
POLITECNICO DI TORINO
Master’s Degree in Biomedical Engineering

(Ingegneria Biomedica LM-21, DM270)

Master’s Degree Thesis

DEEP LEARNING DENOISING OF
TIME-OF-FLIGHT DEPTH IMAGES

AFFECTED BY RETRO-REFLECTIVE
MARKER INTERFERENCE

TO ENABLE CONCURRENT
MARKER-BASED AND MARKERLESS

MOTION CAPTURE
Supervisors

Prof. Andrea Cereatti

Prof. Bart Jansen

PhD Silvia Zaccardi

PhD Diletta Balta

Candidate

Federico TROVALUSCI

s302900

OCTOBER 2025



Collaboration and Internship Statement
The work presented in this thesis was carried out in partnership with ETRO-VUB
(Department of Electronics and Informatics, Vrije Universiteit Brussel) as part of
an in-person collaboration intership in Brussels.

https://www.etrovub.be/research/themes/hb/overview/


Summary

Human Motion Capture (MoCap) systems are essential in medical diagnostics
and rehabilitation, providing valuable quantitative insights into posture, joint
movements, and motor functions of patients with neuro-motor diseases [1, 2, 3, 4, 5,
6]. Image-based MoCap systems can be classified in two categories: marker-based
and markerless. Marker-based systems, such as the Vicon, utilize multiple Infrared
(IR) cameras to accurately track the position of reflective markers placed on the
patient’s skin. However, their high cost, complex setup, and lack of portability
limit their widespread use. On the other hand, markerless systems rely on Deep
Learning (DL) models to estimate the human body position from images, offering
a more affordable and portable alternative at the cost of a lower accuracy [7, 8, 9].
Among these, a popular system is the Microsoft Azure Kinect [10], which relies
on a single dual-sensor RGBD camera capable to reconstruct depth images with
infrared Time-of-Flight (ToF) technology.

Concurrent use of marker-based and ToF-markerless motion capture systems
causes significant interference, primarily due to IR reflections from retro-reflective
markers [11, 12, 13, 14, 15]. This leads to two critical challenges:

• It complicates the validation of Kinect data against the marker-based gold
standard, leading researchers to opt for non-concurrent validation studies.

• It prevents the collection of clean, simultaneous datasets combining ToF images
with accurate marker-based data. As a result, researchers typically rely on
simulated datasets to train their DL skeletal tracking models.

The main objective of this thesis is to develop methods to automatically remove
IR artifacts introduced by retro-reflective markers from ToF images captured with
an Azure Kinect during concurrent acquisitions with a Vicon marker-based system.

The study relies on a dataset of 8 healthy subjects performing 4 simple motor
tasks, previously collected at the VUB Rehabilitation Research Center (RERE)
in Jette [16]. Two acquisitions were made available for each subject: one with
reflective markers applied on the subject’s skin (i.e. noisy images) and one without
markers (clean images).
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The work presented in this thesis can be divided into four main sections.

• The first section focuses on data preprocessing. Background information was
removed from the raw Azure Kinect depth images, and a fixed size Region Of
Interest (ROI) around the subject was extracted to standardize the input for
the model training.

• The second section presents the development and validation of a DL framework
to remove IR interference from depth images. A latent-space diffusion model
(with a companion autoencoder) was trained on clean depth images from
6 participants to generate realistic synthetic images. During inference, an
inpainting algorithm guides the model to modify only the regions of the
input image affected by artifacts and missing values, while leaving the rest
unchanged.
The first experiment was conducted on the clean images of the 2 test partici-
pants. To simulate missing data, artificial checkerboard masks of varying sizes
were applied, and the model was guided to reconstruct the masked regions.
Results showed low Mean Square Error (MSE) between the reconstructed and
original images of 5.45 × 10−3 ± 2.02 × 10−3 for smaller 8 × 8 pixel squares
and 8.25 × 10−3 ± 2.4 × 10−3 for larger 32 × 32 pixel squares, demonstrating
the model’s ability to accurately recover missing pixels.
The second experiment was conducted on the noisy images of the same
2 test participants. To perform inpainting, a marker detection algorithm
was implemented to identify the corrupted regions, which the model then
reconstructed. Since ground truth is not available, a pixel-level accuracy
metric could not be computed. Therefore, performance was evaluated using
the Kernel Inception Distance (KID) which quantifies the similarity between
the inpainted outputs and the clean training distribution. The statistically
significant decrease in KID values (from the input noisy images to the inpainted
ones) indicated that the model produced cleaner images more consistent with
the clean training data.

• The third section evaluates the effect of integrating the denoising model into
the standard Kinect SDK pipeline as a preprocessing step on the depth channel.
Results obtained inpainting only the depth channel showed no improvement
in skeletal tracking accuracy, suggesting that the Kinect body tracking model
(K4ABT) is indifferent to depth channel modifications.

• The last section was conducted together with the researchers at ETRO (VUB’s
department of Electronics and Informatics). We found that Kinect’s skeletal
tracking primarily relies on IR images rather than depth images. Therefore, we
developed a simple yet effective algorithm to mitigate noise in IR images. Our
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method significantly improved Kinect’s skeletal tracking reliability, reducing
missed poses from 11.49% to 0.16%), with a significant reduction in bone
length variability [17, 18].

This thesis introduced a novel approach for removing marker-induced artifacts
from ToF depth images by adapting and re-training a diffusion-based generative
model, originally designed for radiology imaging [19, 20]. This method enables
the creation of clean, paired datasets of depth images and marker-based motion
capture data, allowing future training of depth-based DL skeletal tracking model.
The work also contributed new insights into the Azure Kinect’s skeletal tracking
pipeline, revealing that the algorithm relies more heavily on the IR stream than
the depth. To address this, a simple IR inpainting algorithm was implemented,
resulting in significantly improved tracking stability and reduced variability in bone
length estimates.
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Chapter 1

Introduction

Image-based human motion capture systems enable medical professionals to gain
insightful quantitative information about the posture, range of motion, and overall
quality of the patient’s movements by measuring the positions and angles of joints.
For that reason, integrating such devices in the diagnosis and rehabilitation of pa-
tients with neuro-motor diseases [1] and stroke survivors [2] has been an active field
of research over the past two decades. The widespread availability of single-camera
markerless motion capture systems, such as the Microsoft Kinect [10], popularized
by the Virtual Reality (VR) gaming industry, opened new possibilities in providing
a more affordable and more portable alternative to expensive marker-based multi-
camera systems, such as the Vicon. Those cheaper markerless systems, however,
have been shown to be less reliable than their marker-based counterparts [7, 8, 9],
and rely heavily on AI models (e.g. the Microsoft Kinect SDK for Windows [21])
to perform skeletal tracking. Concurrent validation studies of the Kinect device
against a Vicon marker-based system are also made difficult by the noise and image
artifacts caused both by the IR interference between the multiple infrared light
sources, and the presence of retro-reflective markers that disrupt the depth image
reconstruction and the skeletal tracking[11, 12].

For that reason the objective of this master thesis is to develop an automated
marker artifacts removal pipeline based on diffusion probabilistic models that could
be used to obtain a concurrent dataset of paired images (with and without markers)
in the absence of a ground truth. By synthetically generating marker-free depth
images from images affected by marker artifacts, researchers could run a typical
AI based Kinect body-tracking pipeline on the inpainted images, as if they were
obtained via a standard Kinect recording, and then use marker positions obtained
by the Vicon system as a ground-truth reference for evaluating joint angles and
other biomechanical parameters.
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Chapter 2

Introduction to Motion
Capture

Motion capture (MoCap) is the process of digitally reconstructing the 3D kinematics
of human motion from recordings acquired through sensors (such as cameras, IMUs,
force plates) in order to extract spatiotemporal features, estimating joints range of
motion, and perform inverse-dynamics analyses.

The clinical relevance of computer-assisted motion capture has been demon-
strated in the diagnosis and care of multiple conditions such as:

• Diagnosis and clinical planning for adult neurological disorders (e.g., Parkin-
son’s disease, multiple sclerosis, epilepsy) [1].

• Care and rehabilitation of stroke survivors [2].

• Early detection of cerebral palsy in infants [3].

• Evaluation of hereditary neuro-pathologies [4].

• Assessment and treatment of dementia and frailty in elderly adults [5].

• Outcome assessment and rehabilitation in orthopedic patients [6].

In all these applications, the contribution of motion-capture technologies has been
to obtain repeatable measurements that assist clinicians in detecting and identifying
symptoms, clustering patients, and, in some cases, providing an inference tool
for the early screening of certain conditions. However, in most practical settings,
these methods are device specific and are highly dependent on sensors calibrations,
preprocessing and postprocessing methods, and, despite showing promising levels
of sensitivity and specificity, they currently lack a general, standardized protocol.
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Introduction to Motion Capture

2.1 A comparison between motion capture
methods

The two main modalities to perform MoCap in clinical applications are:

• Inertial MoCap: uses magneto-inertial measurement units (IMUs) attached
to the subject’s limbs and trunk [22] (fig. 2.1) to estimate segment orientations
and joint kinematics [23]. Outputs are typically presented as time-series plots
and numerical parameters; direct visual assessment is not available to the
clinician unless a synchronized video recording is acquired. Inertial systems
can be integrated into wearable devices that enable out-of-the-lab analysis
of patients in daily life activities. Results are highly dependent on sensor
placement, subject’s activity and the duration of the acquisition.

• Optical MoCap: uses cameras in the visible/infrared spectrum, including
multi-camera infrared systems and RGB-D/depth cameras [24]. Optical
methods are commonly divided into:

– Marker-based methods, like Qualisys [25] and Vicon [9], use stereopho-
togrammetry and employ multi IR cameras setup with retro-reflective
markers applied on the subject’s body;

– Markerless methods use computer-vision to perform pose estimation.
Markerless systems can employ an array of digital cameras in the visible
or IR spectrum, like Theia [26], or rely on single POV or multi view
RGB-D devices, like Kinect. Outputs, such as joints locations, can often
be overlaid on synchronized video recordings of the patient, especially
when using devices that integrate an RGB modality, enabling direct visual
assessment. Even when using portable systems, patient assessment outside
the laboratory remains limited by the camera’s field of view.

MoCap kinematics systems can also be paired with force plates [27] to directly
measure ground-reaction forces and moments, providing the external kinetics ground
truth required for inverse-dynamics computations.
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Introduction to Motion Capture

Figure 2.1: Frontal (A), lateral (B) and rear (C) view of a subject with multiple
Xsens IMU devices placed on the hip and right leg during a validation study. Image
obtained from Niswande, Wang et al. [22]: «Optimization of IMU Sensor Placement
for the Measurement of Lower Limb Joint Kinematics». under creative commons
license.

Figure 2.2: An example of a combined marker-based + force plate experimental
setup. Image obtained from Conceição, Lewis et al. [27] «An Evaluation of the
Accuracy and Precision of Jump Height Measurements Using Different Technologies
and Analytical Methods» under creative commons license.
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Introduction to Motion Capture

2.1.1 Marker based vs markerless optical motion capture
systems

Marker-based systems

Marker-based systems use an array of fixed infrared cameras surrounding the capture
volume. Motion capture is achieved via stereophotogrammetry by identifying Retro-
reflective markers attached to the subject in different views and triangulating their
3D positions according to a reference frame of 3 non aligned reference markers.

They are considered the gold standard [28] to obtain accurate representation
of the position and orientation of the body segments in both the spatial and time
domain due to their accuracy (≤ 1 mm) [7] and high frame rate (≥ 250 FPS) [9].

Their main limitations include the high entry cost, which makes them inaccessible
in application where the low cost is a necessity and their lack of portability, since
their setup must be located in a laboratory, which make them not available in
many rehabilitation and sports training applications [28].

Another technical limitation is the operator-dependent marker placement, which
requires a skilled operator to locate anatomical landmarks through palpation [29].
This operator discretionality can introduce systematic inter-study disagreement
bias that can exceed the system’s measurement uncertainty.

Markerless devices

Some multi-camera markerless systems, like Theia, employ at least six synchronized
cameras to segment subjects and reconstruct skeletal pose using computer-vision
algorithms, reaching excellent levels of agreement with state of the art marker-based
systems [30]. While they remove the need for marker placement, they share key
limitations of marker-based setups, such as the high cost and large setup space
requirements. Theia’s cameras can be setup outdoor, but a careful planning is
required to ensure optimal field of view for each camera. Furthermore, such systems
rely on pipelines that use proprietary calibration and processing software.

Cheaper markerless devices, like Kinect, commonly employ a single RGB-D
sensor to estimate the 3D scene within the frontal field of view (which is conical).
Depth values can be estimated using single POV devices in two ways [31]:

• Structured light: the device projects a known infrared (IR) speckle pattern
and an IR camera images the deformation this projected pattern goes through
diffusing on scene surfaces. Pattern disparities such as changes in clustering
are used with projector-camera intrinsic parameters to recover depth.

• Time-of-flight (ToF): the device emits pulsed or modulated IR light and
measures the round-trip time (or phase shift) of the returned signal at each
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Introduction to Motion Capture

pixel. Depth is computed from the propagation delay ∆t/2: since the speed
of light is a fundamental constant, d = c ∆t/2.

Their main advantages are portability, low cost, and plug-and-play operation
requiring minimal setup. Their main disadvantages are the lower accuracy (≥
8 mm) [8] and lower frame rate (15 − 30 FPS).

They usually rely on device-dependent deep learning models to perform subject
detection, body segmentation, skeletal tracking, and pose estimation.

2.2 The Azure Kinect device

Figure 2.3: Azure Kinect device sensors schematics and its comparison against
previous generations of Kinect devices, obtained from Tölgyessy, Dekan et al. [10]
«Evaluation of the Azure Kinect and Its Comparison to Kinect V1 and Kinect V2»
under creative commons license.

Some of the most widely available single-camera RGB-D devices come from
Microsoft’s Kinect product line. Launched in the 2010s and popularized by the
video game and AR industry, they represent a promising alternative to more
expensive MoCap systems to evaluate several kinematic parameters.

The Azure Kinect (K4A) is the fourth and last iteration of the series, introduced
in 2019. The device integrates several sensors in a portable form factor [10, 21, 32]:

• one RGB 12MP camera with resolution 3840 × 2160 (16:9) or 4096 × 3072
(4:3),

• one IR/depth-ToF 1MP camera with resolution 640 × 576 (Narrow FoV) or
1024 × 1024 (Wide FoV)

• one IMU with 3 axis accelerometer and 3 axis gyroscope (208 Hz)
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It outputs a Matroska file (.mkv) at 15 FPS (full resolution) with:

• an RGB channel with BGRA32 bit depth (3 × 8 bits for RGB, 1 × 8 bits for
α-channel)

• a Depth channel with DEPTH16 bit depth, natively converted to mm

• an IR channel with IR16 bit depth

• an array of six IMU tracks

2.2.1 Kinect Azure Body Tracking SDK Version 4 (K4ABT)
As anticipated in paragraph 2.1.1, the Azure Kinect performs motion capture
relying on a deep learning based pipeline. Azure Kinect Body Tracking SDK is an
API made available by Microsoft that enables developers to parse Azure Kinect
.mkv recordings to output multi-person, temporally coherent 32-joint 3D skeleton
estimates.

According to the available documentation [32], for every frame, a CNN is run on
the IR and depth channels to predict a set of 18 per-joint 2D confidence heatmaps
Hk(x, y) called Keypoint heatmaps. For each k ∈ K the local peaks of the kth

heatmap give the 2D keypoints that represent the best estimates of joint k’s
position. Having multiple candidates positions for each joint improves robustness
and help keep the tracking consistent in presence of occlusions.

A tracker object then attempt to construct limbs by generating 17 2-channels
vector fields, one per limb type. For each of the pixels that lie on that limb, the
vectors in the corresponding field point along the estimated limb direction. These
vector fields are called Part Affinity Fields. Integrating the PAFs along the line
segment that connects each pair candidate joints the tracker evaluates association
scores that enable the construction of each subject’s candidate skeleton from the
bottom up.

The same CNN predicts a set of 15 Body-part segmentation masks that estimate
per-pixels class probabilities for coarse anatomical parts. These semantic masks
provide dense spatial context to regularize the skeletal tracking.

Each of the skeletons grouped from the bottom up is assigned an ID, and a
Body Index map is generating mapping each pixel to the subject it belongs to. All
the other pixels are marked as background.

A 32-joints 3D skeleton is generated for each subject by back-projecting the 2D
keypoints in the 3D camera space coordinates using the depth information. This is
achieved by fitting an articulated skeleton model parametrized so that:
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Introduction to Motion Capture

• joint angles that are bounded by anatomical joint limits

• rotations and translations of joint centers are constrained

• body proportions are maintained via a person-specific scale factor estimated
from a statistical prior.

The skeleton model is regularized to maximize temporal (constrained speed)
and pose (pose prior) coherence.

The final output consists of a set of 32-joints skeletons, with 3D joints positions
expressed in millimeters in the camera reference frame, and joints orientations
expressed in quaternions. Each of the joint is also paired with a confidence level.

8



Chapter 3

Literature Review

3.1 Noise sources in Kinect recordings
Kinect recordings can be affected by noise that degrade the quality of the depth
reconstruction and disrupt the skeletal tracking performances, especially when a
markerless MoCap system and a markerless RGB-D device are used at the same
time to obtain a concurrent acquisition. This happens because both platforms
emit and sense in the IR spectrum. While the Kinect’s emission is too weak to
meaningfully affect the optical system, the strong IR illumination used by the Vicon
system can saturate the Kinect’s time-of-flight sensor and disturb its phase/return
measurements. The effect is further exacerbated by retroreflective markers, which
can reflect incident IR at very high intensity, producing bright blobs in the Kinect’s
IR images and artifacts in the depth images.

Mallick et.al. [11] tried to introduce a nomenclature to characterize the noise in
Kinect depth and IR images, providing two initial definitions:

• Spatial noise, defined as all kinds of noise observable within a single depth
frame.

• Temporal noise, defined as observed depth instability across various frames
that can be measured even when the scene has no motion.

Mallick measured the presence of both these types of noise in different experi-
mental conditions, and provided a series of parameters that influence noise intensity
of each class.

Naamebadi confirmed Mallicks results performing experiments on a static flat
surface [12] and on a mannequin [13], and provided two additional definitions:

• Active noise sources, defined as devices that actively injects IR light into
the scene.

9



Literature Review

• Passive noise sources, defined as objects (like the retroreflective markers)
that reflect IR light in the direction of the Kinect device at an intensity greater
than expected.

The results obtained by Naamebadi shows that passive noise sources contributed
more than active sources to variations in estimated bone lengths produced by
skeletal tracking.

The presence of retroreflective markers appears in IR images as points with
much higher intensity values than their surroundings and are readily segmented
via simple thresholding, as noted by Chatzitofis et al. [14](fig. 3.1-b). In depth
images, by contrast, they manifest as blob-like artifacts, as shown by Hesse et
al. [15], which are considerably harder to remove(fig. 3.1-d).
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Figure 3.1: Effects of retroreflective markers on infrared (IR) and depth images.
(a) IR channel without markers. (b) IR channel with markers: saturated, high-
intensity reflections at marker locations. (c) Depth channel without markers. (d)
Depth channel with markers: blobs caused by IR reflections during ToF depth
computation.
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3.2 Kinect validation studies
Multiple studies have attempted to validate the Azure Kinect, in combination
with deep-learning methods, for clinical motion-capture applications such as gait
analysis, sit to stand test, treadmill walking, with mixed results.

In 2020, Ma, Sheng, Hart, and Zhang [33] reported that, relative to a Vicon
ground truth in gait analysis, a dual-Azure Kinect motion-capture system produced
accurate knee angles (CMC = 0.87 ± 0.06, RMSE = 11.9◦ ± 3.4◦), moderate
agreement for hip sagittal angles (CMC = 0.60 ± 0.34, RMSE = 15.1◦ ± 6.5◦), and
poor validity for hip frontal/transverse and ankle angles.

In 2021, Ota et al. [34] showed that a single RGB-D camera combined with
an OpenPose-based posture-tracking algorithm achieved large associations and
moderate-to-excellent agreement with Vicon for sagittal-plane measures in treadmill
gait analysis, especially for knee angles and ROM, and ankle ROM. Peak knee flexion
during running (ICC = 0.93), knee ROM during slow walking (ICC = 0.91), and
hip flexion-extension ROM during running (ICC = 0.86) exhibited predominantly
fixed (non-proportional) biases, whereas pelvis metrics and hip frontal-plane angles
showed non-significant R2 and poor ICCs with both fixed and proportional biases.

In 2022, Chatzitofis et al. [14] presented a low-cost, real-time marker-based
motion-capture system using a sparse set of 3-6 Azure Kinect RGB-D sensors,
in which retroreflective markers are robustly segmented as saturated IR blobs
(despite creating depth “blind spots”); multi-sensor data are fused after a simple
single-marker wand calibration; and a Lite-HRNet variant of DeMoCap denoises
ghosting/missing markers to infer joints at 30 FPS.

In 2022, Thomas et al. [35] found that the Azure Kinect exhibited high
agreement with a 12-camera Vicon system in the sit-to-stand test for continuous
kinematic and spatiotemporal waveforms (all r > 0.711, R2 > 0.660). Despite
relatively high RMSE, strong correlations were observed for several discrete pa-
rameters, including phase-point detection and total time (r ≈ 0.99) and maximal
knee extension between phases 3-4 (r = 0.90). Medial-lateral pelvic sway, however,
showed poor agreement (r = 0.44, n.s.).

In 2022, Guess et al. [36] demonstrated that a single Azure Kinect (Body
Tracking SDK) yields spatiotemporal gait parameters in strong to very strong
agreement with a 12-camera Vicon system (r! ≥!0.87 across stride length, stride
time, step length, and step width), with mean stride-length differences of 35.6, mm
(left) and 39.1, mm (right; 3% of average stride length) and biases for step width
and stride time < 2% and < 1% of their respective averages, supporting clinically
relevant over-ground walking assessment.

In 2023, Hesse et al. [15] showed that their custom RGB-D-based markerless
tracker closely agrees with a marker-based Vicon reference across five motor tasks in
23 children and young adults (Mean Per Joint Position Error (MPJPE) = 11.7, mm;
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Probability of Correct Keypoint PCK50mm = 98.4, %; Pearson r > 0.95 for moving
joints and r > 0.99 for high-motion joints), whereas Azure Kinect Body Tracking
(K4ABT) exhibited frequent short tracking failures, especially with reflective
markers (no-body detections in 44/107 sequences), and larger errors (MPJPE
45.7, mm with markers, 26.9, mm without; PCK100mm = 95.5, % markerless),
indicating improved performance without markers but persistent limitations for
clinical motion analysis.

Across these studies, even when statistically significant agreement with marker-
based gold standards is achieved, this agreement usually involve only a narrow set
of joints or spatiotemporal parameters. Gains in accuracy for sagittal plane knee
or hip measures often causes worse estimates for frontal or transverse plane angles,
pelvic metrics, or ankle kinematics. Improvements in timing measures can come
with larger errors in joint angles, and vice-versa.

The reported pipelines are typically designed for the specific task examined and
include custom setups, fine tuned processing, custom machine learning algorithms,
ad hoc solutions. These choices increase performance on the specific parameters
measured for the target task, but reduce reproducibility. Transfer to different tasks
is limited, and changes in capture spaces or patient populations were not taken
into account.

To date, the potential of denoising diffusion models to remove artifacts in Kinect
depth data has not been systematically investigated.
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Chapter 4

Theoretical Background:
Generative AI

4.1 Diffusion Probabilistic Models
Denoising Diffusion Probabilistic Models (DDPMs) [20, 37, 38] are a class of
generative probabilistic models that operate in a latent space to denoise data,
such as images, by gradually reversing a diffusion process. Statistical diffusion
processes, as used in Denoising Diffusion Probabilistic Models, are inspired by
physical diffusion processes [39], such as the way particles disperse in space following
to the laws of Brownian motion. In a statistical diffusion process, each sample
in a dataset, that can be represented as a coordinate point in an n-dimensional
space at time t = 0, gradually moves away from its original position as random
noise with zero mean and small β variance is incrementally added over time. This
process resembles the random movement of particles in physical diffusion, where
the future position in space of each particle can be described probabilistically, given
its previous position.

4.1.1 Reverse process: Denoising
The DDPM can be trained on a dataset to perform the reverse (denoising) process
by maximizing the marginal likelihood on the training dataset. The marginal
likelihood quantifies the probability that the model, with parameters θ, would
generate the given data sample x0, considering all possible ways x0 could be
obtained through the generative process. The diffusion probabilistic model operates
over a set of latent variables [x0, . . . , xT ] each with the same dimensionality as x0,
corresponding to the sequence of every progressively noisier intermediate versions
of the original data that can be obtained adding random noise to x0 in small
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steps. Every possible sequence of latent space states x0:T is called a trajectory.
The computation of the marginal likelihood of observing x0 as the outcome of a
given sequence of latent intermediates (latent trajectory), marginalized over every
possible trajectory in the latent space, can be formulated as [37] integrating the
joint probability distribution of the entire trajectory through the latent space over
all possible values of the latent variables x1:T that can lead to x0.

pθ(x0) =
Ú

pθ (x0:T ) dx1:T (4.1)

The reverse (denoising) process along the trajectory x0:T , characterized by the
joint probability distribution pθ (x0:T ), is defined as a Markov chain with learned
gaussian transitions [37]: each step of the process only depends on the internal
state at the end of the previous iteration, and the probability of moving from
the intermediate noisy step xt to the slightly less noisy step xt − 1 is a Gaussian
function with learned parameters µ and Σ

pθ(xt−1 | xt) := N
1
xt−1; µθ(xt, t), Σθ(xt, t)

2
(4.2)

This characteristic distinguishes this models from other architectures frequently
used for denoising, like Recurrent Neural Networks such as Long Short Term
Memory (LSTM) networks, where the output is conditioned by an evolving hidden
memory of several previous states.

The joint probability [37, 39] of the full reverse trajectory x0:T , from random
noise xT to the original data sample x0, can be expressed as the product of the
conditional probabilities of each sequential transition of the Markov chain:

pθ(x0:T ) = p(xT )
TÙ

t=1
pθ(xt−1 | xt) (4.3)

4.1.2 Forward process: Adding noise
The forward diffusion process [37], which incrementally adds Gaussian noise to
x0 over T steps, can be represented as a Markov chain. At each step, a small
quantity of noise is added according to a predefined variance schedule β1, . . . , βT

with β ∈ [0,1]. The conditional probability of obtaining xt given xt−1 is defined as:

q(xt | xt−1) := N
3

xt;
ñ

1 − βt xt−1, βtI
4

(4.4)

By chaining together all T forward transitions in a trajectory x0:T , we obtain the
approximate posterior q(x1:T | x0), which defines the full forward process probability
distribution [37, 39]. This distribution expresses the probability of the entire latent
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trajectory x1:T , given the original data x0:

q(x1:T | x0) :=
TÙ

t=1
q(xt | xt−1) (4.5)

Equation (4.4) implies that at each step t of the forward process, we can obtain
xt from xt−1 by sampling from a normal distribution with mean

√
1 − βt xt−1 and

variance βt. The sampling operation from a Gaussian distribution with known
mean µ and variance σ2 can be interpreted as adding a bias equal to µ to a random
sample ε drawn from a standard (zero mean, unit variance) normal distribution
N (0, I), scaled by σ. Specifically, drawing a sample from N (µ, σ2I) is equivalent
to sampling ε ∼ N (0, I) and computing:

xsample = µ + σε, ε ∼ N (0, I) (4.6)

Given an initial data sample x0 and a predefined variance schedule β1:T , the for-
ward diffusion process of adding Gaussian noise at each timestep can be recursively
defined as follows:

x1 =
ñ

1 − β1 x0 +
ñ

β1 ε1

x2 =
ñ

1 − β2 x1 +
ñ

β2 ε2

x3 =
ñ

1 − β3 x2 +
ñ

β3 ε3

...

xt =
ñ

1 − βt xt−1 +
ñ

βt εt (4.7)

where ε1, ε2, . . . , εt ∼ N (0, I) are independent Gaussian noise samples.
Because each step in the forward diffusion process consists of a linear transfor-

mation followed by the addition of independent Gaussian noise, the composition
of multiple steps remains Gaussian. As a result, we can analytically derive a
closed-form expression for the arbitrary timestep t of the forward process:

xt =
√

ᾱt x0 +
√

1 − ᾱt ε, ε ∼ N (0, I) (4.8)

Here, αt := 1 − βt is the retained signal coefficient at step t, and ᾱt := rt
s=1 αs

is the cumulative product of these coefficients up to timestep t, representing the
total amount of signal preserved after t steps of noise injection.

The expression in Eq. (4.8) describes the sampling xt at an arbitrary timestep t
by combining the original data sample x0 with Gaussian noise ε in a closed form.
Since ε is sampled from a standard normal distribution and both scaling operations
are linear, this implies that xt itself is distributed according to a Gaussian. The
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closed-form expression for the marginal conditional distribution of xt given x0 can
be written as:

q(xt | x0) = N
1
xt;

√
ᾱt x0, (1 − ᾱt) I

2
(4.9)

which describes the probability density of xt given the clean input x0 at any
timestep t, allowing xt to be sampled directly from a Gaussian distribution whose
parameters depend on x0 and the variance schedule coefficients β1:T , without
recursively iterating through all previous diffusion steps.

By combining the expression of the marginal conditional distribution q(xt | x0)
derived in Eq. (4.9)1, with the forward transition distribution q(xt | xt−1) defined
in Eq. (4.4), Bayes theorem (Eq. (4.10)) can be applied to derive the closed-form
expression of the true Bayesian posterior q(xt−1 | xt, x0) of the forward Markov
chain (Eq. (4.11))2:

q(z | x) = p(x | z) · p(z)
p(x) (4.10)

q(xt−1 | xt, x0) = q(xt | xt−1) · q(xt−1 | x0)
q(xt | x0)

(4.11)

To compute the posterior, we use the identity for the product of Gaussians:

N (x; µ1, Σ1) · N (x; µ2, Σ2) = C · N (x; µout, Σout) (4.12)

C = N
1
x = µ1; µ2, (Σ1 + Σ2)

2
Σout =

1
Σ−1

1 + Σ−1
2

2−1

µout = Σout
1
Σ−1

1 · µ1 + Σ−1
2 · µ2

2
Applying this to the likelihood q(xt | xt−1) and the two marginals q(xt−1 | x0)

and q(xt | x0) as they appear in the Bayes theorem formulation, we obtain:

q(xt−1 | xt, x0) = C · N
1
xt−1; µ̃t(xt, x0), β̃tI

2
(4.13)

with the posterior distribution parameters defined as:

1Evaluated at timesteps t and t − 1 to obtain q(xt | x0) and q(xt−1 | x0).
2In this context, the likelihood term q(xt | xt−1) is used in place of the conditional q(xt |

xt−1, x0) because the forward process is a Markov chain. This means that each state xt depends
only on its immediate predecessor xt−1, and is conditionally independent of the original data x0,
i.e., (q(xt | xt−1, x0) = q(xt | xt−1).
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C = N
1
x = xt;

√
ᾱtx0, (1 − ᾱt)I

2
C is exactly q(xt | xt−1)

β̃t = (1 − ᾱt−1) βt

1 − ᾱt

(4.14)

µ̃t(xt, x0) =
√

ᾱt−1 βt

1 − ᾱt

x0 +
√

αt (1 − ᾱt−1)
1 − ᾱt

xt (4.15)

Given the initial data sample x0, the predefined variance schedule β1:T and the
intermediate latent sample xt at timestep t, the latent state xt−1 at timestep t − 1
can be sampled from the true posterior as:

xt−1 =
A√

ᾱt−1 βt

1 − ᾱt

x0 +
√

αt (1 − ᾱt−1)
1 − ᾱt

xt

B

+
ó

(1 − ᾱt−1) βt

1 − ᾱt

· ε, ε ∼ N (0, I) (4.16)

4.1.3 Training
While the true posterior distribution derived in Eq. (4.13) is known in closed form
and can be used to sample xt−1 deterministically, it depends on the original clean
sample x0, which is not accessible at inference time. The training goal is therefore
to train a model with learned parameters θ that is able to infer the parameters1
µθ(xt, t), Σθ(xt, t)

2
at each timestept, without access to x0, such that the reverse

transition distribution pθ(xt−1 | xt), defined in Eq. (4.2), closely approximates the
true posterior q(xt−1 | xt, x0).

θ∗ : pθ∗(xt−1 | xt) ≈ q(xt−1 | xt, x0). (4.17)

The training goal can be translated into optimizing the model parameters θ to
maximize the marginal likelihood pθ(x0) of the data under the generative model.
This corresponds to making the observed data sample x0 highly probable under
the generative process, independently of the latent trajectory x1:T .

Since it is impossible to compute the marginal likelihood as the integral in
Eq. (4.1) over the entire latent space, we apply Jensen’s inequality (Eq. (4.18)) to
the logarithm of the marginal likelihood (Eq. (4.19)) in order to derive a logarithmic
variational lower bound of the marginal likelihood to use as computable training
heuristic. This heuristic is the Evidence Lower Bound, or ELBO, given in Eq. (4.20):

E[f(X)] ≤ f(E[X]) ∀f : f(λx + (1 − λ)y) ≥ λf(x) + (1 − λ)f(y) (4.18)
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log pθ(x0) = log
Ú

pθ(x0, x1:T ) dx1:T (4.19)

= log
Ú q(x1:T | x0)

q(x1:T | x0)
pθ(x0, x1:T ) dx1:T

= logEq(x1:T |x0)

C
pθ(x0, x1:T )
q(x1:T | x0)

D

log Eq(x1:T |x0)

C
pθ(x0:T )

q(x1:T | x0)

D
≥ Eq(x1:T |x0)

C
log pθ(x0:T )

q(x1:T | x0)

D
:= ELBO (4.20)

The ELBO formulation in Eq. (4.20) depends only on probability distributions
that have already been defined in closed form: the forward process estimated
posterior in Eq. (4.5) and the reverse process joint distribution in Eq. (4.3).

The training goal therefore becomes minimizing the negative ELBO, which
provides an upper bound to the expected value of the negative log-likelihood of the
data [37].

L := Eθ [− log pθ(x0)] ≤ Eq(x1:T |x0)

C
− log pθ(x0:T )

q(x1:T | x0)

D
(4.21)

L = Eq(x1:T |x0)

C
− log p(xT )rT

t=1 pθ(xt−1 | xt)rT
t=1 q (xt | xt−1)

D

= Eq(x1:T |x0)

C
− log p(xT ) − log pθ(x0 | x1)

q(x1 | x0)
− log

TÙ
t=2

pθ(xt−1 | xt)
q(xt | xt−1)

D
(4.22)

By applying Bayes theorem (Eq. (4.10)), the single-step forward transition
distribution in Eq. (4.4) can be rewritten in terms of the closed-form true posterior
(Eq. (4.13)) and the marginals q(xt | x0) and q(xt−1 | x0) as:

q(xt | xt−1) = q(xt−1 | xt, x0) · q(xt | x0)
q(xt−1 | x0)

. (4.23)

The logarithm of the products can therefore be expanded as:

log
TÙ

t=2

pθ(xt−1 | xt)
q(xt | xt−1)

= log
TÙ

t=2

pθ(xt−1 | xt)
q(xt−1 | xt, x0)

· q(xt−1 | x0)
q(xt | x0)

(4.24)

= log
TÙ

t=2

pθ(xt−1 | xt)
q(xt−1 | xt, x0)

+ log
TÙ

t=2

q(xt−1 | x0)
q(xt | x0)

= log
TÙ

t=2

pθ(xt−1 | xt)
q(xt−1 | xt, x0)

+ log q(x1 | x0)
q(xT | x0)
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The loss function can be expanded as a sum of logarithms equal to the logarithm
of the products and regrouped as follows:

L = Eq(x1:T |x0)

C
− log p(xT ) − log pθ(x0 | x1)

q(x1 | x0)
− log

TÙ
t=2

pθ(xt−1 | xt)
q(xt | xt−1)

D
,

= Eq(x1:T |x0)

C
− log pθ(x0 | x1) −

TØ
t=2

log pθ(xt−1 | xt)
q(xt−1 | xt, x0)

− log p(xT )
q(xT | x0)

D
(4.25)

The parametric loss function can be rewritten using the Kullback-Leibler di-
vergence DKL, which is a measure of the discrepancy between two probability
distributions q(x) and p(x), and is defined as:

DKL
1
q(x) ∥ p(x)

2
= Eq(x)

C
log q(x)

p(x)

D
(4.26)

= 1
2

C
k

A
σ2

1
σ2

2
− 1 − log σ2

1
σ2

2

B
+ 1

σ2
2

∥µ1 − µ2∥2
D

(4.27)

Using this definition, the loss can be decomposed as the sum of three contribu-
tions: [37]

L = Eq(x1:T |x0)

C
− log pθ(x0 | x1) +

TØ
t=2

log q(xt−1 | xt, x0)
pθ(xt−1 | xt)

+ log q(xT | x0)
p(xT )

D
= L0 + Lt−1 + LT (4.28)

where:

L0 is the reconstruction term, corresponding to the negative log-likelihood of
the original data sample x0 conditioned on the first latent x1:

L0 = Eq(x1:T |x0) [− log pθ(x0 | x1)] (4.29)

L0 depends on the trainable parameters θ through the conditional
distribution pθ(x0 | x1), and its role is similar to that of a decoder, mapping
latent representations back to the original sample space.

Lt−1 is the regularization term, defined as the sum of Kullback-Leibler divergences
between the true posterior and the learned reverse transition distribution at
each intermediate timestep:

Lt−1 =
TØ

t=2
DKL

1
q(xt−1 | xt, x0) ∥ pθ(xt−1 | xt)

2
(4.30)
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Lt−1 depends on the trainable parameters θ and represent the agreement
between the parametric reverse transition distribution pθ(xt−1 | xt) and the
true posterior (q(xt−1 | xt, x0). Its optimization θ∗ = arg minθ DKL

1
q(xt−1 |

xt, x0) ∥ pθ(xt−1 | xt)
2

fulfills the training objective defined in Eq. (4.17)

LT is the prior-matching term, which enforces consistency between the terminal
forward distribution and the prior p(xT ):

LT = DKL
1
q(xT | x0) ∥ p(xT )

2
(4.31)

LT does not depend on θ, since both q(xT | x0) and the prior p(xT ) =
N (0, I) are fixed, and can be ignored during training.

4.1.4 Simplified training
A simplified training objective can be defined by focusing on minimizing Lt−1,
rather than optimizing the full set of components L0, Lt−1, LT .

As stated before in Eq. (4.17), the training aims is to learn a reverse transition
distribution pθ(xt−1 | xt) := N (xt−1; µθ(xt, t), Σθ(xt, t)) (Eq. (4.2)), that closely
matches the true posterior q(xt−1 | xt, x0) := N

1
xt−1; µ̃t(xt, x0), β̃tI

2
(Eq.(4.13)).

Firstly, Σθ(xt, t) is set to match the true posterior variance β̃t (Eq. (4.14)) at
timestep t:

Σθ(xt, t) = β̃tI = (1 − ᾱt−1) βt

1 − ᾱt

(4.32)

This means that, having defined a variance schedule β1:T for the forward process,
the corresponding posterior variances β̃1:T are obtained in closed form, mirroring
the schedule structure of β1:T . They are not learned and depend only on the
timestep t, since each β̃t is directly determined by βt through Eq. (4.32).

For two distributions with the same variance Eq. (4.27) becomes:

DKL
1
q(x) ∥ p(x)

2
= 1

2

C
1
σ2

2
∥µ1 − µ2∥2

D
(4.33)

The Lt−1 (Eq.(4.30)) loss can therefore be written as

Lt−1 =
TØ

t=2
Eq

C
1

2β̃t

...µ̃t(xt, x0) − µθ(xt, t)
...2
D

(4.34)

According to this parameterization, a model µθ(xt, t) with parameters θ could
be trained to predict the true posterior mean µ̃t(xt, x0) from xt by minimizing Lt−1.
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An alternative parametrization can be obtained by constructing an unbiased
estimator of Lt−1. This is done by uniformly sampling a single random timestep
t ∼ Uniform(1, T ), and generating xt according to Eq. (4.8), which defines xt as a
function of the clean sample x0 and a noise sample ε ∼ N (0, I).

The true posterior mean µ̃t(xt, x0) (Eq. (4.15)) can be rewritten as a function
of xt(x0, ε):

µ̃t(xt, x0) = µ̃t

3
xt(x0, ε), 1√

ᾱt

1
xt(x0, ε) −

√
1 − ᾱt ε

24
=

√
ᾱt−1 βt

1 − ᾱt

1√
ᾱt

1
xt(x0, ε) −

√
1 − ᾱt ε

2
+

√
αt (1 − ᾱt−1)

1 − ᾱt

xt(x0, ε)

=
C

βt

(1 − ᾱt)
√

αt

+
√

αt(1 − ᾱt−1)
1 − ᾱt

D
xt(x0, ε) − βt√

αt

√
1 − ᾱt

ε

= 1
√

αt

xt(x0, ε) − βt√
αt

√
1 − ᾱt

ε

= 1
√

αt

A
xt(x0, ε) − βt√

1 − ᾱt

ε

B
(4.35)

The loss function can also be rewritten as a function of xt(x0, ε) (up to a constant
C that is independent of the parameters θ):

Lt−1 − C = Ex0, ε

 1
2β̃t

..... 1
√

αt

A
xt(x0, ε) − βt√

1 − ᾱt

ε

B
− µθ

1
xt(x0, ε), t

2.....
2
 (4.36)

Instead of training µθ(xt, t) to match the forward process posterior mean µ̃t, the
estimator µθ can be parameterized to match the formulation of µ̃t(xt, x0):

µ̃θ(xt, t) = µ̃θ

3
xt(x0, ε), 1√

ᾱt

1
xt(x0, ε) −

√
1 − ᾱt εθ(xt(x0, ε), t)

24
= 1

√
αt

A
xt(x0, ε) − βt√

1 − ᾱt

εθ(xt(x0, ε), t)
B

(4.37)

The newly parameterized estimator can be substituted into Eq. (4.36) to obtain

µ̃t(xt, x0) − µθ(xt, t) = 1
√

αt

C
− βt√

1 − ᾱt

ε + βt√
1 − ᾱt

εθ(xt(x0, ε), t)
D

(4.38)

= −βt√
αt

√
1 − ᾱt

(ε − εθ(xt(x0, ε), t)) (4.39)
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Therefore,

∥µ̃t(xt, x0) − µθ(xt, t)∥2 = β2
t

αt (1 − ᾱt)
∥εθ(xt, t) − ε∥2 (4.40)

and the loss becomes

Lt−1 − C = Ex0, ε

C
1

2β̃t

β2
t

αt (1 − ᾱt)
∥εθ(xt(x0, ε), t) − ε∥2

D
(4.41)

= Ex0, ε

C
β2

t

2 β̃t αt (1 − ᾱt)

...ε − εθ

1√
ᾱt x0 +

√
1 − ᾱt ε, t

2...2
D

(4.42)

In this parameterization, a model εθ(xt(x0, ε), t) with parameters θ is trained to
predict the noise sample ε from xt(x0, ε). With t, x0, ε known during training.
The loss function in Eq. (4.42) is equivalent to the mean squared error (MSE)
between the true noise sample ε and the model prediction εθ(xt, t), scaled by a
timestep-dependent constant factor β2

t

2 β̃t αt (1−ᾱt) . In practice, the constant weighting
factor in Eq. (4.42) can be omitted, leading to the simplified objective [37]:

Lsimple(θ) := Et, x0, ε

5...ε − εθ

1√
ᾱt x0 +

√
1 − ᾱt ε, t

2...2
6

(4.43)

which corresponds to minimizing the mean squared error between the true noise
sample ε and the model prediction εθ at randomly chosen timesteps t uniformly
sampled between 1 and T.

A prediction of the intermediate denoised step xt−1 can be sampled from the
learned reverse transition distribution pθ(xt−1 | xt) by computing

x̂t−1 = 1
√

αt

A
xt − βt√

1 − ᾱt

εθ(xt, t)
B

+
ñ

β̃tz z ∼ N (0, I) (4.44)

The additional term
ñ

β̃t z represents sampling noise, introduced to model
the stochasticity of the reverse diffusion process as a Gaussian process so that
pθ(xt−1 | xt) remains a Gaussian distribution.

4.2 Variational Autoencoders
A Variational Autoencoder (VAE) [38, 40] is a statistical model composed of
a matched encoder decoder pair (Eϕ, Dθ) that learns a lower dimensional rep-
resentation of data in a latent space. The encoder Eϕ maps the data samples
x ∈ RH×W ×C into a latent space representation z ∈ RHL×WL×CL , while the decoder
Dθ reconstructs the data from the latent variables, i.e. x̂ = B(z).
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4.2.1 Encoding process
The encoders learns a gaussian approximate posterior [40]:

qϕ(z | x) = N
1
z; µϕ, σϕ

2I
2

(4.45)

parametrized by neural networks with parametersϕ predicting the mean µϕ and
the variance σϕ

2. A latent representation z of the datasample x can be sampled
from qϕ(z | x) by reparameterization:

z = µϕ(x) + σϕ(x)ε ε ∼ N (0, I) (4.46)

Equation (4.46) express z as a function of the estimated mean µϕ and variance σ2
ϕ

and a random sample ε.

4.2.2 Decoding process
The decoder learns a conditional likelihood [40]:

pθ(z | x) = N
1
z; µθ, σθ

2I
2

(4.47)

parametrized by neural networks with parameters θ predicting the mean µθ and
the variance σθ

2.

4.2.3 Training
The logarithm of the marginal likelihood is the sum of the log likelihood of each
sample, which is generally intractable:

log pθ(x1:N) =
NØ

i=1
log pθ(x(i)) (4.48)

pθ(x(i)) =
Ú

pθ(z) pθ(x(i) | z) dz (4.49)

Applying Jensen’s inequality (Eq. (4.18)) and using Bayes theorem (Eq. (4.10)) to
derive the true posterior for z, the logarithm of the marginal likelihood of datapoint
x(i) becomes

log pθ

1
x(i)

2
= Eqϕ(z|x(i))

5
log pθ

1
x(i), z

2
− log qϕ

1
z | x(i)

2 6
ü ûú ý

L(θ,ϕ; x(i))

(4.50)

+ DKL

3
qϕ(z | x(i))

.... pθ(z | x(i))
4

(4.51)
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Since the DKL is a non negative quantity, the variational lower bound of the log
likelihood can be quantified as [40]:

L(θ, ϕ; x(i)) = Eqϕ(z|x(i))

è
log pθ(x(i) | z)

é
− DKL

1
qϕ(z | x(i)) ∥ pθ(z)

2
(4.52)

The training objective becomes minimizing the negative lower bound:

−L(θ, ϕ; x(i)) = −Eqϕ(z|x)[log pθ(x | z)] + DKL
1
qϕ(z | x) ∥ pθ(z)

2
(4.53)

The prior distribution of z is set to pθ(z) = N (0, I) to fit the latent space repre-
sentation to a standard normal distribution. Having parametrized the posterior
qϕ(z | x) (Eq. (4.45)) to a gaussian distribution, and having sampled z according
to Eq.(4.46), the Variational Autoencoder loss LVAE becomes [40]:

LVAE(x(i)) = − L(θ, ϕ; x(i)) ≈ 1
2

JØ
j=1

1
(µ(i)

j )2 + (σ(i)
j )2 − log(σ(i)

j )2 − 1
2

ü ûú ý
KL
1

qϕ(z|x(i)) ∥ N (0,I)
2

− 1
L

LØ
l=1

log pθ

1
x(i) | z(i,l)

2
ü ûú ý
negative expected log-likelihood

(4.54)
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Chapter 5

Methods

5.1 Image dataset and preprocessing
All images used for this thesis were previously collected at the VUB Rehabilitation
Research Center (RERE) [16] in Jette, Belgium. Eight able-bodied young adults
(four females and four males) aged 18 to 25 years were selected as test subjects.
Each subject was asked to perform four simple exercises, executed at a slow pace
of 20 bpm [17]. Exercise descriptions are displayed in Table 5.1.

SAB Bilateral shoulder abduction
KFB Squat (Knee flexion)

HABR Right hip abduction with right arm abduction
HABL Left hip abduction with left arm abduction

Table 5.1: Exercises performed by the test subjects

Two acquisitions were performed for each exercise, one acquired using only the
Azure Kinect device and without markers and the other acquired during a concurrent
acquisition with the Vicon system, with marker applied on the subject’s body. For
the concurrent acquisition a total of 49 markers were placed by undergraduate
Physiotherapy students in relevant positions of the subject’s body: 39 placed
accordingly to the conventional Optitrack marker set positions, 4 wand markers on
the Tight and the Tibia, and 6 additional markers following the Vicon upper-body
marker set.

The experimental setup (fig. 5.1) involved a Azure Kinect RGBD camera with
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ToF depth estimation technology placed 200 cm in front of the subject and 130 cm
from the ground. Concurrent acquisitions also involved 14 Vicon Vero cameras
evenly spaced around the subject for motion capture, and 2 Vicon Vue cameras
capturing high-definition images of the subject in the frontal and sagittal plane.
Both Vicon Vero and Vicon Vue cameras were set to a 100 Hz acquisition frame-rate.

Figure 5.1: Experimental setup: aerial and lateral view of the lab with the 14+2
Vicon system cameras, marker placement. Courtesy of the RERE Center (VUB).

5.1.1 Preprocessing steps
A series of preprocessing steps has been implemented (Fig. 5.2.a), aiming to obtain
a set of clean images for training the denoising model.
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The main focus of preprocessing was to separate the subject from the background
and to optimize the dynamic range of the images.

Step 1: Thresholding
The pixel values of the depth image (Fig. 5.2.b) have been thresholded between
the values of 1,000 mm and 4,000 mm to remove non-zero pixels that were too
close to the camera and objects in the background. This step was necessary
to avoid the presence of confusing elements during the training process of the
diffusion model. Pixels outside the aforementioned interval, as well as clusters
of pixels too small to belong to the subject, were set to zero and assigned to
the background.

Step 2: Zeroing out Rows and Columns outside the Subject’s silhouette
The image intensity histograms along the x and y axes were computed by sum-
ming the intensity of the pixels across the columns and the rows, respectively.
These histograms were used to estimate the bounding box of the subject’s
silhouette. Pixels outside the silhouette of the subject were zeroed out to
reduce the background noise (Fig. 5.2.c).

Step 3: Z-Score Normalization and Intensity scaling
The depth values, originally measured in millimeters, were normalized to
dimensionless values using the Z-score normalization, according o the formula:

Zscore = x − µ

σ
(5.1)

The Z-score values were then clipped to a range going from -2 to +2 and
finally scaled to the [0, 1] interval to match the expected input format of the
Python libraries used for training the models (Fig. 5.2.d).

Step 4: ROI identification and extraction
The center of the Region of Interest has been identified as the pixel whose
row index is the center value of all rows containing non-zero pixels, and whose
column index is the center value of all columns containing non-zero pixels. A
square ROI large enough to contain all the pixels that belong to the subject
was extracted from the image and then resized to a fixed 256 × 256 size
(Fig. 5.2.e).
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Figure 5.2: Preprocessing steps: a)Original Image b)Background removed apply-
ing a threshold c)Silhouette of the subject, zeroed out lateral columns d)Intensity
range Normalization e)ROI Extraction

Exclusion Criteria

Some of the images presented a higher number of missing pixel values, falling below
the quality level we considered necessary for training an image-based generative
model. For that reason we implemented an exclusion criterion computed as the
sum of the pixel values divided by the total number of pixels.

R = Σi∈rowsΣj∈columns[Ii,j]
nrows × ncolumns

(5.2)

Outlier images, whose ratio fell below the distribution of the other pictures in
the dataset, were excluded from the construction set. We concluded that in the
Kinect-only, marker-less acquisition this affected 3.36% of the images. In the
concurrent Vicon + Kinect acquisitions, where markers were applied on the subject,
this percentage rose to 24.58% of the images.

Figure 5.3: Excluded images a) Images without markers excluded from the
training set b) Images with markers excluded from the test set

5.1.2 Dataset partitioning into Construction Set and
Test Set

Six of the original eight subjects were included in the Construction Set (three males
and three females), while the remaining two (one male and one female) were used
as a test set. For each of the training sessions, 80% of the images of each subject in
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the construction set were used as the training set, while the other 20% were used
as a validation set during the training process.

Construction Set 6 Subjects 26 103 Images 80% Training set 20 882 Images
20% Validation set 5 221 Images

Test Set 2 Subjects 10 667 Images

Table 5.2: Dataset partitioning into construction and test sets.

5.2 AI denoising framework development

5.2.1 Model architecture
The architecture proposed [38, 20] comprises an autoencoder, consisting of an
encoder designed to produce a reduced latent-space representation of the image
and a symmetric decoder capable of reverting back to the original image from its
latent representation, and a diffusion model, which has been trained to iteratively
remove noise from the depth images, also operating in the latent space.

The autoencoder is implemented as a three-layer neural network with 64, 128,
and 256 channels respectively that accepts a 1 × 256 × 256 grayscale depth image
as input and outputs a 3 × 64 × 64 three-channels latent space representation. The
down-sampling is obtained with strided convolution and group normalization is
performed at each layer [41].

The diffusion model is implemented as a Monai Diffusion U-Net model: it receives
the 3 × 64 × 64 autoencoder output with added random Gaussian noise pattern of
the same size, processes it through a contracting path of two convolutional layers
of 64 and 128 channels for feature extraction, processes it through a 128 channel
bottleneck to predict the added noise contribution to the noised image, and then
up-sample it through a symmetric diverging path to obtain a 3 × 64 × 64 prediction
of the noise pattern [19].

5.2.2 Variational Autoencoder training
The autoencoder was trained for 400 epochs employing an adversarial strategy
in which the autoencoder was used as an image generator and paired with a
discriminator concurrently trained to distinguish images from the original training
set from images reconstructed using only their latent-space representation. This
strategy was adopted to ensure meaningful feature selection and minimize loss of
information during the encoding process.
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For each iteration, a batch B̂ of 32 preprocessed grayscale depth images was fed
to the model to extract an output consisting of:

B: The output of the decoder branch of the autoencoder U-net, consisting in a
set of reconstructed images obtained from the latent space representation of
the original batch B̂ of images.

µ: The mean value of the latent space distribution.

σ: The standard deviation of the latent space distribution.

The generator loss was computed as a linear combination of four terms, each
one representing a different performance parameter [38, 20, 41]:

LG = L1 + w1 · KLdiv + w2 · LG
perc + w3 · LG

adv (5.3)

where:

L1 is the pixel-wise L1 loss computed as the mean absolute error between the
pixel intensity values of B and B̂

L1 = 1
BS × m × n

BSØ
b=1

mØ
i=1

nØ
j=1

---I∈B
b, i, j − I∈B̂

b, i, j

--- with BS = 32 (batch size)

KLdiv is the Kullback-Leibler divergence that measures the deviation of the latent
space distribution from a zero-mean, unit-variance normal distribution

DKL(q(z|x) ∥ N (0, I)) =
Ú

q(z|x) log
A

q(z|x)
N (0, I)

B
dz

= Ez∼q(z|x) [log q(z|x) − log N (0, I)]

= 1
2
1
∥µ∥2 + Tr(Σ) − log det Σ − d

2

LG
perc is the generator perceptual loss, that measure the perceptual differences

between the original and the reconstructed image. It is evaluated using a
pretrained AlexNet convolutional neural network for feature extraction. It is
computed as the mean square error (MSE) between the feature map extracted
from the original images and the feature map extracted from the reconstructed
images:

Lperceptual =
LØ

l=1

1
Nl

∥ϕl(xrecon) − ϕl(xtrue)∥2 (Nl: features in layer l)
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LG
adv is the generator adversarial loss, that measures how well the generator can fool

the discriminator by producing synthetic images that are indistinguishable
from real ones (False Positives). It is computed as the Binary Cross-Entropy
(BCE) between the discriminator’s output on synthetic samples B and a target
label of 1:

LG
adv = BCE(D(B), 1) = − log(D(B))

w1, w2, w3 are the scalar weights that balance the contribution of each metric to the total
loss

On the other hand, the discriminator loss was computed as the mean of two
adversarial loss terms. The first is the Binary Cross-Entropy (BCE) between the
discriminator’s output on real images B̂ and a target label of 1; this parameter
measures how well the discriminator classifies real images as real. The second is the
BCE between the discriminator’s output on synthetic images B and a target label
of 0; this parameter measures how well the discriminator recognizes fake images as
fake.

LD = 1
2
1
Lreal

D + Lfake
D

2
= 1

2
1
BCE(D(B̂), 1) + BCE(D(B), 0)

2
= 1

2
1
− log(D(B̂)) − log(1 − D(B))

2
The generator and discriminator losses were then backpropagated by computing

the gradients of each loss with respect to their corresponding network trainable
parameters. During the generator update, the discriminator’s weights were kept
constant, and vice versa. These gradients were then used to update the model
weights using the Adam optimizer.

Every 5 epochs a validation step was performed, in which the performances
of the current iteration of the model was tested by computing the generator loss
on the validation set. If the validation loss obtained during any validation check
happened to be lower than any previously recorded value, the corresponding state
of the model was saved in memory.

After the training was completed, the model training state corresponding to the
checkpoint on which the lowest validation loss was achieved, was serialized in a
JSON dictionary to be saved to disk.
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5.2.3 Denoising Diffusion Probabilistic Model training
The Denoising Diffusion Probabilistic Model (DDPM) was trained for 600 epochs
on batches of 16 images. At each iteration, Gaussian noise patterns matching the
encoded images’ spatial dimensions were generated by sampling random values
from a standard normal distribution with zero mean and unit variance. These
noise patterns were used to degrade the original encoded images simulating a
diffusion process that follows the timestep dependent formula (Eq. (4.8)) described
in paragraph 4.1.2:

Xt =
√

ᾱt · X0 +
√

1 − ᾱt · εn, εn ∼ N (0, I)

In this case the timesteps t used to compute the cumulative product of the
corresponding noise schedule coefficients ᾱt = rt

s=1(1 − βs) (where βs ∈ (0, 1)
are the values of the noise variance schedule) were uniformly sampled between 0
and the maximum number Tmax of denoising steps we want the model to be able
to handle. The term εn is the Gaussian noise pattern generated at the current
iteration of the training process.

The actual training step consisted of feeding the degraded images, the corre-
sponding known noise patterns, and the timesteps into the diffusion model inferer
to obtain the model output, consisting of a prediction ε̂n of the original noise
pattens εn.

The loss is then computed as the Mean absolute Error between the known noise
patterns and the model’s prediction, averaged on whole the batch [37, 19]:

MSE = 1
Bs × n × m

BsØ
b=1

nØ
i=1

mØ
j=1

(εb,i,j − ε̂b,i,j)2 with BS = 16 (batch size)

The loss was finally backpropagated through the network to compute gradients,
which were then used to update the model parameters via the Adam optimizer.
Validation checks were performed every 5 epochs, and the checkpoint with the
lowest validation loss was saved to disk.

5.2.4 Guided Denoising Probabilistic Diffusion Model
inference for inpainting missing pixels

The trained Denoising Diffusion Probabilistic Model is capable of transforming
random noise into meaningful synthetic images that resemble those included in the
training set. This means that, by feeding a random noise pattern of the appropriate
size into the model, the output will be a depth image depicting a subject performing
one of the four exercises represented in the training set. The specific exercise
depicted is not predetermined either, but emerges from the stochastic nature of
the generative process and the random noise input instead [38, 20].
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In contrast, our goal is to perform inpainting on images affected by artifacts
caused by retro-reflective markers, characterized by the presence of blob-like clusters
of missing pixel values. For that reason, we need to be able to control the generation
process, guiding the model to infer only the missing data using the undamaged
areas of the image as fixed boundary conditions without overwriting them.

The algorithm used to perform inpainting is based on the assumption that each
image to be inpainted can be partitioned into two distinct and complementary
subsets: the first containing all and only the known values of the pixels that are
unaffected by artifacts, and the second containing all and only the pixels with
unknown values [19, 42].

These areas can be identified by a binary mask M of the same size as the image,
where pixels corresponding to the undamaged regions are marked as 1, and those
corresponding to the missing areas to be inpainted are marked as 0.

Denoting by P the float matrix representation of the image pixels and by M
the binary mask, we can define the matrices PK and PU as the subsets of known
and unknown pixels, respectively.

PK = P ⊙ M (5.4)
PU = P ⊙ (1 − M) (5.5)

The inpainting algorithm proceeds as follows:

Step 1: Define a diffusion schedule by generating a sequence of βt coefficients for
t = 1, . . . , Tmax, where each βt ∈ (0, 1) controls the amount of noise added at
diffusion step t.

Step 2: Initialize a random matrix PI with the same size as the image P by sampling
a random Gaussian noise distribution εu ∼ N (0, I). This matrix will be the
template upon which the inpainted image will be generated.

Step 3: Feed PI as input to the diffusion model to obtain an estimate of εu at timestep
t and to perform a small denoising step.
The model assumes a noise variance consistent with the cumulative product of
the forward process noise schedule at timestep t, defined as ᾱt = rt

s=1(1 − βs).
Using this, the model estimates the noise as:

ε̂(t)
u = DDPM(P (t)

I , t) εu ∼ N (0, I)

This prediction is then used to compute the intermediate synthetic image:

P̂
(t−1)
U = µt(P (t)

I , t) + σt · εs, εs ∼ N (0, I)

= 1
√

αt

A
P

(t)
I −

A
1 − αt√
1 − ᾱt

B
· ε̂u

1
P

(t)
I , t

2B
+
ó31 − ᾱt−1

1 − ᾱt

· βt

4
· εs,
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In this formula, the first term represents the predicted pixel values after
partially removing noise from the current inpainted image, while the second
term introduces sampling noise to account for the uncertainty resulting from
the use of the estimated ε̂u(P (t)

I , t), given that the true noise value εu(P (t)
I , t)

is unknown. This is because the observed noisy image, originally initialized as
random noise, is assumed to be the outcome of an unknown forward diffusion
process.

Step 4: Degrade the known pixel image PK by adding an amount of noise corresponding
to the timestep t-1 of the scheduler, as defined by the time-dependent scheduler
equation:

P̂K

(t−1) =
√

ᾱt · PK +
√

1 − ᾱt · εk, εk ∼ N (0, I)

where ᾱt = rt
s=1(1 − βs) represents the cumulative product of the noise

schedule coefficients from 0 to t, βs ∈ (0, 1) are the values of the noise variance
schedule, and εk is sampled from standard Gaussian noise.

Step 5: Combine the two intermediate results using the known pixel mask M to obtain
the inpainted image at step t − 1 as follows:

P
(t−1)
I = P

(t−1)
K ⊙ M + P

(t−1)
U ⊙ (1 − M)

Step 6: Reiterate steps 3 to 5 for all the scheduler steps to obtain the denoised
inpainted image PI .

The proposed inpainting procedure can be seen as the combination of two
opposite processes: one that progressively denoises an initial sample of random
noise, and another that incrementally degrades the known regions of the original
image by adding noise in accordance with the diffusion schedule. These two
processes converge at each timestep t − 1, where information from the noisy sample
obtained is combined with the denoising sample.

In the early stages of the denoising process, the synthetic sample PU generated
by trying to denoise the random noise sample does not carry any meaningful
information about the target image yet. However, by blending in the pixels from
the degraded known image, according to the binary mask M, we are able to
introduce a bias that guides the denoising model toward reconstructing the missing
parts of the image in a way that remains coherent with the undamaged parts of
the image. This is possible because the degraded known image Pk at timestep t − 1
retains information from the known part of the original image, but represents this
information at a noise level consistent with the expected output of the diffusion
model when attempting to perform a denoising step from timestep t to timestep
t − 1.
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This helps to avoid unexpected discontinuities in the intermediate inpainted
images, which could otherwise confuse the model when trying to estimate the noise
pattern in subsequent denoising steps and ultimately lead to inconsistent outputs
and an incoherent final reconstruction.

5.3 AI denoising framework validation
The validation pipeline aims to evaluate the performances of the developed models
and to assess their effectiveness in the proposed task of removing the retro-reflective
markers blobs from the depth images. To this end, three experiments were con-
ducted:

1. To evaluate the performance of the variational autoencoder in accurately
representing the markerless depth images in the latent space and reconstruct
the original images from their latent representation.

2. To evaluate the diffusion model’s ability to perform inpainting on clean mark-
erless images during a simulated task.

3. To evaluate the full pipeline by applying inpainting to real images affected
by markers, with the objective of producing partially synthetic outputs more
closely resembling the training set.

5.3.1 Validation of the Variational Autoencoder
The autoencoder was tested on the markerless acquisition images of the two test
subjects. The validation experiment consisted of an encoding-decoding cycle: each
normalized grayscale 256 × 256 image was fed into the autoencoder to produce
a corresponding three-channel 64 × 64 latent representation. The decoder then
reconstructed the image by decoding this latent representation back into the original
256 × 256 grayscale space. The output of the decoder was then compared to the
original image by evaluating the following metrics:

• The mean square error (MSE) was computed to quantify the distance
between the original and reconstructed image in the 256 × 256 grayscale space.
A lower MSE indicates a more accurate reconstruction, as it reflects smaller
pixel-level deviations.

• The Perceptual difference was estimated by feeding the original image and
then the reconstructed image into the same standard pretrained AlexNet CNN
used during training, and computing the MSE between the two feature maps
obtained. A lower perceptual difference suggests that the two images are more
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similar in terms of high-level ’semantic’ features (this metric is more similar
to a human perception of similarity).

5.3.2 Validation of the Denoising Probabilistic Diffusion
Model on images without markers:
Checkerboard experiment

Since obtaining ground truth for the synthetically generated images was not possible,
a simulated inpainting task was chosen to evaluate the performance of the diffusion
model. This was done using markerless depth images from the two test subjects,
where a known and fixed binary mask was applied to all images in order to define
the missing regions to be inpainted.

The binary mask used in the experiment was generated by creating a checker-
board pattern composed of repeated n × n pixel squares with the same dimensions
as the original image, alternating between squares set to 1 and squares set to 0.

This pattern was then applied to the original image through element-wise
multiplication, deleting the regions corresponding to the squares set to 0. The
inpainting algorithm proposed in paragraph 5.2.4 was subsequently applied to
reconstruct the missing areas.

The inpainted images were compared with the original ground-truth images
by computing the Mean Squared Error (MSE) over the synthetically generated
regions.

The following grid configurations were tested on the 256 × 256 test images:

• 8 × 8 grid with blocks of 32 × 32 pixels,

• 16 × 16 grid with blocks of 16 × 16 pixels,

• 32 × 32 grid with blocks of 8 × 8 pixels.

The results were compared with those obtained on a subset of the construction
set, in order to provide a reference baseline.

5.3.3 Validation of the Denoising Probabilistic Diffusion
Model on images with markers

To fulfill the task of removing infrared markers from depth images, two main
objectives must be achieved in sequence:

1. Obtain a binary mask that corresponds as accurately as possible to the position
of the markers in the depth image.

2. Apply the inpainting algorithm exclusively to the affected areas.
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The final goal of applying the AI pipeline to marker-affected images is to produce
inpainted images in which only the pixels corresponding to the markers are syn-
thetically generated, while ensuring that the overall result resembles as closely as
possible the markerless images used to train the diffusion model.

Obtaining the binary mask

The algorithm used to generate the binary mask of the areas to be inpainted
requires both the depth and infrared channels extracted from the Azure Kinect
recordings acquired during the simultaneous Azure Kinect-Vicon acquisitions for
accurately localizing the marker regions.

Step 1: The depth and infrared (IR) frames are first loaded into memory. The depth
image is then preprocessed according to the steps described in Paragraph 5.1.1
to obtain a normalized 256 × 256 Region of Interest (ROI). A corresponding
ROI is extracted from the IR image using the same coordinates, maintaining
pixel coordinates alignment between the two channels.

Step 2: The IR ROI is segmented twice by applying a threshold to obtain two binary
masks:

– Mask 1 highlighting the position of the retro-reflective markers, obtained
with a single threshold set at the 99th percentile of the pixel values.

– Mask 2 highlighting the subject’s body, obtained with a double threshold
defined between the 90th and 98th percentiles included.

Step 3: A conditional binary dilation is applied to the blobs corresponding to the
markers by adding the pixels that:

– have an 8-neighbor that is an edge pixel of the blob (determined by a
L1 binary dilation of the blobs edge pixels)

– are not already part of the blobs (are not already set to 1 in Mask 1)

– are not part of the background (are not set to 0 in the depth ROI)

– are not part of the subject’s body in the IR image (are not set to 1 in
Mask 2)

The dilated blob mask provides the pixel coordinates of the regions to be
inpainted in the depth ROI.
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Performing inpainting

The Depth ROI is inpainted using the algorithm proposed in paragraph 5.2.4 to
remove the blobs caused by the retro-reflective markers, using the binary mask
obtained following the previous steps as a template to guide the generation of
synthetic pixels.

Evaluation metrics

To assess the quality of generation and the similarity between the generated
images and the training distribution, three complementary metrics were computed,
comparing a set of images from the training set, named T, a set of images affected
by marker artifacts before cleaning, named D, a set of inpainted images, named I:

1. Kernel Inception Distance (KID) [43]: computed on features extracted by
the same AlexNet used to compute perceptual loss. The discrepancy between
two features distributions D1 and D2 can be estimated by extracting a sample
X from D1 and Y from D2 and computing the Maximum Mean Discrepancy
with kernel k:

KID(D1, D2) = MMD2
k(D1, D2)

= EX,X′∼D1

è
k(X, X ′)

é
+ EY,Y ′∼D2

è
k(Y, Y ′)

é
− 2EX∼D1, Y ∼D2

è
k(X, Y )

é
Where k is the Radial Basis Function kernel, which is a similarity metric that
estimate the similarity between the feature vectors x and y:

kRBF(x, y) = exp
A

−∥x − y∥2
2

2σ2

B

Global-average-pooled activation values were extracted from the convolutional
layers of the AlexNet, z-scored using the training set T as standard. The
mismatch between the set of inpainted images I and the training set T and
between the dirty images D and the training set T were measured computing
∆KID(I − T ) and ∆KID(D − T ) respectively. Lower KID values indicate better
similarity between the set analyzed (I or D) and the training set T.
If the distance ∆KID(I − T ) between I and T is lower than the distance
∆KID(D − T ) between D and T, improvement can be quantified by computing
∆KID(D − I). This metric shows whether inpainted images I move closer to
the training distribution T than the dirty corrupted images D.
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2. Mahalanobis Distance [44]: per-image Mahalanobis distance was computed
between each image’s feature vector and the training mean under the training
covariance. Lower values indicate greater compatibility with the training
distribution. Results are summarized as boxplots.

3. Reconstruction L1 Loss [45]: computed in pixel space using the same
autoencoder employed by the latent DDPM. Lower values mean that the
autoencoder can encode and decode the image more faithfully, reflecting
greater consistency with the training distribution.

5.4 Integration of the AI framework in the Kinect
SDK pipeline using the Pykinect Azure
Library

The AI framework was integrated into a pipeline that enables the offline analysis
of .mkv files acquired with an Azure Kinect device. The pipeline uses the native
skeletal tracking provided by the Azure Kinect SDK, accessed through the Pykinect
Azure wrapper, while also allowing frame-level modifications of the depth channel
when required.

Each frame of the .mkv file is split into its constituent channels (RGB, IR, Depth).
Each channel is preprocessed according to the steps described in paragraph 5.1.1,
but this time the preprocessing steps are made reversible by saving the normalization
parameters and the ROI coordinates in a temporary dictionary. The Inpainting
pipeline described in paragraph 5.3.3 is applied exclusively to the depth channel
and the inpainted ROI is then injected back into the depth channel of the .mkv
frame being processed.

The Azure Kinect Body Tracking SDK (K4ABT) [21] is called through the
Pykinect Azure [46] wrapper, to retrieve body segmentation and skeleton data
corresponding to the frame’s timestamp, such as joint positions and orientations.
The body-tracking sequence is constructed frame-by-frame, by storing the extracted
skeletal data in a per-frame dictionary together with associated metadata, includ-
ing the frame identifier, the number of detected bodies, and the corresponding
timestamp.

When the entire .mkv file has been parsed, an output .c3d file is generated,
containing the skeletal tracking data of all frames, including joint positions and
orientations, synchronized with the timestamp of the Azure Kinect recordings.
This ensures that the modified depth data and the motion capture information are
preserved in a standardized format for post-processing.
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5.4.1 Evaluation of skeletal tracking performances after
applying inpainting on the depth channel

The effects of the inpainting pipeline are evaluated by comparing the body-tracking
sequences obtained through the K4ABT applied to the original recording, affected
by marker noise, with those obtained from the inpainted recordings. Two metrics
are used for evaluation:

• Skeleton tracking success rate, computed as the percentage of missing
frames over the total frame count, with lower values indicating better noise
rejection.

• Stability of the estimated bone lengths, computed as the variance of bone
lengths across body segments, with lower values indicating higher tracking
accuracy, since bone length is considered a kinematic invariant.

5.5 Insights into Kinect SDK:
Evaluation of skeletal tracking performances
after applying inpainting on the IR channel

The tests described in paragraph 5.4 showed that, although the proposed method
is able to perform inpainting on depth images, it does not improve the performance
of the SDK. To further investigate this limitation, an algorithm similar to the
one described in Paragraph 5.4 was applied, in collaboration with a team of PhD
researchers from ETRO [47], to Kinect .mkv recordings obtained from concurrent
Vicon-Kinect acquisitions affected by marker noise.

Each session involved a single subject performing a slow exercise, comparable
to those presented in Paragraph 5.1, specifically designed to assess the range of
motion (ROM) of the hip, knee, and shoulder joints.

Unlike the approach followed in this work, where only the depth channel was
taken into account, this new study also considered the IR modality. This broader
analysis revealed that the IR channel has a much stronger influence on skeleton
reconstruction and on the quality of joint tracking than the depth one. The research
team demonstrated this effect by repeatedly applying flipping transformations to
one channel while leaving the other unchanged. In all cases where skeletal tracking
was successful, the output orientation consistently followed the IR frame orientation,
regardless of the state of the depth channel. This confirmed the predominant role
of the IR channel in driving the body tracking algorithm.

Following this insight, a decision was made with the research team to perform
inpainting exclusively on the IR channel, filling in the missing blobs by using Telea’s
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fast marching method [48], which reconstructs missing regions by propagating
intensity information inward from the surrounding boundary pixels.

The stability of skeletal tracking was assessed as in 5.4.1 by evaluating the
percentage of missing frames and the bone length variability. Results obtained
adopting this strategy were published by the ETRO Research team in proceedings
of the 2025 DSP conference [18].
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Chapter 6

Results and Discussion

6.1 AI denoising framework training
Figures 6.1 and 6.2 depict the training and validation loss curves for the autoencoder
and DDPM, respectively. In both cases, the loss exhibits a steep initial decrease
followed by an almost monotonic decay toward a plateau.

For the autoencoder, the reconstruction loss drops rapidly in the first tens
of epochs and stabilizes around 3 × 10−3, with training and validation closely
overlapping.

For the DDPM, the MSE loss steadily declines across the full training run and
levels off near 2.4 × 10−2; the losses show stochastic oscillations, but no persistent
gap between curves. The convergence and alignment of the two curves in both
models suggest limited overfitting and good generalization.
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Figure 6.1: Training and validation loss of the Variational Autoencoder as a
function of epoch. The blue training loss curve tracks the reconstruction loss
computed on the training set at each epoch, while the orange validation loss curve
tracks the loss computed on the validation set every five epochs. Lower values
indicate better performance.

Figure 6.2: Training and validation loss of the Denoising Diffusion Probabilistic
Model as a function of epoch. The blue training loss curve tracks the MSE loss
computed on the training set at each epoch, while the orange validation loss curve
tracks the MSE computed on the validation set every five epochs. Lower values
indicate better performance.
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6.2 AI denoising Framework validation

6.2.1 Validation of the Variational Autoencoder
Figure 6.3 shows a comparison example that highlights the similarity between a
test-set image and its corresponding reconstruction obtained from the decoder,
while Fig. 6.4 shows a visual representation of the three latent space channels of
a batch of four images, providing insight into how the feature map is generated
during the encoding process.

In Fig. 6.5, the distributions of the MSE and the Perceptual Loss computed on
the test subjects are presented as boxplots and compared with the results obtained
on the construction set, which serve as a baseline. The MSE values are centered
around 3.21×10−4 ±3×10−6, while the Perceptual Loss values are centered around
8.37 × 10−3 ± 6 × 10−5.

The low values obtained for the Mean Squared Error and the Perceptual Loss
in the autoencoder test indicate good performance in encoding depth images into
the latent space and subsequently decoding them back into the original pixel space.
In particular, the low MSE reflects high local spatial accuracy, meaning that pixels
at the same coordinates in the original and reconstructed images have very similar
values. At the same time, the low perceptual loss suggests that the autoencoder was
able to preserve the global fidelity of the image, maintaining its high-level features
and visual content in the reconstructed version, beyond pixel-wise agreement.

Figure 6.3: Example of an image reconstruction using the autoencoder. The
original image is shown on the left, and the reconstruction from its latent space
representation is shown on the right.
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Figure 6.4: Examples of encoded latent space representations of a 256×256 image
across the three 64 × 64 latent channels (feature maps). The three latent channels
are shown in grayscale (values are normalized for visualization reasons), while the
last image on the right provides an RGB visualization of the entire feature map,
with the three channels mapped to red, green, and blue.

Figure 6.5: Boxplots of the Mean Squared Error (MSE) and perceptual loss
between original images and the images generated by the autoencoder. Results
obtained on the construction and test sets are shown, respectively, in green and
blue.
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6.2.2 Validation of the Denoising Probabilistic Diffusion
Model on images without markers:
Checkerboard experiment

The experiment of testing the inpainting algorithm with a known binary mask, using
the image itself as ground truth, demonstrated that the diffusion model is capable
of reconstructing missing regions in depth images. When the test was repeated with
binary masks containing progressively larger voids, the results (shown in figure 6.6)
exhibit an increase in loss for grids with larger missing areas. This behavior can be
explained by considering that, among the pixels on which the DDPM is performing
inference (pixels that are blacked out when applying the binary mask) the inference
outcome becomes progressively less accurate for pixels located farther away from
the boundary conditions. This is due to the fact that the surrounding pixels are
themselves inferred rather than deterministically set to match the original image,
so the farther a pixel lies from the known boundaries, the more its reconstruction is
affected by uncertainty. The MSE values are centered around 5.45×10−3±2.02×10−3

for the 32 × 32 grid of 8 × 8 pixel squares 6.17 × 10−3 ± 1.49 × 10−3 for the 16 × 16
grid of 16 × 16 pixel squares 8.25 × 10−3 ± 2.4 × 10−3 for the 8 × 8 grid of 32 × 32
pixel squares. Figure 6.7 shows samples of inpainted images for different grid sizes.

Figure 6.6: Boxplots of the mean squared error (MSE) values between original
images and the inpainted images in the simulated checkerboard mask filling task.
Results obtained on the construction and test sets are shown, respectively, in green
and blue. The plots are grouped by grid size: from left to right, a 32 × 32 grid of
8 × 8 pixel squares, a 16 × 16 grid of 16 × 16 pixel squares, and a 8 × 8 grid of
32 × 32 pixel squares.
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Figure 6.7: Example from the simulated inpainting task: each row corresponds
to a different masking pattern: a 32 × 32 grid of 8 × 8 squares (top), a 16 × 16 grid
of 16 × 16 squares (middle), and an 8 × 8 grid of 32 × 32 squares (bottom). Within
each row, the columns show (from left to right) the original ground-truth image,
the image with missing pixels, and the inpainted result.
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6.2.3 Validation of the Denoising Probabilistic Diffusion
Model on images with markers

The segmentation algorithm was able to generate an accurate binary mask of the
marker positions, as shown in Fig. 6.8.b, where the segmentation mask is overlaid
on the IR channel.

Through multimodal dilation (step 3 of paragraph 5.3.3), this information was
transferred to the depth channel as shown in Fig. 6.8.c. However, it was not
possible to completely prevent undamaged pixels belonging to the subject’s body
from being included in the inpainting mask, nor to avoid pixels corresponding to
marker-induced artifacts being excluded from it. For this reason, the inpainting
algorithm produced noisier reconstructions than those obtained in the checkerboard
inpainting task. Figure 6.8.d shows an example of an inpainted image, in which
and residual artifacts remain visible around the subject.

Figure 6.8: SDK Frame inpainting example: a) Depth ROI before inpainting
b) Segmentation mask of the retro-reflective markers position overlaid on the IR
channel c) Binary segmentation mask of retro-reflective marker artifacts overlaid
on the depth channel d) Inpainted ROI, where holes and residual artifacts are still
visible in the final reconstruction

.

The outcomes for each metric introduced in 5.4.1 are reported below:

• Kernel Inception Distance (KID) (Fig. 6.9): Inpainted images achieved
a lower KID values than the Images affected by markers: (0.395 × 10−3 vs.
0.457×10−3). Moreover, a bootstrap test was executed by repeatedly sampling
each set (D, I, T) and computing the Kernel Inception Distances ∆KID(D − T )
∆KID(I − T ) and their difference ∆KID(D − I).
The test results showed that the 95% bootstrap confidence intervals of
∆KID(D − T ) and ∆KID(I − T ) did not overlap ([0.383,0.410] × 10−3 vs.
[0.444,0.471] × 10−3) indicating a statistically significant reduction in dis-
tributional discrepancy between the inpainted images and the training set
compared to the images affected by markers.
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• Mahalanobis Distance (Fig. 6.10-left panel): The median distance of the
Inpainted images was slightly higher than that of the Images affected by
markers (3.02 × 107 vs. 2.38 × 107), and the paired Wilcoxon test confirmed
the difference was not significant (z = −1.40, p = 0.162). Therefore, no
improvement was observed according to this metric.

• Reconstruction L1 (Fig. 6.10-right panel): Inpainted images obtained lower
reconstruction error compared to Images affected by markers (0.0227 ± 0.0104
vs. 0.0252 ± 0.0143), although both remain well above the training baseline
(0.0040 ± 0.0007). This suggests that the inpainted images are marginally
easier to encode and decode, but still far from the clean training distribution.

Figure 6.9: Boxplots of the Kernel inception distance used to assess the similarity
of the inpainted images with the training set, compared to the images affected
by markers. The KID bootstrap distributions show a statistically significative
difference
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Figure 6.10: Boxplots of the Mahalanobis and L1 distances used to assess the
similarity of the inpainted images with the training set, compared to the images
affected by markers. Mahalanobis and L1 distributions do not show a statistically
significative difference

6.3 Results obtained inpainting the Depth
channel

As anticipated in Paragraph 5.5, the fact that the body tracking model (K4ABT)
relies more heavily on IR images explains why the attempt to integrate the depth-
image modification pipeline into the K4ABT post-processing analysis did not lead
to improvements in the quality or stability of skeletal tracking. Seven out of
the eight recordings used for testing failed to output a continuous body tracking
sequence, with an average 3.30% of missing frames.

As shown in Fig. 6.11, the model fails to correctly track the subject’s skeleton,
and overlaps between body segments are also evident. Similarly, in Fig. 6.12, it can
be observed that the intervention on the depth channel did not reduce bone length
variability; in fact, the standard deviation was found to be statistically significantly
greater for two of the four exercises (SAB and KFB).
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Figure 6.11: Failed skeleton reconstruction in different frames: inpainting the
depth channel alone did not improve skeletal tracking

Figure 6.12: Boxplots of the measured bone length variability obtained adopting
the Depth inpainting strategy, grouped by exercise
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6.4 Results obtained adopting the IR inpainting
strategy

As demonstrated by the channel flipping experiments discussed in Section 5.5, the
Kinect body tracking model (K4ABT) primarily relies on the infrared (IR) channel
for generating skeletal output, as illustrated in Fig. 6.13.

The application of Telea’s fast marching inpainting method [48] to the IR channel
reduced the occurrence of missing skeletal data to only two recordings, with an
average of 0.16% missing frames (Fig. 6.14). Moreover, the proposed IR inpainting
method [18] significantly reduced bone length variability compared to the standard
K4ABT output (Shapiro-Wilk test; p ≤ 0.005), consistently across all subjects and
all exercises (Fig. 6.15).

Figure 6.13: The IR flipping experiments performed on markerless images: on the
left, the IR channel; on the right, the output of the body tracking model K4ABT,
overlaid to the Depth channel. The estimated skeleton always matches the IR
orientation, regardless of the depth.
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Figure 6.14: Results obtained a) before and b) after applying Telea’s Fast
marching method [48] on IR images. Body segment overlapping is greatly reduced.

Figure 6.15: Boxplots of the measured bone length variability obtained adopting
the IR inpainting strategy, grouped by exercise.

54



Chapter 7

Conclusions

7.1 Contributions
Analyzing the results obtained, as described in chapter 6, this thesis established
the following contributions: we demonstrated that a diffusion probabilistic model,
paired with an autoencoder that is capable of encoding depth images to and from
the DDPM latent space, can generate synthetic depth images that are consistent
with the clean training set. That the same latent-space deep learning framework,
previously applied mainly in diagnostic medical imaging, successfully inpainted
depth images by reconstructing areas degraded by marker artifacts. Inpainted
outputs were shown to be more perceptually coherent with the clean-image dis-
tribution than the corresponding artifact-affected inputs; this could enable the
developing of an automated method for building datasets of paired images (with and
without markers), that could enable direct comparisons between Kinect and Vicon
recordings obtained during concurrent acquisitions. However, we also demonstrated
that inpainting only the depth channel yields limited to no improvement in skeletal
tracking when using the default Azure Kinect Body Tracking SDK (K4ABT).

In collaboration with the ETRO research team, we demonstrated that applying
a simpler inpainting procedure on the infrared (IR) channel significantly improves
the stability and quality of the estimated skeletons.
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7.2 Limitations and future improvement
The present study also presents several limitations that should be considered:

The data acquisition involved a small cohort of healthy subjects performing
simple exercises at a slow pace, and all recordings were acquired from a single
point of view. This may limit repeatability and validity, as Azure Kinect accuracy
depends on field of view and speed of motion [33, 36].

The experiments also relied on Microsoft’s Azure Kinect hardware and software:
because this platform has been discontinued, future replications should validate the
proposed pipeline on Orbbec’s Femto Bolt, which is built to the same specifications,
together with the OrbbecSDK K4A Wrapper [49].

The marker-segmentation procedure produced a non-negligible number of false
negatives, leaving residual artifacts that increased output noise. This could be
mitigated by testing alternative masking patterns and bounding boxes during
inpainting; for example, a square box to replicate the checkerboard inpainting setup
that yielded satisfactory results.

Moreover, the inference time of the DDPM is relatively high, which limits its
applicability in real-time settings.

Since the Kinect’s body tracking model accuracy has been shown to be almost
entirely dependent on the quality of the IR images, a more sophisticated inpainting
technique, that involves applying the diffusion generative models capabilities to
both the depth and the IR channels, could be implemented in future developments.
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