appendix B 69

centerBelt 10633 11050 ok (non -closed singly connected)

frontLeftBelt 745 850 ok (non -closed singly connected)

rearLeftBelt 782 881 ok (non -closed singly connected)

".*" 896120 906883 ok (closed singly connected)

Checking faceZone topology for multiply connected surfaces ...

No faceZones found.

Checking basic cellZone addressing ...

No cellZones found.

Checking basic pointZone addressing ...

PointZone PointsBoundingBox

frozenPoints 24(-13.2522 4.11526 -0.613871) (-13.1801 4.1878 -0.529353)

Checking geometry ...

Overall domain bounding box (-32.6556 0 -4.17379) (66.6684 7.34801 11.069)

Mesh has 3 geometric (non -empty/wedge) directions (1 1 1)

Mesh has 3 solution (non -empty) directions (1 1 1)

Boundary openness (1.12454e-15 -7.86838e-14 4.28925e-15) OK.

Max cell openness = 3.72876e-15 OK.

Max aspect ratio = 423.681 OK.

Minimum face area = 1.08692e-07. Maximum face area = 0.478868. Face area magnitudes OK.

Min volume = 1.69898e-10. Max volume = 0.236236. Total volume = 4945.23. Cell volumes

OK.

Mesh non -orthogonality Max: 87.1008 average: 6.11241

*Number of severely non -orthogonal (> 70 degrees) faces: 14357.

Non -orthogonality check OK.

<<Writing 14357 non -orthogonal faces to set nonOrthoFaces

Face pyramids OK.

*** Max skewness = 4.56255 , 7 highly skew faces detected which may impair the quality of

the results

<<Writing 7 skew faces to set skewFaces

Coupled point location match (average 0) OK.

Failed 1 mesh checks.

End

Appendix B 70

B.4 fvSchemes

/* --------------------------------*- C++ -*----------------------------------*\

| ========= | |

| \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

| \\ / O peration | Version: 2312 |

| \\ / A nd | Website: www.openfoam.com |

| \\/ M anipulation | |

---/

// * //

FoamFile

{

version 2;

format ascii;

class dictionary;

location "system";

object fvSchemes;

}

ddtSchemes

{

default steadyState;

}

gradSchemes

{

default cellLimited leastSquares 1;

}

divSchemes

{

default none;

div(phi ,U) bounded Gauss linearUpwindV limited;

div(phi ,k) Gauss Minmod;

div(phi ,omega) Gauss Minmod;

div((nuEff*dev2(T(grad(U))))) Gauss linear;

div(div(phi ,U)) Gauss linear;

}

laplacianSchemes

{

default Gauss linear corrected;

}

interpolationSchemes

Appendix B 71

{

default linear;

}

snGradSchemes

{

default corrected;

}

wallDist

{

method meshWave;

}

// *** //

Appendix B 72

B.5 Python code for geometries generation

#!/usr/bin/env python

import os

import sys

import salome

import salome_notebook

from SketchAPI import *

from salome.shaper import model

import GEOM

from salome.geom import geomBuilder

import math

import SALOMEDS

import shutil

salome.salome_init ()

notebook = salome_notebook.NoteBook ()

#

--#

Change the following parameters to suit your needs. Note , Salome is a tricky program , and

sometimes rerunning the script will produce different results.

It may help to simply run the script again if unfathomable results appear.

#

#

folder --> output folder path , may need to be created.

stlRefinement --> minimum relative refinement level , lower being more refined

#

TunnelParam --> the parameters for the wind tunnel , listed in order below

L - Test Section Length

W - Test Section Width

H - Test Section Height

W_n - Nozzle Width

H_n - Nozzle Height

D_n - Nozzle Depth into Test Section

W_c - Collector Width

H_c - Collector Height

D_c - Collector Depth into Test Section

Alpha - Collector Angle

Beta - Diffuser Angle

TunnelPlacement - Placement of the vehicle away from the center of the test section

(positive is towards the nozzle)

#

VehicleParam --> the parameters for the Vehicle , listed in order below

Appendix B 73

l - Length

w - Width

h - Height

v - Volume (trunk volume + passenger volume)

o_f - Front Overhang

o_r - Rear Overhang

h_f - Front Wheel Well Height

h_r - Rear Wheel Well Height

r - Ride Height

#

The part generation sometimes runs into errors that can be seen in the object browser in

Salome. Typically , finding where the error occurs and inspecting the sketch or element

will lead

to a possible solution. The steps below guide you to solutions for ones experienced

previously.

#

filletRadius --> small fillets on the outside of the vehicle tend to have problems. If

errors noticed for Fillet_3 in Salome , try modifying the decimal value by +- 0.002.

If you right -click and edit the fillet , you can change the decimal value

within Salome until the sketch turns green , signalling it works. Then modify the value

here in the code to match.

bigFilletRadius --> large fillets at the rear of the vehicle can also be a cause for

problems as the edges may intersect with where the spoiler sits.

If Fillet_3 still has issues and cannot be fixed by modifying the

number above , try modifying this decimal value by +- 0.01. When it is clear that the

edges do not

interfere with each other , you may have to return to the previous

value and modify it again until it works.

spline --> a spline used to create the spoiler sometimes does not work as intended. This

is noticable in Salome when the sketches show errors , specifically vehicle Sketch_1.

This can be worked around by changing the value of this spline. Typically

changing to either 2 or 2.5 works. However , sometimes you may have to try some in

between values.

If all else fails , try values just below and above 2 and 3 respectively ,

changing by 0.1 at a time.

stlRefinement = 1e-5

#

--#

PARAMETRIC GEOMETRIES

#

--#

configN = 10

Appendix B 74

if configN == 1:

folder = "C:/ Users/phili/Desktop/University of Windsor - Documents/Thesis -

CFD/SalomeGeometries/Parametric study/config1"

TunnelParam = [18.6913 , 0.6964 , 0.5922 , 0.3951 , 0.2509 , 0.1179 , 0.4764 , 0.3039 , 0.1969 ,

14.2288 , 2.6911 , -0.2329]

VehicleParam = [4.7276 , 0.4219 , 0.3108 , 0.0275 , 0.1809 , 0.17, 0.1462 , 0.1448 , 0.0203]

filletRadius = "0.005*l"

bigFilletRadius = "0.05*l"

spline = 3

elif configN == 2:

folder = "C:/ Users/phili/Desktop/University of Windsor - Documents/Thesis -

CFD/SalomeGeometries/Parametric study/config2"

TunnelParam = [17.3768 , 0.6554 , 0.5227 , 0.3242 , 0.2138 , 0.0664 , 0.4269 , 0.2653 , 0.1371 ,

10.9423 , 1.3767 , -3.355]

VehicleParam = [4.306 , 0.3219 , 0.35, 0.035 , 0.17, 0.17, 0.1404 , 0.1402 , 0.0329]

filletRadius = "0.003*l"

bigFilletRadius = "0.03*l"

spline = 2.5

elif configN == 3:

folder = "C:/ Users/phili/Desktop/University of Windsor - Documents/Thesis -

CFD/SalomeGeometries/Parametric study/config3"

TunnelParam = [19.3941 , 0.7375 , 0.6207 , 0.4211 , 0.261, 0.1404 , 0.4645 , 0.3114 , 0.1672 ,

15.9852 , 3.394, 1.4359]

VehicleParam = [5.1156 , 0.4278 , 0.3365 , 0.032 , 0.1768 , 0.1875 , 0.16, 0.16, 0.0304]

filletRadius = "0.005*l"

bigFilletRadius = "0.05*l"

spline = 3

elif configN == 4:

folder = "C:/ Users/phili/Desktop/University of Windsor - Documents/Thesis -

CFD/SalomeGeometries/Parametric study/config4"

TunnelParam = [18.8835 , 0.7081 , 0.5998 , 0.4019 , 0.2534 , 0.1239 , 0.4722 , 0.3056 , 0.1869 ,

14.7092 , 2.8834 , 0.2235]

VehicleParam = [4.9349 , 0.43, 0.35, 0.035 , 0.2094 , 0.17, 0.16, 0.16, 0.04]

filletRadius = "0.003*l"

bigFilletRadius = "0.03*l"

spline = 2.7

elif configN == 5:

folder = "C:/ Users/phili/Desktop/University of Windsor - Documents/Thesis -

CFD/SalomeGeometries/Parametric study/config5"

TunnelParam = [19.7839 , 0.7627 , 0.6355 , 0.4341 , 0.2654 , 0.1522 , 0.453, 0.314, 0.1433 ,

16.9595 , 3.784, 2.3617]

Appendix B 75

VehicleParam = [4.7388 , 0.43, 0.35, 0.035 , 0.17, 0.17, 0.16, 0.16, 0.04]

filletRadius = "0.005*l"

bigFilletRadius = "0.05*l"

spline = 2.9

elif configN == 6:

folder = "C:/ Users/phili/Desktop/University of Windsor - Documents/Thesis -

CFD/SalomeGeometries/Parametric study/config6"

TunnelParam = [19.799 , 0.7142 , 0.6581 , 0.4651 , 0.2907 , 0.1656 , 0.5, 0.3477 , 0.2,

16.9988 , 3.7986 , 2.3981]

VehicleParam = [5.3385 , 0.422 , 0.3312 , 0.0265 , 0.2066 , 0.1993 , 0.1566 , 0.1556 , 0.0226]

filletRadius = "0.005*l"

bigFilletRadius = "0.05*l"

spline = 3

elif configN == 7:

folder = "C:/ Users/phili/Desktop/University of Windsor - Documents/Thesis -

CFD/SalomeGeometries/Parametric study/config7"

TunnelParam = [19.5542 , 0.7494 , 0.6261 , 0.4255 , 0.262, 0.1448 , 0.4566 , 0.3114 , 0.1523 ,

16.3853 , 3.5542 , 1.8161]

VehicleParam = [4.9833 , 0.43, 0.35, 0.0312 , 0.1969 , 0.17, 0.16, 0.16, 0.0259]

filletRadius = "0.005*l"

bigFilletRadius = "0.05*l"

spline = 2.6

elif configN == 8:

folder = "C:/ Users/phili/Desktop/University of Windsor - Documents/Thesis -

CFD/SalomeGeometries/Parametric study/config8"

TunnelParam = [17.1342 , 0.65, 0.5132 , 0.3156 , 0.2107 , 0.0588 , 0.4323 , 0.2632 , 0.1493 ,

10.336 , 1.1341 , -3.931]

VehicleParam = [3.8731 , 0.3567 , 0.3464 , 0.0325 , 0.1845 , 0.178 , 0.1599 , 0.1599 , 0.0398]

filletRadius = "0.003*l"

bigFilletRadius = "0.04*l"

spline = 2.2

elif configN == 9:

folder = "C:/ Users/phili/Desktop/University of Windsor - Documents/Thesis -

CFD/SalomeGeometries/Parametric study/config9"

TunnelParam = [17.2749 , 0.65, 0.5244 , 0.3285 , 0.219 , 0.0665 , 0.455 , 0.2732 , 0.1831 ,

10.688 , 1.2747 , -3.5968]

VehicleParam = [4.5122 , 0.3339 , 0.347 , 0.035 , 0.17, 0.17, 0.14, 0.14, 0.02]

filletRadius = "0.005*l"

bigFilletRadius = "0.02*l"

spline = 2.7

Appendix B 76

elif configN == 10:

folder = "C:/ Users/phili/Desktop/University of Windsor - Documents/Thesis -

CFD/SalomeGeometries/Parametric study/config10"

TunnelParam = [18.2782 , 0.6844 , 0.5699 , 0.3722 , 0.2388 , 0.1014 , 0.459, 0.2911 , 0.1749 ,

13.196 , 2.2781 , -1.2141]

VehicleParam = [4.5036 , 0.3618 , 0.3364 , 0.0346 , 0.1798 , 0.187 , 0.1588 , 0.1589 , 0.0381]

filletRadius = "0.003*l"

bigFilletRadius = "0.02*l"

spline = 2.9

else:

print("You entered an invalid configuration number , try again!")

#

--#

FOLDER CREATION

#

--#

if not os.path.exists(folder):

os.mkdir(folder)

if not os.path.exists(folder + "/STL"):

os.mkdir(folder + "/STL")

if not os.path.exists(folder + "/XAO"):

os.mkdir(folder + "/XAO")

#

--#

TUNNEL CREATION

#

--#

model.begin ()

partSet = model.moduleDocument ()

Part_1 = model.addPart(partSet)

Part_1.setName("Tunnel")

Part_1.result ().setName("Tunnel")

Part_1_doc = Part_1.document ()

model.addParameter(Part_1_doc , "L", str(TunnelParam [0]), ’Test Section Length ’)

model.addParameter(Part_1_doc , "W", str(TunnelParam [1]), ’Test Section Width’)

model.addParameter(Part_1_doc , "H", str(TunnelParam [2]), ’Test Section Height ’)

model.addParameter(Part_1_doc , "W_n", str(TunnelParam [3]), ’Nozzle Width’)

model.addParameter(Part_1_doc , "H_n", str(TunnelParam [4]), ’Nozzle Height ’)

model.addParameter(Part_1_doc , "D_n", str(TunnelParam [5]), ’Nozzle Depth into Test Section ’)

model.addParameter(Part_1_doc , "W_c", str(TunnelParam [6]), ’Collector Width ’)

model.addParameter(Part_1_doc , "H_c", str(TunnelParam [7]), ’Collector Height ’)

model.addParameter(Part_1_doc , "D_c", str(TunnelParam [8]), ’Collector Depth into Test

Appendix B 77

Section ’)

model.addParameter(Part_1_doc , "Alpha", str(TunnelParam [9]), ’Collector Angle’)

model.addParameter(Part_1_doc , "Beta", str(TunnelParam [10]) , ’Diffuser Angle ’)

Point_2 = model.addPoint(Part_1_doc , "L/2", "(W*L)/2", "0")

Point_3 = model.addPoint(Part_1_doc , "-L/2", " -(W*L)/2", "H*L")

Point_4 = model.addPoint(Part_1_doc , "-L/2+(D_n*L)", "1.99*(W_n*L)/2", "1.89*(H_n*L)")

Point_5 = model.addPoint(Part_1_doc , "-L/2+(D_n*L) -1.365*L", " -1.99*(W_n*L)/2",

" -0.89*(H_n*L)")

Point_6 = model.addPoint(Part_1_doc , "L/2", "0.58*(W_c*L)", "1.165*(H_c*L)")

Point_7 = model.addPoint(Part_1_doc , "L/2+(0.165*(H_c*L))/(tan(Beta*(pi /180)))+L",

" -0.58*(W_c*L)", " -0.165*(H_c*L)")

Point_8 = model.addPoint(Part_1_doc , "-L/2+(D_n*L)", "(W_n*L)/2+0.0175*L",

"(H_n*L)+0.0175*L")

Point_9 = model.addPoint(Part_1_doc , "-L/2", " -(W_n*L)/2 -0.0175*L", "0")

Point_10 = model.addPoint(Part_1_doc , "L/2-(D_c*L)",

"(W_c*L)/2+(D_c*L)*tan(Alpha *(pi/180))+0.03*L", "0")

Point_11 = model.addPoint(Part_1_doc , "L/2",

" -(W_c*L)/2-(D_c*L)*tan(Alpha*(pi/180)) -0.03*L",

"(H_c*L)+(D_c*L)*tan(Alpha*(pi /180))+0.03*L")

Point_12 = model.addPoint(Part_1_doc , "-L/2+(D_n*L)", "0", "0")

Point_13 = model.addPoint(Part_1_doc , "-L/2+(D_n*L) -0.077*L", "0", "0")

Point_14 = model.addPoint(Part_1_doc , "-L/2+(D_n*L) -0.531*L", "0", "0")

Point_15 = model.addPoint(Part_1_doc , "-L/2+(D_n*L) -0.423*L", "0", " -0.89*(H_n*L)")

Point_16 = model.addPoint(Part_1_doc , "-L/2+(D_n*L) -0.704*L", "0", " -0.89*(H_n*L)")

Point_17 = model.addPoint(Part_1_doc , "0", "0", "(H_n*L)/2")

Point_18 = model.addPoint(Part_1_doc , "-L/2+(D_n*L)", "(W_n*L)/2", "0")

Point_19 = model.addPoint(Part_1_doc , "-L/2+(D_n*L) -0.077*L", "(W_n*L)/2", "0")

Point_20 = model.addPoint(Part_1_doc , "-L/2+(D_n*L) -0.55*L", "(W_n*L)/2", "0")

Point_21 = model.addPoint(Part_1_doc , "-L/2+(D_n*L) -0.423*L", "0.995*(W_n*L)", "0")

Point_22 = model.addPoint(Part_1_doc , "-L/2+(D_n*L) -0.74*L", "0.995*(W_n*L)", "0")

Point_23 = model.addPoint(Part_1_doc , "L/2+(0.165*(H_c*L))/(tan(Beta*(pi/180)))",

"0.58*(W_c*L)", "0")

Point_24 = model.addPoint(Part_1_doc , "L/2", "(W_c*L)/2", "0")

Point_25 = model.addPoint(Part_1_doc , "L/2+(0.15*(H_c*L))/(tan(Beta*(pi/180)))",

"0.58*(W_c*L)", "0")

Point_26 = model.addPoint(Part_1_doc , "L/2+(0.015*(H_c*L))/(tan(Beta*(pi/180)))",

"(W_c*L)/2", "0")

Point_27 = model.addPoint(Part_1_doc , "L/2", "0", "0")

Point_28 = model.addPoint(Part_1_doc , "L/2+(0.165*(H_c*L))/(tan(Beta*(pi/180)))", "0",

" -0.165*(H_c*L)")

Point_29 = model.addPoint(Part_1_doc , "L/2+(0.15*(H_c*L))/(tan(Beta*(pi/180)))", "0",

" -0.165*(H_c*L)")

Point_30 = model.addPoint(Part_1_doc , "L/2+(0.015*(H_c*L))/(tan(Beta*(pi/180)))", "0", "0")

Point_31 = model.addPoint(Part_1_doc , "0", "0", "(H_c*L)/2")

Appendix B 78

Point_32 = model.addPoint(Part_1_doc , "L/2", " -(W_c*L)/2 -0.03*L", "0")

Point_33 = model.addPoint(Part_1_doc , "L/2-(D_c*L)",

" -(W_c*L)/2-(D_c*L)*tan(Alpha*(pi/180)) -0.03*L", "0")

Point_34 = model.addPoint(Part_1_doc , "L/2-(D_c*L)",

" -(W_c*L)/2-(D_c*L)*tan(Alpha*(pi/180))", "0")

Point_35 = model.addPoint(Part_1_doc , "L/2", " -(W_c*L)/2", "0")

Point_36 = model.addPoint(Part_1_doc , "L/2", "0", "(H_c*L)")

Point_37 = model.addPoint(Part_1_doc , "L/2", "0", "(H_c*L)+0.03*L")

Point_38 = model.addPoint(Part_1_doc , "L/2-(D_c*L)", "0",

"(H_c*L)+(D_c*L)*tan(Alpha*(pi /180))")

Point_39 = model.addPoint(Part_1_doc , "L/2-(D_c*L)", "0",

"(H_c*L)+(D_c*L)*tan(Alpha*(pi /180))+0.03*L")

Point_40 = model.addPoint(Part_1_doc , "L/2", "(W_c*L)/2", "(H_c*L)")

Point_41 = model.addPoint(Part_1_doc , "L/2", " -(W_c*L)/2", "(H_c*L)")

Point_42 = model.addPoint(Part_1_doc , "L/2-(D_c*L)",

"(W_c*L)/2+(D_c*L)*tan(Alpha *(pi/180))", "0")

Point_43 = model.addPoint(Part_1_doc , "-L/2+ D_n*L -0.01*L", "-W_n*L/2-L*0.0175", "0")

Point_44 = model.addPoint(Part_1_doc , "-L/2+ D_n*L+L*0.015", "W_n*L/2+L*0.0175",

"H_n*L+L*0.0175")

Point_45 = model.addPoint(Part_1_doc , "-L/2+ D_n*L+L*0.05", "W_n*L/2+0.0175*L",

"H_n*L+0.0175*L")

Point_46 = model.addPoint(Part_1_doc , "-L/2+ D_n*L+L*0.1", "W_n*L/2+0.0175*L",

"H_n*L+0.0175*L")

Point_47 = model.addPoint(Part_1_doc , "-L/2+ D_n*L -0.01*L", "W_n*L/2 -0.006*L",

"H_n*L -0.006*L")

Point_48 = model.addPoint(Part_1_doc , "0", "0", "H_n*L+0.0175*L")

Point_49 = model.addPoint(Part_1_doc , "-L/2+ D_n*L+0.1*L", "-W_n*L/2+0.004*L", "0")

Point_50 = model.addPoint(Part_1_doc , "-L/2+ D_n*L -0.01*L", "W_n*L/2+0.004*L",

"H_n*L+0.004*L")

Point_51 = model.addPoint(Part_1_doc , "-L/2+ D_n*L -0.74*L", "-W*L/2", " -0.89*H_n*L")

Point_52 = model.addPoint(Part_1_doc , "L/2+(0.165*(H_c*L))/(tan(Beta*(pi/180)))", "W*L/2",

"H*L")

Point_53 = model.addPoint(Part_1_doc , "-L/2+ D_n*L -0.37*L",

" -(W_c*L)/2-(D_c*L)*tan(Alpha*(pi/180)) -0.05*L", " -0.89* H_n*L")

Point_54 = model.addPoint(Part_1_doc , "L/2+(0.165*(H_c*L))/(tan(Beta*(pi/180)))/2",

"(W_c*L)/2+(D_c*L)*tan(Alpha *(pi/180))+0.05*L",

"(H_c*L)+(D_c*L)*tan(Alpha*(pi /180))+0.05*L")

Point_55 = model.addPoint(Part_1_doc , "L/2+(0.165*(H_c*L))/(tan(Beta*(pi/180)))+2*L",

"0.58* W_c*L", "1.165* H_c*L")

Point_56 = model.addPoint(Part_1_doc , "L/2+(0.165*(H_c*L))/(tan(Beta*(pi/180)))+L", "0",

" -0.165* H_c*L")

Point_57 = model.addPoint(Part_1_doc , "L/2+(0.165*(H_c*L))/(tan(Beta*(pi/180)))+1.33*L",

"0", " -0.165* H_c*L")

Point_58 = model.addPoint(Part_1_doc , "L/2+(0.165*(H_c*L))/(tan(Beta*(pi/180)))+1.33*L",

"0", "0")

Appendix B 79

Point_59 = model.addPoint(Part_1_doc , "L/2+(0.165*(H_c*L))/(tan(Beta*(pi/180)))+1.67*L",

"0", "0")

Point_60 = model.addPoint(Part_1_doc , "L/2+(0.165*(H_c*L))/(tan(Beta*(pi/180)))+2*L", "0",

"0")

Point_61 = model.addPoint(Part_1_doc , "L/2+(0.165*(H_c*L))/(tan(Beta*(pi/180)))+L",

" -0.58* W_c*L", "0")

Point_62 = model.addPoint(Part_1_doc , "L/2+(0.165*(H_c*L))/(tan(Beta*(pi/180)))+1.33*L",

" -0.58* W_c*L", "0")

Point_63 = model.addPoint(Part_1_doc , "L/2+(0.165*(H_c*L))/(tan(Beta*(pi/180)))+1.33*L",

" -0.5*W_c*L", "0")

Point_64 = model.addPoint(Part_1_doc , "L/2+(0.165*(H_c*L))/(tan(Beta*(pi/180)))+1.67*L",

" -0.5*W_c*L", "0")

Point_65 = model.addPoint(Part_1_doc , "L/2+(0.165*(H_c*L))/(tan(Beta*(pi/180)))+2*L",

" -0.5*W_c*L", "0")

Box_1 = model.addBox(Part_1_doc , model.selection("VERTEX", "all -in -Point_1"),

model.selection("VERTEX", "all -in -Point_2"))

Box_2 = model.addBox(Part_1_doc , model.selection("VERTEX", "all -in -Point_3"),

model.selection("VERTEX", "all -in -Point_4"))

Box_3 = model.addBox(Part_1_doc , model.selection("VERTEX", "all -in -Point_5"),

model.selection("VERTEX", "all -in -Point_6"))

Box_4 = model.addBox(Part_1_doc , model.selection("VERTEX", "all -in -Point_7"),

model.selection("VERTEX", "all -in -Point_8"))

Box_5 = model.addBox(Part_1_doc , model.selection("VERTEX", "all -in -Point_9"),

model.selection("VERTEX", "all -in -Point_10"))

Box_6 = model.addBox(Part_1_doc , model.selection("VERTEX", "all -in -Point_9"),

model.selection("VERTEX", "all -in -Point_10"))

Box_7 = model.addBox(Part_1_doc , model.selection("VERTEX", "Point_43"),

model.selection("VERTEX", "Point_42"))

Box_8 = model.addBox(Part_1_doc , model.selection("VERTEX", "Point_44"),

model.selection("VERTEX", "Point_42"))

Box_9 = model.addBox(Part_1_doc , model.selection("VERTEX", "Point_45"),

model.selection("VERTEX", "Point_42"))

Box_10 = model.addBox(Part_1_doc , model.selection("VERTEX", "Point_46"),

model.selection("VERTEX", "Point_48"))

Box_11 = model.addBox(Part_1_doc , model.selection("VERTEX", "Point_50"),

model.selection("VERTEX", "Point_51"))

Box_11.result ().setTransparency (0.8)

Box_12 = model.addBox(Part_1_doc , model.selection("VERTEX", "Point_52"),

model.selection("VERTEX", "Point_53"))

Box_12.result ().setTransparency (0.8)

Box_13 = model.addBox(Part_1_doc , model.selection("VERTEX", "Point_6"),

model.selection("VERTEX", "Point_54"))

Axis_4 = model.addAxis(Part_1_doc , model.selection("FACE", "PartSet/YOZ"),

Appendix B 80

model.selection("VERTEX", "Point_16"))

Axis_5 = model.addAxis(Part_1_doc , model.selection("FACE", "PartSet/YOZ"),

model.selection("VERTEX", "Point_30"))

Axis_6 = model.addAxis(Part_1_doc , model.selection("FACE", "PartSet/YOZ"),

model.selection("VERTEX", "Point_47"))

Plane_4 = model.addPlane(Part_1_doc , model.selection("VERTEX", "Point_41"),

model.selection("VERTEX", "Point_23"), model.selection("VERTEX", "Point_39"))

Plane_5 = model.addPlane(Part_1_doc , model.selection("VERTEX", "Point_37"),

model.selection("VERTEX", "Point_35"), model.selection("VERTEX", "Point_40"))

Plane_6 = model.addPlane(Part_1_doc , model.selection("VERTEX", "Point_33"),

model.selection("VERTEX", "Point_34"), model.selection("VERTEX", "Point_40"))

Sketch_1 = model.addSketch(Part_1_doc , model.defaultPlane("XOZ"))

SketchBSpline_1 = Sketch_1.addSpline(poles = [(-10.538762 , 0), (-19.809442 , 0),

(-17.604082 , -3.46937842) , (-23.342102 , -3.46937842)])

[SketchPoint_1 , SketchPoint_2 , SketchPoint_3 , SketchPoint_4] =

SketchBSpline_1.controlPoles(auxiliary = [0, 1, 2, 3])

[SketchLine_1 , SketchLine_2 , SketchLine_3] = SketchBSpline_1.controlPolygon(auxiliary = [0,

1, 2])

SketchProjection_1 = Sketch_1.addProjection(model.selection("VERTEX", "Point_12"), False)

SketchPoint_5 = SketchProjection_1.createdFeature ()

Sketch_1.setCoincident(SketchAPI_Point(SketchPoint_5).coordinates (),

SketchAPI_Point(SketchPoint_1).coordinates ())

SketchProjection_2 = Sketch_1.addProjection(model.selection("VERTEX", "Point_13"), False)

SketchPoint_6 = SketchProjection_2.createdFeature ()

Sketch_1.setCoincident(SketchAPI_Point(SketchPoint_6).coordinates (),

SketchAPI_Point(SketchPoint_2).coordinates ())

SketchProjection_3 = Sketch_1.addProjection(model.selection("VERTEX", "Point_14"), False)

SketchPoint_7 = SketchProjection_3.createdFeature ()

Sketch_1.setCoincident(SketchAPI_Point(SketchPoint_7).coordinates (),

SketchAPI_Point(SketchPoint_3).coordinates ())

SketchProjection_4 = Sketch_1.addProjection(model.selection("VERTEX", "Point_15"), False)

SketchPoint_8 = SketchProjection_4.createdFeature ()

Sketch_1.setCoincident(SketchAPI_Point(SketchPoint_8).coordinates (),

SketchAPI_Point(SketchPoint_4).coordinates ())

SketchLine_4 = Sketch_1.addLine (-10.538762 , 0, -8.966422000000001 , 0)

Sketch_1.setCoincident(SketchBSpline_1.startPoint (), SketchLine_4.startPoint ())

SketchProjection_5 = Sketch_1.addProjection(model.selection("VERTEX", "Point_11"), False)

SketchPoint_9 = SketchProjection_5.createdFeature ()

Sketch_1.setCoincident(SketchLine_4.endPoint (), SketchPoint_9.result ())

SketchLine_5 = Sketch_1.addLine (-8.966422000000001 , 0, -8.966422000000001 , -3.46937842)

Sketch_1.setCoincident(SketchLine_4.endPoint (), SketchLine_5.startPoint ())

Sketch_1.setVertical(SketchLine_5.result ())

SketchLine_6 = Sketch_1.addLine (-8.966422000000001 , -3.46937842 , -23.342102 , -3.46937842)

Appendix B 81

Sketch_1.setCoincident(SketchLine_5.endPoint (), SketchLine_6.startPoint ())

Sketch_1.setCoincident(SketchBSpline_1.endPoint (), SketchLine_6.endPoint ())

Sketch_1.setHorizontal(SketchLine_6.result ())

SketchProjection_6 = Sketch_1.addProjection(model.selection("EDGE", "Axis_1"), False)

SketchLine_7 = SketchProjection_6.createdFeature ()

SketchConstraintMirror_1_objects = [SketchLine_5.result (), SketchLine_4.result (),

SketchLine_2.result (), SketchLine_1.result (), SketchLine_6.result (),

SketchLine_3.result ()]

SketchConstraintMirror_1 = Sketch_1.addMirror(SketchLine_7.result (),

SketchConstraintMirror_1_objects)

[SketchLine_8 , SketchLine_9 , SketchLine_10 , SketchLine_11 , SketchLine_12 , SketchLine_13] =

SketchConstraintMirror_1.mirrored ()

SketchBSpline_2 = Sketch_1.addSpline(poles = [(-10.53876200000001 , 3.898178) , (-19.809442 ,

3.898178) , (-17.60408200000001 , 7.36755642) , (-23.34210200000002 , 7.36755642)])

[SketchPoint_10 , SketchPoint_11 , SketchPoint_12 , SketchPoint_13] =

SketchBSpline_2.controlPoles(auxiliary = [0, 1, 2, 3])

[SketchLine_14 , SketchLine_15 , SketchLine_16] = SketchBSpline_2.controlPolygon(auxiliary =

[0, 1, 2])

Sketch_1.setCoincident(SketchAPI_Point(SketchPoint_10).coordinates (),

SketchAPI_Line(SketchLine_11).startPoint ())

Sketch_1.setCoincident(SketchAPI_Point(SketchPoint_11).coordinates (),

SketchAPI_Line(SketchLine_10).startPoint ())

Sketch_1.setCoincident(SketchAPI_Point(SketchPoint_12).coordinates (),

SketchAPI_Line(SketchLine_13).startPoint ())

Sketch_1.setCoincident(SketchAPI_Point(SketchPoint_13).coordinates (),

SketchAPI_Line(SketchLine_13).endPoint ())

model.do()

Sketch_2 = model.addSketch(Part_1_doc , model.defaultPlane("XOY"))

SketchBSpline_3 = Sketch_2.addSpline(poles = [(-10.538762 , 3.470379) , (-20.197422 ,

3.470379) , (-17.604082 , 6.90605421) , (-24.077222 , 6.90605421)])

[SketchPoint_14 , SketchPoint_15 , SketchPoint_16 , SketchPoint_17] =

SketchBSpline_3.controlPoles(auxiliary = [0, 1, 2, 3])

[SketchLine_17 , SketchLine_18 , SketchLine_19] = SketchBSpline_3.controlPolygon(auxiliary =

[0, 1, 2])

SketchProjection_7 = Sketch_2.addProjection(model.selection("VERTEX", "Point_18"), False)

SketchPoint_18 = SketchProjection_7.createdFeature ()

Sketch_2.setCoincident(SketchAPI_Point(SketchPoint_18).coordinates (),

SketchAPI_Point(SketchPoint_14).coordinates ())

SketchProjection_8 = Sketch_2.addProjection(model.selection("VERTEX", "Point_19"), False)

SketchPoint_19 = SketchProjection_8.createdFeature ()

Sketch_2.setCoincident(SketchAPI_Point(SketchPoint_19).coordinates (),

SketchAPI_Point(SketchPoint_15).coordinates ())

SketchProjection_9 = Sketch_2.addProjection(model.selection("VERTEX", "Point_20"), False)

Appendix B 82

SketchPoint_20 = SketchProjection_9.createdFeature ()

Sketch_2.setCoincident(SketchAPI_Point(SketchPoint_20).coordinates (),

SketchAPI_Point(SketchPoint_16).coordinates ())

SketchProjection_10 = Sketch_2.addProjection(model.selection("VERTEX", "Point_21"), False)

SketchPoint_21 = SketchProjection_10.createdFeature ()

Sketch_2.setCoincident(SketchAPI_Point(SketchPoint_21).coordinates (),

SketchAPI_Point(SketchPoint_17).coordinates ())

SketchLine_20 = Sketch_2.addLine (-10.538762 , 3.470379 , -8.966422000000001 , 3.470379)

Sketch_2.setCoincident(SketchBSpline_3.startPoint (), SketchLine_20.startPoint ())

SketchProjection_11 = Sketch_2.addProjection(model.selection("VERTEX", "Point_17"), False)

SketchPoint_22 = SketchProjection_11.createdFeature ()

Sketch_2.setCoincident(SketchLine_20.endPoint (), SketchPoint_22.result ())

SketchLine_21 = Sketch_2.addLine (-8.966422000000001 , 3.470379 , -8.966422000000001 ,

6.90605421)

Sketch_2.setCoincident(SketchLine_20.endPoint (), SketchLine_21.startPoint ())

Sketch_2.setVertical(SketchLine_21.result ())

SketchLine_22 = Sketch_2.addLine (-8.966422000000001 , 6.90605421 , -24.077222 , 6.90605421)

Sketch_2.setCoincident(SketchLine_21.endPoint (), SketchLine_22.startPoint ())

Sketch_2.setCoincident(SketchBSpline_3.endPoint (), SketchLine_22.endPoint ())

Sketch_2.setHorizontal(SketchLine_22.result ())

SketchProjection_12 = Sketch_2.addProjection(model.selection("EDGE", "PartSet/OX"), False)

SketchLine_23 = SketchProjection_12.createdFeature ()

SketchConstraintMirror_2_objects = [SketchLine_17.result (), SketchLine_20.result (),

SketchLine_19.result (), SketchLine_22.result (), SketchLine_18.result (),

SketchLine_21.result ()]

SketchConstraintMirror_2 = Sketch_2.addMirror(SketchLine_23.result (),

SketchConstraintMirror_2_objects)

[SketchLine_24 , SketchLine_25 , SketchLine_26 , SketchLine_27 , SketchLine_28 , SketchLine_29]

= SketchConstraintMirror_2.mirrored ()

SketchBSpline_4 = Sketch_2.addSpline(poles = [(-10.538762 , -3.470379) , (-20.197422 ,

-3.470379), (-17.604082 , -6.90605421) , (-24.077222 , -6.90605421)])

[SketchPoint_23 , SketchPoint_24 , SketchPoint_25 , SketchPoint_26] =

SketchBSpline_4.controlPoles(auxiliary = [0, 1, 2, 3])

[SketchLine_30 , SketchLine_31 , SketchLine_32] = SketchBSpline_4.controlPolygon(auxiliary =

[0, 1, 2])

Sketch_2.setCoincident(SketchAPI_Point(SketchPoint_23).coordinates (),

SketchAPI_Line(SketchLine_24).startPoint ())

Sketch_2.setCoincident(SketchAPI_Point(SketchPoint_24).coordinates (),

SketchAPI_Line(SketchLine_28).startPoint ())

Sketch_2.setCoincident(SketchAPI_Point(SketchPoint_25).coordinates (),

SketchAPI_Line(SketchLine_26).startPoint ())

Sketch_2.setCoincident(SketchAPI_Point(SketchPoint_26).coordinates (),

SketchAPI_Line(SketchLine_26).endPoint ())

model.do()

Appendix B 83

Sketch_3 = model.addSketch(Part_1_doc , model.standardPlane("XOY"))

SketchBSpline_5 = Sketch_3.addSpline(poles = [(10.21 , 4.347418) , (12.07399799405463 ,

4.347418) , (28.84997994054626 , 5.04300488) , (30.71397793460088 , 5.04300488)])

[SketchPoint_27 , SketchPoint_28 , SketchPoint_29 , SketchPoint_30] =

SketchBSpline_5.controlPoles(auxiliary = [0, 1, 2, 3])

[SketchLine_33 , SketchLine_34 , SketchLine_35] = SketchBSpline_5.controlPolygon(auxiliary =

[0, 1, 2])

SketchProjection_13 = Sketch_3.addProjection(model.selection("VERTEX", "Point_23"), False)

SketchPoint_31 = SketchProjection_13.createdFeature ()

Sketch_3.setCoincident(SketchAPI_Point(SketchPoint_31).coordinates (),

SketchAPI_Point(SketchPoint_27).coordinates ())

SketchProjection_14 = Sketch_3.addProjection(model.selection("VERTEX", "Point_25"), False)

SketchPoint_32 = SketchProjection_14.createdFeature ()

Sketch_3.setCoincident(SketchAPI_Point(SketchPoint_32).coordinates (),

SketchAPI_Point(SketchPoint_28).coordinates ())

SketchProjection_15 = Sketch_3.addProjection(model.selection("VERTEX", "Point_24"), False)

SketchPoint_33 = SketchProjection_15.createdFeature ()

Sketch_3.setCoincident(SketchAPI_Point(SketchPoint_29).coordinates (),

SketchAPI_Point(SketchPoint_33).coordinates ())

SketchProjection_16 = Sketch_3.addProjection(model.selection("VERTEX", "Point_22"), False)

SketchPoint_34 = SketchProjection_16.createdFeature ()

Sketch_3.setCoincident(SketchAPI_Point(SketchPoint_30).coordinates (),

SketchAPI_Point(SketchPoint_34).coordinates ())

SketchLine_36 = Sketch_3.addLine (10.21 , 4.347418 , 10.21 , 5.04300488)

Sketch_3.setCoincident(SketchBSpline_5.startPoint (), SketchLine_36.startPoint ())

SketchLine_37 = Sketch_3.addLine (10.21 , 5.04300488 , 30.71397793460088 , 5.04300488)

Sketch_3.setCoincident(SketchLine_36.endPoint (), SketchLine_37.startPoint ())

Sketch_3.setCoincident(SketchBSpline_5.endPoint (), SketchLine_37.endPoint ())

Sketch_3.setHorizontal(SketchLine_37.result ())

Sketch_3.setVertical(SketchLine_36.result ())

SketchProjection_17 = Sketch_3.addProjection(model.selection("EDGE", "PartSet/OX"), False)

SketchLine_38 = SketchProjection_17.createdFeature ()

SketchConstraintMirror_3_objects = [SketchLine_36.result (), SketchLine_33.result (),

SketchLine_34.result (), SketchLine_37.result (), SketchLine_35.result ()]

SketchConstraintMirror_3 = Sketch_3.addMirror(SketchLine_38.result (),

SketchConstraintMirror_3_objects)

[SketchLine_39 , SketchLine_40 , SketchLine_41 , SketchLine_42 , SketchLine_43] =

SketchConstraintMirror_3.mirrored ()

SketchBSpline_6 = Sketch_3.addSpline(poles = [(10.21 , -4.347418) , (12.07399799405463 ,

-4.347418) , (28.84997994054626 , -5.04300488) , (30.71397793460088 , -5.04300488)])

[SketchPoint_35 , SketchPoint_36 , SketchPoint_37 , SketchPoint_38] =

SketchBSpline_6.controlPoles(auxiliary = [0, 1, 2, 3])

[SketchLine_44 , SketchLine_45 , SketchLine_46] = SketchBSpline_6.controlPolygon(auxiliary =

[0, 1, 2])

Appendix B 84

Sketch_3.setCoincident(SketchAPI_Point(SketchPoint_35).coordinates (),

SketchAPI_Line(SketchLine_39).startPoint ())

Sketch_3.setCoincident(SketchAPI_Line(SketchLine_45).startPoint (),

SketchAPI_Line(SketchLine_40).endPoint ())

Sketch_3.setCoincident(SketchAPI_Point(SketchPoint_37).coordinates (),

SketchAPI_Line(SketchLine_41).endPoint ())

Sketch_3.setCoincident(SketchAPI_Point(SketchPoint_38).coordinates (),

SketchAPI_Line(SketchLine_42).endPoint ())

model.do()

Sketch_4 = model.addSketch(Part_1_doc , model.standardPlane("XOZ"))

SketchBSpline_7 = Sketch_4.addSpline(poles = [(10.21 , 0), (12.07399799405463 , 0),

(28.84997994054626 , -0.8952230100000005) , (30.71397793460088 , -0.8952230100000005)])

[SketchPoint_39 , SketchPoint_40 , SketchPoint_41 , SketchPoint_42] =

SketchBSpline_7.controlPoles(auxiliary = [0, 1, 2, 3])

[SketchLine_47 , SketchLine_48 , SketchLine_49] = SketchBSpline_7.controlPolygon(auxiliary =

[0, 1, 2])

SketchProjection_18 = Sketch_4.addProjection(model.selection("VERTEX", "Point_26"), False)

SketchPoint_43 = SketchProjection_18.createdFeature ()

Sketch_4.setCoincident(SketchAPI_Point(SketchPoint_43).coordinates (),

SketchAPI_Point(SketchPoint_39).coordinates ())

SketchProjection_19 = Sketch_4.addProjection(model.selection("VERTEX", "Point_29"), False)

SketchPoint_44 = SketchProjection_19.createdFeature ()

Sketch_4.setCoincident(SketchAPI_Line(SketchLine_48).startPoint (),

SketchAPI_Point(SketchPoint_44).coordinates ())

SketchProjection_20 = Sketch_4.addProjection(model.selection("VERTEX", "Point_28"), False)

SketchPoint_45 = SketchProjection_20.createdFeature ()

Sketch_4.setCoincident(SketchAPI_Point(SketchPoint_41).coordinates (),

SketchAPI_Point(SketchPoint_45).coordinates ())

SketchProjection_21 = Sketch_4.addProjection(model.selection("VERTEX", "Point_27"), False)

SketchPoint_46 = SketchProjection_21.createdFeature ()

Sketch_4.setCoincident(SketchAPI_Point(SketchPoint_42).coordinates (),

SketchAPI_Point(SketchPoint_46).coordinates ())

SketchLine_50 = Sketch_4.addLine (10.21 , 0, 10.21 , -0.89522301)

Sketch_4.setCoincident(SketchBSpline_7.startPoint (), SketchLine_50.startPoint ())

Sketch_4.setVertical(SketchLine_50.result ())

SketchLine_51 = Sketch_4.addLine (10.21 , -0.89522301 , 30.71397793460088 , -0.8952230100000005)

Sketch_4.setCoincident(SketchLine_50.endPoint (), SketchLine_51.startPoint ())

Sketch_4.setCoincident(SketchBSpline_7.endPoint (), SketchLine_51.endPoint ())

Sketch_4.setHorizontal(SketchLine_51.result ())

SketchProjection_22 = Sketch_4.addProjection(model.selection("EDGE", "Axis_2"), False)

SketchLine_52 = SketchProjection_22.createdFeature ()

SketchConstraintMirror_4_objects = [SketchLine_50.result (), SketchLine_48.result (),

SketchLine_51.result (), SketchLine_49.result (), SketchLine_47.result ()]

Appendix B 85

SketchConstraintMirror_4 = Sketch_4.addMirror(SketchLine_52.result (),

SketchConstraintMirror_4_objects)

[SketchLine_53 , SketchLine_54 , SketchLine_55 , SketchLine_56 , SketchLine_57] =

SketchConstraintMirror_4.mirrored ()

SketchBSpline_8 = Sketch_4.addSpline(poles = [(10.21000000000002 , 5.425594) ,

(12.07399799405462 , 5.425594) , (28.84997994054627 , 6.320817010000001) ,

(30.71397793460087 , 6.320817010000001)])

[SketchPoint_47 , SketchPoint_48 , SketchPoint_49 , SketchPoint_50] =

SketchBSpline_8.controlPoles(auxiliary = [0, 1, 2, 3])

[SketchLine_58 , SketchLine_59 , SketchLine_60] = SketchBSpline_8.controlPolygon(auxiliary =

[0, 1, 2])

Sketch_4.setCoincident(SketchAPI_Point(SketchPoint_47).coordinates (),

SketchAPI_Line(SketchLine_53).startPoint ())

Sketch_4.setCoincident(SketchAPI_Point(SketchPoint_48).coordinates (),

SketchAPI_Line(SketchLine_57).endPoint ())

Sketch_4.setCoincident(SketchAPI_Line(SketchLine_59).endPoint (),

SketchAPI_Line(SketchLine_54).endPoint ())

Sketch_4.setCoincident(SketchAPI_Point(SketchPoint_50).coordinates (),

SketchAPI_Line(SketchLine_55).endPoint ())

model.do()

Sketch_5 = model.addSketch(Part_1_doc , model.standardPlane("XOY"))

SketchLine_61 = Sketch_5.addLine (10.21 , -4.960018 , 10.21 , -4.347418)

SketchProjection_23 = Sketch_5.addProjection(model.selection("VERTEX", "Point_31"), False)

SketchPoint_51 = SketchProjection_23.createdFeature ()

Sketch_5.setCoincident(SketchLine_61.startPoint (), SketchPoint_51.result ())

SketchProjection_24 = Sketch_5.addProjection(model.selection("VERTEX", "Point_34"), False)

SketchPoint_52 = SketchProjection_24.createdFeature ()

Sketch_5.setCoincident(SketchLine_61.endPoint (), SketchPoint_52.result ())

SketchLine_62 = Sketch_5.addLine (10.21 , -4.347418 , 6.375124 , -5.374969927273495)

Sketch_5.setCoincident(SketchLine_61.endPoint (), SketchLine_62.startPoint ())

SketchProjection_25 = Sketch_5.addProjection(model.selection("VERTEX", "Point_33"), False)

SketchPoint_53 = SketchProjection_25.createdFeature ()

Sketch_5.setCoincident(SketchLine_62.endPoint (), SketchPoint_53.result ())

SketchLine_63 = Sketch_5.addLine (6.375124 , -5.374969927273495 , 6.375124 , -5.987569927273494)

Sketch_5.setCoincident(SketchLine_62.endPoint (), SketchLine_63.startPoint ())

SketchProjection_26 = Sketch_5.addProjection(model.selection("VERTEX", "Point_32"), False)

SketchPoint_54 = SketchProjection_26.createdFeature ()

Sketch_5.setCoincident(SketchLine_63.endPoint (), SketchPoint_54.result ())

SketchLine_64 = Sketch_5.addLine (6.375124 , -5.987569927273494 , 10.21 , -4.960018)

Sketch_5.setCoincident(SketchLine_63.endPoint (), SketchLine_64.startPoint ())

Sketch_5.setCoincident(SketchLine_61.startPoint (), SketchLine_64.endPoint ())

SketchProjection_27 = Sketch_5.addProjection(model.selection("EDGE", "PartSet/OX"), False)

SketchLine_65 = SketchProjection_27.createdFeature ()

Appendix B 86

SketchConstraintMirror_5_objects = [SketchLine_64.result (), SketchLine_61.result (),

SketchLine_63.result (), SketchLine_62.result ()]

SketchConstraintMirror_5 = Sketch_5.addMirror(SketchLine_65.result (),

SketchConstraintMirror_5_objects)

[SketchLine_66 , SketchLine_67 , SketchLine_68 , SketchLine_69] =

SketchConstraintMirror_5.mirrored ()

model.do()

Sketch_6 = model.addSketch(Part_1_doc , model.defaultPlane("XOZ"))

SketchLine_70 = Sketch_6.addLine (10.21 , 5.425594 , 10.21 , 6.038194000000001)

SketchProjection_28 = Sketch_6.addProjection(model.selection("VERTEX", "Point_35"), False)

SketchPoint_55 = SketchProjection_28.createdFeature ()

Sketch_6.setCoincident(SketchLine_70.startPoint (), SketchPoint_55.result ())

SketchProjection_29 = Sketch_6.addProjection(model.selection("VERTEX", "Point_36"), False)

SketchPoint_56 = SketchProjection_29.createdFeature ()

Sketch_6.setCoincident(SketchLine_70.endPoint (), SketchPoint_56.result ())

SketchLine_71 = Sketch_6.addLine (10.21 , 6.038194000000001 , 6.375124 , 7.065745927273495)

Sketch_6.setCoincident(SketchLine_70.endPoint (), SketchLine_71.startPoint ())

SketchProjection_30 = Sketch_6.addProjection(model.selection("VERTEX", "Point_38"), False)

SketchPoint_57 = SketchProjection_30.createdFeature ()

Sketch_6.setCoincident(SketchLine_71.endPoint (), SketchPoint_57.result ())

SketchLine_72 = Sketch_6.addLine (6.375124 , 7.065745927273495 , 6.375124 , 6.453145927273495)

Sketch_6.setCoincident(SketchLine_71.endPoint (), SketchLine_72.startPoint ())

SketchProjection_31 = Sketch_6.addProjection(model.selection("VERTEX", "Point_37"), False)

SketchPoint_58 = SketchProjection_31.createdFeature ()

Sketch_6.setCoincident(SketchLine_72.endPoint (), SketchPoint_58.result ())

SketchLine_73 = Sketch_6.addLine (6.375124 , 6.453145927273495 , 10.21 , 5.425594)

Sketch_6.setCoincident(SketchLine_72.endPoint (), SketchLine_73.startPoint ())

Sketch_6.setCoincident(SketchLine_70.startPoint (), SketchLine_73.endPoint ())

model.do()

Sketch_7 = model.addSketch(Part_1_doc , model.selection("FACE", "Box_9_1/Top"))

SketchLine_74 = Sketch_7.addLine (-6.924422000000002 , 3.827729 , -9.170622000000002 , 3.827729)

SketchProjection_32 = Sketch_7.addProjection(model.selection("VERTEX", "Point_45"), False)

SketchPoint_59 = SketchProjection_32.createdFeature ()

Sketch_7.setCoincident(SketchLine_74.startPoint (), SketchPoint_59.result ())

Sketch_7.setHorizontal(SketchLine_74.result ())

SketchLine_75 = Sketch_7.addLine (-9.170622000000002 , 3.827729 , -9.170622000000002 , 3.552059)

Sketch_7.setCoincident(SketchLine_74.endPoint (), SketchLine_75.startPoint ())

Sketch_7.setVertical(SketchLine_75.result ())

SketchLine_76 = Sketch_7.addLine (-9.170622000000002 , 3.552059 , -6.924422000000002 , 3.827729)

Sketch_7.setCoincident(SketchLine_75.endPoint (), SketchLine_76.startPoint ())

Sketch_7.setCoincident(SketchLine_74.startPoint (), SketchLine_76.endPoint ())

Appendix B 87

SketchProjection_33 = Sketch_7.addProjection(model.selection("VERTEX", "Point_49"), True)

SketchPoint_60 = SketchProjection_33.createdFeature ()

Sketch_7.setCoincident(SketchLine_75.endPoint (),

SketchAPI_Point(SketchPoint_60).coordinates ())

SketchProjection_34 = Sketch_7.addProjection(model.selection("EDGE", "Axis_3"), False)

SketchProjection_34.setName("SketchProjection_36")

SketchProjection_34.result ().setName("SketchProjection_36")

SketchLine_77 = SketchProjection_34.createdFeature ()

SketchLine_77.setName("SketchLine_80")

SketchLine_77.result ().setName("SketchLine_80")

SketchConstraintMirror_6_objects = [SketchLine_76.result (), SketchLine_74.result (),

SketchLine_75.result ()]

SketchConstraintMirror_6 = Sketch_7.addMirror(SketchLine_77.result (),

SketchConstraintMirror_6_objects)

[SketchLine_78 , SketchLine_79 , SketchLine_80] = SketchConstraintMirror_6.mirrored ()

SketchLine_80.setName("SketchLine_83")

SketchLine_80.result ().setName("SketchLine_83")

SketchLine_79.setName("SketchLine_82")

SketchLine_79.result ().setName("SketchLine_82")

SketchLine_78.setName("SketchLine_81")

SketchLine_78.result ().setName("SketchLine_81")

model.do()

Sketch_8 = model.addSketch(Part_1_doc , model.selection("FACE", "Box_9_1/Right"))

SketchLine_81 = Sketch_8.addLine (-6.924422000000002 , -4.255528 , -9.170622000000002 ,

-4.255528)

SketchLine_81.setName("SketchLine_77")

SketchLine_81.result ().setName("SketchLine_77")

SketchProjection_35 = Sketch_8.addProjection(model.selection("VERTEX", "Point_45"), False)

SketchProjection_35.setName("SketchProjection_34")

SketchProjection_35.result ().setName("SketchProjection_34")

SketchPoint_61 = SketchProjection_35.createdFeature ()

Sketch_8.setCoincident(SketchLine_81.startPoint (), SketchPoint_61.result ())

Sketch_8.setHorizontal(SketchLine_81.result ())

SketchLine_82 = Sketch_8.addLine (-9.170622000000002 , -4.255528 , -9.170622000000002 ,

-3.979858)

SketchLine_82.setName("SketchLine_78")

SketchLine_82.result ().setName("SketchLine_78")

Sketch_8.setCoincident(SketchLine_81.endPoint (), SketchLine_82.startPoint ())

Sketch_8.setVertical(SketchLine_82.result ())

SketchLine_83 = Sketch_8.addLine (-9.170622000000002 , -3.979858 , -6.924422000000002 ,

-4.255528)

SketchLine_83.setName("SketchLine_79")

SketchLine_83.result ().setName("SketchLine_79")

Appendix B 88

Sketch_8.setCoincident(SketchLine_82.endPoint (), SketchLine_83.startPoint ())

Sketch_8.setCoincident(SketchLine_81.startPoint (), SketchLine_83.endPoint ())

SketchProjection_36 = Sketch_8.addProjection(model.selection("VERTEX", "Point_49"), True)

SketchProjection_36.setName("SketchProjection_35")

SketchProjection_36.result ().setName("SketchProjection_35")

SketchPoint_62 = SketchProjection_36.createdFeature ()

Sketch_8.setCoincident(SketchLine_82.endPoint (),

SketchAPI_Point(SketchPoint_62).coordinates ())

model.do()

Sketch_9 = model.addSketch(Part_1_doc , model.defaultPlane("XOZ"))

SketchProjection_37 = Sketch_9.addProjection(model.selection("VERTEX", "Point_55"), False)

SketchPoint_63 = SketchProjection_37.createdFeature ()

SketchProjection_38 = Sketch_9.addProjection(model.selection("VERTEX", "Point_56"), False)

SketchPoint_64 = SketchProjection_38.createdFeature ()

SketchProjection_39 = Sketch_9.addProjection(model.selection("VERTEX", "Point_57"), False)

SketchPoint_65 = SketchProjection_39.createdFeature ()

SketchProjection_40 = Sketch_9.addProjection(model.selection("VERTEX", "Point_58"), False)

SketchPoint_66 = SketchProjection_40.createdFeature ()

SketchBSpline_9 = Sketch_9.addSpline(poles = [(51.13397793460088 , -0.89522301) ,

(57.87257793460088 , -0.89522301) , (57.87257793460088 , 0), (64.81537793460087 , 0)])

[SketchPoint_67 , SketchPoint_68 , SketchPoint_69 , SketchPoint_70] =

SketchBSpline_9.controlPoles(auxiliary = [0, 1, 2, 3])

[SketchLine_84 , SketchLine_85 , SketchLine_86] = SketchBSpline_9.controlPolygon(auxiliary =

[0, 1, 2])

Sketch_9.setCoincident(SketchAPI_Point(SketchPoint_67).coordinates (),

SketchPoint_63.result ())

Sketch_9.setCoincident(SketchAPI_Point(SketchPoint_68).coordinates (),

SketchPoint_64.result ())

Sketch_9.setCoincident(SketchAPI_Point(SketchPoint_69).coordinates (),

SketchPoint_65.result ())

Sketch_9.setCoincident(SketchAPI_Point(SketchPoint_70).coordinates (),

SketchPoint_66.result ())

SketchLine_87 = Sketch_9.addLine (71.55397793460088 , 0, 64.81537793460087 , 0)

SketchProjection_41 = Sketch_9.addProjection(model.selection("VERTEX", "Point_59"), False)

SketchPoint_71 = SketchProjection_41.createdFeature ()

Sketch_9.setCoincident(SketchLine_87.startPoint (), SketchPoint_71.result ())

Sketch_9.setCoincident(SketchAPI_Point(SketchPoint_66).coordinates (),

SketchLine_87.endPoint ())

SketchLine_88 = Sketch_9.addLine (51.13397793460088 , -0.89522301 , 71.55397793460088 ,

-0.89522301)

Sketch_9.setCoincident(SketchAPI_Point(SketchPoint_63).coordinates (),

SketchLine_88.startPoint ())

Sketch_9.setHorizontal(SketchLine_88.result ())

Appendix B 89

SketchLine_89 = Sketch_9.addLine (71.55397793460088 , -0.89522301 , 71.55397793460088 , 0)

Sketch_9.setCoincident(SketchLine_88.endPoint (), SketchLine_89.startPoint ())

Sketch_9.setCoincident(SketchLine_87.startPoint (), SketchLine_89.endPoint ())

Sketch_9.setVertical(SketchLine_89.result ())

SketchProjection_42 = Sketch_9.addProjection(model.selection("EDGE", "Axis_2"), False)

SketchLine_90 = SketchProjection_42.createdFeature ()

SketchConstraintMirror_7_objects = [SketchLine_85.result (), SketchLine_84.result (),

SketchLine_89.result (), SketchLine_88.result (), SketchLine_87.result (),

SketchLine_86.result ()]

SketchConstraintMirror_7 = Sketch_9.addMirror(SketchLine_90.result (),

SketchConstraintMirror_7_objects)

[SketchLine_91 , SketchLine_92 , SketchLine_93 , SketchLine_94 , SketchLine_95 , SketchLine_96]

= SketchConstraintMirror_7.mirrored ()

SketchBSpline_10 = Sketch_9.addSpline(poles = [(51.13397793460088 , 6.320817010000001) ,

(57.87257793460088 , 6.320817010000001) , (57.87257793460088 , 5.425594) ,

(64.81537793460087 , 5.425594)])

[SketchPoint_72 , SketchPoint_73 , SketchPoint_74 , SketchPoint_75] =

SketchBSpline_10.controlPoles(auxiliary = [0, 1, 2, 3])

[SketchLine_97 , SketchLine_98 , SketchLine_99] = SketchBSpline_10.controlPolygon(auxiliary =

[0, 1, 2])

Sketch_9.setCoincident(SketchAPI_Point(SketchPoint_72).coordinates (),

SketchAPI_Line(SketchLine_92).startPoint ())

Sketch_9.setCoincident(SketchAPI_Line(SketchLine_97).endPoint (),

SketchAPI_Line(SketchLine_92).endPoint ())

Sketch_9.setCoincident(SketchAPI_Line(SketchLine_98).endPoint (),

SketchAPI_Line(SketchLine_91).endPoint ())

Sketch_9.setCoincident(SketchAPI_Point(SketchPoint_75).coordinates (),

SketchAPI_Line(SketchLine_96).endPoint ())

model.do()

Sketch_10 = model.addSketch(Part_1_doc , model.defaultPlane("XOY"))

SketchBSpline_11 = Sketch_10.addSpline(poles = [(51.13397793460088 , -5.04300488) ,

(57.87257793460088 , -5.04300488) , (57.87257793460088 , -4.347418), (64.81537793460087 ,

-4.347418)])

[SketchPoint_76 , SketchPoint_77 , SketchPoint_78 , SketchPoint_79] =

SketchBSpline_11.controlPoles(auxiliary = [0, 1, 2, 3])

[SketchLine_100 , SketchLine_101 , SketchLine_102] =

SketchBSpline_11.controlPolygon(auxiliary = [0, 1, 2])

SketchProjection_43 = Sketch_10.addProjection(model.selection("VERTEX", "Point_60"), False)

SketchPoint_80 = SketchProjection_43.createdFeature ()

Sketch_10.setCoincident(SketchAPI_Point(SketchPoint_80).coordinates (),

SketchAPI_Point(SketchPoint_76).coordinates ())

SketchProjection_44 = Sketch_10.addProjection(model.selection("VERTEX", "Point_61"), False)

SketchPoint_81 = SketchProjection_44.createdFeature ()

Appendix B 90

Sketch_10.setCoincident(SketchAPI_Point(SketchPoint_77).coordinates (),

SketchAPI_Point(SketchPoint_81).coordinates ())

SketchProjection_45 = Sketch_10.addProjection(model.selection("VERTEX", "Point_62"), False)

SketchPoint_82 = SketchProjection_45.createdFeature ()

Sketch_10.setCoincident(SketchAPI_Line(SketchLine_101).endPoint (),

SketchAPI_Point(SketchPoint_82).coordinates ())

SketchProjection_46 = Sketch_10.addProjection(model.selection("VERTEX", "Point_63"), False)

SketchPoint_83 = SketchProjection_46.createdFeature ()

Sketch_10.setCoincident(SketchAPI_Point(SketchPoint_79).coordinates (),

SketchAPI_Point(SketchPoint_83).coordinates ())

SketchLine_103 = Sketch_10.addLine (64.81537793460087 , -4.347418 , 71.55397793460088 ,

-4.347418)

Sketch_10.setCoincident(SketchBSpline_11.endPoint (), SketchLine_103.startPoint ())

SketchProjection_47 = Sketch_10.addProjection(model.selection("VERTEX", "Point_64"), False)

SketchPoint_84 = SketchProjection_47.createdFeature ()

Sketch_10.setCoincident(SketchLine_103.endPoint (), SketchPoint_84.result ())

SketchLine_104 = Sketch_10.addLine (71.55397793460088 , -4.347418 , 71.55397793460088 ,

-5.04300488)

Sketch_10.setCoincident(SketchLine_103.endPoint (), SketchLine_104.startPoint ())

Sketch_10.setVertical(SketchLine_104.result ())

SketchLine_105 = Sketch_10.addLine (71.55397793460088 , -5.04300488 , 51.13397793460088 ,

-5.04300488)

Sketch_10.setCoincident(SketchLine_104.endPoint (), SketchLine_105.startPoint ())

Sketch_10.setCoincident(SketchBSpline_11.startPoint (), SketchLine_105.endPoint ())

Sketch_10.setHorizontal(SketchLine_105.result ())

SketchProjection_48 = Sketch_10.addProjection(model.selection("EDGE", "PartSet/OX"), False)

SketchLine_106 = SketchProjection_48.createdFeature ()

SketchConstraintMirror_8_objects = [SketchLine_105.result (), SketchLine_100.result (),

SketchLine_101.result (), SketchLine_102.result (), SketchLine_104.result (),

SketchLine_103.result ()]

SketchConstraintMirror_8 = Sketch_10.addMirror(SketchLine_106.result (),

SketchConstraintMirror_8_objects)

[SketchLine_107 , SketchLine_108 , SketchLine_109 , SketchLine_110 , SketchLine_111 ,

SketchLine_112] = SketchConstraintMirror_8.mirrored ()

SketchBSpline_12 = Sketch_10.addSpline(poles = [(51.13397793460088 , 5.04300488) ,

(57.87257793460088 , 5.04300488) , (57.87257793460088 , 4.347418) , (64.81537793460087 ,

4.347418)])

[SketchPoint_85 , SketchPoint_86 , SketchPoint_87 , SketchPoint_88] =

SketchBSpline_12.controlPoles(auxiliary = [0, 1, 2, 3])

[SketchLine_113 , SketchLine_114 , SketchLine_115] =

SketchBSpline_12.controlPolygon(auxiliary = [0, 1, 2])

Sketch_10.setCoincident(SketchAPI_Point(SketchPoint_85).coordinates (),

SketchAPI_Line(SketchLine_108).startPoint ())

Sketch_10.setCoincident(SketchAPI_Line(SketchLine_113).endPoint (),

SketchAPI_Line(SketchLine_108).endPoint ())

Appendix B 91

Sketch_10.setCoincident(SketchAPI_Point(SketchPoint_87).coordinates (),

SketchAPI_Line(SketchLine_109).endPoint ())

Sketch_10.setCoincident(SketchBSpline_12.endPoint (),

SketchAPI_Line(SketchLine_110).endPoint ())

model.do()

ExtrusionCut_1 = model.addExtrusionCut(Part_1_doc , [model.selection("COMPOUND",

"Sketch_5")], model.selection (), model.selection("FACE", "Plane_2"), "0.03*L",

model.selection (), 0, [model.selection("SOLID", "Box_5_1")])

ExtrusionCut_2 = model.addExtrusionCut(Part_1_doc , [model.selection("COMPOUND",

"Sketch_6")], model.selection (), model.selection("FACE", "Plane_3"), 0,

model.selection("FACE", "Plane_1"), 0, [model.selection("SOLID", "ExtrusionCut_1_1")])

ExtrusionCut_3 = model.addExtrusionCut(Part_1_doc , [model.selection("COMPOUND",

"Sketch_1"), model.selection("COMPOUND", "Sketch_2")], model.selection (),

[model.selection("SOLID", "Box_2_1")])

ExtrusionCut_4 = model.addExtrusionCut(Part_1_doc , [model.selection("COMPOUND",

"Sketch_3"), model.selection("COMPOUND", "Sketch_4")], model.selection (),

[model.selection("SOLID", "Box_3_1")])

Cut_1 = model.addCut(Part_1_doc , [model.selection("SOLID", "Box_1_1")],

[model.selection("SOLID", "Box_6_1"), model.selection("SOLID", "Box_4_1")],

keepSubResults = True)

ExtrusionCut_5_objects_2 = [model.selection("SOLID", "Box_7_1"),

model.selection("SOLID", "Box_8_1"),

model.selection("SOLID", "Box_9_1")]

ExtrusionCut_5 = model.addExtrusionCut(Part_1_doc , [model.selection("COMPOUND",

"Sketch_7"), model.selection("COMPOUND", "Sketch_8")], model.selection (),

ExtrusionCut_5_objects_2)

Cut_2_objects_1 = [model.selection("SOLID", "ExtrusionCut_5_1"),

model.selection("SOLID", "ExtrusionCut_5_2"),

model.selection("SOLID", "ExtrusionCut_5_3")]

Cut_2 = model.addCut(Part_1_doc , Cut_2_objects_1 , [model.selection("SOLID", "Box_10_1")],

keepSubResults = True)

Cut_2.result ().setTransparency (0.8)

Cut_2.results ()[1]. setTransparency (0.8)

Cut_2.results ()[2]. setTransparency (0.8)

ExtrusionCut_6 = model.addExtrusionCut(Part_1_doc , [model.selection("COMPOUND",

"Sketch_9"), model.selection("COMPOUND", "Sketch_10")], model.selection (),

[model.selection("SOLID", "Box_13_1")])

Fuse_1_objects_1 = [model.selection("SOLID", "ExtrusionCut_2_1_1"),

model.selection("SOLID", "ExtrusionCut_2_1_2"),

model.selection("SOLID", "ExtrusionCut_3_1"),

model.selection("SOLID", "ExtrusionCut_4_1"),

model.selection("SOLID", "Cut_1_1"),

model.selection("SOLID", "ExtrusionCut_6_1")]

Appendix B 92

Fuse_1 = model.addFuse(Part_1_doc , Fuse_1_objects_1 , removeEdges = True , keepSubResults =

True)

Fillet_1_objects = [model.selection("FACE", "Fuse_1_1/Modified_Face&Box_6_1/Back"),

model.selection("FACE",

"Fuse_1_1/Modified_Face&Sketch_5/SketchLine_62"),

model.selection("FACE",

"Fuse_1_1/Modified_Face&Sketch_5/SketchLine_64"),

model.selection("FACE",

"Fuse_1_1/Modified_Face&ExtrusionCut_1_1/To_Face_1&Sketch_6/SketchLine_71&ExtrusionCut_1_1/To_Face_2"),

model.selection("FACE",

"Fuse_1_1/Modified_Face&Sketch_5/SketchLine_69"),

model.selection("FACE",

"Fuse_1_1/Modified_Face&Sketch_5/SketchLine_66"),

model.selection("FACE",

"Fuse_1_1/Modified_Face&Sketch_3/SketchBSpline_6"),

model.selection("FACE",

"Fuse_1_1/Modified_Face&Sketch_3/SketchBSpline_5")]

Fillet_1 = model.addFillet(Part_1_doc , Fillet_1_objects , "0.02*L/2", keepSubResults = True)

Fillet_2_objects = [model.selection("FACE",

"Fillet_1_1/MF:Fillet&Box_1_1/Bottom&Sketch_1/SketchLine_4&Box_5_1/Bottom"),

model.selection("FACE", "Fuse_1_1/Modified_Face&Box_4_1/Front"),

model.selection("FACE", "Fuse_1_1/Modified_Face&Box_1_1/Left"),

model.selection("FACE",

"Fillet_1_1/MF:Fillet&Box_1_1/Front&Box_5_1/Front"),

model.selection("FACE", "Fuse_1_1/Modified_Face&Box_1_1/Right"),

model.selection("FACE", "Box_4_1/Top"),

model.selection("FACE", "Box_4_1/Right"),

model.selection("FACE", "Box_4_1/Left"),

model.selection("FACE", "Box_1_1/Top"),

model.selection("FACE",

"ExtrusionCut_3_1/Generated_Face&Sketch_1/SketchBSpline_2")]

Fillet_2 = model.addFillet(Part_1_doc , Fillet_2_objects , "0.008*L/2", keepSubResults = True)

Fillet_2.result ().setTransparency (0.8)

Export_1 = model.exportToXAO(Part_1_doc , folder + ’/XAO/Tunnel.xao’,

model.selection("SOLID", "Fillet_2_1"), ’XAO’)

Export_2 = model.exportToXAO(Part_1_doc , folder + ’/XAO/NShear1.xao’,

model.selection("SOLID", "Cut_2_1"), ’XAO’)

Export_3 = model.exportToXAO(Part_1_doc , folder + ’/XAO/NShear2.xao’,

model.selection("SOLID", "Cut_2_2"), ’XAO’)

Export_4 = model.exportToXAO(Part_1_doc , folder + ’/XAO/NShear3.xao’,

model.selection("SOLID", "Cut_2_3"), ’XAO’)

Export_5 = model.exportToXAO(Part_1_doc , folder + ’/XAO/ImportantArea1.xao’,

model.selection("SOLID", "Box_11_1"), ’XAO’)

Export_6 = model.exportToXAO(Part_1_doc , folder + ’/XAO/ImportantArea2.xao’,

Appendix B 93

model.selection("SOLID", "Box_12_1"), ’XAO’)

model.do()

#

--#

VEHICLE CREATION

#

--#

Part_2 = model.addPart(partSet)

Part_2.setName("Vehicle")

Part_2.result ().setName("Vehicle")

Part_2_doc = Part_2.document ()

model.addParameter(Part_2_doc , "l", str(VehicleParam [0]), ’Length ’)

model.addParameter(Part_2_doc , "w", str(VehicleParam [1]), ’Width’)

model.addParameter(Part_2_doc , "h", str(VehicleParam [2]), ’Height ’)

model.addParameter(Part_2_doc , "v", str(VehicleParam [3]), ’Volume ’)

model.addParameter(Part_2_doc , "o_f", str(VehicleParam [4]), ’Front Overhang ’)

model.addParameter(Part_2_doc , "o_r", str(VehicleParam [5]), ’Rear Overhang ’)

model.addParameter(Part_2_doc , "h_f", str(VehicleParam [6]), ’Front Wheel Well Height ’)

model.addParameter(Part_2_doc , "h_r", str(VehicleParam [7]), ’Rear Wheel Well Height ’)

model.addParameter(Part_2_doc , "r", str(VehicleParam [8]), ’Ride Height ’)

model.addParameter(Part_2_doc , "t", ’(v/(w*h*0.85)+h)’, ’Characteristic Trunk Size’)

model.addParameter(Part_2_doc , "s", ’ -0.88665*t+0.68679 ’, ’Trunk Shape Factor ’)

model.addParameter(Part_2_doc , "TunnelPlacement", str(TunnelParam [11]))

Point_66 = model.addPoint(Part_2_doc , "l/2", "(w*l)/2", "(h*l)")

Point_67 = model.addPoint(Part_2_doc , "-l/2", "0", "(r*l)")

Point_68 = model.addPoint(Part_2_doc , "-l*(1/2 -(o_f)/3)", "0", "(r*l)")

Point_69 = model.addPoint(Part_2_doc , "-l/2", "0", "l*(r+h/8)")

Point_70 = model.addPoint(Part_2_doc , "-l/2", "0", "l*(r+h*11/20)")

Point_71 = model.addPoint(Part_2_doc , "-l/2+l/4*(h+1/2)*sin (80*pi/180)", "0",

"l*(r+h*11/20) -cos (80*pi /180)")

Point_72 = model.addPoint(Part_2_doc , "-l/8", "0", "h*l")

Point_73 = model.addPoint(Part_2_doc , "0", "w*l/2", "h*l")

Point_74 = model.addPoint(Part_2_doc , "l*(1/2 -o_r)", "0", "r*l")

Point_75 = model.addPoint(Part_2_doc , "l/2", "0", "r*l")

Point_76 = model.addPoint(Part_2_doc , "l/2", "0", "l*(r+h/10)")

Point_77 = model.addPoint(Part_2_doc , "l/2", "0", "l*(r+h/2)")

Point_78 = model.addPoint(Part_2_doc , "l/2", "0", "l*(r+h*5/8)")

Point_79 = model.addPoint(Part_2_doc , "l/2-(s*l)*sin ((30+40*(1 -s*h))*pi/180)", "0",

"h*l-(s*l)*cos ((30+40*(1 -s*h))*pi/180)")

Point_80 = model.addPoint(Part_2_doc ,

Appendix B 94

"l/2-(s*l)*sin ((30+40*(1 -s*h))*pi/180) -((s*l)*cos ((30+40*(1 -s*h))*pi/180)*tan ((30+15*(1 -s/h))*pi/180))",

"0", "h*l")

Point_81 = model.addPoint(Part_2_doc , "-l/2", "0", "h*l")

Point_82 = model.addPoint(Part_2_doc , "l/2", "0", "h*l")

Point_83 = model.addPoint(Part_2_doc , "0", "w*l/2", "1/3*h*l")

Point_84 = model.addPoint(Part_2_doc , "0", "w*l/2-w*l/5", "h*l")

Point_85 = model.addPoint(Part_2_doc , "-l/2", "w*l/2", "0")

Point_86 = model.addPoint(Part_2_doc , "l/2", "w*l/2", "0")

Point_87 = model.addPoint(Part_2_doc , "-l/2", "w*l/2-w*l/3", "0")

Point_88 = model.addPoint(Part_2_doc , "-l/2+ o_f*l", "w*l/2", "0")

Point_89 = model.addPoint(Part_2_doc , "l/2-o_r*l", "w*l/2", "0")

Point_90 = model.addPoint(Part_2_doc , "l/2", "0", "0")

Point_91 = model.addPoint(Part_2_doc , "-l/2+ o_f*l", "w*l/2", "5/12* h_f*l")

Point_92 = model.addPoint(Part_2_doc , "-l/2+ o_f*l", "w*l/2", "h_f*l")

Point_93 = model.addPoint(Part_2_doc , "-l/2+ o_f*l", "w*l/2", "11/24* h_f*l")

Point_94 = model.addPoint(Part_2_doc , "l/2-o_r*l", "w*l/2", "5/12* h_r*l")

Point_94.setName("Point_31")

Point_94.result ().setName("Point_31")

Point_95 = model.addPoint(Part_2_doc , "l/2-o_r*l", "w*l/2", "11/24* h_r*l")

Point_95.setName("Point_32")

Point_95.result ().setName("Point_32")

Point_96 = model.addPoint(Part_2_doc , "l/2-o_r*l", "w*l/2", "h_r*l")

Point_96.setName("Point_33")

Point_96.result ().setName("Point_33")

Point_97 = model.addPoint(Part_2_doc , "-l/2+ o_f*l", "w*l/2-l*0.012", "0")

Point_97.setName("Point_34")

Point_97.result ().setName("Point_34")

Point_98 = model.addPoint(Part_2_doc , "-l/2+ o_f*l", "w*l/2-l*0.048", "0")

Point_98.setName("Point_35")

Point_98.result ().setName("Point_35")

Point_99 = model.addPoint(Part_2_doc , "-l/2+ o_f*l -1/12* h_f*l", "w*l/2-l*0.015", "0")

Point_99.setName("Point_36")

Point_99.result ().setName("Point_36")

Point_100 = model.addPoint(Part_2_doc , "-l/2+ o_f*l+1/12* h_f*l", "w*l/2-l*0.015", "0")

Point_100.setName("Point_37")

Point_100.result ().setName("Point_37")

Point_101 = model.addPoint(Part_2_doc , "-l/2+ o_f*l -1/12* h_f*l", "w*l/2-l*0.045", "0")

Point_101.setName("Point_38")

Point_101.result ().setName("Point_38")

Point_102 = model.addPoint(Part_2_doc , "-l/2+ o_f*l+1/12* h_f*l", "w*l/2 -0.045*l", "0")

Point_102.setName("Point_39")

Point_102.result ().setName("Point_39")

Point_103 = model.addPoint(Part_2_doc , "l/2-o_r*l", "w*l/2-l*0.012", "0")

Point_103.setName("Point_40")

Point_103.result ().setName("Point_40")

Appendix B 95

Point_104 = model.addPoint(Part_2_doc , "l/2-o_r*l", "w*l/2-l*0.048", "0")

Point_104.setName("Point_41")

Point_104.result ().setName("Point_41")

Point_105 = model.addPoint(Part_2_doc , "l/2-o_r*l+1/12* h_r*l", "w*l/2-l*0.015", "0")

Point_105.setName("Point_42")

Point_105.result ().setName("Point_42")

Point_106 = model.addPoint(Part_2_doc , "l/2-o_r*l -1/12* h_r*l", "w*l/2 -0.015*l", "0")

Point_106.setName("Point_43")

Point_106.result ().setName("Point_43")

Point_107 = model.addPoint(Part_2_doc , "l/2-o_r*l+1/12* h_r*l", "w*l/2 -0.045*l", "0")

Point_107.setName("Point_44")

Point_107.result ().setName("Point_44")

Point_108 = model.addPoint(Part_2_doc , "l/2-o_r*l -1/12* h_f*l", "w/2*l -0.045*l", "0")

Point_108.setName("Point_45")

Point_108.result ().setName("Point_45")

Point_109 = model.addPoint(Part_2_doc , "-l", "w*l", "-l*0.1")

Point_109.setName("Point_46")

Point_109.result ().setName("Point_46")

Point_110 = model.addPoint(Part_2_doc , "3*l", "-w*l", "h*l*1.5")

Point_110.setName("Point_47")

Point_110.result ().setName("Point_47")

Point_111 = model.addPoint(Part_2_doc , " -4*l", " -5*w*l", "0")

Point_111.setName("Point_48")

Point_111.result ().setName("Point_48")

Point_112 = model.addPoint(Part_2_doc , "6*l", "5*w*l", "5*h*l")

Point_112.setName("Point_49")

Point_112.result ().setName("Point_49")

Point_113 = model.addPoint(Part_2_doc , " -3*l", " -4*w*l", "0")

Point_113.setName("Point_50")

Point_113.result ().setName("Point_50")

Point_114 = model.addPoint(Part_2_doc , "5*l", "4*w*l", "4*h*l")

Point_114.setName("Point_51")

Point_114.result ().setName("Point_51")

Point_115 = model.addPoint(Part_2_doc , " -2*l", " -3*w*l", "0")

Point_115.setName("Point_52")

Point_115.result ().setName("Point_52")

Point_116 = model.addPoint(Part_2_doc , "4*l", "3*w*l", "3*h*l")

Point_116.setName("Point_53")

Point_116.result ().setName("Point_53")

Point_117 = model.addPoint(Part_2_doc , " -1.25*l/2", " -1.25*w*l/2", "0")

Point_117.setName("Point_54")

Point_117.result ().setName("Point_54")

Point_118 = model.addPoint(Part_2_doc , "l*1.5", "1.25*w*l/2", "1.25*h*l")

Point_118.setName("Point_55")

Point_118.result ().setName("Point_55")

Appendix B 96

Box_14 = model.addBox(Part_2_doc , model.selection("VERTEX", "Point_1"),

model.selection("VERTEX", "Point_2"))

Box_15 = model.addBox(Part_2_doc , model.selection("VERTEX", "Point_46"),

model.selection("VERTEX", "Point_47"))

Box_16 = model.addBox(Part_2_doc , model.selection("VERTEX", "Point_52"),

model.selection("VERTEX", "Point_53"))

Box_17 = model.addBox(Part_2_doc , model.selection("VERTEX", "Point_50"),

model.selection("VERTEX", "Point_51"))

Box_18 = model.addBox(Part_2_doc , model.selection("VERTEX", "Point_48"),

model.selection("VERTEX", "Point_49"))

Box_19 = model.addBox(Part_2_doc , model.selection("VERTEX", "Point_54"),

model.selection("VERTEX", "Point_55"))

Plane_7 = model.addPlane(Part_2_doc , model.selection("VERTEX", "Point_21"),

model.selection("VERTEX", "Point_24"), model.selection("VERTEX", "Point_31"))

#

--#

t parameter determines the rear placement of the spoiler , with 0.62 being the approximate

change between a sedan and a hatchback

t >0.62 represents hatchback spoiler placement

t <0.62 represents sedan spoiler placement

#

--#

t = VehicleParam [3]/(VehicleParam [1]* VehicleParam [2]*0.85)+VehicleParam [2]

if t>= 0.62:

#

--#

HATCHBACK CREATION

#

--#

Sketch_11 = model.addSketch(Part_2_doc , model.defaultPlane("XOZ"))

SketchBSpline_13 = Sketch_11.addSpline(poles =[(-1.763393333333333 , 0.14007) , (-2.03,

0.14007) , (-2.03, 0.32129825)])

[SketchPoint_89 , SketchPoint_90 , SketchPoint_91] =

SketchBSpline_13.controlPoles(auxiliary =[0, 1, 2])

[SketchLine_116 , SketchLine_117] = SketchBSpline_13.controlPolygon(auxiliary =[0, 1])

SketchBSpline_14_poles = [(-2.03, 0.32129825) ,

(-2.03, 0.9374742999999999) ,

(-1.173260094016635 , 0.7638261223330695) ,

(-0.5075 , 1.449826) ,

(0, 1.449826)

]

Appendix B 97

SketchBSpline_14 = Sketch_11.addSpline(poles=SketchBSpline_14_poles)

[SketchPoint_92 , SketchPoint_93 , SketchPoint_94 , SketchPoint_95 , SketchPoint_96] =

SketchBSpline_14.controlPoles(

auxiliary =[0, 1, 2, 3, 4])

[SketchLine_118 , SketchLine_119 , SketchLine_120 , SketchLine_121] =

SketchBSpline_14.controlPolygon(

auxiliary =[0, 1, 2, 3])

SketchBSpline_15_poles = [(0, 1.449826) ,

(1.551607191560884 , 1.449826) ,

(1.673039346430912 , 1.310305442946679) ,

(2.03, 1.04621125) ,

(2.03, 0.8649829999999998)

]

SketchBSpline_15 = Sketch_11.addSpline(poles=SketchBSpline_15_poles)

[SketchPoint_97 , SketchPoint_98 , SketchPoint_99 , SketchPoint_100 , SketchPoint_101] =

SketchBSpline_15.controlPoles(

auxiliary =[0, 1, 2, 3, 4])

[SketchLine_122 , SketchLine_123 , SketchLine_124 , SketchLine_125] =

SketchBSpline_15.controlPolygon(

auxiliary =[0, 1, 2, 3])

SketchBSpline_16 = Sketch_11.addSpline(poles =[(2.03 , 0.2850525999999999) , (2.03 ,

0.14007) , (1.429932 , 0.14007)],

weights =[2, 1, 1])

[SketchPoint_102 , SketchPoint_103 , SketchPoint_104] =

SketchBSpline_16.controlPoles(auxiliary =[0, 1, 2])

[SketchLine_126 , SketchLine_127] = SketchBSpline_16.controlPolygon(auxiliary =[0, 1])

SketchProjection_49 = Sketch_11.addProjection(model.selection("VERTEX", "Point_3"),

False)

SketchPoint_105 = SketchProjection_49.createdFeature ()

Sketch_11.setCoincident(SketchAPI_Point(SketchPoint_89).coordinates (),

SketchAPI_Point(SketchPoint_105).coordinates ())

SketchProjection_50 = Sketch_11.addProjection(model.selection("VERTEX", "Point_2"),

False)

SketchPoint_106 = SketchProjection_50.createdFeature ()

Sketch_11.setCoincident(SketchAPI_Point(SketchPoint_90).coordinates (),

SketchAPI_Point(SketchPoint_106).coordinates ())

SketchProjection_51 = Sketch_11.addProjection(model.selection("VERTEX", "Point_4"),

False)

SketchPoint_107 = SketchProjection_51.createdFeature ()

Sketch_11.setCoincident(SketchAPI_Point(SketchPoint_91).coordinates (),

SketchAPI_Point(SketchPoint_107).coordinates ())

Sketch_11.setCoincident(SketchAPI_Point(SketchPoint_92).coordinates (),

SketchAPI_Point(SketchPoint_91).coordinates ())

SketchProjection_52 = Sketch_11.addProjection(model.selection("VERTEX", "Point_5"),

False)

Appendix B 98

SketchPoint_108 = SketchProjection_52.createdFeature ()

Sketch_11.setCoincident(SketchAPI_Line(SketchLine_118).endPoint (),

SketchAPI_Point(SketchPoint_108).coordinates ())

SketchProjection_53 = Sketch_11.addProjection(model.selection("VERTEX", "Point_6"),

False)

SketchPoint_109 = SketchProjection_53.createdFeature ()

Sketch_11.setCoincident(SketchAPI_Point(SketchPoint_94).coordinates (),

SketchAPI_Point(SketchPoint_109).coordinates ())

SketchProjection_54 = Sketch_11.addProjection(model.selection("VERTEX", "Point_7"),

False)

SketchPoint_110 = SketchProjection_54.createdFeature ()

Sketch_11.setCoincident(SketchAPI_Point(SketchPoint_95).coordinates (),

SketchAPI_Point(SketchPoint_110).coordinates ())

SketchProjection_55 = Sketch_11.addProjection(model.selection("VERTEX", "Point_8"),

False)

SketchPoint_111 = SketchProjection_55.createdFeature ()

Sketch_11.setCoincident(SketchBSpline_14.endPoint (),

SketchAPI_Point(SketchPoint_111).coordinates ())

Sketch_11.setCoincident(SketchBSpline_15.startPoint (), SketchBSpline_14.endPoint ())

SketchProjection_56 = Sketch_11.addProjection(model.selection("VERTEX", "Point_15"),

False)

SketchPoint_112 = SketchProjection_56.createdFeature ()

Sketch_11.setCoincident(SketchAPI_Line(SketchLine_122).endPoint (),

SketchAPI_Point(SketchPoint_112).coordinates ())

SketchProjection_57 = Sketch_11.addProjection(model.selection("VERTEX", "Point_14"),

False)

SketchPoint_113 = SketchProjection_57.createdFeature ()

Sketch_11.setCoincident(SketchAPI_Point(SketchPoint_99).coordinates (),

SketchAPI_Point(SketchPoint_113).coordinates ())

SketchProjection_58 = Sketch_11.addProjection(model.selection("VERTEX", "Point_13"),

False)

SketchPoint_114 = SketchProjection_58.createdFeature ()

Sketch_11.setCoincident(SketchAPI_Line(SketchLine_124).endPoint (),

SketchAPI_Point(SketchPoint_114).coordinates ())

SketchProjection_59 = Sketch_11.addProjection(model.selection("VERTEX", "Point_12"),

False)

SketchPoint_115 = SketchProjection_59.createdFeature ()

Sketch_11.setCoincident(SketchBSpline_15.endPoint (),

SketchAPI_Point(SketchPoint_115).coordinates ())

SketchProjection_60 = Sketch_11.addProjection(model.selection("VERTEX", "Point_11"),

False)

SketchPoint_116 = SketchProjection_60.createdFeature ()

Sketch_11.setCoincident(SketchBSpline_16.startPoint (),

SketchAPI_Point(SketchPoint_116).coordinates ())

SketchProjection_61 = Sketch_11.addProjection(model.selection("VERTEX", "Point_10"),

Appendix B 99

False)

SketchPoint_117 = SketchProjection_61.createdFeature ()

Sketch_11.setCoincident(SketchAPI_Line(SketchLine_127).startPoint (),

SketchAPI_Point(SketchPoint_117).coordinates ())

SketchProjection_62 = Sketch_11.addProjection(model.selection("VERTEX", "Point_9"),

False)

SketchPoint_118 = SketchProjection_62.createdFeature ()

Sketch_11.setCoincident(SketchAPI_Line(SketchLine_127).endPoint (),

SketchAPI_Point(SketchPoint_118).coordinates ())

SketchLine_128 = Sketch_11.addLine (2.03 , 0.8649829999999998 , 2.03, 0.2850525999999999)

Sketch_11.setCoincident(SketchBSpline_15.endPoint (), SketchLine_128.startPoint ())

Sketch_11.setCoincident(SketchBSpline_16.startPoint (), SketchLine_128.endPoint ())

SketchLine_129 = Sketch_11.addLine (-1.763393333333333 , 0.14007 , -2.03, 0.14007)

Sketch_11.setCoincident(SketchBSpline_13.startPoint (), SketchLine_129.startPoint ())

Sketch_11.setCoincident(SketchAPI_Point(SketchPoint_90).coordinates (),

SketchLine_129.endPoint ())

SketchLine_130 = Sketch_11.addLine (-2.03, 0.14007 , -2.03, 0.32129825)

Sketch_11.setCoincident(SketchAPI_Point(SketchPoint_90).coordinates (),

SketchLine_130.startPoint ())

Sketch_11.setCoincident(SketchBSpline_13.endPoint (), SketchLine_130.endPoint ())

SketchLine_131 = Sketch_11.addLine (-2.03, 0.32129825 , -2.03, 1.449826)

Sketch_11.setCoincident(SketchBSpline_13.endPoint (), SketchLine_131.startPoint ())

SketchProjection_63 = Sketch_11.addProjection(model.selection("VERTEX", "Point_16"),

False)

SketchPoint_119 = SketchProjection_63.createdFeature ()

Sketch_11.setCoincident(SketchLine_131.endPoint (), SketchPoint_119.result ())

SketchLine_132 = Sketch_11.addLine (-2.03, 1.449826 , 0, 1.449826)

Sketch_11.setCoincident(SketchLine_131.endPoint (), SketchLine_132.startPoint ())

Sketch_11.setCoincident(SketchBSpline_14.endPoint (), SketchLine_132.endPoint ())

SketchLine_133 = Sketch_11.addLine(0, 1.449826 , 2.03, 1.449826)

Sketch_11.setCoincident(SketchBSpline_14.endPoint (), SketchLine_133.startPoint ())

SketchProjection_64 = Sketch_11.addProjection(model.selection("VERTEX", "Point_17"),

False)

SketchPoint_120 = SketchProjection_64.createdFeature ()

Sketch_11.setCoincident(SketchLine_133.endPoint (), SketchPoint_120.result ())

SketchLine_134 = Sketch_11.addLine (2.03 , 1.449826 , 2.03, 0.8649829999999998)

Sketch_11.setCoincident(SketchLine_133.endPoint (), SketchLine_134.startPoint ())

Sketch_11.setCoincident(SketchBSpline_15.endPoint (), SketchLine_134.endPoint ())

SketchLine_135 = Sketch_11.addLine (2.03 , 0.2850525999999999 , 2.03, 0.14007)

Sketch_11.setCoincident(SketchBSpline_16.startPoint (), SketchLine_135.startPoint ())

Sketch_11.setCoincident(SketchAPI_Point(SketchPoint_103).coordinates (),

SketchLine_135.endPoint ())

SketchLine_136 = Sketch_11.addLine (2.03 , 0.14007 , 1.429932 , 0.14007)

Sketch_11.setCoincident(SketchAPI_Point(SketchPoint_103).coordinates (),

SketchLine_136.startPoint ())

Appendix B 100

Sketch_11.setCoincident(SketchBSpline_16.endPoint (), SketchLine_136.endPoint ())

SketchLine_137 = Sketch_11.addLine (1.270102848723003 , 1.449826 , 1.574709453303134 ,

1.368206906293568)

SketchLine_137.setName("SketchLine_32")

SketchLine_137.result ().setName("SketchLine_32")

SketchLine_137.setAuxiliary(True)

SketchLine_138 = Sketch_11.addLine (1.574709453303134 , 1.368206906293568 ,

1.535492864755798 , 1.37871495952473)

SketchLine_138.setName("SketchLine_33")

SketchLine_138.result ().setName("SketchLine_33")

SketchLine_138.setAuxiliary(True)

Sketch_11.setCoincident(SketchLine_137.endPoint (), SketchLine_138.startPoint ())

Sketch_11.setCoincident(SketchLine_138.endPoint (), SketchLine_137.result ())

SketchLine_139 = Sketch_11.addLine (1.535492864755798 , 1.37871495952473 ,

1.697892864755798 , 1.37871495952473)

SketchLine_139.setName("SketchLine_34")

SketchLine_139.result ().setName("SketchLine_34")

SketchLine_139.setAuxiliary(True)

Sketch_11.setCoincident(SketchLine_138.endPoint (), SketchLine_139.startPoint ())

Sketch_11.setHorizontal(SketchLine_139.result ())

Sketch_11.setAngle(SketchLine_138.result (), SketchLine_139.result (), 15, type="Direct")

Sketch_11.setLength(SketchLine_138.result (), "l/100")

Sketch_11.setLength(SketchLine_139.result (), "l/25")

SketchLine_140 = Sketch_11.addLine (1.697892864755798 , 1.37871495952473 ,

0.9827608639438197 , 0.1400700000000001)

SketchLine_140.setName("SketchLine_35")

SketchLine_140.result ().setName("SketchLine_35")

Sketch_11.setCoincident(SketchLine_139.endPoint (), SketchLine_140.startPoint ())

Sketch_11.setAngle(SketchLine_140.result (), SketchLine_139.result (), 60, type="Direct")

Sketch_11.setCoincident(SketchLine_137.startPoint (), SketchLine_133.result ())

Sketch_11.setCoincident(SketchLine_138.endPoint (), SketchBSpline_15.result ())

Sketch_11.setCoincident(SketchLine_137.endPoint (), SketchBSpline_15.result ())

Sketch_11.setCoincident(SketchLine_140.endPoint (), SketchLine_136.result ())

SketchBSpline_17_poles = [(0, spline),

(0.1, spline),

(0.2, spline),

(0.3, spline),

(0.4, spline)

]

SketchBSpline_17 = Sketch_11.addSpline(poles=SketchBSpline_17_poles , weights =[1, 2, 2,

2, 1])

SketchBSpline_17.setName("SketchBSpline_8")

SketchBSpline_17.result ().setName("SketchBSpline_8")

[SketchPoint_121 , SketchPoint_122 , SketchPoint_123 , SketchPoint_124 , SketchPoint_125] =

Appendix B 101

SketchBSpline_17.controlPoles(

auxiliary =[0, 1, 2, 3, 4])

[SketchLine_141 , SketchLine_142 , SketchLine_143 , SketchLine_144] =

SketchBSpline_17.controlPolygon(

auxiliary =[0, 1, 2, 3])

Sketch_11.setCoincident(SketchLine_132.endPoint (),

SketchAPI_Point(SketchPoint_121).coordinates ())

Sketch_11.setCoincident(SketchAPI_Point(SketchPoint_122).coordinates (),

SketchBSpline_15.result ())

Sketch_11.setCoincident(SketchAPI_Point(SketchPoint_123).coordinates (),

SketchBSpline_15.result ())

Sketch_11.setCoincident(SketchAPI_Point(SketchPoint_124).coordinates (),

SketchBSpline_15.result ())

Sketch_11.setCoincident(SketchAPI_Point(SketchPoint_125).coordinates (),

SketchLine_140.startPoint ())

Sketch_11.setEqual(SketchLine_141.result (), SketchLine_142.result ())

Sketch_11.setEqual(SketchLine_142.result (), SketchLine_143.result ())

Sketch_11.setEqual(SketchLine_143.result (), SketchLine_144.result ())

model.do()

Sketch_11.changeFacesOrder ([[SketchBSpline_13.result (), SketchLine_130.result (),

SketchLine_129.result ()],

[SketchBSpline_14.result (), SketchLine_132.result (),

SketchLine_131.result ()],

[SketchBSpline_15.result (), SketchBSpline_17.result (),

SketchLine_140.result (),

SketchBSpline_15.result (), SketchLine_134.result (),

SketchLine_133.result ()],

[SketchBSpline_16.result (), SketchLine_136.result (),

SketchLine_135.result ()],

[SketchBSpline_15.result (), SketchLine_140.result (),

SketchBSpline_17.result ()],

[SketchBSpline_17.result (), SketchBSpline_15.result ()]

])

model.do()

Sketch_12 = model.addSketch(Part_2_doc , model.defaultPlane("YOZ"))

SketchBSpline_18 = Sketch_12.addSpline(

poles =[(0.5160666 , 1.449826) , (0.860111 , 1.449826) , (0.860111 ,

0.4832753333333332)], weights =[1, 1, 3])

SketchBSpline_18.setName("SketchBSpline_5")

SketchBSpline_18.result ().setName("SketchBSpline_5")

[SketchPoint_126 , SketchPoint_127 , SketchPoint_128] =

SketchBSpline_18.controlPoles(auxiliary =[0, 1, 2])

[SketchLine_145 , SketchLine_146] = SketchBSpline_18.controlPolygon(regular =[0, 1])

Appendix B 102

SketchProjection_65 = Sketch_12.addProjection(model.selection("VERTEX", "Point_19"),

False)

SketchPoint_129 = SketchProjection_65.createdFeature ()

SketchPoint_129.setName("SketchPoint_36")

SketchPoint_129.result ().setName("SketchPoint_36")

Sketch_12.setCoincident(SketchAPI_Point(SketchPoint_126).coordinates (),

SketchAPI_Point(SketchPoint_129).coordinates ())

SketchProjection_66 = Sketch_12.addProjection(model.selection("VERTEX", "Point_8"),

False)

SketchPoint_130 = SketchProjection_66.createdFeature ()

SketchPoint_130.setName("SketchPoint_37")

SketchPoint_130.result ().setName("SketchPoint_37")

Sketch_12.setCoincident(SketchAPI_Line(SketchLine_146).startPoint (),

SketchAPI_Point(SketchPoint_130).coordinates ())

SketchProjection_67 = Sketch_12.addProjection(model.selection("VERTEX", "Point_18"),

False)

SketchPoint_131 = SketchProjection_67.createdFeature ()

SketchPoint_131.setName("SketchPoint_38")

SketchPoint_131.result ().setName("SketchPoint_38")

Sketch_12.setCoincident(SketchAPI_Point(SketchPoint_128).coordinates (),

SketchAPI_Point(SketchPoint_131).coordinates ())

model.do()

Sketch_13 = model.addSketch(Part_2_doc , model.defaultPlane("XOY"))

SketchBSpline_19 = Sketch_13.addSpline(poles =[(-1.23018 , 0.860111) , (-2.03, 0.860111) ,

(-2.03, 0.2867036666666667)])

SketchBSpline_19.setName("SketchBSpline_6")

SketchBSpline_19.result ().setName("SketchBSpline_6")

[SketchPoint_132 , SketchPoint_133 , SketchPoint_134] =

SketchBSpline_19.controlPoles(auxiliary =[0, 1, 2])

[SketchLine_147 , SketchLine_148] = SketchBSpline_19.controlPolygon(regular =[0, 1])

SketchBSpline_20 = Sketch_13.addSpline(poles =[(1.429932 , 0.860111) , (2.03 , 0.860111) ,

(2.03, 0)], weights =[1, 3, 1])

SketchBSpline_20.setName("SketchBSpline_7")

SketchBSpline_20.result ().setName("SketchBSpline_7")

[SketchPoint_135 , SketchPoint_136 , SketchPoint_137] =

SketchBSpline_20.controlPoles(auxiliary =[0, 1, 2])

[SketchLine_149 , SketchLine_150] = SketchBSpline_20.controlPolygon(regular =[0, 1])

SketchProjection_68 = Sketch_13.addProjection(model.selection("VERTEX", "Point_22"),

False)

SketchPoint_138 = SketchProjection_68.createdFeature ()

SketchPoint_138.setName("SketchPoint_45")

SketchPoint_138.result ().setName("SketchPoint_45")

Sketch_13.setCoincident(SketchAPI_Point(SketchPoint_134).coordinates (),

Appendix B 103

SketchAPI_Point(SketchPoint_138).coordinates ())

SketchProjection_69 = Sketch_13.addProjection(model.selection("VERTEX", "Point_20"),

False)

SketchPoint_139 = SketchProjection_69.createdFeature ()

SketchPoint_139.setName("SketchPoint_46")

SketchPoint_139.result ().setName("SketchPoint_46")

Sketch_13.setCoincident(SketchAPI_Point(SketchPoint_133).coordinates (),

SketchAPI_Point(SketchPoint_139).coordinates ())

SketchProjection_70 = Sketch_13.addProjection(model.selection("VERTEX", "Point_23"),

False)

SketchPoint_140 = SketchProjection_70.createdFeature ()

SketchPoint_140.setName("SketchPoint_47")

SketchPoint_140.result ().setName("SketchPoint_47")

Sketch_13.setCoincident(SketchAPI_Point(SketchPoint_132).coordinates (),

SketchAPI_Point(SketchPoint_140).coordinates ())

SketchProjection_71 = Sketch_13.addProjection(model.selection("VERTEX", "Point_24"),

False)

SketchPoint_141 = SketchProjection_71.createdFeature ()

SketchPoint_141.setName("SketchPoint_48")

SketchPoint_141.result ().setName("SketchPoint_48")

Sketch_13.setCoincident(SketchAPI_Point(SketchPoint_135).coordinates (),

SketchAPI_Point(SketchPoint_141).coordinates ())

SketchProjection_72 = Sketch_13.addProjection(model.selection("VERTEX", "Point_21"),

False)

SketchPoint_142 = SketchProjection_72.createdFeature ()

SketchPoint_142.setName("SketchPoint_49")

SketchPoint_142.result ().setName("SketchPoint_49")

Sketch_13.setCoincident(SketchAPI_Line(SketchLine_149).endPoint (),

SketchAPI_Point(SketchPoint_142).coordinates ())

SketchProjection_73 = Sketch_13.addProjection(model.selection("VERTEX", "Point_25"),

False)

SketchPoint_143 = SketchProjection_73.createdFeature ()

SketchPoint_143.setName("SketchPoint_50")

SketchPoint_143.result ().setName("SketchPoint_50")

Sketch_13.setCoincident(SketchAPI_Point(SketchPoint_137).coordinates (),

SketchAPI_Point(SketchPoint_143).coordinates ())

model.do()

Sketch_14 = model.addSketch(Part_2_doc , model.selection("FACE", "Plane_1"))

SketchProjection_74 = Sketch_14.addProjection(model.selection("VERTEX", "Point_32"),

False)

SketchPoint_144 = SketchProjection_74.createdFeature ()

SketchPoint_144.setName("SketchPoint_51")

SketchPoint_144.result ().setName("SketchPoint_51")

Appendix B 104

SketchProjection_75 = Sketch_14.addProjection(model.selection("VERTEX", "Point_24"),

False)

SketchPoint_145 = SketchProjection_75.createdFeature ()

SketchPoint_145.setName("SketchPoint_52")

SketchPoint_145.result ().setName("SketchPoint_52")

SketchCircle_1 = Sketch_14.addCircle (1.429932 , -0.2982915833333333 , 0.2982915833333333)

Sketch_14.setCoincident(SketchPoint_144.result (), SketchCircle_1.center ())

Sketch_14.setCoincident(SketchPoint_145.result (), SketchCircle_1.results ()[1])

SketchProjection_76 = Sketch_14.addProjection(model.selection("VERTEX", "Point_31"),

False)

SketchPoint_146 = SketchProjection_76.createdFeature ()

SketchPoint_146.setName("SketchPoint_53")

SketchPoint_146.result ().setName("SketchPoint_53")

SketchProjection_77 = Sketch_14.addProjection(model.selection("VERTEX", "Point_33"),

False)

SketchPoint_147 = SketchProjection_77.createdFeature ()

SketchPoint_147.setName("SketchPoint_54")

SketchPoint_147.result ().setName("SketchPoint_54")

SketchEllipse_1 = Sketch_14.addEllipse (1.429932 , -0.2711741666666667 , 1.429932 ,

-0.3976704483433147 , 0.3579498999999999)

[SketchPoint_148 , SketchPoint_149 , SketchPoint_150 , SketchPoint_151 , SketchPoint_152 ,

SketchPoint_153 , SketchPoint_154 ,

SketchLine_151 , SketchLine_152] = SketchEllipse_1.construction(center="aux",

firstFocus="aux", secondFocus="aux",

majorAxisStart="aux",

majorAxisEnd="aux",

minorAxisStart="aux",

minorAxisEnd="aux",

majorAxis="aux",

minorAxis="aux")

Sketch_14.setCoincident(SketchPoint_146.result (), SketchEllipse_1.center ())

Sketch_14.setCoincident(SketchPoint_147.result (), SketchEllipse_1.majorAxisPositive ())

Sketch_14.setHorizontalDistance(SketchAPI_Point(SketchPoint_146).coordinates (),

SketchAPI_Point(SketchPoint_153).coordinates (),

"1.1* h_r*l/2")

SketchProjection_78 = Sketch_14.addProjection(model.selection("VERTEX", "Point_28"),

False)

SketchPoint_155 = SketchProjection_78.createdFeature ()

SketchPoint_155.setName("SketchPoint_62")

SketchPoint_155.result ().setName("SketchPoint_62")

SketchProjection_79 = Sketch_14.addProjection(model.selection("VERTEX", "Point_23"),

False)

SketchPoint_156 = SketchProjection_79.createdFeature ()

SketchPoint_156.setName("SketchPoint_63")

SketchPoint_156.result ().setName("SketchPoint_63")

Appendix B 105

SketchCircle_2 = Sketch_14.addCircle (-1.23018 , -0.2956864166666666 , 0.2956864166666666)

Sketch_14.setCoincident(SketchPoint_155.result (), SketchCircle_2.center ())

Sketch_14.setCoincident(SketchPoint_156.result (), SketchCircle_2.results ()[1])

SketchProjection_80 = Sketch_14.addProjection(model.selection("VERTEX", "Point_26"),

False)

SketchPoint_157 = SketchProjection_80.createdFeature ()

SketchPoint_157.setName("SketchPoint_64")

SketchPoint_157.result ().setName("SketchPoint_64")

SketchProjection_81 = Sketch_14.addProjection(model.selection("VERTEX", "Point_27"),

False)

SketchPoint_158 = SketchProjection_81.createdFeature ()

SketchPoint_158.setName("SketchPoint_65")

SketchPoint_158.result ().setName("SketchPoint_65")

SketchEllipse_2 = Sketch_14.addEllipse (-1.23018 , -0.2688058333333334 , -1.23018 ,

-0.3941973439909709 , 0.3548237)

[SketchPoint_159 , SketchPoint_160 , SketchPoint_161 , SketchPoint_162 , SketchPoint_163 ,

SketchPoint_164 , SketchPoint_165 ,

SketchLine_153 , SketchLine_154] = SketchEllipse_2.construction(center="aux",

firstFocus="aux", secondFocus="aux",

majorAxisStart="aux",

majorAxisEnd="aux",

minorAxisStart="aux",

minorAxisEnd="aux",

majorAxis="aux",

minorAxis="aux")

Sketch_14.setCoincident(SketchPoint_157.result (), SketchEllipse_2.center ())

Sketch_14.setCoincident(SketchPoint_158.result (), SketchEllipse_2.majorAxisPositive ())

Sketch_14.setHorizontalDistance(SketchAPI_Point(SketchPoint_157).coordinates (),

SketchAPI_Line(SketchLine_154).endPoint (),

"1.1* h_f*l/2")

model.do()

ExtrusionCut_7_objects_1 = [model.selection("COMPOUND", "Sketch_2"),

model.selection("COMPOUND", "Sketch_3"),

model.selection("FACE",

"Sketch_1/Face -SketchBSpline_3f -SketchBSpline_8f -SketchLine_35f -SketchBSpline_3f -SketchLine_19r -SketchLine_18r"),

model.selection("FACE",

"Sketch_1/Face -SketchBSpline_4f -SketchLine_21r -SketchLine_20r"),

model.selection("FACE",

"Sketch_1/Face -SketchBSpline_1r -SketchLine_15r -SketchLine_14r"),

model.selection("FACE",

"Sketch_1/Face -SketchBSpline_2f -SketchLine_17r -SketchLine_16r")]

ExtrusionCut_7 = model.addExtrusionCut(Part_2_doc , ExtrusionCut_7_objects_1 ,

model.selection (),

Appendix B 106

[model.selection("SOLID", "Box_1_1")])

ExtrusionCut_8 = model.addExtrusionCut(Part_2_doc , [model.selection("COMPOUND",

"Sketch_4")], model.selection (), 0,

"l*0.075", [model.selection("SOLID",

"ExtrusionCut_1_1")])

Extrusion_1 = model.addExtrusion(Part_2_doc , [model.selection("FACE",

"Sketch_4/Face -SketchCircle_1_2f")],

model.selection (), "-l*0.005", "l*0.055",

"Faces|Wires")

Extrusion_1.setName("Extrusion_3")

Extrusion_1.result ().setName("Extrusion_3_1")

Extrusion_2 = model.addExtrusion(Part_2_doc , [model.selection("FACE",

"Sketch_4/Face -SketchCircle_2_2f")],

model.selection (), "-l*0.005", "l*0.055",

"Faces|Wires")

Extrusion_2.setName("Extrusion_4")

Extrusion_2.result ().setName("Extrusion_4_1")

Fillet_3 = model.addFillet(Part_2_doc , [

model.selection("EDGE",

"[Extrusion_3_1/Generated_Face&Sketch_4/SketchCircle_1_2][Extrusion_3_1/To_Face]"),

model.selection("FACE", "Extrusion_3_1/Generated_Face&Sketch_4/SketchCircle_1_2")],

"0.01*l", keepSubResults=True)

Fillet_4 = model.addFillet(Part_2_doc , [

model.selection("EDGE",

"[Extrusion_4_1/Generated_Face&Sketch_4/SketchCircle_2_2][Extrusion_4_1/From_Face]"),

model.selection("EDGE",

"[Extrusion_4_1/Generated_Face&Sketch_4/SketchCircle_2_2][Extrusion_4_1/To_Face]")],

"0.01*l", keepSubResults=True)

Fillet_5 = model.addFillet(Part_2_doc , [model.selection("EDGE",

"[ExtrusionCut_2_1/Modified_Face&Sketch_2/SketchBSpline_5][ExtrusionCut_2_1/Modified_Face&Sketch_3/SketchBSpline_7]"),

model.selection("EDGE",

"[ExtrusionCut_2_1/Modified_Face&Sketch_3/SketchBSpline_6][ExtrusionCut_2_1/Modified_Face&Sketch_2/SketchBSpline_5]")],

bigFilletRadius , keepSubResults=True)

Fillet_6_objects = [model.selection("EDGE",

"[Fillet_3_1/MF:Fillet&Sketch_2/SketchBSpline_5][Fillet_3_1/MF:Fillet&Sketch_1/SketchBSpline_3]"),

model.selection("EDGE",

"[Fillet_3_1/MF:Fillet&Sketch_2/SketchBSpline_5][ExtrusionCut_1_1/Generated_Face&Sketch_1/SketchLine_35]"),

model.selection("EDGE",

"[ExtrusionCut_1_1/Generated_Face&Sketch_1/SketchBSpline_8][ExtrusionCut_1_1/Generated_Face&Sketch_1/SketchLine_35]"),

model.selection("EDGE",

"[Fillet_3_1/MF:Fillet&Sketch_2/SketchBSpline_5][ExtrusionCut_1_1/Generated_Face&Sketch_1/SketchBSpline_8]"),

model.selection("EDGE",

"[ExtrusionCut_2_1/Modified_Face&Sketch_1/SketchBSpline_4][Fillet_3_1/MF:Fillet&Sketch_3/SketchBSpline_7]"),

model.selection("FACE",

"Fillet_3_1/MF:Fillet&Sketch_4/SketchEllipse_1"),

Appendix B 107

model.selection("FACE",

"(Fillet_3_1/MF:Fillet&Sketch_2/SketchBSpline_5)(ExtrusionCut_2_1/Modified_Face&Box_1_1/Bottom)(ExtrusionCut_2_1/Modified_Face&Box_1_1/Right)(Fillet_3_1/MF:Fillet&Sketch_4/SketchEllipse_1)(ExtrusionCut_2_1/Modified_Face&ExtrusionCut_2_1/From_Face_2)"),

model.selection("FACE",

"ExtrusionCut_2_1/Modified_Face&ExtrusionCut_2_1/From_Face_2"),

model.selection("FACE",

"ExtrusionCut_2_1/Modified_Face&ExtrusionCut_2_1/From_Face_1"),

model.selection("FACE",

"Fillet_3_1/MF:Fillet&Sketch_4/SketchEllipse_2"),

model.selection("FACE",

"(Fillet_3_1/MF:Fillet&Sketch_2/SketchBSpline_5)(Fillet_3_1/MF:Fillet&Sketch_4/SketchEllipse_2)(ExtrusionCut_2_1/Modified_Face&Box_1_1/Bottom)(ExtrusionCut_2_1/Modified_Face&Box_1_1/Right)(ExtrusionCut_2_1/Modified_Face&ExtrusionCut_2_1/From_Face_4)"),

model.selection("FACE",

"ExtrusionCut_2_1/Modified_Face&ExtrusionCut_2_1/From_Face_3"),

model.selection("FACE",

"ExtrusionCut_2_1/Modified_Face&ExtrusionCut_2_1/From_Face_4"),

model.selection("FACE",

"Fillet_3_1/MF:Fillet&Sketch_3/SketchBSpline_6"),

model.selection("FACE",

"ExtrusionCut_2_1/Modified_Face&Box_1_1/Right")]

Fillet_6 = model.addFillet(Part_2_doc , Fillet_6_objects , filletRadius ,

keepSubResults=True)

Symmetry_1_objects = [model.selection("SOLID", "Fillet_1_1"),

model.selection("SOLID", "Fillet_2_1"),

model.selection("SOLID", "Fillet_4_1")]

Symmetry_1 = model.addSymmetry(Part_2_doc , Symmetry_1_objects , model.selection("FACE",

"PartSet/XOZ"),

keepOriginal=True , keepSubResults=True)

Fuse_2 = model.addFuse(Part_2_doc ,

[model.selection("SOLID", "Symmetry_1_3_1"),

model.selection("SOLID", "Symmetry_1_3_2")],

removeEdges=True , keepSubResults=True)

else:

#

--#

SEDAN CREATION

#

--#

Sketch_11 = model.addSketch(Part_2_doc , model.defaultPlane("XOZ"))

SketchBSpline_13 = Sketch_11.addSpline(

poles =[(-2.1043528 , 0.1470084) , (-2.442, 0.1470084) , (-2.442, 0.3333940500000001)])

[SketchPoint_89 , SketchPoint_90 , SketchPoint_91] =

SketchBSpline_13.controlPoles(auxiliary =[0, 1, 2])

[SketchLine_116 , SketchLine_117] = SketchBSpline_13.controlPolygon(auxiliary =[0, 1])

SketchBSpline_14_poles = [(-2.442 , 0.3333940500000001) ,

(-2.442, 0.9671052600000001) ,

(-1.473666800445607 , 0.7934570823330697) ,

Appendix B 108

(-0.6105 , 1.4910852) ,

(0, 1.4910852)

]

SketchBSpline_14 = Sketch_11.addSpline(poles=SketchBSpline_14_poles)

[SketchPoint_92 , SketchPoint_93 , SketchPoint_94 , SketchPoint_95 , SketchPoint_96] =

SketchBSpline_14.controlPoles(

auxiliary =[0, 1, 2, 3, 4])

[SketchLine_118 , SketchLine_119 , SketchLine_120 , SketchLine_121] =

SketchBSpline_14.controlPolygon(

auxiliary =[0, 1, 2, 3])

SketchBSpline_15_poles = [(0, 1.4910852) ,

(1.485286957193869 , 1.4910852) ,

(1.708663283373133 , 1.195135389512772) ,

(2.442 , 1.07893665) ,

(2.442 , 0.8925510000000001)

]

SketchBSpline_15 = Sketch_11.addSpline(poles=SketchBSpline_15_poles)

[SketchPoint_97 , SketchPoint_98 , SketchPoint_99 , SketchPoint_100 , SketchPoint_101] =

SketchBSpline_15.controlPoles(

auxiliary =[0, 1, 2, 3, 4])

[SketchLine_122 , SketchLine_123 , SketchLine_124 , SketchLine_125] =

SketchBSpline_15.controlPolygon(

auxiliary =[0, 1, 2, 3])

SketchBSpline_16 = Sketch_11.addSpline(

poles =[(2.442 , 0.2961169200000001) , (2.442 , 0.1470084) , (1.3518912 , 0.1470084)],

weights =[2, 1, 1])

[SketchPoint_102 , SketchPoint_103 , SketchPoint_104] =

SketchBSpline_16.controlPoles(auxiliary =[0, 1, 2])

[SketchLine_126 , SketchLine_127] = SketchBSpline_16.controlPolygon(auxiliary =[0, 1])

SketchProjection_49 = Sketch_11.addProjection(model.selection("VERTEX", "Point_3"),

False)

SketchPoint_105 = SketchProjection_49.createdFeature ()

Sketch_11.setCoincident(SketchAPI_Point(SketchPoint_89).coordinates (),

SketchAPI_Point(SketchPoint_105).coordinates ())

SketchProjection_50 = Sketch_11.addProjection(model.selection("VERTEX", "Point_2"),

False)

SketchPoint_106 = SketchProjection_50.createdFeature ()

Sketch_11.setCoincident(SketchAPI_Point(SketchPoint_90).coordinates (),

SketchAPI_Point(SketchPoint_106).coordinates ())

SketchProjection_51 = Sketch_11.addProjection(model.selection("VERTEX", "Point_4"),

False)

SketchPoint_107 = SketchProjection_51.createdFeature ()

Sketch_11.setCoincident(SketchAPI_Point(SketchPoint_91).coordinates (),

SketchAPI_Point(SketchPoint_107).coordinates ())

Sketch_11.setCoincident(SketchAPI_Point(SketchPoint_92).coordinates (),

Appendix B 109

SketchAPI_Point(SketchPoint_91).coordinates ())

SketchProjection_52 = Sketch_11.addProjection(model.selection("VERTEX", "Point_5"),

False)

SketchPoint_108 = SketchProjection_52.createdFeature ()

Sketch_11.setCoincident(SketchAPI_Line(SketchLine_118).endPoint (),

SketchAPI_Point(SketchPoint_108).coordinates ())

SketchProjection_53 = Sketch_11.addProjection(model.selection("VERTEX", "Point_6"),

False)

SketchPoint_109 = SketchProjection_53.createdFeature ()

Sketch_11.setCoincident(SketchAPI_Point(SketchPoint_94).coordinates (),

SketchAPI_Point(SketchPoint_109).coordinates ())

SketchProjection_54 = Sketch_11.addProjection(model.selection("VERTEX", "Point_7"),

False)

SketchPoint_110 = SketchProjection_54.createdFeature ()

Sketch_11.setCoincident(SketchAPI_Point(SketchPoint_95).coordinates (),

SketchAPI_Point(SketchPoint_110).coordinates ())

SketchProjection_55 = Sketch_11.addProjection(model.selection("VERTEX", "Point_8"),

False)

SketchPoint_111 = SketchProjection_55.createdFeature ()

Sketch_11.setCoincident(SketchBSpline_14.endPoint (),

SketchAPI_Point(SketchPoint_111).coordinates ())

Sketch_11.setCoincident(SketchBSpline_15.startPoint (), SketchBSpline_14.endPoint ())

SketchProjection_56 = Sketch_11.addProjection(model.selection("VERTEX", "Point_15"),

False)

SketchPoint_112 = SketchProjection_56.createdFeature ()

Sketch_11.setCoincident(SketchAPI_Line(SketchLine_122).endPoint (),

SketchAPI_Point(SketchPoint_112).coordinates ())

SketchProjection_57 = Sketch_11.addProjection(model.selection("VERTEX", "Point_14"),

False)

SketchPoint_113 = SketchProjection_57.createdFeature ()

Sketch_11.setCoincident(SketchAPI_Point(SketchPoint_99).coordinates (),

SketchAPI_Point(SketchPoint_113).coordinates ())

SketchProjection_58 = Sketch_11.addProjection(model.selection("VERTEX", "Point_13"),

False)

SketchPoint_114 = SketchProjection_58.createdFeature ()

Sketch_11.setCoincident(SketchAPI_Line(SketchLine_124).endPoint (),

SketchAPI_Point(SketchPoint_114).coordinates ())

SketchProjection_59 = Sketch_11.addProjection(model.selection("VERTEX", "Point_12"),

False)

SketchPoint_115 = SketchProjection_59.createdFeature ()

Sketch_11.setCoincident(SketchBSpline_15.endPoint (),

SketchAPI_Point(SketchPoint_115).coordinates ())

SketchProjection_60 = Sketch_11.addProjection(model.selection("VERTEX", "Point_11"),

False)

SketchPoint_116 = SketchProjection_60.createdFeature ()

Appendix B 110

Sketch_11.setCoincident(SketchBSpline_16.startPoint (),

SketchAPI_Point(SketchPoint_116).coordinates ())

SketchProjection_61 = Sketch_11.addProjection(model.selection("VERTEX", "Point_10"),

False)

SketchPoint_117 = SketchProjection_61.createdFeature ()

Sketch_11.setCoincident(SketchAPI_Line(SketchLine_127).startPoint (),

SketchAPI_Point(SketchPoint_117).coordinates ())

SketchProjection_62 = Sketch_11.addProjection(model.selection("VERTEX", "Point_9"),

False)

SketchPoint_118 = SketchProjection_62.createdFeature ()

Sketch_11.setCoincident(SketchAPI_Line(SketchLine_127).endPoint (),

SketchAPI_Point(SketchPoint_118).coordinates ())

SketchLine_128 = Sketch_11.addLine (2.442 , 0.8925510000000001 , 2.442 , 0.2961169200000001)

Sketch_11.setCoincident(SketchBSpline_15.endPoint (), SketchLine_128.startPoint ())

Sketch_11.setCoincident(SketchBSpline_16.startPoint (), SketchLine_128.endPoint ())

SketchLine_129 = Sketch_11.addLine (-2.1043528 , 0.1470084 , -2.442, 0.1470084)

Sketch_11.setCoincident(SketchBSpline_13.startPoint (), SketchLine_129.startPoint ())

Sketch_11.setCoincident(SketchAPI_Point(SketchPoint_90).coordinates (),

SketchLine_129.endPoint ())

SketchLine_130 = Sketch_11.addLine (-2.442, 0.1470084 , -2.442, 0.3333940500000001)

Sketch_11.setCoincident(SketchAPI_Point(SketchPoint_90).coordinates (),

SketchLine_130.startPoint ())

Sketch_11.setCoincident(SketchBSpline_13.endPoint (), SketchLine_130.endPoint ())

SketchLine_131 = Sketch_11.addLine (-2.442, 0.3333940500000001 , -2.442, 1.4910852)

Sketch_11.setCoincident(SketchBSpline_13.endPoint (), SketchLine_131.startPoint ())

SketchProjection_63 = Sketch_11.addProjection(model.selection("VERTEX", "Point_16"),

False)

SketchPoint_119 = SketchProjection_63.createdFeature ()

Sketch_11.setCoincident(SketchLine_131.endPoint (), SketchPoint_119.result ())

SketchLine_132 = Sketch_11.addLine (-2.442, 1.4910852 , 0, 1.4910852)

Sketch_11.setCoincident(SketchLine_131.endPoint (), SketchLine_132.startPoint ())

Sketch_11.setCoincident(SketchBSpline_14.endPoint (), SketchLine_132.endPoint ())

SketchLine_133 = Sketch_11.addLine(0, 1.4910852 , 2.442 , 1.4910852)

Sketch_11.setCoincident(SketchBSpline_14.endPoint (), SketchLine_133.startPoint ())

SketchProjection_64 = Sketch_11.addProjection(model.selection("VERTEX", "Point_17"),

False)

SketchPoint_120 = SketchProjection_64.createdFeature ()

Sketch_11.setCoincident(SketchLine_133.endPoint (), SketchPoint_120.result ())

SketchLine_134 = Sketch_11.addLine (2.442 , 1.4910852 , 2.442 , 0.8925510000000001)

Sketch_11.setCoincident(SketchLine_133.endPoint (), SketchLine_134.startPoint ())

Sketch_11.setCoincident(SketchBSpline_15.endPoint (), SketchLine_134.endPoint ())

SketchLine_135 = Sketch_11.addLine (2.442 , 0.2961169200000001 , 2.442 , 0.1470084)

Sketch_11.setCoincident(SketchBSpline_16.startPoint (), SketchLine_135.startPoint ())

Sketch_11.setCoincident(SketchAPI_Point(SketchPoint_103).coordinates (),

SketchLine_135.endPoint ())

Appendix B 111

SketchLine_136 = Sketch_11.addLine (2.442 , 0.1470084 , 1.3518912 , 0.1470084)

Sketch_11.setCoincident(SketchAPI_Point(SketchPoint_103).coordinates (),

SketchLine_136.startPoint ())

Sketch_11.setCoincident(SketchBSpline_16.endPoint (), SketchLine_136.endPoint ())

SketchLine_137 = Sketch_11.addLine (2.24664 , 1.089938918364612 , 2.442 , 1.089938918364612)

SketchLine_137.setName("SketchLine_40")

SketchLine_137.result ().setName("SketchLine_40")

Sketch_11.setCoincident(SketchLine_137.startPoint (), SketchBSpline_15.result ())

Sketch_11.setCoincident(SketchLine_137.endPoint (), SketchLine_134.result ())

Sketch_11.setHorizontal(SketchLine_137.result ())

Sketch_11.setLength(SketchLine_137.result (), "l/25")

model.do()

Sketch_11.changeFacesOrder ([[SketchBSpline_13.result (), SketchLine_130.result (),

SketchLine_129.result ()],

[SketchBSpline_14.result (), SketchLine_132.result (),

SketchLine_131.result ()],

[SketchBSpline_15.result (), SketchLine_137.result (),

SketchLine_134.result (),

SketchLine_133.result ()],

[SketchBSpline_16.result (), SketchLine_136.result (),

SketchLine_135.result ()],

[SketchBSpline_15.result (), SketchLine_134.result (),

SketchLine_137.result ()]

])

model.do()

Sketch_12 = model.addSketch(Part_2_doc , model.defaultPlane("YOZ"))

SketchBSpline_17 = Sketch_12.addSpline(

poles =[(0.56131812 , spline), (0.9355302000000001 , spline), (0.9355302000000001 ,

spline)],

weights =[1, 1, 3])

[SketchPoint_121 , SketchPoint_122 , SketchPoint_123] =

SketchBSpline_17.controlPoles(auxiliary =[0, 1, 2])

[SketchLine_138 , SketchLine_139] = SketchBSpline_17.controlPolygon(regular =[0, 1])

SketchProjection_65 = Sketch_12.addProjection(model.selection("VERTEX", "Point_19"),

False)

SketchPoint_124 = SketchProjection_65.createdFeature ()

Sketch_12.setCoincident(SketchAPI_Point(SketchPoint_121).coordinates (),

SketchAPI_Point(SketchPoint_124).coordinates ())

SketchProjection_66 = Sketch_12.addProjection(model.selection("VERTEX", "Point_8"),

False)

SketchPoint_125 = SketchProjection_66.createdFeature ()

Sketch_12.setCoincident(SketchAPI_Line(SketchLine_139).startPoint (),

SketchAPI_Point(SketchPoint_125).coordinates ())

Appendix B 112

SketchProjection_67 = Sketch_12.addProjection(model.selection("VERTEX", "Point_18"),

False)

SketchPoint_126 = SketchProjection_67.createdFeature ()

Sketch_12.setCoincident(SketchAPI_Point(SketchPoint_123).coordinates (),

SketchAPI_Point(SketchPoint_126).coordinates ())

model.do()

Sketch_13 = model.addSketch(Part_2_doc , model.defaultPlane("XOY"))

SketchBSpline_18 = Sketch_13.addSpline(

poles =[(-1.4290584 , 0.9355302000000001) , (-2.442, 0.9355302000000001) , (-2.442,

0.3118434)])

[SketchPoint_127 , SketchPoint_128 , SketchPoint_129] =

SketchBSpline_18.controlPoles(auxiliary =[0, 1, 2])

[SketchLine_140 , SketchLine_141] = SketchBSpline_18.controlPolygon(regular =[0, 1])

SketchBSpline_19 = Sketch_13.addSpline(

poles =[(1.3518912 , 0.9355302000000001) , (2.442 , 0.9355302000000001) , (2.442 , 0)],

weights =[1, 3, 1])

[SketchPoint_130 , SketchPoint_131 , SketchPoint_132] =

SketchBSpline_19.controlPoles(auxiliary =[0, 1, 2])

[SketchLine_142 , SketchLine_143] = SketchBSpline_19.controlPolygon(regular =[0, 1])

SketchProjection_68 = Sketch_13.addProjection(model.selection("VERTEX", "Point_22"),

False)

SketchPoint_133 = SketchProjection_68.createdFeature ()

Sketch_13.setCoincident(SketchAPI_Point(SketchPoint_129).coordinates (),

SketchAPI_Point(SketchPoint_133).coordinates ())

SketchProjection_69 = Sketch_13.addProjection(model.selection("VERTEX", "Point_20"),

False)

SketchPoint_134 = SketchProjection_69.createdFeature ()

Sketch_13.setCoincident(SketchAPI_Point(SketchPoint_128).coordinates (),

SketchAPI_Point(SketchPoint_134).coordinates ())

SketchProjection_70 = Sketch_13.addProjection(model.selection("VERTEX", "Point_23"),

False)

SketchPoint_135 = SketchProjection_70.createdFeature ()

Sketch_13.setCoincident(SketchAPI_Point(SketchPoint_127).coordinates (),

SketchAPI_Point(SketchPoint_135).coordinates ())

SketchProjection_71 = Sketch_13.addProjection(model.selection("VERTEX", "Point_24"),

False)

SketchPoint_136 = SketchProjection_71.createdFeature ()

Sketch_13.setCoincident(SketchAPI_Point(SketchPoint_130).coordinates (),

SketchAPI_Point(SketchPoint_136).coordinates ())

SketchProjection_72 = Sketch_13.addProjection(model.selection("VERTEX", "Point_21"),

False)

SketchPoint_137 = SketchProjection_72.createdFeature ()

Sketch_13.setCoincident(SketchAPI_Line(SketchLine_142).endPoint (),

Appendix B 113

SketchAPI_Point(SketchPoint_137).coordinates ())

SketchProjection_73 = Sketch_13.addProjection(model.selection("VERTEX", "Point_25"),

False)

SketchPoint_138 = SketchProjection_73.createdFeature ()

Sketch_13.setCoincident(SketchAPI_Point(SketchPoint_132).coordinates (),

SketchAPI_Point(SketchPoint_138).coordinates ())

model.do()

Sketch_14 = model.addSketch(Part_2_doc , model.selection("FACE", "Plane_1"))

SketchProjection_74 = Sketch_14.addProjection(model.selection("VERTEX", "Point_32"),

False)

SketchPoint_139 = SketchProjection_74.createdFeature ()

SketchProjection_75 = Sketch_14.addProjection(model.selection("VERTEX", "Point_24"),

False)

SketchPoint_140 = SketchProjection_75.createdFeature ()

SketchCircle_1 = Sketch_14.addCircle (1.3518912 , -0.32077705 , 0.32077705)

Sketch_14.setCoincident(SketchPoint_139.result (), SketchCircle_1.center ())

Sketch_14.setCoincident(SketchPoint_140.result (), SketchCircle_1.results ()[1])

SketchProjection_76 = Sketch_14.addProjection(model.selection("VERTEX", "Point_31"),

False)

SketchPoint_141 = SketchProjection_76.createdFeature ()

SketchProjection_77 = Sketch_14.addProjection(model.selection("VERTEX", "Point_33"),

False)

SketchPoint_142 = SketchProjection_77.createdFeature ()

SketchEllipse_1 = Sketch_14.addEllipse (1.3518912 , -0.2916155000000001 ,

1.351891200027085 , -0.4276471762027652 ,

0.3849324599700071)

[SketchPoint_143 , SketchPoint_144 , SketchPoint_145 , SketchPoint_146 , SketchPoint_147 ,

SketchPoint_148 ,

SketchPoint_149 , SketchLine_144 , SketchLine_145] =

SketchEllipse_1.construction(center="aux", firstFocus="aux",

secondFocus="aux",

majorAxisStart="aux",

majorAxisEnd="aux",

minorAxisStart="aux",

minorAxisEnd="aux",

majorAxis="aux",

minorAxis="aux")

Sketch_14.setCoincident(SketchPoint_141.result (), SketchEllipse_1.center ())

Sketch_14.setCoincident(SketchPoint_142.result (), SketchEllipse_1.majorAxisPositive ())

Sketch_14.setHorizontalDistance(SketchAPI_Point(SketchPoint_141).coordinates (),

SketchAPI_Point(SketchPoint_148).coordinates (),

"1.1* h_r*l/2")

SketchProjection_78 = Sketch_14.addProjection(model.selection("VERTEX", "Point_28"),

Appendix B 114

False)

SketchPoint_150 = SketchProjection_78.createdFeature ()

SketchProjection_79 = Sketch_14.addProjection(model.selection("VERTEX", "Point_23"),

False)

SketchPoint_151 = SketchProjection_79.createdFeature ()

SketchCircle_2 = Sketch_14.addCircle (-1.4290584 , -0.31898625 , 0.31898625)

Sketch_14.setCoincident(SketchPoint_150.result (), SketchCircle_2.center ())

Sketch_14.setCoincident(SketchPoint_151.result (), SketchCircle_2.results ()[1])

SketchProjection_80 = Sketch_14.addProjection(model.selection("VERTEX", "Point_26"),

False)

SketchPoint_152 = SketchProjection_80.createdFeature ()

SketchProjection_81 = Sketch_14.addProjection(model.selection("VERTEX", "Point_27"),

False)

SketchPoint_153 = SketchProjection_81.createdFeature ()

SketchEllipse_2 = Sketch_14.addEllipse (-1.4290584 , -0.2899875 , -1.429058400000009 ,

-0.4252597530085214 ,

0.3827834999999899)

[SketchPoint_154 , SketchPoint_155 , SketchPoint_156 , SketchPoint_157 , SketchPoint_158 ,

SketchPoint_159 ,

SketchPoint_160 , SketchLine_146 , SketchLine_147] =

SketchEllipse_2.construction(center="aux", firstFocus="aux",

secondFocus="aux",

majorAxisStart="aux",

majorAxisEnd="aux",

minorAxisStart="aux",

minorAxisEnd="aux",

majorAxis="aux",

minorAxis="aux")

Sketch_14.setCoincident(SketchPoint_152.result (), SketchEllipse_2.center ())

Sketch_14.setCoincident(SketchPoint_153.result (), SketchEllipse_2.majorAxisPositive ())

Sketch_14.setHorizontalDistance(SketchAPI_Point(SketchPoint_152).coordinates (),

SketchAPI_Line(SketchLine_147).endPoint (),

"1.1* h_f*l/2")

model.do()

ExtrusionCut_7_objects_1 = [model.selection("COMPOUND", "Sketch_2"),

model.selection("COMPOUND", "Sketch_3"),

model.selection("FACE",

"Sketch_1/Face -SketchBSpline_3f -SketchLine_40f -SketchLine_19r -SketchLine_18r"),

model.selection("FACE",

"Sketch_1/Face -SketchBSpline_4f -SketchLine_21r -SketchLine_20r"),

model.selection("FACE",

"Sketch_1/Face -SketchBSpline_1r -SketchLine_15r -SketchLine_14r"),

model.selection("FACE",

Appendix B 115

"Sketch_1/Face -SketchBSpline_2f -SketchLine_17r -SketchLine_16r")]

ExtrusionCut_7 = model.addExtrusionCut(Part_2_doc , ExtrusionCut_7_objects_1 ,

model.selection (),

[model.selection("SOLID", "Box_1_1")])

ExtrusionCut_8 = model.addExtrusionCut(Part_2_doc , [model.selection("COMPOUND",

"Sketch_4")], model.selection (), 0,

"l*0.075", [model.selection("SOLID",

"ExtrusionCut_1_1")])

Extrusion_1 = model.addExtrusion(Part_2_doc , [model.selection("FACE",

"Sketch_4/Face -SketchCircle_1_2f")],

model.selection (), "-l*0.005", "l*0.055",

"Faces|Wires")

Extrusion_1.setName("Extrusion_3")

Extrusion_1.result ().setName("Extrusion_3_1")

Extrusion_2 = model.addExtrusion(Part_2_doc , [model.selection("WIRE",

"Sketch_4/Face -SketchCircle_2_2f_wire")],

model.selection (), "-l*0.005", "l*0.055",

"Faces|Wires")

Extrusion_2.setName("Extrusion_4")

Extrusion_2.result ().setName("Extrusion_4_1")

Fillet_3 = model.addFillet(Part_2_doc , [

model.selection("EDGE",

"[Extrusion_3_1/Generated_Face&Sketch_4/SketchCircle_1_2][Extrusion_3_1/To_Face]"),

model.selection("EDGE",

"[Extrusion_3_1/Generated_Face&Sketch_4/SketchCircle_1_2][Extrusion_3_1/From_Face]")],

"0.01*l", keepSubResults=True)

Fillet_4 = model.addFillet(Part_2_doc , [

model.selection("EDGE",

"[Extrusion_4_1/Generated_Face&Sketch_4/SketchCircle_2_2][Extrusion_4_1/To_Face]"),

model.selection("EDGE",

"[Extrusion_4_1/Generated_Face&Sketch_4/SketchCircle_2_2][Extrusion_4_1/From_Face]")],

"0.01*l", keepSubResults=True)

Fillet_5 = model.addFillet(Part_2_doc , [model.selection("EDGE",

"[ExtrusionCut_2_1/Modified_Face&Sketch_2/SketchBSpline_5][ExtrusionCut_2_1/Modified_Face&Sketch_3/SketchBSpline_7]"),

model.selection("EDGE",

"[ExtrusionCut_2_1/Modified_Face&Sketch_3/SketchBSpline_6][ExtrusionCut_2_1/Modified_Face&Sketch_2/SketchBSpline_5]")],

bigFilletRadius , keepSubResults=True)

Fillet_6_objects = [model.selection("FACE",

"Fillet_3_1/MF:Fillet&Sketch_3/SketchBSpline_6"),

model.selection("FACE",

"Fillet_3_1/MF:Fillet&Sketch_4/SketchEllipse_2"),

model.selection("FACE",

"(Fillet_3_1/MF:Fillet&Sketch_2/SketchBSpline_5)(Fillet_3_1/MF:Fillet&Sketch_4/SketchEllipse_2)(ExtrusionCut_2_1/Modified_Face&Box_1_1/Bottom)(ExtrusionCut_2_1/Modified_Face&Box_1_1/Right)(ExtrusionCut_2_1/Modified_Face&ExtrusionCut_2_1/From_Face_4)"),

model.selection("FACE",

"ExtrusionCut_2_1/Modified_Face&ExtrusionCut_2_1/From_Face_3"),

Appendix B 116

model.selection("FACE",

"ExtrusionCut_2_1/Modified_Face&ExtrusionCut_2_1/From_Face_4"),

model.selection("FACE",

"ExtrusionCut_2_1/Modified_Face&Box_1_1/Right"),

model.selection("FACE",

"Fillet_3_1/MF:Fillet&Sketch_4/SketchEllipse_1"),

model.selection("FACE",

"(Fillet_3_1/MF:Fillet&Sketch_2/SketchBSpline_5)(ExtrusionCut_2_1/Modified_Face&Box_1_1/Bottom)(Fillet_3_1/MF:Fillet&Sketch_4/SketchEllipse_1)(ExtrusionCut_2_1/Modified_Face&Box_1_1/Right)(ExtrusionCut_2_1/Modified_Face&ExtrusionCut_2_1/From_Face_2)"),

model.selection("FACE",

"ExtrusionCut_2_1/Modified_Face&ExtrusionCut_2_1/From_Face_1"),

model.selection("FACE",

"ExtrusionCut_2_1/Modified_Face&ExtrusionCut_2_1/From_Face_2"),

model.selection("EDGE",

"[Fillet_3_1/MF:Fillet&Sketch_2/SketchBSpline_5][Fillet_3_1/MF:Fillet&Sketch_1/SketchBSpline_3]"),

model.selection("EDGE",

"[ExtrusionCut_2_1/Modified_Face&Sketch_1/SketchBSpline_4][Fillet_3_1/MF:Fillet&Sketch_3/SketchBSpline_7]")]

#model.selection ("EDGE",

#

"[Fillet_3_1/MF:Fillet&Sketch_1/SketchBSpline_3][Fillet_3_1/MF:Fillet&Sketch_1/SketchLine_40]"),

#model.selection ("EDGE",

#

"[Fillet_3_1/MF:Fillet&Sketch_3/SketchBSpline_7][Fillet_3_1/MF:Fillet&Sketch_1/SketchLine_40]")]

Fillet_6 = model.addFillet(Part_2_doc , Fillet_6_objects , filletRadius ,

keepSubResults=True)

Symmetry_1_objects = [model.selection("SOLID", "Fillet_1_1"),

model.selection("SOLID", "Fillet_2_1"),

model.selection("SOLID", "Fillet_4_1")]

Symmetry_1 = model.addSymmetry(Part_2_doc , Symmetry_1_objects , model.selection("FACE",

"PartSet/XOZ"),

keepOriginal=True , keepSubResults=True)

Fuse_2 = model.addFuse(Part_2_doc ,

[model.selection("SOLID", "Symmetry_1_3_1"),

model.selection("SOLID", "Symmetry_1_3_2")],

removeEdges=True , keepSubResults=True)

#

--#

Translation to match position in the wind tunnel

#

--#

Translation_1 = model.addTranslation(Part_2_doc , [model.selection("COMPOUND",

"Symmetry_1_1")], axis=model.selection("EDGE", "PartSet/OX"),

distance="-TunnelPlacement", keepSubResults=True)

Translation_2 = model.addTranslation(Part_2_doc , [model.selection("COMPOUND",

Appendix B 117

"Symmetry_1_2")], axis=model.selection("EDGE", "PartSet/OX"),

distance="-TunnelPlacement", keepSubResults=True)

Translation_3_objects = [model.selection("SOLID", "Fuse_1_1"),

model.selection("SOLID", "Box_2_1"),

model.selection("SOLID", "Box_3_1"),

model.selection("SOLID", "Box_4_1"),

model.selection("SOLID", "Box_5_1"),

model.selection("SOLID", "Box_6_1")]

Translation_3 = model.addTranslation(Part_2_doc , Translation_3_objects ,

axis=model.selection("EDGE", "PartSet/OX"), distance="-TunnelPlacement",

keepSubResults=True)

model.end()

Translation_3.results ()[1]. setTransparency (0.8)

Translation_3.results ()[2]. setTransparency (0.8)

Translation_3.results ()[3]. setTransparency (0.8)

Translation_3.results ()[4]. setTransparency (0.8)

Translation_3.results ()[5]. setTransparency (0.8)

Export_7 = model.exportToXAO(Part_2_doc , folder + "/XAO/RearWheels.xao",

model.selection("COMPOUND", "Translation_1_1"), ’XAO’)

Export_8 = model.exportToXAO(Part_2_doc , folder + "/XAO/FrontWheels.xao",

model.selection("COMPOUND", "Translation_2_1"), ’XAO’)

Export_9 = model.exportToXAO(Part_2_doc , folder + "/XAO/VehicleBody.xao",

model.selection("COMPOUND", "Translation_3_1"), ’XAO’)

Export_10 = model.exportToXAO(Part_2_doc , folder + "/XAO/VehicleRefinementBox4.xao",

model.selection("SOLID", "Translation_3_2"), ’XAO’)

Export_11 = model.exportToXAO(Part_2_doc , folder + "/XAO/OpenAirRefinement2.xao",

model.selection("SOLID", "Translation_3_3"), ’XAO’)

Export_12 = model.exportToXAO(Part_2_doc , folder + "/XAO/OpenAirRefinement1.xao",

model.selection("SOLID", "Translation_3_4"), ’XAO’)

Export_13 = model.exportToXAO(Part_2_doc , folder + "/XAO/OpenAirBoundaryBox.xao",

model.selection("SOLID", "Translation_3_5"), ’XAO’)

Export_14= model.exportToXAO(Part_2_doc , folder + "/XAO/VehicleRefinementBox5.xao",

model.selection("SOLID", "Translation_3_6"), ’XAO’)

model.do()

model.end()

#

--#

Exporting STL Files at the specified resolution to the specified folder

Appendix B 118

#

--#

geompy = geomBuilder.New()

(imported , Tunnel , [], [], []) = geompy.ImportXAO(folder + "/XAO/Tunnel.xao")

(imported , NShear1 , [], [], []) = geompy.ImportXAO(folder + "/XAO/NShear1.xao")

(imported , NShear2 , [], [], []) = geompy.ImportXAO(folder + "/XAO/NShear2.xao")

(imported , NShear3 , [], [], []) = geompy.ImportXAO(folder + "/XAO/NShear3.xao")

(imported , ImportantArea1 , [], [], []) = geompy.ImportXAO(folder +

"/XAO/ImportantArea1.xao")

(imported , ImportantArea2 , [], [], []) = geompy.ImportXAO(folder +

"/XAO/ImportantArea2.xao")

(imported , VehicleRefinementBox4 , [], [], []) = geompy.ImportXAO(folder +

"/XAO/VehicleRefinementBox4.xao")

(imported , VehicleRefinementBox5 , [], [], []) = geompy.ImportXAO(folder +

"/XAO/VehicleRefinementBox5.xao")

(imported , OpenAirRefinement2 , [], [], []) = geompy.ImportXAO(folder +

"/XAO/OpenAirRefinement2.xao")

(imported , OpenAirRefinement1 , [], [], []) = geompy.ImportXAO(folder +

"/XAO/OpenAirRefinement1.xao")

(imported , OpenAirBoundaryBox , [], [], []) = geompy.ImportXAO(folder +

"/XAO/OpenAirBoundaryBox.xao")

(imported , VehicleBody , [], [], []) = geompy.ImportXAO(folder + "/XAO/VehicleBody.xao")

(imported , FrontWheels , [], [], []) = geompy.ImportXAO(folder + "/XAO/FrontWheels.xao")

(imported , RearWheels , [], [], []) = geompy.ImportXAO(folder + "/XAO/RearWheels.xao")

Inlet = geompy.CreateGroup(Tunnel , geompy.ShapeType["FACE"])

geompy.UnionIDs(Inlet , [701])

Outlet = geompy.CreateGroup(Tunnel , geompy.ShapeType["FACE"])

geompy.UnionIDs(Outlet , [875])

Walls = geompy.CreateGroup(Tunnel , geompy.ShapeType["FACE"])

geompy.UnionIDs(Walls , [3, 69, 76, 83, 88, 93, 98, 105, 110, 117, 122, 129, 136, 141, 150,

155, 162, 167, 172, 177, 182, 189, 194, 201, 206, 211, 216, 221, 228, 233, 238, 243,

250, 257, 261, 268, 273, 278, 282, 296, 310, 314, 321, 326, 330, 346, 351, 358, 363,

368, 373, 380, 385, 399, 406, 411, 416, 421, 426, 429, 440, 445, 452, 457, 460, 464,

469, 472, 477, 481, 485, 490, 494, 501, 508, 511, 515, 518, 523, 526, 529, 536, 541,

546, 551, 554, 557, 563, 566, 571, 577, 582, 585, 589, 591, 596, 601, 606, 613, 618,

622, 627, 634, 639, 644, 649, 654, 657, 666, 669, 678, 683, 686, 691, 696, 712, 719,

724, 728, 731, 735, 738, 743, 745, 748, 751, 753, 756, 759, 762, 764, 769, 774, 779,

784, 789, 794, 801, 804, 807, 810, 817, 820, 823, 828, 834, 836, 839, 842, 847, 852,

857, 862, 867, 872, 886, 888, 891, 896, 901, 904, 907, 910, 913])

WallsSlip = geompy.CreateGroup(Tunnel , geompy.ShapeType["FACE"])

geompy.UnionIDs(WallsSlip , [857, 901, 627, 910, 779, 842, 794, 862, 784, 867, 907, 896,

904, 891, 913, 888, 182, 421, 683, 691, 429, 440, 686, 696])

WallsNoSlip = geompy.CreateGroup(Tunnel , geompy.ShapeType["FACE"])

Appendix B 119

geompy.UnionIDs(WallsNoSlip , [3, 69, 76, 83, 88, 93, 98, 105, 110, 117, 122, 129, 136, 141,

150, 155, 162, 167, 172, 177, 189, 194, 201, 206, 211, 216, 221, 228, 233, 238, 243,

250, 257, 261, 268, 273, 278, 282, 296, 310, 314, 321, 326, 330, 346, 351, 358, 363,

368, 373, 380, 385, 399, 406, 411, 416, 426, 445, 452, 457, 460, 464, 469, 472, 477,

481, 485, 490, 494, 501, 508, 511, 515, 518, 523, 526, 529, 536, 541, 546, 551, 554,

557, 563, 566, 571, 577, 582, 585, 589, 591, 596, 601, 606, 613, 618, 622, 634, 639,

644, 649, 654, 657, 666, 669, 678, 712, 719, 724, 728, 731, 735, 738, 743, 745, 748,

751, 753, 756, 759, 762, 764, 769, 774, 789, 801, 804, 807, 810, 817, 820, 823, 828,

834, 836, 839, 847, 852, 872, 886])

Fillets = geompy.CreateGroup(Tunnel , geompy.ShapeType["FACE"])

geompy.UnionIDs(Fillets , [872, 857, 907, 613, 913, 847, 622, 862, 691, 823, 696, 834, 891,

779, 784, 904, 769, 363, 380, 801, 399, 155, 167, 177, 189, 426, 296, 452, 201, 657,

666, 546, 591, 358, 551, 321, 117, 129, 105, 93, 83, 273, 511, 536, 724, 541, 606, 817,

810, 839, 836, 440, 686, 421, 683, 172, 162, 406, 639, 649, 678, 719, 654, 457, 385,

194, 206, 216, 150])

geompy.ExportSTL(Inlet , folder + "/STL/Inlet.stl", False , stlRefinement , True)

geompy.ExportSTL(Outlet , folder + "/STL/Outlet.stl", False , stlRefinement , True)

geompy.ExportSTL(Walls , folder + "/STL/Walls.stl", False , stlRefinement , True)

geompy.ExportSTL(WallsSlip , folder + "/STL/WallsSlip.stl", False , stlRefinement , True)

geompy.ExportSTL(WallsNoSlip , folder + "/STL/WallsNoSlip.stl", False , stlRefinement , True)

geompy.ExportSTL(Fillets , folder + "/STL/Fillets.stl", False , stlRefinement , True)

geompy.ExportSTL(NShear1 , folder + "/STL/NShear1.stl", False , stlRefinement , True)

geompy.ExportSTL(NShear2 , folder + "/STL/NShear2.stl", False , stlRefinement , True)

geompy.ExportSTL(NShear3 , folder + "/STL/NShear3.stl", False , stlRefinement , True)

geompy.ExportSTL(ImportantArea1 , folder + "/STL/ImportantArea1.stl", False , stlRefinement ,

True)

geompy.ExportSTL(ImportantArea2 , folder + "/STL/ImportantArea2.stl", False , stlRefinement ,

True)

geompy.ExportSTL(VehicleRefinementBox4 , folder + "/STL/VehicleRefinementBox4.stl", False ,

stlRefinement , True)

geompy.ExportSTL(VehicleRefinementBox5 , folder + "/STL/VehicleRefinementBox5.stl", False ,

stlRefinement , True)

geompy.ExportSTL(OpenAirRefinement2 , folder + "/STL/OpenAirRefinement2.stl", False ,

stlRefinement , True)

geompy.ExportSTL(OpenAirRefinement1 , folder + "/STL/OpenAirRefinement1.stl", False ,

stlRefinement , True)

geompy.ExportSTL(OpenAirBoundaryBox , folder + "/STL/OpenAirBoundaryBox.stl", False ,

stlRefinement , True)

geompy.ExportSTL(VehicleBody , folder + "/STL/VehicleBody.stl", False , stlRefinement , True)

geompy.ExportSTL(FrontWheels , folder + "/STL/FrontWheels.stl", False , stlRefinement , True)

geompy.ExportSTL(RearWheels , folder + "/STL/RearWheels.stl", False , stlRefinement , True)

geompy.ExportSTL(VehicleBody , folder + "/STL/VehicleBodyASCII.stl", True , 0.0001 , True)

geompy.ExportSTL(FrontWheels , folder + "/STL/FrontWheelsASCII.stl", True , 0.0001 , True)

Appendix B 120

geompy.ExportSTL(RearWheels , folder + "/STL/RearWheelsASCII.stl", True , 0.0001 , True)

shutil.rmtree(folder + "/XAO")

if salome.sg.hasDesktop ():

salome.sg.updateObjBrowser ()

Appendix B 121

B.6 Equations to compute Principal Components

PC1 = 0.2887L+ 0.2887
W

L
→ 0.2887

H

L
→ 0.2887

WN

L
→ 0.2887

HN

L
→ 0.2887

DN

L
→ 0.2887

WC

L

→ 0.2887
HC

L
→ 0.2887

DC

L
+ 0.2887ω + 0.2887ε + 0.2887x

PC2 = →0.1004l + 0.2809
w

l
+ 0.4602

h

l
+ 0.3660

v

l3
→ 0.0693

of
l
→ 0.1935

or
l
+ 0.4462

hf

l

+ 0.4381
hr

l
+ 0.3633

r

l

PC3 = 0.4851l → 0.4756
w

l
+ 0.0608

h

l
+ 0.0476

v

l3
→ 0.2812

of
l
→ 0.5369

or
l
+ 0.1433

hf

l

+ 0.1635
hr

l
+ 0.3434

r

l

PC4 = →0.4380l + 0.0407
w

l
→ 0.0817

h

l
→ 0.4883

v

l3
+ 0.6947

of
l
→ 0.0620

or
l
+ 0.2525

hf

l

+ 0.1840
hr

l
+ 0.1346

r

l

Appendix B 122

B.7 PC values for new sampling points of parametric

study

Configuration PC1 PC2 PC3 PC4

config1 -2.0419 -0.9891 -2.9049 -0.2089

config2 1.9968 -1.7972 1.0589 -1.4341

config3 0.6542 1.3324 -1.4011 -1.0473

config4 -1.1666 2.3802 -1.0414 0.6251

config5 2.7491 2.9912 -2.2817 -1.2457

config6 -3.2000 -0.2815 -0.4242 0.4414

config7 1.9163 1.5032 -1.7828 0.1552

config8 1.0518 0.5688 -0.0152 0.9775

config9 -1.4853 -2.1464 0.3882 -1.8792

config10 -0.5259 0.2600 0.7935 -0.4430

Table B.3: Principal Component values for configurations of the parametric study

Appendix B 123

B.8 MATLAB code for the generation of geometry pa-

rameters for parametric study

clc; clear; close all

%% Calculate PCA coefficients

vehicle1 = [5.190 , 0.3892 , 0.3430 , 0.04, 0.1836 , 0.2241 , 0.1524 , 0.1536 , 0.035];

vehicle2 = [4.670 , 0.3919 , 0.3148 , 0.0307 , 0.2088 , 0.2126 , 0.1409 , 0.1420 , 0.0218];

vehicle3 = [4.884 , 0.3831 , 0.3053 , 0.0285 , 0.2074 , 0.2232 , 0.1425 , 0.1433 , 0.03];

vehicle4 = [4.351 , 0.4132 , 0.3367 , 0.0356 , 0.1818 , 0.1514 , 0.1508 , 0.1512 , 0.026];

vehicle5 = [4.651 , 0.3997 , 0.3619 , 0.0368 , 0.2131 , 0.2004 , 0.1707 , 0.1752 , 0.0475];

tunnel1 = [20.42 , 0.7299 , 0.5337 , 0.3399 , 0.1909 , 0.0609 , 0.4258 , 0.2657 , 0.1878 , 15, 2.5,

1.5748];

tunnel2 = [17.58 , 0.6940 , 0.6143 , 0.3982 , 0.2617 , 0.1991 , 0.4437 , 0.3185 , 0.1991 , 1, 1,

-0.29];

parameters = [tunnel1 , vehicle1;

tunnel1 , vehicle2;

tunnel1 , vehicle3;

tunnel1 , vehicle4;

tunnel1 , vehicle5;

tunnel2 , vehicle1;

tunnel2 , vehicle2;

tunnel2 , vehicle3;

tunnel2 , vehicle4;

tunnel2 , vehicle5];

standardizedData = zscore(parameters);

[coeff , ~, ~, ~, explained] = pca(standardizedData);

clear tunnel* vehicle*

cumulativeVariance = cumsum(explained (1:4));

figure(’Position ’, [0, 0, 5000, 3000])

bar(explained (1:4))

hold on

plot(cumulativeVariance)

% Add marker at the last cumulative point

xCumulative = length(cumulativeVariance);

yCumulative = cumulativeVariance(end);

plot(xCumulative , yCumulative , ’ro’, ’MarkerSize ’, 6, ’MarkerFaceColor ’, ’r’)

text(xCumulative , yCumulative - 4, sprintf(’%.1f%%’, yCumulative), ’HorizontalAlignment ’,

’left’, ’Color’, ’r’)

Appendix B 124

grid on

xlabel(’Principal Component ’);

ylabel(’- [%]’);

lgd = legend(’Explained Variance ’, ’Cumulative Variance ’, ’Location ’, ’northwest ’);

fontsize(lgd , 20, ’points ’)

fontsize(gca , 20, ’points ’)

meanDataset = mean(parameters);

stdDataset = std(parameters);

PCs = computePC(parameters , meanDataset , stdDataset , coeff);

rangePC1 = [min(PCs(:, 1)), max(PCs(:, 1))];

rangePC2 = [min(PCs(:, 2)), max(PCs(:, 2))];

rangePC3 = [min(PCs(:, 3)), max(PCs(:, 3))];

rangePC4 = [min(PCs(:, 4)), max(PCs(:, 4))];

rangePCs = [rangePC1; rangePC2; rangePC3; rangePC4];

%% Calculate new PC points from LHS

N = 10;

% Set random number generator to a known value to ensure same results everytime

rng default;

LHS_samples = lhsdesign(N, size(rangePCs , 1));

scaledLHS = zeros(size(LHS_samples));

for i = 1:size(rangePCs , 1)

minPCs = rangePCs(i, 1);

maxPCs = rangePCs(i, 2);

scaledLHS (:, i) = LHS_samples (:, i)*(maxPCs - minPCs) + minPCs;

end

clear minPCs maxPCs i

%%

%

PC1 = scaledLHS(:, 1);

PC2 = scaledLHS(:, 2);

PC3 = scaledLHS(:, 3);

% Define the range for x and z

[y, z] = meshgrid (-5:0.5:5 , -5:0.5:5);

% Choose a fixed x-value

xPlane1 = rangePC1 (1);

x1 = xPlane1*ones(size(y));

Appendix B 125

xPlane2 = rangePC1 (2);

x2 = xPlane2*ones(size(y));

figure;

plot3(PCs(1:5, 1), PCs(1:5, 2), PCs(1:5, 3), ’o’, ’MarkerSize ’, 8, ’MarkerFaceColor ’, ’r’)

grid on;

hold on

plot3(PCs(6:end , 1), PCs(6:end , 2), PCs (6:end , 3), ’o’, ’MarkerSize ’, 8, ’MarkerFaceColor ’,

’g’)

plot3(PC1 , PC2 , PC3 , ’*’, ’MarkerSize ’, 8);

surf(x1 , y, z, ’FaceAlpha ’, 0.1, ’EdgeColor ’, ’none’, ’FaceColor ’, [0.5 0.5 0.5]);

surf(x2 , y, z, ’FaceAlpha ’, 0.1, ’EdgeColor ’, ’none’, ’FaceColor ’, [0.5 0.5 0.5]);

xlabel(’PC1’);

ylabel(’PC2’);

zlabel(’PC3’);

xlim(rangePC1)

ylim(rangePC2)

zlim(rangePC3)

title(’LHS samples in the PC domain ’);

legend(’Tunnel 1 data’, ’Tunnel 2 data’, ’LHS samples ’, ’Location ’, ’northwest ’)

figure(’Position ’, [0, 0, 5000, 1000]);

t = tiledlayout (1, 3);

nexttile;

plot3(PCs(1:5, 1), PCs(1:5, 2), PCs(1:5, 3), ’o’, ’MarkerSize ’, 8, ’MarkerFaceColor ’, ’r’)

grid on;

hold on

plot3(PCs(6:end , 1), PCs(6:end , 2), PCs (6:end , 3), ’o’, ’MarkerSize ’, 8, ’MarkerFaceColor ’,

’g’)

plot3(PC1 , PC2 , PC3 , ’*’, ’MarkerSize ’, 8);

view(0, 90)

xlabel(’PC1’);

ylabel(’PC2’);

zlabel(’PC3’);

xlim(rangePC1)

ylim(rangePC2)

zlim(rangePC3)

title(’XY view’);

fontsize(gca , 15, ’points ’)

nexttile;

plot3(PCs(1:5, 1), PCs(1:5, 2), PCs(1:5, 3), ’o’, ’MarkerSize ’, 8, ’MarkerFaceColor ’, ’r’)

grid on;

Appendix B 126

hold on

plot3(PCs(6:end , 1), PCs(6:end , 2), PCs (6:end , 3), ’o’, ’MarkerSize ’, 8, ’MarkerFaceColor ’,

’g’)

plot3(PC1 , PC2 , PC3 , ’*’, ’MarkerSize ’, 8);

view(90, 0)

xlabel(’PC1’);

ylabel(’PC2’);

zlabel(’PC3’);

xlim(rangePC1)

ylim(rangePC2)

zlim(rangePC3)

title(’YZ view’);

fontsize(gca , 15, ’points ’)

legend(’Tunnel 1 data’, ’Tunnel 2 data’, ’LHS samples ’, ’Location ’, ’southoutside ’,

’Orientation ’, ’horizontal ’)

nexttile;

plot3(PCs(1:5, 1), PCs(1:5, 2), PCs(1:5, 3), ’o’, ’MarkerSize ’, 8, ’MarkerFaceColor ’, ’r’)

grid on;

hold on

plot3(PCs(6:end , 1), PCs(6:end , 2), PCs (6:end , 3), ’o’, ’MarkerSize ’, 8, ’MarkerFaceColor ’,

’g’)

plot3(PC1 , PC2 , PC3 , ’*’, ’MarkerSize ’, 8);

view(0, 0)

xlabel(’PC1’);

ylabel(’PC2’);

zlabel(’PC3’);

xlim(rangePC1)

ylim(rangePC2)

zlim(rangePC3)

title(’XZ view’);

fontsize(gca , 15, ’points ’)

%% Set ranges for tunnel and vehicle geometries

% _For tunnel ..._

TunnelRanges.L = [17, 21];

TunnelRanges.W = [0.65 , 0.8];

TunnelRanges.H = [0.5, 0.7];

TunnelRanges.W_n = [0.3, 0.5];

TunnelRanges.H_n = [0.2, 0.3];

TunnelRanges.D_n = [0.05, 0.2];

TunnelRanges.W_c = [0.4, 0.5];

TunnelRanges.H_c = [0.25, 0.35];

Appendix B 127

TunnelRanges.D_c = [0.1, 0.2];

TunnelRanges.alpha = [10, 20];

TunnelRanges.beta = [1, 5];

TunnelRanges.x = [-1/4, 1/4].* TunnelRanges.L;

%%

% _For vehicle ..._

VehicleRanges.l = [3.8, 6];

VehicleRanges.w = [0.3, 0.43];

VehicleRanges.h = [0.28 , 0.35];

VehicleRanges.v = [0.025 , 0.035];

VehicleRanges.o_f = [0.17 , 0.23];

VehicleRanges.o_r = [0.17 , 0.23];

VehicleRanges.h_f = [0.14 , 0.16];

VehicleRanges.h_r = [0.14 , 0.16];

VehicleRanges.r = [0.02 , 0.04];

%% Compute new parameters corresponding to LHS samples

lowerBoundary = [TunnelRanges.L(1), TunnelRanges.W(1), TunnelRanges.H(1),

TunnelRanges.W_n(1), TunnelRanges.H_n (1), TunnelRanges.D_n (1), TunnelRanges.W_c (1),

TunnelRanges.H_c(1), TunnelRanges.D_c (1), TunnelRanges.alpha (1), TunnelRanges.beta (1),

TunnelRanges.x(1) ,...

VehicleRanges.l(1), VehicleRanges.w(1), VehicleRanges.h(1),

VehicleRanges.v(1), VehicleRanges.o_f (1), VehicleRanges.o_r (1),

VehicleRanges.h_f (1), VehicleRanges.h_r (1), VehicleRanges.r(1)];

upperBoundary = [TunnelRanges.L(2), TunnelRanges.W(2), TunnelRanges.H(2),

TunnelRanges.W_n(2), TunnelRanges.H_n (2), TunnelRanges.D_n (2), TunnelRanges.W_c (2),

TunnelRanges.H_c(2), TunnelRanges.D_c (2), TunnelRanges.alpha (2), TunnelRanges.beta (2),

TunnelRanges.x(2) ,...

VehicleRanges.l(2), VehicleRanges.w(2), VehicleRanges.h(2),

VehicleRanges.v(2), VehicleRanges.o_f (2), VehicleRanges.o_r (2),

VehicleRanges.h_f (2), VehicleRanges.h_r (2), VehicleRanges.r(2)];

options = optimoptions(@lsqnonlin , ’Algorithm ’, ’levenberg -marquardt ’, ’Display ’, ’none’,

’MaxFunctionEvaluations ’, 3000);

parametersMatrix = zeros(N, length(coeff));

JMatrix = zeros(N, 1);

for i = 1:N

desiredPC = scaledLHS(i, :);

x0 = lowerBoundary + (upperBoundary - lowerBoundary)*rand();

% Optimization

[optimizedParameters , JMin] = lsqnonlin(@(x) objectiveFunction(x, desiredPC ,

meanDataset , stdDataset , coeff), x0 , lowerBoundary , upperBoundary , options);

parametersMatrix(i, :) = round(optimizedParameters , 4);

Appendix B 128

JMatrix(i, :) = JMin;

end

tunnelParameters = parametersMatrix (:, 1:12);

vehicleParameters = parametersMatrix (:, 13:end);

outputFile = fopen(’modelParameters.txt’, ’w’);

for i = 1:size(tunnelParameters , 1)

tunnel = tunnelParameters(i, :);

vehicle = vehicleParameters(i, :);

% Join in a single string with commas in between

tunnelStr = join(string(tunnel), ’, ’);

vehicleStr = join(string(vehicle), ’, ’);

fprintf(outputFile , ’---%d---\n’, i);

fprintf(outputFile , ’TunnelParam = [%s]\n’, tunnelStr);

fprintf(outputFile , ’VehicleParam = [%s]\n\n’, vehicleStr);

end

fclose(outputFile);

writematrix(tunnelParameters , ’TunnelParam.xls’);

writematrix(vehicleParameters , ’VehicleParam.xls’);

%% Functions

function PC = computePC(parameters , meanValue , stdValue , coeffPCA)

standard = (parameters - meanValue)./ stdValue;

PC1 = standard * coeffPCA(:, 1);

PC2 = standard * coeffPCA(:, 2);

PC3 = standard * coeffPCA(:, 3);

PC4 = standard * coeffPCA(:, 4);

PC = [PC1 , PC2 , PC3 , PC4];

end

function J = objectiveFunction(parameters , desiredPC , meanValue , stdValue , coeffPCA)

modelPC = computePC(parameters , meanValue , stdValue , coeffPCA);

J = desiredPC - modelPC;

end

C. Appendix C

C.1 MATLAB script for data analysis

close all

clear

clc

addpath (" Tunnel\config1 \")

%% Import _.log_ files

logCoefficients = importdata ("001 _config1_TUNNEL.out");

logCoefficients = logCoefficients (:, [1 2]);

%% Manage data to remove redundancy

% _Single file_

CdData = removeDuplicates(logCoefficients);

iteration = CdData(:, 1);

Cd = CdData(:, 2);

%% Analysis

% Evaluate $C_{d, mean}$ over 10000 iterations

CdMean = movmean(Cd , [9999, 0]);

%% Convergence based on adimensional difference

transientCriteria = 0.015;

convergenceCriteria = 1e-4;

% Calculate new metric based on min -to-max difference of CdMean

maxCdMean = movmax(CdMean , [9999 , 0]);

minCdMean = movmin(CdMean , [9999 , 0]);

diffCdMean = maxCdMean - minCdMean;

adimensionalCd = diffCdMean ./ CdMean;

% Calculate moving min and max of the new metric to assess convergence

maxDiffCdMean = movmax(diffCdMean , [2999 , 0]);

minDiffCdMean = movmin(diffCdMean , [2999 , 0]);

convergenceMetric = maxDiffCdMean - minDiffCdMean;

129

Appendix C 130

index = 0;

for i = 100: length(diffCdMean)

if (adimensionalCd(i) < transientCriteria) && (convergenceMetric(i) <

convergenceCriteria)

fprintf(’Convergence reached at iteration %d with value %.4f\n’, min(iteration) +

i, CdMean(i));

index = i;

break;

end

end

results = {’config1 ’, round(CdMean(index), 4), min(iteration) + index };

fileName = ’Results.xlsx’;

writecell(results , fileName , ’Sheet’, ’Tunnel ’, ’Range’, ’A2’);

figure(’Position ’, [0, 0, 5000, 3000])

plot(iteration , adimensionalCd)

grid minor

xlabel(’iteration ’)

ylabel(’\Delta{C_d}/C_{d,mean}’)

xlim([min(iteration), max(iteration)])

hold on

plot(min(iteration) + index , adimensionalCd(index), ’Color ’, ’g’, ’Marker ’, ’.’,

’MarkerSize ’, 15)

title(’001\ _config1_TUNNEL ’)

%% Comparison

figure(’Position ’, [0, 0, 2000, 700])

plot(iteration , Cd)

hold on, grid minor

plot(iteration , CdMean , ’LineWidth ’, 2)

xlabel(’iteration ’)

xlim([min(iteration), max(iteration)])

ylabel(’C_d’)

ylim ([0.1 0.4])

title(’Drag coefficient vs. iteration for 001\ _config1_TUNNEL ’)

hold on

plot(min(iteration) + index , CdMean(index), ’Color ’, ’g’, ’Marker ’, ’.’, ’MarkerSize ’, 15)

legend(’C_d’, ’C_{d, mean}’, ’Convergence point’, ’Location ’, ’northeast ’)

CdStart = CdMean(1, :);

fprintf(’Cd at the start = %.4f’, CdStart)

%% Functions

function newData = removeDuplicates(oldData)

newData = [];

duplicates = [];

Appendix C 131

for i = 1:size(oldData , 1)

value = oldData(i, 1);

if not(ismember(value , duplicates))

newData = [newData; oldData(i, :)];

duplicates = [duplicates , value];

end

end

end

Appendix C 132

C.2 Terms of dynamic pressure correction

ϑS refers to jet expansion correction:

ϑS = ϖ
v0.5

l

A1.5

A→ (C.1)

where ϖ = 0.36

!
W

H
+

H

W

"
= tunnel shape factor

v = vehicle volume

l = vehicle length

A = vehicle frontal area

A→ =
AN

1 + ϑQN

AN = nozzle cross-sectional area

ϑC refers to collector blockage correction:

ϑC =
ϑWR3

C#
(L→ xM)2 +R2

C

$1.5 (C.2)

where ϑW =
A

AC

!
Cd

4
+ 0.41

"
= wake blockage factor

RC =

%
2AC

ϱ

AC = collector cross-sectional area

L = test section length

xM = distance from nozzle to vehicle center

ϑN refers to nozzle blockage correction:

ϑN =
ϑQNR3

N

(x2
M +R2

N)
1.5 (C.3)

Appendix C 133

where RN =

%
2AC

ϱ

ϑQN refers to blockage correction for nozzle-method:

ϑQN =
A

2AN

&
1→ xs’
x2
s +R2

N

(
(C.4)

where xs = xM → l

2
+

%
A

2ϱ
= distance from vehicle center to source point

ϑQP refers to blockage correction for plenum-method:

ϑQP =
A

2ϱ

&
xs

(x2
s +R2

N)
1.5

(
(C.5)

Appendix C 134

C.3 Drag coe!cient values for parametric study

Table C.1: Values of drag coe!cient for each configuration in the di”erent domains

Configuration Cd,tunnel Cd,q Cd,open

config1 0.1583 0.1769 0.2392

config2 0.0752 0.1996 0.3204

config3 0.2125 0.1968 0.2561

config4 0.1973 0.1939 0.1953

config5 0.2641 0.2419 0.2887

config6 0.2092 0.2052 0.2384

config7 0.2317 0.2123 0.2719

config8 0.0535 0.2112 0.3116

config9 0.0029 0.1753 0.2882

config10 0.1788 0.2158 0.2981

Appendix C 135

C.4 !Cd values for of the parametric dataset

Table C.2: #Cd for configurations of the parametric study

Configuration ”Cd

config1 0.0556

config2 0.1055

config3 0.0525

config4 0.0013

config5 0.0408

config6 0.0295

config7 0.0524

config8 0.0877

config9 0.0998

config10 0.0720

Appendix C 136

C.5 !Cd values for of the experimental dataset

Table C.3: #Cd for experimental dataset

Configuration Tunnel 1 Tunnel 2

vehicle 1 0.0872 0.0518

vehicle 2 0.0991 0.0583

vehicle 3 0.1049 0.0670

vehicle 4 0.0608 0.0234

vehicle 5 0.0601 0.0145

Appendix C 137

C.6 !Cd between tunnels for di#erent correction meth-

ods

Table C.4: Cd,q,T1 → Cd,q,T2 values for di”erent correction methods

Configuration Classic TM RBF10+10 RBF30 RBF50 RBF10

vehicle 1 0.0161 0.0022 0.0145 0.0063 0.0134 0.0516

vehicle 2 0.0178 →0.0006 0.0214 0.0024 0.0149 0.0586

vehicle 3 0.0084 →0.0045 0.0126 →0.0060 0.007 0.0453

vehicle 4 0.0323 0.0293 0.0231 0.0248 0.0226 0.0697

vehicle 5 0.0372 0.0139 0.0144 0.0179 0.0132 0.0827

µ 0.0224 0.0081 0.0172 0.0091 0.0142 0.0616

ς 0.0120 0.0137 0.0047 0.0123 0.0056 0.0149

Appendix C 138

C.7 !Cd between tunnels combining correction meth-

ods

Table C.5: Comparison of Cd,q,T1 → Cd,q,T2 by combining the di”erent RBFs

.

Configuration RBF10 + (RBF50 →RBF30) RBF10 +RBF10+10

vehicle 1 0.0587 0.0661

vehicle 2 0.0711 0.0800

vehicle 3 0.0583 0.0579

vehicle 4 0.0675 0.0928

vehicle 5 0.0780 0.0971

µ 0.0667 0.0788

ς 0.0084 0.0168

VITA AUCTORIS

NAME: Philippe Pession

PLACE OF BIRTH: Aosta (AO)

YEAR OF BIRTH: 2001

EDUCATION: Bachelor Degree in Automotive Engineering at Politecnico
di Torino, 2020-2023

Master Degree in Automotive Engineering at Politecnico di
Torino, 2023-2025

M.A.Sc in Automotive Engineering at University of Wind-
sor, 2024-2025

139

