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Abstract

Nowadays, it is fundamental to have fast and reliable virtual tools to accelerate
the development of robust and efficient engines, in order to meet the increasingly
stringent regulations introduced by the European Commission on both pollutant
and greenhouse gas (GHG) emissions. In particular, when an ultra-lean dual-
dilution approach is implemented as in this project, conventional 0D/1D CFD
simulation software can be difficult and highly time-consuming to calibrate for
achieving a reliable combustion model. Therefore, Machine Learning (ML) and
Artificial Neural Network (ANN) can represent a valid alternatives to predict the
combustion profile under these challenging conditions.

The aim of this thesis is to establish three different ML, and ANN models for a
ultra lean dual-dilution engine, based on experimental data obtained during the
development of the PHOENICE (PHev towards zerO EmissioNs & ultimate ICE
efficiency) H2020 project. More in detail, a fully connected neural network was
designed to predict the Wiebe parameters, while a Gaussian Process Regression
(GPR) model and an additional fully connected neural network were both developed
to directly predict the burn rate curves.

These three models were able to capture the non-linear relationship between
the core control variables and combustion with good accuracy, predicting the
main combustion characteristics such as Mass Fraction Burned (MFB-10, MFB-50)
and the combustion duration (MFB10-75). The best performing model, the fully
connected neural network designed for burn rate prediction, was able to reach
regression values between 0.9299 and 0.9953, while the root mean square errors
between the ANN predicted and the experimental measurements were within the

range of 0.57-0.90 °CA
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Introduction

Nowadays, increasingly stringent regulations imposed by the European Commission
(EC), aimed at reducing emissions of air pollutants (CO, HC, NO,, and PM) and
Greenhouse gases (GHG) (mainly carbon dioxide, CO,), are driving innovation in
the automotive sector.

After the voluntary commitment by the automotive industry to achieve 140
g/km of CO4 emissions by 2008 had failed [9], the European Union (EU) introduced
mandatory CO, standards for passenger cars in 2009.

The legislation currently in force is an evolution of the European Commission’s
Fit for 55 package, which is a series of regulations aimed at reducing EU greenhouse
gas emissions by at least 55% by 2030, compared to 1990 levels [1]. Over the years,
this plan has undergone numerous modifications, with the timeline for achieving
carbon neutrality being progressively anticipated. The most recent amendment was
formally adopted on March 28, 2023, introducing a 100% CO; reduction target for
new passenger cars by 2035 and strengthening the 2030 intermediate target from
-37.5% to —b5%, relative to 2021 baseline levels [1]. The evolution of the legislation

is summarized in Figure 1.

Considering the stringency of the targets and the limited time to achieve them, it
is fundamental to accelerate the development phase of new technologies. In this
context, the data-driven approach can play a fundamental role.

Several studies have been carried out in recent years on the use of Artificial Neural
Network (ANN) and Machine Learning (ML) models to predict the performance and
emissions of Internal Combustion Engine (ICE) [10, 11]. Among these, the second
study [11] focused mainly on the prediction of Brake Specific Fuel Consumption
(BSFC), Brake Thermal Efficiency (BTE), CO (%) and HC (ppm), using data from
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Figure 1: EU CO, legislation evolution - [1]

96 steady-state test runs with a three-layer ANN, and achieved a Mean Relative
Error (MRE) in the range of 1.41-6.66%.

Additionally, a recent study on combustion modelling for modern spark-ignition
engines based on data-driven methods [12] was carried out. This research aimed
to evaluate the performance of two ANNs: one designed to predict sampled MFB
points and the other to predict fitted Wiebe coefficients, using a total of 1258
cases. The first model outperformed the second, achieving R? > 0.95 in more than
95% of the cases in both the training and validation datasets, with the optimal

configuration of three hidden layers containing 16-9-16 neurons.

The present dissertation aims to develop machine learning models for combus-
tion modelling in Spark Ignition (SI) engines, with the goal of supporting the
development of next-generation high-efficiency ICEs. Three models will be pre-
sented: two ANN models, one for predicting Wiebe coefficients and another for
burn rate profile prediction, and one Gaussian Process Regression (GPR) model,

also for burn rate prediction.



Chapter 1

Theoretical Background

The aim of this chapter is to provide an overview of the theoretical foundations of
the project. With a particular focus on combustion modeling and the fundamentals

of machine learning.

1.1 Combustion Modelling

The combustion process in Internal Combustion Engines (ICEs) is the key process
that converts chemical energy of the fuel into mechanical work, directly influencing
engine performance, efficiency, and emissions [13]. Combustion is not a single
process, but varies significantly depending on the engine type. Among the two
main categories - Spark Ignition (SI) and Compression Ignition (CI) engines —
this work focuses exclusively on the former.

In ST engines, air and fuel are premixed, with a defined air-fuel (A/F) ratio,
before the start of combustion. For Port Fuel Injection (PFI) the mixing phase
occurs in the intake system; on the other hand, for Direct Injection (DI) systems it
occurs directly inside the combustion chamber since the fuel is injected directly into
the cylinder during the intake stroke. The first strategy promotes better mixture
homogeneity, the second offers the possibility to implement charge stratification
strategies, in addition to the homogeneous charge, which can improve combustion
efficiency and emission control [14].

Combustion is triggered near the end of compression by an electric discharge

3
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from a spark plug. This discharge ignites first kernel, which radially propagates
outward. The flame front advances due to intense heat transfer from the hot,
burned gases to the adjacent layers of fresh, unburned mixture. Under normal
operating conditions, the combustion process in SI engines can be divided into

three distinct phases:

o Development phase: First kernel is ignited by the spark, and grows until

the flame front is developed. Approximately 10% of the total mass is burned.

« Rapid burning phase: Turbulent flame front propagates through the com-
bustion chamber until it reaches the walls. This phase is responsible for the

bulk of the energy release. From 10% to 90% of the charge is burned.

o Termination phase: Last portion of the charge, about 10%, completes its

oxidation process. The chemical energy is converted into heat.

Considering the crucial role that combustion modelling plays in obtaining reliable
simulation results for engine performance evaluation, it is fundamental to develop
accurate and robust combustion models to support the design of next-generation
high-efficiency ICEs.

For what concern 0D/1D CFD simulations, there are two main models that are
widely used: the Single-Zone model and the Multi-Zone model. Each of these will
be described below.

1.1.1 Wiebe Function

One example of a Single-Zone model is the Wiebe function, which is an empirical
model that relies on experimental data and does not directly account for all the
reactions involved during the process. It estimates the mass fraction burned as a
function of engine position, following an S-shaped curve (reported in Figure 1.1),
which rises from zero to one, with the interval defining the combustion duration
[13].
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Figure 1.1: Wiebe function shape - [2]

The curve is evaluated by using the following equation (1.1):

2(0) = 1 — exp (—a (9;;0>m+1) (1.1)

Where:

e a: efficiency parameter of the Wiebe function

m: form factor of the Wiebe function

o 0: crank angle

0p: start of combustion

o A0O: combustion duration

The Wiebe function parameters are tailored to specific engines and operating
conditions. Although it offers a simple and robust representation, it has inherent

limitations in accurately capturing the full complexity of combustion dynamics.

5
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1.1.2 Two-Zone combustion Model

A multi-zone combustion model, instead, provides a more accurate physical alter-
native compared to empirical model such as the Wiebe function.

This approach divides the combustion chamber into several thermodynamic
zones to more accurately simulate the in-cylinder combustion dynamics. In contrast
to single-zone models - e.g., the Wiebe function - which assume uniform properties
throughout the chamber, multi-zone approaches treat different regions as distinct
entities that evolve independently over time.

Two-Zone combustion model, which is one of the most common multi-zone
model used in engine simulation, divides the combustion into two zones: unburned

and burned zone (Figure 1.2).

.

Burned zone

Unburned zone

Figure 1.2: Burned and Unburned zone - [3]

At the beginning of combustion, all the species in the cylinder are in the
unburned zone, including residuals and EGR. Once the spark ignites the mixture,
a small reaction zone is formed around the spark plug. As combustion progresses,
the model transfers part of the unburned mixture into the burned zone based
on a defined burning rate. The burned zone is then assumed to be in chemical
equilibrium, where the composition depends on its temperature and pressure. The
model evaluates the internal energy of each species in the burned zone, sums them,
and applies energy conservation balance between zones to update temperatures
and cylinder pressure. This method captures the thermodynamic changes in detail,

providing more accurate predictions of pressure and emissions than simpler models

6
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[15].

1.2 Artificial Intelligence Fundamentals

1.2.1 Introduction

Artificial Inteligence (Al) is a broad branch of computer science that enables
computers and machines to emulate human-like intelligence by understanding,
learning, making decisions, exhibiting creativity, and operating autonomously [16].

Although the term Artificial Intelligence was coined in 1956 by scientist John
McCarthy, the theory of machines with human-like intelligence dates back much
further. One of the earliest ideas about "machine learning" emerged in 1914,
when the Spanish inventor Leonardo Torres y Quevedo built an electromechanical
machine capable of playing chess endgames without human intervention.

Despite initial enthusiasm, progress slowed during the 1970s and 1980s due to
limited computing power and overestimated capabilities. This period, known as
the "AI winter', was characterized by widespread disillusionment as the technology
failed to meet investor and public expectations.

In the 1990s, Al research had a renaissance and in the 2010s it intensified, driven
largely by increased computational power, the availability of large datasets, and
algorithmic innovations. In 2012, the deep learning model AlexNet achieved a
breakthrough in image classification, marking a turning point for the modern era
of Al [17].

1.2.2 Machine Learning

Machine learning (ML) is a branch of Artificial Intelligence (AI) that focuses on
the development of algorithms capable of learning patterns from data and making
predictions or decisions without being explicitly programmed for specific tasks.
Nowadays, machine learning is widely used in everyday life: it powers virtual
personal assistant or voice assistance, like Apple’s Siri or Amazon’s Alexa, which
can communicate with humans by recognizing speech and carrying out the requested
actions; it is also implemented in Google’s Gmail to automatically categorize email

into different folders like Primary, Social, and Promotional, as well as to identify

7
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and filter spam.
An additional application of machine learning is in healthcare, where models are
trained to classify tumors, find bone fractures that are hard to see, and detect
neurological disorders [18].

Machine learning models are employed in several disciplines and, since algorithms
are very different from each others they are generally classified into three main

categories based on the nature training data and learning approach [19][20]:

e Supervised Learning: the data are labeled and divided into input and
output sets. These labeled data are used to train algorithms, enabling the
model to evaluate their performance through accuracy metrics and learn over

the time by progressively improving their predictions.

e Unsupervised Learning: the data are unlabeled and generally only input
features are provided to the model. These algorithms aim to uncover hidden

patterns or relationship within the input data, grouping similar data points.

e Reinforcement Learning: the model interacts with a dynamic environment
and learns by trial and error to optimize a given objective. It receives feedback
in the form of rewards based on the outcomes of its actions. By maximizing

the cumulative reward, the model learns the best strategies to reach its goal.

Models can also be classified further according to the structure of their output,

as shown in Figure 1.5.

Classification Regression Clustering
b hal ’
/" A ‘x‘ /‘ o * ’f,
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- ] e g ~ O
e RO = A , = N ® -
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Figure 1.3: Machine learning categories - Output Structure

e Regression: It is a supervised learning model trained to understand the rela-
tionship between input features and outputs, where the outputs are continuous

numerical variables.
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o Classification: It is another type of supervised learning model, trained to
accurately assign test data to specific categories; the outputs can only take

discrete values.

e Clustering: It is an unsupervised learning technique, trained to group
unlabeled data based on similarities or differences, where the output consists

of clusters rather than predefined labels.

1.2.3 Model complexity

The complexity of model is a crucial factor that determines its ability to capture
patterns in the data. It is crucial find the optimal level of complexity, otherwise if
the model is too simple, it could fail in capturing important patterns. On the other
hand, if it is too complex, it learns to fit also the noise in the data rather than true

patterns. Two key concepts commonly used to describe model complexity are:

« Bias, which denotes the simplifying assumptions introduced during training
to make the learning process easier, often at the cost of ignoring part of the

underlying complexity.

o Variance, which represents the degree by which the model is affected by

variations in the training data.

As can be seen from Figure 1./, at both extremes of complexity, too simple or
too complex, the error tends to increase dramatically. It is therefore essential to
design a model that is sufficiently complex to capture the true patterns, but not so
complex to fit the noise.

In other words, if a model has high bias it is said to be underfitting, whereas if
it has high variance it is said to be overfitting. Both problems are related to the

ability of a model to generalize to unseen data.

o Overfitting occurs when a model achieves high accuracy on the training data
but fails to perform well on unseen data. It often arises when the model is too

complex, as previously discussed, or as a result of high-dimensional datasets.

o Underfitting represents the opposite condition. In this case, the model is too

simple to capture the essential patterns, leading to poor performance on both

9
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Total error

Variance

Error

Model complexity

Figure 1.4: Model complexity trade off - [4]

training and testing sets. Typical causes include simplistic models, inadequate

feature engineering, or insufficient training data.

Examples of underfitting, overfitting, and optimal fitting for both classification

and regression problems are shown in Figure 1.5.

Overlitting Righl Fit Underﬁrring
e o e o
° e ” :'.: * 0" : °
. .

Classification

Regression . o P2

Figure 1.5: Underfitting vs Right fitting vs Overfitting - [5]

1.2.4 Feature selection

A feature is a measurable quality of the elements in a dataset, it is also known as

attribute, since it describes the data [21]. Features can be:

10
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e Independent variables, which are the inputs of the models.

e Dependent variables, which depend on independent ones.

e Derived attributes, which are compiled from multiple other features.
Additionally, they can be further categorized into:

o Numerical variables that are measurable, such as age and sizes.

o Categorical variables that are everything non-numerical, such as name and

surnaine.

Feature selection is a branch of feature engineering [22], which is the process of
transforming raw data into a machine-readable format, that aims to reduce the
feature space by finding the most relevant to predict the targets. The benefits of
feature selection consist of the following: improving model performance by removing
irrelevant features that might negatively affect the accuracy level, reducing the
risk of overfitting, and reducing computational costs and training time. Two main
subgroups can be identified, depending on the technique used to select the most

important features:

e Supervised methods: they use the target values to determine the most
important features. These techniques can be further grouped into three main

categories:

— Filter methods, which evaluate the input feature only based on their
statistical relationship with the target variable. They are fast and efficient;
however, it does not consider feature interactions or model performance.
Common example are Pearson’s correlation coefficient and Neighborhood

Component Analysis.

— Wrapper methods, which select features by evaluating the performance
of the machine learning model trained with different subsets of features.
They are highly computational and time consuming; but, take into account
feature interactions and model performance. Common examples include

Recursive Feature Elimination and Ezhaustive Feature Selection.

11
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— Embedded methods, which perform feature selection as part of the training
process. They use regularization techniques, such as Lasso or Ridge, to

penalize less relevant features.

e Unsupervised methods: they do not rely on target values, but instead
analyze patterns and variance within the input data to identify relevant
features. One example is Principal Component Analysis that reduces the
dimensionality of large datasets by transforming correlated variables into a

smaller set of uncorrelated variables called principal components.

1.2.5 Gaussian Process Regression

Gaussian Process Regression (GPR) is a non-parametric regression technique. Its
flexibility and power are particularly exploited with problems involving continuous
data, where the correlation between inputs and outputs is unspecified or highly
complex. It is based on the Gaussian Process (GP) model, which is widely used in

machine learning and statistics thanks to its main characteristics, which are:

o Non-parametric nature: it is capable of adapting to data complexity, as it

does not rely on a fixed set of parameters.

o Probabilistic predictions: it is capable of quantifying the accuracy of

predictions, as it delivers a probabilistic distribution.

o Interpolation and smoothing: it is capable of handling noisy sampled data,

as it provides effective smoothing and interpolation.

o Marginalization of hyperparameters: it is capable of simplifying the
model, as it marginalizes over hyperparameters and removes the need for

explicit tuning.

Gaussian Processes (GPs) are based on a few main elements that work together to
set initial assumptions, capture patterns in the data, and update those assumptions
once new observations are introduced. The first element is the mean function,
which represents the expected value of the function at each input, often set to
zero by default. The most important element is the covariance, or kernel, function,

which measures similarity between inputs and determines how the model captures

12
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patterns. Finally, two types of distributions are involved: the prior distribution,
which combines the mean and covariance functions to encode assumptions before
any data are observed, and the posterior distribution, which updates the prior
distribution once data are available, providing predictions along with uncertainty
estimates [23].

Some of the most common basic kernel functions are presented below [24]:

« Radial Basis Function (RBF) kernel: it is characterized by a key hyper-
parameter (1), called the length-scale parameter. This parameter controls how
quickly the correlation between two points decreases as their distance, d(x;, x;),
increases. Therefore, if [ is large, distant points remain highly correlated,
and as a result the function will be smoother. Conversely, if [ is small, the
correlation between two points decreases more rapidly, and the function will

exhibit larger fluctuations.

d(z;, x;)?
k(z;,x;) = exp (—2121 (1.2)
o Matérn kernel: it is a generalization of the RBF kernel. Thus, it has not only
[ as a parameter, but also an additional term v, which controls the smoothness
of the resulting function. If v has a small value, the resulting function will

be less smooth. In contrast, as v — 0o, the kernel becomes equivalent to the

RBF.

k(s a;) = F(V;QV_I <\/l2_yd(:l:i,xj)>yK,, <\/l2_yd(:l:i,xj)> (1.3)

« Rational Quadratic kernel: it is an extension of the RBF kernel that
introduces a parameter «, called the scale-mixture parameter. This parameter
controls how the kernel combines different smoothness levels, making it useful
when the function may not have the same smoothness everywhere in the input

space.

- (1 222) »

Different basic kernels can be combined with each other, using addition and
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multiplication, to create new kernels.

1.2.6 Artificial Neural Networks

The last machine learning model, that is presented in this work is called Artificial
Neural Networks (ANNs), mainly simply called Neural Networks (NNs). This
type of model tries to reproduce the operating principle of biological neurons in
the human brain to mimic the human thinking approach. This technique was
developed to overcome problems that could not be solved with traditional computer
programming or other machine learning models, such as speech or image recognition,

although they are easily solvable by the human brain [25].

Traditional ANNs, usually composed of one input layer, a single hidden layer,
and one output layer, often have limited capacity to manage complex tasks due to
small dimensions. For this reason, a new branch of Al and ML has emerged, called
deep learning. Deep learning is essentially an artificial neural network model that

uses bigger architecture and deeper networks [26].

As mentioned before, NNs are inspired by the functionality of human brain,
which works thanks to elementary units, called neurons, connected to each other,
Figure 1.6, and exchanging information via electrical impulse. In the same way,
neural networks are composed by artificial neurons, also called perceptrons, that are
connected within a network, Figure 1.7, and exchange information using numerical
values. Despite the same working principle, it is important to highlight that ANNs
are only simplified mathematical models derived from biological processes, rather

than accurate replications of them [27].

Focusing on artificial neurons, Figure 1.8, which aim to replicate the behavior of
biological ones, the artificial one is composed of an input signal, a processing unit
that performs a mathematical operation, and an output that is then transmitted
to the following neurons.

Inside the processing unit, the following sum is performed, which returns the

pre-activation function, a:

a=z-W+b=> Wy +b (1.5)
k=1
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input layer hidden layer 1 hidden layer 2 output layer

Figure 1.7: Example of artificial neurons connection - [7]

Where:

o 7 € RY is the input vector, that represent the outputs generated by the other

N connected neurons.

o W € RY is the weight vector, which defines the influence that each input has

on the corresponding output.

e b is the bias, an additional parameter, independent of the inputs, that serves

as a constant offset of the weighted sum before it is passed to the activation

15
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Activation function
Qutput

Input
y

Figure 1.8: Artificial Neuron

function.

After that, a function, called activation function f(-) is applied to the weighted
sum. This introduces non-linearity and makes possible to model complex relation-

ships between inputs and output.

y=fla)=f (i Wy, + b) (1.6)

k=1
Different activation functions have been introduced in the literature, and each
of them gives the neuron specific features, making it more suitable for certain
applications [28].
Some of the most common ones are presented and illustrated below:

o Hard limiter or threshold function:

k, a>0
fla) = (1.7)
0, a<0
e Rectified linear unit function:
a, a>0
ReLU(a) = (1.8)
0, a<0
e Sigmoid function:
1
= 1.9
o(0) = (19
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Figure 1.9: Threshold function
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Figure 1.10: ReLU function

o Hyperbolic tangent function:

et —e @

et 4 e @

tanh(a) = (1.10)

For a neural network to work properly, it is essential that the weights and
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sigmoid(a)

Figure 1.11: Sigmoid function
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Figure 1.12: Hyperbolic tangent function

biases are chosen appropriately. Fortunately, optimal values are determined during
the training process, where the model autonomously learns complex relationships

between inputs and outputs without the need for manual adjustment by the user.

18



Theoretical Background

Neural Network architecture

As mentioned earlier, ANNs are composed of multiple layers, each containing a set
of neurons that connect only to neurons in other layers. The number of layers and

neurons defines the architecture of the network.

Input layer | Hidden layers i Output layer

i h, h, h, ; 0

A0

Input 1 v v i
SN
. X .AHA.‘HA.& .
%' \i f \§

‘ m.

Figure 1.13: Neural Network architecture

The layers of the network can be divided into three main categories Figure 1.13
[29]:

e Input layer: it is the first layer, and the number of neurons corresponds to
the number of features of the input data. This layer does not perform any

computational processes, but simply passes the data to the hidden layer.

o Hidden layers: these are all the layers between the input and output layers.
The number and size of the hidden layers can vary depending on the complexity
of the problem. This is where most of the computational cost of the network
is concentrated, since each hidden layer applies a set of weights and biases to

the input data.

o Output layer: this is the last layer of an ANN, responsible for producing
the output predictions. The number of neurons corresponds to the number
of classes in a classification task, or to the number of outputs in a regression

problem.
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Learning algorithms for neural networks

Learning algorithms represent the fundamental mechanism that allows artificial
neural networks (ANNSs) to set their internal parameters and improve performance
through experience. The most common approach is based on gradient descent,
where the algorithm computes the gradient of a cost function with respect to
the network weights and updates them in order to minimize the prediction error.
Variants such as stochastic gradient descent (SGD) and mini-batch gradient descent
enhance computational efficiency by performing weight updates on subsets of the
training data. Furthermore, advanced optimization strategies, including Momentum,
RMSprop, and Adam, have been introduced to accelerate convergence and improve
stability by dynamically adapting the learning rate and overcoming local minima.
The process of backpropagation provides an efficient way to propagate error signals
through the network, ensuring that weight adjustments are distributed across
all layers. Overall, these algorithms are essential for enabling ANNs to capture

complex nonlinear relationships and generalize effectively to unseen data [30].
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Chapter 2
Case study

2.1 Engine specification

The study was carried out using performance data obtained during the development
of the European Horizon 2020 PHOENICE project, based on a state-of-the-art 4-
cylinder, 1.3L turbocharged direct injection spark-ignition engine [31]. The engine
is characterized by a high stroke-to-bore ratio, a compact 4-valve combustion
chamber with side-mounted 200 bar fuel injection system, a MultiAir Variable
Valve Actuation (VVA) [32] system and a cylinder head with integrated exhaust
manifold.

With the aim of achieving a peak Indicated Thermal Efficiency (ITE) of 47% the
Dual Dilution Combustion Approach (DDCA) [33] was implemented, combining
homogeneous lean combustion and cooled low-pressure Exhaust Gases Recirculation
(EGR), with high Compression Ratio (CR). To support this strategy, several
breakthrough technologies were integrated to the baseline engine, particularly
focusing on the combustion system.

The main upgrades, as shown in Figure 2.1, include the redesign of the piston,
which increased the CR from the baseline value of 10.5 to 13.6. Together with
the redesigned intake port geometry, this allowed the exploitation of the Swumble
concept, improving turbulence levels and supporting flame propagation under the
challenging conditions of DDCA.

The boosting and fuel injection systems were also upgraded, introducing a 48V
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CRANK-TRAIN

CR 13.6 Piston
High resistance Con-Rod

EGR SYSTEM BOOSTING SYSTEM
Cooled Low-Pressure 48V VNT E-Turbo
EGR System Prototype WCAC
CHARGE MOTION VALVE-TRAIN
SWUMBLE™ intake VVA System

duct design Optimized Miller Cycle

FUEL INJECTION
350 bar GDI FIS

Figure 2.1: Breakthrough technologies adopted on PHOENICE engine

electrified turbocharger with a Variable Nozzle Turbine (VNT), which not only
allows to mitigate turbo lag, but also enables energy recovery when the turbine
produces more energy than required by the compressor. In addition, a fuel injection
system capable of operating up to 350 bar was implemented.

Finally, the VVA system was fully exploited to implement aggressive Miller cycle
strategies, reducing pumping losses. The integration of these technologies resulted

in the specifications reported in Table 2.1

Engine Specifications

Number of cylinders 4
Displacement 1332 cm?
Bore z Stroke 70 mm x 86.5 mm
Compression Ratio 13.6:1
Number of valves 16
VVA system MultiAir IIT (intake only)
Turbocharging 48 V VNT E-Turbo
Fuel Injection GDI (up to 350 bar)
Ignition System Base production
EGR System Cooled Low Pressure (LP)
Rated Power (target) 100 kW @ 4500 RPM
Rated Torque (target) 218 Nm @ 3500 RPM

Table 2.1: PHOENICE Engine Specifications
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2.2 Test matrix

As stated earlier, the data used in the elaboration of this dissertation were obtained
during the development of the PHOENICE engine. In particular, they come
from steady-state tests performed by IFPEN during the fine-tuning phase. These
calibration tests were carried out at eleven engine operating points, selected to
represent a broad range of conditions in terms of engine speed and load demand, as

illustrated in Figure 2.2. The complete set of operating points is further summarized

in Table 2.2.
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Figure 2.2: Engine operating points and full load curve

During the tuning process to characterize the influence of the dual dilution
combustion approach, the reported operating points were tested at different values
of air—fuel ratio (A\) and Exhaust Gas Recirculation (EGR) rates. In total, 101
operating conditions were obtained, each corresponding to a specific working
condition defined by speed, load, EGR and \. As examples, Table 2.3 and Table 2.4
present two representative combinations of operating points, corresponding to 1500
RPM x 5.5 bar BMEP and 3000 RPM x 7 bar BMEP, that will be used to support
the discussion in the following chapter.

For each operating point, several data were acquired during the testing phase
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Tested engine points

Engine speed [RPM] BMEP [bar]
1000 2
1500 2
1500 5.5
1500 11.5
2000 5.5
2000 13.5
2200 20
2600 15
2600 20
3000 7
3000 13

Table 2.2: Tested Engine Points

1500 RPM x 5.5 bar BMEP

Air-fuel ratio [-] EGR Rate [%]
0.90
5.20
1.00 10.2
15.3
18.9
0.70
1.11 10.3
15.0
1.25 0.60
5.10
1.43 0.00

Table 2.3: 1500 RPM x 5.5 bar BMEP )\ and EGR sweeps

by IFPEN, including air flow rate, fuel flow rate, pressure and temperature in
different locations of the intake and exhaust system, such as at compressor and
turbine inlets and outlets. Additional recorded variables include brake specific fuel
consumption, brake specific CO, HC, and NOx emissions, turbocharger speed, and
Spark Advance (SA). Finally, it should be highlighted that the burn rate curves
used in this project were obtained from a GT-Suite model previously calibrated in

an earlier thesis, using experimental data provided by IFPEN.

24



Case study

3000 RPM x 7 bar BMEP

Air-fuel ratio [-] EGR Rate [%]
0.00
5.20
1.00 10.0
15.2
20.6
21.5
0.00
5.30
1.11 9.80
15.1
20.1
0.00
1.25 5.10
10.0
14.4
0.00
1.43 5.20
7.20

Table 2.4: 3000 RPM x 7 bar BMEP A and EGR sweeps
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Chapter 3

Methodology

This chapter outlines the methodology followed throughout this project, starting
with the first fundamental step common to all the developed models, the process of
feature selection and the analysis of feature density distributions. It then provides a
detailed analysis of each proposed model, starting with the baseline neural network
trained to predict the parameters of the Wiebe function, followed by the application
of Gaussian Process Regression (GPR) for the prediction of burn rate curves, and
concluding with the description of the ANN model developed to directly predict

the combustion profile.

3.1 Feature selection

As stated in Section 1.2./, feature selection is essential to ensure good performance
of machine learning models, while also reducing the computational cost required
by computers. Indeed, when working with large datasets and numerous features,
many may be irrelevant to the target objective. Including such features in the
dataset can degrade model performance, with possible issues related to overfitting
or underfitting, as anticipated in Section 1.2.3.

In this project, the selection of the most relevant inputs for the models was carried
out through a hybrid approach that combined mathematical models with engineering
knowledge. Some of the data acquired by IFPEN also included measurements that

were either irrelevant for the analysis or directly linked to the target prediction,
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such as emissions or Peak Fired Pressure (PFP).

The initial set of 12 selected features is reported in Table 3.1:

Initial Features

Engine speed [RPM]
Turbo speed [RPM]
Exhaust gas recirculation (%]
Air-fuel ratio -\ []
Intake pressure [bar]
Intake temperature K]
Intake valve opening [deg CA]
Intake valve closure [deg CA]
Injected fuel mass [mg/cycle]
Injection duration [deg CA]
Start of injection [deg CA]
Spark advance [deg CA]

Table 3.1: Initial set of features after first human screening

Starting from this set, two supervised feature selection methods were imple-
mented: Pearson’s correlation coefficient and Neighborhood Component Analysis
(NCA ). Both of these are filter-types techniques, meaning that they evaluate the
importance of the inputs only based on their statistical relationship with the target
variable. Since it was not possible to use the full combustion curve, three main

combustion parameters were considered:

o MFB-10, the crank angle at which 10% of the total fuel mass is burned;
e MFB-50, the crank angle at which 50% of the total fuel mass is burned;

e MFB-1075, the combustion duration, defined as the crank angle interval
between 10% and 75% of the total fuel mass burned.

It should be noted that MFB-1075 was selected instead of MFB-1090, as under
extreme conditions, especially in dual dilution operation, the achievement of 90%
mass fraction burned was either not possible or substantially delayed.

Since the models are sensitive to the scale of individual variables, both the inputs
and the targets were normalized to enable a fairer comparison of their relative

influence.
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3.1.1 Neighborhood Component Analysis

This method evaluates the importance of the features by assigning a score with
respect to the target value. In the case of regression, Neighborhood Component
Analysis (NCA) learns feature weights by minimizing the prediction error of a
nearest-neighbor regressor. Features with higher scores are considered more relevant
for predicting the target, while those with negligible weights can be excluded from
the model.

Top Selected Features for MFB10
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Figure 3.2: Feature scores - target MFB50
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Top Selected Features for MFB1075
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Figure 3.3: Feature scores - target MFB1075

Figures 3.1-3.3 illustrate the feature scores obtained for the three combustion
targets: MFB10, MFB50, and MFB1075. The following observations can be made:

Intake Valve Opening (IVO) and Intake Valve Closure (IVC) show low
relevance in all three cases, as they are optimized and fixed at each operating

point to maximize the Millerization effect.

Start of injection has negligible impact on two of the three targets (MFB10
and MFB50), but plays a major role in determining the combustion duration
(MFB1075).

Injected fuel mass and injection duration display comparable scores,
except for MFB50, where the injected fuel mass becomes the most relevant

feature.
Air—fuel ratio exhibits low relevance across nearly all targets.

EGR shows some influence on MFB10, but has limited importance for MFB50
and MFB1075.

Intake temperature and intake pressure consistently hold intermediate

importance.

Spark advance (SA) ranks among the top three most influential features

across all cases.
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« Engine speed is almost irrelevant for MFB50, but, as expected, it significantly
affects both MFB10 and MFB1075.

e Turbo speed shows a small contribution, limited mainly to the combustion
duration (MFB1075).

3.1.2 Pearson’s correlation coefficient

Because Neighborhood Component Analysis (NCA) does not account for interac-
tions between different features, an additional technique was applied. Pearson’s
correlation coefficient, Fquation 3.1, was selected to validate the NCA results
and to verify whether some features are correlated with each other and therefore
potentially redundant during the training process.

Pearson’s correlation coefficient (r) is a statistical measure that quantifies the
strength and direction of the linear relationship between two continuous variables.

Its value ranges from —1 to +1 [34], where:

o +1 indicates a perfect positive linear relationship, as one variable increases,

the other increases proportionally.

o —1 indicates a perfect negative linear relationship, as one variable increases,

the other decreases proportionally.

¢ ( indicates no relationship between the variables.

L Sw-dw-0) .
\/E(S&; — )%y — y)? 3

Where:

o x; = values of variable x in the sample
e T = mean of variable z

o y; = values of variable y in the sample

e y = mean of variable y

30



Methodology

In this work, the absolute value of r was considered, Figures 3.4, as it reflects
the strength of the correlation independently of its sign. Values closer to 1 indicate

stronger linear relationships between the variables.
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Figure 3.4: Heatmap of Pearson’s correlation coefficient

What stands out from this graph is the linear dependency observed between
certain features. For example, as expected, the injected mass is highly correlated
with the injection duration, while the intake temperature shows a marked correlation
with the intake pressure. Another relevant correlation is observable between turbine
speed and intake conditions: as the turbine rotates faster, the compressor delivers
a higher air mass flow, leading to an increase in both intake pressure and intake

temperature.
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3.1.3 Conclusions

After these purely statistical results, some consideration were made by considering
the problem and applying engineering knowledge of the combustion process. It was

decided to remove the following inputs features:

 Intake valve opening (IVO) and intake valve closure (IVC) as they show
low correlation with the target outputs, since they were phased to optimize
the Miller cycle effect.

e Injection duration since it is highly correlated with the injected mass,

therefore, it was decided to keep the second one.

o Start of injection as it shows low correlation with the combustion targets
and primarily affects mixture homogeneity, and thus emissions, rather than

the combustion profile.

The final set of 8 selected features is presented in Table 3.2.

Final Features

Engine speed [RPM]
Turbo speed [RPM]
Exhaust gas recirculation (%]
Air-fuel ratio -A -]
Intake pressure [bar]
Intake temperature K]
Injected fuel mass [mg/cycle]
Spark advance [deg CA]

Table 3.2: Final set of features

3.2 Probability Density Analysis

Once the most relevant features were selected, their distribution in the dataset
was analyzed to check whether, across the 101 operating points, they were evenly
represented or unbalanced. An uneven distribution can reduce the model’s perfor-
mance. The model should be exposed to a wide range of situations during training

to improve its predictions in testing. If some feature values are rare and appear

32



Methodology

only in the test set, the model may perform poorly because it has never seen those
cases before. As a consequence, in the case of an unbalanced distribution, it is
important to carefully design the train—test split in order to ensure reliable model
evaluation.

As shown in Figure 3.5, the probability density distributions of the selected

features highlight several relevant aspects:

« Engine speed, Figure 3.5a, shows a fairly balanced distribution between
1500 and 3000 RPM, with a slight reduction around 2600 RPM where only a

few points are present.

o Air—fuel ratio ()\), Figure 3.5b, is mostly skewed toward stoichiometric or

slightly lean mixtures, with very few points in extremely lean conditions.

« EGR, Figure 3.5¢, exhibits a monotonically decreasing trend, with higher
probability concentrated at low EGR rates, between 5 and 10%.

e Turbo speed, Figure 3.5h, and intake pressure, Figure 3.5e, both charac-
terized by two peaks, reflecting two dominant operating regimes: one at low
turbo speed and low intake pressure, corresponding to naturally aspirated or
light-load conditions, and another at high turbo speed and high intake pres-
sure, corresponding to boosted high-load operation, with limited occurrence

of intermediate states.

e Load, Figure 3.5f, follows a trimodal distribution, with the engine operating

mainly at low, medium, and high load points.

o Spark advance, Figure 3.5g, shows a two-peak distribution, with two main
operating strategies: advanced ignition at light load and retarded ignition at
high load.

Therefore, it is important that the dataset is split while also considering these

distributions, in order to avoid deteriorating the model performance.
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3.3 Neural Network for Wiebe Parameter predic-
tion

The first model developed during the dissertation project was a ‘hybrid model’,
a fully connected neural network [35] trained to predict the parameters of the
Wiebe function Eq 3.2, rather than directly predicting the whole combustion curve.
Therefore, the model output a set of parameters that were subsequently used to
construct the mass fraction burned (MFB) profile. Afterwards, as a final step, the
MFB profile was differentiated with respect to the crank angle to obtain the burn

rate profile.

Combustion(f) = CE {1 —e Ve (G_SOC)EH} (3.2)

Where, WC', wiebe constant, and SOC, start of combustion, are defined as:

b —(B+1)
WC - 1 1 (33)
BECT — BSCEH
_1
. E+1
SOC = A4 — — D BMCEY (3.4)

)
BECE+1 — BSCE+1

In Eq 3.3 and Eq 3./ three additional calculated constants are introduced: BMC,
BSC, and BEC, which represent the burned midpoint, start, and end constants,

respectively.

» Burned Midpoint Constant: BMC = —In(1 — BM)
« Burned Start Constant: BSC' = —In(1 — BS)

o Burned End Constant: BEC' = —In(1 — BE)

Where:
o BM = Burned Fuel Percentage at Anchor Angle (50%)

o BS = Burned Fuel Percentage at Start Angle (10%)
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o BE = Burned Fuel Percentage at End Angle (90%)

And lastly, the four parameters that the model aims to predict, which vary and

must be adapted for each different engine operating condition, are:

o Anchor Angle - AA - defined as the crank angle at which 50% of the total

mass is burned.

e Duration - D - corresponding to the crank angle interval over which the

combustion process occurs.

« Wiebe Exponent - F - a shape factor that controls the steepness of the

mass fraction burned curve.

o Fraction of Fuel Burned - CF - representing the effective percentage of fuel
burned relative to the total injected mass, accounting for possible incomplete

combustion.

The steps followed to create this model were:

o Extraction of the parameters from the experimental curves using genetic

algorithms.
o Normalization of both features and targets.
e Definition of the model architecture and selection of the hyperparameters.
o Testing of the model.

e Reconstruction of the combustion curves using the predicted parameters.

3.3.1 Genetic Algorithm

The Genetic Algorithm (GA) is an optimization technique based on Darwinian
natural selection, which can be applied to both constrained and unconstrained
optimization problems. It creates a group of possible solutions, called individuals,
and improves them step by step using operations inspired by nature, such as
selection, crossover, and mutation, to reach the best solution [8].

Figure 3.6 illustrates the general workflow of the Genetic Algorithm.
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The process starts with the generation of an initial population, in this case,
a set of possible parameter vectors for the Wiebe function. Each individual in
this population is then evaluated by computing a fitness value, which in this case
is based on the error between the experimental combustion curve and the curve
reconstructed through the Wiebe model.

Once the fitness values are calculated, the algorithm selects some individuals,
called parents, to create the next generation. Individuals with higher fitness have a
greater chance of being chosen.

The parents are then combined through crossover, where parts of their parameters
are mixed to create new children. To preserve diversity and prevent the search from
getting stuck too early, mutation is applied, introducing small random changes to
some individuals.

Lastly, the algorithm checks if the termination condition is satisfied, such as the

saturation of the fitness improvement. If not, the new population is re-evaluated,
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and the process repeats. When the condition is met, the algorithm stops and

returns the best set of parameters.

The GA was implemented using the Python PyGAD library. Table 3.3 reports

the parameters defined for the search of the optimal set of Wiebe parameters.

Genetic Algorithm Configuration

Number of generations 10000
Parents per generation 4000
Population size 9000
Number of genes 4
Gene space AA = [min(0), max(6)],

E = [1072,50],

D =[1,50],

CFE =10.5,0.99]
Mutation 50% of genes, random
Crossover Uniform
Stop criterion Saturation over 50 generations

Table 3.3: Genetic Algorithm configuration used for Wiebe parameter optimization.

The choices made consists of a relatively large population size and number of
parents to ensure a wide search of the solution space, while the mutation rate was
set to 50% to preserve diversity and avoid premature convergence. The crossover
operator was set to uniform to guarantee an equal probability of exchanging genes
between parents. The stopping criterion was set to saturation over 50 generations,
ensuring that the algorithm terminates once the improvement in fitness becomes

negligible.

The following figures (Figure 3.7, Figure 3.8, and Figure 3.9) compare the
experimental MFB and burn rate curves with those obtained from the Wiebe
function (Eq. 3.2). The function was fitted using the optimal parameters identified
through GA optimization.
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Figure 3.8: Experimental and Wiebe combustion curve - cycle 26
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Figure 3.9: Experimental and Wiebe combustion curve - cycle 80

It can be observed that this approach presents some limitations in accurately
fitting the start of combustion, particularly in cycle 17. Moreover, due to tail noise
in the burn rate, the total mass of burned fuel is not fully captured by Wiebe

function.

3.3.2 Neural network characteristics

In this section, the architecture of the network is presented together with the
description of the training and testing procedures

The neural network model was implemented using the Multi-Layer Perceptron
Regression (MLPRegressor) class from the scikit-learn library, which provides a

feedforward artificial neural network trained with backpropagation approach.

Neural network architecture

Since the model requires a tuple structure to define the hidden layer configuration, a
dedicated function was defined to generate this tuple based on the specified number

of layers and neurons for each layer. This approach allowed a flexible definition of
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network architecture, which was particularly useful during the optimization process.

The implementation is shown in the code below.

def fit(self, X, y):

layers = [self.neurons_layer_1]

if self.num_layers > 1:
layers.append(self.neurons_layer_2)

if self.num_layers > 2:
layers.append(self .neurons_layer_3)

if self.num_layers > 3:
layers.append(self .neurons_layer_4)

hidden_layer_sizes = tuple(layers)

After evaluating different possible architectures, the three top-performing con-
figurations were compared to identify the most suitable for this application. All

configurations share the same input and output layer sizes:

e 8 neurons in the input layer, equal to the number of features selected in
Section 3.1.3

e 4 neurons in the output layer, equal to the number of Wiebe parameters
The difference lies in the hidden layers:

o Case 1: three hidden layers with 16-9-16 neurons

e Case 2: three hidden layers with 64-32—-16 neurons

o Case 3: four hidden layers with 64-32-16-16 neurons

Figure 3.10 shows the R? scores obtained when predicting the target parameters
on both the training and test sets for the three configurations.

After the network optimization process was completed, Case 2 was selected.
Despite performing slightly worse than Case 3, it uses one fewer hidden layer, which
reduces model complexity and the risk of overfitting, improving generalization on

unseen data.
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Figure 3.10: R? scores of the predicted parameters for three network configurations

Model hyperparameters

The model hyperparameters were selected as follows:

Activation function: the tanh (hyperbolic tangent) function was adopted,
as it effectively captures nonlinear relationships and provides more stable

gradients compared to the sigmoid function.

Optimizer: the Adam algorithm was used, since it combines the advantages
of adaptive learning rates with momentum, ensuring both robustness and

efficiency.

Initial learning rate: set to 1 x 1072, which allows relatively fast convergence,

especially during the early training phase.

Regularization (L2): the value @ = 1 x 1073 was chosen to penalize

excessively large weights and reduce the risk of overfitting.

Stopping criteria: the training process was limited to a maximum of 8000
iterations, with a tolerance of 1 x 107, and included early stopping after 50

iterations without improvement.

This configuration was selected after preliminary testing of different architectures

and hyperparameter ranges, balancing convergence speed, model complexity, and

generalization performance.

42



Methodology

3.3.3 Model fitting and testing

Model fitting and model testing are two fundamental processes for achieving a good
match between predicted and observed data. The subset used to train the model
must be different from the one used for testing, so that the evaluation reflects the
model’s ability to generalize to unseen data.

In this study, an 80/20 split was adopted: 80% of the data were used to train
the model and 20% were adopted for testing. Specifically, among the 101 operating

points, 80 were used for training and 21 for testing.

3.4 Gaussian Process Regression (GPR) for burn

rate prediction

The second model developed and analyzed was the Gaussian Process Regression
(GPR). Unlike neural networks, GPR is a non-parametric and probabilistic approach,
which means it does not rely on a predefined structure to model the relationship
between inputs and outputs, but instead learns it directly from the data. As a
consequence, GPR requires fewer design choices from the user, relying mainly on
kernel selection. An interesting feature of this model is that it provides predictions
together with a probability distribution, allowing an estimation of the associated
uncertainty.

The following development steps were carried out to design the model and

identify the most suitable configuration:
o Processing of the dataset to impose correct input and output targets
o Normalization of the dataset, including both input and output variables
o Definition and evaluation of kernel functions, together with the data splitting

strategy

3.4.1 Dataset pre-processing

The inputs and outputs of this model differ from those used in the previous one. In

this case, the objective was to directly predict the burn rate curve without relying
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on the Wiebe function. Subsequently, the inputs consisted of the eight features
selected in Section 3.1.3, repeated across the crank angle domain and combined
with the crank angle position, while the target output was the burn rate value
at each corresponding crank angle under the given operating conditions. This

mapping can be formally expressed as:

X = |features of the cycle, 0] — y = burn rate at 0 (3.5)

3.4.2 Dataset splitting strategy

The dataset was divided into two subsets, each containing the filtered combustion
sequences, to mitigate the noise present in the combustion tail, together with their
corresponding operating features (engine speed, EGR percentage, etc.). The larger
subset, consisting of 81 sequences, is referred to as Set A, while the smaller subset,
containing 20 sequences, is referred to as Set B.

The performance of the GPR model, with the three kernel functions defined

previously, was then evaluated under five different training configurations:

e Case 1: 1,620 points were randomly selected from Set A to fit the model.

Case 2: 20 points were randomly selected from each sequence in Set A to fit
the model.

Case 3: 20 evenly spaced points were selected from each sequence in Set A
to fit the model.

» Case 4: 1,620 points were randomly selected from the entire dataset (Set A
+ Set B) to fit the model.

» Case 5: 4,000 points were randomly selected from the entire dataset (Set A
+ Set B) to fit the model.

The predictive accuracy across these cases was compared using two performance
metrics: the Root Mean Squared Error (RMSE) and the coefficient of determination
(R?). In Figure 3.11, the R? score is used to present the results.

Different behaviors can be observed between Set A and Set B. In particular,

the accuracy of the predictions for the larger dataset (Set A) remains consistently
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Figure 3.11: R? scores of the predictions obtained with different kernels and training
methodologies

above 0.95, with no substantial differences among the kernel functions. By contrast,
the first three cases of Set B exhibit lower performance, with accuracy values below
0.80; under these conditions, the Matérn kernel provides slightly better results
than the other kernels. However, the last two cases of Set B show performance
comparable to that of Set A.

These observations allow us to draw some preliminary conclusions about the
model. First, as shown in the first three cases, the model is not capable of
extrapolating new functions to fit unseen data. On the contrary, even with a
very limited number of sequence points, the model is still able to interpolate the
sequence effectively and provide a reliable prediction of the curve, as demonstrated
in the last two cases, Case 4 and Case 5.

In Figure 3.12, a comparison is reported between the experimental curve, the
predicted one, and the distribution of the data used to train the model in two
different cases, Case I and Case 4. Both cases are characterized by the same
number of fitting points (1620), but differ in the data splitting strategy.

Despite the comparable distribution of training data (green dots), since the
number of points is the same, a clear difference in accuracy can be observed between
Figure 3.12a and Figure 3.12b, with the latter outperforming the former. This
confirms what was stated before, in particular that the model is able to interpolate
the data better than to extrapolate it.

The final configuration adopted for presenting the results in the last chapter

45



Methodology

Set B - Case 1: Burn Rate Prediction with Matérn Kernel

| |
—— True Burn Rate
—— Predicted Burn Rate
+ Training data
3 -
o
& 2
=
4]
L
M
o
=
5 1
m
0
-1

Crank Angle [CA]

(a) Case 1

. Set B - Case 4: Burn Rate Prediction with Matérn Kernel

T T
—— True Burn Rate
—— Predicted Burn Rate
Training data
3 -
o
o 2
=
)
L
&)
o
E
5 1
o
0
-1

Crank Angle [CA]

(b) Case 4

Figure 3.12: Comparison between predicted and experimental burn rate using the
Matérn kernel.
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is a Gaussian Process Regression (GPR) model with a Matérn kernel, trained on
Case 5. The model was optimized with respect to the hyperparameter length_scale

within the range (1073, 10%), while the parameter v was fixed at 1.5.

3.5 Neural Network for burn rate prediction

The third and last model presented in this dissertation is a fully connected Neural
Network (NN) designed to directly predict the combustion profile, rather than the
Wiebe parameters.

The workflow adopted for the development of this model is a combination of

steps from the procedures applied in the first and second models:

o Similarly to the GPR model, the dataset was pre-processed to obtain the

desired sequence of inputs and outputs.

o As in the first model, the dataset was split using the conventional 80/20

technique.
e The model architecture was defined, and the hyperparameters were optimized.

¢ The model was then tested and evaluated.

3.5.1 Dataset pre-processing

Similarly to the GPR model, the inputs consisted of the eight features selected in
Section 3.1.3, repeated across the crank angle domain and combined with the crank
angle position, while the target output was the burn rate at each corresponding
crank angle under the given operating conditions. Unlike the GPR case, an equal
vector length, for all the 101 operating points, was imposed to facilitate the capture

of trends.

3.5.2 Dataset splitting strategy

In this study, an initial 80/20 split was adopted: 80% of the data were used to
train the model and 20% were adopted for testing. Specifically, among the 101

operating points, 80 were used for training and 21 for testing.
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Once the model hyperparameters were optimized, a different data-splitting
strategy was adopted to evaluate the robustness of the model under more challenging
conditions. In particular, the model was trained on a dataset excluding all the
sweeps performed at 1500 RPM and 5.5 bar BMEP, in order to assess its performance

on completely unseen data.

3.5.3 Neural network characteristics

In this section, the main characteristics of the neural network are presented.
The neural network model was implemented using the Multi-Layer Perceptron

Regression (MLPRegressor) class from the scikit-learn library, as in Section 3.3

Model hyperparameters

During the definition of the hyperparameters, some were selected directly, while

others were chosen through an optimization process. The ones set beforehand are:

o Optimizer: the Adam algorithm was selected.
o Initial learning rate: set to 1 x 1072

o Stopping criteria: the training process was limited to a maximum of 8000
iterations, with a tolerance of 1 x 1072, and included early stopping after 100

iterations without improvement, in order to reduce the risk of overfitting.

Instead the ones selected after an optimization are:
o Activation function: three different activation functions were tested:

— Hyperbolic tangent (tanh)
— ReLU
— Logistic
« Regularization (L2): three different values were tested:
—a=1x10""!

—a=1x10"2
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—a=1x10"

Firstly, a sensitivity analysis was conducted by varying the regularization factor
and the activation function. Once the former was selected, a second analysis on
network dimensionality and activation function was carried out to obtain the final

configuration.

In Figure 3.13, the variation of RMSE is presented as a function of the acti-
vation function and the regularization factor, evaluated with respect to the three
main combustion parameters: MFB10, MFB50, and MFB1075. The results are
shown for both the training and the test datasets, emphasizing the importance of
correctly selecting the regularization factor to avoid overfitting and underfitting.

Firstly, it can be observed that, overall, the RMSE values of the training dataset
are consistently lower than those of the test dataset across all three graphs. However,
the errors between the two subsets are comparable, meaning that the model does
not show problems of overfitting or underfitting, but is able to generalize.

Starting from Figure 3.13a, the regularization factor & = 1 x 10~* ensures
more consistent performance across the different activation functions and subsets.
However, also for a = 1 x 1072, a negligible variation in RMSE between the
training and test sets can be observed, especially with the ReLU and tanh activation
functions. In contrast, with the logistic function, the performance of the two sets
starts to diverge. Lastly, for & = 1 x 107!, the performance with the logistic
function worsens dramatically compared to the other cases; with the hyperbolic
tangent it also deteriorates slightly, whereas for ReLLU the trend is inverted, leading
to improved performance. A similar trend can be observed for MFB50, as shown
in Figure 3.13a.

Lastly, Figure 3.13c shows slightly different trends. In fact, the best results are
obtained for o = 1 x 1072 in most cases, while the performance slightly worsens
for « = 1 x 1074, though less than for a = 1 x 107!,

Based on this analysis, the regularization factor o = 1 x 1072 was selected
because it guarantees reliable performance across different cases without excessively

penalizing large weights.

After that, the focus was shifted to the study of the network dimensionality.
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Figure 3.13: Sensitivity analysis of regularization factor and activation function
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Neural network architecture

The model architecture was optimized to ensure consistent performance in both
the training and testing phases.

Specifically, the neurons’ number of input and output layers is fixed, because it
is imposed by dimensionality of the input features and the target to be predicted.
What can be tuned, and what mainly influences the model’s performance, is the
design of the hidden layers, whose structure plays a decisive role as they concentrate
the computational workload.

Therefore, as previously stated, all configurations share the same input and

output layer sizes.

e 9 neurons in the input layer, equal to the number of features selected in
Section 3.1.3 with the addition of crank angel:
X = [features of the cycle, 9}

e 1 neurons in the output layer, which correspond to the burn rate to the

corresponding crank angle 6

Conversely, several hidden layer configurations were tested in order to identify
the one that best mitigates both overfitting and underfitting; some of these are

reported and compared with each other.

e Case 1: two hidden layers with 8-4 neurons
o Case 2: two hidden layers with 16-8 neurons

« Case 3: two hidden layers with 32-16 neurons

Case 4: three hidden layers with 16-8-4 neurons

A parallel sensitivity analysis of the network dimensionality and activation

function was carried out to obtain the final configuration.

Figure 3.1 shows the variations in the RMSE of the three main combustion
parameters: MFB10, MFB50, and MFB1075.
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Also in this case, it can be observed that the RMSE values of the training
dataset are consistently lower than those of the test dataset, as was the case in the
previous analysis.

From Figure 3.14a and Figure 3.14b, it can be observed that Case 3 shows
superior performance compared to the other configurations. When considering the
RMSE of the duration prediction (Figure 3.14c), both Case 2 and Case 3 exhibit

similar performance across most activation functions.
Regarding the selection of the activation function, both ReLLU and tanh showed
similar performance in Case 3; however, ReLU was ultimately chosen due to its

lower computational complexity and higher efficiency.

The final configuration of the neural network is summarized in Table 3.4

Hyperparameter Value
Hidden layers 32, 16]
Regularization () 1 x 1072
Activation function ReLU

Optimizer Adam
Initial learning rate 1 x 1072
Stopping criteria Maximum of 8000 iterations, tolerance of 1 x 1072,

early stopping after 100 iterations without improvement

Table 3.4: Final configuration of the neural network model.
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Chapter 4

Results

In this section, the results obtained from the simulations are presented and discussed.
The analysis focuses on evaluating the performance of the models under different
sweeps of lambda (\) and EGR, mainly for two different engine operating points,
1500 RPM x 5.5 bar BMEP and 3000 RPM x 7.0 bar BMEP. The discussion
will highlight the main trends that emerged from the analyzed data. Particular
attention is given to the comparison between predicted and experimental burn rate
curves, as well as to the main combustion parameters.

In Figure 4.1 the structure of the analyzed combinations of lambda and EGR

for the results is reported

EGR [%]
>
[0, 1.00] | |5, 1.00] | [10, 1.00]
Lo 1111 | s 1111 |10, 1.11)
i
[0 25]) I5, 1.25] | [10 ]

Figure 4.1: Burn rate curves - structure sweep of A and EGR
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Instead, Figure 4.2 shows the sweep structure in which the predicted combustion

metrics are analyzed and compared with the experimental ones.

MFB [°CA]

Figure 4.2: Combustion metrics prediction - structure sweep of A

4.1 Neural Network for Wiebe parameters pre-
diction

In Figure 4.3a and Figure 4.3, the comparison between experimental and predicted
curves for the sweeps of A and EGR is reported, following the structure of Figure 4.1.
Overall, the model is able to capture the burn rate profile, but with some limitations
in accuracy. In particular, for both operating conditions, 1500 RPM x5.5 bar BMEP
and 3000 RPM x 7.0 bar BMEP, it tends to overestimate the burn rate peak and
shows some difficulties in capturing the start and the end of combustion.

Furthermore, in Figure 4.4a and Figure 4.4b, a more detailed analysis of the
fundamental combustion metrics, such as MFB10, MFB50, and the duration
MFB1075, is reported. Starting with MFB10, as mentioned before, the model
generally overestimates the start of combustion by a few crank angle degrees. On
the other hand, the center of combustion is well predicted in almost all conditions,
although with slightly lower precision in the test predictions. Lastly, the duration
is consistently underestimated by the network.

The trends highlighted in Figure 4.4a and Figure 4.4b for the two engine
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Figure 4.3: Burn rate curve predictions using the Neural Network for Wiebe
parameters across two operating conditions.
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operating conditions, 1500 RPM x 5.5 bar BMEP and 3000 RPM x 7.0 bar BMEP,
are confirmed to hold across all conditions, as shown in Figure 4.5. An overall
overestimation of the start of combustion, a more accurate prediction of MFB50,
and a general underestimation of the duration can be observed, although all points

remain within the error band of +£5 crank angle degrees.

Full dataset Full dataset Full dataset
MFB10 [CA] MFB50 [CA] MFB10-75 [CA]
R? = 0.9828 R? = 0.9939 R? = 0.6692
RMSE = 1.0973 [CA] RMSE = 0.6748 [CA] RMSE = 1.9813 [CA]
30 |
> -®
_ +5CA al +5CA +5CA
20 301 &€

N
v}

—
o

Predicted
N
o
Predicted
N
o

Predicted

—
w

-
o

L)

15 20 25
Experimental

20 30
Experimental

0 10 20
Experimental

Figure 4.5: Correlation plots of combustion metrics - full dataset - Neural Network
for Wiebe parameters prediction

It is worth mentioning that these errors between the experimental and predicted
values mainly arise from the imperfect initial fitting of the experimental curves by
the genetic algorithm, as explained in Section 3.5.1. In fact, when the correlation
plots of the combustion metrics are generated between the curves obtained with
the genetic algorithm and the predicted ones, the results show an improvement,
as reported in Figure 4.6. These improvements are mainly associated with the

prediction of the initial phase of combustion and with the overall duration.
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Figure 4.6: Correlation plots of combustion metrics - full dataset - GA-fitted curves
and model predictions
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4.1.1 Conclusions

From this analysis, it is possible to conclude that the Neural Network model is
able to accurately predict the Wiebe parameters extracted through the Genetic
Algorithm, as shown in the correlation plot of Figure 4.6. However, due to the
limited accuracy of the algorithm in fitting the burn rate under these ultra-lean
and challenging conditions, the predictions compared to the experimental results

show lower accuracy, as reported in Figure 4.5.

4.2 Gaussian Process Regression for burn rate

prediction

Furthermore, the results analysis is extended by examining the accuracy achieved
by the Gaussian Process Regression model.

The GPR model differs from the Neural Network model because the dataset is
not split between training and testing. Instead, it is fitted by randomly selecting a
few points from the entire dataset, about 4,000 points out of more than 60,000 in
this case.

Despite the limited number of points used to fit the model (less than 7%), good
prediction accuracy can be observed for both operating points, as reported in
Figure 4.7. A slight underestimation of the burn rate peak is visible, except for
two cases at 3000 RPM x 7.0 bar BMEP where this effect is more pronounced, and
as mentioned in the model description, in those cases the model also returns a
high uncertainty in the prediction. At the same time, the model shows a higher
capability in capturing the start of combustion and the first part of the process, as
well as the tail of the profile.

Furthermore, the observations from Figure 4.7 are confirmed by the analysis of
Figure 4.8. The model is able to correctly predict both MFB10 and MFB50 for all
the reported cycles with very good accuracy. On the other hand, the duration of
the predicted curve is slightly longer, in terms of crank angle, than the experimental
one. This occurs especially for the 1st point (A = 1 - EGR = 0%) and the 6th
point (A = 1.25 - EGR = 5%) in Figure 4.8b, due to the lower peak in the burn

rate curves.
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Figure 4.7: Burn rate curve predictions using the Gaussian Process Regression
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Figure 4.8: Combustion metrics prediction using the Gaussian Process Regression
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A general improvement in accuracy compared to the first model is noticeable
from the trend of the correlation plots in Figure 4.9, as well as from the RMSE
values reported above them. From the first Neural Network model to the GPR
model, the following reductions in RMSE [°CA] were obtained: 63%, 51%, and 55%
for MFB10, MFB50, and duration (MEFB1075), respectively. Nevertheless, a general

overestimation of the duration remains visible in the last graph of Figure 4.9.

Full dataset Full dataset Full dataset
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Figure 4.9: Correlation plots of combustion metrics - full dataset - GPR prediction

4.2.1 Conclusions

The analysis carried out allows us to state that the Gaussian Process Regression
model achieves high prediction accuracy, especially for combustion metrics such as
MFB10 and MFB50, since all the points in the correlation plots are very close to
the perfect correlation line (the red line in Figure 4.9). An overall improvement
is also visible in Figure 4.7, where the experimental and predicted curves show

greater overlap.

4.3 Neural Network for burn rate prediction

As mentioned in Section 3.5.2, the Neural Network model trained to directly predict
the burn rate curves, rather than the Wiebe parameters, was tested under two
different conditions, which differ only in the way the full dataset was divided.

The two cases are:

o Case 1: the dataset is divided randomly using the 80/20 technique.
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o Case 2: the dataset was divided by assigning all operating sweeps of 1500 RPM x
5.5 bar BMEP to the test set, while the remaining points were used to train
the model.

4.3.1 Case 1

The model in the first scenario is able to generalize the predictions well. As
shown in Figure 4.10, for both testing and training points the network fits the
experimental burn rate with high accuracy. It captures the peaks as effectively
as the Wiebe-based model. However, unlike the first Neural Network model, this
approach also achieves high accuracy in predicting the start and end of combustion,
which were the most challenging aspects for the Wiebe parameter prediction model.

Based on the analysis of Figure 4.11, it can be observed that, as mentioned
before, the model is able to capture almost all the MFB10 values across the
sweeps and for both engine operating points, 1500 RPM x 5.5 bar BMEP and
3000 RPM x 7.0 bar BMEP, as well as MFB50. Additionally, it outperforms all the
other models in predicting the duration (MFB1075), since in the last graphs of both
Figure 4.11a and Figure 4.11b there is a good overlap between the experimental
and predicted values.

This good performance can be attributed to the overall dataset, as shown in
Figure 4.11a. Indeed, the R? values for MFB10 and MFB50 are both higher than
0.994 over the entire dataset, with improvements of 1.17% and 0.14%, respectively,
compared to the Wiebe-based model. The largest improvement in accuracy occurs
for the duration, with an increase of about 39%.

On the other hand, when compared with the results of GPR, only a very limited
deterioration can be observed. This drawback can be compensated by the reduced
computational cost of the model and its ability to extrapolate more effectively on

unseen data, as will be shown in the second case.

4.3.2 Case 2

This case study was carried out to evaluate how the model reacts when predicting
completely new data. As already stated, the model was retrained by removing
all the sweeps at 1500 RPM x 5.5 bar BMEP from the dataset, and the following
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Figure 4.10: Burn rate curve predictions using the Neural Network for burn rate
prediction - Case 1
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Figure 4.11: Combustion metrics prediction using the Neural Network for burn
rate prediction - Case 1
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Figure 4.12: Correlation plots of combustion metrics - full dataset - neural network
for burn rate prediction - Case 1

results emerged.

Considering that the performance over the training data remains almost constant,
this analysis will focus only on the prediction of unseen data.

Starting from Figure 4.13, it can be observed that the accuracy of the predicted
curves degrades; however, the general trend is still captured by the model. In most
of the plots, it is noticeable that the curves are shifted to the right, meaning that
the model mispredicts the start of combustion, while the peaks are also slightly
underestimated.

The shift phenomenon is clearly highlighted by the MFB50 plots in Figure 4.1/,
where all the predicted points are consistently above the experimental ones, indicat-
ing that the combustion is shifted to the right. Additionally, from the latest plots

where the duration is reported, it can be observed that it is generally overestimated.

4.3.3 Conclusions

It is possible to conclude that this Neural Network model for burn rate prediction
is overall the best-performing one, considering accuracy, computational time, and
the ability to generalize on unseen data. In fact, with a relatively small network - 1
input, 1 output, and 2 hidden layers with 32 and 16 neurons - this model is able
to generalize well between test and training data, while maintaining a relatively
limited computational cost compared to the GPR. Lastly, the limited performance
on unseen data may also be due to the small number of total points (101), where
removing an entire sweep can be excessive. Therefore, future tests with a larger

dataset could be carried out, and the performance may be improved.
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67



Chapter 5

Conclusions

This dissertation has introduced three machine learning models aimed to predict the
combustion process of an ultra-lean dual-dilution spark-ignition engine. The models
were developed using the experimental dataset obtained during the PHOENICE
2020 project.

The first model, a neural network for Wiebe parameter prediction, proved effective
in estimating the parameters extracted using the genetic algorithm. However, the
accuracy of the reconstructed combustion profile, when compared to the experimen-
tal one, was limited by the difficulties encountered by the GA in correctly fitting

the original curve under the challenging conditions of ultra-lean combustion.

The second model, based on Gaussian Process Regression (GPR), demonstrated
strong interpolation capabilities even with a reduced number of fitting points (less
than 7% of the total). It achieved higher accuracy in predicting combustion metrics
such as MFB10 and MFB50 compared to the Wiebe-based approach. Nevertheless,
its performance declined when applied to unseen operating conditions, and its

computational cost increases significantly with larger datasets.

Finally, the third model, a fully connected neural network for burn rate pre-
diction, achieved the best balance between accuracy, robustness, and computational

efficiency. With a relatively compact architecture, it was able to generalize well to
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both training and test datasets, outperforming the other approaches particularly
in the prediction of combustion duration. Although its accuracy decreased when
tested on entirely unseen sweeps, the model retained the ability to capture the

main combustion trends.

In summary, the analysis confirmed that machine learning—based approaches are
well suited to model advanced combustion strategies in spark-ignition engines,
where traditional 0D /1D methods struggle with calibration flexibility and computa-
tional cost. Among the tested models, the neural network for burn rate prediction
proved to be the most promising solution, thanks to its high accuracy, relatively

low computational time, and ability to generalize beyond the training data.

Future research should focus on expanding the dataset to cover a broader op-
erating map and integrating the proposed models into real-time virtual calibration
environments. These developments would further enhance the applicability of ma-
chine learning in supporting the design of next-generation, high-efficiency internal

combustion engines.
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