POLITECNICO DI TORINO

Master’s Degree in Biomedical Engineering

Master’s Degree Thesis

Data-Driven Evaluation of Optimal IMU
Placement on Ice Hockey Helmets

Supervisors Candidate

Prof. Marco GAZZONI Sara INCHINGOLO
Prof. Andrea CEREATTI

Prof. Anisoara IONESCU

OCTOBER 2025






ACKNOWLEDGMENTS

Alla mia famiglia






Abstract

Contact sports such as ice hockey expose athletes to a considerable risk of concussions,
emphasizing the importance of reliable tools for head impact monitoring. To address
this challenge, a smart helmet was developed, embedding inertial measurement units
(IMUs) at three distinct locations on the outer shell. Experimental tests were carried
out in a controlled laboratory environment, where a pendulum impactor was used to
deliver standardized impacts to a dummy’s head according to a predefined protocol. An
additional IMU, placed inside the headform, served as the reference system. Each sensor
recorded both linear accelerations and angular velocities along the three spatial axes, and
the measurements collected from the helmet-mounted IMUs were systematically compared
against the reference IMU. The objective of this study is to determine which sensor
location provides signals most consistent with the ground truth, thereby identifying the
most reliable placement for wearable sensors intended to capture head impact kinematics.
Data processing involved segmentation and synchronization of the signals to isolate single
impacts, followed by feature extraction in the time, frequency, and time—frequency domains.
Features were heuristically selected to provide meaningful descriptors of the signals and to
address two research questions: which helmet-mounted IMU exhibits patterns most similar
to the ground truth, and whether impact direction influences measurement accuracy. A
statistical analysis was conducted to compare features across sensors, while a supervised
machine learning framework was employed to assess the degree of decoupling between the
helmet and the headform, labeling impacts as either low or high decoupling.

The results demonstrate that sensor position has a measurable effect on signal reliability.
Moreover, the machine learning analysis provides additional support by quantifying the
susceptibility of each sensor to decoupling, thereby offering complementary insights into

overall measurement reliability.
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Chapter 1

Overview

1.1 Ice Hockey and the Importance of Rapid Injury
Diagnosis

Ice hockey is currently played in 76 countries and continues to grow in popularity worldwide.
This high-intensity sport is characterized by rapid gameplay and frequent physical contact
between players. Athletes can reach speeds approaching 50 km/h on skates, utilize
composite sticks capable of shooting pucks at more than 160 km/h, and compete within
enclosed arenas bounded by rigid plexiglass barriers [1]. These dynamic and high-speed
conditions make ice hockey one of the most biomechanically traumatic team sports,
especially at competitive levels, where body checks and high-impact collisions are routine.
Head impacts in sport can result in a wide spectrum of concussive injuries. Although many
athletes experience transient symptoms such as headache, dizziness, or confusion that
resolve quickly, others may suffer from persistent impairments or long-term consequences
due to cumulative trauma [2]. The timely and accurate recognition of these injuries during
play has become a critical component of athlete safety, with increasing emphasis on the
development of evidence-based protocols for the diagnosis and treatment of concussions.
Medical personnel must be equipped with reliable tools to facilitate rapid on-field evaluation
and informed decisions about athlete removal and return-to-play timelines.

In response to increasing awareness of concussion risks, several wearable technologies have
been developed to monitor head impacts in real time. These systems, often integrated
into helmets or other athletic equipment, are designed to capture data on the magnitude,
direction, and other general information about impacts sustained during play. The
recorded information can be transmitted to sideline staff, offering immediate insights into
potentially injurious events and supporting timely medical evaluation [3].

In addition to helmet-based systems, another promising technology in concussion monitor-
ing is the instrumented mouthguard. These devices are equipped with accelerometers and
gyroscopes that measure linear and angular head impact kinematics with high temporal

fidelity by coupling directly to the skull via the upper dentition [4]. However, a key
1



Overview

limitation of instrumented mouthguards is their predominant deployment in American
football settings, which restricts the generalizability of mouthguard-based findings to other
sports, such as ice hockey, where helmet design, impact dynamics, and playing conditions
differ.

Despite their promise, these technologies are not without limitations. Challenges include
the novelty of such systems, variability in biomechanical interpretation, and limited clinical
validation for diagnostic purposes. Consequently, while they represent a step forward in
head injury monitoring, their current role remains supportive rather than definitive in

clinical decision making.

1.2 Thesis Objective and Relevance of Sensor Posi-
tioning

This thesis investigates whether a specific placement of inertial measurement units (IMUs)
on an ice hockey helmet can accurately approximate head kinematics. The core objective is
to identify, through a data-driven approach, the helmet-mounted sensor location that best
reflects the actual motion of the head during impact events. To achieve this, data collected
from multiple IMUs positioned at various locations on the helmet are systematically
compared against a reference. These comparisons are assessed by using statistical analyses
and machine learning techniques, to evaluate the degree of similarity and predictive
potential of the recorded signals, enhancing the effectiveness of wearable monitoring
systems employed for concussion detection and biomechanical analysis in real-world sports
applications.
Within this framework, the study aims to address the following research questions:
« RQ1: Which of the helmet-mounted IMUs exhibits signal patterns most similar to
those recorded by the reference IMU?
« RQ2: Does the direction of impact affect the accuracy of the measurements recorded
by the different IMUs?
To support the analysis, the following hypotheses were formulated:
« H1: IMUs placed in structurally isolated regions of the helmet are expected to
provide signals that better reflect actual head motion.
« H2: IMUs located closer to the point of impact are expected to show greater

deviations from the ground truth signal.



Chapter 2

Introducton and State of Art

2.1 Definition of Traumatic Brain Injury, Mild Trau-

matic Brain Injury, and Concussion

Traumatic Brain Injury (TBI) is a complex clinical condition caused by external mechanical
forces acting on the head, often as a result of sporting incidents, vehicular collisions,
or accidental falls. It is a public health challenge, that affects annually more than 50
million people of all ages [5]. Among the various types of brain injury, TBI covers a
broad spectrum of severity, ranging from critical and life-threatening conditions to mild
impairments in brain function. One of the most common and widespread forms of TBI is
mild traumatic brain injury (mTBI), which, despite its name, can result in long-lasting
neurocognitive disturbances, frequently underdiagnosed, especially when symptoms appear
mild or resolve quickly. Despite the seemingly minor nature of its symptoms, clinical
studies have shown associations between mTBI and altered cerebral blood flow, as well as

an increased risk of developing chronic neurological conditions [5].

Within the spectrum of mTBI, concussions constitute a well-defined subclass. A con-
cussion is typically characterized as a temporary disturbance in brain function caused
by rapid acceleration and deceleration of brain tissue, often triggered by rotational or
translational forces [6]. Although in everyday language and clinical practice the terms
concussion and mTBI are frequently used interchangeably, this simplification overlooks
a fundamental distinction. By medical definition, all concussions are a form of mTBI, but
not all mTBIs are concussions [6]. This distinction is critical for an accurate diagnosis,
prognosis, and the development of targeted therapeutic strategies. Clarifying this rela-
tionship is especially important in contact sports, where athletes are regularly exposed to

high-energy collisions and repetitive head impacts.

Figure 2.1 illustrates the continuum of traumatic brain injuries (TBI), showing how head
impacts can range in severity from subclinical or asymptomatic events that require no

diagnosis to more serious conditions, including moderate and severe TBI.

3
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HEAD IMPACT CONCUSSION
Whitout symptoms, no Head impact producting
associated neurological —> symptomatic

deficit (possible) TBI

Figure 2.1: Progression of TBI severity.

2.2 Current Methodologies for Head Impact Assess-

ment

2.2.1 Inertial Measurement Units (IMUs)

Inertial Measurement Units (IMUs) are compact devices that integrate multiple inertial
sensors, typically triaxial accelerometers and gyroscopes, and in some cases magnetometers,
to measure a body’s linear acceleration and angular velocity. These devices have become
fundamental tools in fields such as biomechanics, clinical monitoring, and movement
analysis because of their small size, low energy consumption, and affordability. Their wide
adoption has been made possible by advancements in MEMS (Micro-Electro-Mechanical
Systems) technology, which enables the fabrication of micro-scale mechanical components
integrated with electronics [7].

One of the key advantages of IMUs is their ability to capture motion in real-time through
wearable configurations, providing continuous monitoring in naturalistic environments.
From a biomechanical perspective, their role is particularly relevant in the study of head
injuries. Since the human brain is especially sensitive to rotational kinematics, abrupt
angular accelerations or decelerations of the head can lead to shear forces within the
brain tissue, potentially causing traumatic brain injuries (TBIs) such as diffuse axonal
injury (DAI). Research has shown that six-axis IMUs, combining three-axis accelerometers
and three-axis gyroscopes, can significantly improve the prediction and analysis of these

injuries [8].

Physical Principles

IMUs operate on the basis of the principle of inertia, which is the tendency of a body
to resist changes in its state of motion. The motion of a rigid body is described by the
cardinal equations of dynamics.

First cardinal equation (translational motion):

S F=m-a (2.1)

The sum of external forces acting on a body is equal to the product of its mass and the

4
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acceleration of its center of mass.

Second cardinal equation (rotational motion):
S M=1-d+3dx(I-) (2.2)

where I is the inertia tensor, @ is the angular acceleration, and & is the angular velocity.
The sum of external forces acting on a body is equal to the product of its mass and the

acceleration of its center of mass.

Accelerometers

Accelerometers are sensors that measure the proper acceleration, i.e., the acceleration
experienced by the sensor excluding gravity. Most IMUs use triaxial accelerometers, which
can detect motion along three orthogonal axes.

The working principle of an accelerometer is often modeled as a second-order mass-spring-
damper system. A proof mass is suspended within the sensor structure through compliant
springs and dampers. When the device is accelerated, the inertia of the mass causes
it to move relative to the frame. This displacement alters the capacitance between the
conductive plates, and the resulting signal is proportional to the applied acceleration [7],

as shown in Figure 2.2.

——

Proof mass (m)

acceleration (‘a’)

=

Figure 2.2: Second-order mass-spring-damper model [9].

There are various types of accelerometer, each exploiting different physical phenomena:
« Capacitive (most commonly used in wearable devices)
o Piezoresistive
o Piezoelectric

o Optical

Tunneling-based
Among these, capacitive accelerometers are favored for wearable and mobile applications

due to their high sensitivity, low power consumption, and ease of integration.

5
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Gyroscopes

Gyroscopes measure the angular velocity of the sensor and are essential for capturing
rotational motion. The most widespread MEMS gyroscopes are based on the Coriolis
effect, an apparent force observed in rotating reference frames.

As as shown in Figure 2.3, to understand this effect, a small mass oscillates within the
sensor, when the device undergoes rotation, the Coriolis force causes a perpendicular

deflection of the mass. This deflection is proportional to the angular velocity and can be

measured to infer rotational motion [7], [10]:
Fluid

_,/

4 Angular

( Velocity, ¥V

\M Path, B Velocky, ¥

Figure 2.3: Coriolis force acting on an oscillating mass inside a MEMS gyroscope [10].

The gyroscope structure can be conceptualized as a second-order mechanical system, with
stiffness elements along two axes: the drive axis, where motion is actively induced, and

the sense axis, where deflection due to the Coriolis force is detected.

2.3 In-Lab Methods for Head Impact Evaluation

In the context of head impact data collection in American football and ice hockey, the
current state of the art in the literature is characterized by a continuous refinement of
methodologies and technologies aimed at achieving accurate and reliable measurements of
impact kinematics.

Helmet impact tests play a key role in the design and regulation of protective equipment.
When evaluating helmet performance, it is important to recognize that a helmet equipped
with inertial sensors does not directly measure the true head kinematics. This limitation
arises from the relative motion between the helmet and the skull, which prevents helmet-
mounted sensors from serving as a definitive ground truth. For this reason, reference
systems are required to obtain accurate head kinematics during impacts. This role is
fulfilled by anthropomorphic headforms, which are designed to replicate the physical and
dynamic properties of the human head.

Modern impact evaluations extend this concept by incorporating a deformable neck into
the headform assembly. The purpose is to reproduce the natural coupling between the
head and cervical spine. By doing so, it allows the headform to exhibit angular kinematics
representative of real-world impacts, in addition to linear accelerations already measurable

with a rigid headform configuration.
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Linear accelerations of the head are typically measured through a tri-axial accelerometer
or an IMU embedded within the headform, positioned in close proximity to the estimated
center of mass (CoM) of the head. This location provides a physiologically meaningful
reference point, as it approximates the true dynamics of the head’s translational motion,
enabling the headform to serve as a gold-standard reference against which helmet-mounted
sensors can be evaluated.

The Hybrid-III head and neck model (HIII-HN) is among the most widely adopted systems
in this context and is extensively used to assess the effectiveness of professional helmets
under controlled impact conditions. For this purpose, the Hybrid-III head and neck model
(HIII-HN) is widely used in impact tests to assess the effectiveness of professional helmets.
Figure2.4

Inner skull

Accelerometer

Condile joint

Headform and Intervertebral

disks Intervertebral

neck assembly rubber
- ers

Figure 2.4: Hybrid-III head and neck model [11]

Two main impact test configurations are primarily referenced in the literature:

« Rigid Pendulum Impacts: In this setup, the pendulum consists of a rigid arm
with a mass at its end, which is released from a fixed height to swing and strike a
helmeted Hybrid 11T (HITI-HN) headform mounted on a test fixture [12].

e Linear Impacts: The impactor typically consists of a cylindrical ram equipped
with a deformable end cap (often made of elastomeric material). This ram is driven
forward using a pneumatic or spring-loaded mechanism along a guided rail, striking
the headform at pre-defined impact velocities (5.5, 7.5, and 9.3 m/s) [13].

Figure 2.5 shows these two common impactor configurations used in standardized helmet

testing protocols.

2.3.1 Real-Time Acquisition Systems

Numerous wearable sensors have been developed to measure head impacts,these systems
can generally be categorized into two main types:
¢« Helmet-Based Systems: These are among the most commonly used tools to

monitor head impact biomechanics in high-contact sports such as football and ice

7
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(b) Linear impactor setup [13].

Figure 2.5: Common laboratory impact configurations for helmet evaluation: (a)
pendulum impactor, (b) linear impactor.

hockey. Two widely cited examples in the literature are the Head Impact Telemetry
(HIT) system and the gForce Tracker (GFT), which differ substantially in sensor
placement, configuration, and performance.

The HIT system, integrates six single-axis linear accelerometers directly into the
inner padding of the helmet. This embedded configuration promotes tight coupling
with the athlete’s head, allowing for better estimation of true head motion during
impacts [14]. The system transmits data wirelessly in real time to a computer,
making it valuable for live impact monitoring. However, it only measures linear
acceleration and cannot capture rotational kinematics. gForce Tracker (GFT)
includes a triaxial accelerometer and a triaxial gyroscope. It is typically mounted

inside or on the helmet shell using adhesives or brackets, rather than integrated into

8
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the padding [15], which makes the GFT a more modular and easy-to-deploy system.
However, because it is mounted rather than embedded, relative motion between the
helmet and the head can lead to measurement artifacts or reduced accuracy. In
summary, the HIT system provides better head coupling but limited kinematic data
(linear only), while the GFT offers more comprehensive kinematic measurements but
may suffer from decoupling effects due to its mounting configuration. These trade-
offs must be considered when selecting a helmet-based system for biomechanical
monitoring in sports.

e Instrumented Mouthguards: Are advanced wearable devices equipped with
inertial sensors, typically accelerometers and gyroscopes, embedded within a mouth-
piece worn by the athlete. Located in direct contact with the upper dentition, these
devices provide measurements that closely approximate the center of mass of the
head, offering accurate and reliable motion data directly related to head kinemat-
ics [16]. However, a major limitation of instrumented mouthguards lies in their
interaction with the athlete: players may remove them, bite on them, or reposition
them during gameplay or practice. These voluntary or incidental movements can
introduce artifacts or noise into the recorded data, potentially resulting in false
positives or degraded measurement accuracy. Therefore, although instrumented
mouthguards offer promising precision in capturing head impact biomechanics, their
practical deployment requires careful validation and filtering techniques to mitigate

these motion-induced errors.

(b) gForce Tracker (GFT) (c) Intrumented Mouthguard

Figure 2.6: Examples of head impact sensor configurations.
(14, 15, 16].

To visually illustrate the main types of wearable sensor systems used for head impact
monitoring in sports, including helmet-based systems and instrumented mouthguards,
Figure 2.6 presents examples of the Head Impact Telemetry (HIT) system with embed-
ded accelerometers, the gForce Tracker (GFT) with combined inertial sensors and an

instrumented mouthguard designed for biomechanical data collection.



Chapter 3

Methods

The primary objective of this study is to identify the optimal placement of an Inertial
Measurement Unit (IMU) on an ice hockey helmet, among three possible positions, to
ensure reliable detection of head impacts. This choice has significant practical implications:
a well-placed sensor is crucial for improving the accuracy of data acquisition systems,
particularly with a view to potential real-time use during games to support medical staff
in the timely diagnosis of concussions.

The analyses presented in this work were conducted in a controlled laboratory environment
using a pendulum impactor designed to generate repeatable impacts on a helmeted
Anthropomorphic Test Device (ATD). Three IMUs were mounted along the central axis of
the helmet (from the forehead to the nape), in three distinct locations: front, middle-center,
and lower rear. An additional IMU was positioned inside the dummy’s head and served as
a reference, considered as ground truth for evaluating the accuracy of the signals recorded
by the other sensors.

Impacts were applied from various directions, simulating realistic collision scenarios.
Although none of the helmet-mounted IMUs were directly struck, their distance from the
point of impact varied depending on the direction, allowing for analysis of whether and
how proximity influences the fidelity of the recorded signal with respect to the ground
truth.

The methods described in the following sections provide a detailed explanation of the entire
experimental and analytical process, including the experimental setup, data collection
protocol, signal preprocessing, and application of machine learning algorithms to evaluate

sensors performance under various impact conditions.

3.1 Experimental Setup

3.1.1 Impact Generation System

To simulate head impacts under controlled conditions, a custom-designed pendulum

system was employed. The pendulum impactor consists of a rectangular steel tube with a

10
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cylindrical impactor mounted at its distal end. The impact surface is made of ultra-high
molecular weight polyethylene (UHMWPE) and has a mass of approximately 0.6 kg. The
total mass of the impactor is 15.5 kg, while the overall mass of the pendulum amounts to
37 kg [12].

Figure 3.1: Experimental Setup (pendulum impactor, sliding table, and headform
assembly).

3.1.2 ATD and Headform Sensor Positioning

The dummy used for impact testing is a Hybrid III (HN-III) model, widely employed in
the automotive and sports industries for safety assessments. The head of the dummy
consists of three main components: a rigid skull, an external deformable rubber skin, and a
mounting system. The outer skin is modeled using a hyperelastic material to replicate the
mechanical behavior of human soft tissue. The neck of the dummy was left unconstrained

to better simulate natural head kinematics during impact.

An IMU was placed inside the dummy head, in a position that approximates the center
of mass of the head. This IMU, referred to as the Headform, was considered the ground
truth for all comparative analyses. Data acquisition was carried out using the software
SLICEWare v1.08.0868, to which the sensor was connected via cable to ensure signal

stability and synchronization.

11



Methods

3.1.3 Sensor Specifications and Helmet IMUs Positioning

This section provides a detailed overview of the technical specifications of the sensors
employed in the study, organized according to their type and placement. Understanding
these characteristics is essential for evaluating sensor performance and interpreting the

data collected during the experiments.

Table 3.1: Technical specifications of the inertial sensors used in the experiments.

Sensor Type Model Manufacturer Country Range Sampling Rate

Headform Accelerometer | Endevco 7264C-2000 | DTS USA +500 g 10 kHz
Gyroscope ARS 8000 DTS USA +8000 °/s | 10 kHz

Physilogs Accelerometer | ADXL375 Analog Devices USA +200 g 1024 Hz
Gyroscope LSM6DSOX STMicroelectronics | Switzerland | £2000 °/s | 512 Hz

The helmet used for the experiments is a rigid plastic model manufactured by Bauer, a
brand widely adopted in the context of ice hockey. Three plastic housings were glued
on the helmet to securely and consistently accommodate the three IMU sensors under
investigation.
The three sensors, referred to as Physilog Top, Physilog Middle, and Physilog Bottom,
were positioned as follows:

e Physilog Top - BM B49J : front external part of the helmet;

« Physilog Middle - BM B4D3: upper central external part of the helmet;

e Physilog Bottom - BM 0230: between the rigid outer shell and the inner foam

layer in the lower rear section.

TOP
B49)J

MIDDLE
B4D3

Figure 3.2: Sensor placement on the helmet: Physilog Top, Middle, and Bottom.

The sensors used are Physilog devices, produced by the Swiss company MindMaze, which
12
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specializes in wearable technologies for motion analysis and is commonly used in clinical,
sports and rehabilitation settings. In this study, these sensors were adapted to capture
high-dynamic impacts.

The same firmware was installed on the Physilog devices used in this study. This firmware
was specifically developed to support high-frequency data acquisition, optimized for

short-duration, high-intensity dynamic events such as head impacts.

3.2 Protocol — Data Collection

The data collection phase was conducted following a rigorous experimental protocol,
designed to ensure repeatability and controlled impact conditions. The experimental
variables considered include the impact direction, the impact angle (and consequently the
transferred impact energy), and the IMU sensor position on the helmet, as previously
described in Section 3.2.3.

3.2.1 Impact Directions

Four representative impact directions were selected for the analysis: Front, Front-
Oblique (or Front-Boss) , Side, and Back-Oblique (or Back-Boss), to replicate typical
impact scenarios associated with sports-related head trauma, particularly in ice hockey.
Each impact configuration was obtained by rotating the headform around its vertical axis
(y-axis). The Front direction, in which the headform directly faces the impactor, was
defined as the reference orientation (0°). The subsequent directions were generated by
incrementally rotating the headform by 45° relative to the reference.

Since impacts can occur on either side of the helmet, both left- and right-side configura-
tions were considered for each nominal direction. The complete naming convention and
corresponding rotation angles with respect to the frontal orientation are summarized in
Table 3.2.

Table 3.2: Impact directions and corresponding rotational angles relative to the frontal
position.

Impact Direction | Angle (°)
Front 0°
Left Front Boss 45°
Left Side 90°
Left Back Boss 135°
Right Back Boss 225°
Right Side 270°
Right Front Boss 315°

To provide a visual representation of the impact locations on the helmet, Figure 3.3
illustrates the directions defined in Table 3.2. For the sake of clarity, symmetric directions

(e.g., left and right) are grouped together and not distinguished in the illustration.
13
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BACK-OBLIQUE

FRONT-
OBLIQUE

Figure 3.3: Impact Directions.

3.2.2 Impact Angles

For each impact direction, impacts were performed at three distinct release angles of the
pendulum, corresponding to increasing levels of kinetic energy transferred to the headform.
The selected angles (30°, 50°, 70°) cover a range of impact severities, from mild to high

energy events. Table 3.3 reports the estimated kinetic energy associated with each angle.

Table 3.3: Impact angles and corresponding kinetic energy levels.

Impact Angle (°) | Kinetic Energy (J)
30° 30 J
50° 79 J
70° 144 J

3.2.3 Experimental Protocol

Each acquisition consisted of a sequence of five consecutive impacts on the same configu-
ration (defined by the combination of impact direction, angle, and IMU sensor location).
A 20-second interval was maintained between impacts to allow the system to reset and
stabilize. The total duration of each acquisition was approximately 120 seconds.
The protocol was structured as follows:
« Configurations tested per IMU: 4 impact directions (Front, Side, Front-Boss,
Back-Boss) x 3 impact angles x 6 repetitions = 72 configurations
« Impacts per configuration: 5 consecutive impacts per acquisition
o Total impacts per IMU: 72 configurations x 5 impacts = 360 impacts
« Total number of recorded impacts: 4 IMUs (1 Headform + 3 Physilog) x 360
= 1440

14
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This experimental design enables a robust comparative analysis across IMU placements

while ensuring statistical reliability and full coverage of the defined experimental conditions.
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Chapter 4

Data Processing

The data acquisition process involves the collection of raw signals from both the Headform
and the helmet-mounted IMUs, which are used to capture the full kinematic profile
of head impacts. These sensors provide measurements of angular velocity and linear
acceleration along the three spatial axes (x, y, z). However, in their raw form, the signals
are not directly interpretable for analytical purposes, therefore, a structured and multi-step
analytical workflow is required to extract meaningful information and enable comparisons
between helmet-mounted IMUs and the ground-truth Headform reference. The complete
processing pipeline — from signal acquisition to statistical validation — is summarized in

Figure 4.1.

The analytical pipeline consists of a sequence of well-defined steps designed to isolate and
analyze signals collected during impact events. Raw kinematic signals are first subjected to
a signal preprocessing phase, aimed at isolating the segments of interest surrounding each
impact. Next, a feature selection step is performed, these features are heuristically chosen
to best capture aspects relevant to sensor comparability, in a way that enhances their
ability to quantify the similarity between each helmet-mounted IMU and the reference
Headform. The resulting set of features serves a dual purpose. First, it is used in a
statistical analysis framework to objectively evaluate the degree of similarity between the
signals recorded by each IMU and those from the Headform. Second, the same features
are used as inputs to machine learning algorithms, whose goal is to provide additional
similarity,this time in terms of their decouplability. Ultimately, the goal is to determine
whether one of the IMUs, based on its position on the helmet and the characteristics of its
recorded signals, offers the highest degree of similarity to the Headform. Such a finding
would help guide optimal sensor placement strategies in future helmet-based monitoring

systems.
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Figure 4.1: Overview of the analytical pipeline.

4.1 Preprocessing

Preprocessing is a crucial step to ensure that the signals recorded by the various sensors
during experimental acquisitions can be compared consistently. Each recording lasts
approximately 120 seconds and contains five impacts. The goal of this phase is to isolate,

for each impact, a 100 ms time window containing the event, allowing detailed analysis of

the impact dynamics and direct comparison between sensor outputs.

4.1.1 Functional Calibration

The analysis is performed using data from four devices:

o the Headform, which serves as the ground truth;

o three Physilog IMUs, mounted externally on the helmet.

Since each sensor is mounted in a different position and orientation, it is necessary to

transform all signals into a common reference frame.
The helmet’s Functional Frame (FF) was defined as:

e Xpp = forward

e Yppr = vertical (upward)
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o Zpp = lateral (to the right)

Helmet Sensors Calibration Procedure: Each IMU mounted on the helmet has an
unknown initial reference frame (Technical Frame, TF). A functional calibration was
performed by placing the helmet on the Headform and performing:

e 5 seconds rotation around the Yrg

e 5 seconds rotation around the Zgp
The gyroscope signals were segmented for the two rotations and Principal Component
Analysis (PCA) was applied to each segment to extract the main axis of rotation. The
resulting rotation matrix was used to transform each IMU from its TF to the helmet FF.
In the current project, experimental data preprocessing does not recompute the trans-
formation matrix. Instead, the matrix is loaded directly from the calibration file and
applied to the raw data recorded during the impact, projecting them into the predefined

right-handed reference frame.

Headform Calibration Procedure: For the Headform, no empirical calibration was
needed because its reference frame is known in advance. However, its native TF was
originally defined as a left-handed coordinate system:
o Xpp pointing inward,
e Yrp to the left,
e Zrp upward.
Therefore, a transformation was required to align it with the right-handed FF used for
the IMUs.
The following transformations were applied:
e a —90° rotation around X7, followed by a 180° rotation around Z7p, to realign the
axes;
« inversion of the Yrp sign to convert the system to right-handed;
« the same rotations were applied to the angular velocity signals, followed by a sign
inversion, since the Headform gyroscopes use the left-hand rule.
These operations allow the Headform signals to be projected into the common FF, making

them directly comparable with the IMU signals.

4.1.2 Up-Sampling

In the experimental context, the Headform records data at 10000 Hz, while the Physilog
sensors acquire data at different frequencies depending on the measurement type: 1024
Hz for linear acceleration and 512 Hz for angular velocity.

This step of preprocessing consists of resampling the Physilog sensor data to the Headform’s
10,000 Hz frequency using linear interpolation. This procedure increases the temporal

resolution of the data and temporally aligns the signals for subsequent synchronized
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analyses.

Linear interpolation was performed using the interp function from the Python numpy
library, which estimates new values by calculating, for each target time point, a weighted
average between samples immediately adjacent to the original signal.

Important Note: The operations of up-sampling, segmentation, and synchronization
operations were performed on all three axes (Xpp, Yrr, Zpr) for both acceleration and
angular velocity data, as well as on the vector norm of the signals. This methodological
choice was made to preserve all potentially relevant information regarding impacts, avoiding

the omission of events that might manifest along nonprimary directions of motion.

4.1.3 Segmentation and Synchronization of Impacts

Impacts Detection

Impact events were identified by analyzing the amplitude peaks in the signals’ resultants.
For this purpose, a custom function was implemented, inspired by methods available in
the Python library scipy.signal (such as the find_peaks() function), which allows the
identification of local maxima representative of impact events.

During the analysis, the first 6 seconds of each recording were excluded because this time
window contained artifacts caused by the positioning and stabilization of the sensors on
the helmet. Although these artifacts exhibited amplitudes higher than the baseline, they
did not correspond to true impacts and were therefore discarded to avoid false positives.
The identification of impact events is based on predefined amplitude thresholds, which
differ depending on the signal type:

e Linear acceleration threshold: A peak is considered an impact if the acceleration
signal exceeds 10 g for the Headform and 15 g for the helmet-mounted IMUs, and
then returns below this threshold. This criterion helps to distinguish true impacts
from background noise or transient, non-significant spikes.

e Angular velocity threshold: An additional filter is applied to the angular velocity
data, with a threshold set at 400 °/s for all sensors. This step reduces false
positives, for example signals caused by minor adjustments or movements of the
helmet between impacts, which may exceed the acceleration threshold but do not
correspond to real impact events.

Only peaks that satisfy both thresholds—linear acceleration and angular velocity—are

considered true impact events, ensuring a more reliable detection.

Extraction of Relevant Signal Segments

The extraction of signal segments representative of impact events was conducted through a
multi-step strategy designed to maximize temporal precision and ensure coherence among

signals acquired from different sensors. The processing workflow is organized as follows:
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1. Initial Isolation of a Wide Window Around the Peak
As explained in the previous section Section 4.1.3, the impacts were detected by first
identifying the points were the signals exceed and return to a pre-defined threshold.
From these points, time offsets were applied: 200 ms before the peak and 300 ms
after the peak. The total signal duration of 500 ms was intentionally chosen in order

to assure that the whole dynamic of impacts is captured.

2. Determination of the Impact Onset
From the previously extracted wide segments, the custom function
find__start_of impact() is applied with the goal of accurately identifying the actual
onset of the impact. This function is applied independently to each signal and sensor,

allowing for the correction of potential temporal misalignments among devices.

The logic of the function is based on a threshold criterion derived from the local

peak:

It computes the vector norm of the three-dimensional signal ( Xpp, Yrp,
Zpr);

o It removes the initial mean to stabilize the baseline;

o From the baseline, the point where the signal exceeds 10% of the absolute peak,

is extracted as start of the impact;

This approach enables a robust and adaptive detection that is independent of the
absolute signal magnitude, providing a reliable and consistent temporal reference

across different sensors.

3. Extraction of the Final 100 ms Window
Once the impact onset has been identified for each signal, the final window is
extracted. This window has a total duration of 100 ms,covering 3oms and 80ms

after the onset, which is sufficient to capture the core impulsive phase of the event.
It is defined as:

e 0.02 s (20 ms before the onset)
« 0.08 s (80 ms after the onset)

4.2 Feature Selection and Feature Extraction

4.2.1 Translational and Rotational Contributions to Brain Injury

The process of feature selection and extraction was designed to identify signal descriptors
that are both biomechanically meaningful and sensitive to the injury mechanisms under
investigation. While both linear acceleration and angular velocity signals were initially

preprocessed, the feature extraction, as well as the final comparison between helmet and
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headform IMUs were applied on the angular velocity. This choice was motivated by both
biomechanical evidence and signal characteristics observed in the dataset.

Rotational kinematics are widely recognized as a key contributor to mild traumatic brain
injuries (mTBIs), particularly diffuse axonal injury (DAI), which results from shear strains
caused by rapid head rotations. Studies have shown that up to 90% of brain tissue strain
during impact is due to rotational motion, with only a minor role played by translational
components [17]. While linear acceleration has been associated with focal injuries like
contusions, angular velocity better captures the dynamics underlying diffuse injuries [18].
Moreover, when evaluating the performance of helmet-mounted IMUs against Headform,
it is important to consider the biomechanical differences in the signals they capture. In
the case of linear acceleration, discrepancies between the two systems can be primarily
attributed to attenuation effects of the helmet, which reduces the measured peak values.
This effect is not observed for rotational motion, as angular velocity measurements are
less influenced by helmet damping. Therefore, any differences observed in angular velocity
signals are more likely to arise from signal noise, including helmet decoupling or vibration,
rather than true biomechanical attenuation.

This rationale further supports the choice of focusing on angular velocity as the primary
parameter for meaningful comparison between helmet and headform IMUs. In addition to
the biomechanical perspective, the nature of the acquired signals also justifies this focus.
Due to the short duration and high intensity of impacts, linear acceleration signals are
often more susceptible to high-frequency noise, whereas angular velocity provides a more
stable and informative representation of the impact dynamics, enabling a more robust

feature extraction process.

4.2.2 Feature Selection

After the preprocessing phase — which included signal segmentation and synchronization
— features were extracted mainly from the angular velocity signals recorded for each impact.
These signals include components along the three spatial axes: Xgp (antero-posterior),
Y pr (inferior-superior), and Zgp (medio-lateral), as well as the vector norm.

The feature selection process followed a heuristic approach: the features were selected
to be as meaningful and interpretable as possible from a biomechanical point of view,
considering the complexity and nonlinearity of the recorded signals. Additionally, features
were selected in order to avoid introducing redundant or uninformative features that could
lead to overfitting in the machine learning models (which will be explained later) . This
is especially important, since the selected features will be used to build the dataset for
the predictive algorithms.

The selected features are grouped into three main domains of analysis: time domain,
frequency domain, and time-frequency domain. Each domain provides complementary

information on the morphology and dynamics of the signal. Figure 4.2 shows an overview
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of the selected feature set, organized by domain.

FEATURES ]

' T
TIME DOMAIN | FR[EC?;EI%CY ‘
|
! ) ! ' !
IMPULSE MAGNITUDE TEMPORAL SPREAD DERIVATIVE /SF'E CTRAL DISTRIBU TIOIN.I\' |'/. BAND POWER .\'|
Max-Min range Zero Crossing Jerk Max PS 0 Hz- 50 Hz
ERIC Spectral Centroid 50 Hz - 100 Hz
RIC Difference Between 100 Hz - 250 Hz
Spectral Centroid and MaX
Frequency
Spectral FWHM
L Median Spectral Density )
v l l

TIME-FEQUENCY
DOMAIN

GLOBAL

Maximum Wavelet

Max Peak Power
Power

Peak Duration Freq at max Power

| Peak Bandwidth ) | Time-to-Peak

Figure 4.2: Feature selection overview.

Time-Domain Features

In the time domain, features are extracted based on the shape of the signal and its
variations over time [16]. This approach allows for the quantification of morphological
properties that are visually observable in the signals through objective and repeatable
measures. The selected features, in addition to being informed by scientific literature,
were chosen for their biomechanical relevance.

1.BrIC — Brain Injury Criterion The Brain Injury Criterion (BrIC) is a metric
dveloped to correlate peak angular velocity of the head with the risk of brain injury
[19],]20]. BrIC is calculated using the maximum angular velocities along the three axes,

normalized by experimentally derived critical thresholds:

BrlC = J (:;Z)Q + (:;z)Q + (:C>2 (4.1)

where w,, w,, and w, represent the maximum angular velocities along the three axes,

instead wyc, wyc, and w,¢ are the corresponding critical thresholds, respectively equal to
66.25 deg/s, 44.87 deg/s, 56.45 deg/s. This index is justified by evidence showing that the
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rotational components of head kinematics are strongly associated with mTBI and DAI,

compared to the translational components.
2. RIC — Rotational Injury Criterion
The Rotational Injury Criterion (RIC) [20] follows a similar logic to the well-known Head

Injury Criterion (HIC) [20], but replaces linear acceleration with angular acceleration.

RIC is computed as:

ta—t1 <36 ms to —t1 Ju

RIC =  max [( ! /t2|a<t)|dt)2'5.(t2_tl>] (4.2)

where a(t) is the magnitude of the angular acceleration vector. The 36 ms integration
window represents a period long enough to capture the impulsive dynamics typical of an

impact event and is consistent with standard biomechanical criteria such as HIC [20].
3. Min—Max Range (Amplitude)

The amplitude represents the difference between the maximum and minimum values of
the angular velocity signal within the selected time window [16]. This metric provides a

direct estimate of the maximum angular excursion recorded during the impact:

Amplitude = max(w(t)) — min(w(t)) (4.3)

This value is useful for assessing the overall intensity of the rotational motion.
4. Zero Crossing Rate (Adaptive Threshold)

The classical zero-crossing metric, which counts the number of times the signal crosses
the zero line, was adapted using a dynamic, adaptive threshold. This approach was
introduced to address the higher instability and variability present in signals acquired from
helmet-mounted sensors compared to the reference Headform, which produces cleaner

signals with fewer spurious oscillations.

The adaptive threshold was computed as half of the mean of the absolute peak angular
velocities recorded by the three helmet-mounted sensors. The number of crossings with
respect to this threshold provides a measure of the signal’s oscillatory behavior, potentially

associated with the sensor quality or its coupling effectiveness with the actual head motion.
5. Maximum of Angular Jerk

Jerk is defined as the first derivative of angular acceleration, or equivalently, the third

derivative of angular position with respect to time [3]. It is calculated as follows:

da(t)  d*w(t)
dt— di?

Jerk(t) = (4.4)

In our case, the maximum jerk was computed over the first 35 ms of the signal, with the
aim of capturing the initial variability of the motion. High jerk values indicate a rapid

change in acceleration, typically associated with impulsive and less smooth dynamics.
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Frequency-Domain Features

Frequency domain analysis is a technique used to study time-series signals by transforming
them from the time domain (values recorded over time) into the frequency domain, where
signals are expressed as a combination of sinusoidal components. This transformation is
useful for identifying hidden characteristics in the signal, such as periodic behavior, high
frequency noise, or dominant oscillations, that may not be evident in the time domain
[21].

In this work, frequency analysis is performed using the Fast Fourier Transform (FFT),
specifically through the rfft function from the numpy.fft module. This function efficiently
computes the Discrete Fourier Transform (DFT) for real-valued input signals. The FFT
is a fast algorithm for computing the DFT, which decomposes a signal into its frequency
components and allows conversion between the time and frequency domains [22].

The Power Spectrum (PS) is computed by taking the squared magnitude of the output
of the Fast Fourier Transform (FFT), which decomposes a time-domain signal into its
constituent frequency components. This provides a measure of how the signal’s energy is
distributed across frequencies.

The FFT provides a discrete representation of the Fourier Transform of a signal z(t),

sampled at regular intervals. Let X (f) denote the Fourier Transform of the signal:

X(f) = Fla(t)} = [ o; (t)e gy (4.5)

For discrete sampled signals, the FFT approximates this integral. The Power Spectrum
(PS) is then given by:

P(f) =1X(f) (4.6)

This expression represents the energy content of the signal at each frequency f, without
normalization.
In contrast, the Power Spectral Density (PSD) is defined as:

P(f)

PSD(/f) = 37 (4.7)

where Af is the frequency resolution of the FFT, calculated as:

Af = fv (4.8)

with fs being the sampling frequency and N the number of samples in the signal segment
23].
Considering fs=10 kHZ and the length of the segment T=100 ms,N is equal to:

N = f, x T = 10,000 x 0.1 = 1,000 (4.9)
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The PSD normalizes the energy per unit frequency (e.g., per Hz), which is essential when
comparing signals of different durations or resolutions.
In this study, PSD normalization was deemed unnecessary because:
 All signals were acquired at the same sampling frequency (10 kHz).
« All signals were segmented to the same temporal duration (100 ms) during prepro-
cessing.
o Therefore, all segments contain the same number of points and share the same
frequency resolution (A f), making them directly comparable in terms of energy.
As a result, using the Power Spectrum is sufficient to extract consistent and meaningful
frequency-based features across all sensor signals. PSD estimation would instead be
required in scenarios with variable sampling rates or durations, where normalization is
needed across frequency resolution.
Therefore, the features selected in the frequency domain are:
1. Maximum Value of the Power Spectrum (Max PS) This feature represents the
maximum value of the power spectrum, i.e., the highest energy level associated with a
specific frequency. It is related to the dominant frequency in the signal, which corresponds
to the frequency with the greatest concentration of energy. This is useful for identifying
the most energetically significant components in the signal.
2. Spectral Centroid The spectral centroid represents the center of the power spectrum.
It is calculated as the weighted average of the frequencies, where the weights are the power
values associated with each frequency. It provides a synthetic measure of the spectral
distribution and helps us to understand whether the energy is concentrated at low, high,
or spread-out frequencies.
3. Centroid—Peak Difference This feature quantifies the difference (in Hz) between the
frequency corresponding to the maximum peak of the power spectrum and the spectral
centroid. The motivation behind this feature lies in the observation that, in some signals,
the peak of the power spectrum does not coincide with the centroid. This suggests
a broader and less focused energy distribution, which can be due to the presence of
high-frequency noise or complex dynamic behaviors.
4. Spectral Full Width at Half Maximum (FWHM) The Spectral FWHM is a
feature that measures the bandwidth of the main lobe of a power spectrum, that is how
widely the energy is spread around the dominant frequency. It is defined as the width
of the frequency band where the power remains above half of the maximum value of the
spectrum.
In signal processing, the FWHM is a useful metric to assess spectral sharpness [24]:
o A narrow FWHM indicates that the signal’s energy is concentrated in a narrow
band (sharp peak), typical of periodic or pure-tone signals.
e A broad FWHM suggests that the energy is spread across a wider frequency range,
which may reflect more complex or noisy signals.

5. Median Spectral Density The median is a descriptive statistic that identifies the
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central value of an ordered data set and is robust against outliers and abnormal values.
The Median Spectral Density is used to provide a robust estimate of the signal’s energy
distribution across frequencies. By calculating the median of the spectral densities, we
get a measure that represents the typical energy present in the frequency bands.

6. Spectral Band Power To evaluate how the signal’s energy is distributed across
different frequency bands, the Power Spectrum was divided into three bands:

e 0-50 Hz (Low-frequency band)

e 50-100 Hz (Mid-frequency band)

« 100-250 Hz (High-frequency band)

For each band, the spectral energy was calculated by numerical integration of the area
under the spectrum within that interval.

The choice of these bands is based on practical considerations and references in the
literature [5]:

e The low and mid-frequency bands are generally associated with the main informative
content of the signal, such as slow oscillations or significant dynamics.

e The high-frequency band tends to capture contributions related to noise, mechanical
vibrations, or high-frequency disturbances, which are often less relevant from an
interpretative point of view.

This feature therefore allows assessing how much of the signal’s energy is concentrated in
the more informative bands compared to that which might be attributable to noise or

artifacts.

Time-Frequency Domain - Wavelet Transform

The Continuous Wavelet Transform (CWT) represents a signal as a linear combination
of base wavelet functions, known as mother wavelets, which are scaled and shifted
to analyze the frequency content of the signal at different time points. Specifically, the

mother wavelet 1(t) is scaled by a factor a and shifted by b according to the formula:

WT(a,b) = \/LT /_:O ()" <t - b) dt,

where a controls the scale (related to frequency) and b controls the translation in time.
Small values of a correspond to high frequencies with fine temporal resolution, while large
values of a correspond to low frequencies with better frequency resolution. This adaptive
trade-off makes the Wavelet Transform an ideal tool for highlighting local energy peaks,
transient oscillations, and brief but significant events that would not emerge through a
standard global spectral analysis.

This adaptive trade-off makes the Wavelet Transform an ideal tool for highlighting local
energy peaks, transient oscillations, and brief but significant events that would not emerge

through a standard global spectral analysis.
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In this study, we used the complex Morlet wavelet [16], particularly suitable for analyzing
signals with oscillatory content, applied over a scale range from 1 to 255. From the
resulting power matrix, two types of features were extracted: global and local.

Global features are extracted from the entire time-frequency map of the WT and provide
an overview of the energy distribution in the signal [16]:

1. Maximum Global Power (Max WT Power): The highest power value in the WT
power map.

2. Frequency at Maximum Power: The frequency corresponding to the point of
maximum energy, useful for identifying the dominant spectral band.

3. Time Difference Between WT Peak and Time-Domain Peak: Measures the
time shift between the peak detected in the WT map and the peak in the original signal.
This parameter reflects the temporal alignment between the WT representation and the
actual signal.

Local features: For each of the first three local energy peaks found in the WT map [16]
for every axis (Xgp, Yrp, Zpp and norm).

In this context, a local peak refers to one of the three most prominent energy concentrations

in the WT map, identified using masks. The procedure is as follows:

1. Find the maximum absolute value in the WT power map. This represents the

highest energy point in the matrix.

2. Create a mask around this maximum, including all points in the WT map that
are above a certain threshold (e.g., 10% of the peak value). This mask defines the

spatial "territory" of the peak in time and frequency.

3. Set all points within the mask to zero in a copy of the WT map, effectively removing

the peak from consideration.

4. Repeat the steps above two more times to extract the second and third highest local

peaks, generating three separate masks, each isolating a local energy peak.

Three descriptive metrics were computed to characterize the nature of localized energy
events:

1. Maximum Power of the Local Peak This represents the highest energy value
within the local peak. It indicates how intense the energy concentration is in that specific
transient event.

2. Temporal Duration of the Peak This metric measures how long the energy of the
peak remains above a predefined threshold set to 50% of the peak’s maximum value. It
reflects the persistence of the event over time.

3. Bandwidth of the Peak Similar to temporal duration, this is measured along the
frequency axis, defining the frequency range where the peak’s energy remains above the
50% threshold.
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4.2.3 Overview of Extracted Features

For each detected impact, a total of 18 distinct features were computed across three
different analytical domains:

o 5 features in the Time Domain

o 8 features in the Frequency Domain

6 features in the time-Frequency Domain (via Wavelet Transform)

These features were extracted from the three accelerometric axes (Xgp, Yrp, Zrr) and
the signal norm, with some exceptions:
Time Domain:

o Axis-specific features: 3 features — Amplitude, Zero Crossing with adaptive
threshold, and Jerk — were computed separately for each of the four signal compo-
nents (Xpp, Yrp, Zrpp and norm), resulting in 3 X 4 = 12 features.

« Composite features: 2 features — RIC and BrIC — were computed once per
impact, as their formulations inherently include contributions from all three axes.

Total time-domain features per sensor: 12 (axis-specific) + 2 (composite) = 14

Frequency Domain: All 8 features were calculated separately for each of the three

signal components and norm, giving: Total frequency-domain features per sensor:8 x 4

= 32 features per sensor

Time-Frequency Domain (Wavelet Transform)
« Global features: 3 features — maximum W'T power, dominant frequency, and
time-to-peak delay — were extracted from the entire time-frequency representation.
o Peak-based features: 3 features (peak power, temporal duration, spectral band-
width) were computed for each of the top 3 energy peaks: 3 x 3 = 9 features
per signal component.

Total time-frequency features per sensor:(3 global + 9 peak-based) x 4 = 48 features

Total number of Features extracted: 14 + 32 + 48 = 94 features, across 4 sensors 94 X
4 = 376 features

Before proceeding with the statistical analysis, an exploratory investigation was conducted

to evaluate whether the features extracted from each sensor exhibited any degree of
correlation, both within the same sensor and across different sensors. The rationale behind
this preliminary step was to assess whether the information provided by each sensor could
be considered independent, or whether redundant information might be present due to
inter-sensor correlation.

For this purpose, the Pearson correlation coefficient was employed [5], as it quantifies
the linear relationship between two variables on a scale ranging from —1 to +1. In this

context, only positive correlations were expected, since identical features compared with
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themselves necessarily yield a maximum correlation coefficient of 1.

4.3 Statistical Analysis

As mentioned in Chapter 3, Section 3.1, one of the main goals of this work is to answer the
following research question: which of the helmet-mounted sensors provides measurements
that are most similar to those recorded by the reference unit (IMU) placed inside the
headform.

To address this question, a quantitative comparison was carried out between the signals
acquired from the helmet sensors and the ground truth. For this purpose, descriptive
features were extracted to summarize the main characteristics of the signals in three
different domains: time, frequency, and time-frequency. The aim of the statistical analysis
is to determine whether there are statistically significant differences between the sensor
measurements and the ground truth, in order to assess which sensor provides more accurate
estimates. The method selected for this analysis falls within the domain of statistical
inference, which represents the branch of statistics concerned with drawing conclusions
about a population based on observations from a representative sample. In essence,
statistical inference offers a rigorous framework for extrapolating the findings obtained
from a limited dataset (sample) to the broader population from which the sample was
drawn [25]. The specific test adopted is the Paired Sample t-test (or dependent samples
t-test), implemented in Python using the ttest rel function from the scipy.stats library.
The Paired Sample t-test is a statistical tool used to estimate whether the mean difference
between two paired sets of observations is significantly different from zero. It is particu-
larly appropriate in experimental settings where each observation is acquired under two

conditions on the same subject or event, as in this study.

4.3.1 Hypoteses and Errors

Like many statistical methods, the paired t-test relies on two opposite hypotheses [26, 27]:
o Null Hypothesis (HO): the average difference between the paired measurements is
zero. In other words, there is no significant difference between the features measured
by the helmet sensor and those from the Headform. Any differences are due to
chance or natural variability.
o Alternative Hypothesis (H1): the average difference between the two data sets
is not equal to zero, suggesting a real and systematic difference between the sensor
measurements.

These hypotheses can be expressed mathematically as:

Hy : pp = o (the means are equal)
Hy :py # po (the means are different)
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where:

e 11 is the mean value of a given feature measured by the Headform,

e 19 is the mean value of the same feature measured by one of the helmet sensors.

Once the hypotheses are defined, it is important to consider the possible types of statistical
errors [27]:

o Type I Error («): occurs when the null hypothesis is rejected even though it is
actually true. In this case, one concludes that there is a difference, when in fact the
two sets of measurements are statistically equivalent. This is also known as a false
positive.

o Type II Error (f3): occurs when the null hypothesis is not rejected even though it
is actually false. This means concluding that the two sets of data are similar when
a real difference exists. This is also known as a false negative.

To decide whether to reject the null hypothesis, the paired t-test provides a statistical
parameter known as the p-value. This value represents the probability of observing a
difference between two measurements, assuming that the null hypothesis is true. The
decision rule is defined as follows:

o If p < a (probability of Type I error), the null hypothesis is rejected: the difference
is considered statistically significant.

o If p > « (probability of Type I error), the null hypothesis is not rejected: there
is not enough statistical evidence to conclude that the two measurements differ

significantly.

In the context of this study, the objective is to identify those features for which the
helmet-mounted sensors provide measurements statistically equivalent to the ground truth
(Headform). Therefore, the features of interest are those for which the p-value is greater
than or equal to the significance level «, indicating no significant difference between
the two measurement systems.
Assumptions and Validity of the Test: The paired t-test assumes that the distribution
of the differences between paired observations is approximately normal. In this study, 360
impacts were recorded for each sensor, for a total of 1440 impacts.
Thanks to this large sample size, we can rely on the Central Limit Theorem (CLT)[28],
which states that as the number of observations increases, the distribution of sample
means (or differences) tends to become normal, regardless of the original data distribution.
This allows us to legitimately use the t-test.
Calculated Parameters: For each comparison between the Headform and one of the
three sensors (Physilog Top, Physilog Middle, Physilog Bottom), the following statistical
indicators were calculated using the paired t-test:

e The mean difference for each feature between the two sensors

o The standard deviation of the differences

e The t-value, which is the test statistic of the Student’s t-test
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e The p-value, which indicates the statistical significance of the observed difference
o The 95% confidence interval for the mean difference
e Cohen’s d value was also computed. This is a measure of effect size, which will be

further discussed in the next section.

4.3.2 Sensor Pairs and Test Design

Three sensor pairings were analyzed:
o Headform vs. Physilog Top
e Headform vs. Physilog Middle
e Headform vs. Physilog Bottom
For each feature, a separate Paired t-test was performed across the following configuration:
« 3 angles of impact (30°,50°,70°)
4 impact locations (Front, Front-Boss, Side, Back-Boss)
e J sensor pairs
This results in a total of:
3 x4 x 3 = 36 Paired t-tests

To evaluate statistical significance, the p-value was compared against a corrected threshold
derived from the Bonferroni correction method. This correction is used to control the
family-wise error rate when multiple hypotheses are tested simultaneously, thus reducing
the risk of Type I errors (false positives).

The adjusted significance level a was calculated following the Bonferroni’s correction [29)]:

where:

« o/ is the standard significance level (typically 0.05),

o k is the number of tests performed (in this case, k = 36).
Therefore:

0.05
— =2 _ 0.0014 ~ 0.001
‘T 736

For each extracted feature:

o If p < 0.001: the null hypothesis is rejected, and the difference in feature values
between the headform and the helmet-mounted sensor is considered statistically
significant.

o If p > 0.001: the null hypothesis is not rejected, indicating that there is not
enough statistical evidence to conclude that the two measurements differ signifi-
cantly.

In this study, features with p > 0.001 are of particular interest, as they suggest that the

helmet-mounted sensor produces measurements statistically comparable to those of the
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Headform.
In addition to statistical significance (p-value), it is crucial to consider the magnitude
of the observed differences. For this reason, Cohen’s d was computed for each paired
comparison.
Effect size represents the main outcome of a quantitative analysis, as it quantifies how
substantial the observed difference is. While the p-value indicates whether a difference
exists, the effect size assess how large that difference is [30].
Cohen’s d is commonly interpreted using the following thresholds:

e Small effect: d = 0.2

e Medium effect: d = 0.5

o Large effect: d =0.8

e Very large effect: d > 1.3

Table 4.1: Summary of Paired t-test analysis settings

Test Type Paired Sample t-test (dependent samples)
Headform vs. Physilog Top
Comparison Pairs Headform vs. Physilog Middle
Headform vs. Physilog Bottom
Total Number of Tests 3 impact angles x 4 channels x 3 comparisons = 36 tests
Significance Level («) 0.05 (before correction)
Adjusted Significance (a,q) | a/k =0.05/36 ~ 0.001
Null Hypothesis (H) w1 = pe2 (No difference between means)
Alternative Hypothesis (H;) | p1 # p2 (Means are significantly different)
Criteria for Rejection If p < 0.001, reject Hy (significant difference)
Effect Size Metric Cohen’s d

4.4 Machine Learning

Following the feature extraction and selection phases, an additional objective of this work
was to assess the level of decoupling between the helmet and the Headform during impact
events. This aspect was investigated in order to evaluate whether the position of a sensor
on the helmet affects its sensitivity to relative motion, and therefore its reliability in
capturing true head kinematics.

In ideal conditions, the helmet and the headform would behave as a rigidly coupled
system, meaning that they would move as a single solid body during impact. However,
due to imperfect contact and possible slippage or rotation between the helmet and the
head, relative motion can occur. This phenomenon is known as helmet-head decoupling.
The decoupling introduces discrepancies between the actual head motion and the motion
recorded by sensors placed on the helmet, potentially compromising the accuracy of
biomechanical measurements. For this reason, identifying sensor positions more susceptible

to decoupling can help guide the design of improved instrumentation strategies in head

32



Data Processing

impact monitoring.

To analyze this problem, a supervised Machine Learning (ML) approach was adopted to
automatically classify each recorded impact based on the observed level of decoupling
between the helmet and the headform.

Using a set of extracted signal features as input, the ML model aims to distinguish whether
the helmet behaved coherently (low decoupling) or independently (high decoupling) from
the head during impact. Each impact in the dataset was manually labeled as high or low
decoupling based on visual inspection. The classification criterion is based on the relative
displacement and rotation of the helmet with respect to its initial position before impact.
Specifically:

e Low Decoupling is defined when the helmet maintains an alignment close to its
pre-impact configuration, with no appreciable displacement or rotation relative to
the headform. In these cases, the helmet and headform behave approximately as a
rigidly coupled body.

« High Decoupling is observed when the helmet shows a clear deviation from its
initial position, either by forward slippage (exposing a larger portion of the dummy’s
forehead) or by rotational misalignment with respect to the headform. This condition
indicates a relative motion between the helmet and the head, consistent with a loss
of rigid coupling.

An illustrative example of these two scenarios is reported in Figure 4.3, where panel (a)

corresponds to a low decoupling condition and panel (b) to a high decoupling condition.

- " -

Figure 4.3: Low vs High Decoupling.

In this framework, a sensor that allows the ML model to easily discriminate between

high and low decoupling events can be interpreted as more sensitive to the decoupling
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phenomenon, and therefore less reliable in reproducing true head kinematics. Conversely,
sensors showing a reduced sensitivity to decoupling can be regarded as less affected by

this phenomenon and therefore more suitable for accurate motion tracking.

4.4.1 ML Overview

Machine Learning (ML) is a branch of artificial intelligence that enables computational
systems to infer patterns and structures directly from data. Unlike traditional program-
ming, where explicit rules are predefined by the developer, ML algorithms iteratively
adjust their internal parameters through exposure to training data, thereby progressively
improving their predictive accuracy and generalization capability [31]. Depending on
the type of problem and the availability of labeled data, ML algorithms are generally
categorized into two main groups:

e Supervised learning: the model is trained on a labeled dataset, where each sample
is associated with a known output (label). The objective is to learn a mapping
function that can predict the correct label for new, unseen data. Supervised learning
tasks are typically divided into classification problems, where the output variable is
categorical, and regression problems, where the output variable is continuous.

e Unsupervised learning: the model is trained on unlabeled data, where the
structure of the dataset is unknown. The goal is to uncover hidden patterns or
groupings within the data, often through clustering algorithms or dimensionality
reduction techniques.

Figure 4.4 [31] illustrates the basic subdivision of Machine Learning techniques into

supervised and unsupervised approaches.

Machine Learninge

/\

Unsupervised Learning

Supervised Learning
— v
Classification Regression Clustering

Figure 4.4: Machine Learning approaches.

In this study, a supervised learning framework was adopted, since each impact event was
manually labeled as High or Low Decoupling. Two distinct ML techniques were selected
and compared [31]:
¢ Decision Trees and Random Forests A Decision Tree is a flowchart-like structure
where data is recursively split based on feature values. At each step (node) a condition

is checked, each branch is a possible answer, and at the end (leaf) the sample is
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assigned to a class [31]. The Random Forest builds many decision trees using random
parts of the data and features, and then combines their results. The final decision is
made by majority vote, which makes the model more accurate and stable than a
single tree.

o Support Vector Machines (SVMs) Support Vector Machines are powerful
classifiers that work by finding the optimal hyperplane that separates data points
belonging to different classes with the maximum margin. Training data are mapped
into a high-dimensional feature space, and the SVM algorithm seeks the boundary
that maximizes the separation between the two classes. New observations are
then classified based on which side of the hyperplane they fall. This approach is
particularly effective in binary classification problems, such as the present case.

By employing these two supervised learning algorithms, it was possible to quantitatively
assess how well the helmet-mounted sensors capture head motion relative to the ground

truth, and to evaluate the impact of sensor position on susceptibility to decoupling.

4.4.2 Datasets

For the classification task, four datasets were prepared, each containing the features
extracted from the helmet-mounted IMUs after the feature selection step:

« All IMUs without Ground Truth: includes all the selected features computed
from the three helmet-mounted sensors (Physilog Top, Physilog Middle, Physilog
Bottom), for a total of 360 x 282 entries.

e Physilog Top Dataset: includes only the features computed from the Physilog
Top sensor (360 x 94).

« Physilog Middle Dataset: includes only the features computed from the Physilog
Middle sensor (360 x 94).

o Physilog Bottom Dataset: includes only the features computed from the Physilog
Bottom sensor (360 x 94).

Each dataset contains 360 impacts, with each impact labeled as High or Low Decoupling
according to the visual inspection criteria described in Section 4.4. Importantly, the
datasets are balanced in terms of class distribution, with approximately 47% of samples
labeled as High Decoupling and 53% as Low Decoupling ( H: 169, 46.94%; L: 191, 53.06%).
This balance ensures that the classification algorithms are not biased toward one of the

two classes, a common issue in imbalanced datasets.

4.4.3 Train-Test Splitting

To evaluate the generalization performance of the models, each dataset was split into a
Training Set (80%) and a Test Set (20%). The split was performed using stratified

sampling, meaning that the proportion of High and Low labels was preserved in both sets.
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This ensures that both training and test sets remain representative of the overall dataset.

Table 4.2 reports the size of the datasets before and after splitting.

Table 4.2: Dataset sizes before and after Train-Test splitting.

Dataset Original Size Training Set Test Set

All Sensors (282 features) 360 samples 288 samples 72 samples
Single Sensor (94 features) 360 samples 288 samples 72 samples

The splitting procedure was implemented in Python using the function train_test_split
from the scikit-learn library, with the parameter stratify=y to guarantee class balance.
The splits for each dataset were stored in serialized files using the joblib library, enabling

consistent reuse across model training and testing phases.

4.4.4 Random Forest

The Random Forest (RF) algorithm is a supervised Machine Learning method that can be
applied to both classification and regression tasks. In classification, the model predicts a
categorical outcome (class labels), whereas in regression it outputs a continuous numerical
value [31]. In this work, the RF was employed as a classifier to model the relationship
between the extracted features and the target outcome.

Random Forest belongs to the family of ensemble methods [5], as it combines the predictions
of multiple base learners (decision trees) in order to improve generalization performance
and mitigate overfitting. Each decision tree is built by recursively partitioning the data
according to feature values until terminal nodes ,representing predictions, are reached.
The ensemble nature of the RF relies on the bootstrap aggregating (bagging) technique:
each decision tree is trained on a bootstrap sample of the training set, generated by
sampling with replacement. Some features may appear multiple times in a sample while
others may be excluded, leading each tree to grow differently. The final prediction is
obtained by aggregating the outputs of all trees: through majority voting in classification
tasks, or by averaging in regression tasks. This procedure reduces the variance of the
model compared to a single decision tree, enhances stability, and improves robustness
against noise and overfitting.

In this study, the Random Forest classifier was configured with the following fixed
hyperparameters [8]:

e n_estimators = 100, corresponding to the construction of 100 decision trees;

e random_state = 42, ensuring reproducibility of the results;

« max_depth = None, allowing each tree to expand until its maximum depth.
The experimental workflow involved splitting the dataset ad described in Section 4.4.3.
The training set was used both for model development and for applying a 5-fold cross-

validation procedure [8]. In k-fold cross-validation, the training set is partitioned into k
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equal subsets (folds): at each iteration, the model is trained on k-1 folds and validated
on the remaining one. The process is repeated k times, and performance metrics are
averaged across folds to provide a reliable estimate of the model’s generalization ability.
This approach eliminates the need for a separate validation set, since each fold acts as
validation once.

It is important to note that cross-validation was not used for hyperparameter tuning in this
case, as the values of n_ estimators, random__ state, and max_depth were predetermined.
After cross-validation, the final model was retrained on the entire Training Set and
subsequently evaluated on the independent Test Set , which had not been used during
training or validation.

This methodology ensured a robust evaluation of the classifier’s performance [8] while
maintaining a strict separation between Training and Test data, thereby preserving the

reliability of the generalization assessment.

4.4.5 Support Vector Machines

Support Vector Machines (SVMs) are widely used supervised learning algorithms, partic-
ularly effective for binary classification tasks. The fundamental objective is to identify a
hyperplane that best separates data points belonging to two different classes[31]. Among
all possible separating hyperplanes, SVM aims to construct a separating hyperplane that
maximizes the distinction between the two classes of data points [32]. A wider margin
generally enhances the model’s ability to generalize to unseen data.

However, datasets are not always linearly separable, meaning that no straight line (in two
dimensions), plane (in three dimensions), or hyperplane (in higher-dimensional spaces)
can perfectly separate the classes without misclassifications. In such cases, SVMs rely
on kernel functions [32], which map the original data into a higher-dimensional feature
space where linear separation becomes possible. Yet, by applying a radial basis function
(RBF) kernel, the data can be projected into a higher-dimensional space where a linear
separating hyperplane can be identified.

The SVM model was implemented in Python using the scikit-learn library. As a first
step, the dataset was divided into Training and Test Sets, as described in Section 4.4.3.
The features were then standardized using StandardScaler, ensuring that each variable
had zero mean and unit variance. This preprocessing step is essential for distance-based
algorithms such as SVMs, since it guarantees that all features contribute equally to the
definition of the decision boundary.

For classification,a Radial Basis Function (RBF) kernel was employed. The RBF kernel
enables the algorithm to handle cases in which the data are not linearly separable in
the original feature space, by projecting them into a higher-dimensional space where
separation between classes is more feasible [33].

Two main hyperparameters were optimized. The first is the regularization parameter
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C, which controls the trade-off between the simplicity of the decision boundary and the
ability to correctly classify all training samples. Low values of C' allow the model to
tolerate some misclassifications while producing smoother and more stable boundaries,
whereas high values of C' enforce stricter separation of training samples, possibly at the cost
of overfitting[33]. In this study, several increasing values of C' were tested [0.5,1,1.8,2, 5]
to identify the optimal compromise.
The second hyperparameter is gamma, which defines the width of the RBF kernel and
thus the influence of individual data points on the decision boundary. Small gamma values
produce smoother and simpler boundaries, while larger values generate highly complex
boundaries that may overfit the data. In scikit-learn, gamma can be set in three ways:

« "scale": which computes 1/(n__ features - Var(X)) and is generally robust;

e "auto": which uses 1/n_ features;

« positive float: allows direct control over the model complexity.
The best combination of C' and gamma was determined through a Grid Search, an
exhaustive exploration of predefined parameter values. Model evaluation during this
process was performed using a Leave-One-Out Cross-Validation (LOO) applied
exclusively to the training set. At each iteration, the model was trained on all samples
except one, which was used for validation; this process was repeated until every sample
had served once as validation data. The aggregated results provided a robust estimate of
model performance.
Finally, after the optimal hyperparameters had been identified, the model was retrained
on the entire training set and subsequently evaluated on the test set. This step ensured
an unbiased assessment of the generalization ability on unseen data.
In summary, the implementation of supervised Machine Learning methods, namely Random
Forests and Support Vector Machines, provided a systematic framework to evaluate the
susceptibility of helmet mounted sensors to head—helmet decoupling. These models offered
a quantitative means to assess sensor reliability and to support the identification of the

most suitable sensor placement for accurate motion tracking.

4.4.6 Evaluation Metrics

To assess model performance, Accuracy and F1 Score were used as primary evaluation
metrics.
Accuracy represents the proportion of correctly classified impacts over the total number

of impacts and is mathematically defined as:

TP+TN
TP+TN+ FP+ FN

Accuracy =

where:
o TP = True Positives (high decoupling correctly classified)
o T'N = True Negatives (low decoupling correctly classified)
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o [P = False Positives (low decoupling misclassified as high)

o I'N = False Negatives (high decoupling misclassified as low)
The F1 Score provides a balanced measure of a classifier’s precision and recall, defined
as the harmonic mean of these two quantities:

Precision - Recall

F1S =2-
core Precision + Recall
where: Tp Tp
Precision = ———— l=———
recision TP+ FD Reca TP+ EN

The F1 Score is particularly useful in cases where the dataset is not perfectly balanced, as
it accounts for both false positives and false negatives, providing a more comprehensive

assessment of classification performance than accuracy alone.
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Chapter 5
Results and Discussions

In the Results and Discussions chapter, the main objective is to clearly present the data
obtained from the experimental acquisitions, highlighting both the main characteristics
of the signals recorded by the sensors and the differences between devices and impact

conditions.

5.1 Visual Inspection of Angular Velocity Signals

As described in the previous section, the signals acquired from the Headform and the
three helmet-mounted IMUs were carefully preprocessed, including functional calibration,
up-sampling, and manual synchronization of individual impacts into 100 ms time windows.
This approach allowed obtaining comparable and reliable data for the analysis of impact
dynamics, keeping the information from the three Cartesian axes and the vector norm
separate, in order to preserve all motion components.

A crucial first step in this process was the functional calibration, which ensured that
all sensors operated in a common reference frame. Since the helmet-mounted IMUs
were attached in arbitrary positions and orientations, their local coordinate systems were
initially unknown. To make the signals comparable, each IMU output was transformed
into a predefined right-handed frame where the Xgp point forward, Y pr upward,
and Zrr to the left.

In contrast, the Headform reference frame was directly aligned to the Functional Frame
(FF) for comparison.

Looking at Figures 5.1, 5.2 and 5.3, a typical impact is characterized by a short and
intense impulsive phase, which ideally appears as a sharp rise followed by a maximum
peak and a rapid decay (see red signals for the reference). This phase corresponds to the
moment when the pendulum makes contact with the helmet and the headform starts to
accelerate. The relevant dynamics are fully captured within the first 100 ms after the
onset of the impact, which represents the time window of interest in this study. Beyond

this interval, helmet signals often show oscillatory behavior related to helmet vibrations
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or secondary motion, which are not the focus of the present analysis. When looking at the
signals, it should be noticed that the primary contribution to rotation is along the axes
aligned with the main rotation axis, as will be explained in detail later in this section.
Instead,on the secondary axes, small oscillations or low-amplitude fluctuations can be
observed. These do not follow the impulsive profile of the impact and are mainly due to

mechanical vibrations of the helmet, indirect force transmission, or measurement noise.

The vector norm, computed as the magnitude of the three-dimensional signal, provides an
orientation-independent descriptor of the motion. In the plots, it generally appears as a
smoother peak compared to the single Cartesian components. The agreement of the signal
norm across the Headform and the helmet-mounted IMUs demonstrates the effectiveness
of segmentation and synchronization in producing temporally aligned and comparable
data.

For illustration, three representative impact conditions are reported in the following
figures, each showing the angular velocity signals recorded by the Headform and the three
helmet-mounted IMUs. In all cases, the four subplots represent the three Cartesian axes

(Xpr, Yrr, Zrr) and the vector norm.

o Frontal impact, 32° (Figure 5.1): the dominant rotational contribution is
observed along the positive Zgp, consistent with the impact direction. The signal on
this axis exhibits the expected impulsive shape, with a sharp rise, a maximum peak,
and a fast decay within the 100 ms analysis window. The other axes show only
small fluctuations, attributable to noise or secondary helmet motion. The vector
norm displays a clear and consistent peak across all sensors, confirming proper
synchronization and segmentation.

o Left-side impact, 50° (Figure 5.2): in this configuration, the main rotational
contribution is along the positive Xpp. The angular velocity profile on this axis is
characterized by a sharp impulsive peak, while Y rr and Zpr components exhibit
only minor oscillations. As in the previous case, the vector norm captures the overall
dynamics of the impact, showing a single smooth peak aligned across all devices.

« Right Front-Boss impact, 70° (Figure 5.3): the dynamics are more complex,
with the primary contribution distributed between the positive X-axis and the
negative Zrr. Both components show impulsive peaks of comparable magnitude,
reflecting the combined rotation induced by the oblique rearward strike. The Yrp
component remains less affected, showing only minor oscillations. The signal norm
once again provides a compact description of the overall event, showing a well-defined

impulsive peak across all sensors.

These three representative cases demonstrate how the preprocessing pipeline and functional
calibration allow consistent comparison between the Headform and helmet-mounted sensors,
while also highlighting the expected dependence of the rotational kinematics on the impact

direction and angle.
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5.2 Feature Extraction Analysis

It is important to recall that to ensure a fair and reproducible comparison, the same
set of features was extracted from all sensors (Headform reference IMU, Physilog Top,
Middle, and Bottom) under identical impact conditions. This consistent approach allowed
the evaluation of how closely each helmet-mounted IMU reproduces headform dynamics
(RQ1) and whether the direction of impact influences measurement reliability (RQ2).

Figure 5.4 is an illustrative example: in the time domain the Amplitude feature was

Time-Domain feature group: Amplitude [deg/s]
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Figure 5.4: Amplitude of angular velocity signals across impact directions and angles,
for the Headform reference and helmet-mounted sensors (Top, Middle, Bottom).

considered, defined as the difference between the maximum and minimum values of the
angular velocity signal, reflecting the overall excursion of the dynamic response. The
plot is organized as a grid of 3 x 4 subplots, where the three rows correspond to the
three tested impact angles, and the four columns represent the four columns represents
Xrr, Yrp, Zrpp and the norm. Within each subplot, the x-axis reports the four impact
directions (Front, Front-Oblique, Side, and Back-Oblique), while the y-axis shows the
mean value of the Amplitude feature, defined as the difference between the maximum and
minimum values of the angular velocity (expressed in degrees per second).

For each impact direction, the bar plots display the results of the four sensors considered:
the red bars correspond to the Headform reference IMU, whereas the helmet-mounted
sensors are represented in orange (Physilog Top), blue (Physilog Middle), and green
(Physilog Bottom). This visual encoding enables direct comparison between the reference
and the helmet-mounted sensors.

To correctly interpret this plot, two fundamental considerations must be considered(as
mentioned in the previous section). First, each impact direction is associated with a main

axis of angular velocity: for frontal impacts the dominant axis is Zgp, for side impacts it
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is Xpp, while for oblique impacts both Xgr and Zpp contribute significantly. Conversely,
the Ypp is generally expected to show the smallest amplitudes, since it is not directly

excited by the impacts and should mainly reflect noise.

From this perspective, the plot can be interpreted in light of the research questions. With
respect to RQ1, which concerns the similarity of helmet-mounted IMU signals with the
Headform reference, the relevant comparison is between the mean amplitude values of the
sensors and the corresponding values of the Headform. Ideally, the bars of the helmet-
mounted sensors should align closely with the red bar of the Headform, indicating minimal
deviation from the reference dynamics. Instead, the Physilog Top sensor systematically
exhibits higher amplitude values in the Xpp, Zrp, and norm components compared to
both the Physilog Middle and Bottom and to the Headform. This systematic deviation
highlights the Top sensor’s greater tendency to amplify angular excursions, which may be

interpreted as a higher sensitivity of that location to the shock caused by the impact.

Regarding RQ2, which investigates whether the impact direction influences the degree of
similarity between sensors and the Headform, the results do not reveal a consistent pattern.
No specific impact direction appears to systematically enhance or reduce similarity across
sensors, suggesting that deviations are primarily linked to sensor positioning rather than

to the orientation of the impact. In summary, the analysis reveals two key findings:

o The vertical component (Y gr) consistently shows smaller amplitude values across
all sensors, confirming its limited contribution to the dynamic response.

o The Physilog Top sensor is systematically less aligned with the Headform reference.
A possible explanation is its mounting location: being positioned on the upper shell,
farther from the main structural contact points with the headform, it may be more
exposed to local deformations and relative motion of the helmet. This is in line with
Hypothesis H2, which associates reduced agreement with mounting sites that are

mechanically less constrained.

For the Frequency-domain analysis, among the several features extracted, three frequency
bands of interest: 0-50 Hz (low-frequency band), 50-100 Hz (mid-frequency band), and
100-250 Hz (high-frequency band) were selected as example for detailed discussion, as
it is particularly informative for distinguishing between the meaningful content of the
signal and potential contributions from noise or high-frequency vibrations. Figures 5.5,
5.6, 5.7 illustrate the results for each frequency band, organized in a 3 x 4 grid of subplots.
The structure mirrors that used for the previously analyzed Amplitude feature: the
rows correspond to the three tested impact angles, while the columns represent the four
reference axes (Xgp, Yrr, Zrr, and norm). Within each subplot, the x-axis reports the
four considered impact directions, whereas the y-axis displays the mean value of the band

power (expressed in Hz) for the specific condition.

The colored bars allow distinguishing the different sensors: the reference Headform in red

and the three helmet-mounted sensors in blue, green, and orange, respectively.
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The analysis of the plots highlights several key findings:

« Low-frequency band (0-50 Hz): The majority of the informative content of

the signal is concentrated in this band, as expected from the literature. As the
pendulum angle increases, and thus the kinetic energy of the impact, the spectral
power recorded by the sensors also increases. The dominant rotation axes are clearly
visible: for the Front direction, the main contribution lies along the Zgp, while for
the Side it is along the Xpp. This behavior is consistent with the physical dynamics
of the impacts, since the axes directly solicited by the collision are associated with the
highest energy content, whereas the Y g systematically remains the least relevant,

as it is not directly involved.

« Mid and High-frequency bands (50-100 Hz and 100-250 Hz): In these bands,

the spectral content is generally lower, suggesting that the signals do not exhibit
significant contributions at higher frequencies and that the level of noise remains
limited compared to the Headform. However, one relevant aspect emerges: the
Physilog Top sensor (orange bars) systematically shows higher values than the other
two helmet-mounted sensors (Physilog Middle and Bottom). This behavior indicates
a greater susceptibility of the Top sensor to introduce unwanted contributions in the

mid-to-high frequency range, thereby highlighting a higher noise level in its signals.

In conclusion, the results confirm that the most meaningful portion of the angular velocity

signal content is concentrated in the low-frequency band (0-50 Hz), consistent with the

real dynamics of impacts. The higher-frequency bands, on the other hand, are mainly

associated with noise or mechanical disturbances, with the Physilog Top sensor standing

out as the least reliable in spectral terms.
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Figure 5.5: Band power in the 0-50 Hz range: distribution of spectral energy across
impact directions.

45



Results and Discussions

Frequency-Domain feature group: BandPower 50-100 [Hz]
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Figure 5.7: Band power in the 100-250 Hz range: distribution of spectral energy across
impact directions.

5.3 Quantitative Comparison and Statistical Results

5.3.1 Correlation between extracted features

The correlation matrices were computed for each experimental configuration (impact
direction and angle) and visualized in the form of heatmaps.

An example of these visualizations is reported for each of the three feature domains
analyzed Figures 5.8, 5.9, 5.10 . In the heatmaps, each block along the main diagonal

represents the correlation of a sensor’s features with themselves, which consistently results
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in a Pearson coefficient equal to 1, confirming the correctness of the implementation. More
interestingly, the off-diagonal blocks represent the correlations either between different
features of the same sensor, or between features extracted from different sensors. In
particular, the correlation between the reference sensor (Headform) and the three Physilog
sensors was the focus of interest, as it may indicate the degree to which the helmet sensors
capture similar information to the reference measurement.

From the visual inspection of the heatmaps, it is evident that correlations vary considerably
depending on both the feature domain and the specific experimental configuration (impact
angle and direction). In some cases, inter-sensor correlations were observed, while in
others the degree of similarity appeared weaker. Notably, no consistent or repeatable
pattern emerged across conditions, suggesting that correlation strength is highly context-
dependent.

Given the variability observed in the exploratory heatmap analysis and the qualitative
nature of these inspections, a more rigorous statistical approach was deemed necessary
to objectively quantify the similarity between the reference Headform sensor and the

Physilog sensors, which can be considered statistically meaningful or negligible.

Pearson Correlation Heatmap - Location: Side, Angle: 32°
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Figure 5.8: Heatmap Time Domain (Side, 32°)

5.3.2 Interpretation of the Statistical Results

Figure 5.11 summarizes, for each frequency-domain feature, the outcome of the paired
comparisons between the Headform and the three helmet-mounted sensors (Physilog Top,
Middle, and Bottom). On the X g, the three sensor pairs are reported, while the Y gp
lists the extracted features. Each square in the plot represents the result of a paired
comparison for a given feature—sensor pair.

The color encodes the outcome of the statistical test:
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Pearson Correlation Heatmap - Location: FB, Angle: 50°
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Figure 5.9: Heatmap Frequency Domain (Front Boss, 50°)

Pearson Correlation Heatmap - Location: Front, Angle: 32°
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Figure 5.10: Heatmap Time-Frequency Domain (Front, 32°)

e Green squares: the helmet sensor measurements are statistically comparable to
the Headform, i.e., no systematic deviation was detected.
* Red squares: a systematic difference was identified, indicating that the helmet

sensor did not fully reproduce the Headform reference for that feature.
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In addition to statistical significance, the size or shading of the markers reflects the effect
size (Cohen’s d), which provides information on the practical relevance of the difference.
Small values indicate negligible deviations even if significant, while large values highlight
substantial discrepancies that may impact the interpretation of sensor performance.
This visualization therefore enables a rapid identification of:

o which features are reliably captured by helmet sensors across locations;

o where systematic deviations occur;

o whether detected differences are minor or potentially relevant in biomechanical

terms.

Taking as an example the BandPower 0—50 Hz feature, which represents the impact
information content in the main frequency band, the following can be observed:
The impact direction is Side, and the main signal axis is Xgp, which captures the
predominant motion contribution.
In the row corresponding to BandPower 0-50 Hz on the Xpp:

e Headform vs. Physilog Middle: green square, p > 0.001, Cohen’s d = 0.22

o Headform vs. Physilog Top: green square, p > 0.001, Cohen’s d = —0.35
This indicates that the measurements from the Physilog Middle and Top sensors are
statistically comparable to those from the Headform for this feature. The negative sign of
Cohen’s d merely indicates the direction of the difference (Headform < Physilog or vice
versa), but the magnitude is assessed using the absolute value, which in both cases falls
within the medium effect range.
Conversely, red squares in higher frequency bands or along other axes highlight statistically
significant differences, likely due to noise or minor signal contributions.
In contrast, examining the BandPower 50-100 Hz feature in the norm, all three
helmet-mounted sensors—Top, Middle, and Bottom—show green squares, indicating
p > 0.001, for each sensor pair. This result signifies that, for this particular feature,
the measurements from all helmet-mounted sensors are statistically comparable to the
Headform, suggesting a high degree of consistency and robustness across sensor positions.
Such a finding highlights the reliability of this frequency band in capturing relevant impact
information without significant sensor-dependent variation.
In this case (Figure 5.12), the impact direction is Front Boss with an incident angle
of 50°, and the feature under analysis is the Median Spectral Density . The MSD
represents the frequency value that divides the power spectrum of the signal into two
equal halves, providing an estimate of the dominant spectral content and the central
tendency of energy distribution across frequencies. In other words, it reflects the central
frequency around which most of the signal energy is concentrated, offering insight into
the main oscillatory components of the impact response.
For this impact direction, the contributions of the impact are notable on both the Xgp
and Zpp axes. The comparison between the Headform and the helmet-mounted sensors

reveals the following:
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Paired T-Test p-values and Cohen’s d | Location: Side | Angle: 32°
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Figure 5.11: Visual summary of paired t-test results comparing the Headform reference
sensor with helmet-mounted Physilog sensors (Top, Middle, Bottom) for Frequency-domain
features, Front impact direction, 32°.

« Physilog Bottom: green squares for all three axes (Xrp, Yrr, Zrr), p > 0.001,
indicating that the Median Spectral Density measured by the bottom sensor is
statistically comparable to the Headform across all axes.

« Physilog Top and Middle: green squares only for the Y and Z axes, p > 0.001,
suggesting that on these sensors, the Median Spectral Density is comparable to the

Headform only along the vertical and lateral directions, but not along the Xzp.

The similarity of the Median Spectral Density in this impact direction indicates that
the helmet-mounted sensors are capturing the dominant spectral content of the impact
signal in a way that is largely consistent with the Headform reference. For the Bottom
sensor, this consistency across all three axes suggests a robust replication of the headform
dynamics in multiple directions, which could enhance the reliability of derived features

such as impact intensity, energy distribution, and directional analysis.

In contrast, the Top and Middle sensors show agreement only along Y pr and Zpp axes,
which may reflect local variations in sensor mounting or minor directional biases. These
differences highlight that, depending on sensor position, some directional components of
the signal may be less accurately captured, which could affect subsequent analyses that

rely on the spectral content along the Xpp.

Two key time-domain features aderived from the angular velocity signals are analyzed:
Amplitude (Min—-Max Range) and Zero Crossing Rate (Adaptive Threshold).
The analysis focuses on different impact configurations and axes to highlight how helmet-

mounted sensors replicate the Headform measurements in the time domain.
Amplitude (Min—Max Range) The Amplitude is defined as the difference between the
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Paired T-Test p-values and Cohen’s d | Location: FB | Angle: 50°
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Figure 5.12: Visual summary of paired t-test results comparing the Headform reference
sensor with helmet-mounted Physilog sensors (Top, Middle, Bottom) for Frequency-domain
features, Front-Boss impact direction, 50°.

maximum and minimum angular velocity within the selected time window:
Amplitude = max(w(t)) — min(w(t)).

This metric provides a direct estimate of the maximum angular excursion recorded during
the impact, reflecting the intensity of the rotational motion experienced by the head.
For the Front impact at 50° Figure 5.13, the principal axis of interest is the Zgp, which
captures the dominant component of the rotational movement. Paired statistical analysis
between the Headform and the helmet-mounted sensors reveals the following:

« Physilog Bottom and Middle: paired t-tests yield p > 0.001, indicating that the
null hypothesis of no systematic difference cannot be rejected. Cohen’s d values fall
within the small to medium range, confirming that the magnitude of any observed
differences is negligible.

o Physilog Top: statistically significant differences are observed along the Zpp
(p < 0.001), suggesting a systematic deviation from the Headform measurement.

These results indicate that the rotational dynamics captured by the Bottom and Middle
sensors along the Zgp closely reproduce the Headform reference in terms of angular
velocity amplitude. Consequently, these sensors can reliably represent the intensity of the
impact, supporting their use in estimating head kinematics during frontal collisions.

Zero Crossing Rate (Adaptive Threshold) The Zero Crossing Rate (ZCR) quantifies
the number of times the signal crosses a threshold, which in this case is an adaptive value
computed as half of the mean of the absolute peak angular velocities from the helmet
sensors. This adaptation compensates for the higher variability and spurious oscillations

present in helmet-mounted signals compared to the cleaner Headform measurements. The
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Paired T-Test p-values and Cohen’s d | Location: Front | Angle: 50°
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Figure 5.13: Visual summary of paired t-test results comparing the Headform reference
sensor with helmet-mounted Physilog sensors (Top, Middle, Bottom) for Time-domain
features, Front impact direction, 50°.

ZCR provides insight into the oscillatory behavior of the signal, potentially reflecting
sensor quality or coupling effectiveness.
For the Front impact at 50° 5.14 analyzed along the Side direction, the principal axis
is the Xzp. The paired t-tests indicate:

Paired T-Test p-values and Cohen’s d | Location: Side | Angle: 50°
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. 20001
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Figure 5.14: Visual summary of paired t-test results comparing the Headform reference
sensor with helmet-mounted Physilog sensors (Top, Middle, Bottom) for Time-domain
features, Side impact direction, 50°.

o All three helmet-mounted sensors (Top, Middle, Bottom) yield p > 0.001, with small
Cohen’s d values, indicating that the oscillatory behavior measured by the sensors

is statistically indistinguishable from the Headform along this axis.
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This finding suggests that, in terms of signal oscillations relative to the adaptive threshold,
all helmet-mounted sensors adequately replicate the Headform dynamics along the Xpp
for this impact configuration. Such consistency implies that the temporal characteristics
of the rotational signal, including the frequency of angular velocity fluctuations, can be
reliably captured by each sensor in the sideward component of frontal impacts.

The combined analysis of Amplitude and Zero Crossing Rate across different axes and
impact directions demonstrates that helmet sensor placement and the choice of feature
critically influence measurement fidelity. While the Bottom and Middle sensors reproduce
angular velocity amplitudes accurately along the Zgp, all sensors capture the oscillatory
behavior along the Xz for the Side component. These results emphasize the importance
of axis-specific evaluation when validating wearable sensor performance against a reference
Headform.

The Wavelet Time-to-Peak feature represents the moment in the time—frequency domain
when the maximum energy of the signal occurs, thus indicating the temporal alignment
between the sensor and the reference (Headform).

In the Figure 5.15 for the Front impact at 32°, where the main axis of interest is Z,
the paired t-test analysis shows that the Physilog Top and Physilog Middle sensors do
not differ significantly from the Headform. This means that, in this configuration, their
time-to-peak estimates are statistically equivalent to the reference, highlighting their

ability to accurately capture the temporal dynamics of the impact.

Paired T-Test - Location: Front, Angle: 32

wt_max_pow_freq_norm >=0.0000 d=-1.60 £=0.0000 d=0.87
w_max_pow_freq_x

ma:
wt
wem
wt_m

ax 00017
k 0 Bandwidth_norm =0.0000 =0.0000
ak_0_bandwidth x

g
-]
o)

e

k_0
k0

3z

11
g
2
g

E
1l
flafing-1

£E%

g
]
&
o
|

3
3
i

555

1_duration_norm
ak_1_duraTion_x
ak ™1 duration”y

1 duration_z
. max_pow_norm
ak_1_max_pow_x

&
'y
3
3
=

ES
§§.§§.
Tele'y
BRR

z
.
SRR
e
gf

!

_2_bandwidth_x
"2 bandwidth "y
2 bandwidth_z
duration_norm
ak_2_duration_x
2 duration_y

duration_z

e

z
Fsaz

SRARIEES

S3RTniiinER

% pow_norm

Headform vs Physilog Bottom Headform vs Physilog Middle Headform vs Physilog Top

Figure 5.15: Visual summary of paired t-test results comparing the Headform reference
sensor with helmet-mounted Physilog sensors (Top, Middle, Bottom) for Time-Frequency
domain features, Front impact direction, 32°.

Overall, the statistical analyses performed across the time, frequency, and time—frequency
domains demonstrate that the degree of agreement between helmet-mounted sensors and

the Headform varies depending on both the feature considered and the impact configuration.
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In several cases, the sensors—particularly in the Middle and Bottom positions—provided
measurements statistically equivalent to the reference, faithfully reproducing specific
aspects of the impact dynamics. However, systematic differences also emerged in other
conditions, highlighting the influence of sensor placement and axis-specific sensitivity.
These findings provide the necessary context for introducing the final and most critical
plot, which condenses the key outcomes of the statistical investigation and identifies the

features with the highest reliability for impact assessment.

5.3.3 Statistical Summary: Sensor Comparison and Impact Di-

rection Influence

The plot in Figure 5.16 represents the final synthesis of the statistical analysis, where the
information from the Time, Frequency, and Time-Frequency domains was integrated to
provide a comprehensive overview of the performance of the Helmet-mounted sensors.
For each combination of impact direction and angle (x-axis of the plot), the total number
of features (y-axis) was computed that simultaneously satisfied two statistical criteria:

« p>0.001

o Cohen’s d < 0.5 (at most medium effect size).
This procedure identifies features for which the sensor measurements are statistically
indistinguishable from those of the Headform (ground truth).
The three colored curves represent the different sensors (Physilog Bottom in blue, Physilog
Top in orange, and Physilog Middle in green). The points plotted on the curves indicate,
for each impact condition, the number of statistically equivalent features, while their red
shading reflects the magnitude of Cohen’s d: from light red (small effect) to dark red
(very large effect).
The total number of features that satisfied the criteria for each sensor is reported in the
legend (top-right corner):

o Physilog Top: 268 features

o Physilog Bottom: 331 features

o Physilog Middle: 395 features
These aggregate values provide a quantitative index of each sensor’s overall ability to
approximate the Headform measurements.

From the analysis of the plot, two main insights emerge:

1. Relative Sensor Performance

o The Physilog Middle shows the highest number of statistically equivalent
features, suggesting a slightly more reliable performance in capturing impact
dynamics.

» However, no sensor demonstrates consistent or pronounced superiority across
all experimental conditions. The observed differences are not sufficient to

indicate a universally best-performing sensor.
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2. Impact Direction Influence

o The initial hypothesis predicted that sensors closer to the impact point would
deviate more from the Headform. This is not fully confirmed by the results.
o In particular:
— Physilog Bottom: expected to perform well in frontal impacts and poorly
in back impacts, but in reality it performs satisfactorily in both.
— Physilog Top: expected to perform well in back impacts and poorly in

front impacts, but instead shows suboptimal results in both cases.

Overall, the Physilog Middle, positioned in a more isolated area of the helmet, appears to

be the relatively most robust and consistent sensor. Nevertheless, the advantage is not

decisive: no helmet-mounted IMU consistently reproduces the Headform signals across all

impact configurations.

Total Significant Features (p > threshold across domains)

Significant Features Across Sensors and Impact Conditions

Cohen's d Effect Size Sensor (Total Low Effect Features)
Small (0.0-0.2) —8— Physilog Bottom (Low d < 0.5: 331)
60 Medium (0.2 - 0.5) Physilog Top (Low d < 0.5: 268)
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Figure 5.16: Final statistical synthesis: total number of features per impact condition
satisfying both criteria (p > 0.001 and d < 0.5). The three curves represent the different
helmet-mounted sensors, while the point coloration indicates Cohen’s d effect size.

5.4 Machine Learning Results

The Machine Learning analysis was performed to quantitatively assess the reliability

of

helmet-mounted sensors in capturing true head kinematics during impact events.

Specifically, ML models were employed to classify each impact according to the level of

helmet—head decoupling, providing an objective measure of sensor sensitivity to relative

motion.

While traditional statistical analyses offered an initial insight into sensor performance—showing

that the middle sensor tended to perform slightly better than the others—no single sensor
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demonstrated a clear and consistent superiority across all measured features. Therefore,
the application of supervised Machine Learning methods, such as Random Forests (RF)
and Support Vector Machines (SVMs), was particularly useful in complementing
the statistical approach. By integrating multiple signal features simultaneously, these
models enable a more nuanced evaluation of each sensor’s ability to detect high versus
low decoupling events, highlighting subtle differences that might not be apparent from
univariate statistics alone.

In this context, model performance can be interpreted as a measure of sensor sensitivity
to helmet—head decoupling:

« Higher model performance — Indicates that the sensor captures motion more
independently from the head, suggesting higher decoupling sensitivity.

« Lower model performance — Suggests reduced sensitivity to decoupling, implying
that the sensor better reflects the true motion of the head.

Machine Learning models were used to complement the statistical analysis and provide an
integrated view of sensor sensitivity to helmet—head decoupling. In this framework, higher
classification performance indicates stronger sensitivity to decoupling (i.e., the sensor
captures motion that deviates from true head dynamics), whereas lower performance
suggests closer alignment with the Headform reference.

The results (Table 5.1) show that:

e The Physilog Bottom achieves the highest performance with Random Forests,
while the Physilog Top is favored by SVMs, both reflecting higher susceptibility
to decoupling.

e The Physilog Middle consistently exhibits the lowest performance across models,
indicating reduced sensitivity to decoupling and a closer approximation to the
Headform signal. However, its advantage remains modest and not uniform across

all metrics.

Table 5.1: Accuracy and F1 Score for RF and SVM across datasets

Dataset Model Test Accuracy Test F1 Score
No Headform RF 0.8493 0.8139
SVM 0.7778 0.7895
Physilog Bottom RF 0.8116 0.8171
SVM 0.7917 0.8052
Physilog Top RF 0.7945 0.8104
SVM 0.8056 0.8205
Physilog Middle RF 0.7887 0.8024
SVM 0.7778 0.7895

In line with the findings from the statistical analysis, these results confirm that no single
helmet-mounted IMU can be considered unequivocally superior. While the Physilog
Middle demonstrates a relatively more favorable behavior by capturing motion dynamics

more faithfully, its improvement over the other sensors is not decisive. This highlights the
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intrinsic complexity of accurately replicating Headform dynamics through helmet-mounted
sensors, as their performance is inevitably influenced by both sensor location and the

mechanical interaction between helmet and head during impact.

5.5 Limitations

When interpreting the results presented in this work, it is essential to discuss the main
limitations that characterize the study. These concern both methodological aspects and
technological or material constraints, and they help to define more precisely the reliability
and scope of the conclusions drawn.

An important limitation concerns the experimental setup and the headform used for testing
[34]. While the laboratory environment allows for controlled and repeatable measurements,
the headform itself cannot fully capture the diversity of human heads. It has a simplified
anatomy and its facial characteristics are basic. Moreover, the material covering the
headform can influence how the helmet interacts with the head, for example by altering
friction properties, which may differ from real-world conditions. These factors mean that
the dynamics of helmet-head interaction observed in the lab may not entirely reflect those
experienced by real users. Future studies could address this limitation by testing multiple
headform sizes, adding layers such as skull caps or wigs to simulate different levels of
helmet fit, and exploring alternative materials to better represent human anatomy.
Another limitation relates to the range of impact conditions tested. In this study, impacts
were applied at three discrete kinetic energy levels. Although this allows for comparisons
between lower, medium, and higher severity impacts, it does not cover the full spectrum
of impacts that can occur in practice. Future work could expand the range of impact
energies and orientations to better capture the variability of real-world scenarios.

The helmet itself introduces structural limitations. A first constraint lies in the fact that
only one model, produced by Bauer, was used in this study; testing multiple hockey
helmets could have provided a broader basis for comparison and potentially different
outcomes. Beyond this, the shell of the helmet is not uniform, featuring softer and stiffer
regions that differently affect shock propagation. Local deformations and vibrations
generated by an impact can influence sensors even when they are positioned far from the
contact point. Additionally, while sensors were placed in multiple positions within the
helmet, their placement was not strictly standardized relative to anatomical landmarks,
introducing further variability. At the same time, this flexibility may be seen as an
opportunity for designers, allowing optimization of sensor placement for both protective
and monitoring purposes.

Finally, another limitation concerns the labeling process used for training machine learning
algorithms. At present, labels are based on the final position of the helmet at the end
of the impact. In some cases, however, the helmet undergoes substantial displacement

during the impact dynamics—with a high degree of decoupling from the head—before
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returning to its initial position. In such situations, the event is still classified as “low,”

despite the fact that significant movement occurred in the intermediate phase. This
labeling strategy introduces a potential bias in the dataset, as it neglects the temporal
evolution of the impact and instead focuses solely on the static final state. Consequently,
the dataset provides only a partial representation of impact dynamics, which may affect
the performance of predictive algorithms.

In conclusion, these limitations do not diminish the value of the findings obtained, but
they help delineate their scope of validity. At the same time, they indicate promising
directions for future research: the adoption of sensor technologies specifically designed for
high-dynamic impacts, the development of labeling strategies that account for the full
temporal evolution of impact events, and a more systematic consideration of material
heterogeneity in helmets. Conversely, the observation that there is no strict constraint
in sensor placement represents a concrete opportunity for designers, who may balance
engineering requirements with ergonomic considerations in the development of intelligent

helmets for both protection and monitoring purposes.
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Chapter 6

Summary and Conclusions

This study investigated the reliability of helmet-mounted IMUs in capturing true head
kinematics during impact events, focusing on the influence of sensor placement and impact
direction. Two research questions guided the work: evaluating which IMU provides the
most accurate signals compared to the Headform reference, and assessing whether impact
direction affects measurement fidelity. Associated hypotheses anticipated that structurally
isolated sensors would better reflect head motion (H1), and that sensors closer to the
impact would show greater deviations (H2).

This study provides evidence that helmet-mounted IMUs are capable of capturing head
kinematics with a level of reliability sufficient for practical use. Several important findings
emerged from the analyses.

First, regarding sensor placement, the Middle sensor—positioned in a structurally isolated
region—consistently showed the strongest agreement with the Headform. While differences
compared to the Top and Bottom sensors were not large enough to indicate a uniquely
optimal location, this result demonstrates that accurate measurements can be achieved
from multiple positions, offering valuable flexibility in helmet design. Importantly, the
observation that no sensor placement systematically outperformed the others leaves room
for manufacturers to prioritize ergonomics and player comfort without compromising data
fidelity.

Second, the results did not reveal a systematic influence of impact orientation on mea-
surement accuracy. Rather than undermining the study, this finding is informative: it
shows that helmet-mounted sensors maintain stable performance across a range of impact
directions, underscoring their robustness in realistic scenarios where impacts occur with
varying orientations.

Third, machine learning analyses highlighted differences in sensitivity to helmet—head
decoupling. While the Top and Bottom sensors were more affected by relative motion, the
Middle sensor consistently demonstrated reduced sensitivity and remained closely aligned
with the reference. This finding not only supports the importance of sensor placement
but also points to the Middle region as a promising location for applications requiring
high-fidelity data.
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Finally, the study confirmed that shock propagation within the helmet is not localized but
reflects the integrated mechanical behavior of the shell, padding, and material properties.
Recognizing this complexity opens the door to more accurate sensor data interpretation
and improved helmet design. A summary of the main findings for this study,with the

corresponding research questions and hypotheses can be found in the Table 6.1.

Table 6.1: Summary of Research Questions (RQ), Hypotheses (H), and Results

Research Question Hypothesis Results and Interpretation

. ‘ e Middle sensor, located in a
RQ1: Which of the H1: IMUs placed in structurally isolated region,

helmet-mounted IMUs | structurally isolated showed relatively better
exhibits signal patterns | regions of the helmet agreement with the Headform.
most similar to those are expected to « Differences with Top and
recorded by the better reflect actual Bottom sensors were not
internal reference IMU? | head motion. decisive.

e No consistent effect of impact
direction was observed.

RQ2: Does the H2: IMUs closer to | « Proximity to the impact point
direction of impact the point of impact did not systematically worsen

affect the accuracy of | are expected to show sensor performance.

the measurements greater deviations e ML confirmed that the Middle
recorded by the from the ground sensor is the least sensitive to

different IMUs? truth. decoupling, though not

decisively superior.

60



Appendix A

Impact Synchronization Analysis

In this appendix, a dedicated analysis is presented to investigate the synchronization
of impact events recorded by the Physilog sensors and the Headform reference system.
The purpose of this study was to better understand whether the observed discrepancies
between the signals of the helmet-mounted IMUs and the Headform were due to systematic
errors in the acquisition procedure or to the physical dynamics of the helmet relative to

the headform during an impact.

A.1 Motivation and Objectives

During the main data processing pipeline, impact onset was defined as the instant at
which the signal exceeded 10% of the baseline value around the identified peak. While
this criterion allowed a consistent segmentation of impacts, it did not guarantee perfect
synchronization across all sensors. Minor misalignments were observed, particularly when
comparing the Headform signals to those acquired by the Physilog sensors.
To address this limitation, a manual synchronization procedure was carried out. The
objective of this analysis was twofold:

e To determine whether the differences observed between the Headform and Physilog

signals originate from systematic acquisition errors.
o To evaluate whether these differences are instead the result of the relative motion of

the helmet with respect to the Headform during the initial phase of impact.

A.2 Methodology

A.2.1 Synchronization among Physilog Sensors

Synchronization among the three Physilog sensors (Top, Middle, and Bottom) was
performed using two manual shaking events:

o Initial Shake: executed before the first trigger event.
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« Final Shake: executed after the second trigger event.
During both events, the three sensors (not mounted on the helmet) were shaken simul-
taneously (Figure A.1). This procedure generated a common oscillatory pattern clearly
visible across all sensors, which was used as a reference signal for temporal alignment.
The first prominent peak of the oscillatory signal was identified for each sensor. The
signals from the Top and Bottom sensors were then aligned with respect to the Middle
sensor, chosen as the reference. The procedure followed two cases:
o If a sensor’s first peak occurred earlier than that of the Middle sensor, the signal
was padded with zeros at the beginning.
o If a sensor’s first peak occurred later, the initial part of the signal-—containing only
noise and no relevant dynamics—was trimmed.
This ensured that all three Physilog signals shared a common temporal reference based

on the onset of the shaking event.

Figure A.1: Positioning of the Physilog sensors during shaking for synchronization.

A.3 Synchronization between Physilog Middle and

Headform

The synchronization between the Physilog Middle sensor and the Headform sensor required
a more complex procedure, due to their different sampling frequencies (512 Hz for Physilog,
10,000 Hz for Headform). Controlled frontal impacts, hereafter referred to as trigger

events, were used as reference points. The procedure was structured as follows:

1. After the initial shaking event, the Middle sensor was temporarily mounted on the

dummy’s face to avoid attenuation effects caused by the helmet (Figure A.2).
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2. A first frontal impact at 50° (Initial Trigger) was delivered to the dummy’s head.
This produced a sharp and distinct peak in both the Headform and Middle sensor

signals, which served as the primary synchronization reference.

3. The Middle sensor was then mounted on the helmet, together with the Top and

Bottom sensors.

4. FEight frontal impacts were recorded, generated by a pendulum impactor inclined at
50°.

5. Following this impact sequence, all sensors were removed, and the Middle sensor

was repositioned on the dummy’s face.

6. A second frontal impact at 50° (Final Trigger) was applied, producing another

distinct synchronization reference point.

7. A final shaking event was executed, providing an additional validation reference for

the three Physilog sensors.

This structured approach ensured that both trigger events (initial and final) were identical
and could be reliably used to synchronize the signals from the two acquisition systems,

despite the differences in sampling rates.

A.4 Data Processing and Alignment

A.4.1 Trigger Detection

Trigger events were identified by detecting prominent peaks in the norm of the angular
velocity signals acquired by the Middle and Headform sensors. To facilitate peak detection
in the Headform signal, a 200 Hz low-pass filter was applied, reducing high-frequency
noise while preserving the impact dynamics.

Since the Headform recordings had shorter duration compared to the Physilog signals,

they were left-padded with zeros to match the time base of the Middle sensor.

A.4.2 Drift Correction and Interpolation

The first trigger peak showed good alignment across both signals (Figure A.3 a)), while a
slight temporal drift was observed at the second trigger (Figure A.3 b)). This drift was
attributed to desynchronization between the acquisition systems.
To correct for this misalignment, the Middle sensor signal was linearly interpolated onto
the time base of the Headform signal. The interpolation was restricted to the segment
bounded by:

o the first trigger peak, and
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S A

Figure A.2: Positioning of the Physilog Middle sensor on the dummy’s face during

trigger events.

e the first local minimum following the second trigger peak.

The selection of this minimum was motivated by its stability and reproducibility, ensuring

improved correspondence in both the temporal dynamics and the overall shape of the

signals.
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A.4.3 Impact Segmentation

Each trigger event (initial and final) and each impact detected during the acquisition was
segmented by extracting a time window of +0.5 s around the event, ensuring that the
complete dynamics of the impact were captured.
Impact peaks were then identified using the following parameters:

e Minimum peak height: 1000

e Minimum distance between peaks: 0.5 s
This processing pipeline ensured that all events were consistently and robustly identified

for subsequent analysis.

A.5 Results and Discussions

From the synchronized data, as Figure A.4 shows, the following observations were made:

1. In the first milliseconds of impact, the helmet-mounted IMUs exhibited strong
variability and deviated from the Headform signal, particularly during the explosive

onset of the impact.

2. After this initial phase, the Physilog signals converged to a behavior more similar to
each other and to the Headform, although consistently delayed in time with respect
to the Headform.

3. A systematic order of activation was observed across all impacts: the Top sensor
detected motion first, followed by the Middle sensor, and finally the Bottom sensor.
This sequence was reproducible across trials and may be explained by the kinematic
response of the helmet when struck, where the upper part begins to move before

the lower parts.

% 1000

Figure A.4: a)First impact event; b) Second impact event.

The manual synchronization study suggests that the differences between Headform and
Physilog signals are not simply artifacts of acquisition or systematic synchronization errors.
Rather, they likely reflect the relative motion of the helmet with respect to the Headform

during impact. In particular:
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e The divergence observed in the early milliseconds may correspond to the helmet’s
independent motion immediately after the impact.

e The delayed convergence of the Physilog signals towards the Headform response
indicates that the helmet subsequently couples more tightly with the dummy’s head,

reproducing its dynamics with a temporal shift.

A.6 Conclusion

This additional synchronization analysis provides important insights into the physical
interaction between helmet and headform during impacts. By going beyond the automated
10% threshold method and introducing a manual alignment procedure, it was possible to
demonstrate that the discrepancies observed are consistent with the relative movement of
the helmet and not with systematic errors in data acquisition. Furthermore, the repeatable
activation order of the sensors (Top—Middle-Bottom) suggests a characteristic sequence
in the helmet’s kinematic response to frontal impacts, which could inform future studies

on helmet dynamics and sensor placement.
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Appendix B

Principal Component Analysis for

Impact Direction Verification

In this appendix, is reported the investigation conducted to assess whether Principal
Component Analysis (PCA) could be effectively employed to identify the primary direction
of impacts in our dataset, using data collected from multiple sensors. While PCA
was ultimately not the main approach for impact classification due to potential error
propagation, this analysis provides useful insights on sensor performance and impact

direction estimation.

B.1 Principal Component Analysis

Principal Component Analysis (PCA) is a statistical technique used to reduce the dimen-
sionality of multivariate data while retaining the directions of maximum variance. In the
context of impact analysis, PCA can be applied to accelerometer and gyroscope signals to

determine the principal direction of the measured impact:

o Accelerometers: Applying PCA to the 3-axis accelerometer signals allows an
initial estimate of the main direction of impact. However, accelerometer data are
subject to noise due to external shocks, helmet movement, and vibrations, which
can reduce the accuracy of this estimation.

o Gyroscopes: Gyroscope data provide reliable information on rotational movements.
PCA applied to gyroscope signals can identify the principal axis of rotation associated

with the impact, offering a more robust reference for verifying the impact direction.
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B.2 Methodology

B.2.1 Preprocessing and Impact Segmentation

The starting point of the analysis was the raw gyroscope signal acquired along the three
axes (z, y, z), together with the corresponding norm. Consistently with the procedure
adopted in the main analysis pipeline (see Chapter 3), the signal was segmented to isolate
individual impact events. Segmentation was carried out by identifying the instant of
impact onset, defined as the time at which the angular velocity exceeded a threshold
relative to the baseline level. This onset time was used to synchronize the signals across
different sensors and to extract a time window centered on the impact. For each segmented
window, the three components of the angular velocity vector and the corresponding norm

were retained for further analysis.

B.2.2 Principal Component Analysis for Impact Direction

To characterize the dominant direction of each impact, Principal Component Analysis
(PCA) was applied to the segmented three-dimensional gyroscope data. The objective of
the PCA was to reduce the dimensionality of the signal while preserving the direction
of maximum variance, which corresponds to the primary orientation of motion during
the impact. Specifically, the first principal component was extracted and interpreted as
the impact vector, providing a compact representation of the main direction of angular
velocity induced by the collision. This vector was then expressed in terms of its x, y, and

z components, along with its norm.

B.2.3 Impact Vector and Reference Directions

The extracted impact vector was compared against a set of predefined reference directions,
which were defined in Chapter 3, Section 4.1.3. These reference vectors correspond to the
main impact orientations (e.g., Front, Side Left, Back), such as [—1,0, 0] for the Front
direction. The comparison was performed by calculating the angle between the impact

vector and each reference vector.

B.2.4 Angle Calculation

The angle # between the measured impact vector v; and a reference vector vy was

calculated using the normalized dot product:

0 = cos™! (\11\72) . (B.1)

[Vl [v2]l
The resulting angle, expressed in degrees, quantifies the deviation of the measured impact

direction from the corresponding reference direction.
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B.2.5 Classification by Angular Ranges

The calculated angle was then compared to predefined angular ranges associated with
each reference direction. Table B.1 reports the classification ranges used to assign each
impact vector to a specific direction. The direction label was determined by the interval

in which the computed angle fell.

Table B.1: Angular ranges for impact direction classification.

Direction Angular Range (°)
Front 0-22.5, 337.5-360
Front Oblique Left 22.5-67.5

Side Left 67.5-112.5
Back Oblique Left 112.5-157.5
Back 157.5-202.5
Back Oblique Right 202.5-247.5
Side Right 247.5-292.5
Front Oblique Right 292.5-337.5

This classification framework allowed each segmented impact to be systematically mapped
to one of the main directions, enabling consistent comparison across sensors and impact

events.

B.3 Results and Limitations

Figure B.1 presents the classification matrices related to the classification of impact
directions, obtained by applying PCA analysis to the signals acquired from the different
sensors. The horizontal axis represents the Predicted Labels, i.e., the directions estimated
by the algorithm from the input data, while the vertical axis indicates the True Labels,
corresponding to the actual impact directions.

The matrix associated with the Headform, shown in red,exhibits a perfectly correct
classification, with all values aligned along the main diagonal. The matrices in blue
refer instead to the three Physilog sensors, where some discrepancies between true and
predicted directions can be observed.

The main diagonal of each matrix corresponds to correctly classified impacts; high values
along this diagonal are indicative of strong sensor accuracy. Deviations from the diagonal
represent misclassifications, the severity of which can be categorized as follows:

» Minor (adjacent) errors: occur when the predicted direction differs only slightly
from the true one, while still remaining consistent with the overall impact orientation.
Examples include a true impact in the Left Front Oblique direction classified as
Front, or a true Right Front Oblique impact classified as Right Side. Although such

cases are technically misclassifications, they do not significantly compromise the

69



Principal Component Analysis for Impact Direction Verification

reliability of the estimation.

« Severe (distant) errors: occur when the predicted direction falls into a completely
different angular sector compared to the actual one. A typical case would be a Front
impact being classified as Side or Back. These errors are particularly critical, as
they reflect a complete loss of spatial coherence in the classification.

When comparing the different sensors, it becomes evident that the Physilog Bottom
demonstrates the best performance, showing the fewest misclassifications and the highest
concentration of correct predictions along the diagonal. The other Physilog sensors exhibit
more frequent errors, though in most cases these are minor misclassifications limited to
adjacent directions.

In conclusion, this analysis confirms that sensor placement plays a crucial role in the
quality of classification. In particular, the Bottom sensor proves to be the most reliable in
estimating the direction of impacts, demonstrating strong robustness and consistency with

respect to the ground truth. While PCA provided an initial estimate of impact direction,

Headform Physilog Top Physilog Middle Physilog Bottom
Macro avg. fl-score: 1.0 Macro avg. fl-score: 0.89 Macro avg. fl-score: 0.95 Macro avg. fl-score: 0.96
E o 0 0o o0 5 0 0 0 0 0 4 0 0 0 © ©
£ o o o o 0 4 0o o 0 o0 6 /38| 0o 0o o o0 o
2 0o o o o 5 4 o 0o 0 0O 1 0 o 0o 0o o0

True Labels
L BB

0 o] 0 0 o] 0 0 0 0 0

' ' |
o @ @
u'\ u'\ u'\

LBB -

| '
@ o
o [
8 4 o

| | | o

Frant -
LFB -
L Side -
R Side —
B
Front -
LFB -
L Side -
LBB -
R Side —
B
Front -
LFB -
L Side -
LBB -
R Side —
L Side -
R Side —

o« o«

f
Predicted Labels Predicted Labels Predicted Labels Predicted Labels

Figure B.1: Principal Component Analysis.

several limitations were observed:

e Error Propagation: Misclassification of even a few impacts could propagate
through the dataset, leading to significant errors in overall direction estimation.

e Accelerometer Noise: Due to external disturbances, accelerometer-based PCA
often yielded inconsistent directions.

e Gyroscope Reliability: PCA applied to gyroscope data offered more stable
estimates of the principal rotation axis but still required careful alignment with
accelerometer vectors to define the true impact direction.

Ultimately, relying solely on PCA for impact direction classification was not ideal. Instead,
a more robust approach based on direct sensor measurements and angular thresholds was

used for final classification.
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The following table summarizes the macro-average F1-scores obtained by different sensors:

Table B.2: Macro-average F1-scores for impact classification using different sensors.

Sensor Macro-average F1-score
CapSense 0.96

Headform 1.0

Physilog Top 0.89

Physilog Middle 0.95

Physilog Bottom highest accuracy

These results confirm that sensor placement significantly influences classification accuracy.
Specifically, the bottom-mounted Physilog sensor provides the most reliable data for

determining impact direction.

B.4 Conclusion

PCA was investigated as a potential tool to simplify impact direction estimation. Although
it provided valuable insights into the principal axes of acceleration and rotation, practical
limitations—such as noise in accelerometer data and error propagation—prevented PCA
from becoming the primary classification method. Nevertheless, the study highlighted the
superior performance of the Physilog Bottom sensor achieved slightly better performance
compared to the other sensors, thereby reinforcing the importance of sensor placement for

accurate impact detection.
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