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Abstract

The integration of Vulnerable Road Users (VRUs) into Cooperative Intelligent Trans-
portation System (C-ITS) is essential to enhance road safety, however, it introduces
significant challenges related to network scalability. Evaluating their integration in real-
world field testing is still limited given the related costs, complexity, and logistical con-
straints, therefore, simulation plays an essential role in this area of research. This thesis
extends the VaN3Twin-CARLA co-simulation framework to support and investigate pas-
sive and active participation of VRUs in cooperative scenarios. The contributions of this
work are as follows: (i) The integration of VRUs into the OpenCDA framework, enabling
realistic perception of VRUs; (ii) the implementation of ETSI-compliant communication
services, allowing VRUs to actively participate by transmitting Vulnerable Road User
Awareness Messages (VAMs); (iii) the implementation of a perception-based cluster-
ing mechanism for pedestrians, to evaluate its effect on Collective Perception Messages
(CPM) size and channel load; (iv) the assessment of network impact of connected VRUs
under varying densities and penetration rate. The results demonstrate that clustering
significantly reduces the fluctuations in CPM size, being three times lower, on average,
in the most dense scenario. Clustering also stabilizes channel load, measured through
the Channel Busy Ratio (CBR), particularly in dense scenarios. In addition, the results
show that the inclusion of connected VRUs increases the channel load as the penetration
rate increases. In particular, the CBR values doubled with three times the number of
pedestrians. The channel load remained well below the critical values in all tested con-
ditions, reaching 12.5% in the worst-case scenario. This thesis provides key insights into
the performance of C-ITS with VRU participation in realistic simulated environments,
supporting the development of safer and more efficient cooperative mobility solutions.
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Chapter 1

Introduction

The automotive industry is currently experiencing an extensive transformation, driven
by advances in on-board technology, pushing vehicles towards higher levels of automa-
tion and connectivity. A crucial point of this transformation is the development of the
Intelligent Transportation System (ITS), which combines traffic management, commu-
nication technologies, and automation to make road transport safer, more efficient, and
more sustainable. ITS is a broader term and refers to all types of services that are re-
lated to transport, including logistics, statistics, maintenance, and safety, among others.
Adaptive traffic lights, dynamic route guidance, and electronic toll collection are some
examples of I'TS services.

As a subset of this framework, Cooperative Intelligent Transportation Systems (C-
ITS) have emerged. C-ITS is characterized by cooperative information sharing through
Vehicle-to-Everything (V2X) technologies, in which any road participant can be included
if equipped with the necessary communication hardware, such as on-board units for
vehicles or personal devices carried by pedestrians. The purpose of this communication
framework, called V2X, is to improve traffic efficiency and safety by allowing vehicles
to share their state, such as position and speed, and receive external information from
the infrastructure or other vehicles about hazards, traffic conditions, and other road
users. For example, a vehicle could be alerted about a pedestrian crossing a road in a
place possibly hidden from the vehicle. This exchange of information extends the field
of view of each vehicle, increases their situational awareness, and supports safer and
more coordinated driving. In simple terms, C-ITS aims to create an ecosystem in which
vehicles, infrastructure, and road users can cooperate with each other.

Building on C-ITS, the concept of Cooperative Driving Automation (CDA) has been
introduced by SAE (Society of Automotive Engineers) J3216 [45]. CDA can be under-
stood as an extension of traditional driving automation, introduced by SAE J3016 [46],
with an additional cooperative feature enabled by V2X communication. In this concept,
vehicles do not act simply relying on their own sensor data but also in coordination
with others. Typical use cases include maneuvers for lane merging, where a vehicle
communicates its intention to join a lane, and the other vehicles may adapt to this
request accordingly, and platooning, where vehicles act in coordination to synchronize
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their speed and spacing, improving safety and efficiency.

While CDA encompasses not only cooperation between vehicles and infrastructure,
but also with Vulnerable Road Users (VRUs), including pedestrians, cyclists, and mo-
torcyclists, ensuring their safety remains a major challenge. These road users are often
more exposed and at higher risk of severe injury in the event of collisions. According to
the World Health Organization, pedestrians and cyclists account for more than a quarter
of all road traffic deaths worldwide, with pedestrians alone accounting for approximately
22% [52]. Their exposure, unpredictable behavior, and lack of physical protection, com-
bined with potential occlusions due to parked vehicles blocking the line of sight or even
other pedestrians, make it challenging for autonomous systems to detect and respond
accordingly in critical conditions.

To address these challenges, cooperative perception (CP) has emerged as a possible
solution. The principle is that vehicles and infrastructure nodes share their sensor data
through a vehicular communication network, extending each other’s perception capabil-
ities beyond their line of sight [5,34]. These communication networks are often referred
to as Vehicular Ad-hoc Networks (VANETS) and constitute the foundation of a large
number of ITS services, where all the actors involved (vehicles, VRUs, infrastructure
nodes) can exchange information directly without relying on a fixed network backbone.
Nonetheless, given the common interest in reducing the number of traffic accidents, re-
searchers and developers have prioritized services related to the transmission of critical
and safety information [24].

Although cooperative perception extends situational awareness, it also introduces
scalability challenges. In dense traffic scenarios with multiple vehicles and VRUs ex-
changing data simultaneously, the communication channel can become overloaded, which
may compromise the delivery of safety-critical information.

To reduce this channel load, techniques such as clustering have been proposed in
the literature. In clustering, multiple pedestrians with similar positions and movements
are grouped into a single entity before broadcasting, reducing the number and size of
transmitted messages.

The realization of such a highly interconnected ecosystem with vehicles, infrastruc-
ture, and other road users is a growing trend, with a few pilot projects that demonstrate
its feasibility, which will be presented in Section 2. However, widespread implemen-
tation in the real world is still a challenge, mostly due to safety, cost, and logistical
constraints. Deploying hundreds of connected vehicles and pedestrians with experimen-
tal communication hardware is not practical, especially when studying safety-critical
scenarios. Consequently, simulation plays an essential role in the development and test-
ing of V2X technologies. Simulation provides a controlled and reproducible environment
while supporting large-scale experiments without safety risks [2].

Although many simulation frameworks offer support for autonomous driving and
V2X research, each of them has its own limitations. The simulation of VRUs, especially
pedestrians, in a cooperative perception or V2X-based scenario is still quite limited.
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For instance, SUMO (Simulation of Urban Mobility) offers a microscopic traffic simu-
lation that accurately models traffic flows and pedestrian mobility, and it can be inte-
grated with network simulators through dedicated frameworks such as VaN3Twin [41] or
Veins [47]. However, its built-in VRU behavior remains simplistic, and the lack of per-
ception and sensor modeling limits its use in cooperative perception cases. On the other
hand, CARLA (Car Learning to Act) [7], which is an open source simulator designed for
autonomous driving research, provides a high-fidelity environment, with a realistic mo-
bility simulation scenario, together with its accurate sensor models, including cameras,
LiDAR, and radars, among others.

To further leverage the potential of CARLA, frameworks such as OpenCDA have
emerged [54]. This framework extends CARLA by providing a modular architecture that
includes perception, localization, planning, control, and V2X communication modules,
facilitating the development and evaluation of Cooperative Driving Automation (CDA)
systems. Nonetheless, this framework still does not provide a realistic communication
model and does not fully integrate pedestrians.

These limitations highlight the need for simulation frameworks with VRU capabili-
ties, as not only passive but mainly active participants in the C-ITS. Thus, extending
VANET simulations to include VRUs becomes essential for a better understanding of
their integration into the C-ITS. This thesis therefore focuses on addressing this gap by
extending the capabilities of the VaN3Twin-CARLA framework to accurately simulate
the integration of VRUs into C-ITS environments, supporting future deployments of
cooperative mobility solutions. In particular, the main contributions of the thesis are as
follows:

i. Integration of VRUs into OpenCDA: incorporate VRUs into the OpenCDA
framework by further developing existing modules, allowing the spawn of VRUs
into the simulation, the perception module to identify and differentiate VRUs, and
all the logic necessary to handle object matching and fusion;

ii. Standard-compliant communication capabilities: equip VRUs with com-
munication capabilities compliant with ETSI standards. A VRU data provider
module was developed, allowing these actors to retrieve their state from the server
and insert them into VAM messages, leveraging the existing VRU Basic Service
facility to connect to OpenCDA;

iii. Evaluation of VRU clustering in CPMs: investigate the impact of pedestrian
clustering on CPM messages in terms of message size and channel load, by imple-
menting a clustering algorithm based on current detections and a fusion logic to
better track a cluster, even if occlusions are present;

iv. Assessment of connected VRUs in C-ITS scenarios: assess the overall effect
of integrating connected VRUs into the C-ITS context by equipping VRUs with
different penetration rate, and measuring network performance indicators such as
Channel Busy Ratio (CBR), latency, and Packet Reception Ratio (PRR), under
different transmitting data rates;
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The thesis is structured as follows: Chapter 2 reviews the state of the art related
mainly to the integration of VRU into the cooperative ITS framework, divided into
three parts. First, the main communication technologies and standards for C-ITS are
presented. Second, initiatives and real-life projects that somehow address VRU integra-
tion. And third, existing co-simulation frameworks related to mobility and V2X research
are outlined, along with key contributions from the literature. Chapter 3 introduces the
simulation framework adopted in this thesis, describing the OpenCDA and VaN3Twin
modules together with the modifications made within these modules and the newly cre-
ated ones. Chapter 4 explains the general setup of the simulation experiments, includ-
ing the parameters and variables considered, for both the mobility and communication
sides. Then, the specific scenarios for both experiments carried out in this paper are
outlined together with the numerical results obtained. Chapter 5 discusses these results
in detail, highlighting their implications, along with the related literature. Chapter 6
concludes this thesis by summarizing the main contributions, limitations, and directions
for future research.

12



Chapter 2

Related Works

2.1 Connected Vehicle Technologies and Communication
Standards

Connected and autonomous vehicles (CAVs) rely on Vehicle-to-Everything (V2X) com-
munication technologies to improve situational awareness and improve safety, efficiency,
and cooperation on the road. V2X encompasses the communication between the vehicle
and all the other actors present in this ecosystem: vehicle-to-vehicle (V2V) commu-
nication enables cars to share their state such as position, heading, and velocity, and
also information about perceived objects by their on-board sensors; vehicle-to-network
(V2N) communication connects vehicles to the cellular mobile infrastructure, providing
access to traffic information and cloud-based services such as dynamic route optimiza-
tion; vehicle-to-infrastructure (V2I) communication connects vehicles to traffic lights
and road site units, allowing a wide range of services such as signal phase and timing
(SPaT), which allow vehicles to adjust their speed based on the state of the traffic lights,
and speed limit warnings, which inform vehicles about the maximum speed on specific
road segments; and vehicle-to-pedestrian (V2P) communication enables interaction with
VRUs through smartphones or wearable devices, allowing vehicles to be alerted about
the presence of vulnerable users. These technologies enable vehicles to share data with
other road users, allowing them to coordinate maneuvers and respond to dynamic traffic
conditions in real time. Moreover, combining these technologies extends the Operational
Design Domain (ODD) of automated vehicles, which means extending the conditions un-
der which an autonomous vehicle can operate safely.

Several telecommunication standards support the V2X functionality, such as IEEE
802.11p/bd, 3GPP Cellular V2X (C-V2X), and 3GPP NR-V2X. IEEE 802.11p, specifi-
cally developed for the vehicular environment, is the most widely used Dedicated Short-
Range Communication (DSRC) standard for V2X. It is based on standard 5 GHz WiFi
and operates in the 5.85 - 5.925 GHz band reserved for Intelligent Transportation Sys-
tems. The physical layer integrates seven 10 MHz channels and a 5 MHz guard band, to
avoid interference with other technologies. IEEE 802.11p employs Orthogonal Frequency
Division Multiplexing (OFDM) as the modulation technique, which supports data rates
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from 3 Mbit/s up to 27 Mbit/s. The Medium Access Control (MAC) layer is based on
Enhanced Distributed Channel Access (EDCA) from IEEE 802.11e, which provides four
access categories with different contention window sizes and inter-frame spacing, allowing
data prioritization for time-critical safety messages. The low latency, maturity, inter-
operability, and robustness of the IEEE 802.11p standard make it a reliable choice for
real-time vehicular applications. Its evolution, IEEE 802.11bd, currently under develop-
ment, aims to improve throughput, reduce end-to-end latency, and increase transmission
range, while having backward compatibility with its predecessor 802.11p [35].

Introduced by the Third Generation Partnership Project (3GPP), C-V2X is an al-
ternative V2X technology based on 4G LTE and 5G infrastructure. It includes two
communication modes, the PC5 interface or sidelink, and the Uu interface or uplink/-
downlink. The PC5 interface is independent of cellular networks and enables direct
low-latency device-to-device (D2D) communication between vehicles, road side units
(RSUs), or pedestrians. In LTE-based C-V2X, sidelink transmissions are mainly based
on a broadcast type, where the message is sent to all receivers in the transmission range.
The sidelink mode is suited for V2V, V2I and V2P communication, in which low-latency
is critical for safety applications. The Uu interface, in contrast, refers to the interface
between the mobile device or User Equipment (UE), and the network base station. By
leveraging the conventional cellular mobile infrastructure, it supports V2N communica-
tion, enabling vehicles to receive real-time information about the road, traffic conditions,
and other types of services that do not require strict low latency and can benefit from
having wide area coverage. The evolution of this technology, New Radio V2X (NR-
V2X), aims at overcoming the limitations of LTE-based C-V2X while keeping the same
two interfaces. In particular, the PC5 interface is extended to support four types of com-
munication. In addition to the broadcast type, the NR-V2X sidelink supports unicast,
groupcast, and multicast. Unicast means a one-to-one communication, where a message
is sent from one sender to a single receiver. The groupcast type refers to a transmission
where a message is sent to a specific group, for example, when a vehicle wants to merge
in a platoon, only the participants of the platoon will receive the request. Similarly to
groupcast where groups are predefined, multicast transmission is a one-to-many com-
munication, but with dynamic groups managed by the network, for example, vehicles
approaching an intersection will receive a specific message, and those moving away will
not. NR-V2X also improves how radio resources are managed and allows a more flexible
signal configuration, for instance, it can adjust the distribution of the radio spectrum,
depending on whether the application needs a very slow delay or a high data rate, ad-
dressing the requirements for latency, reliability, and throughput for advanced V2X use
cases [35].

Given these communication standards, to ensure interoperability between the sys-
tems and the effectiveness of communication, a standardization of the exchanged mes-
sages is necessary. To this end, the European Telecommunications Standards Institute
(ETSI) has defined a set of message specifications and standards that regulate how
information is structured and transmitted among participants and the C-ITS infrastruc-
ture. Defined by the standard ETSI EN 302 637-2 [14], Cooperative Awareness Messages
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(CAM) are messages that are periodically disseminated, at a rate between 1 Hz and 10
Hz, depending on vehicle dynamics, to continuously provide their own position, speed,
and direction, supporting basic road safety applications. In contrast, Collective Per-
ception Messages (CPMs), specified in ETSI TS 103 324 [18], are used to broadcast
information about perceived objects, such as vehicles, pedestrians, and animals, that
were detected by the onboard sensors. CPMs are generated quasi-periodically, at a fre-
quency of 1 Hz if the vehicle is not detecting anything, including in the message only
basic information about the vehicle and the on-board sensors mounted on it, and are gen-
erated with a higher frequency, up to 10 Hz, if the vehicle is detecting another object, and
include the observed status of objects, such as time, position, attitude, and other kine-
matic attributes. These messages are the backbone for cooperative perception, allowing
connected and autonomous vehicles to share information and have better awareness of
their surroundings, essential for autonomous driving and safety applications.

Further ensuring interoperability, ETSI specifies that all standardized messages must
be encoded and decoded using Abstract Syntax Notation One (ASN.1) [25]. ASN.1 is a
standardized interface description language used to describe how data are structured in
these exchanged messages, ensuring that the same message can be correctly interpreted
by different systems. In practice, ASN.1 defines how the content of the message should
be structured and defines a few encoding rules which determine how this content is
translated into bits for transmission. These encoding rules differ in their processing
speed and message compactness. For I'TS messages (CAMs [14], CPMs [18], and others)
, ETSI adopts the Unaligned Packed Encoding Rules (UPER) [26], designed to minimize
message size.

2.2 VRU Integration

Vulnerable Road Users, including pedestrians, bicycles, and motorcycles, account for a
significant portion of global traffic fatalities. According to the European Commission’s
2023 road safety report [19], within urban areas, vulnerable road users (pedestrians, cy-
clists, and two-wheeler powered users) represent almost 70 percent of road traffic deaths
in the EU, and pedestrians alone account for one third of total emergencies. There-
fore, the protection of VRUs has become a major focus within Cooperative Intelligent
Transportation System (C-ITS) research.

Several projects have explored the integration of VRUs into C-ITS to enhance road
safety. The iMOVE research center [48], among their projects on C-ITS and mobility,
has one near completion, centered on integrating motorcycles into existing C-ITS frame-
works, with the use of smart helmets and smart glasses, LEDs in the mirror and handle-
bars for warning signals, and haptic wristbands. The HEIDE project [20], with another
approach, investigates a cooperative Human-Machine Interface (HMI), for both drivers
and VRUs, aiming to improve situational awareness by integrating internal and external
HMI solutions and synchronizing action recommendations for drivers and other road
users. Complementary to this, the AI4CCAM [3] project investigates the use of Artifi-
cial Intelligence (AI) for Connected and Cooperative Automated Mobility (CCAM). The
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main goal of the project is to develop an open environment integrating Trustworthy Al
models that can anticipate the behavior of VRUs in mixed urban scenarios. In parallel,
the SOTERIA project [36,37] aims to accelerate the attainment of the European Union’s
"Vision-Zero" goal by developing a comprehensive framework of data-driven tools and
services to improve VRU safety. This includes accident and micro-mobility demand pre-
diction models, risk detection, safe route recommendations, and a speed advisory system,
among others. The effectiveness of these tools is being validated throughout Europe,
which is called "living labs", a real-world testing ground where VRUs, stakeholders, re-
searchers, and public actors cooperate to test and refine the solutions. Initiatives such
as DECICE [29] are currently working on an edge-cloud Al-based management frame-
work, with adaptive optimization of applications in a federated infrastructure. A key
focus of this project is the use case for the so-called intelligent intersections, where the
framework manages the different devices (Road Side Units, cameras, and other sensors)
and their resources, and creates a digital twin, that is a virtual replica of the entire
system, including the intersection and its devices, with real-time updates. This digital
twin, combined with Al, is used for behavior prediction and resource prioritization.

Larger-scale urban C-ITS deployments have also begun to include VRUs in their
services. Within the C-ROADs platform, for instance, which has the objective of har-
monically deploying C-ITS related services throughout Europe, many pilot projects in
cities such as Dresden, Hamburg, Graz, and others have been exploring the integration
of VRUs, using Road Side Units (RSUs) for bicycle or crosswalk pedestrian detections,
for example, according to the last available C-ROADs annual deployment report from
2023 [6]. The SAFE STRIP project [22], conducted across Italy, Spain and Greece, pro-
posed a low-cost C-ITS solution that uses on-road strips embedded with micro / nano
sensors and with communication technologies to provide real-time information about
the environment, road conditions, and other road users. Field trials demonstrated its
ability to improve safety for VRUs by alerting drivers about pedestrians preparing to
enter the crosswalk. With a more robust implementation, the Aveiro Tech City Living
Lab [44], in Portugal, is a city-scale testbed with 44 access points spread across the city,
equipped with a variety of sensors, including Radar, LiDAR, and video cameras, and
with a multi-protocol network integrating I'TS-G5, C-V2X, WiFi, and 5G. The devel-
oped use cases in this ecosystem demonstrate support for VRU safety through integrated
sensing (including the use of smartphone applications) and edge computing.

From a standardization perspective, ETSI experts have made significant progress
in the standardization of VRU communication within the C-ITS architecture. ETSI
TS 103 300-2 [16] and ETSI TS 103 300-3 [17] specify the VRU Awareness Basic Ser-
vice and the characteristics of the VRU Awareness Message (VAM), including message
generation rules, format specifications, and relevant use cases [15]. In particular, the
trigger conditions for VRUs to transmit VAMs according to the specifications [17] are
the following:

i. The Euclidean distance between the current position and the position lastly in-
cluded in a VAM exceeds 4 meters.
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ii. The difference between the current ground speed and the absolute speed of the
VRU lastly included in a VAM exceeds 0.5 m/s.

iii. The difference between the orientation of the current velocity vector and the esti-
mated orientation of the vector lastly included in a VAM exceeds 4 degrees.

iv. The time elapsed since the last VAM transmission exceeds 5000 ms.

v. The difference on the estimated interception probability since the last VAM exceeds
10%

vi. The VRU has decided to join a cluster

vii. The VRU has determined that there is another vehicle or VRU within a minimum
lateral, longitudinal and vertical distance. The lateral and longitudinal distances
correspond to the distances that the VRU could travel in 5000 ms.

By broadcasting their position, velocity, and heading via VAMs, VRUs can actively
participate in cooperative traffic scenarios, allowing vehicles and infrastructure to antic-
ipate potential collisions.

Despite these advances, several challenges continue to limit the large-scale real-world
adoption of VRU communication. Firstly, VRUs exhibit far less predictable mobility
behavior than vehicles. For instance, pedestrians typically move at low speeds but
may cross the street independently of road signs, while cyclists move much faster, but
still exhibit unpredictable behaviors. Secondly, the real-world localization accuracy is
still far from ideal for safety-related VRU services. The Global Navigation Satellite
System (GNSS) of smartphones, which is often considered a solution device for C-ITS,
cannot provide an accurate position, starting at 3 to 5 meters of position error, up to
tens of meters in dense urban environments, which critically affects the reliability of
collision warnings [56]. Additionally, the lack of dedicated hardware in smartphones for
direct communication, such as 802.11p or PC5 sidelink from C-V2X, poses a significant
technical issue for their use in VRU safety applications. This limitation makes these
devices unsuitable for low-latency safety applications, as they rely on the cellular network
instead.

Finally, real-world trials that included VRUs as an active participant are scarce. Most
pilot deployments focus on V2V or V2I services, treating VRUs as passive elements
detected by sensors. Furthermore, these trials are often performed under controlled
conditions, which may not capture the complexities of real heterogeneous traffic with
its unpredictability. As a result, complementary to physical testing, simulation-based
research has emerged, allowing repeatable large-scale testing under varying traffic and
communication conditions, without the financial, safety, and logistical constraints of field
deployments. The next section reviews existing VRU co-simulation frameworks that
integrate mobility and communication layers for modeling cooperative safety scenarios.
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Table 2.1: Summary of European projects addressing VRU C-ITS integration, commu-
nication, and safety

Project Focus Contribution to VRU
Communication
iMOVE [48] Motorcycles in C-ITS Integration of powered

two-wheelers into cooperative
systems by means of wearable
devices for warning signals.

HEIDI [20] Human-Machine Interfaces Development of HMI concepts
for both drivers and VRUs for
intention recognition. No
active communication for
VRUs.

AT4CCAM [3] AT for Cooperative Mobility Use of Al for perception and
decision-making in C-ITS.
Addresses VRU safety in mixed
traffic through predictive
models.

SOTERIA [36] VRU Protection and Safety Combines C-ITS
communication, risk
assessment, and prediction
models to enhance VRU safety
via real-time alerts,
recommendations, and
cooperative warnings. Passive
VRUs.

C-ROADS [6] C-ITS European deployment Includes VRU-oriented test
cases in large-scale C-ITS
pilots across multiple member
states. Mostly passive VRUs.

SAFE STRIP [22] In-road sensing Development of micro-sensor
strips to detect VRUs and
provide cooperative safety
services.

DECICE [29] Intelligent Intersection safety Cooperative perception
framework with pedestrian
detection at intersections.
Passive VRUs.

Aveiro Tech City [44] Living lab deployment Real-world pilots where
smartphones act as cooperative
beacons, transmitting VRU
position via cellular networks.

2.3 VRU Co-simulation Frameworks

The evaluation of cooperative systems in simulation, in which VRUs are also partici-
pants, requires the integration of multiple domains: accurate mobility models for pedes-
trians and cyclists, a standard-compliant V2X communication stack (e.g. IEEE 802.11p,
LTE-V2X or NR-V2X), and high-fidelity perception and sensing models, while main-
taining accurate synchronization. No single simulation environment addresses all these
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requirements. As a result, research has increasingly relied on co-simulation frameworks,
connecting multiple simulators, and leveraging their individual strengths.

In the context of vehicular networks, Veins [47] is one of the most popular open
source simulation frameworks. The Veins framework couples OMNeT++-, a discrete
event network simulator, with SUMO microscopic traffic simulator via TraCI (Traffic
Control Interface), supporting the simulation of dynamic nodes equipped with IEEE
802.11p, LTE, or C-V2X. SUMO does support pedestrians and cyclists; however, most
Veins-based studies treat them as passive elements, rather than connected C-ITS sta-
tions. Building on Veins, Artery [42] extends the framework by incorporating an im-
plementation of the ETSI ITS-G5 protocol stack, including GeoNetworking, the Basic
Transport Protocol (BTP), and support for standardized services such as CAM and
DENM (Decentralized Environmental Notification Message), compliant with European
ITS specifications.

Within this framework, a recent contribution for active VRUs is presented in [23].
The authors introduced a pedestrian model into the Artery framework, integrating the
VRU Awareness Service and ADAS application relying on VAM safety messages. This
work evaluates metrics such as Channel Busy Ratio (CBR) and detection performance
under varying penetration rates. The analysis of the impact of VAM messages on network
load is partially aligned with the work carried out in this thesis.

Another simulator relying on SUMO and OMNeT++ is called VENTOS (Vehicular
Network Open Simulator) [4]. Different from Veins, this one implements the IEEE
WAVE protocol stack, instead of the European standard ITS-G5. Moreover, VENTOS
incorporates hardware-in-the-loop (HIL) capabilities, giving the possibility to physically
test real hardware like On-board Units (OBU) and Road-side Units (RSUs) into the
simulation environment. In HIL testing, the simulator provides a virtual environment
while interacting with the real hardware under testing, for example, to evaluate the
behavior of a real OBU under any scenario, without the constraints of field testing.

A growing area of research is focused on network congestion, usually in high-density
VRU scenarios, where having multiple vehicles and pedestrians exchanging messages can
overload the communication channel. This channel load, typically measured through the
Channel Busy Ratio (CBR), can be significantly increased due to the high frequency of
transmission and the size of the messages, leading to higher latency and packet loss.
The CBR is determined by measuring the total busy time of the channel, in other
words, the total time in which a transmitter finds the channel occupied divided by the
duration of observation. A higher latency means that a transmitted message will take
longer to arrive, and in the worst case, the message may not arrive at all, compromising
the delivery of safety-critical information. To mitigate these scalability issues, clustering
techniques have been proposed in which multiple VRUs with similar attributes (position,
speed, and direction) are grouped into a single entity before broadcasting. A general
introduction to clustering is presented in Section 2.3.1. Clustering can be performed
actively by the pedestrians themselves, known as active VRU clustering [33,51], where
a pedestrian will try to form a cluster with other pedestrians with similar kinematic
attributes, reducing the number of VAM transmitted. Alternatively, it can be performed
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by vehicles or infrastructure, known as passive VRU clustering [53], in which vehicles
generate a cluster to be included in CPMs, rather than the individual road user, reducing
the size of the transmitting message.

For instance, Valle et al. [51] present a non-negotiable implicit VAM Clustering
method, where cluster operations are performed without negotiation (no additional
message exchange between pedestrians). This method, which is different from ETSI
standards, halved the number of generated VAMs while maintaining VRU awareness
levels. Similarly, Lobo et al. [33] present the impact of clustering methods on metrics
such as CBR, position error, and latency. Their work relies on Artery, which provides a
C-ITS network simulation environment, based on OMNet++ in combination with INET
for wireless networking, and SUMO for traffic mobility. In addition, Vanetza is used to
implement the ETSI C-ITS protocols within the simulated framework. Vanetza is an
open-source software implementation of the full ETSI C-ITS protocol stack, used not
only for network simulations but mainly to deploy the standard-compliant C-ITS stack
into real OBUs. With VRU clustering, a significant reduction in CBR values and overall
latency was observed, due to more available resources for the communication nodes.

Another study with a focus on network congestion and VRU clustering is presented
in [53]. The authors first analyzed different potential shapes for VRU clustering in terms
of accuracy and efficiency of cluster description and, secondly, the impact of including
clusters on CPM messages rather than individual pedestrians. Although not performed
on any of the aforementioned simulators, but rather using the Dalian University of
Technology (DUT) dataset, which contains trajectories of real VRUs collected with a
drone, the findings remain relevant. The results show that employing clustering can lead
to up to two-thirds in the reduction of the CPM data rate.

Leveraging ns-3 (Network Simulator 3) and SUMO, the Van3Twin [41] framework
implements a full ETSI C-ITS, supporting multiple access technologies, such as IEEE
802.11p, C-V2X, and LTE-V2X. Unlike OMNeT++, which is a general-purpose event
simulation platform, based on a graphical interface, which requires additional frame-
works such as INET or Veins to model communication protocols, ns-3 is specifically de-
signed for network simulation. It is implemented in C++, where it provides the building
blocks of devices (nodes), communication links (channel) and protocol stack, meaning
that the simulator provides ready-to-use models of these instances, allowing them to
be easily configured directly through code. Van3Twin supports large-scale simulations,
integrating a measurement module for metrics collection, such as one-way latency and
Packet Reception Ratio (PRR). Unlike other solutions, Van3Twin supports the usage of
pre-recorded GNSS traces as an alternative to SUMO, giving the possibility to test the
behavior of applications under real GNSS errors.

An extension of the Van3Twin framework is presented in [43]. In this work, the
authors replaced the SUMO microscopic traffic simulator with the high-fidelity CARLA
simulator, which is an open-source simulator designed to support the development, train-
ing, and validation of autonomous driving systems. This simulator allows for a realistic
and customizable environment, including support for urban and rural scenarios, weather
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and lighting variations, traffic generation, pedestrian behavior, and a diverse set of sen-
sors such as cameras, LiDARs, radars, and others. It also supports integration with
external modules or other simulation platforms, such as machine learning frameworks
or network simulators, as presented in [43]. This control over the entire framework is
possible through its powerful Application Programming Interface (API), an interface
that allows the user to flexibly program all the aspects of the simulation and control all
static and dynamic actors. Having high-fidelity physics and sensor simulation allowed
CARLA to become one of the reference platforms in autonomous driving research.

The framework presented by Carletti et al. [43] further incorporates OpenCDA [54],
an open source framework for developing and testing Cooperative Driving Automation
(CDA) applications. OpenCDA offers a modular architecture that includes computer
vision modules for perception, self-driving modules for localization, planning, and actu-
ation, as well as V2X communication modules. However, the V2X stack in OpenCDA
is not fully standard-compliant and works under simplified assumptions, such as per-
fect communication conditions, therefore reinforcing the need of integration with other
simulation tools. This integration enables simulation of realistic traffic environments
and a realistic perception model from CARLA, together with an ETSI-compliant V2X
communication stack, from Van3Twin. This simulation framework proposed in [43] is
shown in Figure 2.1, where the main modules are present, separating the existing ones
(grey) from each simulator and the newly created ones (blue) to allow such integration.
These modules will be explained in detail in Section 3, since they are the basis for this
thesis.

It is worth mentioning that, at the time of writing, the VaN3Twin framework was
further extended and renamed VaN3Twin [40] (previously ms-van3t). This latest exten-
sion leverages the Sionna Ray Tracer (RT), allowing for a high-fidelity representation
of wireless propagation effects, such as Line-of-Sight (LoS) blockage, multi-RAT (Radio
Access Technology) interference, Doppler effect, and others. However, this extension was
not implemented in this work, which remains based on the previous VaN3Twin version,
with wireless propagation relying on probabilistic models rather than ray tracing.

Despite the progress that these frameworks have brought, some limitations remain
in terms of VRU integration. Common gaps include the scarcity of active VRU mod-
eling as C-ITS stations, as VRUs are often treated as passive elements, and the lack of
accurate communication models integrated in a realistic environment scenario. In ms-
vandt, for instance, integration with SUMO pedestrians was present, either as connected
or non-connected actors. However, the simulation framework lacked realistic sensor
perception. Furthermore, most of the existing work has focused primarily on vehicle-
only scenarios, leaving open questions regarding network state and cooperative sensing
in heterogeneous traffic environments. The VaN3Twin-CARLA integration provides a
promising foundation to address these limitations by merging an accurate communica-
tion model with realistic mobility and sensor perception. This is the key aspect added
by CARLA, which enables high-fidelity sensor perception. The next section, following
clustering explanation, presents the co-simulation framework developed in this thesis,
extending VaN3Twin-CARLA with VRU communication services and novel clustering
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Figure 2.1: Architecture of ms-van3t-CARLA illustrating the interaction between all the
implemented modules (blue) with the existing ones (grey). Figure reproduced from [43]

mechanisms, evaluating both communication efficiency and cooperative perception per-
formance in mixed traffic scenarios.

2.3.1 Clustering

This section is dedicated to an explanation of the idea of clustering and the algorithm
used in this work. Clustering, as defined by the literature, is an unsupervised machine
learning algorithm that organizes any kind of data into groups, based on their simi-
larities or patterns. An unsupervised algorithm means that raw data is used as input,
without labels or prior classification, and the algorithm itself will try to find hidden
patterns in the data presented. Clustering can be applied to almost any field to analyze
data, and each type of data requires a different clustering algorithm, as shown in [39].
For instance, it can be used in marketing to identify common purchasing behavior from
customers; in image processing, grouping pixels according to their intensity, helping in
the identification of different areas in a Magnetic Resonance Imaging (MRI) for exam-
ple; in biology, identifying groups of molecules based on their structure; and in spatial
applications, grouping objects in dense areas based on their proximity.
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Table 2.2: Comparison of selected co-simulation frameworks for C-ITS with VRU con-

siderations
Framework Core Components VRU Support Notable
Contributions /
Use Cases
Veins [47] SUMO + OMNeT++  Passive VRU mobility =~ Foundation for V2X.
in SUMO; no native Base for Artery
active VAMs

Artery [42] Veins + ETSI ITS-G5  Active VAM broadcast  [23] VAM-based VRU
stack possible via extensions  protection. CBR

evaluation.

VENTOS [4] SUMO + OMNeT++  Passive VRUs; HIL for OBUs/RSUs.
+ WAVE protocol potential for active Adaptable to VRU
stack logic communication.

VaN3Twin [41] SUMO + ns-3 + ETSI  No default VRU PRR/latency studies

C-ITS stack module; full network under multiple RATs
fidelity
VaN3Twin-CARLA VaN3Twin + CARLA  VRUs possible via Base for present thesis:
[43] + OpenCDA CARLA/SUMO. active and passive

Active VRU requires
custom development.

VRU integration,
perception-based
clustering, CBR
analysis.

VaN3Twin [40]

VaN3Twin + Sionna
Ray Tracing

VRUs possible via
CARLA/SUMO.

High-fidelity wireless
propagation model

Active VRU requires
custom development

There are several clustering algorithms, each with their own strengths and limi-
tations. One of the most popular is the K-means clustering algorithm, in which the
algorithm partitions the data into k clusters by iteratively minimizing the distances of
the data points and the center of the cluster. It is a very fast algorithm, but requires the
prior definition of k£ (the number of clusters the algorithm will output). Another type
of clustering algorithm is the hierarchical one, in which it creates a multilevel structure
of clusters (tree-like structure) by merging smaller clusters into larger ones or dividing
larger clusters into smaller ones. Although the definition of the number of clusters is not
required as in the k-means algorithm, the hierarchical approach can be computationally
expensive for large datasets.

Among the many algorithms present in the literature [39], Density-Based Spatial
Clustering Application with Noise (DBSCAN) stands out due to its robustness and
flexibility. This method does not require a prior specification of the number of clusters,
and can cluster data in any shape while efficiently managing outliers, identifying them
as noise (data points that are not part of any cluster). The output of this algorithm is
a list of labels corresponding to the input data, where each point is assigned to a cluster
or defined as an outlier. An example of this algorithm is shown in Figure 2.2, where it
shows the different clusters formed, with different colors, and the data outliers, in black.
The DBSCAN algorithm requires the definition of two parameters:
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o ¢ (Epsilon): the maximum distance between two points to be considered part of
the same cluster.

e minPts: the minimum number of points required to form a cluster.

These parameters are crucial and directly influence the results and should be tuned
according to the type of dataset. The minPts parameter defines how many points should
be close together to be considered a dense region. It generally scales with the size of
the dataset, so in a large dataset, it may be desirable to increase this parameter. The
parameter € is more sensitive to variation. When chosen too small, the algorithm may
not find any cluster and all data may be considered an outlier; if chosen too large, the
algorithm may cluster all the data into a single cluster.

The working principle of DBSCAN is the concept of core samples or core points. A
core point is a point in the dataset such that there exists a minimum number of points
(minPts) within a certain distance (€), often called neighbors of the core point. A
cluster is formed by recursively taking a core point, and finding its neighbors that are
also core points, and finding their neighbors which are also core points, and so on. This
is done until the neighboring points do not meet the criteria to be a core point, therefore,
defined as border point. A point that is not a core point, and is at least Epsilon in
distance from the closest core point is considered an outlier. Figure 2.3 illustrates the
idea of core points, border points, and outliers.

In the context of this work, the DBSCAN algorithm was chosen, particularly to be
used in two circumstances: first, as a support for the perception algorithm presented
in 3.1.2, in which the algorithm is applied to the LiDAR points within the detected
bounding box, isolating the points of interest (the points that actually "hit" the object);
second, it is used as a basis to create a cluster of detected pedestrians, as described in
3.2.3, in which the algorithm is applied in a dataset containing the list of the positions
of all detected pedestrians.

Original Data DBSCAN clusters

¢ -':3. % . '

30

Figure 2.2: Example of DBSCAN algorithm. Reproduced from [9]
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minPts = 3

Border Point
Core Point

p- Outlier

Figure 2.3: Illustration of DBSCAN algorithm with minPts = 3. Red points are core
points; Green are border points; and blue are outliers.
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Chapter 3

Co-Simulation Framework

This thesis is built upon the open source framework presented in [43]. This combines
mobility, physics, and sensor-generated data from CARLA with accurate communication
models from VaN3Twin. By using Google Protobuf and gRPC Remote Procedure Call
for the communication bridge, and with the implementation of certain modules such as
the OpenCDA Client and CARLA Adapter Interface (which is the correspondence of
the OpenCDA CI module in Figure 2.1), it became possible to query perceived infor-
mation from ns-3, for each of the simulated nodes. A simulated ns-3 node represents
any vehicle, VRU or RSU equipped with communication capabilities, therefore, capa-
ble of sending and receiving messages within the simulation. This framework enables
cooperative perception evaluation through synchronized traffic and network simulation.
Figure 3.1 shows the implemented architecture for this simulation, together with a simple
explanation of what each module is responsible for. Although OpenCDA and VaN3Twin
contain many modules, the figure presents only those that constitute the core of the sim-
ulation.

The following sections provide a brief description of the role of each module, along
with the modifications implemented to integrate Vulnerable Road Users into this frame-
work. In particular, the following modules will be described:

o Scenario Manager (3.1.1): scenario and traffic creation.

o Perception Manager (3.1.2): detection and sensor fusion.

e Local Dynamic Map (3.1.3): local representation of the traffic environment.

o CARLA Adapter Interface (3.1.4): gRPC server to bridge OpenCDA and VaN3Twin.

e OpenCDA Client (3.2.1): gRPC client, manages the co-simulation interface and
the synchronization of both simulators.

e OpenCDA VRUdp (3.2.2): Data Provider for active VRUs (those that transmit
VAMs).
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e OpenCDA Sensor (3.2.3): Synchronization of LDMs and initial clustering algo-
rithm.

o VaN3Twin script setup (3.2.4): configuration for VaN3Twin initialization, ns-3
node creation, and setup (Appendix 6).

o Metric Supervisor (3.2.5): collection of communication-related performance met-
rics.

o Facilities Layer (3.2.6): Functionalities and services to support ITS applications.
Within this layer, services for generating CPMs and VAMs are described (CP
basic service and VRU Awareness basic service, respectively), together with the
clustering algorithm, developed within the LDM facility.
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Figure 3.1: Co-simulation architecture VaN3Twin-CARLA illustrating the interaction
between different modules. Light blue modules were adapted for this work. Dark blue
modules were implemented as new work. Dark gray represents the communication stack
and the metric supervisor module

3.1 OpenCDA modules

3.1.1 Scenario Manager

The Scenario Manager module is responsible for managing the construction of the
CARLA simulation. It configures all the simulation’s characteristics at initialization.
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Specifically, it creates the scenario in the desired town, sets the weather conditions, and
spawns all connected and autonomous vehicles, background vehicles, and pedestrians.
This set of parameters defines the characteristics of the mobility simulation that are
specified in the YAML files, which are configuration files that use a key-value structure,
where the key represents a parameter and the value defines its setting, allowing the
simulation to be easily configured without modifying the source code. These parameters
include the spawn points, which are predefined positions in the simulation map in which
vehicles and pedestrians are placed, and the destination for background vehicles and
CAVs, together with their base behavior. They also include spawn points and areas for
pedestrians, as well as the perception system configuration for each CAV. In particu-
lar, this involves defining the number and position of sensors, such as RGB cameras,
used to capture visual information as a conventional camera does, and a LiDAR sensor,
which uses laser light to detect and measure distances to objects in sight, creating a 3D
representation of the surroundings.

For pedestrian spawning, this module introduces two methods: list-based spawning
and radius-based spawning. Using a list, it is necessary to know all the spawn positions
for each pedestrian in advance, which can be quite labor intensive as it requires retriev-
ing them from the server and defining them manually. On the other hand, spawning by
radius allows pedestrians to be positioned randomly in the simulation, within a spec-
ified area, given the number of desired pedestrians, the radius, and the center point.
This second approach allows the creation of multiple areas with pedestrians with vary-
ing densities. Additionally, the radius-based method allows the definition of the same
destination for all the pedestrians, described by a circle; otherwise, the simulator will
set a random destination for each one.

3.1.2 Perception Manager

In this module, the detection of vehicles and VRUs is carried out, together with the fu-
sion of information from the different sensors, and the implementation of object matching
algorithms. The latter refers to the process of pairing the detected objects with the cor-
responding object ground truth from simulation. Figure 3.2 shows what happens inside
this module, from camera images to having a final detected object to be stored. Ini-
tially, all RGB images are passed through the YOLOv5 algorithm [28], a well-known
computer vision machine learning model for object detection. The output of the detec-
tion algorithm contains the position of the 2D bounding box, the detection label, and
its confidence level, which represents the probability that the detected object actually
belongs to the predicted class, simply saying, the probability that a detected pedestrian
is actually a pedestrian, for example. For each detected object, a DBSCAN cluster al-
gorithm (explained in Section 2.3.1) is applied to the LIDAR points located within its
bounding box, isolating only the points of interest. Essentially, it finds the main dense
cluster of points that most likely constitutes the detected object. If there are enough
points of the LIDAR hitting the object, the 3D bounding box for that object is calcu-
lated, otherwise the perceived object is discarded. Once the bounding box is calculated,
an obstacle instance for this object is created and inserted into the object list, the data
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structure created to save all perceived vehicles, pedestrians and other VRUs.

The next step is to match these detected objects with the ground-truth list of all the
actors in the simulation. This matching process is treated as a linear assignment problem.
The cost matrix is first computed by initializing a matrix N x M with reasonably high
values, where N is the number of ground-truth objects, and M is the number of detected
objects, in essence, the length of the object list. The matrix is populated considering
only the Euclidean distances between the objects of both lists as the cost of assigning
a detected object with a ground-truth object. Then, the linear assignment algorithm
finds the best matches for all the perceived objects, and the IDs from the ground-truth
actors are assigned to the detected objects that were matched. Moreover, the speed and
heading angle are retrieved from the server to have more precise data, since the heading
angle of the detection algorithm is not reliable and fluctuates constantly, and the speed
calculation algorithm has not yet been implemented. Finally, possible duplicates are
removed.

It is worth noting that the removal of duplicates is done only for vehicles, since the
linear assignment algorithm with the cost matrix is done for pedestrians, and this pro-
cess already removes possible duplicates. These duplicates come from the fact that the
RGB cameras will superimpose a small area, and since each image is passed through
the YOLOvV5 algorithm one at a time, an object that is found within this superimposed
area will be counted twice. Additionally, objects that have a confidence level, from the
YOLOV5 detection, smaller than a certain threshold are also removed. These thresholds,
selected from experiments, are set to be 0.7 for vehicles and a much lower value of 0.4 is
decided for pedestrians, given the intrinsic limitations of a detection algorithm in a sim-
ulated environment, such as having a not-so-realistic environmental model, for instance.
This much lower value was chosen to keep track of pedestrians as much as possible, re-
ducing false negatives, situations where clearly detected pedestrians were being excluded
due to low confidence values. Figure 3.3 shows the distribution of confidence levels for
all VRUs that were matched with their corresponding ground truth, throughout many
simulation runs, varying the number and position of spawned pedestrians. With the
selected threshold, more than 90 percent of true detected pedestrians remain for further
processing, allowing for a better continuous monitoring of the perceived actors.

Tracking a pedestrian’s trajectory is essential for their inclusion in CPMs, as it
ensures reliable information is being shared over the network, rather than being trans-
mitted as soon as the object is detected. To this end, a detected pedestrian will be sent
to VaN3Twin for a possible inclusion in a CPM only if this pedestrian is detected for at
least ten frames. Although the perception algorithm for pedestrians guarantees that a
detected pedestrian is actually a pedestrian, the ETSI standards for CPM inclusion [18§]
introduce the idea of object perception quality, which means the quantification of the
likelihood that the object actually exists, in other words, the object has been detected
and is continuously detected by the sensors. This quantification of the detection quality
was not implemented; however, it was decided that ten frames, which corresponds to
half a second of the simulation, is enough for it to be considered a stable detection.
The detected objects have to be sent to VaN3Twin to provide information from the
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CARLA simulation. They are filtered inside the CARLA Adapter Interface to ensure
that just updated data will be sent and stored in the on-board databases containing the
perceived objects (called Local Dynamic Maps, LDMs). The management of LDMs and
the synchronization process between CARLA and VaN3Twin will be explained in the
next section.
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Figure 3.2: Perception Manager module overall process. Camera and Lidar detection
and fusion, and further matching with ground truth objects.
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Figure 3.3: Distribution of confidence levels for over 9000 true positive detections. Ver-
tical dashed line represent confidence threshold used for evaluation. The distribution
has a median around 0.73. The majority of detections, 92 percent, exceeds the threshold
value of 0.4
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3.1.3 Local Dynamic Map

The Local Dynamic Map (LDM) module, as envisioned by ETSI [13], is a data structure
that maintains a local representation of the traffic environment. It has been implemented
with the objective of storing and keeping track of dynamic information about objects
detected by either on-board sensors or receive from V2X messages, at each simulation
step. In the OpenCDA framework, the LDM is structured within the Vehicle Manager
module, as shown in Figure 3.1, therefore, each connected vehicle has its own LDM
module and, of course, its own perception manager module. All objects identified and
matched during the perception stage will be inserted into the LDM, either as a new
entry or as an update to an existing track.

This module deals not only with locally perceived objects but also with other actors
in the simulation, received from connected vehicles through CAMs and CPMs or from
connected pedestrians through VAMs. The core of the process within this facility is a
matching algorithm that treats the problem as a linear assignment task, by calculat-
ing the Intersection over Union and the distance between new entries and stored ones.
When an actor is first inserted into the LDM, a Kalman filter [27,31] is initialized for
that particular actor. The Kalman Filter is responsible for predicting the next state
of that actor, given the current stored information and the time elapsed since the last
measurement. For pedestrians, in particular connected ones, position and speed are es-
timated using a Kalman Filter with a constant velocity model. Given the frequency and
standard rules defining when a connected pedestrian will transmit its state, the constant
velocity assumption remains valid between transmissions. Since a VRU transmits only
upon a change in behavior or status, ensuring reliable and adequate state estimation,
and a minimum transmission interval for packets is also defined, both mechanisms are
useful given that we assume and employ a constant speed model.

In addition to the functions already implemented to match locally perceived objects
with objects perceived from another CAV, through CPMs, or with connected vehicles,
through CAMs, the new VAMfusion function was implemented to combine the infor-
mation transmitted via VAM messages with data collected from on-board sensors for
VRUs. It optimally pairs connected pedestrians with its own track. In case it is not the
first time that the pedestrian transmits a VAM, it appends the information retrieved
from the update step of the Kalman Filter, using the position information contained in
the VAM message as the input for this Kalman Filter step. Whereas, in case it is the
first time we receive data from this VRU, the algorithm performs a matching as a new
local detection, using Intersection over Union and distances as matching parameters. If
there is a match, and the connected pedestrian is also perceived locally by the on-board
sensors, the details included in the VAM and the corresponding match stored in the
LDM are merged. This merged info is then used as the input for the calculation of the
Kalman Filter update step. If no matching is found, a new entry is created, together
with the initialization step of the Kalman Filter for that actor. Figure 3.4 shows the
idea behind the VAMfusion algorithm. It shows two main diagrams; the upper one shows
the steps taken to handle Perceived Objects (PO), while the lower one shows the logic
for the newly implemented function. The two dashed lines represent cases in which,
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for instance, the pedestrian is sending VAMs and only later, the same pedestrian starts
being perceived by the sensors, or vice versa, leading to the part where these data are
merged.
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Figure 3.4: VAMfusion function flowchart with the gray background. The upper part
illustrates briefly the steps for a new perceived object. Dashed lines represent where the
information is merged in the case of PO and VAM being the same actor

calculation

3.1.4 CARLA Adapter Interface

As already detailed in [43], this module creates a gRPC (Google Remote Procedure Call)
server, which is a framework that connects two or more applications or services, having
the server side (where the gRPC is initialized) and the client side (the other application
or service in which it will connect to the server side). In our case, the gRPC works
as a bridge between OpenCDA and VaN3Twin, enabling bidirectional communication
between the simulators, allowing them to exchange data in real time. It works mainly
with Protocol buffers (Protobuf), which is a mechanism for storing and sending structure
data in a simple way, independent of the programming language of the applications
involved. This protocol works with a blueprint of the data to be exchanged (.proto
file). This blueprint is structured with services, which define the functions in which the
client will use to retrieve data, and messages, which define the type of data that the
function will return.

This interface was mainly designed to provide LDM information for CAVs, for a pos-
sible later inclusion on a CPM, and basic mobility information for background vehicles,
for them to send CAMSs with their own information. This is achieved by encoding the in-
formation from the LDM into the same structure defined in the associated configuration
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file (.proto file) for Protobuf messages.

The CARLA Adapter Interface works by allowing the other simulator to call the
CARLA methods and to control the simulation through remote calls. To guarantee this
functionality and synchronicity, CARLA is configured to run in synchronous mode, which
means that the simulation advances only when triggered. This module is responsible for
catching the VaN3Twin trigger for a step forward in the simulation (called tick), and
executing the update on the CARLA side. Each tick represents a fixed time duration
that matches the duration of one VaN3Twin mobility step.

In addition to providing local information for V2X applications, either perceived
objects to be sent on CPMs, or ground truth information to be used for the generation of
CAMs and VAMs, this interface is responsible for inserting V2X objects into OpenCDA
LDM. Based on the type of object received from VaN3Twin, such as CPM objects,
CAMSs, or VAMs, this interface will select the appropriate fusion algorithm, such as the
implemented VAMfusion, to ensure accurate matching and LDM synchronization.

Lastly, this interface enables the control of CAVs by an application or facility within
VaN3Twin. By requesting speed, acceleration, and possible waypoints, it translates
into CARLA-compliant commands, including steering, throttle, and brake. Background
vehicles, on the other hand, are managed by CARLA’s built-in traffic manager. It is
important to note that, in this current simulation setup, CAVs also rely on the traffic
manager itself, rather than using the OpenCDA modules for control and actuation, since
there was no interest in this work in addressing vehicle behavior in different conditions.

3.2 VaN3Twin modules

3.2.1 OpenCDA Client

The OpenCDA Client module is responsible for managing the co-simulation interface
between the mobility simulator (i.e., CARLA) and the network simulator (contained
in VaN3Twin) through the use of a gRPC adapter. It implements all necessary gRPC
interfaces required to interact with CARLA Adapter Interface. It coordinates the execu-
tion of the OpenCDA simulation by establishing a connection with the CARLA Adapter
Interface and managing the synchronization of the two sides at each simulation step [43].

At simulation start-up, a pool of idle ns-3 nodes is created based on the number of
CAVs and Connected VRUs defined in the scenario configuration, given the limitation
of ns-3 in dynamically creating nodes during runtime. The OpenCDA Client module is
responsible for assigning each CARLA actor to a corresponding ns-3 node. This mapping
ensures a one-to-one correspondence between actors in the mobility scenario with nodes
in the network domain, allowing nodes to retrieve their mobility information at any point
using their unique CARLA actor identifier

To maintain synchronization and coherence between mobility and communication,
the OpenCDA Client updates the position of each ns-3 node at every simulation step
to match the real-time positioning of their associated CARLA actor. This continuous
synchronization ensures that the communication behavior reflects the actual movement
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and state of their counterparts simulated in CARLA.

To reflect real-world scenarios, only a subset of CARLA actors are assigned ns-3
nodes, based on the penetration rate parameter, defined in the main VaN3Twin setup
script (described later in Section 3.2.4). The OpenCDA Client applies this rate dur-
ing the initialization phase, enabling only a configurable percentage of vehicles and
pedestrians to participate in the communication scenario. This allows for flexible ex-
perimentation with varying levels of connectivity, facilitating the analysis under various
deployment conditions.

3.2.2 OpenCDA VRUdp

The Vehicle Data Provider (VDP) in VaN3Twin acts as an interface that provides the
Facilities and all layers of the C-ITS stack with vehicle dynamics and status data used
to generate standard-compliant messages. Similarly, the Vulnerable Road User Data
Provider (VRUdp) module performs the same role, but for pedestrians and other VRUs,
offering the mobility data required for their integration into the C-ITS communication
framework.

The OpenCDA VRUdp module implemented in this work maintains the same con-
cept, interfacing with CARLA through the OpenCDA Client. It allows facilities, such as
VRUBasicService (explained later in Section 3.2.6), to access real-time mobility infor-
mation of VRUs within the CARLA simulation to be inserted into each message (VAM)
generated by that road user. Each connected VRU retrieves data, such as speed, po-
sition, and heading, by querying the OpenCDA Client using its unique ID assigned at
simulation start-up.

3.2.3 OpenCDA Sensor

The OpenCDA Sensor module is mainly responsible for the synchronization of the LDMs.
This synchronization of information allows the OpenCDA LDM to manage the data
fusion while ensuring rapid access to the updated data by the VaN3Twin LDM, relying on
fewer remote calls during the simulation. The reason for having fewer remote calls is that,
even though both LDMs are synchronized at every simulation step, the information of
all actors in the LDM is transferred in one call. Once stored in the VaN3Twin LDM, the
data to be inserted into messages such as CPMs can be accessed locally by ns-3, without
the need to query or request the OpenCDA LDM for every perceived object. However,
it should be noted that connected actors, such as pedestrians capable of communicating,
still require individual remote calls to retrieve their own dynamic state that will be later
included in VAM messages.

The alignment of both LDMs is performed first by inserting all V2X-derived data into
the OpenCDA LDM, including connected vehicles via CAMs, connected pedestrians via
VAMs, and perceived objects through CPMs. During this step, actor by actor, OpenCDA
LDM performs data matching and fusion, as described in Section 3.1.3. Once all entities
have been processed, the OpenCDA Sensor retrieves the updated LDM, containing data
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from both perception and communication, and synchronizes it with VaN3Twin LDM by
removing outdated perceived objects.

Other than its main function, this module was extended as part of this work to in-
clude a clustering algorithm. Following the synchronization and fusion of data, there is
a specific function to perform this clustering operation, which is called createCluster.
The cluster creation algorithm works by first applying a simple Density-Based Spatial
Clustering Application with Noise (DBSCAN) algorithm, based on [8], to all actor po-
sitions stored in the LDM, including connected pedestrians. The working principle of
DBSCAN is explained in Section 2.3.1.

The initial clustering step consider only spatial proximity to identify potential groups.
For each resulting cluster, the circular mean heading is calculated. Given a predefined
threshold, the heading of each pedestrian is compared against the mean heading of the
group. Pedestrians whose orientation deviates by more than this predefined value are
excluded. This process is repeated until no other pedestrian is excluded. If the final
cluster has at least the minimum number of pedestrians, the cluster goes through a
matching assignment to be inserted into the LDM.

OpenCDA Sensor also provides the capability of real-time visualization of all the
actors stored in the LDM, along with their ground-truth information. The visualization
interface clearly distinguishes between objects perceived by onboard sensing and those
received via cooperative messages from connected actors. An example of the graphical
user interface (GUI) output provided by this module is shown in Figure 3.5. Additionally,
the rendered frames are logged and stored individually for each CAV present in the
simulation, supporting post-simulation analysis and validation.

3.2.4 VaN3Twin Script Setup

This module is responsible for initializing and configuring the simulation environment
in VaN3Twin. It handles all the setup required before the simulation starts, including
reading configuration files, parsing command-line arguments, establishing connectivity
with CARLA and OpenCDA servers, configuring wireless communication parameters,
and setting up all the ns-3 nodes. Runtime parameters, such as the total simulation
duration, the penetration rate for both vehicles and VRUs, and the output file names
for communication metrics, are also defined here. In Appendix A, it is presented a code
snipped from the VaN3Twin script, with key parts of the configuration.

To ensure consistency between physical and communication layers of the co-simulation,
the number of actors spawned in the simulation is retrieved from the same YAML file
used for scenario creation. Based on this information, a pool of nodes is created, ap-
plying the specified penetration rate for communication capabilities for both vehicles
and VRUs. These nodes are then equipped with wireless devices configured with the
specified parameters, such as data rate and transmission power.

Following node creation, the cooperative perception application is installed on each
one. This application is responsible for managing and configuring the Facilities layer
on every ns-3 node. It attaches the node to its mobility source (OpenCDA/CARLA in
this case), instantiates the LDM and Data Provider module (VDP for CAVs, VRUdp for
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Figure 3.5: Real-time visualization of the LDM content for the same CAV in two different
scenario configurations,as rendered by the OpenCDA Sensor module. It shows the ego
CAV (centered gray box), connected vehicles transmitting CAMs (green boxes), ground-
truth pedestrian position (gray circles), pedestrians perceived either through onboard
sensors or received via CPMs (red circles), connected pedestrians broadcasting VAMs
(yellow circles) and clustered pedestrians detection (blue circles)

VRUs), and initializes the corresponding sensor interface (OpenCDA Sensor 3.2.3). It
then sets up the transport and networking layers (BTP and GeoNetworking), configured
to use the selected access technology (i.e. IEEE 802.11p). In addition, it initializes the
ETSI Facilities services, which are responsible for generating and processing CAM, CPM,
and VAM messages, in accordance with ETSI standards [14,17,18]. The application
sets up communication sockets, assigns unique identifiers, and defines callback functions
for message reception to update the LDM. In practice, the application configures the
cooperative stack on each node so that it can generate, transmit, and process cooperative
messages during simulation.

In parallel, the OpenCDA Client is instantiated within ns-3. As explained in Sec-
tion 3.2.1, this module establishes the co-simulation interface between perception and
communication layers, and ensures a one-to-one mapping between each ns-3 node with a
corresponding CARLA actor. This mapping enables the application, and any other mod-
ule, to access mobility information at any point using the unique ID of the corresponding
actor.

Finally, this module also initializes the metricSupervisor, which is responsible for
managing the collection and evaluation of communication metrics throughout the simu-
lation. These metrics include CBR and latency, as introduced in Section 2.3, and Packet
Reception Ratio (PRR). The PRR expresses the amount of packets or messages that
were successfully received and is defined by the ratio of the total received packets to the
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total transmitted ones. These metrics are then logged into a CSV file for offline analysis.
The configuration parameters, including the window size and the alpha value for the
CBR calculation, are provided at initiation. The window size defines the measurement
or observation time interval for the CBR calculation, so a new CBR is calculated at the
end of every measurement window. The alpha parameter represents a smoothing factor
for the exponential moving average (EMA) calculation of the CBR; in other words, it is
the weight of the previous CBR value when calculating the new one. A lower alpha value
means the EMA is more responsive to recent changes because it gives more importance
to newly calculated values. Meanwhile, a higher alpha gives more weight to older data,
smoothing out short-term fluctuations.

3.2.5 Metric Supervisor

The MetricSupervisor module in VaN3Twin is responsible for the collection of communication-
related performance metrics during simulation. In this work, the module was adopted
without modifications and was primarily leveraged to evaluate the Channel Busy Ratio
(CBR), a key indication of channel utilization in vehicular networks.

The simulation focuses on understanding the impact of channel load on cooperative
perception mechanisms rather than individual packet delivery performance. Although
this study does not implement a Decentralized Congestion Control (DCC) mechanism,
CBR remains highly relevant, as it has been widely adopted as a basis for adaptive
transmission control in vehicular networks [32]. DCC is a mechanism that allows each
transmitter to independently adjust its transmission parameters, such as frequency and
transmission power, and the data rate. The transmitting device adjusts these parameters
based on the measured CBR values, preventing the channel from becoming overloaded.

The Metric Supervisor is configured through the main VaN3Twin script, described
in Section 3.2.4, where the parameters for the calculation of communication metrics are
defined, along with channel technology (i.e. 802.11p) and linkage with OpenCDA Client.

3.2.6 Facilities Layer

The Facilities Layer is a component of the ETSI protocol stack as part of the ITS station
reference architecture, defined in [10]. This layer provides a set of functionalities and
services (referred to as facilities) to support ITS applications for road safety, traffic
efficiency, and others [12]. It can be seen in Figure 3.1 that the Facilities layer sits
between the Applications layer, which contains the actual ITS application (e.g. collision
warning, cooperative perception) and the Network and Transport layer, which handles
the delivery of data over the V2X communication channels.

In practice, the Facilities layer provides support for the encoding/decoding of stan-
dardized ETSI messages, for data management and collection such as the LDM, and
many other services related to communication. With this, applications can use facili-
ties as standardized building blocks, focusing on higher-level logic without the need to
implement the underlying communication functions.
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Among the facilities implemented in the VaN3Twin framework, three are particularly
relevant to this work: the LDM, the Collective Perception (CP) Basic Service, and the
VRU Basic Service.

Collective Perception Basic Service

The CP Basic Service is responsible for the generation, encoding, and dissemination of
CPM messages, in accordance with the standard ETSI T'S 103 324 [18]. It processes
information stored in the VaN3Twin LDM and prepares the data structure required for
CPM transmission using the ASN.1 UPER encoding [25, 26], ensuring interoperability
with standardized message formats.

Originally, this facility supported only the inclusion of vehicle detection in CPMs.
As part of this work, this module was extended to support the inclusion of pedestri-
ans and other types of VRUs, such as bicycles and motorcycles, as well as pedestrian
groups. According to the ETSI standard, pedestrian groups fall into the same category
as individual pedestrians and are therefore subject to the same inclusion rules for CPM
generation, which are the following [18]:

i. "The object has first been detected by the perception system after the last CPM
generation event."

ii. "If the object list contains at least one object of Type-A which has not been included
in a CPM for a time equal or larger than 500 ms, all objects of Type-A should be
included in the currently generated CPM."

Due to the LDM implementation, in which single objects and clusters are stored
as separate entities, additional logic was implemented to properly handle their distinc-
tion during the CPM generation phase. For each detected pedestrian, it is determined
whether that object is part of a cluster. If so, the cluster is evaluated for insertion
into the CPM, rather than the individual pedestrian. This ensures that no redundant
information is included in the transmission and contributes to a more compact CPM
structure.

Furthermore, the CP service is configured to log the relevant information for each
CPM into a CSV file. This includes the timestamp of the message, the number of
perceived objects, the number of included VRUs and their corresponding ID, the number
of clusters and their respective cardinalities, and the total encoded message size. These
logs support the offline analysis of CPM load and content variation carried out in this
work.

LDM

The LDM implemented in the VaN3Twin framework is responsible for storing and main-
taining a dynamic representation of the surrounding environment. Unlike the LDM
implemented in OpenCDA, which integrates perception and V2X data, the VaN3Twin
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LDM acts as a storage layer, carrying information already processed and updated within
the OpenCDA framework.

As part of this work, the VaN3Twin LDM has been extended with a cluster fusion
algorithm suited for pedestrian clusters. Since locally perceived clusters are redetected
at every simulation step, this fusion logic ensures a consistent temporal representation
of clusters by determining whether a newly detected cluster corresponds to an existing
one already stored in the cluster map. This enables the system to maintain a consistent
cluster representation over time, contributing to a more reliable shared perception.

The cluster fusion works in a few steps. At first, the current position of each cluster
stored in the LDM is estimated using a simple motion model, based on its last known
velocity and the time elapsed since it was detected or updated.

Next, a matching procedure is performed to associate newly detected clusters with
stored ones. For each candidate pair, a set of matching parameters is computed. These
include the Euclidean distance between centroids, actor ID overlap, Intersection over
Union (IoU) of cluster areas, and the difference in circular mean heading. Clusters are
considered a match when their circular mean heading difference is less than 60 degrees,
and at least one more parameter that fulfills the matching condition is met, being the
centroid distance less than five meters, or if the areas intersect, or if there is an overlap
on the list of IDs.

These conditions are designed to cover cases such as partial overlap, a slight shift in
cluster positioning, or shared members between clusters, ensuring that multiple detec-
tions of the same group are correctly merged.

Once a match is confirmed, both clusters merge into a single entity. The resulting
cluster is reshaped with a new minimum enclosing circle that encompasses all the actors
from both clusters. When the matching process is over for all the new cluster entries,
the cluster map stored in the LDM goes through the same matching process, but against
itself, to search for duplicates.

The main idea of the fusion algorithm is to support a continuous tracking of a cluster,
minimizing loss of information. It does so by flexibly allowing the algorithm to detect
different segments of the same cluster and then merge them into a unified representation.
Figure 3.6 illustrates the concept behind this fusion mechanism. Moreover, the logical
steps of the process are described in Algorithms 1 and 2.

VRU Awareness Basic Service

The VRU Basic Service is responsible for generating and disseminating VAM messages,
according to ETSI standards [17]. In this work, the existing implementation, originally
designed to interface with SUMO through the TraCI API for mobility data, was adapted
instead to interface with CARLA. The new implementation relies on the OpenCDA
VRUDP module 3.2.2 to retrieve real-time mobility data for VRUs directly from CARLA,
through the OpenCDA Client.

The service runs a periodic check to determine whether a VAM should be generated
for each VRU. The periodicity of this check is set to 100 milliseconds, the minimum value
allowed by the standards. Following the ETSI rules, these checks include detecting a
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Algorithm 1 Cluster Fusion Algorithm - Main Procedure

Input: Chew: Set of newly detected clusters
Input: Cgored: Set of stored clusters (e.g., from LDM)
Output: Csoreq: Updated set of clusters

1: procedure FUSECLUSTERS(Cpew, Cstored)

2 for all cluster ¢s € Cgtoreq do > Step 1: Predict new positions of stored clusters
3 At + CurrentTime — cg.last_ predicted_ timestamp

4: Predict and update cs.center using cs.speed, c¢s.heading, and At

5 cs.Jast_ predicted_ timestamp < CurrentTime

6 end for

7: Miew matched < FindAndMerge(Cpew, Cstored, match’) > Step 2: Match new
clusters with stored clusters and merge them

8: for all cluster cpew € Cpew do> Step 3: Add new clusters that were not matched
9: if ID(CHEW) ¢ Mnewimatched then

10: Generate a new unique ID for cpew

11: Add cpew t0 Cstored

12: end if

13: end for

14: Cto_remove < FindAndMerge(Cstored, Cstored, deduplicate’) > Step 4: Find and
remove duplicate clusters from the stored set

15: Remove all clusters with IDs in Cis remove from Csiored

16: for all cluster ¢ € Csioreq dO > Step 5: Refine remaining clusters
17: repeat

18: outlier removed_ this iteration < false

19: Find member m, in ¢ with max heading deviation from c.heading
20: if deviation of m, > HEADING DEVIATION THRESH then
21: Remove m,, from c

22: Recalculate c.heading from remaining members

23: outlier removed this iteration < true

24: end if

25: until outlier removed this iteration is false

26: if cardinality of ¢ < MIN_PED_ PER_CLUSTER then

27: Mark ¢ for removal

28: end if

29: end for

30: Remove all marked clusters from Cgiored

31: end procedure
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Algorithm 2 Cluster Fusion Algorithm - Find and Merge Helper

1: procedure FINDANDMERGE(Csource; Crarget, mode)

2 Mmatched_source_IDs — @

3 for all cluster ¢s € Csource do

4 found_match < false

5: best_match__target id < null

6 for all cluster ¢; € Ciarger dO

7 if mode = *deduplicate’ and ID(cs) > ID(¢;) then
8
9

continue > Avoid self-comparison and double-checking
: end if
10: Compute id__overlap, iou, dist, head__diff between ¢ and ¢
11: if  head diff < MAX__HEADING_ DIFF and id_owverlap >
MIN__ID__OVERLAP_ RATIO then
12: found_match < true
13: best_match__target_id < ID(ct)
14: break
15: else if head_diff < MAX__HEADING_ DIFF and fou > MIN__IOU then
16: found_match < true
17: best_match__target_id < ID(c;)
18: break
19: else if head diff < MAX_ HEADING DIFF and dist <
MAX_ DISTANCE _THRESHOLD then
20: found_match < true
21: best_match__target id < ID(c;)
22: break
23: end if
24: end for
25: if found_match then
> A match was found; fuse the source cluster into the target cluster
26: Let cmaten be the cluster in Ciarger with ID best _match_target_id
27: Update cpateh’s enclosing circle based on both clusters
28: Update cpatch’s heading (e.g., weighted circular mean)
29: Merge member 1Ds: cpateh-1Ds < cmateh - 1Ds U ¢g.IDs
30: Update c¢paten’s cardinality and timestamps
31: Add ID(CS) to MmatchedfsourceiIDs
32: end if
33: end for
34: return Mmatched_source_IDs

35: end procedure
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Figure 3.6: Diagram illustrating the pedestrian cluster fusion algorithm implemented in
the VaN3Twin LDM. At each simulation step, newly detected clusters (blue circles) from
the OpenCDA Sensor are matched against stored and predicted clusters (green circles).
Centroid distance, actor ID overlap, Intersection over Union, and heading similarity
are the criteria for a match. When there is a match, a new minimum enclosing circle
is computed for the merged cluster. The updated cluster map goes through the same
matching process for duplicate detection.

significant change in position, velocity, or heading, as well as the time elapsed from the
last message sent. When a condition is satisfied, the service prepares the data structure
with all mandatory and, if available, optional VAM fields and encodes it using ASN.1 [25],
which is compliant with standard message formats.

This module is also configured to log detailed information about each transmitted
VAM into a CSV file. This includes the timestamp of the generated message, the trigger-
ing condition, and the mobility data included in the awareness message, such as velocity,
heading, and position.
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Chapter 4

Experimental Setup and
Simulation Scenarios

4.1 Objectives of the simulation

The primary objective of the simulation experiments conducted in this work is to evaluate
the extended cooperative perception framework, with a focus on Vulnerable Road Users,
particularly pedestrians. Two main goals can be underlined.

First, the objective is to assess the impact of representing pedestrian groups as clus-
ters, where a cluster is a single perceived object, versus reporting individual pedestrians
when generating a CPM. This comparison focuses on the CPM size under both ap-
proaches and the influence it may have on CBR values.

Second, the effect of introducing connected VRUs into the network is investigated by
assigning ns-3 nodes to pedestrians, with a variable penetration rate (i.e., some pedestri-
ans can send VAMs, while others remain passive) and pedestrian density. The analysis
of the CBR values is done under each configuration.

Since the two experiments share most of the simulation parameters, this chapter is
organized as follows:

e The first part 4.2 outlines the common simulation setup applied to all analyses in
this work;

e The second part 4.3 describes the experiment evaluating the effect of including
clusters in CPMs;

e The third part 4.4 is the experimental setup for the investigation of the influence
of connected VRUs in the network.

4.2 Simulation Environment

The experimental setup is built on top of the co-simulation framework detailed in Chap-
ter 3, combining CARLA for traffic and sensor simulation with VaN3Twin for V2X
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communication.

The mobility side of the simulation is set up according to OpenCDA’s documenta-
tion [49]. A default YAML file is provided, which can be used across different simulation
scenarios. In this file, the synchronization mode, the simulation time step, the weather
conditions, vehicle parameters, the lidar sensor configuration, and the traffic manager pa-
rameters are specified. Since the simulation involves sensor-based perception and runs
in parallel with another simulation tool, VaN3Twin, there is a need for synchroniza-
tion between the tools. Therefore, the synchronization mode is set to true (parameter
sync_mode in the default YAML file). This means that both CARLA and VaN3Twin
need to complete all their computations (perception, traffic management, and commu-
nication processes) before advancing to the next simulation step. This is to avoid that
the mobility and network simulations advance in different rates, leading to the exchange
of inconsistent data (data from different simulation instants). The fixed time step is set
at 0.05 seconds, while other parameters such as weather conditions, vehicle dynamics,
and traffic manager settings remain at their default values, as defined in the OpenCDA
default YAML file [30].

The LiDAR configuration was modified to emulate a more realistic sensor, and for
that, the OS1 LiDAR sensor [38] from Ouster was chosen. The OS1 LiDAR is a mid-
range high-resolution sensor currently used by some companies in the field of autonomous
shuttles and trucking. Taking into account the possible configurations of the real sensor,
the cloud point rate for the simulation was set to 655.360 points per second. This
value would correspond to a horizontal resolution of 1024 pixels, considering that the
rotation frequency is 20 Hz, aligned with the frequency of the simulation. The horizontal
resolution corresponds to the number of points in a 360-degree horizontal sweep, and
in this case, 1024 lies in the middle resolution range of the configurable sensor. The
vertical field of view was rounded down from 42.4 degrees of the real sensor to a total of
40 degrees, -30 degrees as the lower boundary value, and +10 degrees as the upper one.
The number of channels is set to 32, being the lowest possible configuration of the OS1
LiDAR, and a conservative range of 80 meters was chosen.

All simulations were carried out under clear, sunny weather, with no precipitation
or clouds. The parameters common to all simulation runs, not related to mobility, are
summarized in Table 4.1.

Scenario creation and actor definition are defined in a second YAML file, called
after the simulation script file. This file specifies a set of parameters related to the
simulation environment itself. They include the spawn and destination positions of all
CAVs, along with the definition of the number and placement of cameras, the number
of background vehicles, and the spawn position of pedestrians, individual or clustered,
and the map/town to be used in the simulation. In CARLA, a map (or town) is a
predefined 3D environment where simulation takes place. Each map provides different
urban features, including road layouts, intersections, buildings, and other environmental
elements. Each CAV is equipped with one 360-degrees LiDAR sensor and four RGB
cameras, each with a default 90-degree field of view, mounted in a way to provide full
coverage. For each experiment, two CAVs are placed on the same road but facing
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Parameters Values
CARLA

CARLA version 0.9.12
Synchronization mode True

Fixed delta time step 0.05 seconds
Weather (sun angle) 15 degrees
LIDAR

Channels 32

Range 80

Cloud point rate 655.360 points/second
Frequency 20 Hz
Upper field of view 10 degrees
Lower field of view -30 degrees
RGB CAMERAS

Quantity

0.0, 0.3, 1.8, 100 ]

0.0, -0.3, 1.8, -100 |
[-2.0, 0.0, 1.5, 180 |
Other attributes Default

4
[2.5,0,1.0,0]
Positions [x, y, z, yaw] {

Table 4.1: Important common parameters for the simulation defined in the YAML files

opposite directions, and the number of background vehicles varies from 0 to 20. The
vehicle penetration rate is fixed at 0.7 for all simulations, reflecting a high adoption
scenario. Although connected vehicle deployment is still in an early stage, it is reasonable
to assume such penetration in the near future. Moreover, recent simulation studies [55]
support that optimal safety performance (in terms of collision avoidance) is achieved
at 70% vehicle penetration rate. The number of VRUs varies from 10 to 150, with
penetration rates of the VRUs between 0 and 0.8.

The OpenCDA framework also provides a behavior agent module for local and global
path planning, and a control manager module, which translates the desired target value
into compliant inputs such as steering, throttle, and brake. However, the overall traffic
flow in the simulation is still managed by CARLA’s Traffic Manager (TM). The TM is
the module responsible for coordinating and controlling the movements of all vehicles
operating in autopilot mode, ensuring realistic urban traffic conditions. For that, both
background vehicles and CAVs are set to autopilot, which assigns them to the TM.
In addition to that, specifying the same communication port when enabling autopilot
ensures that all vehicles are linked to a single TM instance, which manages their behavior
throughout the simulation. This module supports high-level user customization through
parameters that can allow or encourage specific behaviors. However, in this study, these
parameters were left as their default values, as the focus is not on analyzing vehicle
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behavior under varying traffic conditions. Table 4.2 specifies the number of background
vehicles, CAVs, and pedestrians used in the experiments.

Parameters Values
SCENARIOS

Town Townl0HD
Background vehicles 20

Vehicle Penetration Rate 0.7

CAVs 2
Pedestrian number 10 to 150
VRU Penetration Rate 0.0 to 0.8

Table 4.2: Overall mobility configuration for all the experiments

On the VaN3Twin side, all aspects of the communication configuration for the simu-
lation are configured in a dedicated ns-3 script written in C++, detailed in Section 3.2.4.
This script defines the parameters of the OpenCDA and CARLA interface, the access
layer technology, the transmission power, the data rate, and the penetration rates for
vehicles and VRUs. It also configures the metric supervisor module for the collection of
V2X metrics, such as the packet received ratio (PRR), latency, and channel busy ratio
(CBR), as described in Section 3.2.4. Additionally, this script configures the installation
of the cooperative perception application on each dynamic ns-3 node, as explained in
Section 3.2.4. Through the cooperativePerceptionHelper, a helper interface that simpli-
fies the configuration process, attributes such as the OpenCDA Client instance, real-time
execution flag, output logging options, communication model and metric supervisor link-
age are set. Once these configurations are set, a method that establishes the connection
with CARLA is called. This is a central link between the network simulator and the
traffic simulator, as it sets up the gRPC bridge with CARLA and triggers the start of
the simulation, using a dedicated callback function for node setup. A callback function
is a function that is executed automatically after a specific event, in this case, when
a node is created at the start of the simulation. More specifically, at the start of the
simulation, all existing actors in the CARLA environment are retrieved, and, for each
of these actors, the callback function is triggered. The callback assigns each node to a
corresponding actor ID and sets its station type as either a pedestrian or a passenger
car. Once configured, the application is installed on the node.

Regarding access technology, the simulation uses IEEE 802.11p [1], given its estab-
lished role as a standard for DSRC within ITS. The PHY layer is configured with a fixed
transmission power of 30 dBm, in light of the fact that this should take into account
a simulated OBU 802.11p chipset and a simulated antenna. The chosen transmitting
power is a reasonable value considering that a real OBU may have a chipset capable of
transmitting at 24 dBm, and on top of that, an automotive antenna may have a gain
of about 6 dBi, which focuses and concentrates the 24 dBm signal generated by the
OBU chipset. This results in an Effective Isotropic Radiated Power (EIRP) of about
30 dBm, which corresponds to the total power transmitted from the antenna. For the
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data rate, a fixed value of 3 Mbit/s was chosen, which is one of the ones suggested
by the standard [11]. This is considered the most reliable option for vehicular com-
munication. Even though IEEE 802.11p allows for data rates up to 27 Mbit/s, higher
rates require a more complex modulation scheme. Although these modulation schemes
increase data throughput, they are more susceptible to signal fading and interference,
which are common challenges in a dynamic environment. On the other hand, a data rate
of 3 Mbit/s utilizes a simpler and more robust modulation, such as Binary Phase-Shift
Keying (BPSK), which ensures a higher probability of message success reception, cru-
cial for safety-related communication [50]. For the CBR calculation, the measurement
window is set to 200 milliseconds. So, the CBR is calculated every 200 ms with the
Active and Busy time related to this time window. A lower value for the measurement
window might capture only transient bursts, and a too-long window might smooth out
important fluctuations. The exponential moving average of the CBR is computed with
an alpha value of 0.1, which gives more importance to recent measurements and makes
the metric more responsive to current conditions.

For both experiments, relevant metrics such as CPM message size and Channel busy
ratio (CBR) are recorded through the metric supervisor module and other facilities on
VaN3Twin. These results are further aggregated and post-processed using Python scripts
to compare performance with different simulation configurations.

Parameters Values

VaN3Twin

Access technology 802.11p

Transmission power 30 dBm

Center Frequency 5.9 GHz @ 10 MHz
Propagation Loss Model Log distance (Default)
Physical Data Rate 3 Mbit /s

CBR measurement window value 200 milliseconds

CBR alpha 0.1

Table 4.3: VaN3Twin configuration parameters

4.3 Pedestrian cluster impact on CPM

This experiment aims at evaluating the impact of representing multiple objects (e.g.
pedestrians) as a single entity when transmitting CPMs, in terms of message size and
channel load. The cluster algorithm is explained in Section 3. For this analysis, the
spawned pedestrian were not equipped with communication capabilities, therefore, they
are not active in the simulation.

For the scenario setup, three main areas were defined for the spawning of pedestrians.
The first area is determined to be right next to the Ego vehicle (CAV1) and the other
two are located further away from the Ego vehicle, on its path, one on each side of the
road. In this way, there are two moments in the simulation in which the vehicle will
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be near a group of pedestrians, as soon as the simulation starts and close to the end of
it. Figure 4.1 exhibits the bird eye view of the ego vehicle, its trajectory, and the areas
designated to spawn pedestrians.

The simulation duration is set to 15 seconds. Three levels of pedestrian density were
tested, 10, 20, and 30, for each spawned region. The radius of each region is set to a
fixed value of 15 meters and in all conditions, the pedestrians are set to have the same
destination point (those within the same area). Table 4.4 summarizes the setup for
the scenarios. For each pedestrian density, two configurations were tested: i)Without
clustering, including individual detections in the CPM; ii) With clustering, allowing the
algorithm to form a cluster and include it in the CPM if conditions are met. For each
different scenario, three independent simulation runs were performed in order to reduce
randomness and increase the reliability of the outcomes.

IIMIIEIIHHI ?%4(%
| i

T

Figure 4.1: Bird-eye view of the map used in the simulation. Left figure is a static
picture of TownlOHD. Figure in the middle is the spectator view during simulation.
Figure on the right is the OpenCDA Sensor GUI output with ground truths. The three
blue circles refers to the spawn location of pedestrians. The two green rectangles refers
to the spawned CAVs. White dashed line is the trajectory of the Ego Vehicle.

Common to all scenarios
Pedestrians per Number of Radius of each
area spawn areas area (m)
Scenario A 10
Scenario B 20 3 15
Scenario C 30

Table 4.4: Pedestrians setup for the different scenarios.

CPMs are generated quasi-periodically, following the ETSI specifications for the in-
clusion of VRUs and other Type-A objects in the CPM, introduced in Section 3.2.6. If
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no object is detected or if the detected ones do not meet the criteria to be included in a
message, a CPM is generated at a frequency of 1 Hz, as a "presence signal", containing
only basic information from the vehicle and information about the sensor system.

To access the effect of clustering, a few metrics were considered, the CPM size over
the entire simulation, and CBR values across all nodes. It is worth mentioning that the
size of CPMs presented here, in bytes, refers purely to the compressed payload, not the
entire network packet.

The results are summarized in Table 4.5, which reports the average CPM size, and
average and maximum CBR for each condition. As expected, a higher density of pedes-
trians increases the size of the CPM, while clustering reduces the number of entities to
be transmitted, leading to smaller CPM.

Scenario Clustering No Clustering
CPM size - average 126.15 158.62
A CBR - average 0.006 0.0062
CBR - max 0.0139 0.0141
CPM size - average 118.10 270.72
B CBR - average 0.0062 0.0077
CBR - max 0.0164 0.0204
CPM size - average 112.23 308.82
C CBR - average 0.0071 0.0081
CBR - max 0.019 0.0216
CPM size - average 118.15 250.48
Overall CBR - average 0.0064 0.0073
CBR - max 0.019 0.0216

Table 4.5: CPM size average, CBR average and maximum, for all the scenarios.

Figure 4.3 shows the evolution of the CPM size over time for all scenarios. Without
clustering, the CPM size increases rapidly and fluctuates more. With clustering, the
message size remains both smaller and stable. The distribution of CPM size, including
data from all scenarios and all simulation runs for this experiment, is shown in Figure 4.4.
The plot shows that clustering reduces both the spread and the average message size.
The impact of clustering on CBR is presented in Figure 4.2, which shows a small but
measurable difference in CBR values. Since there are only two nodes transmitting in
all scenarios, the Ego vehicle and a secondary CAV, the CBR values remain really low
overall. Nonetheless, for all scenarios where clustering is active, the box plot size remains
relatively constant, indicating that the CBR values are consistent and stable, regardless
of pedestrian density. This result is aligned with the CPM size plots, where a higher
spread of the CPM size values leads to an increase in the variability of CBR.

Overall, these results provide clear evidence of the gains obtained through cluster-
ing, particularly in more dense environments where the reduction of CPM size is more
relevant. These results are further discussed in Section 5.
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Figure 4.2: CBR values with and without clustering algorithm active, for all three
scenarios

4.4 Connected VRUs impact on CBR

This set of experiments investigates the influence of connected VRUs on channel load by
measuring the Channel Busy Ratio under different VRU penetration rates and pedes-
trian density. In a preliminary configuration, the data rate was varied across 3, 6, and
12 Mbit/s with 150 pedestrians randomly spawned within a 70-meter radius, centered
around the first CAV. This radius was selected to ensure that throughout the simulation,
the CAV remains within the same area as the pedestrians, maximizing the exchange of
V2X messages. The background vehicles configuration is the same as the main analysis
(Table 4.6), with 20 spawned vehicles and a penetration rate of 0.7. The penetration
rate of VRUs ranges from 0 to 0.8, with an increment step of 0.1. The results of this
preliminary configuration are illustrated in Figure 4.6

The main analysis instead employs a fixed data rate of 3 Mbit/s, which is the most
robust and reliable rate for safety-critical communications. With this data rate, the
pedestrian density is varied across 50, 100, and 150 pedestrians, spawned randomly in
the same 70-meter radius area. For each density of pedestrians, the penetration rate
of VRUs ranges from 0 to 0.8, with an increment step of 0.2. In all configurations,
20 background vehicles were spawned, with a fixed penetration rate of 0.7. Table 4.6
summarizes the configuration parameters for this analysis.

Pedestrians are controlled by CARLA’s Traffic Manager, and each of them has a
randomly assigned destination.

The CBR is calculated for all connected nodes in the simulation, using a exponential
moving average with the parameters defined in Section 4.2. The values presented in this
analysis correspond to the average CBR over the entire simulation span.

Certain VAM triggering conditions were beyond the scope of this study. This im-
plementation did not consider (i) variations in the interception probability with another
vehicle or VRU, (ii) decisions related to joining or forming a cluster, and (iii) situations
where another vehicle or VRU is located within a determined safe distance, both later-
ally and longitudinally. All connected VRUs are equipped with the same communication
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4.4 — Connected VRUs impact on CBR

Common to all scenarios
Number of || VRU pen- Radius of Number of Vehicle
Pedestri- etration spawn Back- penetra-
ans rate area (m) ground tion rate
vehicles
Scenario D 50
Scenario E 100 0.0 to 0.8 70 20 0.7
(step 0.2)
Scenario F 150

Table 4.6: Pedestrians setup for the different scenarios.

capabilities.

In addition to VRU transmissions, CAVs broadcast CAMs and CPMs, while back-
ground connected vehicles transmit only CAMs. Both of these awareness messages are
transmitted with a frequency between 1 Hz and 10 Hz, according to the conditions
presented by ETSI [14, 18].

Table 4.7 presents the resulting CBR values for this analysis, with the conditions
described in Table 4.6, and Figure 4.5 illustrates the numerical results.

VRU 50 pedestrians 100 pedestrians 150 pedestrians

Rate mean max mean max mean max
0.0 0.0186 0.0392 0.0184 0.0393 0.02 0.0395
0.2 0.0249 0.0437 0.0283 0.0578 0.0329 0.0657
0.4 0.0239 0.0406 0.031 0.0633 0.05 0.0854
0.6 0.0264 0.0433 0.0451 0.0773 0.0633 0.1221
0.8 0.038 0.0619 0.0589 0.1056 0.0779 0.1255

Table 4.7: Summarized CBR values. Mean, and maximum values for CBR vs VRU
penetration rate, for each density configuration
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Figure 4.3: CPM size over simulation time for all three scenarios, with and without clus-

tering algorithm active. (a) Scenario A - 10 pedestrian; (b) Scenario B - 20 pedestrians;
(c) Scenario C - 30 pedestrians
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Chapter 5

Experimental Results

The discussion of the results is structured into two parts, (i) addressing the impact of
clustering on CPM messages and (ii) the effects of having connected VRUs on channel
load.

5.1 Clustering and its Effect on CPMs

This experiment evaluates the impact of representing multiple objects (pedestrians) as
a single entity when transmitting CPMs. The simulation results confirm that clustering
reduces CPM size significantly, particularly in a higher density scenario. By compress-
ing the representation from multiple entities to just one or a few, not only reduces the
CPM size but also reduces the variability across simulation time. These findings align
with recent studies that investigated clustering as a method to address scalability chal-
lenges for cooperative perception. Pedestrians were not equipped with communication
capabilities, therefore they did not actively transmit in the simulation.

Three spawn areas were defined (Figure 4.1), one close to the Ego CAV and two
further along its trajectory. Densities of 10, 20, and 30 pedestrians per area were tested
(Table 4.4). Each simulation was run for 15 seconds, with three repetitions per scenario
to reduce randomness. For each density, two conditions were compared: (i) no cluster-
ing, transmitting individual detections; and (ii) clustering, transmitting circular-shaped
cluster when conditions are met. CPMs are generated following ETSI specifications,
described in Section 3.2.6.

Figures 4.3 and 4.4 confirm that clustering reduces both the average and variability
of CPM size. Table 4.5 summarizes the results. Clustering consistently reduces CPM
size across scenarios:

e Scenario A: from 158.62 to 126.15 bytes (-20.5%)
e Scenario B: from 270.72 to 118.10 bytes (-56.4%)

e Scenario C: from 308.82 to 112.23 bytes (-63.7%)
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o Overall: from 250.48 to 118.15 bytes (-52.8%)

Xhoxhi et al. [53] demonstrated that representing VRUs through geometric cluster-
ing will reduce, on average, one third of the transmitted data, in bytes per second, while
preserving situational awareness. It further analyzes different enclosing shapes for clus-
tering, concluding that a polygon shape is the most accurate in describing the cluster
itself, however, is the less efficient in terms of data required for the shape description.
Moreover, circular shape clustering is shown to be the least accurate, but the best in
transmission efficiency, meaning that it requires less bytes to be included in a CPM.
Therefore, clusters represented in this work can be considered the most efficient to be
included in a CPM, since only circular shape was considered.

Lobo et al. [33] and Valle et al. [51] recently analyzed the use of clustering techniques
as a way to optimize resource allocation, however, considering VAM-based clustering,
not perception-based as it is in this work. The first showed that clustering allowed a
significant reduction of CBR values from DCC limits, and lowered the position error.
While the second introduces a non-negotiable clustering mechanism for VAM trans-
mission, showcasing the reduction of total generated messages and the improved VRU
awareness. Although different mechanisms were used in these studies, they further re-
inforce the benefits of clustering, considering it as a tool to handle high density VRU
scenarios.

Without clustering, CPM size grows rapidly, reflecting many challenges highlighted
by Hussein et al. [24] for large-scale deployment of VANET, such as network resource
scarcity and communication overhead. By stabilizing message size, clustering contributes
to more predictable channel access in contention-based MAC protocols such as IEEE
802.11p, reducing the probability of collisions caused by bursts of large packets. This
stability is critical for an effective DCC, since its goal is to balance network load, and
having large packet bursts can increase packet collision and retransmission.

For the CBR values, the results show that clustering had only a marginal effect, with
overall average values (averaged across all scenarios) of 0.0064 vs 0.0073 between cluster
and no-cluster scenarios, respectively. This small variation is given by the reduction
in the average CPM size, since the channel load is mainly driven by the number of
transmitting nodes, which was limited to two CAVs. Nevertheless, clustering reduces
the variability in the CBR values across different pedestrian densities, mirroring the
reduced variability in CPM size. Therefore, clustering helps stabilize both the CPM size
and the channel load, which can be useful in denser scenarios.

Nonetheless, clustering trades off detail for efficiency in transmission, which may
reduce usefulness in certain safety applications where a more precise knowledge of the
individual pedestrians is required.

5.2 Impact of connected VRUs on channel load

The second experiment evaluates how connected VRUs impact channel load, that is,
CBR, as a function of VRU penetration rate and pedestrian density, with a fixed data
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transmission rate of 3 Mbit/s unless otherwise stated. Table 4.7 shows that for a given
penetration rate, increasing pedestrian density increases the mean and peak CBR propor-
tionally. Approximately, tripling pedestrian density roughly doubles CBR. For example,
at 80% VRU penetration, the mean CBR increases from 3.8% (50 pedestrians) to 7.8%
(150 pedestrians), and the maximum CBR from 6.2% to 12.5% (2x in both cases). With
no connected VRUs, mean CBR remains near 2% across different pedestrian densities
since the only active nodes transmitting are the two CAVs.

To complement this analysis, a separate configuration varied the data rate across
3, 6, and 12 Mbit/s (150 pedestrians within a 70 m radius), to analyze the effect on
channel occupancy. As expected, increasing data rate significantly reduces the CBR,
since higher rates shorten transmission time. As illustrated in Figure 4.5, moving from
3 Mbit/s to 12 Mbit/s reduces CBR roughly by three to four times. Although higher
data rates lower CBR, they are less robust (due to more complex modulation), whereas
3 Mbit/s is commonly used for safety-related communication due to its reliability [50]

Overall, higher penetration rates naturally increase channel load, given the increased
number of transmitting nodes, and a higher physical data rate reduces it, reflecting
shorter transmission times. Nevertheless, even in the worst case, at 80% penetration
rate with 150 pedestrians and a data rate of 3 Mbit/s, CBR values remained well below
the critical values and stay in the Relazed state, as defined by [21].
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Chapter 6

Conclusions

This work investigates the integration of Vulnerable Road Users (VRUs) into cooper-
ative perception within a co-simulation environment that combines CARLA, through
OpenCDA, and VaN3Twin. The developed framework extends the original setup by
enabling the perception, representation, and communication of VRUs in the simulation
loop. Specifically, it (i) integrates pedestrian detection into the OpenCDA framework
and connects this perception output with the facilities layer in ns-3 for the the trans-
mission of Cooperative Perception Messages (CPMs); (ii) implements a new VRU data
provider, integrated with the corresponding ETSI Facilities layer service (VRU Basic
Service), to enable standard compliant VRU communication, through VAMs; (iii) eval-
uates the impact of pedestrian clustering for CPM inclusion. These contributions allow
for a realistic and synchronized evaluation of perception-driven communication scenarios
involving both connected and non-connected VRUs.

The experiments conducted throughout this study assess two main aspects: the im-
pact of clustering on CPM generation and the influence of connected VRUs on channel
load. The first experiment focuses on clustering as a mechanism to represent multiple
perceived objects as a single group within CPMs, rather than transmitting them indi-
vidually. The results show that this approach significantly reduces CPM size, by more
than 50% on average, and stabilizes message variability over time. Although the Chan-
nel Busy Ratio (CBR) remains low, given the limited number of transmitting vehicles,
a reduction in CBR variability is also observed. These results confirm that clustering
improves the scalability of cooperative perception by limiting the increase in transmitted
data as the number of perceived objects increases.

The second experiment analyzes the effect of connected VRUs on network load,
considering variations in both pedestrian density and penetration rate. The results
indicate that the mean and maximum CBR values increase proportionally with the
number of connected VRUs, but remain within the safe operational limits defined by
ETSI Decentralized Congestion Control (DCC). Even in the most demanding scenario,
150 pedestrians at 80% penetration and 3 Mbit /s data rate, the mean CBR remains below
8%, corresponding to the Relazed DCC state. An additional configuration exploring
higher data rates confirms the expected inverse relationship between transmission rate
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and CBR, with values at 12 Mbit/s being approximately three to four times lower than
at 3 Mbit/s. Nonetheless, 3 Mbit/s remains the most robust and reliable rate for safety-
critical V2X communications.

In summary, the developed framework successfully integrates VRUs into cooperative
perception co-simulation, providing a complete environment to evaluate mobility, per-
ception and communication processes in a realistic setup. The results demonstrate that
clustering is an effective strategy to reduce CPM size and stabilize network load, while
connected VRUs scale channel usage predictably and remain within acceptable limits.
Future work may extend these experiments to include larger and more diverse traffic con-
ditions, other communication technologies such as C-V2X and NR-V2X, dynamic DCC
control, ray tracing for channel propagation loss, and a full implementation of VAM
triggers, according to ETSI. Incorporating real-world data or field validation could also
enhance the realism of the simulation and support further analysis of safety-critical use
cases involving pedestrians and autonomous vehicles.
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Appendix A

VaN3Twin script setup code
snippet

Here is presented a code snippet of the script setup for the VaN3Twin framework. It
shows some defined parameters, the steps used to create and setup a node, together with
initialization of the metric supervisor module and the setup of the OpenCDA Client
module. It also shows the callback functions, used to install the applications on the
nodes (setupNewWifiNode) and to stop the applications at the end of the simulation
(shutdown WifiNode), which will be called by the OpenCDA client. The code snippet
provided does not correspond to the full script required to setup the simulation.

std::string opencda_folder = "Opencda/";
;lstd::string opencda_config ="ms_van3t_example_ml";

bool opencda_ml = true;

bool realtime = false;

std::string csv_name_cumulative = "Metrics_PRR";

std::string csv_name_CBR = "Metrics_CBR";

int txPower=30;
double penetrationRate = 0.7

3 double VRUpenetrationRate = 0.0;

float datarate = 3;

5/ bool send_cam = true;

double m_baseline_prr = 150.0;

7|bool m_metric_sup = true;

double simTime = 15;
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44

VaN3Twin script setup code snippet

std::string config_yaml =
OpenCDA_HOME+"/opencda/scenario_testing/config_yaml/" +
opencda_config + ".yaml";

NodeContainer obuNodes;
obuNodes .Create (number0fNodes) ;

YansWifiPhyHelper wifiPhy;

wifiPhy.Set ("TxPowerStart", DoubleValue (txPower));

wifiPhy.Set ("TxPowerEnd", DoubleValue (txPower));

YansWifiChannelHelper wifiChannel =
YansWifiChannelHelper::Default ();

Ptr<YansWifiChannel> channel = wifiChannel.Create ();

wifiPhy.SetChannel (channel);

jlwifiPhy . SetPcapDatalinkType (YansWifiPhyHelper::DLT_IEEE802_11);

NqosWaveMacHelper wifi80211pMac = NqosWaveMacHelper::Default ();
Wifi80211pHelper wifi80211p = Wifi80211lpHelper::Default ();
std::cout << "Datarate: " << datarate_config << std::endl;
wifi80211p.SetRemoteStationManager
("ns3::ConstantRateWifiManager",
"DataMode", StringValue
(datarate_config),
"ControlMode", StringValue
(datarate_config),
"NonUnicastMode",StringValue
(datarate_config)) ;
NetDeviceContainer netDevices = wifi80211p.Install (wifiPhy,
wifi80211pMac, obulNodes);

;| PacketSocketHelper packetSocket;

packetSocket.Install (obuNodes);

MobilityHelper mobility;
mobility.Install (obuNodes);

Ptr<OpenCDAClient > opencda_client = CreateObject<OpenCDAClient>();
opencda_client->SetAttribute ("UpdateInterval", DoubleValue (0.05));
opencda_client->SetAttribute ("PenetrationRate",

DoubleValue (penetrationRate)) ;

opencda_client->SetAttribute ("CARLAGUI", BooleanValue(carla_gui));
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61| opencda_client->SetAttribute ("ApplyML", BooleanValue (opencda_ml));

6i|metSup = CreateObject<MetricSupervisor>(m_baseline_prr);
65| metSup->setOpenCDACLient (opencda_client);

66| metSup->setChannelTechnology ("80211p");

67| metSup->setCBRWindowValue (200) ;
6s|metSup->setCBRAlphaValue (0.1);
co|metSup->setSimulationTimeValue (simTime) ;

70| metSup->setNodeContainer (obuNodes) ;
7i1|metSup->startCheckCBR () ;

74| cooperativePerceptionHelper cooperativePerceptionHelper;
75| cooperativePerceptionHelper.SetAttribute ("OpenCDAClient",
PointerValue (opencda_client));

77| cooperativePerceptionHelper.SetAttribute ("MetricSupervisor",
PointerValue (metSup));

50| STARTUP_FCN setupNewWifiNode = [&] (std::string actorID) ->

Ptr<Node>

s {

82 if (nodeCounter >= obuNodes.GetN()) {

83 NS_FATAL_ERROR("Node Pool empty!: " << nodeCounter << "

nodes created.");

84 }

85 Ptr<Node> includedNode;

86 std::string number_str;

88 includedNode = obuNodes.Get(nodeCounter) ;

89 ++nodeCounter;

90

91 if (actorID.find("ped") != std::string::npos){

92 cooperativePerceptionHelper.SetAttribute("itsType",
StringValue("StationType_pedestrian"));

93 }

94 else {

95 cooperativePerceptionHelper.SetAttribute("itsType",
StringValue ("StationType_passengerCar"));

96 }

97
98 ApplicationContainer AppSample =
cooperativePerceptionHelper.Install (includedNode);

99 AppSample.Start (Seconds (0.0));

100 AppSample.Stop (simulationTime - Simulator::Now () - Seconds

(0.1));

101

65




102

103

104

105

106

108

109

VaN3Twin script setup code snippet

return includedNode;

};

SHUTDOWN_FCN shutdownWifiNode = [] (Ptr<Node> exNode,std::string
actorID)

7| {

Ptr<cooperativePerception> appSample_
=exNode->GetApplication (0) ->GetObject<cooperativePerception>
O3

if (appSample_)

appSample_->StopApplicationNow () ;

2 };

s| opencda_client ->startCarlaAdapter (setupNewWifiNode,

shutdownWifiNode) ;
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