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ABSTRACT

CFD simulations for automotive bluff bodies often rely on simplified models for both the
vehicle and the computational domain. Current models maintains simplified shape but fail
in capturing the full low behaviour over a real vehicle.

A model including vehicle body and tunnel geometry is presented in the literature and
has been modified in order to improve its fidelity and reduce the differences with real life
facilities. This model features an easy approach for the generation of the vehicle and wind
tunnel models through 21 parameters as well as an automatic process for the setup of CFD
cases, from meshing to simulation. Changes to the numerical schemes used by the CFD
software are made to account for the variable quality of the grid. Moreover a moving ground
system has been included to replicate the real system present in some automotive wind
tunnels.

Another key aspect for the prediction of drag coefficient for automotive bluff bodies is that
the same vehicle in different facilities often leads to different drag coefficients, with an average
discrepancy of 6 to 10%. A parametric setup based on the improved models is carried out
and a correction method is proposed by combining new sampling points with the results
obtained previously in the literature. This new combined correction shows promising results
while featuring a significanlty lower amount of samples, reducing the standard deviation by
43% compared to the current state of art when applied to a small dataset of 10 experimental

points (5 for each vehicle in 2 different wind tunnels).
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1. Introduction

Aerodynamic resistance is also called drag force as it acts in opposite direction with

respect to vehicle motion and it is defined as:

1
Fy= 5pOdsz (1.1)

where C is the drag coefficient and depends on multiple contributions:

e pressure drag: also called form drag, resulting from the pressure distribution per-

pendicular to the surface of the body;

e skin friction drag: resulting from viscous shear stresses over the contact surface due

to the presence of the boundary layer.

Regarding automotive bodies, pressure drag is the leading effect with the skin friction drag
contributing for around 10% to the total drag [1]. For this reason, optimization of body shape

is of main importance during car design and can be used to reduce energy consumption.

In Figure 1.1, A is called projection area or frontal area and is defined as the area of the

vehicle projected on a wall behind the body.

Ejection plane

Aaueﬂ light

Fig. 1.1: Representation of frontal area for a vehicle [2]
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p is the density of the fluid through which the object is moving and V' is the speed of the
fluid with respect to the vehicle.

Aerodynamics is becoming increasingly more important in the automotive industry due
to its direct relationship with fuel/energy consumption and passenger comfort. Power re-
quired to overcome the aerodynamic resistance becomes the leading contribution to motion

resistance at high speed as shown in Figure 1.2.

A X 10% Resistance to motion for a =0
——Rolling resistance
— Aerodynamic resistance
35
3k
25+
S oL
o
15+
1+
05 - et s
0 1 . — 1
0 20 40 60 80 100 120 140 160

V [km/h]

Fig. 1.2: Resistance to motion for a general vehicle traveling on a flat road

Accurate prediction of the drag coefficient is a key aspect for the design of a vehicle: Cy
is used to assess fuel consumption as increasingly stricter regulations have forced the auto-
motive industry to reduce vehicle emissions year by year. Moreover, with the introduction
and increasing popularity of Battery Electric Vehicles, accurate prediction of drag coefficient
becomes critical for range improvement of such vehicles.

Studies have shown that a 10% drag reduction can lead to a fuel consumption reduced by
5% at highway speeds, highlighting the importance of this quantity also for more traditional
vehicles [3].

In the modern era, drag coefficient is measured by means of wind tunnel tests used to
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replicate real road conditions by employing a fixed vehicle with air blown towards it. These
tests are also used to validate design choices aimed at reducing the resistance to motion.
While useful, these type of tests require ad-hoc facilities and they are extremely time con-
suming as they require not only the setup of the vehicle within the test chamber but also the
run-time of the test. Another problem is that to visualize certain aerodynamic quantities,
specific transducers have to be used (for example pressure transducer to visualize pressure
distribution on certain areas of the vehicle), requiring even more effort.

For these reasons, Computational Fluid Dynamics is used to have a first estimation of aero-
dynamic quantities prior to validate the results using the wind tunnel. This tool allows to
setup a computational domain in which the full vehicle, or a part of it, can be simulated in
a controlled environment in order to estimate drag coefficient or visualize flow behavior in

an easier way.

1.1 Problem Statement

The biggest problem concerning wind tunnels tests is that the drag coefficient measured
in a specific facility is highly dependent on its geometry: test performed using the same
vehicle tested in different wind tunnels can lead to differences in drag coefficients ranging
from 6 to 10% [4].

In addition, most of CFD simulations performed in the automotive industry rely on simplified
domains, often failing in replicating the test geometries, effectively leading to different results

when comparing real tests and simulations [5].

This study aims at improving the fidelity of simulation models, to reduce at minimum
the differences between current wind tunnel facilities and computational domains. This
improved approach is then used to retrieve a data-driven drag correction method which aim
is to reduce the standard deviation of drag difference for the same vehicle in different wind
tunnel facilities.

The performance of the correction method presented in this work is assessed on a small set
of experimental data composed of drag values for 5 vehicles in 2 different wind tunnels but

the approach presented can be applied also on datasets composed by an higher number of
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vehicle and tunnel combinations.

1.2 Objectives

The work presented in this thesis has the objective of identifying the main sources of
discrepancy between real tests and simulations models and addressing them by investigating

the following objectives:

e Investigate the effect of changes in numerical schemes, improving the discretization

approach used by the CFD software;

e Investigate the effect of the inclusion of a moving ground system in a wind tunnel

domain;

e Define an improved data-driven correction approach, able to achieve similar results of

the current state of art by reducing time requirements.

1.3 Overview of Contributions

This thesis proposes an automatic approach able to generate simulations models including
features that allows to have computational domains as close as possible to real cases, while
maintaining parametric variation for the generation of multiple different cases.

Moreover, an improved drag correction approach is presented in detail; this approach can be

used as a baseline for future studies on the same topic.

1.4 Outline

Chapter 2 explains the current state of art of wind tunnel testing and CFD simulations,
focusing on the models available in the literature.
The same chapter presents the current state of drag corrections, explaining why they are

needed and for what effects they account for.

Chapter 3 focuses on the study cases performed, focusing on model generation and cases
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setup with details about numerical schemes and the changes made to these latter.
Implementation of the moving ground and derivation of the drag correction are also investi-

gate in this chapter.

Chapter 4 presents the results of the work by investigating the effects of numerical schemes
and implementation of the moving ground. Finally the results of the new correction approach

are presented and compared to the current state of art.



2. Literature Review

Computing drag forces on objects from first principles requires solving the Navier-Stokes

equations. Drag depends on pressure distribution and wall shear stresses [6]:
F;= / (—pcost + 7, sin 1) dA (2.1)
A

where p is the pressure, 7, is the wall shear stress and ¢ is the angle between the normal to
the object surface and the freestream flow direction. As already pointed out in the previous

chapter, in case of bluff bodies, pressure drag dominates on wall shear stress drag.

Experimentally the overall force can be measured, while numerical approach either require

evaluation of local pressure and shear or the use of a control volume approach.

The aerodynamic loads that a model experiences during a wind tunnel test are measured
through the usage of a wind tunnel balance (Julian et al. [7]). This device is composed by a
single or multiple force transducers, capable of measuring forces and moments along several

axes.

The main concern with wind tunnel testing is the high cost and time needed for wind
tunnel experiments as presented by Ross et al. [8]. For this reason, CFD is an extremely
important tool that can be applied in support of wind tunnel experiments to provide a
complete description of external aerodynamics of an automotive bluff body. CFD employs a
CAD representation of the vehicle model and a discretization of a fluid domain. The system
of governing equations is solved iteratively for each cell in the computational domain, until a

certain convergence criteria is met. An example of computational grid is given in Figure 2.1.

In the automotive industry good effort is put on the generation of the vehicle model, with
this latter usually being a simplified version of a real production vehicle in order to minimize

simulation time. The Ahmed body, presented by Ahmed et al. [9] and shown in Figure 2.2,
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Fig. 2.1: Symmetry plane of a computational grid for CFD simulation

is one of the most common bodies used in the automotive literature but, while being simple,

this model fails to accurately represent full low behaviour around real production cars.

1044 mm 389
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.
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Fig. 2.2: Ahmed body [9]

An improvement is shown using the DrivAer model presented by Heft et al. [10] and shown
in Figure 2.3. This model includes multiple features of real production vehicles, increasing
the accuracy of results. Unfortunately this body has limited room for parameters variation,
limiting the variety of geometries that can be simulated or tested.

Simplified vehicle models with parametric dimensional variability would thus be of use to
qualitatively represent the complex geometry of a production vehicle while preserving a

simplified shape for CFD simulations.

1418mm

2786mm

4613mm

Fig. 2.3: DrivAer model [11]
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Among all the possible CFD methods, Reynolds averaged Navier-Stokes (RANS) simula-
tions are the most used in the automotive sector due to their reasonable accuracy and low
computational cost. RANS employs an empirical turbulence model to allow for a reduced
mesh size and critically, steady simulations. Bluff bodies involves large regions of separated
flow and at high enough Reynolds numbers the separations are fundamentally unsteady.
Ashton and Revell [12] found this method to be inaccurate in predicting the magnitude of
aerodynamics quantities in such cases, requiring the need of more in deep studies on how to

improve models to accurately predict aerodynamic quantities.

Additionally, Ljungskog et al. [5] have shown important improvements in drag predictions
when the wind tunnel model is included in the virtual environment, showing good comparison
with drag results measured in the actual wind tunnel prior to any correction. It has also
been shown that, in comparison to a wind tunnel simulation, the base pressure for an open

road domain is generally higher due to the finite nature of wind tunnels.

Fujs [4] developed a simplified model able to capture salient features of both vehicle body
and tunnel geometry while retaining simplicity and parametric variation. This model is
based on 21 parameters (12 for the tunnel and 9 for the vehicle), shown in Figure 2.4 and
Figure 2.5. Only the tunnel and vehicle length are specified directly; all the other parameters
are non-dimensionalised with respect to these two quantities. The number of parameters is
minimized to have a compromise between simplicity and application scope.

The list of parameters with their description is presented in Appendix A.1.

A spoiler is added to the vehicles in order to enforce a physical point of separation.
Since the model is able to generate different vehicle types, an additional parameter is cal-
culated to differentiate the generation of minivan geometry from the sedan model for which

the spoiler location is different. ¢ gives an estimate of the non-dimensional size of the trunk.

t= % (w” -+ h) (2.2)

If ¢ > 0.62 the minivan (or hatchback) geometry is generated, with 0.62 being the approxi-

mate change between sedan and hatchback.
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Fig. 2.4: Tunnel parameters Fig. 2.5: Vehicle parameters

Only open-jet wind tunnels can be generated with this model. This type of tunnels is
characterized by an open test section, as shown in Figure 2.6, which has the aim of reducing

interference effects (Schuetz [13]). Wind tunnels are composed by 3 main sections:

e nozzle: this section has the aim of accelerating the flow and improve the quality of

the flow at its outlet;
e test section: is the section in which the test object is placed;

e collector: this section has the aim of slowing down the flow and consequently recover

pressure.

Plenum

— o comcnr m——————

Collector

e R R RLLE L

Test section

Fig. 2.6: Open-jet wind tunnel adapted from Schuetz [13]
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The limited length of wind tunnels and the vehicle proximity to the tunnel walls create
a discrepancy in the flow field compared to a real situation, resulting in different measured

drag. The particular effects schematically shown in Figure 2.7 are listed here in detail:

e jet expansion: when a vehicle is present in the test section a jet of finite dimensions

behaves differently to a jet of infinite extent;

e jet deflection: the limited distance between nozzle and vehicle can cause a deflection

of the flow;

e nozzle blockage: the limited cross-section of the nozzle leads to differences in the
flow field around the vehicle when compared to a free-stream case. Blockage ratio is
defined as the ratio between frontal area of the test vehicle and nozzle cross-section
area:

B — Avehicle

2.
Anozzle ( 3)

As B increases, the effects on the test vehicle become more pronounced.
e collector blockage: interaction of the wake of the vehicle entering the collector;

e horizontal buoyancy: due to non-constant static pressure distribution within the
test section. This effect leads to an additional drag force, called horizontal buoyancy

force, that can be positive or negative.

Due to the presence of these effects, various correction methods are employed to reduce
the discrepancies of drag coefficient for the same vehicle measured in different wind tunnels.
Among all possible methods, the classic correction and the two-measurements correction are
the most employed.

Classic correction, presented by Mercker et al. [14] includes a dynamic pressure correction
dependent on 5 distinct velocity perturbations. Moreover, horizontal buoyancy is defined
based on the frontal area and volume of the vehicle as well as the longitudinal rate of change
of the static pressure coefficient.

Two-Measurements correction, presented by Mercker and Cooper [15], proposes a new
approach to calculate the pressure gradient within the wind tunnel by means of an additional

test with the vehicle in a perturbed pressure field (obtained through a physical blockage



2. Literature review 11

behind the vehicle) with the revised correction that can be obtained by measuring the drag
coefficient in both conditions. This method is generally adopted only for some reference
dataset as it becomes impractical to double the measurements for each tested vehicle. Even
if reference datasets demonstrate good relationships between corrected and measured drag
coefficients (Lounsberry and Walter [16]), there is still a disparity in corrected drag coefficient
for the same vehicle measured across different facilities; average difference across tunnels

settles around 6%, but can go up to 10% for some vehicles.

Jet expansion Jet deflection

-

Y1272

Collector blockage

streamlines:
jet of infinite extent
————— jet of finite cross-section and wind tunnel boundaries

Horizontal Buoyancy

Q___
Fa

Fig. 2.7: Wind tunnel effects [17]

Fujs [4] developed a data-driven correction approach, aimed at reducing the dataspread

of drag coefficient between different wind tunnels. This new correction method is based on
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the difference between the drag coefficient in an open-road domain and the one measured in
the wind tunnel, both quantified by means of CFD simulations.

The correction is derived upon the outcomes of a parametric analysis of several vehicle and
tunnel combinations that frequently occur in industry.

A short-come of this approach is that simulations performed in the tunnel domain lacks the
inclusion of a moving ground system and rotating wheels, effectively introducing some major
discrepancies when compared to the real facility of Stellantis US, which has been upgraded
with a 5 belts system, as can be seen in Figure 2.8.

Additionally, numerical schemes used for the discretization of quantities in the CFD software
can be changed to improve the robustness of the simulations. More insights about this steps

are given in Chapter 3.

Fig. 2.8: Mock-up vehicle in the upgraded wind tunnel of Stellantis US [18]

Although the number of parameters of the simplified model presented by Fujs [4] is a sig-
nificant reduction compared to real geometry, it is still too high to pursue a direct parametric
study. For this reason, Principal Component Analysis (PCA) presented by Bro and Smilde
[19] is used to identify linear combinations of the parameters able to capture the maximum

variance within the data.

To identify principal components, an experimental dataset was built using data of 5

different vehicle in 2 wind tunnels. PCA led to the result that the first 4 principal components
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are able to capture 99.4% of the dataset variance and are thus the only ones considered.
This PCs are only a linear combination of the input parameters; in particular PC; contains
parameters related only to the wind tunnel geometry, while PC5 through PC) are responsible
for the vehicle geometry. This independence between tunnel and vehicle geometries in terms
of principal components derives from the fact that only data from two tunnels was used for
the analysis, suggesting that a broader dataset can lead to different coefficients values for
all components. Reliance on the initial data though is not very significant as the process for

the derivation of the correction method will remain the same in any case.

A Latin Hybercubic Sampling approach, presented by Loh [20], is used to retrieve new
sampling geometries within the principal components space by using a stratified approach
to increase input space coverage.

A total of 50 sampling points is generated and for each of them 3 simulations are carried
out, namely in open road domain, in the wind tunnel domain and in an empty wind tunnel
domain (used to retrieve pressure correction for the given tunnel geometry).

For each sample, the drag coefficient difference between the open domain and the wind tunnel

domain, with pressure corrections applied, is calculated.

AC, = CP" — Cpnne (2.4)

Radial Basis Functions (RBFs) are used to approximate functions of multiple variables;
this type of function is used to fit scattered data and can be applied independently from the
number of variables [21]. In our case, the values of ACy from the CFD simulations on the
sample geometries are interpolated using RBF's to create a 4D surface that returns the drag

difference value based only on the four PC values of a particular geometry:
AC,; = RBF,, (PCy, PCy, PCs, PCYy) (2.5)

where n denotes the number of sampling points used for the definition of the given RBF.
A set of 3 RBFs were defined, based on a different number of sampling points, as shown in

Figure 2.9. In particular:
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e RBFg,19: based on sampling points taken by maintaining the same wind tunnel
geometries (10 points for each tunnel in the initial dataset). This function is aimed at
defining a correction tailored to the single wind tunnel geometries given the fact that

open-jet facilities are limited.

e RBF3¢: based on a reduced set of points and aimed at proposing a universal correction

applicable to any vehicle and tunnel combination.

e RBF5o: based on the entire set of sampling points and aimed at showing the improve-
ment of sampling density within PC space.
It is shown that RBF5y is able to reduce the standard deviation by 59% compared the

Two-Measurements method across the available experimental dataset.

. ‘e
5 ) . "
2 > - .
® ¢ * % e
f" . e 3 ’ + +
s 0. 70 * o
& © g 4 * & ¥k .
2 . *o * *®
. *
v, 3 L . * s
LA
] 0 N
PC2 T PCI

Fig. 2.9: Sampling points used by Fujs [4]. a) RBF0+10, b) RBF3

Studies on the inclusion of moving ground in the wind tunnel domain do not show clear
results. In particular, Krajnovié¢ and Davidson [22] quantified a drag difference of 8% while
including ground simulation on an Ahmed body. Moreover, they found the presence of two
lower vortices arising close to the ground, which were not found with stationary ground
simulations. On the other hand, Wang et al. [23] recently studied the effect of ground
simulation on the estate-DrivAer model, finding a variation within 3% on drag coefficient

results. The inclusion of ground motion showed significant differences only in proximity of
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the ground, altering the surface pressure on the under-body of the vehicle. Due to this
discrepancy, additional studies are required to quantify the effect of the inclusion of moving

ground.

Table 2.1 shows a summary of the literature, showing the key findings and limitations for

each research.

Table 2.1: Summary of researches

Authors

Key findings

Limitations

Ahmed et al. [9]

Most simple model in the litera-
ture

Lack in representation of full flow
behaviour

Heft et al. [10]

Improved model that reduces dif-
ference to real vehicles

Limited parameters variation

Ashton and Rev- | RANS are useful to assess trends | RANS fails in predicting the ab-

ell [12] of aerodynamic quantities solute magnitude of such quanti-
ties

Mercker and | Improved correction approach | Increased amount of measure-

Cooper [15] for the calculation of horizontal | ments for each test vehicle

buoyancy

Lounsberry and

TM approach improves the corre-

Discrepancy in corrected drag

Walter [16] lation between measured and cor- | coefficient for the same vehicle
rected drag across different wind tunnels

Fujs [4] Simplified model for both tunnel | No moving ground for the tunnel
and vehicle with complete para- | and no rotating wheels for vehicle
metric variability

Fujs [4] Automated approach for setup of | Numerical schemes do not ac-
simulations count for possible poor quality of

the grid
Fujs [4] Improved performance of RBFs | RBFs based on models which can

when used to reduce drag differ-
ence for the same vehicle in dif-
ferent wind tunnels

be significantly improved

Previous studies highlights the evolution of models and drag corrections for simulations

and test in the automotive industry. In general, automotive models presented in the litera-
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ture fails in capturing full low behaviour or they do not present full parametric variability.
The approach presented by Fujs [4] provides good improvements compared to previous stud-
ies but, at the same time, introduces some more limitations that needs to be addressed in

order to further improve the overall approach.



3. Methodology

The work presented in this thesis is a direct continuation of the project presented by
Fujs [4]. In particular, the current work has the aim of improving the fidelity of models and
simulations as well as updating the correction method presented previously to reduce the

drag coefficient difference for the same vehicle in different wind tunnel facilities.

The previous work has shown really promising results suggesting that the overall process
can be used systematically. The real advantage of the process presented is the fact that
the setup of any case is fully automatic, from the model generation to the meshing of the

computational domain, allowing to save time and resources.

3.1 Setup of the Cases

Cases presented previously include simulations of the vehicle in an open-road domain as
well as in a wind-tunnel domain. While being completely different flow fields, the process

for their setup is quite similar.

Vehicle and tunnel geometries are generated starting from 21 parameters, chosen as their
values are publicly available for all passenger vehicles and tunnels. This choice enables the
generation of all kind of geometries as the models do not require specific parameters known
only to vehicle manufacturers.

The parameters are used to define 3D representation of the geometries using an open-source
CAD software called SALOME. The advantage of using this software is the possibility of
saving the generation process in a Python script which can then be modified accordingly in
order to generate all kind of different models while only using the 21 parameters as input
quantities.

In the model presented by Fujs [4], hatchback and sedan models are generated using slightly

different processes due to different spoiler locations. The generation of the vehicle type is

17
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determined using the trunk size parameter, with examples shown in Figure 3.1 and Figure 3.2.

Fig. 3.1: Example of hatchback model (XZ view)

Fig. 3.2: Example of sedan model (XZ view)

Aerodynamic simulations are performed in OpenFOAM, a free open-source CFD soft-
ware. This software allows for extensive customization of each case, from solver settings to
numerical discretization schemes.

Reynolds averaged Navier-Stokes steady state simulation are performed as this type of ap-
proach is the most commonly used in the automotive industry for its ability in accurately
predicting numerous flow characteristics. Reynolds decomposition and time-averaging are
used on the set of Navier-Stokes equations to obtain RANS equations [24].

This approach relies on a complete approximation of turbulence by means of a set of trans-

port equations. Multiple empirical models to analytically describe turbulence are available
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in the literature but £ — w Shear Stress Transport model has shown better results compared
to other turbulence models when performing RANS simulations on automotive bluff bodies
[12]. This model is a blending of k¥ — ¢ in the far field and k¥ — w for cells near the wall
[25], where k is the turbulent kinetic energy, € is the turbulent dissipation rate and w is the

specific turbulent dissipation rate, defined starting from k and e:

W= = (3.1)

where C), is a constant equal to 0.09 [26].

To perform CFD simulations the domain has to be divided in a set of cells, called mesh, in
which fluid dynamics equations are solved for each element. For the specific cases presented

in this thesis the meshing process is composed of 2 steps:

e blockMesh: generates structured meshes starting from a dictionary file. This tool
divides the domain in groups of one or more hexahedral blocks having straight or
curved edges. The mesh is specified as a number of cells in each direction.

In the cases studied in this work, this tool is used to generate a 3D block that encloses
the desired domain. In case of tunnel simulations, the domain encloses the entire tunnel
geometry while in case of open domain the enclosure generated by this tool coincides

with the desired domain;

e snappyHexMesh: generates 3-dimensional meshes starting from triangulated-surface
geometries (specified in STL format). A generic starting mesh is iteratively shaped to
the object’s surface. This tool needs a background mesh defining the boundaries of
the domain (generated using blockMesh). This tool is used to carve the block domain
to match the geometry of the tunnel but it is also used to refine the grid in some

important regions for both tunnel and open cases.

Once the mesh is ready, the simpleFoam solver is used to perform a steady-state simulation

for each case.
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3.2 Boundary Conditions

Boundary conditions change depending on the domain to be simulated as patches for the
tunnel domain are different compared to the ones used for the open-road domain. In this
section, boundary conditions used for the previous study are presented, in order to have a

clear picture of what is the state of simulations before making changes.

Flow conditions are presented in Table 3.1. It is important to notice that the inlet velocity
for the wind tunnel domain differs from the free-stream velocity as there is the nozzle which

accelerates the flow prior to entering the test chamber.

Table 3.1: Flow conditions [4]

Domain | Uy [m/s] | Ujtet [m/s] | I [%]

Wind tunnel 30.56 5.53 3

Open road 30.56 30.56 0.1

Boundary conditions for the wind tunnel domain including the ones used for rotating
wheels and moving ground system are available in Appendix B.1. Figure 3.3 shows the slip

and no-slip surfaces for the tunnel domain.

vtkBlockColors

| |
slip condition no-slip condition

Fig. 3.3: Surface patches for wind tunnel

The ground patch in the open road domain has been set to have the same speed of the

freestream flow in order to accurately represent a real situation.
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Boundary conditions for each patch of the open domain are available in Appendix B.2.

3.3 Numerical Schemes

The set of partial differential equations known as governing equations, is defined for
continuous fields and it thus must be discretized into a group of linear equations in order to
work with the finite nature of the computational domain used in simulations.

The choice of numerical schemes affects how coefficients for these equations are calculated
and consequently determines the characteristics of the solution.

Accuracy of the results depends on the quality and refinement of the computational grid: a
grid independence study has been pursued by Fujs [4] and the refinement of the grid chosen
previously has been used also in this case. Mesh properties can be used to assess grid quality

and the most relevant for our case are:

e skewness: measures the relative distance between face centre and the line connecting

neighboring cell centres (Figure 3.4)

e non-orthogonality: measures the angle between the surface normal to the face and

the line connecting neighboring cell centres (Figure 3.5)

7

/ Non-orthogonality = 45
/ ’ Vector perpendicular
> > to shared cell face
2 / .

Fig. 3.4: Skewness [27] Fig. 3.5: Non-orthogonality [27]

The automatic meshing process compromises mesh quality. Because the mesh is generated
using a uniform approach, without tailoring it to the specific geometry of the vehicle or
tunnel, skewness and non-orthogonality can be significantly high with respect to ideal values.
Due to the previously performed grid independence study, grid refinement is considered

sufficient for the scope of this work. However, high values of skewness and non-orthogonality
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translate in a poor mesh quality that will impacts numerical convergence and accuracy of
the results. Numerical schemes can be changed to improve the robustness of CFD cases by
maximizing the accuracy of simulations given the grid quality. An example of checkMesh
output to get a sense of the grid quality is available in Appendix B.3

OpenFOAM uses a finite volume numerical method in order to solve the partial differential
equations: instead of using a single control volume, the domain of interest is divided into
connected finite volumes and the set of Navier-Stokes equations is then applied to each small
volume, ensuring that mass and momentum fluxes across surfaces are consistent between the
connected volumes. The discretization of the governing equations transforms equations for
continuous fields into a system of linear equations applicable to discrete fields. The choice
of numerical schemes influences the computation of coefficients for this discretization and

determines the characteristics of the solution [28].

Discretization schemes are used to discretize each term in the governing equations: diver-
gence schemes are numerical schemes used to discretize terms of the form V - ¥, where ¥ is a
generic field quantity. In the CFD software, values for the quantities are stored at cell-centre
so the key issue is the derivation of W at face centre. In the work of Fujs [4], divSchemes
were set to 1% order upwind for both velocity and turbulence quantities (namely & and w).
This scheme represents the value at the cell face by the value of the upwind cell, as shown
in Figure 3.6. Even though it can ensure boundedness of ¥, pure upwind is highly diffusive

due to the fact sharp gradients cannot form, which can lead to poor accuracy of the results

[29].

Fig. 3.6: Upwind scheme [29]

Numerical diffusivity arises from the truncation error introduced by first order approxi-
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mation of pure upwind scheme: this effect results in a non-physical diffusion of a particular
quantity, affecting the accuracy of the results. Low diffusion is desired to avoid capturing
non-physical behaviour of the flow.
In order to improve the accuracy of the simulations given the grid quality, divSchemes for
the velocity field have been changed to linearUpwindV limited. This scheme defines the face
value as an extrapolation of the upwind cell value to the face, employing the upwind cell
gradient, VW, and a vector from the cell centre to the face centre, dp, as shown in Figure 3.8.
This approximates a 2"! order upwind approach on unstructured meshes.
linear Upwind schemes reduces the diffusivity of upwind and naturally corrects for skewness
as it has a contribution in the direction between upwind cell centre and face centre [30].
The V-scheme is used to remove non-physical oscillations, by using the direction of the
steepest gradient for vector quantities.
Furthermore, limited entry is employed to ensure that if the face value exceeds the boundary
of the neighboring cell centre, the gradient is modified to match the bounding value [31].
The increase in accuracy for the linear Upwind scheme comes with a reduction in numeri-
cal stability due to oscillations possibly introduced by higher order schemes. Total Variation
Diminishing (TVD) schemes are used as a compromise of boundedness and accuracy where

a limiter f is used to calculate the value at the face:

U= (1-08)¥y+pYy (3.2)

where Uy and W are the value of the quantity from upwind interpolation and linear in-
terpolation, respectively [32]. [ factor is calculated based on the change of gradient of ¥
between face and upwind cell. For the simulations performed in this thesis, linearUpwind
scheme applied to turbulence quantities lead to divergence of the solution so the Minmod
scheme is used instead. This option is a TVD scheme which limits to pure upwind, as shown
in Figure 3.7. It is more diffusive than linear Upwind but still more accurate than the pure
upwind scheme used previously [33].

The fvSchemes file for numerical schemes is available in Appendix B.4.
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Fig. 3.8: linearUpwind scheme
Fig. 3.7: Minmod scheme [32] [30]

3.4 Convergence and Performance Metrics

The aerodynamics of a vehicle is highly complex due to the three-dimensional flow and
extensive turbulent wake zones, generally defined by longitudinal rotating vortices [9].
In this study, steady state simulations are performed on a fundamentally unsteady problem.
Using RANS simulations, turbulence is simulated by means of empirical models, which are
not able to fully capture the real behaviour of the flow, especially in the wake where turbu-
lence is significant thus affecting drag results. The choice of steady simulations leads to drag
values that are oscillating as the number of iterations increase, without reaching a single
convergent value.
Since drag coefficient is of primary interest for this study, we need to define an approach
to assess whether the simulation can be considered converged. In this case convergence of
the cases is of major interest in order to be able to compare different simulations: the same
criteria used for each case will ensure that results are comparable to each other. In addition,
we need to determine a single value for the drag coefficient, which will then be used to obtain

the correction based on the discussion in the previous chapter.

Experimental uncertainty on drag coefficient measured in real wind tunnels is approxi-
mately £0.002 [34]: considering that modern passenger cars have Cy between 0.2 and 0.3,
this uncertainty ranges around 1%. The convergence criteria chosen for this study is co-
herent with the experimental uncertainty: the minimum to maximum difference of Cy mean
has to be within 1% of its value for the simulation to be considered converged. An addi-

tional metric is defined to ensure that the local behaviour of Cyeqn remains stable for a
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sufficiently high number of iterations. More insights about these criteria are given in the

following paragraphs.

Drag coefficient is averaged over a 10,000 iteration moving window. The movmean function
on MATLAB has been used to perform this action: when there are insufficient elements to
fill the window, the size is automatically chopped at the endpoints and the average is taken
over just the items that populates the window. For this reason, the first 10,000 iterations
are only used to populate the function with the right amount of values, and it is important
for the convergence point to not fall in within this "transient” region, where the behaviour

of the mean drag coefficient can be stable but its value can be inaccurate.

To assess the convergence point, multiple metrics have been defined. First, a normalized
drag variation coefficient is defined as the ratio between the minimum-to-maximum difference
of the mean drag coefficient over a 10,000 iteration window and the mean drag coefficient

averaged on the same number of iterations:

* Amin—to—max (Cd,mean)
Cd,mean = Cd (33)

This metric is not sufficient to assess convergence as its absolute value does not give any

insight on C7 local behaviour as the iterations increase. For this reason, the minimum-

mean

to-maximum difference over a smaller iteration window of 3,000 iterations is computed:

AC;,meam - Amin—to—mam(c*’max - C*,min ) (34)

d,mean d,mean

For the simulation to be considered converged, two conditions on these metrics have to be

satisfied. The value for ACy has been chosen based on the minimum value among all

mean

simulations and the same limits have been used for all cases in order to have comparable

results.

o <001
’ (3.5)

ACS pean < 1-107

mean

From Figure 3.9 we can better understand how this double condition works.
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The first metric ensures that the convergence point does not fall into the first 10,000 iteration
span, where the MATLAB function is calculating the mean drag coefficient with a reduced
amount of iterations. The second metric then ensures that the behaviour of Cj ., remains

stable for a sufficient amount of iterations, meaning that the simulation has reached a local

convergence where the drag value remains stable.

0.25 T T
0.2 -
0.15— -
_ACd/Cd‘mean
Cd‘mean
—e— Convergence point
0.1+ -
0.05 -

0 I ! ! I ! ! 1
55 6 6.5 7 75 8 8.5

iteration <104

Fig. 3.9: Example of convergence for a generic case

For this specific case, it is important to notice that the simulation with the improved
numerical schemes started from the 50,000"" iteration as this was the ending point of the

previous simulations carried out by Fujs [4].

A similar approach is used to assess the convergence of simulations performed in the
empty wind tunnel.
In this case drag coefficient cannot be used as no vehicle is present in the test chamber
and pressure is used instead. Equation 3.6 follows the same approach used for convergence
assessment of drag, with the only difference that in this case the normalization is now done

on the dynamic pressure at nozzle exit.

Amin—to—max (pmean)
:nean - 3.6
v (b0 + apU?) 30
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where p,,ean is calculated at the location where the front of the vehicle lies when it is placed
in the tunnel and py is the value of static pressure taken at nozzle exit. The value of U used

to calculate the dynamic pressure is taken at the same location of py.

Equation 3.7 also uses the same approach used for drag, where the quantity is calculated

on a smaller iterations window of 3,000 iterations.

* _ *,1aX *,min
Apmean - Aminftofmax ( mean pn;,ean) (37)

Pressure has higher absolute values compared to drag, so conditions for the convergence
are more relaxed, as shown in Equation 3.8. It is important to point out that in this case,
the check is performed on the absolute value of p;, ..., and Ap* —as a consequence of the

pressure being able to have negative values.

|p:nean| < 1

|Ap;knean| < 0'5

3.5 Inclusion of 5 Belts Moving Ground System

To further reduce differences between the wind tunnel domain and real life environment, a
moving ground system can be used to replicate road movement underneath the vehicle. This
system is usually implemented by means of 5 belts: four Wheel Driving Units (or WDUs)
under each of the 4 wheels and one center belt placed below the under-body of the vehicle.

A schematic view of the system is shown in Figure 3.10.
] I
flow direction

symmetry

Fig. 3.10: Schematic top view of 5 belts system
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Studies pursued in the literature do not show a particular trend for the inclusion of the
moving ground even if this system attempts in reducing differences between CFD and real
road cases.

In this case, the implementation in OpenFOAM doesn’t require major effort and so there
was no reason why the system shouldn’t be implemented. Technical drawings of the system
used by Stellantis US have been provided in order to ensure a correct implementation in the

computational domain.

Computational domains used in this study aim at simulating only half of the vehicle, with
a symmetry boundary condition applied at the cutting plane, thus only half of the 5 belts
system has to be implemented.
OpenFOAM offers a very useful function, called searchablePlate, that allows to implement
two dimensional plates in the computational domain. The plate is defined through two

quantities:

e origin: specifies the corner of the plate;

e span: specifies the dimensions in the 3 directions, where one of them has to be a 0

entry.

For example, for a plate defined on the zy plane:

origin = (O, Oy, O,) (39)

span = (Sy, Sy, 0)

The plate will be from (O,, O, O,) to (O, + Sy, Oy + S, O.).

This function has to be implemented in the snappyHexMeshDict file, where settings for
snappyHexMesh are defined.

Based on the dimensions given by our industrial partner, a mathematical generalization can
be retrieved in order to adjust the position of the system to accommodate different types
of vehicles. Dimensions of the system are also generalized in order to maintain the same
proportions of the real system independently from the length of the test chamber.

Equations for the origin are shown in Table 3.2, where:
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e X,up: represents a shift of the system towards the nozzle exit plane (upstream), calcu-

lated based on tunnel length:

0.738
L gawr

T shift = : LgenericTunnel (310)

where 0.738 is the shift of the system in the AAWT tunnel, Laawr is the length of
AAWT test section and Lgeperictunne 15 the length of the test section for any generic

tunnel configuration;

® L cnericerr: Tepresents the length of the considered belt based on tunnel length.

Table 3.2: Equations for the origin of belts for moving ground system

searchablePlate X y
lCCTL erpe

centerBelt —x — tTBlt — Tshift 0

frontLeftBelt —o— (Lo _ rontenpen v
2 1 2 3
1 T lrear € [+

rearLeftBelt gl == ) o lrearleftBelt w
2 1 2 3

Span of each plate is defined by using the dimensions calculated based on tunnel length
according to Equation 3.11 where j represents a general parameter of the system, LaawT is
the test section length of the wind tunnel used by Stellantis US and L;y,ne is the length of

the test section for any tunnel configuration.

jAAWT
.j = I ' Ltunnel (311)
AAWT
For example, for the center belt:
lAAWT
lcenterBelt = centerBelt. Ltunnel =0.416 - Ltunnel (312)
LaawT

where, by substituting any value of Liyuner, the span of the center belt for that specific tunnel
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configuration can be retrieved.

In order to fully implement the moving ground system, changes to the vehicle model had
to be carried out. Up to this point the CAD representation of the vehicle was a single model,
including body and wheels. This approach allows to assign a single boundary condition thus
cannot accomodate the implementation of rotating wheels.

Wheels need to be split from the body and they have to be exported in different files that will
then be defined in the computational domain using different boundary conditions compared
to the vehicle body. Since the 3D model is entirely defined on SALOME, this step can
be done interactively on the software and saved to a new Python script to facilitate the
generation of future models.

Moreover, a region emulating the contact patch of the wheel has been removed as the meshing
process already creates that region when merging the wheel patch to the WDU. The updated
Python code used for the generation of the improved models is available in Appendix B.5

Visualization of the different patches is shown in Figure 3.11.

vtkBlockColors

| 1
vehicle body front wheels rear wheels

Fig. 3.11: Highlights of different patches for vehicle body and wheels (mirrored side view)

Rotating wheels are implemented through rotatingWallVelocity, an OpenFOAM bound-
ary condition for the velocity field. This condition is defined by origin, axis and rotational
speed.

Mathematical relationships are retrieved in order to accommodate different types of vehi-
cles, as done for the 5 belts system; in this way the whole process can be generalized and
automated to facilitate the creation of new study cases.

Equations for the origin of rotating wheels patches are shown in Table 3.3.
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Table 3.3: Equations for the origin of rotating wheels

Patch X y z
frontWheel Ly v 5 1t +0.0661
Tron eels —r — — 0] — — .
o " 2 12
[ W 5
heel x4 - —o, — Z hs +0.0661
rear Wheels x—|-2 o) 5 G ¢ +0.066

Rotation occurs around the —y axis, where the negative value is needed to have the rotation
in the right direction. The axis of rotation remains the same for all configurations as all of
them share the same orientation of the axes.

Wheels are considered rigid bodies so rotational speed is set through:

Uso

T'wheels

w =

(3.13)

5
12
The results of this implementation are shown in Figure 3.12 and Figure 3.13 for a generic

where 7yheels =

hy.

configuration.

.

U_normalized Magnitude
0.0e+00 0.1 I L 0.4 0.5 0.6 L I i 1.0e+00

O —

U
Fig. 3.12: U for a generic configuration (mirrored side view)
[e.e]

Figure 3.12 shows clearly how the rotation is implemented: the velocity of the wheel
grows from the center toward the outside, with the external part having the same speed as
the moving ground.

Figure 3.13 highlights the direction of rotation of each wheel, by showing the magnitude of
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U_normallized X
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Fig. 3.13: UU—x for a generic configuration (mirrored side view)
the velocity in the longitudinal direction: the bottom half of the wheel and the belts shares
the same magnitude and direction of the normalized velocity while the top half has the
same value but with opposite direction, thus showing how the wheels are rotating correctly

compared to the direction of the flow.

3.6 Setup of Parametric Study

The aim of this study is the definition of a new correction method based on the improved
models discussed up to now. The approach previously used by Fujs [4] has been found to be
particularly good in reducing the standard deviation of the difference in drag for the same

vehicle in different wind tunnels and for this reason the same procedure has been used.

Due to time limitations, the amount of sample geometries used previously cannot be
replicated, thus a correction based on a reduced amount of sampling points has to be carried
out.

Figure 3.14 demonstrates how RBF5, behaves in the principal component space. A grid of
two-dimensional plots with axes PCj3 and PCy at each specific (PC}, PCy) value can be
seen. It can be seen that the function doesn’t highlight any sudden variation in the space,
with gradual variations in all directions. This detail suggests that a smaller set of sampling
points can still capture important information within the used dataset, and can thus be

employed to retrieve a good correction method.

The same experimental dataset used previously, based on data from 5 vehicles in 2 dif-
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Fig. 3.14: RBF5( behaviour in the principal component space from Fujs [4]

ferent wind tunnel facilites, has been rebuilt in MATLAB. Principal Component Analysis is
performed again as the coefficients of PC equations listed in the previous thesis have been
found to be inaccurate, leading to unexpected results in the next steps. New equations to
compute the PCs are listed in Appendix B.6.

In order to have the data as close as possible as the one used before, a Z-score normal-
ization of the dataset is performed prior to PCA, using MATLAB zscore function [35].
This method, presented in Equation 3.14, transforms the data to have zero mean and unity

standard deviation, so that each parameter has the same scale.

= (3.14)

where x is a generic parameter, T is the mean value of parameters in the dataset and x,
refers to the standard deviation.

Coeflicients found for PCy to PCy are slightly different to the ones found previously but
again the first 4 Principal Components have been found to be able to capture 99.4% of the

dataset variance, as shown in Figure 3.15, thus will be the ones considered from now on.

Latin Hypercubic Sampling has been performed on the experimental dataset in order to

identify new sampling points in the PC component space. Coefficients found from PCA are
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Fig. 3.15: Dataset variance

used on the initial dataset to retrieve a set of PC values for each experimental geometry: a
combination of a certain vehicle in a particular wind tunnel will lead to a set of 4 values, one
for each PC. These PC values are then plotted on the same figure as the sampling points
to have a comparison between the values of the experimental dataset and the values of new
geometries.

lhsdesign function on MATLAB [36] has been used to perform the sampling step: the
function requires the number of sampling points and the ranges of PCs of the reference
dataset. The function returns values from 0 to 1 so the outcome of the function has to be
scaled to match the range of PCs of the experimental dataset.

A set of 10 sampling points is generated and all of them have been found to be well spaced
within the PC space, as shown in Figure 3.16 where the red and green points represent
experimental data for the 5 vehicles in the first and second wind tunnel, respectively while
the yellow points are the new samples defined by LHS. PC values for each sampling point
are listed in Appendix B.7.

The next step is translating the values of LHS points from PC space to parameters space.
In particular, an under-determined problem has to be faced as only 4 equations are available
(one for each Principal Component) but 21 parameters have to be estimated.
In order to solve this issue, an optimization algorithm aimed at minimizing a certain metric

can be used. 1lsgnonlin on MATLAB has been used [37]; this function solves non-linear
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Fig. 3.16: LHS sampling points in the PC space

least-squares problems and requires the definition of metric to be minimized in vector-valued
form. The function internally performs the sum of squares for each vector value.
The quantity used for the algorithm is the difference between the PC values of a single

sampling point and the PC values calculated with the estimated parameters:

J = PCLHS - PCestimated (315)

The optimization function also requires lower and upper boundaries for each parameter.
Ranges have been taken from the previous work and have been tweaked in order to ac-
commodate some limitations of the geometry generation process: stricter ranges have been
defined in order to avoid errors when model were generated through SALOME with the
improved Python code.

In addition, an initial guess is required by the MATLAB function: the algorithm starts from
the initial guess and finds a minimum of the sum of squares of the objective function J. Since
the mathematical problem is underdetermined, an infinite amount of set for the geometry
parameters can be found for a specific set of PC values. By keeping the same initial guess

for all the sampling points, very similar set of parameters are given by the optimization
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algorithm.
A different initial guess for each sample leads to different sets of parameters and consequently
to different geometries. This step is achieved by choosing the initial value of each parameter
to be a random value between the lower and upper boundaries. To have consistent results
every time the code is executed, MATLAB’s random number generator is locked to the de-
fault value.

Complete MATLAB code used for this step is listed in Appendix B.8.

Once parameters are retrieved for each sampling point, geometries for each of them can be
generated using the improved Python script developed as described in the previous chapter.
For each configuration 3 different simulations have to be performed in 3 different domains:
open road, wind tunnel and empty wind tunnel, with this latter performed in order to
retrieve dynamic pressure correction and horizontal buoyancy correction. Open-road domain
is characterized by the ground patch having a movingWallVelocity boundary condition, in

order to replicate as close as possible a real situation.

Drag coefficient is calculated through forces function object available in OpenFOAM
[38]. Frontal area is needed by the function in order to calculate drag coefficient for each
configuration. Its value is quantified using pArea [39] package on Python starting from the
STL model.

Table 3.4 shows the average cell count for each of the simulated domain.

Table 3.4: Cell count for computational domains

Domain Number of cells [-109]
Tunnel 15
Empty tunnel 10
Open 40

Sample images for all configurations in the wind tunnel domains are shown from Fig-
ure 3.17 to Figure 3.26. It is important to notice that geometries differs not only for the

different types of vehicles but also for different wind tunnel geometries and positions of the
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vehicle within the test chamber.
In some of these configurations the vehicle is placed in close proximity of collector entry;
while not being realistic configurations these cases are useful to check the performance of

pressure corrections.

Fig. 3.17: configuration 1 - Tunnel Fig. 3.18: configuration 2 - Tunnel
domain domain

Fig. 3.19: configuration 3 - Tunnel Fig. 3.20: configuration 4 - Tunnel
domain domain
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Fig. 3.21: configuration 5 - Tunnel Fig. 3.22: configuration 6 - Tunnel
domain domain

o D
Fig. 3.23: configuration 7 - Tunnel Fig. 3.24: configuration 8 - Tunnel
domain domain

Fig. 3.25: configuration 9 - Tunnel Fig. 3.26: configuration 10 - Tunnel
domain domain




4. Results

4.1 Steady Simulations With Stationary Ground

In order to quantify the effect of the change in numerical schemes, reference cases have
been ran from the previous end-point with the improved schemes presented in Section 3.3.
By comparing the drag coefficient at the new convergence points with the one at the end of
the previous simulations, the effect of numerical schemes can be isolated and studied.

In particular, 2 different types of vehicles have been chosen: a minivan model and a sedan
model. Both of them have been simulated in 2 different domains, namely open-road and a
generic tunnel geometry. This set of cases provided a good range of geometries on which the
effects of the updated numerics have been quantified.

Figure 4.1 shows the percentage difference of drag coefficient between the current conver-
gence point and the one at the end of previous simulations. It can be seen that differences
depends not only on the vehicle but also on the computational domain of the simulation.
In the open-road domain, both configurations show a drag increase compared to the previous
results, with the sedan model having a more significant change.

The minivan model shows a drag reduction for the case in the generic tunnel while the sedan
model in the same domain shows a drag increase.

An additional case for the minivan vehicle model has been simulated using the AAWT wind
tunnel geometry. This case allows to generally quantify the effect of numerical schemes when
changing only the wind tunnel domain, while maintaining the same vehicle type.

By comparing results for the minivan between the generic tunnel and the AAWT tunnel we
can see how the change in tunnel domain leads to changes in drag, suggesting that the effect
of numerical schemes is significant when compared to previous results but its absolute value
cannot be predicted, as it depends on multiple factors.

A trend for the effect of numerical schemes cannot be highlighted, suggesting that the study

done before has to be carried out again, by implementing these changes for all future simu-

39
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lations.
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Fig. 4.1: Percentage difference between current and previous drag coefficients

Different vehicle shapes and different domains result in different pressure gradients which
significantly affect the drag coefficient. Figure 4.2 shows the percentage difference between
the current and previous drag considering the two contributions: pressure drag and viscous
drag.

The changes in numerical schemes can be related to the behaviour of these two components.
For the minivan case, the change in numerical schemes follows the same trend of the viscous
drag: the higher the change in viscous contribution between current and previous cases
and the greater is the effect of the numerics in absolute terms. The sedan model instead
follows a trend more similar to the one highlighted by the pressure drag contribution: a
greater absolute percentage difference for the pressure drag translates in a greater effect of

the change in numerical schemes.

Even by considering this additional trends, the effect of the improved numerics cannot
be predicted. Moreover, only general trends can be highlighted but the magnitude of these
effects is strictly dependent on the vehicle and on the computational domain; no correlation
between drag contributions and the sign of the effects of the numerics can be found comparing
these quantities. This behaviour suggests once again that the change in numerics has to be

implemented not only for robustness and convergence speed but also because its effect cannot
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be predicted and affects each case in a different way.

Fig. 4.2: Percentage difference between current and previous drag coefficients. a) pressure
drag contribution, b) viscous drag contribution
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4.2 Steady Simulations With Moving Ground

A preliminary case including the moving ground system described in Section 3.5 has been
carried out on the minivan model in the AAWT tunnel model, in order to quantify the effect
of the inclusion of the moving ground system.

This case has been simulated with the improved numerics and the value at convergence has

been compared to the value of the same simulation without the moving ground.

Table 4.1: Effect of moving ground system - Drag values

Configuration | AAWT - Stationary ground | AAWT - Moving ground

Minivan 0.2378 0.2389

Table 4.1 shows the results of the same wind tunnel domain both with and without the
inclusion of the moving ground.
Typical uncertainty of drag coefficient is approximately £0.002 as reported by Walter et al.
[34]. In this case, ACy = Cynme — Case = 0.0011; this value lies within the measurement
uncertainty, suggesting that the effect of the implementation of the moving ground system

can be difficult to validate experimentally.

While not translating in a huge difference in drag coefficient, the implementation of this
system significantly affects the flow behaviour around the vehicle. Figure 4.3 shows the
magnitude of normalized velocity on the symmetry plane for stationary and moving ground,
respectively. Some differences in the wake region can be seen, with the moving ground case
having a low-velocity region which occupies a greater portion of space, justifying the increase
drag experienced by this configuration. In the case of stationary ground the wake region
rejoins the flow in contact with the ground after about half a vehicle length downstream the
model. This behaviour does not happen in case of moving ground, where the flow remains
detached from the ground probably due to more momentum given by the flow coming from

the underbody.

An additional slice at z/l = 0.08 is shown in Figure 4.4. It can be noticeable that for
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the case with the moving ground, there is a region of flow deceleration on the whole side of
the vehicle. This region is due to the fact that this second case implements wheel rotation
which affects the behavior of the flow not only in correspondence of the wheels but also
downstream. This region of reduced speed increases the aerodynamic resistance experienced

by the model, again explaining the greater drag coefficient highlighted previously.

U_normalized Magnitude
03 04 05 06 07 08 09

U_normalized Magnitude
04 05 06 07 08 09

Fig. 4.4: Upean/Uxo at z/1 = 0.08. a) stationary ground, b) moving ground

Additional comparison is done considering the pressure coefficient distribution on the

symmetry plane, as shown in Figure 4.5.
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Minor differences can be noticed: the presence of the moving ground system reduces the
pressure coefficient in correspondence of the diffuser (i.e. the end part of the underbody).
While this behaviour would mostly affect the lift, the shape of the diffuser makes this pressure
distribution affect also the drag: a negative c, translates in a pressure vector directed outward

from the surface, so exerting a force component directed opposite to vehicle motion.

-1.0e+00 -0.8 -06 -04 -0. : : 0.6 0.8 1.0e+00
I | |

Fig. 4.5: ¢, at y/l = 0. a) stationary ground, b) moving ground

The effect of wheel rotation can be seen more clearly looking at Figure 4.6 which shows
the behaviour of turbulent kinetic energy, normalized using its inlet value.
It can be noticeable how for the moving ground case, there is an injection of energy coming
from the front wheels, as expected from the previous discussion. This effect is progressing
also downstream of the vehicle and affects the shape of the wake which appears to be more
elongated in the longitudinal direction. Moreover, the stationary ground case highlights
some high energy regions within the wake, probably due to some mixing vortices arising in

that area.
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Fig. 4.6: k/kiner at z/1 = 0. a) stationary ground, b) moving ground

To better assess the effects of the inclusion of the moving ground, the difference in drag
contributions between stationary and moving ground has been computed and shown in Fig-
ure 4.7. Pressure drag decreases in the case of moving ground, due to the reduced dimensions
of the wake region in the lateral direction and due to the flow momentum from the under-
body of the vehicle which affects the behaviour of the flow on the back of the car. On the
other hand, viscous drag increases as there is an additional region of flow deceleration on
the side of the vehicle, increasing the wall shear stresses in that region. In this specific case,
the increase in viscous drag contribution is the one affecting the total drag: the increase in
this contribution outplays the decrease in pressure drag and consequently translates in an

higher total drag.

In conclusion, the inclusion of moving ground leads to a small difference in terms of drag
coefficient for the minivan model. As highlighted in Chapter 2, the literature does not show
a specific trend in the simulations including this system but it is useful to implement it
to reduce the differences between computational domain and real wind tunnels. Its imple-
mentation visibly affects the flow around the test vehicle, in terms of velocity, pressure and

turbulence.
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The integration of the system doesn’t require any additional CAD geometries but is directly
implemented through OpenFOAM functions, thus requiring minimum efforts. In addition,
there is no increase in computational resources required so that the system can be easily

implemented in all cases considered in the future.
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Fig. 4.7: Percentage difference in drag contributions between stationary and moving ground

4.3 Simulations for Parametric Study

Following the same approach pursued by Fujs [4], a parametric study has been carried
out using the geometries generated as explained in Section 3.6.
All vehicle models have been simulated in 2 different computational environments: open-
road and wind tunnel. An additional simulation of an empty wind tunnel has been carried
out for each configuration; this latter being useful to retrieve dynamic pressure corrections
and horizontal buoyancy corrections.
The corrected drag coefficient computed following the classic approach is

- Ca+ ACqup

Cag = =7 (4.1)
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where Cy is the drag coefficient computed in the tunnel while ACy; g is defined as:

scum= (22) (£ ”

where A is the frontal area of test vehicle, V is the volume of the test vehicle and G is the

o-(3),7(%),

This factor is calculated by central difference with respect to the vehicle center by means

Glauert factor:

of probes in the empty wind tunnel domain, at positions equivalent to vehicle front, center
and rear. Figure 4.8 shows the location of probes for a generic configuration where the

vehicle model has been included only for clarity.

e LY

center of test section

nozzle Cofront | Cocenter  Comear collector

Fig. 4.8: Location of pressure probes in empty test chamber for a generic configuration

Referring back to Equation 4.1, 2 s the dynamic pressure correction defined as:
o

4 = (1 —EeqN téqp +éEs+en+ 60)2 (4'4)

oo

where each term is defined in Section C.2.

Results for drag coefficients for each configuration in the different domains are presented

in Figure 4.9. Numerical values are included in Appendix C.3.
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Fig. 4.9: Results for drag coefficient in the different domains

It is noticeable how some configurations, in particular config2, config§ and config9, show
a very low in-tunnel C'; when compared to the results of the other configurations.
Looking at Figure 3.18, Figure 3.24 and Figure 3.25 it can be seen that these configurations
share a common detail: their position in the test chamber is really close to the collector. In
this zone there is a favorable pressure gradient with an high pressure region upstream of the
collector entry; this gradient reduces significantly the drag force experienced by the vehicle,
translating in a lower drag coefficient computed for these specific cases.
In particular, Figure 4.10 show the pressure coefficient distribution at the back of the vehicle:

P~ D

Cp - 1/2,0 Ugo (45)

where p., and Uy, are taken in a point upstream of the vehicle where flow is undisturbed. p

is a constant as cases are incompressible.

Configuration 1 is a more "standard” configuration where the vehicle is placed close to
the center of the test section: for this configuration, c, highlights values close to zero on
the whole back of the vehicle, meaning that the pressure across that area is close to the
free-stream value. On the other hand configuration 9 shows positive ¢, values translating in

a pressure force acting in the same direction of motion, reducing the drag experienced by
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the vehicle.

-6.0e-01 -04 -03 -02 -0.1 0 0.1

Fig. 4.10: ¢, distribution on the back of the vehicle. a) configuration 1, b) configuration 9

While these 3 configurations are not realistic as in real tests the vehicle will never be
placed so further in the test section, they appear to be useful to assess the performance of
the classic pressure correction approach. Configuration 9 is an extreme case as the pressure
gradient is so significant that it almost cancels out the drag force experienced by the vehicle.
Even in this extreme case the correction approach is able to well correct the drag, bringing

its value more in line with the the ones of other configurations.

It can be seen how the pressure corrections are able to significantly correct the configu-
rations having a too low coefficient prior to this operation.
These corrections are very useful and perform well for all types of configurations, specifically
the ones having a low drag coefficient in the tunnel domain prior to any correction; on the
other hand there is no way to know if the corrected drag coefficient is the same as the one
of the vehicle on open-road domain despite the good performance of the classic correction
method. Indeed, it can be noticed how the drag coefficient computed for the open domain is
constantly overshooting the corrected drag coefficient in the majority of the cases, suggest-
ing that the pressure corrections are somehow limited in their performance. To justify the
greater value in the open domain it is useful to look at the pressure coefficient distribution
around the vehicle for both simulated domains, shown in Figure 4.11, where the lower bound

of ¢, scale has been limited to better show the differences.
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Fig. 4.11: ¢, at y/l = 0 for configuration 1. a) tunnel domain, b) open domain

The first difference to be noticed is a slightly larger high pressure region at the front of the
vehicle for the open domain: this translates to a higher pressure force working against the
direction of vehicle motion, causing a higher drag coefficient for the vehicle.

A larger region of negative ¢, can be seen at the trailing edge of the roof for the open domain:
this distribution leads to a pressure force directed away from the body. In this area the pres-
sure vector can be decomposed in the vehicle reference’s frame: its horizontal component is
opposite to the direction of motion, thus generating a force that increases the drag experi-
enced by the vehicle. Some other differences in ¢, distribution can be noticed underneath
the car, where in the open domain a larger negative value region can be highlighted at the

start and end sides of the underbody.
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4.4 Improved Correction Method

To derive the improved correction the process presented in the previous work has been
followed once again.
Fujs [4] found that drag coefficient computed for the simplified model consistently overshoots

the one of the detailed model, allowing to retrieve a linear fit able to correlate the two values:

C(Ul,parametric (4 6)

C,detailed =
7 mcdparametric + b + 1

where m = 0.22002 and b = 0.02715.
This function is able to predict values for the detailed model with negligible error. By using
this equation, a conversion factor describing the difference of drag between the parametric

and detailed models can be retrieved:

1
f = C1d,pammetric - C’d,detailed = C’d,parametric <1 - mCd,parametric + b + 1) (47)

The correction method previously used is based on the difference of drag coefficient be-
tween open domain and tunnel domain, corrected following the classic approach. This met-
ric is computed from the results of the parametric study presented in Section 3.6, following
Equation 4.9. Subtracting the factor f to Cy of the parametric model allows to have results
for the detailed vehicle, improving the performance of the correction when considering real

vehicles.

t l
ACy = C’c(l),zc)iz@miled — Cddetailed (4.8)
t l t l
= ( ;ﬁ)eaﬁametric - fopen) - (Cd,ugaﬁ“gmetric - f mme) (49)

A set of 10 AC, values is computed from the parametric study and used to retrieve a Radial
Basis Function able to interpolate the scattered data. The idea behind this step is that those
10 points can be related to the values of PCs of each simulated geometry, leading to them

being placed within the 4D PC space. RBF is used to retrieve a surface which interpolates
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this points and that is able to return the value of ACy for any configuration using as an
input only the values of PCs, computed from the geometric parameters using the equations

listed in Appendix B.6.
AC,; = RBF,, (PCy, PCy, PCs, PCYy) (4.10)

Figure 4.12 shows the values of ACy, for the configurations of the parametric study, with
exact values listed in Appendix C.4. It can be seen how all values are positive, highlighting
once again that the open-road drag is always overshooting the corrected drag coefficient
computed from the tunnel domain. This behaviour remains the same even after subtracting
the f factor but the values are much closer to each other and differences remains in the range
of about 50 to 75 drag counts for the majority of the cases (apart from the configurations

pointed out before for their peculiarity of being close to the collector).
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Fig. 4.12: ACy for configurations of parametric study

Once the RBF function is obtained, it can be applied on the experimental dataset used
initially in order to retrieve the values of ACy for those configurations and to check the
performance of the correction in terms of mean value and standard deviation.

These values are added to the drag coefficient computed experimentally and corrected fol-
lowing the classic correction approach, leading to the results shown in Table 4.2. Values of

ACYy for the experimental dataset are available in Appendix C.5.

At this point results can be compared to the other correction methods, applied on the
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Table 4.2: C, for experimental dataset corrected with new RBF

Configuration | Tunnel 1 | Tunnel 2 | Cq 411 — Cq,q12
vehicle 1 0.3838 0.3323 0.0516
vehicle 2 0.3953 0.3367 0.0586
vehicle 3 0.3818 0.3364 0.0453
vehicle 4 0.4155 0.3459 0.0697
vehicle 5 0.4487 0.3659 0.0827

I 0.0616

o 0.0149

same experimental dataset. RBFq is the label used for the new correction method.

Results are shown in Figure 4.13 while numerical values for each correction method are given

in Appendix C.6.
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Fig. 4.13: Cqq 711 — Cq,q,12 for different correction methods

Considering each correction individually, RBFy does not provide any improvement com-

pared to the other approaches: indeed its standard deviation is the highest among all con-

sidered methods.

RBF;y and RBF3, share a similar sampling approach, where the points are inter-tunnel sam-
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plings (i.e. not having any samples in the tunnel geometries considered in the experimental
dataset). By comparing these two correction approaches we can see how the standard de-
viation of RBFq is close to the one computed for RBF3q despite using only a third of the
sampling points. While the mean value is much greater in the case of RBF, this is not of
major interest as its effect can be easily canceled out by offsetting all results by pu.
Standard deviation is much more important as it quantifies the spread of the corrected drag
difference across the considered configurations. In an ideal case where o = 0, the drag dif-
ference between the two tunnels is constant across all vehicles, allowing for a simple offset
correction that will lead to the same drag coefficient for a given vehicle independently from
the tunnel geometry in which the test is performed.

This observation suggests that increasing the sampling density in the central region of the PC
space does not provide significant benefits for the correction approach, since the vehicles to
which the correction is applied lie at the extreme ends of the PC space (i.e. PC; = £3.2863),

as it can be seen from Figure 4.14.
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Fig. 4.14: Position of sampling points in the PC space

Previously defined RBFs can be used in order to improve the performance of RBFy. In
particular, RBF3, is based on 30 points distributed within the PC space, away from the
edges of the domain and RBFq,1¢ is based on 20 points (10 for each tunnel geometry of

the experimental dataset) placed exactly at the two extremes of PC;. RBFj is a function
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based on the combination of these two.

Since the points of the experimental dataset lie on the edges of the PC space, a finer sampling
in correspondence of these regions is beneficial for the performance of the correction when
applied to the same dataset used previously. Figure 4.15 shows a comparison between the

correction methods, including a new RNF defined from the combination of some of them.

m Averagevalue  m Standard deviation

CORRECTED RBF10+10 RBF30 RBF50 RBF10 RBF10 + (RBF50 - RBF30)

Fig. 4.15: Cgq 11 — C4,q,2 including the combination of different correction methods

(RBF50 — RBF3) is calculated to isolate the effect of the additional 20 sampling points
at the edges of the PC domain, while preserving the behavior of the function in the central
region.

Adding this residual correction to RBF( leads to a significant improvement in the results:
standard deviation is reduced by 43% when compared to the one of RBFyy only. This
improvement is likely because (RBF59 — RBF3q) is close to zero far from the edges of PC
space, yet maintains a smooth blend across the entire domain. The results of this combined
correction confirms that the sampling strategy used for RBFq is well designed and can be

more beneficial if additional experimental data is available.

A similar combination using RBFjg, 10 results in worse performance than using RBF
alone. This is due to the fact that RBF;p,19 contains no information about ACy in the

central region of the PC space and therefore fails to blend properly with RBF.
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5.1 Summary

The work presented in this thesis aimed at improving the simulation models and drag
predictions for automotive bluff bodies in open-jet wind tunnels.
CFD RANS steady-state simulations have been the focus, with numerous changes that have
been implemented in order to achieve better accuracy of the results while increasing robust-
ness of the cases and convergence speed required by each simulation. Significant work has
been done on top of what was presented previously in the literature; first of all, being the
work based on an automatic approach for the meshing of the computational grid, grid quality
was often not excellent and numerical schemes have thus been changed to better perform in
case of high skewness and high non-orthogonality. It was noticed how these changes do not
present any clear trend, with the change in drag coefficient depending on both the vehicle
and on the simulation domain. In all simulated cases the effect was not negligible, suggesting

that the approach used can have significant effects on the results.

Subsequently, an improvement of the fidelity of the models used for simulations has been
implemented. This improvement refers to the implementation of a moving ground system
in the tunnel domain used for simulations. This system is defined starting from the same
system available in the AAW'T tunnel of Stellantis US and the approach has been generalized
in order to implement the same system in the same way independently from the size of the
car or the geometry of the tunnel, thus ensuring reproducibility.

The presented approach also includes the implementation of rotating wheels for the vehicle
model. The simplicity of the model allowed for the rotation of these being implemented by
using specific boundary conditions, without requiring the usage of MRF's. Also for this step
a generalization is given in order to enable the inclusion of this feature by only using vehicle

dimensions.

o6
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Finally, a parametric study has been performed using the improved models. A reduced
number of configurations has been selected due to time limitations but results were promising,

suggesting that the proposed approach can be used for future applications.

5.2 Thesis Contributions

The work pursued in this thesis contributes in many ways to the automotive literature.
The main contribution is the update to a complete automatic approach, able to generate
simulation geometries by only starting from data widely available for each vehicle and/or
open-jet tunnel configurations. This tool allows to not only save time when performing
CFD simulations but also to have a good estimation of the real flow behaviour around
an automotive bluff body, while maintaining the advantage of RANS simulations without
sacrificing accuracy. Specifically, robustness enhancements have been integrated so that the
models successfully generate over a large range of inputs. Vehicle and tunnel models have
been modified to allow the implementation of a rolling road system in the computational
domain. The generalization of each step allows the use of the same model independently
from the geometry of interest, increasing the capability of the approach to satisfy a wide

range of cases.

In addition, the approach followed for the correction highlighted the importance of the
sampling strategy. This aspect has to be designed in function of the aim of the correction.
Generally speaking, better performance for a given dataset is found when sampling points are
already close to the geometry used for the experiments; a more universal approach is more
difficult to achieve but performance can be highly satisfactory when compared to the current

state of art, thus offering powerful tools to reduce the tunnel-to-tunnel drag variation.

5.3 Future Work

The study presented in this thesis highlights some trade-offs due to the limited available

time for the work.
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The effect of numerical schemes can be compared to experimental data in order to check
if their change improves the correlation between CFD and real tests. Moreover, further
validation on experimental data should be carried out in order to validate the improvements

done on the simulations.

The correction approach can be improved by increasing the number of reference geometries
in the initial dataset. This increase in initial information will lead to a more universal
improved correction rather than one tailored for only the tunnel geometries presented.

An increase in the number of samples, focused on a finer sampling in the PC regions closer
to the PC values of the reference dataset, will help in defining a more robust correction when

using the same reference dataset used in this thesis.

Finally, the performance of the approach can be better assessed by using higher fidelity

simulations, for example by performing unsteady simulations.
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A. Appendix A

A.1 Breakdown of model parameters

Table A.1: Parameters for simplified model [4]

Description Symbol
Tunnel

Test section length L
Test section width w
Test section height H
Nozzle exit width W
Nozzle exit height Hy
Nozzle depth into test section Dy
Collector exit width We
Collector exit height He
Collector depth into test section D¢
Collector angle «
Diffuser angle B
Vehicle placement x
Vehicle

Length l
Width w
Height

Internal volume, passenger compartment and trunk v
Front overhang oy
Rear overhang Or
Front wheel well height h¢
Front wheel well height h,
Ride height r
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B.1

Boundary conditions for wind tunnel domain

Table B.1: Boundary conditions for wind tunnel domain

Patch U P k w vt

Inlet fixedValue zeroGradient fixedValue fixedValue calculated

Outlet zeroGradient fixedValue zeroGradient zeroGradient calculated

Walls noSlip zeroGradient | kqRWallFunction | omegaWallFunction | nutUSpaldingWallFunction
Nozzle slip zeroGradient | kqRWallFunction | omegaWallFunction | nutUSpaldingWallFunction
bottom

surface and

final tunnel

portion

Vehicle noSlip zeroGradient | kqRWallFunction | omegaWallFunction | nutUSpaldingWallFunction
model and

wheels

Wheels rotatingWallVelocity | zeroGradient | kqgRWallFunction | omegaWallFunction | nutUSpaldingWallFunction
Moving movingWallVelocity | zeroGradient | kqRWallFunction | omegaWallFunction | nutUSpaldingWallFunction
ground

system

B.2 Boundary conditions for open domain

Table B.2: Boundary conditions for open road domain

Patch U P k w vt

Inlet fixedValue zeroGradient fixedValue fixedValue calculated

Outlet zeroGradient fixedValue zeroGradient zeroGradient calculated

Ground movingWallVelocity | zeroGradient | kqRWallFunction | omegaWallFunction | nutUSpaldingWallFunction
Vehicle noSlip zeroGradient | kqRWallFunction | omegaWallFunction | nutUSpaldingWallFunction
model

Wheels rotatingWallVelocity | zeroGradient | kqRWallFucntion | omegaWallFunction | nutUSpaldingWallFunction
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B.3 Grid quality metrics for a generic configuration in

the tunnel domain

Y e et e i *\
| ========= | |
I \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
[ \\ / 0 peration | Version: 2312 |
| \\ / A nd | Website: www.openfoam.com |
| \\/ M anipulation | |
\kmmm e e - *x/
Build : _1d8f0d55f7-20231221 OPENFO0AM=2312 version=v2312

Arch

Exec : checkMesh

Date : Jul 05 2025

Time : 10:38:40

Host : nl120101

PID : 134413

I/0 : uncollated

Case : /home/philpess/scratch/Tunnel /001 _configl_ TUNNEL

nProcs : 1

trapFpe: Floating point exception trapping enabled (FOAM_SIGFPE).
fileModificationChecking : Monitoring run-time modified files using timeStampMaster
(fileModificationSkew 5, maxFileModificationPolls 20)

allowSystemOperations : Allowing user-supplied system call operations

// k % * % *x >k % % % % >k % % % % * % % % % % % % % *x * % % % X * % % *x x *x x //

Create time

Create mesh for time = 0
Check mesh...
Time = 0

Mesh stats

points: 16218770
faces: 46932873
internal faces: 46036753
cells: 15362055
faces per cell: 6.0519

boundary patches: 11
point zones: 1

face zones: 0
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cell zones:

Overall number

hexahedra:
prisms:
wedges:

pyramids:

tet wedges:

tetrahedra:

polyhedra:

of cells of each type:

14853766

107194

10265

1
8236
46

382547

Breakdown of polyhedra by number of faces:

number of cells

faces

4 3897

5 4173

6 49449

7 90698

8 11991

9 177173

10 176

11 9

12 39760

13 1

14 1

15 5044

18 174

21 1
Checking topology...

Boundary definition OK.

Cell to face addressing OK.

Point usage O0K.

Upper triangular ordering OK.

Face vert

Number of

ices OK.

regions:

1 (0K).

Checking patch topology for multiply connected surfaces...

Patch
symmetry
inlet
outlet
wallsslip
wallsnoslip
vehicleBody
frontWheels

rearWheels

Faces
125896
17378
8740
109606
439427
162034
10496
10383

Points
130039
18080
9085
112470
446389
163686
11117
11015

Surface topology

ok
ok
ok
ok
ok
ok
ok
ok

(non-closed
(non-closed
(non-closed
(non-closed
(non-closed
(non-closed
(non-closed

(non-closed

singly
singly
singly
singly
singly
singly
singly
singly

connected)
connected)
connected)
connected)
connected)
connected)
connected)

connected)
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centerBelt 10633 11050 ok (non-closed
frontLeftBelt 745 850 ok (non-closed
rearLeftBelt 782 881 ok (non-closed
896120 906883 ok (closed

singly
singly
singly
singly

Checking faceZone topology for multiply connected surfaces...

No faceZones found.

Checking basic cellZone addressing...

No cellZones found.

Checking basic pointZone addressing...

PointZone PointsBoundingBox

frozenPoints 24(-13.2522 4.11526 -0.613871) (-13.1801 4.1878

Checking geometry...

Overall domain bounding box (-32.6556 0 -4.17379) (66.6684 7.34801 11.069)

Mesh has 3 geometric (non-empty/wedge) directiomns (1 1
Mesh has 3 solution (non-empty) directions (1 1 1)
Boundary openness (1.12454e-15 -7.86838e-14 4.28925e-15
Max cell openness = 3.72876e-15 O0OK.

Max aspect ratio = 423.681 O0K.

Minimum face area = 1.08692e-07. Maximum face area = 0.478868.

Min volume = 1.69898e-10. Max volume = 0.236236. Total volume

OK.
Mesh non-orthogonality Max: 87.1008 average: 6.11241
*Number of severely non-orthogonal (> 70 degrees) faces:
Non-orthogonality check OK.
<<Writing 14357 non-orthogonal faces to set nonOrthoFaces

Face pyramids OK.

**x*Max skewness = 4.56255, 7 highly skew faces detected which may impair the quality of

the results
<<Writing 7 skew faces to set skewFaces
Coupled point location match (average 0) OK.

Failed 1 mesh checks.

End

1)

) OK.

14357.

connected)
connected)
connected)

connected)

Face area magnitudes OK.

= 4945.23.

Cell volumes
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B.4 fvSchemes

[k mmm e e k= Cdt —kmmm o mm e *\
| ========= | |
[ \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
[ \\ / 0 peration | Version: 2312 |
| \\/ A nd | Website: www.openfoam.com |
| \\/ M anipulation | |
koo m o oo o */

// % % * %k % >k % * % % * % * % % * % * % % * % *x * *x % X

FoamFile

{
version 2;
format ascii;
class dictionary;
location "system";
object fvSchemes;
}
ddtSchemes
{
default steadyState;
}
gradSchemes
{
default celllLimited leastSquares 1;
}
divSchemes
{
default none;
div (phi,U) bounded Gauss linearUpwindV limited;
div (phi, k) Gauss Minmod;
div(phi,omega) Gauss Minmod;
div ((nuEff*dev2(T(grad(U))))) Gauss linear;
div(div(phi,U)) Gauss linear;
}

laplacianSchemes
{

default Gauss linear corrected;

interpolationSchemes

* ok ok ok ok kx x X x *x //
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default linear;

snGradSchemes

{

default corrected;
}
wallDist
{

method meshWave;
}

/] %k sk k ok sk ok ok sk ok ok sk %k ok sk sk ok sk %k K ok %k 3k sk sk %k ok sk %k ok 3k %k ok 5k %k 3k >k %k ok 3k %k %k 5k %k % >k %k %k >k 3k % >k 3k %k ok k ok kkkkokkkkkkkkkkkkx [/
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B.5 Python code for geometries generation

#!/usr/bin/env python

import os

import sys

import salome

import salome_notebook

from SketchAPI import *

from salome.shaper import model
import GEOM

from salome.geom import geomBuilder
import math

import SALOMEDS

import shutil

salome.salome_init ()

notebook = salome_notebook.NoteBook ()

# Change the following parameters to suit your needs. Note, Salome is a tricky program, and

sometimes rerunning the script will produce different results.

# It may help to simply run the script again if unfathomable results appear.

#

#

# folder --> output folder path, may need to be created.

# stlRefinement --> minimum relative refinement level, lower being more refined

#

# TunnelParam --> the parameters for the wind tunnel, listed in order below

# L - Test Section Length

# W - Test Section Width

# H - Test Section Height

# W_n - Nozzle Width

# H_n - Nozzle Height

# D_n - Nozzle Depth into Test Section

# W_c - Collector Width

# H_c - Collector Height

# D_c - Collector Depth into Test Section

# Alpha - Collector Angle

# Beta - Diffuser Angle

# TunnelPlacement - Placement of the vehicle away from the center of the test section
(positive is towards the nozzle)

#

# VehicleParam --> the parameters for the Vehicle, listed in order below
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# 1 - Length

# - Width

# h - Height

# v - Volume (trunk volume + passenger volume)
# o_f- Front Overhang

# o_r - Rear Overhang

# h_f - Front Wheel Well Height

# h_r - Rear Wheel Well Height

# r - Ride Height

#

# The part generation sometimes runs into errors that can be seen in the object browser in

Salome. Typically, finding where the error occurs and inspecting the sketch or element
will lead
# to a possible solution. The steps below guide you to solutions for ones experienced

previously.

# filletRadius --> small fillets on the outside of the vehicle tend to have problems. If
errors noticed for Fillet_3 in Salome, try modifying the decimal value by +- 0.002.

# If you right-click and edit the fillet, you can change the decimal value
within Salome until the sketch turns green, signalling it works. Then modify the value

# here in the code to match.

# bigFilletRadius --> large fillets at the rear of the vehicle can also be a cause for
problems as the edges may intersect with where the spoiler sits.

# If Fillet_3 still has issues and cannot be fixed by modifying the
number above, try modifying this decimal value by +- 0.01. When it is clear that the
edges do not

# interfere with each other, you may have to return to the previous
value and modify it again until it works.

# spline --> a spline used to create the spoiler sometimes does not work as intended. This
is noticable in Salome when the sketches show errors, specifically vehicle Sketch_1.

# This can be worked around by changing the value of this spline. Typically
changing to either 2 or 2.5 works. However, sometimes you may have to try some in
between values.

# If all else fails, try values just below and above 2 and 3 respectively,

changing by 0.1 at a time.

stlRefinement = 1le-5
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if configN == 1:

folder =

TunnelParam =
14.2288, 2
VehicleParam =

filletRadius

bigFilletRadius =
spline = 3
elif configN == 2:
folder =

TunnelParam =
10.9423, 1
VehicleParam =
filletRadius =
bigFilletRadius =
spline = 2.5
elif configN == 3:
folder =

TunnelParam =
15.9852, 3.
VehicleParam =
filletRadius =
bigFilletRadius =
spline = 3
elif configN == 4:
folder =

TunnelParam =
14.7092, 2
VehicleParam =
filletRadius =
bigFilletRadius =
spline = 2.7
elif configN == 5:
folder =

TunnelParam =

16.9595, 3.784,

[18.6913,
.6911,
[4.7276,

[17.3768,
.3767,
[4.306,

[19.3941,
394,
[5.1156,

[18.8835,
.8834,
[4.9349,

[19.7839,

0.6964, 0.5922, 0.3951,

-0.2329]

0.4219, 0.3108, 0.0275,

0.6554, 0.5227, 0.3242,

-3.355]

0.3219, 0.35, 0.035, 0.17,

0.7375, 0.6207, 0.4211,

1.4359]

0.4278, 0.3365, 0.032,

0.7081, 0.5998, 0.4019,

0.2235]

0.43, 0.35, 0.035, 0.2094,

0.7627, 0.6355, 0.4341,

2.3617]

0.2509,

0.1809, 0.

0.2138,

0.

0.261,

0.1768,

0.2534,

0.2654,

0.1179, 0.4764, 0.3039, 0.1969,

17, 0.1462, 0.1448, 0.0203]

0.0664, 0.4269, 0.2653, 0.1371,

17, 0.1404, 0.1402, 0.0329]

0.1404, 0.4645, 0.3114, 0.1672,

0.1875, 0.16, 0.16, 0.0304]

0.1239, 0.4722, 0.3056, 0.1869,

0.17, 0.16, 0.16, 0.04]

0.1522, 0.453, 0.314, 0.1433,
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VehicleParam =
filletRadius =
bigFilletRadius =
spline = 2.9
elif configN == 6:
folder =

[19.799,
16.9988, 3.7986,

TunnelParam =

VehicleParam =
filletRadius =
bigFilletRadius =
spline = 3
elif configN == T7:
folder =

TunnelParam =
16.3853, 3.5542,
VehicleParam =
filletRadius =
bigFilletRadius =
spline = 2.6
elif configN == 8:
folder =

TunnelParam =
10.336, 1.1341,
VehicleParam =

filletRadius

bigFilletRadius =
spline = 2.2
elif configN == 9:
folder =
TunnelParam = [17.2749,
10.688, 1.2747,
VehicleParam = [4.5122,
filletRadius =
bigFilletRadius =

spline = 2.7

[4.7388,

0.7142,

[6.3385,

[19.5542,

[4.9833,

[17.1342,

[3.8731,

0.43, 0.35, 0.035, 0. .16, 0.16, 0.04]

0.6581, 0.4651, 0.2907, 0.1656, 0.5, 0.3477, 0.2,

2.39811]

0.422, 0.3312, 0.0265, 0.2066, 0.1993, 0.1566, 0.1556, 0.0226]

0.7494, 0.6261, 0.4255, 0.262, 0.1448, 0.4566, 0.3114, 0.1523,

1.8161]

0.43, 0.35, 0.0312, 0.1969, 0.17, 0.16, 0.16, 0.0259]

0.65, 0.5132, 0.3156, 0.2107, 0.0588, 0.4323, 0.2632, 0.1493,

-3.931]

0.3567, 0.3464, 0.0325, 0.1845, 0.178, 0.1599, 0.1599, 0.0398]

0.65, 0.5244, 0.3285, 0.219, 0.0665, 0.455, 0.2732, 0.1831,

-3.5968]

0.3339, 0.347, 0.035, 0.17, 0.17, 0.14, 0.14, 0.02]
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elif configN 10:

folder "C:/Users/phili/Desktop/University of Windsor Documents/Thesis
CFD/SalomeGeometries/Parametric
[18.2782,
-1.2141]

5036,

study/configl0"

TunnelParam 0.6844, 0.5699, 0.3722, 0.2388, 0.1014, 0.459, 0.2911, 0.1749,

13.196, 2.2781,

[4.

VehicleParam 0.3618, 0.3364, 0.0346, 0.1798, 0.187, 0.1588, 0.1589, 0.0381]

filletRadius "0.003*x1"

bigFilletRadius "0.02%1"

spline 2.9

else:

print ("You entered an invalid configuration number, try again!")

os.path.exists (folder):

os.mkdir (folder)

if not os.path.exists(folder + "/STL"):

os.mkdir (folder + "/STL")

if not os.path.exists(folder + "/XAOD"):

os.mkdir (folder + "/XAO")

model.begin ()

partSet model.moduleDocument ()

Part_1 model.addPart (partSet)

Part_1.setName ("Tunnel")

Part_1.result().setName (" Tunnel")

Part_1_doc Part_1.document ()

model.addParameter (Part_1_doc, "L", str(TunnelParam[0]), ’Test Section Length’)
model.addParameter (Part_1_doc, "W'", str(TunnelParam[1]), ’Test Section Width’)
model.addParameter (Part_1_doc, "H", str(TunnelParam[2]), ’Test Section Height’)

model .addParameter (Part_1_doc, "W_n'", str(TunnelParam[3]), ’Nozzle Width’)

model .addParameter (Part_1_doc, "H_n", str(TunnelParam([4]), ’Nozzle Height’)
model.addParameter (Part_1_doc, "D_n", str(TunnelParam[5]), ’Nozzle Depth into Test Section’)
model.addParameter (Part_1_doc, "W_c'", str(TunnelParam[6]), ’Collector Width’)
model.addParameter (Part_1_doc, "H_c", str(TunnelParam[7]), ’Collector Height’)
model.addParameter (Part_1_doc, "D_c", str(TunnelParam[8]), ’Collector Depth into Test
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Section’)

model.addParameter (Part_1_doc, "Alpha", str(TunnelParam[9]), ’Collector Angle’)

model.addParameter (Part_1_doc, "Beta", str(TunnelParam[10]), ’Diffuser Angle’)

Point_2 = model.addPoint (Part_1_doc, "L/2", "(WxL)/2", "0")

Point_3 = model.addPoint (Part_1_doc, "-L/2", "-(W*L)/2", "H*L")

Point_4 = model.addPoint (Part_1_doc, "-L/2+(D_n*L)", "1.99%(W_n*L)/2", "1.89*(H_n*L)")

Point_5 = model.addPoint (Part_1_doc, "-L/2+(D_n*L)-1.365*L", "-1.99%(W_nx*L)/2",
"-0.89%(H_n*L)")

Point_6 = model.addPoint (Part_1_doc, "L/2", "0.58*(W_c*L)", "1.165%x(H_c*L)")

Point_7 = model.addPoint (Part_1_doc, "L/2+(0.165*%(H_c*L))/(tan(Betax*(pi/180)))+L",
"-0.58*x(W_c*L)", "-0.165*%(H_c*L)")

Point_8 = model.addPoint (Part_1_doc, "-L/2+(D_n*L)", "(W_n*L)/2+0.0175*L",
"(H_n*L)+0.0175*L")

Point_9 = model.addPoint (Part_1_doc, "-L/2", "-(W_n*L)/2-0.0175*L", "0")

Point_10 = model.addPoint (Part_1_doc, "L/2-(D_c*L)",
"(W_c*L)/2+(D_c*L)*tan(Alpha*(pi/180))+0.03*L", "0")

Point_11 = model.addPoint (Part_1_doc, "L/2",
"-(W_c*L)/2-(D_c*L)*tan(Alpha*(pi/180))-0.03*L",
"(H_c*L)+(D_c*L)*tan(Alpha*(pi/180))+0.03%L")

Point_12 = model.addPoint (Part_1_doc, "-L/2+(D_n*L)", "0", "0")

Point_13 = model.addPoint (Part_1_doc, "-L/2+(D_n*L)-0.077*L", "0", "0")

Point_14 = model.addPoint(Part_1_doc, "-L/2+(D_n*L)-0.531«L", "0", "0")

Point_15 = model.addPoint (Part_1_doc, "-L/2+(D_n*L)-0.423*L", "0", "-0.89*%(H_n*L)")

Point_16 = model.addPoint (Part_1_doc, "-L/2+(D_n*L)-0.704*L", "0", "-0.89*%(H_n*L)")

Point_17 = model.addPoint (Part_1_doc, "O", "O", "(H_n#*L)/2")

Point_18 = model.addPoint(Part_1_doc, "-L/2+(D_n*L)", "(W_n=*L)/2", "0")

Point_19 = model.addPoint (Part_1_doc, "-L/2+(D_n*L)-0.077+L", "(W_n+*L)/2", "0")

Point_20 model.addPoint (Part_1_doc, "-L/2+(D_n*L)-0.55+L", "(W_n=*L)/2", "0")

Point_21 model.addPoint (Part_1_doc, "-L/2+(D_n*L)-0.423*L", "0.995%(W_n=*L)", "0")

Point_22 model.addPoint (Part_1_doc, "-L/2+(D_n#*L)-0.74*L", "0.995*(W_n=*L)", "0")

Point_23 model.addPoint (Part_1_doc, "L/2+(0.165*%(H_c*L))/(tan(Betax(pi/180)))",
"0.58*x(W_c*L)", "0")

Point_24 = model.addPoint (Part_1_doc, "L/2", "(W_c*L)/2", "0")

Point_25 = model.addPoint (Part_1_doc, "L/2+(0.15%(H_c*L))/(tan(Beta*(pi/180)))",
"0.58*x(W_c*L)", "0")

Point_26 = model.addPoint (Part_1_doc, "L/2+(0.015*(H_cx*L))/(tan(Betax*x(pi/180)))",
"(W_cx*L)/2", "0")

Point_27 = model.addPoint (Part_1_doc, "L/2", "O0", "0")

Point_28 = model.addPoint(Part_1_doc, "L/2+(0.165%(H_c*L))/(tan(Betax*(pi/180)))", "0",
"-0.165%(H_c*L)")

Point_29 = model.addPoint (Part_1_doc, "L/2+(0.15%(H_c*L))/(tan(Betax(pi/180)))", "0",
"-0.165*%(H_c*L)")

Point_30 = model.addPoint (Part_1_doc, "L/2+(0.015%(H_c*L))/(tan(Beta*(pi/180)))", "0", "0")

Point_31 = model.addPoint (Part_1_doc, "O", "O", "(H_cx*L)/2")
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Point_32 = model.addPoint (Part_1_doc, "L/2", "-(W_c*L)/2-0.03*L", "0")

Point_33 = model.addPoint (Part_1_doc, "L/2-(D_c*L)",
"-(W_c*L)/2-(D_c*L)*tan(Alpha*(pi/180))-0.03*L", "0")

Point_34 = model.addPoint (Part_1_doc, "L/2-(D_c*L)",
"-(W_c*L)/2-(D_c*L)*tan(Alpha*(pi/180))", "0O")

Point_35 = model.addPoint (Part_1_doc, "L/2", "-(W_c*L)/2", "0")

Point_36 = model.addPoint (Part_1_doc, "L/2", "O", "(H_c*L)")

Point_37 = model.addPoint (Part_1_doc, "L/2", "0", "(H_c*L)+0.03*L")

Point_38 = model.addPoint (Part_1_doc, "L/2-(D_cx*L)", "0O",
"(H_c*L)+(D_c*L)*tan(Alphax(pi/180))")

Point_39 = model.addPoint (Part_1_doc, "L/2-(D_cx*L)", "O",
"(H_c*L)+(D_c*L)*tan(Alphax(pi/180))+0.03%L")

Point_40 = model.addPoint (Part_1_doc, "L/2", "(W_c*L)/2", "(H_c*L)")

Point_41 = model.addPoint (Part_1_doc, "L/2", "-(W_c*L)/2", "(H_c*L)")

Point_42 = model.addPoint (Part_1_doc, "L/2-(D_c*L)",
"(W_c*L)/2+(D_c*L)*tan(Alpha*(pi/180))", "0")

Point_43 = model.addPoint (Part_1_doc, "-L/2+D_n*L-0.01*L", "-W_n*L/2-L*0.0175", "0")

Point_44 = model.addPoint (Part_1_doc, "-L/2+D_n*L+L*0.015", "W_n*L/2+L*0.0175",
"H_n*L+L*x0.0175")

Point_45 = model.addPoint(Part_1_doc, "-L/2+D_n*L+L*0.05", "W_n*L/2+0.0175*L",
"H_n*L+0.0175*L")

Point_46 = model.addPoint (Part_1_doc, "-L/2+D_n*L+L*0.1", "W_n*L/2+0.0175*L",
"H_n*L+0.0175*L")

Point_47 = model.addPoint (Part_1_doc, "-L/2+D_n*L-0.01*L", "W_n*L/2-0.006*L",
"H_n*L-0.006%L")

Point_48 = model.addPoint (Part_1_doc, "O0", "O0", "H_ n*L+0.0175*%L")

Point_49 = model.addPoint (Part_1_doc, "-L/2+D_n*L+0.1*L", "-W_n*L/2+0.004*L", "0")

Point_50 = model.addPoint (Part_1_doc, "-L/2+D_n*L-0.01*L", "W_n*L/2+0.004*L",
"H_n*L+0.004%L")

Point_51 = model.addPoint (Part_1_doc, "-L/2+D_n*L-0.74*L", "=WxL/2", "-0.89*H_n*L")

Point_52 = model.addPoint (Part_1_doc, "L/2+(0.165+(H_c*L))/(tan(Beta*(pi/180)))", "W*L/2",
"H*L")

Point_53 = model.addPoint (Part_1_doc, "-L/2+D_n*L-0.37*L",
"-(W_c*L)/2-(D_c*L)*tan(Alpha*(pi/180)) -0.05*L", "-0.89*xH_nxL")

Point_54 = model.addPoint (Part_1_doc, "L/2+(0.165*%(H_c*L))/(tan(Beta*x(pi/180)))/2",
"(W_c*L)/2+(D_c*L)*tan(Alpha*x(pi/180))+0.05*%L",
"(H_c*L)+(D_c*L)*tan(Alpha*(pi/180))+0.05*L")

Point_55 = model.addPoint(Part_1_doc, "L/2+(0.165+(H_c*L))/(tan(Beta*(pi/180)))+2*L",
"0.58*%W_c*L", "1.165*H_c*L")

Point_56 = model.addPoint(Part_1_doc, "L/2+(0.165%(H_c*L))/(tan(Beta*(pi/180)))+L", "0",
"-0.165*%H_c*L")

Point_57 = model.addPoint (Part_1_doc, "L/2+(0.165*(H_c*L))/(tan(Beta*(pi/180)))+1.33*L",
"Oo", "-0.165*xH_c*L")

Point_58 = model.addPoint (Part_1_doc, "L/2+(0.165*(H_c*L))/(tan(Beta*(pi/180)))+1.33*L",

HOII’ HOI!)
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Point_59 = model.addPoint (Part_1_doc
mon, mom)

Point_60 = model.addPoint (Part_1_doc
"0

Point_61 = model.addPoint (Part_1_doc

"_0.58%W_c*L", "0")

Point_62 = model.addPoint (Part_1_doc
"-0.58*W_cx*L", "0")
Point_63 = model.addPoint (Part_1_doc
"_0.5*%W_cxL", "O")
Point_64 = model.addPoint (Part_1_doc
"-0.5%xW_c*L", "0")
Point_65 = model.addPoint (Part_1_doc
"-0.5*xW_c*L", "0")
Box_1 = model.addBox (Part_1_doc,
model.selection("VERTEX",
Box_2 = model.addBox(Part_1_doc,
model.selection("VERTEX",
Box_3 = model.addBox(Part_1_doc,
model.selection("VERTEX",
Box_4 = model.addBox (Part_1_doc,
model.selection("VERTEX",
Box_5 = model.addBox(Part_1_doc,
model.selection("VERTEX",
Box_6 = model.addBox(Part_1_doc,
model.selection("VERTEX",
Box_7 = model.addBox(Part_1_doc,
model.selection("VERTEX",
Box_8 = model.addBox(Part_1_doc,
model.selection("VERTEX",
Box_9 = model.addBox(Part_1_doc,
model.selection("VERTEX",
Box_10 = model.addBox(Part_1_doc,
model.selection("VERTEX",
Box_11 = model.addBox (Part_1_doc,
model.selection("VERTEX",
Box_11.result().setTransparency (0.8)
Box_12 = model.addBox(Part_1_doc,
model.selection("VERTEX",
Box_12.result () .setTransparency (0.8)
Box_13 = model.addBox (Part_1_doc,
model.selection("VERTEX",

Axis_4 = model.addAxis (Part_1_doc,

"L/2+(0.

"L/2+(0.

"L/2+(0.

"L/2+(0.

"L/2+(0.

"L/2+(0.

"L/2+(0.

model.selection ("VERTEX",

model.selection("VERTEX",

model.selection("VERTEX",

model.selection("VERTEX",

model.selection("VERTEX",

model.selection("VERTEX",

model.selection("VERTEX",
"Point_42"))
model.selection ("VERTEX",
"Point_42"))
model.selection("VERTEX",
"Point_42"))
model.selection("VERTEX",
"Point_48"))
model.selection("VERTEX",

"Point_51"))

model.selection (" VERTEX",
"Point_53"))

model.selection("VERTEX",

"Point_54"))

model.selection("FACE",

165*x(H_c*L))/(tan(Beta*(pi/180)))+1.67xL",

165%(H_c*L))/(tan(Beta*(pi/180)))+2*xL",

165*%(H_c*L))/(tan(Beta*(pi/180)))+L",

165*%(H_c*L))/(tan(Beta*(pi/180)))+1.33*L",

165*% (H_c*L))/(tan(Beta*(pi/180)))+1.33*L",

165*%(H_c*L))/(tan(Beta*(pi/180)))+1.67*L",

165*%(H_c*L))/(tan(Beta*(pi/180)))+2*L",

"all-in-Point_1"),

"all-in-Point_2"))

"all-in-Point_3"),

"all-in-Point_4"))

"all-in-Point_5"),

"all-in-Point_6"))

"all-in-Point_7"),

"all-in-Point_8"))

"all-in-Point_9"),

"all-in-Point_10"))

"all-in-Point_9"),

"all-in-Point_10"))

"Point_43"),

"Point_44"),

"Point_45"),

"Point_46"),

"Point_50"),

"Point_52"),

"Point_6"),

"PartSet/Y0OZ"),

non
s
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model.selection ( , ))

Axis_5 = model.addAxis (Part_1_doc, model.selection( ) ),
model.selection( , ))

Axis_6 = model.addAxis(Part_1_doc, model.selection( , ),
model.selection( s ))

Plane_4 = model.addPlane(Part_1_doc, model.selection( s ),
model.selection ( , ), model.selection( s ))

Plane_5 = model.addPlane(Part_1_doc, model.selection( , ),
model.selection( , ), model.selection( s ))

Plane_6 = model.addPlane(Part_1_doc, model.selection( , ),
model.selection( s ), model.selection( s ))

Sketch_1 = model.addSketch(Part_1_doc, model.defaultPlane ( )

SketchBSpline_1 = Sketch_1.addSpline(poles = [(-10.538762, 0), (-19.809442, 0),
(-17.604082, -3.46937842), (-23.342102, -3.46937842)1])
[SketchPoint_1, SketchPoint_2, SketchPoint_3, SketchPoint_4] =
SketchBSpline_1.controlPoles (auxiliary = [0, 1, 2, 3])
[SketchLine_1, SketchLine_2, SketchLine_3] = SketchBSpline_1.controlPolygon(auxiliary = [0,
1, 21D
SketchProjection_1 = Sketch_1.addProjection(model.selection( s ), False)
SketchPoint_5 = SketchProjection_1.createdFeature()
Sketch_1.setCoincident (SketchAPI_Point (SketchPoint_5).coordinates (),
SketchAPI_Point (SketchPoint_1).coordinates())
SketchProjection_2 = Sketch_1.addProjection(model.selection( s ), False)
SketchPoint_6 = SketchProjection_2.createdFeature ()
Sketch_1.setCoincident (SketchAPI_Point (SketchPoint_6).coordinates (),
SketchAPI_Point (SketchPoint_2).coordinates ())
SketchProjection_3 = Sketch_1.addProjection(model.selection( s ), False)
SketchPoint_7 = SketchProjection_3.createdFeature ()
Sketch_1.setCoincident (SketchAPI_Point (SketchPoint_7).coordinates (),
SketchAPI_Point (SketchPoint_3).coordinates ())
SketchProjection_4 = Sketch_1.addProjection(model.selection( s ), False)
SketchPoint_8 = SketchProjection_4.createdFeature ()
Sketch_1.setCoincident (SketchAPI_Point (SketchPoint_8).coordinates (),
SketchAPI_Point (SketchPoint_4).coordinates ())
SketchLine_4 = Sketch_1.addLine(-10.538762, 0, -8.966422000000001, O0)
Sketch_1.setCoincident (SketchBSpline_1.startPoint (), SketchLine_4.startPoint ())
SketchProjection_5 = Sketch_1.addProjection(model.selection( s ), False)
SketchPoint_9 = SketchProjection_5.createdFeature ()
Sketch_1.setCoincident (SketchLine_4.endPoint (), SketchPoint_9.result())
SketchLine_5 = Sketch_1.addLine (-8.966422000000001, 0, -8.966422000000001, -3.46937842)
Sketch_1.setCoincident (SketchLine_4.endPoint (), SketchLine_5.startPoint())
Sketch_1.setVertical (SketchLine_5.result())
SketchLine_6 = Sketch_1.addLine (-8.966422000000001, -3.46937842, -23.342102, -3.46937842)
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Sketch_1.setCoincident (SketchLine_5.endPoint (), SketchLine_6.startPoint())
Sketch_1.setCoincident (SketchBSpline_1.endPoint (), SketchLine_6.endPoint ())
Sketch_1.setHorizontal (SketchLine_6.result())

SketchProjection_6 = Sketch_1.addProjection(model.selection( s ), False)

SketchLine_7 = SketchProjection_6.createdFeature ()

SketchConstraintMirror_1_objects = [SketchLine_5.result(), SketchLine_4.result(),
SketchLine_2.result(), SketchLine_1.result(), SketchLine_6.result(),
SketchLine_3.result ()]

SketchConstraintMirror_1 = Sketch_1.addMirror (SketchLine_7.result (),
SketchConstraintMirror_1_objects)

[SketchLine_8, SketchLine_9, SketchLine_10, SketchLine_11, SketchLine_12, SketchLine_13] =
SketchConstraintMirror_1.mirrored ()

SketchBSpline_2 = Sketch_1.addSpline(poles = [(-10.53876200000001, 3.898178), (-19.809442,
3.898178), (-17.60408200000001, 7.36755642), (-23.34210200000002, 7.36755642)1])

[SketchPoint_10, SketchPoint_11, SketchPoint_12, SketchPoint_13] =
SketchBSpline_2.controlPoles (auxiliary = [0, 1, 2, 3])

[SketchLine_14, SketchLine_15, SketchLine_16] = SketchBSpline_2.controlPolygon(auxiliary =
[o, 1, 21)

Sketch_1.setCoincident (SketchAPI_Point (SketchPoint_10).coordinates (),

SketchAPI_Line (SketchLine_11).startPoint ())

Sketch_1.setCoincident (SketchAPI_Point (SketchPoint_11).coordinates (),

SketchAPI_Line (SketchLine_10).startPoint ())

Sketch_1.setCoincident (SketchAPI_Point (SketchPoint_12).coordinates (),

SketchAPI_Line (SketchLine_13).startPoint ())

Sketch_1.setCoincident (SketchAPI_Point (SketchPoint_13).coordinates (),

SketchAPI_Line (SketchLine_13).endPoint ())
model .do ()

Sketch_2 = model.addSketch(Part_1_doc, model.defaultPlane( ))
SketchBSpline_3 = Sketch_2.addSpline(poles = [(-10.538762, 3.470379), (-20.197422,
3.470379), (-17.604082, 6.90605421), (-24.077222, 6.90605421)1])
[SketchPoint_14, SketchPoint_15, SketchPoint_16, SketchPoint_17] =
SketchBSpline_3.controlPoles (auxiliary = [0, 1, 2, 3])
[SketchLine_17, SketchLine_18, SketchLine_19] = SketchBSpline_3.controlPolygon(auxiliary =
[o, 1, 21)
SketchProjection_7 = Sketch_2.addProjection(model.selection( , ), False)
SketchPoint_18 = SketchProjection_7.createdFeature ()
Sketch_2.setCoincident (SketchAPI_Point (SketchPoint_18).coordinates (),
SketchAPI_Point (SketchPoint_14).coordinates ())
SketchProjection_8 = Sketch_2.addProjection(model.selection( s ), False)
SketchPoint_19 = SketchProjection_8.createdFeature ()
Sketch_2.setCoincident (SketchAPI_Point (SketchPoint_19).coordinates (),
SketchAPI_Point (SketchPoint_15).coordinates ())

SketchProjection_9 = Sketch_2.addProjection(model.selection( , ), False)



Appendix B

SketchPoint_20 = SketchProjection_9.createdFeature ()

Sketch_2.setCoincident (SketchAPI_Point (SketchPoint_20).coordinates (),
SketchAPI_Point (SketchPoint_16).coordinates ())

SketchProjection_10 = Sketch_2.addProjection(model.selection( , ), False)

SketchPoint_21 = SketchProjection_10.createdFeature ()

Sketch_2.setCoincident (SketchAPI_Point (SketchPoint_21).coordinates (),

SketchAPI_Point (SketchPoint_17).coordinates())

SketchLine_20 = Sketch_2.addLine(-10.538762, 3.470379, -8.966422000000001, 3.470379)

Sketch_2.setCoincident (SketchBSpline_3.startPoint (), SketchLine_20.startPoint())

SketchProjection_11 = Sketch_2.addProjection(model.selection( s ), False)

SketchPoint_22 = SketchProjection_11.createdFeature ()

Sketch_2.setCoincident (SketchLine_20.endPoint (), SketchPoint_22.result())

SketchLine_21 = Sketch_2.addLine (-8.966422000000001, 3.470379, -8.966422000000001,
6.90605421)

Sketch_2.setCoincident (SketchLine_20.endPoint (), SketchLine_21.startPoint())

Sketch_2.setVertical (SketchLine_21.result())

SketchLine_22 = Sketch_2.addLine (-8.966422000000001, 6.90605421, -24.077222, 6.90605421)

Sketch_2.setCoincident (SketchLine_21.endPoint (), SketchLine_22.startPoint ())

Sketch_2.setCoincident (SketchBSpline_3.endPoint (), SketchLine_22.endPoint())

Sketch_2.setHorizontal (SketchLine_22.result ())

SketchProjection_12 = Sketch_2.addProjection(model.selection( s ), False)

SketchLine_23 = SketchProjection_12.createdFeature ()

SketchConstraintMirror_2_objects = [SketchLine_17.result(), SketchLine_20.result(),
SketchLine_19.result (), SketchLine_22.result(), SketchLine_18.result(),
SketchLine_21.result ()]

SketchConstraintMirror_2 = Sketch_2.addMirror (SketchLine_23.result (),
SketchConstraintMirror_2_objects)

[SketchLine_24, SketchLine_25, SketchLine_26, SketchLine_27, SketchLine_28, SketchLine_29]
= SketchConstraintMirror_2.mirrored ()

SketchBSpline_4 = Sketch_2.addSpline(poles = [(-10.538762, -3.470379), (-20.197422,
-3.470379), (-17.604082, -6.90605421), (-24.077222, -6.90605421)1])

[SketchPoint_23, SketchPoint_24, SketchPoint_25, SketchPoint_26] =
SketchBSpline_4.controlPoles (auxiliary = [0, 1, 2, 3])

[SketchLine_30, SketchLine_31, SketchLine_32] = SketchBSpline_4.controlPolygon(auxiliary =
[o, 1, 21)

Sketch_2.setCoincident (SketchAPI_Point (SketchPoint_23).coordinates (),

SketchAPI_Line (SketchLine_24).startPoint ())

Sketch_2.setCoincident (SketchAPI_Point (SketchPoint_24).coordinates (),

SketchAPI_Line (SketchLine_28).startPoint ())

Sketch_2.setCoincident (SketchAPI_Point (SketchPoint_25).coordinates (),

SketchAPI_Line (SketchLine_26).startPoint ())

Sketch_2.setCoincident (SketchAPI_Point (SketchPoint_26).coordinates (),

SketchAPI_Line (SketchLine_26) .endPoint ())
model.do ()
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Sketch_3 = model.addSketch(Part_1_doc, model.standardPlane ( ))
SketchBSpline_5 = Sketch_3.addSpline(poles = [(10.21, 4.347418), (12.07399799405463,
4.347418), (28.84997994054626, 5.04300488), (30.71397793460088, 5.04300488)1])
[SketchPoint_27, SketchPoint_28, SketchPoint_29, SketchPoint_30] =
SketchBSpline_5.controlPoles (auxiliary = [0, 1, 2, 3])
[SketchLine_33, SketchLine_34, SketchLine_35] = SketchBSpline_5.controlPolygon(auxiliary =
[o, 1, 21
SketchProjection_13 = Sketch_3.addProjection(model.selection( s ), False)
SketchPoint_31 = SketchProjection_13.createdFeature ()
Sketch_3.setCoincident (SketchAPI_Point (SketchPoint_31).coordinates (),
SketchAPI_Point (SketchPoint_27).coordinates ())
SketchProjection_14 = Sketch_3.addProjection(model.selection( s ), False)
SketchPoint_32 = SketchProjection_14.createdFeature ()
Sketch_3.setCoincident (SketchAPI_Point (SketchPoint_32).coordinates (),
SketchAPI_Point (SketchPoint_28).coordinates ())
SketchProjection_15 = Sketch_3.addProjection(model.selection( , ), False)
SketchPoint_33 = SketchProjection_15.createdFeature ()
Sketch_3.setCoincident (SketchAPI_Point (SketchPoint_29).coordinates (),
SketchAPI_Point (SketchPoint_33).coordinates ())
SketchProjection_16 = Sketch_3.addProjection(model.selection( s ), False)
SketchPoint_34 = SketchProjection_16.createdFeature ()
Sketch_3.setCoincident (SketchAPI_Point (SketchPoint_30).coordinates (),
SketchAPI_Point (SketchPoint_34).coordinates ())
SketchLine_36 = Sketch_3.addLine(10.21, 4.347418, 10.21, 5.04300488)
Sketch_3.setCoincident (SketchBSpline_5.startPoint (), SketchLine_36.startPoint())
SketchlLine_37 = Sketch_3.addLine(10.21, 5.04300488, 30.71397793460088, 5.04300488)
Sketch_3.setCoincident (SketchLine_36.endPoint (), SketchLine_37.startPoint())
Sketch_3.setCoincident (SketchBSpline_5.endPoint (), SketchLine_37.endPoint())
Sketch_3.setHorizontal (SketchLine_37.result ())
Sketch_3.setVertical (SketchLine_36.result ())
SketchProjection_17 = Sketch_3.addProjection(model.selection( s ), False)
SketchLine_38 = SketchProjection_17.createdFeature ()
SketchConstraintMirror_3_objects = [SketchLine_36.result(), SketchLine_33.result(),
SketchLine_34.result (), SketchLine_37.presult(), SketchLine_35.result ()]
SketchConstraintMirror_3 = Sketch_3.addMirror (SketchlLine_38.result (),
SketchConstraintMirror_3_objects)
[SketchLine_39, SketchLine_40, SketchLine_41, SketchLine_42, SketchLine_43] =
SketchConstraintMirror_3.mirrored ()
SketchBSpline_6 = Sketch_3.addSpline(poles = [(10.21, -4.347418), (12.07399799405463,
-4.347418), (28.84997994054626, -5.04300488), (30.71397793460088, -5.04300488)1])
[SketchPoint_35, SketchPoint_36, SketchPoint_37, SketchPoint_38] =
SketchBSpline_6.controlPoles (auxiliary = [0, 1, 2, 3])
[SketchLine_44, SketchLine_45, SketchLine_46] = SketchBSpline_6.controlPolygon(auxiliary =
[o, 1, 21)
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Sketch_3.setCoincident (SketchAPI_Point (SketchPoint_35).coordinates (),
SketchAPI_Line (SketchLine_39).startPoint ())

Sketch_3.setCoincident (SketchAPI_Line(SketchlLine_45).startPoint (),
SketchAPI_Line (SketchLine_40) .endPoint ())

Sketch_3.setCoincident (SketchAPI_Point (SketchPoint_37).coordinates (),
SketchAPI_Line (SketchLine_41).endPoint ())

Sketch_3.setCoincident (SketchAPI_Point (SketchPoint_38).coordinates (),
SketchAPI_Line (SketchLine_42).endPoint ())

model.do ()

Sketch_4 = model.addSketch(Part_1_doc, model.standardPlane ( )

SketchBSpline_7 = Sketch_4.addSpline(poles = [(10.21, 0), (12.07399799405463, 0),
(28.84997994054626, -0.8952230100000005), (30.71397793460088, -0.8952230100000005)1)

[SketchPoint_39, SketchPoint_40, SketchPoint_41, SketchPoint_42] =
SketchBSpline_7.controlPoles (auxiliary = [0, 1, 2, 3])

[SketchLine_47, SketchLine_48, SketchLine_49] = SketchBSpline_7.controlPolygon(auxiliary =

[o, 1, 21
SketchProjection_18 = Sketch_4.addProjection(model.selection( s ), False)
SketchPoint_43 = SketchProjection_18.createdFeature ()

Sketch_4.setCoincident (SketchAPI_Point (SketchPoint_43).coordinates (),

SketchAPI_Point (SketchPoint_39).coordinates ())
SketchProjection_19 = Sketch_4.addProjection(model.selection( , ), False)
SketchPoint_44 = SketchProjection_19.createdFeature ()
Sketch_4.setCoincident (SketchAPI_Line (SketchLine_48) .startPoint (),

SketchAPI_Point (SketchPoint_44).coordinates ())
SketchProjection_20 = Sketch_4.addProjection(model.selection( , ), False)
SketchPoint_45 = SketchProjection_20.createdFeature ()
Sketch_4.setCoincident (SketchAPI_Point (SketchPoint_41).coordinates (),

SketchAPI_Point (SketchPoint_45).coordinates ())
SketchProjection_21 = Sketch_4.addProjection(model.selection( s ), False)
SketchPoint_46 = SketchProjection_21.createdFeature ()
Sketch_4.setCoincident (SketchAPI_Point (SketchPoint_42).coordinates (),

SketchAPI_Point (SketchPoint_46).coordinates ())
SketchLine_50 = Sketch_4.addLine(10.21, 0, 10.21, -0.89522301)
Sketch_4.setCoincident (SketchBSpline_7.startPoint (), SketchLine_50.startPoint())
Sketch_4.setVertical (SketchLine_50.result ())
SketchLine_51 = Sketch_4.addLine(10.21, -0.89522301, 30.71397793460088, -0.8952230100000005)
Sketch_4.setCoincident (SketchLine_50.endPoint (), SketchLine_51.startPoint())
Sketch_4.setCoincident (SketchBSpline_7.endPoint (), SketchLine_51.endPoint())
Sketch_4.setHorizontal (SketchLine_51.result())
SketchProjection_22 = Sketch_4.addProjection(model.selection( s ), False)
SketchLine_52 = SketchProjection_22.createdFeature ()
SketchConstraintMirror_4_objects = [SketchLine_50.result(), SketchLine_48.result(),

SketchLine_51.result(), SketchLine_49.result(), SketchLine_47.result ()]
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SketchConstraintMirror_4 = Sketch_4.addMirror (SketchLine_52.result (),
SketchConstraintMirror_4_objects)

[SketchLine_53, SketchLine_54, SketchLine_55, SketchLine_56, SketchLine_57] =
SketchConstraintMirror_4 .mirrored ()

SketchBSpline_8 = Sketch_4.addSpline(poles = [(10.21000000000002, 5.425594),
(12.07399799405462, 5.425594), (28.84997994054627, 6.320817010000001) ,
(30.71397793460087, 6.320817010000001)1)

[SketchPoint_47, SketchPoint_48, SketchPoint_49, SketchPoint_50] =
SketchBSpline_8.controlPoles (auxiliary = [0, 1, 2, 3])

[SketchLine_58, SketchLine_59, SketchLine_60] = SketchBSpline_8.controlPolygon (auxiliary =
[o, 1, 21)

Sketch_4 .setCoincident (SketchAPI_Point (SketchPoint_47).coordinates (),
SketchAPI_Line (SketchLine_53).startPoint ())

Sketch_4.setCoincident (SketchAPI_Point (SketchPoint_48).coordinates (),
SketchAPI_Line (SketchLine_57).endPoint ())

Sketch_4.setCoincident (SketchAPI_Line(SketchlLine_59).endPoint (),
SketchAPI_Line (SketchLine_54) .endPoint ())

Sketch_4.setCoincident (SketchAPI_Point (SketchPoint_50).coordinates (),
SketchAPI_Line (SketchLine_55).endPoint ())

model.do ()

Sketch_5 = model.addSketch(Part_1_doc, model.standardPlane ( ))

SketchLine_61 = Sketch_5.addLine(10.21, -4.960018, 10.21, -4.347418)

SketchProjection_23 = Sketch_5.addProjection(model.selection( s ), False)
SketchPoint_51 = SketchProjection_23.createdFeature ()

Sketch_5.setCoincident (SketchLine_61.startPoint (), SketchPoint_51.result())
SketchProjection_24 = Sketch_5.addProjection(model.selection( s ), False)
SketchPoint_52 = SketchProjection_24.createdFeature ()

Sketch_5.setCoincident (SketchLine_61.endPoint (), SketchPoint_52.result())

SketchLine_62 = Sketch_5.addLine(10.21, -4.347418, 6.375124, -5.374969927273495)
Sketch_5.setCoincident (SketchLine_61.endPoint (), SketchLine_62.startPoint())
SketchProjection_25 = Sketch_5.addProjection(model.selection( s ), False)
SketchPoint_53 = SketchProjection_25.createdFeature ()

Sketch_5.setCoincident (SketchLine_62.endPoint (), SketchPoint_53.result())

SketchLine_63 = Sketch_5.addLine (6.375124, -5.374969927273495, 6.375124, -5.987569927273494)
Sketch_5.setCoincident (SketchLine_62.endPoint (), SketchLine_63.startPoint ())
SketchProjection_26 = Sketch_5.addProjection(model.selection( s ), False)
SketchPoint_54 = SketchProjection_26.createdFeature ()

Sketch_5.setCoincident (SketchLine_63.endPoint (), SketchPoint_54.result())

SketchLine_64 = Sketch_5.addLine(6.375124, -5.987569927273494, 10.21, -4.960018)
Sketch_5.setCoincident (SketchLine_63.endPoint (), SketchLine_64.startPoint())
Sketch_5.setCoincident (SketchLine_61.startPoint (), SketchLine_64.endPoint())
SketchProjection_27 = Sketch_5.addProjection(model.selection( s ), False)

SketchLine_65 = SketchProjection_27.createdFeature ()
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SketchConstraintMirror_5_objects = [SketchLine_64.result(), SketchLine_61.result(),
SketchLine_63.result (), SketchLine_62.result ()]

SketchConstraintMirror_5 = Sketch_5.addMirror (SketchlLine_65.result (),
SketchConstraintMirror_5_objects)

[SketchLine_66, SketchLine_67, SketchLine_68, SketchLine_69] =
SketchConstraintMirror_5.mirrored ()

model.do ()

Sketch_6 = model.addSketch(Part_1_doc, model.defaultPlane ( ))

SketchLine_70 = Sketch_6.addLine(10.21, 5.425594, 10.21, 6.038194000000001)
SketchProjection_28 = Sketch_6.addProjection(model.selection( s ), False)
SketchPoint_55 = SketchProjection_28.createdFeature ()

Sketch_6.setCoincident (SketchLine_70.startPoint (), SketchPoint_55.result())
SketchProjection_29 = Sketch_6.addProjection(model.selection( s ), False)
SketchPoint_56 = SketchProjection_29.createdFeature ()

Sketch_6.setCoincident (SketchLine_70.endPoint (), SketchPoint_56.result())

SketchLine_71 = Sketch_6.addLine(10.21, 6.038194000000001, 6.375124, 7.065745927273495)
Sketch_6.setCoincident (SketchLine_70.endPoint (), SketchLine_71.startPoint())
SketchProjection_30 = Sketch_6.addProjection(model.selection( s ), False)
SketchPoint_57 = SketchProjection_30.createdFeature ()

Sketch_6.setCoincident (SketchLine_71.endPoint (), SketchPoint_57.result())

SketchLine_72 = Sketch_6.addLine(6.375124, 7.065745927273495, 6.375124, 6.453145927273495)
Sketch_6.setCoincident (SketchLine_71.endPoint (), SketchLine_72.startPoint())
SketchProjection_31 = Sketch_6.addProjection(model.selection( s ), False)
SketchPoint_58 = SketchProjection_31.createdFeature ()

Sketch_6.setCoincident (SketchLine_72.endPoint (), SketchPoint_58.result())

SketchLine_73 = Sketch_6.addLine (6.375124, 6.453145927273495, 10.21, 5.425594)
Sketch_6.setCoincident (SketchLine_72.endPoint (), SketchLine_73.startPoint())
Sketch_6.setCoincident (SketchLine_70.startPoint (), SketchLine_73.endPoint())

model.do ()

Sketch_7 = model.addSketch(Part_1_doc, model.selection( s )

SketchLine_74 = Sketch_7.addLine (-6.924422000000002, 3.827729, -9.170622000000002, 3.827729)
SketchProjection_32 = Sketch_7.addProjection(model.selection( , ), False)
SketchPoint_59 = SketchProjection_32.createdFeature ()

Sketch_7.setCoincident (SketchLine_74.startPoint (), SketchPoint_59.result())
Sketch_7.setHorizontal (SketchLine_74.result())

SketchLine_75 = Sketch_7.addLine (-9.170622000000002, 3.827729, -9.170622000000002, 3.552059)
Sketch_7.setCoincident (SketchLine_74.endPoint (), SketchLine_75.startPoint())
Sketch_7.setVertical (SketchLine_75.result ())

SketchLine_76 = Sketch_7.addLine (-9.170622000000002, 3.552059, -6.924422000000002, 3.827729)
Sketch_7.setCoincident (SketchLine_75.endPoint (), SketchLine_76.startPoint ())

Sketch_7 .setCoincident (SketchLine_74.startPoint (), SketchLine_76.endPoint())
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SketchProjection_33 = Sketch_7.addProjection(model.selection( s ), True)
SketchPoint_60 = SketchProjection_33.createdFeature ()
Sketch_7.setCoincident (SketchLine_75.endPoint (),

SketchAPI_Point (SketchPoint_60).coordinates ())

SketchProjection_34 = Sketch_7.addProjection(model.selection( , ), False)
SketchProjection_34.setName ( )
SketchProjection_34.result () .setName ( )

SketchLine_77 = SketchProjection_34.createdFeature ()

SketchlLine_77.setName ( )

SketchLine_77.result () .setName( )

SketchConstraintMirror_6_objects = [SketchLine_76.result(), SketchLine_74.result(),
SketchLine_75.result ()]

SketchConstraintMirror_6 = Sketch_7.addMirror (SketchLine_77.result (),
SketchConstraintMirror_6_objects)

[SketchLine_78, SketchLine_79, SketchLine_80] = SketchConstraintMirror_6.mirrored ()

SketchlLine_80.setName ( )

SketchLine_80.result () .setName( )

SketchLine_79.setName ( )

SketchLine_79.result () .setName ( )

SketchLine_78.setName ( )

SketchLine_78.result () .setName ( )

model.do ()

Sketch_8 = model.addSketch(Part_1_doc, model.selection( s ))

SketchLine_81 = Sketch_8.addLine (-6.924422000000002, -4.255528, =-9.170622000000002,
-4.255528)

SketchLine_81.setName ( )

SketchLine_81.result () .setName ( )

SketchProjection_35 = Sketch_8.addProjection(model.selection( , ), False)

SketchProjection_35.setName ( )

SketchProjection_35.result () .setName ( )

SketchPoint_61 = SketchProjection_35.createdFeature ()

Sketch_8.setCoincident (SketchLine_81.startPoint (), SketchPoint_61.result())

Sketch_8.setHorizontal (SketchLine_81.result ())

SketchLine_82 = Sketch_8.addLine (-9.170622000000002, -4.255528, -9.170622000000002,
-3.979858)

SketchLine_82.setName ( )

SketchLine_82.result () .setName ( )

Sketch_8.setCoincident (SketchLine_81.endPoint (), SketchLine_82.startPoint())

Sketch_8.setVertical (SketchLine_82.result ())

SketchLine_83 = Sketch_8.addLine(-9.170622000000002, -3.979858, -6.924422000000002,
-4.255528)

SketchLine_83.setName ( )

SketchLine_83.result () .setName ( )
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Sketch_8.setCoincident (SketchlLine_82.endPoint (), SketchLine_83.startPoint())
Sketch_8.setCoincident (SketchLine_81.startPoint (), SketchLine_83.endPoint())
SketchProjection_36 = Sketch_8.addProjection(model.selection( s ), True)
SketchProjection_36.setName ( )
SketchProjection_36.result () .setName ( )
SketchPoint_62 = SketchProjection_36.createdFeature ()
Sketch_8.setCoincident (SketchLine_82.endPoint (),

SketchAPI_Point (SketchPoint_62).coordinates ())
model.do ()

Sketch_9 = model.addSketch(Part_1_doc, model.defaultPlane ( )

SketchProjection_37 = Sketch_9.addProjection(model.selection( s ), False)

SketchPoint_63 = SketchProjection_37.createdFeature ()

SketchProjection_38 = Sketch_9.addProjection(model.selection( s ), False)

SketchPoint_64 = SketchProjection_38.createdFeature ()

SketchProjection_39 = Sketch_9.addProjection(model.selection( , ), False)

SketchPoint_65 = SketchProjection_39.createdFeature ()

SketchProjection_40 = Sketch_9.addProjection(model.selection( s ), False)

SketchPoint_66 = SketchProjection_40.createdFeature ()

SketchBSpline_9 = Sketch_9.addSpline(poles = [(51.13397793460088, -0.89522301),
(57.87257793460088, -0.89522301), (57.87257793460088, 0), (64.81537793460087, 0)1])

[SketchPoint_67, SketchPoint_68, SketchPoint_69, SketchPoint_70] =
SketchBSpline_9.controlPoles (auxiliary = [0, 1, 2, 3])

[SketchLine_84, SketchLine_85, SketchLine_86] = SketchBSpline_9.controlPolygon(auxiliary =
[o, 1, 21)

Sketch_9.setCoincident (SketchAPI_Point (SketchPoint_67).coordinates (),
SketchPoint_63.result ())

Sketch_9.setCoincident (SketchAPI_Point (SketchPoint_68).coordinates (),
SketchPoint_64.result ())

Sketch_9.setCoincident (SketchAPI_Point (SketchPoint_69).coordinates (),
SketchPoint_65.result ())

Sketch_9.setCoincident (SketchAPI_Point (SketchPoint_70).coordinates (),
SketchPoint_66.result ())

SketchLine_87 = Sketch_9.addLine(71.55397793460088, 0, 64.81537793460087, 0)

SketchProjection_41 = Sketch_9.addProjection(model.selection( , ), False)

SketchPoint_71 = SketchProjection_41.createdFeature ()

Sketch_9.setCoincident (SketchLine_87.startPoint (), SketchPoint_71.result())

Sketch_9.setCoincident (SketchAPI_Point (SketchPoint_66).coordinates (),
SketchLine_87.endPoint ())

SketchLine_88 = Sketch_9.addLine (51.13397793460088, -0.89522301, 71.55397793460088,
-0.89522301)

Sketch_9.setCoincident (SketchAPI_Point (SketchPoint_63).coordinates (),
SketchLine_88.startPoint ())

Sketch_9.setHorizontal (SketchLine_88.result())

38
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SketchLine_89 = Sketch_9.addLine(71.55397793460088, -0.89522301, 71.55397793460088, 0)
Sketch_9.setCoincident (SketchLine_88.endPoint (), SketchLine_89.startPoint())
Sketch_9.setCoincident (SketchLine_87.startPoint (), SketchLine_89.endPoint())
Sketch_9.setVertical (SketchLine_89.result ())

SketchProjection_42 = Sketch_9.addProjection(model.selection( , ), False)
SketchLine_90 = SketchProjection_42.createdFeature ()
SketchConstraintMirror_7_objects = [SketchlLine_85.result(), SketchLine_84.result(),

SketchLine_89.result (), SketchLine_88.presult(), SketchLine_87.result(),
SketchLine_86.result ()]

SketchConstraintMirror_7 = Sketch_9.addMirror (SketchLine_90.result (),
SketchConstraintMirror_7_objects)

[SketchLine_91, SketchLine_92, SketchLine_93, SketchLine_94, SketchLine_95, SketchLine_96]
= SketchConstraintMirror_7.mirrored ()

SketchBSpline_10 = Sketch_9.addSpline(poles = [(51.13397793460088, 6.320817010000001) ,
(57.87257793460088, 6.320817010000001), (57.87257793460088, 5.425594),
(64.81537793460087, 5.425594)1])

[SketchPoint_72, SketchPoint_73, SketchPoint_74, SketchPoint_75] =
SketchBSpline_10.controlPoles (auxiliary = [0, 1, 2, 3])

[SketchLine_97, SketchLine_98, SketchLine_99] = SketchBSpline_10.controlPolygon (auxiliary =
[o, 1, 21

Sketch_9.setCoincident (SketchAPI_Point (SketchPoint_72).coordinates (),

SketchAPI_Line (SketchLine_92).startPoint ())

Sketch_9.setCoincident (SketchAPI_Line (SketchlLine_97).endPoint (),

SketchAPI_Line (SketchLine_92) .endPoint ())

Sketch_9.setCoincident (SketchAPI_Line (SketchLine_98) .endPoint (),

SketchAPI_Line (SketchLine_91).endPoint ())

Sketch_9.setCoincident (SketchAPI_Point (SketchPoint_75).coordinates (),

SketchAPI_Line (SketchLine_96) .endPoint ())
model.do ()

Sketch_10 = model.addSketch(Part_1_doc, model.defaultPlane ( ))

SketchBSpline_11 = Sketch_10.addSpline(poles = [(51.13397793460088, -5.04300488),
(57.87257793460088, -5.04300488), (57.87257793460088, -4.347418), (64.81537793460087,
-4.347418)1)

[SketchPoint_76 , SketchPoint_77, SketchPoint_78, SketchPoint_79] =
SketchBSpline_11.controlPoles (auxiliary = [0, 1, 2, 3])

[SketchLine_100, SketchLine_101, SketchLine_102] =
SketchBSpline_11.controlPolygon(auxiliary = [0, 1, 2])

SketchProjection_43 = Sketch_10.addProjection(model.selection( s ), False)

SketchPoint_80 = SketchProjection_43.createdFeature ()

Sketch_10.setCoincident (SketchAPI_Point (SketchPoint_80).coordinates (),

SketchAPI_Point (SketchPoint_76).coordinates ())
SketchProjection_44 = Sketch_10.addProjection(model.selection( s ), False)

SketchPoint_81 = SketchProjection_44.createdFeature ()
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Sketch_10.setCoincident (SketchAPI_Point (SketchPoint_77).coordinates (),
SketchAPI_Point (SketchPoint_81).coordinates ())

SketchProjection_45 = Sketch_10.addProjection(model.selection( B ), False)

SketchPoint_82 = SketchProjection_45.createdFeature ()

Sketch_10.setCoincident (SketchAPI_Line (SketchLine_101).endPoint (),

SketchAPI_Point (SketchPoint_82).coordinates ())

SketchProjection_46 = Sketch_10.addProjection(model.selection( s ), False)

SketchPoint_83 = SketchProjection_46.createdFeature ()

Sketch_10.setCoincident (SketchAPI_Point (SketchPoint_79).coordinates (),

SketchAPI_Point (SketchPoint_83).coordinates ())

SketchLine_103 = Sketch_10.addLine (64.81537793460087, -4.347418, 71.55397793460088,
-4.347418)

Sketch_10.setCoincident (SketchBSpline_11.endPoint (), SketchLine_103.startPoint())

SketchProjection_47 = Sketch_10.addProjection(model.selection( , ), False)

SketchPoint_84 = SketchProjection_47.createdFeature ()

Sketch_10.setCoincident (SketchLine_103.endPoint (), SketchPoint_84.result())

SketchLine_104 = Sketch_10.addLine (71.55397793460088, -4.347418, 71.55397793460088,
-5.04300488)

Sketch_10.setCoincident (SketchLine_103.endPoint (), SketchLine_104.startPoint ())

Sketch_10.setVertical (SketchLine_104.result())

SketchLine_105 = Sketch_10.addLine(71.55397793460088, -5.04300488, 51.13397793460088,
-5.04300488)

Sketch_10.setCoincident (SketchLine_104.endPoint (), SketchLine_105.startPoint ())

Sketch_10.setCoincident (SketchBSpline_11.startPoint (), SketchLine_105.endPoint ())

Sketch_10.setHorizontal (SketchLine_105.result ())

SketchProjection_48 = Sketch_10.addProjection(model.selection( s ), False)

SketchLine_106 = SketchProjection_48.createdFeature ()

SketchConstraintMirror_8_objects = [SketchLine_105.result(), SketchLine_100.result(),
SketchLine_101.result(), SketchLine_102.result(), SketchLine_104.result(),
SketchLine_103.result ()]

SketchConstraintMirror_8 = Sketch_10.addMirror (SketchLine_106.result (),
SketchConstraintMirror_8_objects)

[SketchLine_107, SketchLine_108, SketchLine_109, SketchLine_110, SketchLine_111,
SketchLine_112] = SketchConstraintMirror_8.mirrored ()

SketchBSpline_12 = Sketch_10.addSpline(poles = [(51.13397793460088, 5.04300488),
(57.87257793460088, 5.04300488), (57.87257793460088, 4.347418), (64.81537793460087,
4.347418)1)

[SketchPoint_85, SketchPoint_86, SketchPoint_87, SketchPoint_88] =
SketchBSpline_12.controlPoles (auxiliary = [0, 1, 2, 3])

[SketchLine_113, SketchLine_114, SketchLine_115] =
SketchBSpline_12.controlPolygon (auxiliary = [0, 1, 2])

Sketch_10.setCoincident (SketchAPI_Point (SketchPoint_85).coordinates (),

SketchAPI_Line (SketchLine_108).startPoint ())

Sketch_10.setCoincident (SketchAPI_Line (SketchLine_113).endPoint (),

SketchAPI_Line (SketchLine_108).endPoint ())
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Sketch_10.setCoincident (SketchAPI_Point (SketchPoint_87).coordinates (),

SketchAPI_Line (SketchLine_109).endPoint ())

Sketch_10.setCoincident (SketchBSpline_12.endPoint (),

SketchAPI_Line (SketchLine_110).endPoint ())

model.do ()
ExtrusionCut_1 = model.addExtrusionCut (Part_1_doc, [model.selection(
)], model.selection(), model.selection( s
model.selection(), 0, [model.selection( , )1)
ExtrusionCut_2 = model.addExtrusionCut (Part_1_doc, [model.selection(
)], model.selection(), model.selection( s
model.selection ( s ), 0, [model.selection( s
ExtrusionCut_3 = model.addExtrusionCut (Part_1_doc, [model.selection(
), model.selection( , )], model.selection(),
[model.selection( , )1
ExtrusionCut_4 = model.addExtrusionCut (Part_1_doc, [model.selection(
), model.selection( , )], model.selection(),
[model.selection( s )1
Cut_1 = model.addCut(Part_1_doc, [model.selection( s
[model.selection ( , ), model.selection( s
keepSubResults = True)
ExtrusionCut_5_objects_2 [model.selection( s ),
model .selection ( , ),
model.selection( s )]
ExtrusionCut_5 = model.addExtrusionCut (Part_1_doc, [model.selection(
), model.selection( s )], model.selection(),
ExtrusionCut_5_objects_2)
Cut_2_objects_1 = [model.selection( , ),
model.selection ( , ),
model.selection ( , )]

Cut_2 = model.addCut (Part_1_doc,

keepSubResults = True)

Cut_2.result().setTransparency (0.8)

Cut_2.results () [1].setTransparency (0.8)

Cut_2.results () [2].setTransparency (0.8)

Cut_2_objects_1, [model.selection(

ExtrusionCut_6 = model.addExtrusionCut (Part_1_doc, [model.selection(

), model.selection(

[model.selection(

Fuse_1_objects_1 = [model.

model

model.
model.

model.

model

3

selection(

.selection(

selection(
selection (

selection (

.selection(

)1

s )], model.selection(),

)1

)1,
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Fuse_1 = model.addFuse(Part_1_doc, Fuse_1_objects_1, removeEdges = True, keepSubResults =
True)
Fillet_1_objects = [model.selection("FACE", "Fuse_1_1/Modified_Face&Box_6_1/Back"),
model.selection("FACE",
"Fuse_1_1/Modified_Face&Sketch_5/SketchLine_62"),
model.selection("FACE",
"Fuse_1_1/Modified_Face&Sketch_5/SketchLine_64"),
model.selection("FACE",
"Fuse_1_1/Modified_Face&ExtrusionCut_1_1/To_Face_1&Sketch_6/SketchLine_71&Extrusio:
model.selection("FACE",
"Fuse_1_1/Modified_Face&Sketch_5/SketchLine_69"),
model.selection("FACE",
"Fuse_1_1/Modified_Face&Sketch_5/SketchLine_66"),
model.selection("FACE",
"Fuse_1_1/Modified_Face&Sketch_3/SketchBSpline_6"),
model.selection("FACE",
"Fuse_1_1/Modified_Face&Sketch_3/SketchBSpline_5")]
Fillet_1 = model.addFillet (Part_1_doc, Fillet_1_objects, "0.02%L/2", keepSubResults = True)
Fillet_2_objects = [model.selection("FACE",
"Fillet_1_1/MF:Fillet&Box_1_1/Bottom&Sketch_1/SketchLine_4&Box_5_1/Bottom"),
model.selection("FACE", "Fuse_1_1/Modified_Face&Box_4_1/Front"),
model.selection("FACE", "Fuse_ 1_1/Modified Face&Box_ 1_1/Left"),
model.selection("FACE",
"Fillet_1_1/MF:Fillet&Box_1_1/Front&Box_5_1/Front"),
model.selection("FACE", "Fuse_1_1/Modified Face&Box_1_1/Right"),
model.selection("FACE", "Box_4_1/Top"),
model.selection("FACE", "Box_4_1/Right"),
model.selection("FACE", "Box_4_1/Left"),
model.selection("FACE", "Box_1_1/Top"),
model.selection("FACE",
"ExtrusionCut_3_1/Generated_Face&Sketch_1/SketchBSpline_2")]
Fillet_2 = model.addFillet(Part_1_doc, Fillet_2_objects, "0.008+L/2", keepSubResults = True)

Fillet_2.result().setTransparency (0.8)

Export_1 = model.exportToXAO(Part_1_doc, folder + ’/XAO/Tunnel.xao’,
model.selection("SOLID", "Fillet_2_1"), ’XA0’)

Export_2 = model.exportToXAO(Part_1_doc, folder + ’/XAO/NShearl.xao’,
model.selection("SOLID", "Cut_2_1"), ’XA07)

Export_3 = model.exportToXAO(Part_1_doc, folder + ’/XAO/NShear2.xao’,
model.selection("SOLID", "Cut_2_2"), ’XA0’)

Export_4 = model.exportToXAO(Part_1_doc, folder + ’/XAO/NShear3.xao’,
model.selection("SOLID", "Cut_2_3"), ’XA0’)

Export_5 = model.exportToXAO(Part_1_doc, folder + ’/XAO/ImportantAreal.xao’,
model.selection("SOLID", "Box_11_1"), ’XAD’)

Export_6 = model.exportToXAO(Part_1_doc, folder + °’/XAO/ImportantArea2.xao’,
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model.selection("SOLID", "Box_12_1"), ’XAD’)

model.do ()

Part_2 = model.addPart (partSet)

Part_2.setName ("Vehicle")

Part_2.result () .setName ("Vehicle")

Part_2_doc = Part_2.document ()

model .addParameter (Part_2_doc, "1", str(VehicleParam[0]), ’Length’)

model .addParameter (Part_2_doc, "w", str(VehicleParam[1]), ’Width’)

model.addParameter (Part_2_doc, "h", str(VehicleParam[2]), ’Height’)

model .addParameter (Part_2_doc, "v", str(VehicleParam[3]), ’Volume’)

model .addParameter (Part_2_doc, "o_f", str(VehicleParam[4]), ’Front Overhang’)
model.addParameter (Part_2_doc, "o_r", str(VehicleParam[5]), ’Rear Overhang’)
model.addParameter (Part_2_doc, "h_f", str(VehicleParam[6]), ’Front Wheel Well Height’)
model .addParameter (Part_2_doc, "h_r", str(VehicleParam[7]), ’Rear Wheel Well Height’)
model . addParameter (Part_2_doc, "r", str(VehicleParam[8]), ’Ride Height’)

model .addParameter (Part_2_doc, "t", ’(v/(w*h*0.85)+h)’, ’Characteristic Trunk Size’)
model.addParameter (Part_2_doc, "s", ’-0.88665%xt+0.68679°, ’Trunk Shape Factor’)

model.addParameter (Part_2_doc, "TunnelPlacement", str(TunnelParam[11]))

Point_66 = model.addPoint (Part_2_doc, "1/2", "(wx1)/2", "(h*1)")

Point_67 = model.addPoint (Part_2_doc, "-1/2", "0", "(r*1)")

Point_68 = model.addPoint(Part_2_doc, "-1#*(1/2-(o_£f)/3)", "0", "(r*1)")

Point_69 = model.addPoint (Part_2_doc, "-1/2", "O0", "l*(r+h/8)")

Point_70 = model.addPoint (Part_2_doc, "-1/2", "0", "1*(r+h*11/20)")

Point_71 = model.addPoint (Part_2_doc, "-1/2+1/4%(h+1/2)*sin(80*pi/180)", "0",
"1*(r+h*11/20) -cos (80*pi/180)")

Point_72 = model.addPoint (Part_2_doc, "-1/8", "O", "h*1")

Point_73 = model.addPoint (Part_2_doc, "O", "wx1/2", "h*1")

Point_74 = model.addPoint (Part_2_doc, "1*(1/2-o0_r)", "0", "rx1")

Point_75 = model.addPoint (Part_2_doc, "1/2", "O0", "r*1")

Point_76 = model.addPoint (Part_2_doc, "1/2", "0", "1*(r+h/10)")

Point_77 = model.addPoint (Part_2_doc, "1/2", "0", "I1*x(r+h/2)")
Point_78 = model.addPoint (Part_2_doc, "1/2", "0", "l*(r+h=*5/8)")
Point_79 = model.addPoint (Part_2_doc, "1/2-(s*1)#*sin((30+40*(1-s*h))*pi/180)", "0",

"h*1l-(s*1)*cos ((30+40%(1-s*h))*pi/180)")

Point_80 = model.addPoint (Part_2_doc,
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> )
Point_81 = model.
Point_82 = model.
Point_83 = model.
Point_84 = model
Point_85 = model.
Point_86 = model.
Point_87 = model
Point_88 = model
Point_89 = model.
Point_90 = model.
Point_91 = model
Point_92 = model.
Point_93 = model.
Point_94 = model
Point_94.setName (

Point_94.result ()

addPoint (Part_2_doc
addPoint (Part_2_doc
addPoint (Part_2_doc

.addPoint (Part_2_doc

addPoint (Part_2_doc

addPoint (Part_2_doc

.addPoint (Part_2_doc

.addPoint (Part_2_doc

addPoint (Part_2_doc
addPoint (Part_2_doc

.addPoint (Part_2_doc

addPoint (Part_2_doc

addPoint (Part_2_doc

.addPoint (Part_2_doc

)

.setName (

>
5>
s
s
>
>
>
>
s>
s
s>
s>
>

>

)

Point_95 = model.addPoint (Part_2_doc,

Point_95.setName (

Point_95.result ()

)

.setName (

)

Point_96 = model.addPoint (Part_2_doc,

Point_96.setName (

Point_96.result ()

)

.setName (

)

Point_97 = model.addPoint (Part_2_doc,

Point_97.setName (

Point_97 .result ()

)

.setName (

)

Point_98 = model.addPoint (Part_2_doc,

Point_98.setName (

Point_98.result ()

)

.setName (

)

Point_99 = model.addPoint (Part_2_doc,

Point_99.setName (

)

Point_99

.result () .setName (

)

Point_100 = model.addPoint (Part_2_doc

Point_100.setName ( )

Point_100.result ().setName (

Point_101 = model.addPoint (Part_2_doc

Point_101.setName ( )

Point_101.result () .setName (

Point_102 = model.addPoint (Part_2_doc

Point_102.setName ( )

Point_102.result () .setName (

Point_103 = model.addPoint (Part_2_doc

Point_103.setName ( )

Point_103.result () .setName (

>

>

>

>
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Point_104 = model.addPoint (Part_2_doc, s s )
Point_104.setName ( )

Point_104.result () .setName ( )

Point_105 = model.addPoint (Part_2_doc, s , )
Point_105.setName ( )

Point_105.result () .setName ( )

Point_106 = model.addPoint (Part_2_doc, s s )
Point_106.setName ( )

Point_106.result () .setName ( )

Point_107 = model.addPoint (Part_2_doc, . , )
Point_107.setName ( )

Point_107.result () .setName ( )

Point_108 = model.addPoint (Part_2_doc, s s )
Point_108.setName ( )

Point_108.result () .setName ( )

Point_109 = model.addPoint (Part_2_doc, , s )
Point_109.setName ( )

Point_109.result () .setName ( )

Point_110 = model.addPoint (Part_2_doc, s s )
Point_110.setName ( )

Point_110.result () .setName ( )

Point_111 = model.addPoint (Part_2_doc, s s )
Point_111.setName( )

Point_111.result () .setName ( )

Point_112 = model.addPoint (Part_2_doc, s s )
Point_112.setName ( )

Point_112.result () .setName ( )

Point_113 = model.addPoint (Part_2_doc, s s )
Point_113.setName( )

Point_113.result () .setName ( )

Point_114 = model.addPoint (Part_2_doc, . , )
Point_114.setName ( )

Point_114.result () .setName ( )

Point_115 = model.addPoint (Part_2_doc, s s )
Point_115.setName ( )

Point_115.result () .setName ( )

Point_116 = model.addPoint (Part_2_doc, s B )
Point_116.setName ( )

Point_116.result () .setName ( )

Point_117 = model.addPoint (Part_2_doc, s , )
Point_117.setName ( )

Point_117.result () .setName ( )

Point_118 = model.addPoint (Part_2_doc, s s )
Point_118.setName ( )

Point_118.result () .setName ( )



Appendix B 96

Box_14 = model.addBox(Part_2_doc, model.selection("VERTEX", "Point_1"),
model.selection("VERTEX", "Point_2"))

Box_15 = model.addBox(Part_2_doc, model.selection("VERTEX", "Point_46"),
model.selection("VERTEX", "Point_47"))

Box_16 = model.addBox(Part_2_doc, model.selection("VERTEX", "Point_52"),
model.selection("VERTEX", "Point_53"))

Box_17 = model.addBox(Part_2_doc, model.selection("VERTEX", "Point_50"),
model.selection("VERTEX", "Point_51"))

Box_18 = model.addBox(Part_2_doc, model.selection("VERTEX", "Point_48"),
model.selection("VERTEX", "Point_49"))

Box_19 = model.addBox(Part_2_doc, model.selection("VERTEX", "Point_54"),

model.selection("VERTEX", "Point_55"))

Plane_7 = model.addPlane(Part_2_doc, model.selection("VERTEX", "Point_21"),

model.selection("VERTEX", "Point_24"), model.selection("VERTEX", "Point_ 31"))

# t parameter determines the rear placement of the spoiler, with 0.62 being the approximate
change between a sedan and a hatchback

# t>0.62 represents hatchback spoiler placement

**

t<0.62 represents sedan spoiler placement

t = VehicleParam[3]/(VehicleParam[1]*VehicleParam[2]*0.85)+VehicleParam[2]

if t>= 0.62:

Sketch_11 = model.addSketch(Part_2_doc, model.defaultPlane("X0Z"))
SketchBSpline_13 = Sketch_11.addSpline(poles=[(-1.763393333333333, 0.14007), (-2.03,
0.14007), (-2.03, 0.32129825)1)
[SketchPoint_89, SketchPoint_90, SketchPoint_91] =
SketchBSpline_13.controlPoles (auxiliary=[0, 1, 2])
[SketchLine_116, SketchLine_117] = SketchBSpline_13.controlPolygon(auxiliary=[0, 1])
SketchBSpline_14_poles = [(-2.03, 0.32129825),
(-2.03, 0.9374742999999999),
(-1.173260094016635, 0.7638261223330695),
(-0.5075, 1.449826),
(0, 1.449826)
]
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SketchBSpline_14 = Sketch_11.addSpline(poles=SketchBSpline_14_poles)
[SketchPoint_92, SketchPoint_93, SketchPoint_94, SketchPoint_95, SketchPoint_96] =
SketchBSpline_14.controlPoles(
auxiliary=[0, 1, 2, 3, 4])
[SketchLine_118, SketchLine_119, SketchLine_120, SketchLine_121] =
SketchBSpline_14.controlPolygon/(
auxiliary=[0, 1, 2, 3])
SketchBSpline_15_poles = [(0, 1.449826),
(1.551607191560884, 1.449826),
(1.673039346430912, 1.310305442946679) ,
(2.03, 1.04621125),
(2.03, 0.8649829999999998)
]
SketchBSpline_15 = Sketch_11.addSpline(poles=SketchBSpline_15_poles)
[SketchPoint_97, SketchPoint_98, SketchPoint_99, SketchPoint_100, SketchPoint_101] =
SketchBSpline_15.controlPoles(
auxiliary=[0, 1, 2, 3, 4])
[SketchLine_122, SketchLine_123, SketchLine_124, SketchLine_125] =
SketchBSpline_15.controlPolygon/(
auxiliary=[0, 1, 2, 3])
SketchBSpline_16 = Sketch_11.addSpline(poles=[(2.03, 0.2850525999999999), (2.03,
0.14007), (1.429932, 0.14007)1,
weights=[2, 1, 11)
[SketchPoint_102, SketchPoint_103, SketchPoint_104] =
SketchBSpline_16.controlPoles (auxiliary=[0, 1, 2])
[SketchLine_126, SketchLine_127] = SketchBSpline_16.controlPolygon(auxiliary=[0, 1])
SketchProjection_49 = Sketch_11.addProjection(model.selection( s ),
False)
SketchPoint_105 = SketchProjection_49.createdFeature ()
Sketch_11.setCoincident (SketchAPI_Point (SketchPoint_89).coordinates (),
SketchAPI_Point (SketchPoint_105).coordinates())
SketchProjection_50 = Sketch_11.addProjection(model.selection/( s ),
False)
SketchPoint_106 = SketchProjection_50.createdFeature ()
Sketch_11.setCoincident (SketchAPI_Point (SketchPoint_90).coordinates (),
SketchAPI_Point (SketchPoint_106).coordinates ())
SketchProjection_51 = Sketch_11.addProjection(model.selection( s ),
False)
SketchPoint_107 = SketchProjection_51.createdFeature ()
Sketch_11.setCoincident (SketchAPI_Point (SketchPoint_91).coordinates (),
SketchAPI_Point (SketchPoint_107).coordinates ())
Sketch_11.setCoincident (SketchAPI_Point (SketchPoint_92).coordinates (),
SketchAPI_Point (SketchPoint_91).coordinates ())
SketchProjection_52 = Sketch_11.addProjection(model.selection( s ),

False)
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SketchPoint_108 = SketchProjection_52.createdFeature ()
Sketch_11.setCoincident (SketchAPI_Line(SketchLine_118).endPoint (),

SketchAPI_Point (SketchPoint_108).coordinates ())

SketchProjection_53 = Sketch_11.addProjection(model.selection( s

False)

SketchPoint_109 = SketchProjection_53.createdFeature ()
Sketch_11.setCoincident (SketchAPI_Point (SketchPoint_94).coordinates (),

SketchAPI_Point (SketchPoint_109).coordinates ())

SketchProjection_54 = Sketch_11.addProjection(model.selection( s

False)

SketchPoint_110 = SketchProjection_54.createdFeature ()
Sketch_11.setCoincident (SketchAPI_Point (SketchPoint_95).coordinates (),

SketchAPI_Point (SketchPoint_110).coordinates ())

SketchProjection_55 = Sketch_ll.addProjection(model.selection( R

False)

SketchPoint_111 = SketchProjection_55.createdFeature ()
Sketch_11.setCoincident (SketchBSpline_14.endPoint (),

SketchAPI_Point (SketchPoint_111).coordinates ())
Sketch_11.setCoincident (SketchBSpline_15.startPoint (), SketchBSpline_14
SketchProjection_56 = Sketch_11.addProjection(model.selection( s

False)

SketchPoint_112 = SketchProjection_56.createdFeature ()
Sketch_11.setCoincident (SketchAPI_Line (SketchLine_122).endPoint (),

SketchAPI_Point (SketchPoint_112).coordinates())

SketchProjection_57 = Sketch_11.addProjection(model.selection( ,

False)

SketchPoint_113 = SketchProjection_57.createdFeature ()
Sketch_11.setCoincident (SketchAPI_Point (SketchPoint_99).coordinates (),

SketchAPI_Point (SketchPoint_113).coordinates ())

SketchProjection_58 = Sketch_11.addProjection(model.selection( s

False)

SketchPoint_114 = SketchProjection_58.createdFeature ()
Sketch_11.setCoincident (SketchAPI_Line(SketchLine_124).endPoint (),

SketchAPI_Point (SketchPoint_114).coordinates ())

SketchProjection_59 = Sketch_11.addProjection(model.selection( s

False)

SketchPoint_115 = SketchProjection_59.createdFeature ()
Sketch_11.setCoincident (SketchBSpline_15.endPoint (),

SketchAPI_Point (SketchPoint_115).coordinates ())

SketchProjection_60 = Sketch_11.addProjection(model.selection( ,

False)

SketchPoint_116 = SketchProjection_60.createdFeature ()
Sketch_11.setCoincident (SketchBSpline_16.startPoint (),
SketchAPI_Point (SketchPoint_116).coordinates ())

SketchProjection_61 = Sketch_11.addProjection(model.selection/( ,

.endPoint ())
),
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False)
SketchPoint_117 = SketchProjection_61.createdFeature ()
Sketch_11.setCoincident (SketchAPI_Line (SketchLine_127).startPoint (),
SketchAPI_Point (SketchPoint_117).coordinates())
SketchProjection_62 = Sketch_11.addProjection(model.selection( , ),
False)
SketchPoint_118 = SketchProjection_62.createdFeature ()
Sketch_11.setCoincident (SketchAPI_Line(SketchLine_127).endPoint (),
SketchAPI_Point (SketchPoint_118).coordinates ())
SketchLine_128 = Sketch_11.addLine(2.03, 0.8649829999999998, 2.03, 0.2850525999999999)
Sketch_11.setCoincident (SketchBSpline_15.endPoint (), SketchLine_128.startPoint ())
Sketch_11.setCoincident (SketchBSpline_16.startPoint (), SketchLine_128.endPoint())
SketchLine_129 = Sketch_11.addLine(-1.763393333333333, 0.14007, -2.03, 0.14007)
Sketch_11.setCoincident (SketchBSpline_13.startPoint (), SketchLine_129.startPoint ())
Sketch_11.setCoincident (SketchAPI_Point (SketchPoint_90).coordinates (),
SketchLine_129.endPoint ())
SketchLine_130 = Sketch_11.addLine(-2.03, 0.14007, -2.03, 0.32129825)
Sketch_11.setCoincident (SketchAPI_Point (SketchPoint_90).coordinates (),
SketchLine_130.startPoint ())
Sketch_11.setCoincident (SketchBSpline_13.endPoint (), SketchLine_130.endPoint ())
SketchLine_131 = Sketch_11.addLine(-2.03, 0.32129825, -2.03, 1.449826)
Sketch_11.setCoincident (SketchBSpline_13.endPoint (), SketchLine_131.startPoint())
SketchProjection_63 = Sketch_11.addProjection(model.selection( s ),
False)
SketchPoint_119 = SketchProjection_63.createdFeature()
Sketch_11.setCoincident (SketchLine_131.endPoint (), SketchPoint_119.result())
SketchLine_132 = Sketch_11.addLine(-2.03, 1.449826, 0, 1.449826)
Sketch_11.setCoincident (SketchLine_131.endPoint (), SketchLine_132.startPoint())
Sketch_11.setCoincident (SketchBSpline_14.endPoint (), SketchLine_132.endPoint ())
SketchLine_133 = Sketch_11.addLine (0, 1.449826, 2.03, 1.449826)
Sketch_11.setCoincident (SketchBSpline_14.endPoint (), SketchLine_133.startPoint())
SketchProjection_64 = Sketch_11.addProjection(model.selection/( s ),
False)
SketchPoint_120 = SketchProjection_64.createdFeature ()
Sketch_11.setCoincident (SketchLine_133.endPoint (), SketchPoint_120.result())
SketchLine_134 = Sketch_11.addLine(2.03, 1.449826, 2.03, 0.8649829999999998)
Sketch_11.setCoincident (SketchLine_133.endPoint (), SketchLine_134.startPoint ())
Sketch_11.setCoincident (SketchBSpline_15.endPoint (), SketchLine_134.endPoint ())
SketchLine_135 = Sketch_11.addLine(2.03, 0.2850525999999999, 2.03, 0.14007)
Sketch_11.setCoincident (SketchBSpline_16.startPoint (), SketchLine_135.startPoint ())
Sketch_11.setCoincident (SketchAPI_Point (SketchPoint_103).coordinates (),
SketchLine_135.endPoint ())
SketchLine_136 = Sketch_11.addLine(2.03, 0.14007, 1.429932, 0.14007)
Sketch_11.setCoincident (SketchAPI_Point (SketchPoint_103).coordinates(),
SketchLine_136.startPoint ())
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Sketch_11.setCoincident (SketchBSpline_16.endPoint (), SketchLine_136.endPoint ())

SketchLine_137 = Sketch_11.addLine(1.270102848723003, 1.449826, 1.574709453303134,
1.368206906293568)

SketchLine_137.setName ( )

SketchLine_137.result () .setName ( )

SketchLine_137.setAuxiliary (True)

SketchLine_138 = Sketch_11.addLine(1.574709453303134, 1.368206906293568,
1.535492864755798, 1.37871495952473)

SketchLine_138.setName ( )

SketchLine_138.result () .setName ( )

SketchLine_138.setAuxiliary (True)

Sketch_11.setCoincident (SketchLine_137.endPoint (), SketchLine_138.startPoint ())

Sketch_11.setCoincident (SketchLine_138.endPoint (), SketchLine_137.result())

SketchLine_139 = Sketch_11.addLine (1.535492864755798, 1.37871495952473,
1.697892864755798, 1.37871495952473)

SketchLine_139.setName ( )

SketchLine_139.result () .setName ( )

SketchLine_139.setAuxiliary (True)

Sketch_11.setCoincident (SketchLine_138.endPoint (), SketchLine_139.startPoint())

Sketch_11.setHorizontal (SketchLine_139.result())

Sketch_11.setAngle (SketchLine_138.result(), SketchLine_139.result(), 15, type= )
Sketch_11.setLength(SketchLine_138.result (), )
Sketch_11.setLength(SketchLine_139.result (), )

SketchLine_140 = Sketch_11.addLine (1.697892864755798, 1.37871495952473,
0.9827608639438197, 0.1400700000000001)

SketchLine_140.setName ( )

SketchLine_140.result () .setName ( )

Sketch_11.setCoincident (SketchLine_139.endPoint (), SketchLine_140.startPoint())

Sketch_11.setAngle (SketchLine_140.result(), SketchLine_139.result(), 60, type= )

Sketch_11.setCoincident (SketchlLine_137.startPoint (), SketchLine_133.result())

Sketch_11.setCoincident (SketchLine_138.endPoint (), SketchBSpline_15.result())

Sketch_11.setCoincident (SketchLine_137.endPoint (), SketchBSpline_15.result())

Sketch_11.setCoincident (SketchLine_140.endPoint (), SketchLine_136.result())

SketchBSpline_17_poles = [(0, spline),

(0.1, spline),

(0.2, spline),

(0.3, spline),

(0.4, spline)

]
SketchBSpline_17 = Sketch_11.addSpline(poles=SketchBSpline_17_poles, weights=[1, 2, 2,
2, 11)

SketchBSpline_17.setName ( )
SketchBSpline_17 .result () .setName ( )

[SketchPoint_121, SketchPoint_122, SketchPoint_123, SketchPoint_124, SketchPoint_125] =
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SketchBSpline_l?.controlPoles(
auxiliary=[0, 1, 2, 3, 41)
[SketchLine_141, SketchLine_142, SketchLine_143, SketchLine_144] =
SketchBSpline_17.controlPolygon (
auxiliary=[0, 1, 2, 3])
Sketch_11.setCoincident (SketchLine_132.endPoint (),
SketchAPI_Point (SketchPoint_121).coordinates ())
Sketch_11.setCoincident (SketchAPI_Point (SketchPoint_122).coordinates (),
SketchBSpline_15.result ())
Sketch_11.setCoincident (SketchAPI_Point (SketchPoint_123).coordinates (),
SketchBSpline_15.result ())
Sketch_11.setCoincident (SketchAPI_Point (SketchPoint_124) .coordinates (),
SketchBSpline_15.result())
Sketch_11.setCoincident (SketchAPI_Point (SketchPoint_125).coordinates (),
SketchLine_140.startPoint ())
Sketch_11.setEqual (SketchLine_141.result (), SketchLine_142.result())
Sketch_11.setEqual (SketchLine_142.result (), SketchLine_143.result())
Sketch_11.setEqual (SketchLine_143.result (), SketchLine_144.result())
model.do ()
Sketch_11.changeFacesOrder ([[SketchBSpline_13.result(), SketchLine_130.result(),
SketchLine_129.result ()],
[SketchBSpline_14.result (), SketchLine_132.result(),
SketchLine_131.result ()],
[SketchBSpline_15.result (), SketchBSpline_17.result(),
SketchLine_140.result (),
SketchBSpline_15.result (), SketchLine_134.result(),
SketchLine_133.result ()],
[SketchBSpline_16.result (), SketchLine_136.result(),
SketchLine_135.result ()],
[SketchBSpline_15.result (), SketchLine_140.result(),
SketchBSpline_17 .result ()],
[SketchBSpline_17.result (), SketchBSpline_15.result ()]
n
model.do ()

Sketch_12 = model.addSketch(Part_2_doc, model.defaultPlane ( ))

SketchBSpline_18 = Sketch_12.addSpline(
poles=[(0.5160666, 1.449826), (0.860111, 1.449826), (0.860111,

0.4832753333333332)], weights=[1, 1, 31)

SketchBSpline_18.setName ( )

SketchBSpline_18.result () .setName ( )

[SketchPoint_126, SketchPoint_127, SketchPoint_128] =
SketchBSpline_18.controlPoles (auxiliary=[0, 1, 2])

[SketchLine_145, SketchLine_146] = SketchBSpline_18.controlPolygon(regular=[0, 1])
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SketchProjection_65 = Sketch_12.addProjection(model.selection( s ),
False)

SketchPoint_129 = SketchProjection_65.createdFeature ()

SketchPoint_129.setName ( )

SketchPoint_129.result () .setName ( )

Sketch_12.setCoincident (SketchAPI_Point (SketchPoint_126).coordinates (),
SketchAPI_Point (SketchPoint_129).coordinates ())

SketchProjection_66 = Sketch_12.addProjection(model.selection( s ),
False)

SketchPoint_130 = SketchProjection_66.createdFeature ()

SketchPoint_130.setName ( )

SketchPoint_130.result () .setName ( )

Sketch_12.setCoincident (SketchAPI_Line(SketchLine_146).startPoint (),
SketchAPI_Point (SketchPoint_130).coordinates ())

SketchProjection_67 = Sketch_12.addProjection(model.selection( s ),
False)

SketchPoint_131 = SketchProjection_67.createdFeature ()

SketchPoint_131.setName ( )

SketchPoint_131.result () .setName ( )

Sketch_12.setCoincident (SketchAPI_Point (SketchPoint_128).coordinates (),
SketchAPI_Point (SketchPoint_131).coordinates ())

model.do ()

Sketch_13 = model.addSketch(Part_2_doc, model.defaultPlane ( ))

SketchBSpline_19 = Sketch_13.addSpline(poles=[(-1.23018, 0.860111), (-2.03, 0.860111),
(-2.03, 0.2867036666666667)1]1)

SketchBSpline_19.setName ( )

SketchBSpline_19.result () .setName ( )

[SketchPoint_132, SketchPoint_133, SketchPoint_134] =
SketchBSpline_19.controlPoles (auxiliary=[0, 1, 2])

[SketchLine_147, SketchLine_148] = SketchBSpline_19.controlPolygon(regular=[0, 1])

SketchBSpline_20 = Sketch_13.addSpline(poles=[(1.429932, 0.860111), (2.03, 0.860111),
(2.03, 0)], weights=[1, 3, 11)

SketchBSpline_20.setName ( )

SketchBSpline_20.result ().setName ( )

[SketchPoint_135, SketchPoint_136, SketchPoint_137] =
SketchBSpline_20.controlPoles (auxiliary=[0, 1, 2])

[SketchLine_149, SketchLine_150] = SketchBSpline_20.controlPolygon(regular=[0, 1])

SketchProjection_68 = Sketch_13.addProjection(model.selection( s ),
False)

SketchPoint_138 = SketchProjection_68.createdFeature ()

SketchPoint_138.setName ( )

SketchPoint_138.result () .setName ( )

Sketch_13.setCoincident (SketchAPI_Point (SketchPoint_134).coordinates (),
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SketchAPI_Point (SketchPoint_138).coordinates ())

SketchProjection_69 = Sketch_13.addProjection(model.selection( s ),
False)

SketchPoint_139 = SketchProjection_69.createdFeature ()

SketchPoint_139.setName ( )

SketchPoint_139.result () .setName ( )

Sketch_13.setCoincident (SketchAPI_Point (SketchPoint_133).coordinates (),
SketchAPI_Point (SketchPoint_139).coordinates ())

SketchProjection_70 = Sketch_13.addProjection(model.selection( s ),
False)

SketchPoint_140 = SketchProjection_70.createdFeature ()

SketchPoint_140.setName ( )

SketchPoint_140.result () .setName ( )

Sketch_13.setCoincident (SketchAPI_Point (SketchPoint_132).coordinates (),
SketchAPI_Point (SketchPoint_140).coordinates ())

SketchProjection_71 = Sketch_13.addProjection(model.selection( s ),
False)

SketchPoint_141 = SketchProjection_71.createdFeature()

SketchPoint_141.setName ( )

SketchPoint_141.result () .setName ( )

Sketch_13.setCoincident (SketchAPI_Point (SketchPoint_135).coordinates (),
SketchAPI_Point (SketchPoint_141).coordinates ())

SketchProjection_72 = Sketch_13.addProjection(model.selection( s ),
False)

SketchPoint_142 = SketchProjection_72.createdFeature()

SketchPoint_142.setName ( )

SketchPoint_142.result () .setName ( )

Sketch_13.setCoincident (SketchAPI_Line(SketchLine_149).endPoint (),
SketchAPI_Point (SketchPoint_142).coordinates())

SketchProjection_73 = Sketch_13.addProjection(model.selection( , ),
False)

SketchPoint_143 = SketchProjection_73.createdFeature()

SketchPoint_143.setName ( )

SketchPoint_143.result () .setName ( )

Sketch_13.setCoincident (SketchAPI_Point (SketchPoint_137).coordinates (),
SketchAPI_Point (SketchPoint_143).coordinates())

model.do ()

Sketch_14 = model.addSketch(Part_2_doc, model.selection( s ))

SketchProjection_74 = Sketch_14.addProjection(model.selection( . ),
False)

SketchPoint_144 = SketchProjection_74.createdFeature ()
SketchPoint_144.setName ( )

SketchPoint_144 .result () .setName ( )
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SketchProjection_75 = Sketch_14.addProjection(model.selection( s ),
False)

SketchPoint_145 = SketchProjection_75.createdFeature ()

SketchPoint_145.setName ( )

SketchPoint_145.result () .setName ( )

SketchCircle_1 = Sketch_14.addCircle(1.429932, -0.2982915833333333, 0.2982915833333333)

Sketch_14.setCoincident (SketchPoint_144.result (), SketchCircle_1.center())

Sketch_14.setCoincident (SketchPoint_145.result (), SketchCircle_1.results () [1])

SketchProjection_76 = Sketch_14.addProjection(model.selection( s ),
False)

SketchPoint_146 = SketchProjection_76.createdFeature ()

SketchPoint_146.setName ( )

SketchPoint_146.result () .setName ( )

SketchProjection_77 = Sketch_14.addProjection(model.selection( s ),
False)

SketchPoint_147 = SketchProjection_77.createdFeature ()
SketchPoint_147.setName ( )
SketchPoint_147 .result () .setName ( )
SketchEllipse_1 = Sketch_14.addEllipse (1.429932, -0.2711741666666667, 1.429932,
-0.3976704483433147, 0.3579498999999999)
[SketchPoint_148, SketchPoint_149, SketchPoint_150, SketchPoint_151, SketchPoint_152,
SketchPoint_153, SketchPoint_154,
SketchLine_151, SketchLine_152] = SketchEllipse_1.construction(center= .
firstFocus= , secondFocus= .
majorAxisStart= ,
majorAxisEnd= s
minorAxisStart= R
minorAxisEnd= R
majorAxis= ,
minorAxis= )
Sketch_14.setCoincident (SketchPoint_146.result(), SketchEllipse_1.center())
Sketch_14.setCoincident (SketchPoint_147 .result(), SketchEllipse_1.majorAxisPositive())
Sketch_14.setHorizontalDistance (SketchAPI_Point (SketchPoint_146).coordinates (),
SketchAPI_Point (SketchPoint_153).coordinates (),
)
SketchProjection_78 = Sketch_14.addProjection(model.selection( s ),
False)
SketchPoint_155 = SketchProjection_78.createdFeature ()

SketchPoint_155.setName ( )

SketchPoint_155.result () .setName ( )

SketchProjection_79 = Sketch_14.addProjection(model.selection( s ),
False)

SketchPoint_156 = SketchProjection_79.createdFeature ()
SketchPoint_156.setName ( )

SketchPoint_156.result () .setName ( )
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SketchCircle_2 = Sketch_14.addCircle(-1.23018, -0.2956864166666666, 0.2956864166666666)

Sketch_14.setCoincident (SketchPoint_155.result (), SketchCircle_2.center())

Sketch_14.setCoincident (SketchPoint_156.result (), SketchCircle_2.results () [1])

SketchProjection_80 = Sketch_14.addProjection(model.selection( s ),
False)

SketchPoint_157 = SketchProjection_80.createdFeature ()

SketchPoint_157.setName ( )

SketchPoint_157.result () .setName ( )

SketchProjection_81 = Sketch_14.addProjection(model.selection( s ),
False)

SketchPoint_158 = SketchProjection_81.createdFeature ()

SketchPoint_158.setName ( )

SketchPoint_158.result () .setName ( )

SketchEllipse_2 = Sketch_14.addEllipse(-1.23018, -0.2688058333333334, -1.23018,
-0.3941973439909709, 0.3548237)

[SketchPoint_159, SketchPoint_160, SketchPoint_161, SketchPoint_162, SketchPoint_163,
SketchPoint_164, SketchPoint_165,

SketchLine_153, SketchLine_154] = SketchEllipse_2.construction(center= .
firstFocus= , secondFocus= s
majorAxisStart= ,
majorAxisEnd= ,
minorAxisStart= s
minorAxisEnd= .

majorAxis= s
minorAxis= )

Sketch_14.setCoincident (SketchPoint_157.result (), SketchEllipse_2.center())
Sketch_14.setCoincident (SketchPoint_158.result (), SketchEllipse_2.majorAxisPositive())
Sketch_14.setHorizontalDistance (SketchAPI_Point (SketchPoint_157).coordinates (),

SketchAPI_Line (SketchLine_154).endPoint (),

)

model.do ()

ExtrusionCut_7_objects_1 = [model.selection( s ),
model.selection( , ),

model.selection ( s
model.selection( s
model.selection ( s
model.selection ( ,
)]

ExtrusionCut_7 = model.addExtrusionCut (Part_2_doc, ExtrusionCut_7_objects_1,

model.selection (),
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[model.selection("SOLID", "Box_1_1")1])

ExtrusionCut_8 = model.addExtrusionCut (Part_2_doc, [model.selection("COMPOUND",

"Sketch_4")], model.selection(), O,

"1%0.075", [model.selection("SOLID",

"ExtrusionCut_1_1")1])

Extrusion_1 = model.addExtrusion(Part_2_doc, [model.selection("FACE",

"Sketch_4/Face-SketchCircle_1_2f")],

model.selection(), "-1%0.005", "1%0.055",

"Faces | Wires")

Extrusion_1.setName ("Extrusion_3")

Extrusion_1.result () .setName("Extrusion_3_1")

Extrusion_2 = model.addExtrusion(Part_2_doc, [model.selection("FACE",

"Sketch_4/Face-SketchCircle_2_2f")],

model.selection(), "-1%0.005", "1%0.055",

"Faces | Wires")

Extrusion_2.setName ("Extrusion_4")

Extrusion_2.result().setName ("Extrusion_4_1")

Fillet_3 = model.addFillet (Part_2_doc, [

model.selection ("EDGE

"
3

"[Extrusion_3_1/Generated_Face&Sketch_4/SketchCircle_1_2][Extrusion_3_1/To_Facel"),

model.selection("FACE

", "Extrusion_3_1/Generated_Face&Sketch_4/SketchCircle_1_2")],

"0.01*1", keepSubResults=True)

Fillet_4 = model.addFillet (Part_2_doc, [

model.selection ("EDGE

n
>

"[Extrusion_4_1/Generated_Face&Sketch_4/SketchCircle_2_2][Extrusion_4_1/From_Facel"),

model.selection ("EDGE

"
3

"[Extrusion_4_1/Generated_Face&Sketch_4/SketchCircle_2_2][Extrusion_4_1/To_Facel")],

"0.01*1", keepSubResults=True)

Fillet_5 = model.addFillet (Part_2_doc, [model.selection("EDGE",

Fillet_6_objects = [model.

model

model

model.

model.

model

"[ExtrusionCut_2_1/Modified_Face&Sketch_2/Sket
model.selection("EDGE",
"[ExtrusionCut_2_1/Modified_Face&Sketch_3/Sket
bigFilletRadius, keepSubResults=True)
selection ("EDGE",
"[Fillet_3_1/MF:Fillet&Sketch_2/SketchBSpline_5][Fillet_3_1/MF:Fil
.selection("EDGE",
"[Fillet_3_1/MF:Fillet&Sketch_2/SketchBSpline_5][ExtrusionCut_1_1/
.selection ("EDGE",
"[ExtrusionCut_1_1/Generated_Face&Sketch_1/SketchBSpline_8][Extrus
selection ("EDGE",
"[Fillet_3_1/MF:Fillet&Sketch_2/SketchBSpline_5][ExtrusionCut_1_1/
selection ("EDGE",
"[ExtrusionCut_2_1/Modified_Face&Sketch_1/SketchBSpline_4][Fillet_.

.selection("FACE",

"Fillet_3_1/MF:Fillet&Sketch_4/SketchEllipse_1"),
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model.selection("FACE",
"(Fillet_3_1/MF:Fillet&Sketch_2/SketchBSpline_5) (ExtrusionCut_2_1/
model.selection("FACE",
"ExtrusionCut_2_1/Modified_Face&ExtrusionCut_2_1/From_Face_2"),
model.selection("FACE",
"ExtrusionCut_2_1/Modified_Face&ExtrusionCut_2_1/From_Face_1"),
model.selection("FACE",
"Fillet_3_1/MF:Fillet&Sketch_4/SketchEllipse_2"),
model.selection("FACE",
"(Fillet_3_1/MF:Fillet&Sketch_2/SketchBSpline_5) (Fillet_3_1/MF:Fil
model.selection("FACE",
"ExtrusionCut_2_1/Modified_Face&ExtrusionCut_2_1/From_Face_3"),
model.selection("FACE",
"ExtrusionCut_2_1/Modified_Face&ExtrusionCut_2_1/From_Face_4"),
model.selection("FACE",
"Fillet_3_1/MF:Fillet&Sketch_3/SketchBSpline_6"),
model.selection("FACE",
"ExtrusionCut_2_1/Modified_Face&Box_1_1/Right")]
Fillet_6 = model.addFillet(Part_2_doc, Fillet_6_objects, filletRadius,
keepSubResults=True)
Symmetry_1_objects = [model.selection("SOLID", "Fillet_1_1"),
model.selection("SOLID", "Fillet_2_1"),
model.selection("SOLID", "Fillet_4_1")]
Symmetry_1 = model.addSymmetry(Part_2_doc, Symmetry_1_objects, model.selection("FACE",
"PartSet/X0Z"),
keepOriginal=True, keepSubResults=True)
Fuse_2 = model.addFuse(Part_2_doc,
[model.selection("SOLID", "Symmetry_1_3_1"),
model.selection("SOLID", "Symmetry_1_3_2")1,

removeEdges=True, keepSubResults=True)

Sketch_11 = model.addSketch(Part_2_doc, model.defaultPlane("X0Z"))
SketchBSpline_13 = Sketch_11.addSpline(
poles=[(-2.1043528, 0.1470084), (-2.442, 0.1470084), (-2.442, 0.3333940500000001)1)
[SketchPoint_89, SketchPoint_90, SketchPoint_91] =
SketchBSpline_13.controlPoles (auxiliary=[0, 1, 2])
[SketchLine_116, SketchLine_117] = SketchBSpline_13.controlPolygon(auxiliary=[0, 1])
SketchBSpline_14_poles = [(-2.442, 0.3333940500000001),
(-2.442, 0.9671052600000001) ,
(-1.473666800445607, 0.7934570823330697) ,
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(-0.6105, 1.4910852),
(0, 1.4910852)
]
SketchBSpline_14 = Sketch_11.addSpline(poles=SketchBSpline_14_poles)
[SketchPoint_92, SketchPoint_93, SketchPoint_94, SketchPoint_95, SketchPoint_96] =
SketchBSpline_14.controlPoles (
auxiliary=[0, 1, 2, 3, 4])
[SketchLine_118, SketchLine_119, SketchLine_120, SketchLine_121] =
SketchBSpline_14.controlPolygon (
auxiliary=[0, 1, 2, 31)
SketchBSpline_15_poles = [(0, 1.4910852),
(1.485286957193869, 1.4910852),
(1.708663283373133, 1.195135389512772),
(2.442, 1.07893665),
(2.442, 0.8925510000000001)
]
SketchBSpline_15 = Sketch_11.addSpline(poles=SketchBSpline_15_poles)
[SketchPoint_97, SketchPoint_98, SketchPoint_99, SketchPoint_100, SketchPoint_101] =
SketchBSpline_15.controlPoles (
auxiliary=[0, 1, 2, 3, 4])
[SketchLine_122, SketchLine_123, SketchLine_124, SketchLine_125] =
SketchBSpline_15.controlPolygon (
auxiliary=[0, 1, 2, 31)
SketchBSpline_16 = Sketch_11.addSpline(
poles=[(2.442, 0.2961169200000001), (2.442, 0.1470084), (1.3518912, 0.1470084)1],
weights=[2, 1, 1])
[SketchPoint_102, SketchPoint_103, SketchPoint_104] =
SketchBSpline_16.controlPoles (auxiliary=[0, 1, 2])
[SketchLine_126, SketchLine_127] = SketchBSpline_16.controlPolygon(auxiliary=[0, 11)
SketchProjection_49 = Sketch_11.addProjection(model.selection( , ),
False)
SketchPoint_105 = SketchProjection_49.createdFeature ()
Sketch_11.setCoincident (SketchAPI_Point (SketchPoint_89).coordinates (),
SketchAPI_Point (SketchPoint_105).coordinates ())
SketchProjection_50 = Sketch_11.addProjection(model.selection( s ),
False)
SketchPoint_106 = SketchProjection_50.createdFeature ()
Sketch_11.setCoincident (SketchAPI_Point (SketchPoint_90).coordinates (),
SketchAPI_Point (SketchPoint_106).coordinates ())
SketchProjection_51 = Sketch_11.addProjection(model.selection( s ),
False)
SketchPoint_107 = SketchProjection_51.createdFeature ()
Sketch_11.setCoincident (SketchAPI_Point (SketchPoint_91).coordinates (),
SketchAPI_Point (SketchPoint_107).coordinates())
Sketch_11.setCoincident (SketchAPI_Point (SketchPoint_92).coordinates (),
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SketchAPI_Point (SketchPoint_91).coordinates ())
SketchProjection_52 = Sketch_11.addProjection(model.selection( s ),
False)
SketchPoint_108 = SketchProjection_52.createdFeature ()
Sketch_11.setCoincident (SketchAPI_Line (SketchLine_118) .endPoint (),
SketchAPI_Point (SketchPoint_108).coordinates ())
SketchProjection_53 = Sketch_11.addProjection(model.selection( , ),
False)
SketchPoint_109 = SketchProjection_53.createdFeature ()
Sketch_11.setCoincident (SketchAPI_Point (SketchPoint_94).coordinates (),
SketchAPI_Point (SketchPoint_109).coordinates ())
SketchProjection_54 = Sketch_11.addProjection(model.selection( s ),
False)
SketchPoint_110 = SketchProjection_54.createdFeature ()
Sketch_11.setCoincident (SketchAPI_Point (SketchPoint_95).coordinates (),
SketchAPI_Point (SketchPoint_110).coordinates ())

SketchProjection_55 = Sketch_11.addProjection(model.selection( , ),
False)
SketchPoint_111 = SketchProjection_55.createdFeature ()

Sketch_11.setCoincident (SketchBSpline_14.endPoint (),
SketchAPI_Point (SketchPoint_111).coordinates ())
Sketch_11.setCoincident (SketchBSpline_15.startPoint (), SketchBSpline_14.endPoint ())
SketchProjection_56 = Sketch_11.addProjection(model.selection( s ),
False)
SketchPoint_112 = SketchProjection_56.createdFeature()
Sketch_11.setCoincident (SketchAPI_Line(SketchLine_122).endPoint (),
SketchAPI_Point (SketchPoint_112).coordinates ())
SketchProjection_57 = Sketch_11.addProjection(model.selection( s ),
False)
SketchPoint_113 = SketchProjection_57.createdFeature ()
Sketch_11.setCoincident (SketchAPI_Point (SketchPoint_99).coordinates (),
SketchAPI_Point (SketchPoint_113).coordinates ())
SketchProjection_58 = Sketch_11.addProjection(model.selection( s ),
False)
SketchPoint_114 = SketchProjection_58.createdFeature ()
Sketch_11.setCoincident (SketchAPI_Line (SketchLine_124).endPoint (),
SketchAPI_Point (SketchPoint_114).coordinates())
SketchProjection_59 = Sketch_11.addProjection(model.selection( s ),
False)
SketchPoint_115 = SketchProjection_59.createdFeature ()
Sketch_11.setCoincident (SketchBSpline_15.endPoint (),
SketchAPI_Point (SketchPoint_115).coordinates ())
SketchProjection_60 = Sketch_11.addProjection(model.selection( s ),
False)

SketchPoint_116 = SketchProjection_60.createdFeature()
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Sketch_11.setCoincident (SketchBSpline_16.startPoint (),
SketchAPI_Point (SketchPoint_116).coordinates ())
SketchProjection_61 = Sketch_11.addProjection(model.selection( s ),
False)
SketchPoint_117 = SketchProjection_61.createdFeature()
Sketch_11.setCoincident (SketchAPI_Line(SketchLine_127).startPoint (),
SketchAPI_Point (SketchPoint_117).coordinates ())
SketchProjection_62 = Sketch_11.addProjection(model.selection( s ),
False)
SketchPoint_118 = SketchProjection_62.createdFeature ()
Sketch_11.setCoincident (SketchAPI_Line (SketchLine_127).endPoint (),
SketchAPI_Point (SketchPoint_118).coordinates ())
SketchLine_128 = Sketch_11.addLine(2.442, 0.8925510000000001, 2.442, 0.2961169200000001)
Sketch_11.setCoincident (SketchBSpline_15.endPoint (), SketchLine_128.startPoint ())
Sketch_11.setCoincident (SketchBSpline_16.startPoint (), SketchLine_128.endPoint ())
SketchLine_129 = Sketch_11.addLine(-2.1043528, 0.1470084, -2.442, 0.1470084)
Sketch_11.setCoincident (SketchBSpline_13.startPoint (), SketchLine_129.startPoint ())
Sketch_11.setCoincident (SketchAPI_Point (SketchPoint_90).coordinates (),
SketchLine_129.endPoint ())
SketchLine_130 = Sketch_11.addLine(-2.442, 0.1470084, -2.442, 0.3333940500000001)
Sketch_11.setCoincident (SketchAPI_Point (SketchPoint_90).coordinates (),
SketchLine_130.startPoint ())
Sketch_11.setCoincident (SketchBSpline_13.endPoint (), SketchLine_130.endPoint())
SketchLine_131 = Sketch_11.addLine(-2.442, 0.3333940500000001, -2.442, 1.4910852)
Sketch_11.setCoincident (SketchBSpline_13.endPoint (), SketchLine_131.startPoint())
SketchProjection_63 = Sketch_11.addProjection(model.selection( s ),
False)
SketchPoint_119 = SketchProjection_63.createdFeature ()
Sketch_11.setCoincident (SketchlLine_131.endPoint (), SketchPoint_119.result())
SketchLine_132 = Sketch_11.addLine(-2.442, 1.4910852, 0, 1.4910852)
Sketch_11.setCoincident (SketchLine_131.endPoint (), SketchLine_132.startPoint ())
Sketch_11.setCoincident (SketchBSpline_14.endPoint (), SketchLine_132.endPoint ())
SketchLine_133 = Sketch_11.addLine(0, 1.4910852, 2.442, 1.4910852)
Sketch_11.setCoincident (SketchBSpline_14.endPoint (), SketchLine_133.startPoint ())
SketchProjection_64 = Sketch_11.addProjection(model.selection( s ),
False)
SketchPoint_120 = SketchProjection_64.createdFeature ()
Sketch_11.setCoincident (SketchLine_133.endPoint (), SketchPoint_120.result())
SketchLine_134 = Sketch_11.addLine(2.442, 1.4910852, 2.442, 0.8925510000000001)
Sketch_11.setCoincident (SketchLine_133.endPoint (), SketchLine_134.startPoint ())
Sketch_11.setCoincident (SketchBSpline_15.endPoint (), SketchLine_134.endPoint ())
SketchLine_135 = Sketch_11.addLine(2.442, 0.2961169200000001, 2.442, 0.1470084)
Sketch_11.setCoincident (SketchBSpline_16.startPoint (), SketchLine_135.startPoint ())
Sketch_11.setCoincident (SketchAPI_Point (SketchPoint_103).coordinates (),
SketchLine_135.endPoint ())
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SketchLine_136 = Sketch_11.addLine(2.442, 0.1470084, 1.3518912, 0.1470084)
Sketch_11.setCoincident (SketchAPI_Point (SketchPoint_103).coordinates (),
SketchLine_136.startPoint ())
Sketch_11.setCoincident (SketchBSpline_16.endPoint (), SketchLine_136.endPoint ())
SketchLine_137 = Sketch_11.addLine(2.24664, 1.089938918364612, 2.442, 1.089938918364612)
SketchLine_137.setName ( )
SketchLine_137.result () .setName ( )
Sketch_11.setCoincident (SketchLine_137.startPoint (), SketchBSplimne_15.result())
Sketch_11.setCoincident (SketchLine_137.endPoint (), SketchLine_134.result())
Sketch_11.setHorizontal (SketchLine_137 .result())
Sketch_11.setLength(SketchLine_137.result (), )
model.do ()
Sketch_11.changeFacesOrder ([[SketchBSpline_13.result(), SketchLine_130.result(),
SketchLine_129.result ()],
[SketchBSpline_14.result (), SketchLine_132.result(),
SketchLine_131.result ()],
[SketchBSpline_15.result (), SketchLine_137.result(),
SketchLine_134.result (),
SketchLine_133.result ()],
[SketchBSpline_16.result (), SketchLine_136.result(),
SketchLine_135.result ()],
[SketchBSpline_15.result (), SketchLine_134.result(),
SketchLine_137.result ()]
»
model.do ()

Sketch_12 = model.addSketch(Part_2_doc, model.defaultPlane ( ))
SketchBSpline_17 = Sketch_12.addSpline(
poles=[(0.56131812, spline), (0.9355302000000001, spline), (0.9355302000000001,
spline)],
weights=[1, 1, 3])
[SketchPoint_121, SketchPoint_122, SketchPoint_123] =
SketchBSpline_17.controlPoles (auxiliary=[0, 1, 2])
[SketchLine_138, SketchLine_139] = SketchBSpline_17.controlPolygon(regular=[0, 1])
SketchProjection_65 = Sketch_12.addProjection(model.selection( s ),
False)
SketchPoint_124 = SketchProjection_65.createdFeature()
Sketch_12.setCoincident (SketchAPI_Point (SketchPoint_121).coordinates (),
SketchAPI_Point (SketchPoint_124).coordinates ())
SketchProjection_66 = Sketch_12.addProjection(model.selection( s ),
False)
SketchPoint_125 = SketchProjection_66.createdFeature ()
Sketch_12.setCoincident (SketchAPI_Line (SketchLine_139).startPoint (),
SketchAPI_Point (SketchPoint_125).coordinates ())
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SketchProjection_67 = Sketch_12.addProjection(model.selection( s ),
False)
SketchPoint_126 = SketchProjection_67.createdFeature ()
Sketch_12.setCoincident (SketchAPI_Point (SketchPoint_123).coordinates (),
SketchAPI_Point (SketchPoint_126).coordinates ())

model.do ()

Sketch_13 = model.addSketch(Part_2_doc, model.defaultPlane( ))
SketchBSpline_18 = Sketch_13.addSpline(
poles=[(-1.4290584, 0.9355302000000001), (-2.442, 0.9355302000000001), (-2.442,
0.3118434)1)
[SketchPoint_127, SketchPoint_128, SketchPoint_129] =
SketchBSpline_18.controlPoles (auxiliary=[0, 1, 2])
[SketchLine_140, SketchLine_141] = SketchBSpline_18.controlPolygon(regular=[0, 1])
SketchBSpline_19 = Sketch_13.addSpline(
poles=[(1.3518912, 0.9355302000000001), (2.442, 0.9355302000000001), (2.442, 0)],
weights=[1, 3, 11)
[SketchPoint_130, SketchPoint_131, SketchPoint_132] =
SketchBSpline_19.controlPoles (auxiliary=[0, 1, 2])
[SketchLine_142, SketchLine_143] = SketchBSpline_19.controlPolygon(regular=[0, 1])
SketchProjection_68 = Sketch_13.addProjection(model.selection( s ),
False)
SketchPoint_133 = SketchProjection_68.createdFeature ()
Sketch_13.setCoincident (SketchAPI_Point (SketchPoint_129) .coordinates (),
SketchAPI_Point (SketchPoint_133).coordinates ())
SketchProjection_69 = Sketch_13.addProjection(model.selection( s ),
False)
SketchPoint_134 = SketchProjection_69.createdFeature ()
Sketch_13.setCoincident (SketchAPI_Point (SketchPoint_128).coordinates (),
SketchAPI_Point (SketchPoint_134).coordinates ())
SketchProjection_70 = Sketch_13.addProjection(model.selection/( , ),
False)
SketchPoint_135 = SketchProjection_70.createdFeature ()
Sketch_13.setCoincident (SketchAPI_Point (SketchPoint_127).coordinates (),
SketchAPI_Point (SketchPoint_135).coordinates ())
SketchProjection_71 = Sketch_13.addProjection(model.selection( , ),
False)
SketchPoint_136 = SketchProjection_71.createdFeature ()
Sketch_13.setCoincident (SketchAPI_Point (SketchPoint_130).coordinates (),
SketchAPI_Point (SketchPoint_136).coordinates ())
SketchProjection_72 = Sketch_13.addProjection(model.selection( s ),
False)
SketchPoint_137 = SketchProjection_72.createdFeature()
Sketch_13.setCoincident (SketchAPI_Line (SketchLine_142).endPoint (),
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SketchAPI_Point (SketchPoint_137).coordinates ())
SketchProjection_73 = Sketch_13.addProjection(model.selection( s ),
False)
SketchPoint_138 = SketchProjection_73.createdFeature ()
Sketch_13.setCoincident (SketchAPI_Point (SketchPoint_132).coordinates (),
SketchAPI_Point (SketchPoint_138).coordinates ())
model.do ()

Sketch_14 = model.addSketch(Part_2_doc, model.selection( , ))
SketchProjection_74 = Sketch_14.addProjection(model.selection( s ),
False)

SketchPoint_139 = SketchProjection_74.createdFeature ()

SketchProjection_75 = Sketch_14.addProjection(model.selection( s ),
False)

SketchPoint_140 = SketchProjection_75.createdFeature ()

SketchCircle_1 = Sketch_14.addCircle(1.3518912, -0.32077705, 0.32077705)

Sketch_14.setCoincident (SketchPoint_139.result(), SketchCircle_1.center())

Sketch_14.setCoincident (SketchPoint_140.result (), SketchCircle_1.results () [1])

SketchProjection_76 = Sketch_14.addProjection(model.selection( s ),
False)

SketchPoint_141 = SketchProjection_76.createdFeature ()

SketchProjection_77 = Sketch_14.addProjection(model.selection( s ),
False)

SketchPoint_142

SketchProjection_77.createdFeature ()
SketchEllipse_1 = Sketch_14.addEllipse(1.3518912, -0.2916155000000001,
1.351891200027085, -0.4276471762027652,
0.3849324599700071)
[SketchPoint_143, SketchPoint_144, SketchPoint_145, SketchPoint_146, SketchPoint_147,
SketchPoint_148,
SketchPoint_149, SketchlLine_144, SketchLine_145] =
SketchEllipse_1.construction(center= , firstFocus= s
secondFocus=
majorAxisStart=
majorAxisEnd=
minorAxisStart=
minorAxisEnd=
majorAxis=
minorAxis=
Sketch_14.setCoincident (SketchPoint_141.result (), SketchEllipse_1.center())
Sketch_14.setCoincident (SketchPoint_142.result(), SketchEllipse_1.majorAxisPositive())
Sketch_14.setHorizontalDistance (SketchAPI_Point (SketchPoint_141).coordinates (),
SketchAPI_Point (SketchPoint_148).coordinates (),
)

SketchProjection_78 = Sketch_14.addProjection(model.selection( s ),



Appendix B 114

False)
SketchPoint_150 = SketchProjection_78.createdFeature ()
SketchProjection_79 = Sketch_14.addProjection(model.selection( s ),
False)
SketchPoint_151 = SketchProjection_79.createdFeature()
SketchCircle_2 = Sketch_14.addCircle(-1.4290584, -0.31898625, 0.31898625)
Sketch_14.setCoincident (SketchPoint_150.result (), SketchCircle_2.center())
Sketch_14.setCoincident (SketchPoint_151.result (), SketchCircle_2.results () [1])
SketchProjection_80 = Sketch_14.addProjection(model.selection( s ),
False)
SketchPoint_152 = SketchProjection_80.createdFeature ()
SketchProjection_81 = Sketch_14.addProjection(model.selection( s ),
False)
SketchPoint_153

SketchProjection_81.createdFeature ()
SketchEllipse_2 = Sketch_14.addEllipse(-1.4290584, -0.2899875, -1.429058400000009,
-0.4252597530085214,
0.3827834999999899)
[SketchPoint_154, SketchPoint_155, SketchPoint_156, SketchPoint_157, SketchPoint_158,
SketchPoint_159,
SketchPoint_160, SketchLine_146, SketchLine_147] =
SketchEllipse_2.construction(center= , firstFocus= s
secondFocus=
majorAxisStart=
majorAxisEnd=
minorAxisStart=
minorAxisEnd=
majorAxis=
minorAxis=
Sketch_14.setCoincident (SketchPoint_152.result(), SketchEllipse_2.center())
Sketch_14.setCoincident (SketchPoint_153.result(), SketchEllipse_2.majorAxisPositive())
Sketch_14.setHorizontalDistance (SketchAPI_Point (SketchPoint_152).coordinates (),
SketchAPI_Line (SketchLine_147).endPoint (),
)
model.do ()

ExtrusionCut_7_objects_1 = [model.selection( s ),
model.selection( s ),
model.selection ( s
model.selection ( ,

model.selection ( s

model.selection ( s



Appendix B 115

"Sketch_1/Face-SketchBSpline_2f -SketchLine_17r-SketchLine_16r")]
ExtrusionCut_7 = model.addExtrusionCut (Part_2_doc, ExtrusionCut_7_objects_1,
model.selection (),
[model.selection("SOLID", "Box_1_1")1)
ExtrusionCut_8 = model.addExtrusionCut (Part_2_doc, [model.selection("COMPOUND",
"Sketch_4")], model.selection(), O,
"1%0.075", [model.selection("SOLID",
"ExtrusionCut_1_1")1)
Extrusion_1 = model.addExtrusion(Part_2_doc, [model.selection("FACE",
"Sketch_4/Face-SketchCircle_1_2f")],
model.selection(), "-1%0.005", "1%0.055",
"Faces|Wires")
Extrusion_1.setName ("Extrusion_3")
Extrusion_1.result () .setName("Extrusion_3_1")
Extrusion_2 = model.addExtrusion(Part_2_doc, [model.selection("WIRE",
"Sketch_4/Face-SketchCircle_2_2f_wire")],
model.selection(), "-1%0.005", "1*0.055",
"Faces|Wires")
Extrusion_2.setName ("Extrusion_4")
Extrusion_2.result () .setName("Extrusion_4_1")
Fillet_3 = model.addFillet (Part_2_doc, [
model.selection("EDGE",
"[Extrusion_3_1/Generated_Face&Sketch_4/SketchCircle_1_2][Extrusion_3_1/To_Facel"),
model.selection("EDGE",
"[Extrusion_3_1/Generated_Face&Sketch_4/SketchCircle_1_2][Extrusion_3_1/From_Facel]")],
"0.01*1", keepSubResults=True)
Fillet_4 = model.addFillet (Part_2_doc, [
model.selection("EDGE",
"[Extrusion_4_1/Generated_Face&Sketch_4/SketchCircle_2_2][Extrusion_4_1/To_Facel"),
model.selection("EDGE",
"[Extrusion_4_1/Generated_Face&Sketch_4/SketchCircle_2_2][Extrusion_4_1/From_Facel")],
"0.01%1", keepSubResults=True)
Fillet_5 = model.addFillet (Part_2_doc, [model.selection("EDGE",
"[ExtrusionCut_2_1/Modified_Face&Sketch_2/Sket
model.selection("EDGE",
"[ExtrusionCut_2_1/Modified_Face&Sketch_3/Sket
bigFilletRadius, keepSubResults=True)
Fillet_6_objects = [model.selection("FACE",
"Fillet_3_1/MF:Fillet&Sketch_3/SketchBSpline_6"),
model.selection("FACE",
"Fillet_3_1/MF:Fillet&Sketch_4/SketchEllipse_2"),
model.selection("FACE",
"(Fillet_3_1/MF:Fillet&Sketch_2/SketchBSpline_5)(Fillet_3_1/MF:Fil
model.selection("FACE",

"ExtrusionCut_2_1/Modified_Face&ExtrusionCut_2_1/From_Face_3"),
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model.selection("FACE",
"ExtrusionCut_2_1/Modified_Face&ExtrusionCut_2_1/From_Face_4"),
model.selection("FACE",
"ExtrusionCut_2_1/Modified_Face&Box_1_1/Right"),
model.selection("FACE",
"Fillet_3_1/MF:Fillet&Sketch_4/SketchEllipse_1"),
model.selection("FACE",
"(Fillet_3_1/MF:Fillet&Sketch_2/SketchBSpline_5) (ExtrusionCut_2_1/
model.selection("FACE",
"ExtrusionCut_2_1/Modified_Face&ExtrusionCut_2_1/From_Face_1"),
model.selection("FACE",
"ExtrusionCut_2_1/Modified_Face&ExtrusionCut_2_1/From_Face_2"),
model.selection("EDGE",
"[Fillet_3_1/MF:Fillet&Sketch_2/SketchBSpline_5][Fillet_3_1/MF:Fil
model.selection("EDGE",
"[ExtrusionCut_2_1/Modified_Face&Sketch_1/SketchBSpline_4][Fillet_
#model.selection ("EDGE",
#
"[Fillet_3_1/MF:Fillet&Sketch_1/SketchBSpline_3][Fillet_3_1/MF:Fillet&Sketch_1/SketchLine_40]"),

#model.selection ("EDGE",

#
"[Fillet_3_1/MF:Fillet&Sketch_3/SketchBSpline_7][Fillet_3_1/MF:Fillet&Sketch_1/SketchLine_40]1")]
Fillet_6 = model.addFillet(Part_2_doc, Fillet_6_objects, filletRadius,

keepSubResults=True)

Symmetry_1_objects = [model.selection("SOLID", "Fillet_1_1"),
model.selection("SOLID", "Fillet_2_1"),
model.selection("SOLID", "Fillet_4_1")]

Symmetry_1 = model.addSymmetry(Part_2_doc, Symmetry_1_objects, model.selection("FACE",

"PartSet/X0Z"),
keepOriginal=True, keepSubResults=True)

Fuse_2 = model.addFuse(Part_2_doc,

[model.selection("SOLID", "Symmetry_1_3_1"),
model.selection("SOLID", "Symmetry_1_3_2")],
removeEdges=True, keepSubResults=True)

#

Translation_1 = model.addTranslation(Part_2_doc, [model.selection("COMPOUND",
"Symmetry_1_1")], axis=model.selection("EDGE", "PartSet/0X"),
distance="-TunnelPlacement", keepSubResults=True)

Translation_2 = model.addTranslation(Part_2_doc, [model.selection("COMPOUND",
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"Symmetry_1_2")], axis=model.selection("EDGE", "PartSet/0X"),

distance="-TunnelPlacement", keepSubResults=True)
Translation_3_objects = [model.selection("SOLID", "Fuse_1_1"),
model.selection("SOLID", "Box_2_1"),

model.selection("SOLID", "Box_3_1"),
model.selection("SOLID", "Box_4_1"),
model.selection("SOLID", "Box_ 5_1"),
model.selection("SOLID", "Box_6_1")]
Translation_3 = model.addTranslation(Part_2_doc, Translation_3_objects,
axis=model.selection("EDGE", "PartSet/0X"), distance="-TunnelPlacement',

keepSubResults=True)

model.end ()

Translation_3.results () [1].setTransparency (0.8)
Translation_3.results () [2].setTransparency (0.8)
Translation_3.results () [3].setTransparency (0.8)
Translation_3.results () [4].setTransparency (0.8)

Translation_3.results () [5].setTransparency (0.8)

Export_7 = model.exportToXAO(Part_2_doc, folder + "/XAO/RearWheels.xao',
model.selection("COMPOUND", "Translation_1_1"), ’XA0’)

Export_8 = model.exportToXAO(Part_2_doc, folder + "/XAO/FrontWheels.xao",
model.selection("COMPOUND", "Translation_2_1"), “XAD’)

Export_9 = model.exportToXAO(Part_2_doc, folder + "/XAO/VehicleBody.xao",
model.selection("COMPOUND", "Translation_3_1"), ’>XA0’)

Export_10 = model.exportToXAO(Part_2_doc, folder + "/XAO/VehicleRefinementBox4.xao",
model.selection("SOLID", "Translation_3_2"), ’XAD’)

Export_11 = model.exportToXAO(Part_2_doc, folder + "/XAO/OpenAirRefinement2.xao',
model.selection("SOLID", "Translation_3_3"), ’2XA0’)

Export_12 = model.exportToXAO(Part_2_doc, folder + "/XAO/OpenAirRefinementl.xao',
model.selection("SOLID", "Translation_3_4"), ’XAO0’)

Export_13 = model.exportToXAO(Part_2_doc, folder + "/XAO/OpenAirBoundaryBox.xao',
model.selection("SOLID", "Translation_3_5"), ’XA07)

Export_14= model.exportToXAO(Part_2_doc, folder + "/XAO/VehicleRefinementBoxb.xao",

model.selection("SOLID", "Translation_3_6"), ’2XA0’)

model.do ()
model.end ()

# Exporting STL Files at the specified resolution to the specified folder
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geompy = geomBuilder.New ()

(imported, Tunnel, [], [I, []) = geompy.ImportXAO(folder + )

(imported, NShear1l, [], []1, []1) = geompy.ImportXAO(folder + )
(imported, NShear2, [], [], []1) = geompy.ImportXAO(folder + )
(imported, NShear3, []1, [1, [1) = geompy.ImportXAO(folder + )

(imported, ImportantAreal, []1, []1, []) = geompy.ImportXAO(folder +
)
(imported, ImportantArea2, [], [], []) = geompy.ImportXAO(folder +
)
(imported, VehicleRefinementBox4, [], []1, []) = geompy.ImportXAO(folder +
)
(imported, VehicleRefinementBox5, [], [], []) = geompy.ImportXAO(folder +
)
(imported, OpenAirRefinement2, [], []1, []) = geompy.ImportXAO(folder +
)
(imported, OpenAirRefinementl, [], [], []) = geompy.ImportXAO(folder +
)
(imported, OpenAirBoundaryBox, [1, [1, [1) = geompy.ImportXAO(folder +
)

(imported, VehicleBody, [1, [1, []) = geompy.ImportXAO(folder + )
(imported, FrontWheels, [], [], []) = geompy.ImportXAO(folder + )
(imported, RearWheels, [], [l, []) = geompy.ImportXAO(folder + )
Inlet = geompy.CreateGroup(Tunnel, geompy.ShapeTypel ip)

geompy .UnionIDs (Inlet, [701]1)

Outlet = geompy.CreateGroup (Tunnel, geompy.ShapeTypel D)

geompy .UnionIDs (Outlet, [875])

Walls = geompy.CreateGroup (Tunnel, geompy.ShapeTypel iD)

geompy .UnionIDs (Walls, [3, 69, 76, 83, 88, 93, 98, 105, 110, 117, 122, 129, 136, 141, 150,
156, 162, 167, 172, 177, 182, 189, 194, 201, 206, 211, 216, 221, 228, 233, 238, 243,
250, 257, 261, 268, 273, 278, 282, 296, 310, 314, 321, 326, 330, 346, 351, 358, 363,
368, 373, 380, 385, 399, 406, 411, 416, 421, 426, 429, 440, 445, 452, 457, 460, 464,
469, 472, 477, 481, 485, 490, 494, 501, 508, 511, 515, 518, 523, 526, 529, 536, 541,
546, 551, 554, 557, 563, 566, 571, 577, 582, 585, 589, 591, 596, 601, 606, 613, 618,
622, 627, 634, 639, 644, 649, 654, 657, 666, 669, 678, 683, 686, 691, 696, 712, 719,
724, 728, 731, 735, 738, 743, 745, 748, 751, 753, 756, 759, 762, 764, 769, 774, 779,
784, 789, 794, 801, 804, 807, 810, 817, 820, 823, 828, 834, 836, 839, 842, 847, 852,
857, 862, 867, 872, 886, 888, 891, 896, 901, 904, 907, 910, 9131)

WallsSlip = geompy.CreateGroup (Tunnel, geompy.ShapeTypel n

geompy .UnionIDs (WallsSlip, [857, 901, 627, 910, 779, 842, 794, 862, 784, 867, 907, 896,
904, 891, 913, 888, 182, 421, 683, 691, 429, 440, 686, 696])

WallsNoSlip = geompy.CreateGroup (Tunnel, geompy.ShapeTypel 1)
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geompy .UnionIDs (WallsNoSlip, [3, 69, 76, 83, 88, 93, 98, 105, 110, 117, 122, 129, 136, 141,
150, 155, 162, 167, 172, 177, 189, 194, 201, 206, 211, 216, 221, 228, 233, 238, 243,
250, 257, 261, 268, 273, 278, 282, 296, 310, 314, 321, 326, 330, 346, 351, 358, 363,
368, 373, 380, 385, 399, 406, 411, 416, 426, 445, 452, 457, 460, 464, 469, 472, 477,
481, 485, 490, 494, 501, 508, 511, 515, 518, 523, 526, 529, 536, 541, 546, 551, 554,
567, 6563, 566, 571, 577, 582, 585, 589, 591, 596, 601, 606, 613, 618, 622, 634, 639,
644, 649, 654, 657, 666, 669, 678, 712, 719, 724, 728, 731, 735, 738, 743, 745, 748,
751, 753, 756, 759, 762, 764, 769, 774, 789, 801, 804, 807, 810, 817, 820, 823, 828,
834, 836, 839, 847, 852, 872, 886])

Fillets = geompy.CreateGroup (Tunnel, geompy.ShapeTypel ip)

geompy .UnionIDs (Fillets, [872, 857, 907, 613, 913, 847, 622, 862, 691, 823, 696, 834, 891,
779, 784, 904, 769, 363, 380, 801, 399, 155, 167, 177, 189, 426, 296, 452, 201, 657,
666, 546, 591, 358, 551, 321, 117, 129, 105, 93, 83, 273, 511, 536, 724, 541, 606, 817,
810, 839, 836, 440, 686, 421, 683, 172, 162, 406, 639, 649, 678, 719, 654, 457, 385,
194, 206, 216, 150])

geompy . ExportSTL (Inlet, folder + , False, stlRefinement, True)

geompy . ExportSTL (Outlet, folder + , False, stlRefinement, True)

geompy . ExportSTL(Walls, folder + , False, stlRefinement, True)

geompy . ExportSTL(WallsSlip, folder + , False, stlRefinement, True)

geompy . ExportSTL(WallsNoSlip, folder + , False, stlRefinement, True)

geompy . ExportSTL(Fillets, folder + , False, stlRefinement, True)

geompy . ExportSTL (NShearl, folder + , False, stlRefinement, True)

geompy . ExportSTL (NShear2, folder + , False, stlRefinement, True)

geompy . ExportSTL (NShear3, folder + , False, stlRefinement, True)

geompy . ExportSTL (ImportantAreal, folder + , False, stlRefinement,
True)

geompy.ExportSTL(ImportantArea2, folder + , False, stlRefinement,
True)

geompy . ExportSTL(VehicleRefinementBox4, folder + , False,
stlRefinement , True)

geompy . ExportSTL(VehicleRefinementBox5, folder + , False,
stlRefinement, True)

geompy . ExportSTL (OpenAirRefinement2, folder + , False,
stlRefinement , True)

geompy . ExportSTL (OpenAirRefinementl, folder + , False,
stlRefinement , True)

geompy . ExportSTL (OpenAirBoundaryBox, folder + , False,
stlRefinement, True)

geompy . ExportSTL(VehicleBody, folder + , False, stlRefinement, True)

geompy . ExportSTL (FrontWheels, folder + , False, stlRefinement, True)

geompy . ExportSTL (RearWheels, folder + , False, stlRefinement, True)

geompy . ExportSTL(VehicleBody, folder + , True, 0.0001, True)

geompy . ExportSTL (FrontWheels, folder + , True, 0.0001, True)
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geompy . ExportSTL (RearWheels, folder + , True, 0.0001, True)

shutil.rmtree(folder + )

if salome.sg.hasDesktop():

salome.sg.updateObjBrowser ()



Appendix B 121

B.6 Equations to compute Principal Components

%74 H W Hy Dy We
PO, = 0.2887L + 0.2887— — 0.2887— — 0.2887—— — (.2887—~ — (.2887—~ — (.2887 —=
C; = 0.2887 +O887L 0887L 0887L 0887L ()887L 0887L
H, D
—0.2887—Y — 0.2887=C + 0.2887a + 0.288783 + 0.2887x

L L

h . h
PCy = —0.10041 + 0.2809% +0.46027 + 0.3660% _ 0.0693% _ 0.193507 4 0.44627f

h,
+ 04381 + O.3633§

h ’ h
PCy = 0.4851] — 0.4756% +0.06087 + 0.04761% _ 0.281201—f _ 0.536907 n 0.143371"

h,
+0.1635 + 0.3434%

h : h
PC, = —0.43801 + 0.0407% ~ 0.08177 — 0.48831% i 0.6947% — 0.062007 1 0.2525Tf

h,
+0.1840" + 0.1346§
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B.7 PC values for new sampling points of parametric

study

Configuration | PC1 PC2 PC3 PC4

configl -2.0419 | -0.9891 | -2.9049 | -0.2089
config2 1.9968 | -1.7972 | 1.0589 | -1.4341
config3 0.6542 | 1.3324 | -1.4011 | -1.0473
configd -1.1666 | 2.3802 | -1.0414 | 0.6251
configh 2.7491 | 2.9912 | -2.2817 | -1.2457
configh -3.2000 | -0.2815 | -0.4242 | 0.4414
config? 1.9163 | 1.5032 | -1.7828 | 0.1552
config8 1.0518 | 0.5688 | -0.0152 | 0.9775
config9 -1.4853 | -2.1464 | 0.3882 | -1.8792
configl0 -0.5259 | 0.2600 | 0.7935 | -0.4430

Table B.3: Principal Component values for configurations of the parametric study
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B.8 MATLAB code for the generation of geometry pa-

rameters for parametric study

clc; clear; close all

%% Calculate PCA coefficients

vehiclel = [5.190, .3892, .3430, .04, 0.1836, 0.2241, 0.1524, 0.1536, 0.035];

vehicle2 = [4.670, 0.3919, 0.3148, 0.0307, 0.2088, 0.2126, 0.1409, 0.1420, 0.0218];

.0285, 2074, .2232, .1425, .1433, 031];

vehicle4 = [4.351, .4132,

0 0

0 0
vehicle3 = [4.884, 0.3831, 0.3053,

0 0.3367,

0 0

o O O o o

0. 0 0 0 0.
.0356, 0.1818, 0.1514, 0.1508, 0.1512, 0.026];
0. 0 0 0 0.

vehicle5 = [4.651, .3997, .3619, .0368, 2131, .2004, .1707, .1752, 04751 ;

tunnell = [20.42, 0.7299, 0.5337, 0.3399, 0.1909, 0.0609, 0.4258, 0.2657, 0.1878, 15, 2.5,
1.57481;
tunnel2 = [17.58, 0.6940, 0.6143, 0.3982, 0.2617, 0.1991, 0.4437, 0.3185, 0.1991, 1, 1,

-0.29];

parameters = [tunnell, vehiclel;
tunnell, vehicle2;
tunnell, vehicle3;
tunnell, vehicle4;
tunnell, vehicleb;
tunnel2, vehiclel;
tunnel2, vehicle2;
tunnel2, vehicle3;
tunnel2, vehicle4d;
tunnel2, vehicleb5];

standardizedData = zscore(parameters);

[coeff, ~, ~, 7, explained] = pca(standardizedData);

clear tunnelx* vehiclex

cumulativeVariance = cumsum(explained (1:4));
figure( , [0, 0, 5000, 30001)
bar(explained(1:4))

hold on

plot (cumulativeVariance)

% Add marker at the last cumulative point

xCumulative = length(cumulativeVariance);

yCumulative = cumulativeVariance (end);

plot (xCumulative, yCumulative, s , 6, s )

text (xCumulative, yCumulative - 4, sprintf ( , yCumulative), s

) ) )
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grid on

xlabel ( )

ylabel( )

lgd = legend( s s s
fontsize (lgd, 20, )

fontsize (gca, 20, )

meanDataset = mean(parameters);

stdDataset = std(parameters);

PCs = computePC(parameters, meanDataset, stdDataset, coeff);

rangePC1 = [min(PCs(:, 1)), max(PCs(:, 1))1;

rangePC2 = [min(PCs(:, 2)), max(PCs(:, 2))1;
rangePC3 = [min(PCs(:, 3)), max(PCs(:, 3))1;
rangePC4 = [min(PCs(:, 4)), max(PCs(:, 4))1;

rangePCs = [rangePCl; rangePC2; rangePC3; rangePC4];

%% Calculate new PC points from LHS

N = 10;

% Set random number generator to a known value to ensure same results everytime

rng default;
LHS_samples = lhsdesign(N, size(rangePCs, 1));

scaledLHS = zeros(size(LHS_samples));
for i = 1:size(rangePCs, 1)
minPCs = rangePCs (i, 1);
maxPCs = rangePCs (i, 2);
scaledLHS(:, i) = LHS_samples(:, i)*(maxPCs - minPCs) + minPCs;
end
clear minPCs maxPCs i

Dt

PC1 = scaledLHS(:, 1);
PC2 = scaledLHS(:, 2);
PC3 = scaledLHS(:, 3);

% Define the range for x and z

[y, z] = meshgrid(-5:0.5:5, -5:0.5:5);

% Choose a fixed x-value
xPlanel = rangePC1(1);

x1 = xPlanel*ones(size(y));
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xPlane2 = rangePC1(2);

x2 = xPlane2*ones(size(y));

figure;

plot3(PCs(1:5, 1), PCs(1:5, 2), PCs(1:5, 3), ’'o’, ’MarkerSize’, 8, ’MarkerFaceColor’, ’'r’)

grid on;

hold on

plot3(PCs(6:end, 1), PCs(6:end, 2), PCs(6:end, 3), ’o’, ’MarkerSize’, 8, ’MarkerFaceColor’,
g)

plot3(PC1, PC2, PC3, ’*’, ’lMarkerSize’, 8);

surf(xl, y, z, ’FaceAlpha’, 0.1, ’EdgeColor’, ’none’, ’FaceColor’, [0.5 0.5 0.5]);

surf (x2, y, z, ’FaceAlpha’, 0.1, ’EdgeColor’, ’none’, ’FaceColor’, [0.5 0.5 0.5]);

xlabel ('PCL17);

ylabel ("PC27);

zlabel (’PC37);

xlim(rangePC1)

ylim(rangePC2)

zlim(rangePC3)

title(’LHS samples in the PC domain’);

legend (’Tunnel 1 data’, ’Tunnel 2 data’, ’LHS samples’, ’Location’, ’northwest’)
figure(’Position’, [0, O, 5000, 1000]);

t = tiledlayout (1, 3);

nexttile;

plot3(PCs(1:5, 1), PCs(1:5, 2), PCs(1:5, 3), ’o’, ’MarkerSize’, 8, ’MarkerFaceColor’, ’r’)

grid on;

hold on

plot3(PCs(6:end, 1), PCs(6:end, 2), PCs(6:end, 3), ’o’, ’MarkerSize’, 8, ’MarkerFaceColor’,
g

plot3(PC1, PC2, PC3, ’*’, ’MarkerSize’, 8);

view (0, 90)

xlabel ('PCL7);
ylabel (’PC27);
zlabel (’PC37);
xlim(rangePC1)
ylim(rangePC2)
zlim(rangePC3)
title(’XY view’);

fontsize(gca, 15, ’points’)

nexttile;
plot3(PCs(1:5, 1), PCs(1:5, 2), PCs(1:5, 3), ’'o’, ’MarkerSize’, 8, ’MarkerFaceColor’, ’'r’)

grid on;
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hold on

plot3(PCs(6:end, 1), PCs(6:end,

)
plot3(PC1, PC2,
view (90, 0)

xlabel ( )
ylabel( )
zlabel ( )
xlim(rangePC1)
ylim(rangePC2)
zlim(rangePC3)

title (

PC3, s

fontsize (gca, 15, )

legend(

nexttile;
plot3(PCs(1:5,
grid on;

hold on

1), PCs(1:5, 2),

plot3(PCs(6:end, 1), PCs(6:end,

)
plot3(PC1, PC2,
view (0, 0)

xlabel( );
ylabel ( )
zlabel ( )
xlim(rangePC1)
ylim(rangePC2)
zlim(rangePC3)

title (

PC3, s

)

fontsize (gca, 15, )

2), PCs(6:end,

, 8);

PCs(1:5, 3),

2), PCs(6:end,

, 8);

%% Set ranges for tunnel and vehicle geometries

% _For tunnel..

TunnelRanges.
TunnelRanges.
TunnelRanges.
TunnelRanges.
TunnelRanges.
TunnelRanges.

TunnelRanges.

m = U m = m =

TunnelRanges.

= [17, 211;

= [0.65, 0.8];

= [0.5, 0.71;

n = [0.3, 0.5];

n = [0.2, 0.3];

n = [0.05, 0.2];
c = [0.4, 0.51;

c = [0.25, 0.35];

3),

3),
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TunnelRanges.D_c = [0.1, 0.2];
TunnelRanges.alpha = [10, 20];
TunnelRanges.beta = [1, 5];

TunnelRanges.x = [-1/4, 1/4].*TunnelRanges.L;
Dot

% _For vehicle..._
VehicleRanges.l = [3.8, 6];
VehicleRanges.w = [0.3, 0.43];
VehicleRanges.h = [0.28, 0.35];
VehicleRanges.v = [0.025, 0.035];
VehicleRanges.o_f = [0.17, 23];
f = [0.14, 161 ;
16];
[0.02, 0.04];

0.
VehicleRanges.o_r = [0.17, 0.23];
VehicleRanges. 0.

0.

VehicleRanges.h_r = [0.14,

o]
]

VehicleRanges.

%% Compute new parameters corresponding to LHS samples

lowerBoundary = [TunnelRanges.L (1), TunnelRanges.W(1), TunnelRanges.H(1),
TunnelRanges.W_n(1), TunnelRanges.H_n(1), TunnelRanges.D_n (1), TunnelRanges.W_c (1),
TunnelRanges.H_c (1), TunnelRanges.D_c (1), TunnelRanges.alpha(1l), TunnelRanges.beta (1),
TunnelRanges.x(1),...

VehicleRanges.1(1), VehicleRanges.w(1l), VehicleRanges.h(1),
VehicleRanges.v (1), VehicleRanges.o_f (1), VehicleRanges.o_r (1),
VehicleRanges.h_f (1), VehicleRanges.h_r (1), VehicleRanges.r(1)];

upperBoundary = [TunnelRanges.L(2), TunnelRanges.W(2), TunnelRanges.H(2),
TunnelRanges.W_n(2), TunnelRanges.H_n(2), TunnelRanges.D_n(2), TunnelRanges.W_c(2),
TunnelRanges.H_c(2), TunnelRanges.D_c(2), TunnelRanges.alpha(2), TunnelRanges.beta(2),
TunnelRanges.x(2),...

VehicleRanges.1(2), VehicleRanges.w(2), VehicleRanges.h(2),

VehicleRanges .v(2), VehicleRanges.o_f(2), VehicleRanges.o_r(2),
VehicleRanges.h_f (2), VehicleRanges.h_r(2), VehicleRanges.r(2)1];

options = optimoptions(@lsqnonlin, s s s s
, 3000);

parametersMatrix = zeros(N, length(coeff));

JMatrix = zeros(N, 1);

for i = 1:N
desiredPC = scaledLHS(i, :);

x0 = lowerBoundary + (upperBoundary - lowerBoundary)*rand();

% Optimization
[optimizedParameters, JMin] = lsqnonlin(@(x) objectiveFunction(x, desiredPC,
meanDataset, stdDataset, coeff), x0, lowerBoundary, upperBoundary, options);

parametersMatrix (i, :) = round(optimizedParameters, 4);
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JMatrix (i, :) = JMin;

end

tunnelParameters = parametersMatrix(:, 1:12);

vehicleParameters = parametersMatrix(:, 13:end);

outputFile = fopen( s )
for i = 1:size(tunnelParameters, 1)
tunnel = tunnelParameters (i, :);

vehicle = vehicleParameters(i, :);
% Join in a single string with commas in between
tunnelStr = join(string(tunnel), )

vehicleStr = join(string(vehicle), )

fprintf (outputFile, s i)

fprintf (outputFile, , tunnelStr);

fprintf (outputFile, , vehicleStr);

end

fclose (outputFile);

writematrix (tunnelParameters, )
writematrix(vehicleParameters, )

%% Functions

function PC = computePC(parameters, meanValue, stdValue, coeffPCA)
standard = (parameters - meanValue)./stdValue;
PC1 = standard * coeffPCA(:, 1);
PC2 = standard * coeffPCA(:, 2);
PC3 = standard * coeffPCA(:, 3);
PC4 = standard * coeffPCA(:, 4);
PC = [PC1, PC2, PC3, PC4];
end
function J = objectiveFunction(parameters, desiredPC, meanValue, stdValue,
modelPC = computePC(parameters, meanValue, stdValue, coeffPCA);

J = desiredPC - modelPC;

end

coeffPCA)



C. Appendix C

C.1 MATLAB script for data analysis

close all
clear

clc

addpath ("Tunnel\configl\")

%% Import _.log_ files

logCoefficients = importdata("001_configl TUNNEL.out");
logCoefficients = logCoefficients(:, [1 2]1);
%% Manage data to remove redundancy

% _Single file_
CdData = removeDuplicates(logCoefficients);

iteration = CdData(:, 1);
Cd = CdData(:, 2);
%% Analysis

% Evaluate $C_{d, mean}$ over 10000 iterations

CdMean = movmean(Cd, [9999, 0]);

%% Convergence based on adimensional difference

transientCriteria = 0.015;

convergenceCriteria = le-4;

% Calculate new metric based on min-to-max difference of CdMean
maxCdMean = movmax (CdMean, [9999, 0]);

minCdMean = movmin (CdMean, [9999, 0]);

diffCdMean = maxCdMean - minCdMean;

adimensionalCd = diffCdMean./CdMean;

% Calculate moving min and max of the new metric to assess convergence
maxDiffCdMean = movmax (diffCdMean, [2999, 0]);
minDiffCdMean = movmin(diffCdMean, [2999, 0]);

convergenceMetric = maxDiffCdMean - minDiffCdMean;

129
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index = O0;

for i = 100:length(diffCdMean)

if (adimensionalCd(i) < transientCriteria) && (convergenceMetric(i) <

convergenceCriteria)
fprintf (
i, CdMean(i));

index = i;
break;
end
end
results = { , round (CdMean(index), 4), min(iteration) + index};
fileName = ;
writecell (results, fileName, , s )
figure ( , [0, 0, 5000, 3000])
plot(iteration, adimensionalCd)
grid minor
xlabel ( )
ylabel ( )
xlim([min(iteration), max(iteration)])
hold on
plot(min(iteration) + index, adimensionalCd(index), s ,
, 15)
title( )
%% Comparison
figure ( , [0, 0, 2000, 700])

plot(iteration, Cd)

hold on, grid minor

plot(iteration, CdMean, s, 2)
xlabel ( )

xlim([min(iteration), max(iteration)])
ylabel ( )

ylim ([0.1 0.41)

title(

hold on

plot (min(iteration) + index, CdMean(index),
legend ( s s

CdStart = CdMean (1, :);

fprintf ( , CdStart)

%% Functions

function newData = removeDuplicates(oldData)
newData = [];

duplicates = [];

min(iteration) +

, 15)
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for i = 1:size(oldData, 1)
value = oldData(i, 1);
if not(ismember (value, duplicates))
newData = [newData; oldData(i, :)1;
duplicates = [duplicates, valuel];
end
end

end
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C.2 Terms of dynamic pressure correction

eg refers to jet expansion correction:

UO'5 A1.5

S C.1
£s T I A+ ( )
W H
where 7 = 0.36 (ﬁ + W) = tunnel shape factor
v = vehicle volume
[ = vehicle length
A = vehicle frontal area
A
A= 0
1+ EQN
Axn = nozzle cross-sectional area
e¢ refers to collector blockage correction:
ew RS
Eoc = W2 c 15 (CQ)
(L —aum)” + RE]
A [(C
where ey = — =4 4041 ) = wake blockage factor
Ac \ 4
2A
Re =4/ =<
s
Ac = collector cross-sectional area
L = test section length
rs = distance from nozzle to vehicle center
ey refers to nozzle blockage correction:
eqn Ry
EN = (03)

(23, + R3)"°



Appendix C 133

where Ry = 4/ Ml
T

eqn refers to blockage correction for nozzle-method:

EON = A L% (C.4)
OV T 24y V12 + R% .

l ) ) .
where x, =z — 3 + or = distance from vehicle center to source point
T

eqp refers to blockage correction for plenum-method:

A T
EQp = o <W> (0.5)
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C.3 Drag coefficient values for parametric study

Table C.1: Values of drag coefficient for each configuration in the different domains

Configuration | Cq tunnel | Caq | Cdopen
configl 0.1583 | 0.1769 | 0.2392
config2 0.0752 | 0.1996 | 0.3204
config3 0.2125 | 0.1968 | 0.2561
config4 0.1973 | 0.1939 | 0.1953
configh 0.2641 | 0.2419 | 0.2887
configh 0.2092 | 0.2052 | 0.2384
config? 0.2317 | 0.2123 | 0.2719
config8 0.0535 | 0.2112 | 0.3116
config9 0.0029 | 0.1753 | 0.2882
config10 0.1788 | 0.2158 | 0.2981
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C.4 AC, values for of the parametric dataset

Table C.2: ACy for configurations of the parametric study

Configuration | ACy
configl 0.0556
config2 0.1055
config3 0.0525
configd 0.0013
configh 0.0408
configh 0.0295
config? 0.0524
config8 0.0877
config9 0.0998
configl( 0.0720
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C.5 AC, values for of the experimental dataset

Table C.3: ACy for experimental dataset

Configuration | Tunnel 1 | Tunnel 2
vehicle 1 0.0872 0.0518
vehicle 2 0.0991 0.0583
vehicle 3 0.1049 0.0670
vehicle 4 0.0608 0.0234
vehicle 5 0.0601 0.0145
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C.6 AC,; between tunnels for different correction meth-

ods

Table C.4: Cy 4711 — Cqq12 values for different correction methods

Configuration | Classic T™ RBFi19.10 | RBF39 | RBF5 | RBF;g
vehicle 1 0.0161 | 0.0022 0.0145 0.0063 | 0.0134 | 0.0516
vehicle 2 0.0178 | —0.0006 0.0214 0.0024 | 0.0149 | 0.0586
vehicle 3 0.0084 | —0.0045 0.0126 —0.0060 | 0.007 | 0.0453
vehicle 4 0.0323 | 0.0293 0.0231 0.0248 | 0.0226 | 0.0697
vehicle 5 0.0372 | 0.0139 0.0144 0.0179 | 0.0132 | 0.0827
0 0.0224 | 0.0081 0.0172 0.0091 | 0.0142 | 0.0616
o 0.0120 | 0.0137 0.0047 0.0123 | 0.0056 | 0.0149
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C.7 AC; between tunnels combining correction meth-
ods

Table C.5: Comparison of Cg 471 — Cgq2 by combining the different RBFs

Configuration | RBFo + (RBF50 — RBF3) | RBF19 + RBF19.10
vehicle 1 0.0587 0.0661
vehicle 2 0.0711 0.0800
vehicle 3 0.0583 0.0579
vehicle 4 0.0675 0.0928
vehicle 5 0.0780 0.0971
1 0.0667 0.0788
o 0.0084 0.0168
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