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Summary

Muscle fatigue, defined as the decline in skeletal muscle force or power during
sustained activity, is a complex, multifactorial phenomenon critical to physical
performance. While myoelectric manifestations are well studied, simultaneous
hemodynamic assessment is emerging. Unlike near-infrared spectroscopy (NIRS),
this study employs photoacoustic imaging (PAI), combining laser illumination and
ultrasound detection for enhanced depth sensitivity. Simultaneous high-density
surface electromyography (HD-sEMG) and multispectral PAI were performed using
a Verasonics Vantage 256 system with an Opotek Phocus Mobile SE laser and a
128-element linear ultrasound transducer, acquiring 10 wavelengths per acquisition.
HD-sEMG was recorded via a 32-channel electrode matrix over the forearm. Two
healthy subjects completed two to four trials of rest and sustained isometric contrac-
tion (little finger, right hand, until exhaustion), yielding a preliminary multimodal
dataset. HD-sEMG signals were analyzed via root mean square (RMS) mapping at
contraction start, middle, and end, and RMS and mean frequency (MNF) slopes
in the most active muscle region. PAI data were reconstructed and unmixed into
oxygenated hemoglobin over total hemoglobin (HbO2/HbT) distributions. HD-
sEMG enabled localized muscle activation assessment, showing trends consistent
with fatigue. PAI provided localized monitoring of muscle oxygenation, although
quantitative interpretation was constrained by the linear transducer geometry
and the linear spectral unmixing algorithm. Despite these limitations, the results
demonstrate the feasibility of simultaneous multimodal acquisition, enabling local-
ized monitoring of muscle activity and preliminary observation of fatigue-related
changes. This study lays the groundwork for future investigations aimed at refining
multimodal assessment of muscle fatigue.
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Chapter 1

Introduction

Muscle fatigue is defined in different ways in literature, depending on the context.
In medicine and sports science, it is commonly described as a decline in physical
performance, accompanied by an increased actual and/or perceived difficulty of
the task [1]. In physiology, it is often defined as a reversible reduction in muscle
performance that occurs during intensive activity and recovers with rest [2]. More
specifically, exercise physiology describes muscle fatigue as a gradual decline in the
maximal force or power that muscles can generate, beginning soon after the onset
of sustained activity and worsening over time [3]. It can also be understood as the
inability of muscles to maintain the required strength during exercise [1, 4].

The effects of fatigue can vary depending on the nature of the task: while
maximal contractions lead to a clear decrease in performance as fatigue sets in,
submaximal efforts, more common in daily activities, may not show immediate
impairments in task performance and failure to complete a task may not be directly
due to fatigue of the primary muscles involved [3]. However, in such cases, fatigue
eventually manifests as the inability to sustain the activity at its original intensity,
a state often referred to as exhaustion [2].

Muscle fatigue has been extensively studied for over a century due to its critical
role in physical performance regulation. It serves as a protective mechanism, pre-
venting excessive strain on the musculoskeletal and metabolic systems by triggering
sensations of discomfort and exhaustion. These signals prompt adjustments in
exercise intensity and duration, ultimately safeguarding the body from potential
damage [1, 5]. The detection and classification of muscle fatigue contributes valu-
able insights to fields such as human-computer interaction, sports performance,
ergonomics, and prosthetics. In sports, for instance, muscle fatigue can increase the
risk of injury, as overworked muscles may struggle to maintain proper function, lead-
ing to strain or damage. While localized fatigue can be beneficial for muscle growth
in specific settings, such as bodybuilding, in occupational health and ergonomics, it
poses risks for musculoskeletal disorders. Predicting fatigue in these contexts can
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help prevent injuries, particularly in tasks requiring sustained static muscle activity
or poor posture. Proactively addressing muscle fatigue is thus essential for reducing
injury risks and supporting long-term health and performance [6]. When fatigue
accumulates without adequate recovery, it can contribute to conditions like chronic
fatigue syndrome and overtraining syndrome. In severe cases, prolonged fatigue
may even lead to endocrine imbalances, immune dysfunction, or other health risks,
highlighting the importance of recognizing and managing fatigue to prevent both
immediate and long-term effects on health and performance [7].

To fully understand muscle fatigue, both structural changes and functional
impairments need to be examined. This thesis aims to explore the potential of
integrating two advanced imaging and sensing modalities such as photoacoustic
imaging (PAI) and high-density surface electromyography (HD-sEMG), to provide
a comprehensive assessment of muscle fatigue. By combining these techniques, it
is possible to investigate both the vascular and oxygenation dynamics underlying
muscle fatigue, as well as the associated neuromuscular activation patterns. This
integrated approach has the potential to enhance our understanding of fatigue
mechanisms, offering valuable insights for applications in clinical rehabilitation,
sports performance optimization, and ergonomics.

The remainder of this thesis is structured as follows: Chapter 2 provides the
theoretical background of the study, introducing the fundamental concepts of muscle
fatigue and the principles of the non-invasive techniques employed. Chapter 3
describes the experimental setup, acquisition procedures, and data processing
methods. Chapter 4 presents the results obtained from PAI and HD-sEMG,
followed by their integrated analysis. Finally, Chapter 5 discusses the findings in
relation to existing literature, highlighting strengths, limitations, and potential
improvements.
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Chapter 2

Theoretical background

The following section provides the theoretical background necessary to understand
the experimental work presented in this thesis. It begins with an overview of skeletal
muscle physiology, with particular attention to excitation–contraction coupling and
force generation. The mechanisms underlying muscle fatigue are then discussed,
highlighting both peripheral and central contributors as well as their biochemical
and neuromuscular correlates. Finally, the section reviews the principles of the
imaging and electrophysiological techniques employed in this study, namely US/PA
imaging and HD-sEMG.

2.1 Skeletal muscle structure and function
Skeletal muscles play a central role in human movement and force generation, and
their properties can be described at different levels of organization, from cellular
structure to whole-muscle mechanics. This section provides an overview of the main
physiological principles relevant to this thesis, including the cellular and molecular
architecture of skeletal muscle, the mechanisms of force generation and regulation,
and the metabolic pathways that sustain contraction. Unless otherwise specified,
the following information is adapted from [8].

2.1.1 Cellular and molecular structure of skeletal muscles
The effector organ of the somatic nervous system is skeletal muscle. However, in
muscle tissue, action potentials have a different effect compared to nervous tissue,
as they trigger contractions and force generation. A typical skeletal muscle cell can
activate its contractile mechanism within milliseconds of receiving the neural signal
and can deactivate it almost as quickly. With some exceptions, skeletal muscles
are connected to at least two bones via tendons.
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Theoretical background

The part of the muscle responsible for force generation is called the body, or
the “fleshy” portion of the muscle. The connective tissue forming the tendon is
continuous with the layer surrounding the muscle body, known as the epimysium.
Another layer of connective tissue, the perimysium, extends within the muscle
body, dividing it into numerous bundles called fascicles, which are composed of
individual muscle cells. Each fascicle contains hundreds to thousands of muscle
cells, known as muscle fibers, each of which extends the entire length of the muscle.
The nuclei of muscle fibers are located just beneath the plasma membrane, known
as the sarcolemma. Muscle fibers generate contractile force by utilizing energy
released from adenosine triphosphate (ATP) hydrolysis. Within the fibers, there
are myofibrils, which contain the contractile machinery. Each myofibril consists
of a bundle of thick and thin filaments that overlap, primarily composed of the
proteins myosin and actin, respectively. The precise arrangement of these filaments,
which run parallel to the longitudinal axis of the cell, forms the fundamental force-
generating units known as sarcomeres, which are aligned end-to-end. Each myofibril
is surrounded by the sarcoplasmic reticulum (SR), which serves as a reservoir for
calcium ions (Ca2+). The SR is closely associated with another structure called
the transverse tubules (T-tubules), which are connected to the sarcolemma and
penetrate deep into the cell interior. Figure 2.1 illustrates the main structural
components of skeletal muscle, from the whole muscle down to the sarcomere level.

Figure 2.1: Structural organization of skeletal muscle, adapted from [9]. Sarcomere
morphology and sliding mechanism (scale bar: 0.5 nm). Actin (red), myosin (blue),
and titin (yellow) filaments are shown in the relaxed state (I) and during contraction
(II). The jagged sides represent the Z-lines, while the central space without actin
filaments corresponds to the H zone.
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Each thick filament is composed of hundreds of myosin molecules, each consisting
of two twisted subunits. Each subunit has a tail and an enlarged head that
protrudes laterally. The myosin heads, also known as cross-bridges, are responsible
for generating the movement that drives muscle contraction. These heads contain
two critical sites: one that binds to actin and another with enzymatic activity,
capable of hydrolyzing ATP. The fundamental components of each thin filament are
actin monomers, each possessing a binding site for myosin. These actin monomers
polymerize end-to-end, forming filamentous structures that intertwine into a double-
helical arrangement, giving rise to the actin filaments within the thin filaments.
Two regulatory proteins, troponin and tropomyosin, are present on the thin filament
and play a key role in initiating or inhibiting contraction. Similarly, thick filaments
are also associated with additional proteins, the most important being titin - an
exceptionally elastic protein that ensures the proper alignment of thick filaments
relative to thin filaments.

2.1.2 Mechanism of force generation
The thick and thin filaments slide past each other, causing the sarcomeres to shorten,
which in turn shortens the myofibrils. This process is mirrored in the muscle fibers
and ultimately leads to the shortening of the entire muscle. The mechanism by
which the thick and thin filaments slide past each other during muscle contraction
is known as the cross-bridge cycle. At the core of this mechanism is an oscillatory
motion - back and forth - of the cross-bridges between myosin and actin, driven by
the energy released from ATP hydrolysis. This activity is coupled with the cyclical
alternation between the binding and detachment of the cross-bridges from the thin
filaments, which results in the pulling of the thin filaments toward the center of the
sarcomere. This process is schematically illustrated in Figure 2.2, which depicts
the cross-bridge cycle underlying sarcomere shortening.

The cyclical interaction between myosin and actin filaments constitutes the
fundamental mechanical basis of muscle contraction. However, such molecular
events do not occur spontaneously; they must be triggered by electrical signals that
originate from the nervous system. In skeletal muscle, each muscle fiber receives
signals from a single motor neuron, which branches out to innervate multiple
fibers. An action potential that develops in a motor neuron triggers the release of
acetylcholine, which binds to receptors on the neuromuscular junction of the muscle
fiber. This generates an electrical signal (end-plate potential), which leads to the
initiation of an action potential that propagates very rapidly along the sarcolemma
in both directions (at 2 to 6 m/s in humans) and then much more slowly (0.3
m/s) [2] throughout the t-tubular system. The rapid sarcolemmal propagation
is necessary to synchronously activate all parts of the muscle fiber to produce a
useful contraction, and the conduction in the tubular system can be much slower
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Figure 2.2: Schematic representation of the cross-bridge cycle underlying muscle
contraction, as illustrated in [8]. Myosin heads attach to actin filaments, perform
a power stroke fueled by ATP hydrolysis, and then detach and re-cock, enabling
repeated cycles of filament sliding and sarcomere shortening.

because of the small distances involved. This action potential stimulates the release
of (Ca2+) from the SR, which binds to troponin, exposing the binding sites on
actin for myosin. Consequently, the cross-bridge cycle begins, and the muscle fibers
contract. Once the action potential ceases, (Ca2+) is actively reabsorbed into the
SR lumen, and tropomyosin blocks the binding sites for myosin, allowing the muscle
fibers to relax.

As seen, calcium plays a key role as the signal that initiates the cross-bridge
cycle and, therefore, muscle contraction. The force of contraction depends on the
amount of calcium ions present in the cytosol: a higher concentration of calcium
corresponds to more binding sites on actin available for myosin, which in turn leads
to more cross-bridge cycles. A muscle cell ceases contraction when it no longer
receives signals from the motor neuron, and as a result, no more action potentials
are generated along the sarcolemma.
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2.1.3 Regulation of muscle force and muscle fiber charac-
teristics

As briefly mentioned in Subsection 2.1.2, each skeletal muscle fiber is innervated by
a single motor neuron, which branches out to activate multiple fibers. Consequently,
the action potential of a motor neuron leads to the synchronous contraction of all
the muscle fibers it innervates, making it impossible to stimulate an individual
fiber in isolation. This functional entity, consisting of the motor neuron and all the
fibers under its control, is referred to as a motor unit. Figure 2.3 schematically
illustrates the organization of two motor units.

Figure 2.3: Schematic representation of two motor units. A single motor neuron
branches to innervate multiple muscle fibers, which contract simultaneously in
response to an action potential.

The force generated by a muscle depends on two factors:

1. The force developed by each individual muscle fiber, which, in turn, depends
on:

• Stimulation frequency;
in a muscle fiber, numerous action potentials can occur within the time
it takes for a full contraction to complete. When a muscle is repetitively
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stimulated, such that the subsequent action potential arrives before the
previous contraction has finished, the twitches overlap, generating a force
greater than that produced by a single twitch. This phenomenon is called
summation, and it occurs whenever the twitches are frequent enough that
the removal of calcium from the cytosol cannot occur as quickly as it is
released from the SR. For relaxation to occur, the calcium ions must be
removed; therefore, the muscle fiber cannot relax between contractions.
Figure 2.4 depicts the progressive increase in force from a single twitch to
summation, unfused tetanus, and finally smooth tetanus, which represents
the maximal sustained contraction.

• Diameter of muscle fibers;
a muscle that has a higher number of sarcomeres arranged in parallel
can generate greater force than a muscle with fewer sarcomeres. Since
the number of thick and thin filaments per unit of cross-sectional area
does not significantly vary from one muscle to another, it follows that the
diameter of the muscle fiber is a key variable in determining contractile
force. The larger the fiber diameter, the greater the cross-sectional area,
and the more force can be generated.

• Variation in the length of muscle fibers.
Each muscle fiber has an optimal length at which it can produce maximum
force, when the maximum number of myosin cross-bridges contribute to
force generation. When a fiber is either longer or shorter than its optimal
length, its ability to generate force decreases because changes in the muscle
length lead to changes in the length of the individual sarcomeres, which
in turn reduces their ability to develop force.

2. The number of contracting muscle fibers.
The nervous system exerts most of its control over muscle strength by varying
the number of motor units activated; an increase in the number of active motor
units is known as recruitment. Within a muscle, the fibers belonging to a given
motor unit are intermixed with others that belong to different motor units. Not
all motor units are identical: they often differ in size, as some contain a higher
number of muscle fibers, while others have relatively fewer. Since a muscle
can contain hundreds of motor units, muscle tension can be adjusted across a
significant range simply by varying the number of active motor units. Some
motor units are primarily composed of small muscle fibers, while others are
made up of larger fibers, which tend to have a greater number of fibers as well.
According to Henneman’s size principle, when a muscle is used to generate
moderate forces, typically only the smaller motor units are recruited. As higher
forces are required, larger motor units are recruited. Larger motor units are
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controlled by motor neurons with larger cell bodies and axon diameters than
average, while smaller motor units are governed by motor neurons with smaller
cell bodies and axons. The larger neurons face more difficulty in reaching
the threshold to generate an action potential, so when a gradually increasing
synaptic input reaches a group of motor neurons, the smaller ones fire first,
followed by the larger ones. Moreover, when contraction is sustained over time,
motor units are activated asynchronously - when one becomes active, another
ceases its activity. This ensures that the total muscle force remains consistent,
preventing any of the active motor units from becoming overloaded.

Figure 2.4: Representative force responses of skeletal muscle to different patterns
of stimulation. (A) A single stimulus evokes a brief, isolated contraction known as
a twitch. (B) When stimuli are delivered before the muscle has fully relaxed, the
individual contractions begin to summate, resulting in a higher overall force. (C)
With repeated, rapid stimulation, the individual twitches merge into an unfused
(or rough) tetanus. (D) At sufficiently high frequencies, the contractions fully fuse
into a smooth tetanus, characterized by a sustained plateau of maximal force.

2.1.4 Muscle metabolism and energy sources during exer-
cise

Muscle contraction requires a continuous supply of ATP, a high-energy molecule
that fuels cellular processes. However, the ATP stored in muscle fibers is limited
and must be rapidly regenerated to sustain activity. To achieve this, the body
relies on three interconnected energy systems: the phosphagen system (anaerobic
alactic), the glycolytic system (anaerobic lactic), and the oxidative system (aerobic).
At the onset of contraction, the phosphagen system provides an immediate but
short-lived ATP source by utilizing phosphocreatine (PCr) reserves. This reaction
ensures energy availability while other metabolic pathways activate. As exercise
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continues, the glycolytic system becomes more prominent, breaking down glucose
anaerobically to produce ATP, though at the cost of lactate accumulation. For
prolonged activity, the oxidative system takes over, utilizing oxygen to metabolize
carbohydrates and fats, enabling sustained ATP production [10]. While these
systems were once thought to function sequentially, current research indicates that
they operate simultaneously, with their relative contribution depending on exercise
intensity and duration. For example, anaerobic and aerobic metabolism reach a
balance approximately 75 seconds into maximal exertion, as shown in Figure 2.5. At
rest, ATP demand is low, but upon stimulation, it increases immediately. Although
oxidative phosphorylation and glycolysis contribute to ATP resynthesis, they require
a few seconds to reach optimal efficiency. In the meantime, the phosphagen system
plays a crucial role by transferring a phosphate group from PCr to ADP, rapidly
forming ATP. Although this mechanism is limited in duration, it bridges the gap
until slower but more sustainable pathways become dominant. The choice of ATP
production pathway is influenced by exercise intensity and oxygen availability.
During low-intensity exercise, oxidative phosphorylation predominates due to an
adequate oxygen supply. However, as intensity increases, reliance shifts towards
anaerobic glycolysis, which can generate ATP quickly but leads to metabolite
accumulation and fatigue.

Figure 2.5: Relative energy system contribution to the total energy supply for
any given duration of maximal exercise, taken from [10]

2.1.5 Target muscle in this study and isometric contraction
This thesis focuses on the assessment of muscle fatigue in the extensor digiti minimi
(EDM) during isometric contractions, that is, when the muscle develops mechanical
tension while maintaining a constant length. The EDM is the primary extensor of
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the little finger and, like most skeletal muscles, it is composed of a mixture of fiber
types.

Muscle fibers can be classified as slow or fast based on their contraction speed,
which is primarily determined by the expression of myosin heavy chain (MHC)
isoforms. Type I fibers have the slowest cross-bridge cycling and shortening velocity,
while type IIa fibers are intermediate, and type IIx/b fibers are the fastest. However,
shortening velocity can also vary between fibers with the same MHC expression,
indicating the influence of additional factors. Fibers can also be categorized
as glycolytic or oxidative, based on their primary ATP production mechanism.
Glycolytic fibers have a high concentration of glycolytic enzymes, allowing them to
rapidly generate ATP via substrate-level phosphorylation. In contrast, oxidative
fibers rely on mitochondria-rich oxidative phosphorylation for ATP production but
contain lower concentrations of glycolytic enzymes. The rate of ATP consumption
also differs, as fast MHC isoforms utilize ATP at a higher rate than slow isoforms.
Another key ATP-consuming component in muscle is the sarcoplasmic reticulum
Ca2+ pump (SERCA), with SERCA1 found in fast fibers and SERCA2 in slow
fibers, with a higher pump density in fast fibers. Structurally, oxidative fibers
are smaller in diameter, well-vascularized, and contain myoglobin, which enhances
oxygen storage and gives them a red appearance. In contrast, glycolytic fibers are
larger, have fewer capillaries, lack myoglobin, and appear white. While slow type I
fibers are generally more fatigue-resistant than fast type II fibers, this is mainly
due to their higher mitochondrial density and oxidative capacity, rather than just
their MHC isoform expression. Based on these distinctions, three main types of
muscle fibers have been identified, as shown in Table 2.1.

Characteristics Type I - slow oxidative Type IIa - fast oxidative Type IIb - fast glycolytic
Contractile velocity Low Intermediate Fast

Aerobic (oxidative) capacity High High Low
Anaerobic (glycolytic) capacity Low Intermediate High

Fiber diameter Small Intermediate Large
MU dimension Small Intermediate Large

Ability to generate force Low Intermediate High
Fatigue resistance High Intermediate Low

Table 2.1: Classification of skeletal muscle fiber types. The table summarizes the
main characteristics of human skeletal muscle fibers, including contraction velocity,
primary metabolic pathway, fiber diameter and fatigue resistance.

During sustained isometric contractions, motor unit recruitment follows a hier-
archical pattern: slow oxidative fibers are activated first, followed by fast oxidative
fibers, and finally, under conditions of higher force demand or fatigue, fast glycolytic
fibers. This orderly recruitment reflects the activation of smaller motor units before
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larger ones. Since fast glycolytic fibers are highly susceptible to fatigue, their pro-
gressive involvement plays a key role in the onset of muscle fatigue, a phenomenon
analyzed in the present work. Although relatively few studies have examined the
EDM in isolation, histological investigations of the extensor digitorum communis
(EDC), which also contributes to little finger extension, and of smaller extensor
muscles suggest that the EDM displays a balanced distribution of fiber types,
without a strong predominance of either slow or fast fibers. Such a composition
appears functionally reasonable, as the little finger requires both precision and
speed.

2.2 Muscle Fatigue
Muscle fatigue refers to the decline in the ability of skeletal muscle to generate
force or power during sustained activity. This section outlines the main metabolic
changes leading to fatigue, the compensatory mechanisms at the neuromuscular
level, and the principal ways in which fatigue can be classified.

2.2.1 Metabolic changes and fatigue mechanisms
Muscle fatigue arises from complex metabolic alterations that progressively impair
contractile function. During sustained activity, the muscle undergoes significant
biochemical changes, including the accumulation of metabolic byproducts and
the depletion of key energy substrates. These factors disrupt normal excitation-
contraction coupling, reducing force output and slowing muscle relaxation. As
well explained in the paper by Allen et al. [2], the primary contributors to fatigue
include inorganic phosphate accumulation, changes in lactate and hydrogen ion
(H+) levels, alterations in ATP and magnesium ion (Mg2+) concentrations, and
glycogen depletion.

1. Inorganic phoshate (Pi) accumulation;
one of the earliest and most significant metabolic disturbances during muscle
fatigue is the accumulation of Pi, a byproduct of ATP hydrolysis. Elevated Pi
concentrations interfere with calcium release from the sarcoplasmic reticulum,
reducing the availability of Ca2+ for muscle contraction. Additionally, Pi
has been shown to directly inhibit myofibrillar ATPase activity, slowing
cross-bridge cycling and decreasing force production. This accumulation is
particularly detrimental in repetitive contractions.

2. Lactate and hydrogen ions (H+);
during high-intensity exercise, anaerobic metabolism leads to an increased
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production of lactate and H+. The accumulation of H+ contributes to intra-
cellular acidosis, which disrupts muscle function by impairing calcium binding
to troponin and reducing the efficiency of actin-myosin interactions. While
lactate itself was historically believed to cause fatigue, current evidence sug-
gests that its primary role is to act as a buffer, delaying the onset of acidosis
rather than directly impairing contraction. However, excessive H+ levels still
compromise force generation and slow relaxation, both of which are critical
for repetitive movements.

3. ATP and magnesium ions (Mg2+);
ATP availability is essential for muscle contraction, and its depletion is a
hallmark of fatigue. As ATP levels drop, Mg2+ concentration in the cytoplasm
increases because ATP normally binds Mg2+ to form ATP-Mg2+ complexes.
Elevated Mg2+ can further inhibit calcium release from the sarcoplasmic
reticulum, exacerbating the decline in contractile force. Although complete
ATP depletion is rare, localized ATP shortages at the myofibrillar level can
still impair muscle performance.

4. Glycogen depletion.
Glycogen serves as the primary energy reserve for prolonged muscle activity. As
exercise continues, glycogen stores become depleted, limiting ATP resynthesis
through glycolysis. This depletion is particularly relevant in sustained con-
tractions, where muscle fibers rely heavily on carbohydrate metabolism. Once
glycogen availability declines, the muscle’s ability to sustain force production
is significantly reduced, contributing to fatigue.

2.2.2 Neuromuscular compensatory mechanisms
During sustained or intense muscular activity, fatigue leads to a progressive decline
in performance. To counteract this reduction and preserve force output as long as
possible, the neuromuscular system adopts several compensatory strategies. These
mechanisms act at the level of motor unit recruitment and firing behavior:

• Increased motor unit firing rate;
the central nervous system raises the discharge frequency of active motor units,
enhancing temporal summation and thereby sustaining force production.

• Recruitment of additional motor units;
as fatigue progresses, previously inactive motor units are recruited, providing
fresh contractile fibers to support the task.
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• Rotation or substitution of active motor units.
Some motor units can be temporarily deactivated and replaced by others,
allowing partial recovery and delaying exhaustion of individual fibers.

These compensatory strategies are crucial for maintaining performance in the
presence of fatigue, although they can only temporarily offset the progressive
decline in muscular efficiency.

2.2.3 Classifications of muscle fatigue
Muscle fatigue is a complex and multifactorial phenomenon that can be classi-
fied according to different criteria, depending on the site of origin, duration, or
nature of the fatigue experienced. These distinctions are essential to understand
the underlying mechanisms and to select appropriate monitoring techniques and
intervention strategies. During voluntary contractions, muscle activation originates
in the motor cortex and travels through descending pathways to reach the spinal
cord, where lower motor neurons are activated. These neurons transmit action
potentials along their axons to the neuromuscular junction, ultimately triggering
muscle fiber contraction. Fatigue can occur at any level along this pathway and is
broadly categorized as either central or peripheral. These two components, and
their main sites of action, are schematically illustrated in Figure 2.6.

Central fatigue refers to impairments occurring at the supraspinal and spinal
levels - that is, changes within the central nervous system, from the motor cortex to
the spinal cord, that lead to a decline in voluntary muscle activation. It is associated
with reduced firing rates and synchronization of motor units, and a reduced drive
from the motor cortex. Peripheral fatigue, on the other hand, involves processes
distal to the neuromuscular junction, including metabolic and biochemical changes
within the muscle that impair excitation-contraction coupling and force generation
[2]. The relative contribution of these two components is task-dependent, with one
mechanism possibly dominating over the other depending on the type, intensity,
and duration of the activity [1, 11].

Another commonly used classification is based on the duration of the fatigue.
Acute fatigue develops over a short period and is typically reversible with rest or
appropriate recovery strategies. It is commonly observed following intense physical
activity. In contrast, chronic fatigue refers to a persistent sense of tiredness or
lack of energy lasting for months, which does not resolve with rest. This form of
fatigue may be associated with underlying medical conditions or syndromes and
often requires clinical evaluation [7].

Fatigue can also be classified according to its nature. Mental fatigue involves
cognitive or perceptual aspects, such as reduced concentration, alertness, or moti-
vation. Physical fatigue refers specifically to impairments in motor performance
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Figure 2.6: Central fatigue is associated with a decrease in the efferent drive from
the motor cortex, leading to a lower motoneuron discharge rate. Peripheral fatigue
refers to a decline in muscle output caused by alterations in the electrochemical
and mechanical processes occurring downstream of the neuromuscular junction.
Adapted from [1].

and includes both central and peripheral components [1, 7]. Although mental and
physical fatigue are conceptually distinct, they may interact with one another. For
example, prolonged cognitive load may indirectly affect motor performance, and
vice versa.

2.3 Non-invasive techniques for muscle fatigue
monitoring

Imaging has become an indispensable tool in the study of muscle physiology
and pathology, offering non-invasive access to both structural and functional
characteristics of muscle tissue. In the context of muscle fatigue, imaging enables the
monitoring of dynamic changes in muscle architecture, perfusion, and oxygenation
during exercise. Techniques such as US imaging provide information on muscle
deformation and contractile behavior, while PAI offers insight into hemoglobin
saturation and microvascular responses. Combined with neuromuscular data from
HD-sEMG, these approaches allow a comprehensive assessment of the relationship
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between electrical activation, mechanical output, and vascular/metabolic status. To
this end, the following subsections will briefly introduce each technique, outlining
their respective strengths and limitations. As will become evident from the following
descriptions, the complementary nature of these techniques supports their combined
use for a more complete assessment of muscle fatigue.

2.3.1 Ultrasound
Ultrasound (US) imaging uses mechanical sound waves with frequencies above the
audible range (≥20 kHz), typically between 2 and 10 MHz in medical applications,
to view inside the body. Modern ultrasound devices rely on piezoelectric crystals
embedded in the transducer to convert electrical energy into mechanical (acoustic)
waves [1]. These waves propagate through tissues and are partially reflected at
interfaces where differences in acoustic impedance (z) occur - a property defined
by the tissue’s density (ρ) and the speed of sound in the medium (v) as follows

z = ρv (2.1)

It can be observed that even very different tissues and organs may exhibit similar
values of density and acoustic impedance, as is the case for blood and muscle. The
values for the most relevant tissues are summarized in Table 2.2 below, providing
context for the ultrasound contrast observed in muscle imaging.

Tissue Density (kg/m3) Speed of sound (m/s) Acoustic impedance (106 kg/m2/s)
Air 1.2 330 0.0004
Water 1000 1480 1.48
Blood ∼1050-1060 ∼1570-1584 ∼1.65-1.68
Liver 1060 1550 1.64
Muscle 1080 1580 1.70
Fat 952 1459 1.38
Brain 994 1560 1.55
Kidney 1038 1560 1.62
Lung 400 650 0.26
Soft tissue (mean) 1060 1540 1.63
Bone 1912 4080 7.80

Table 2.2: Typical values of density, speed of sound, and acoustic impedance for
different tissues.

The ultrasound image represents a mapping of all the acoustic impedance
discontinuities encountered by the ultrasound waves as they propagate through the
tissues. Thus, by emitting a sequence of US pulses along a predefined scan line
and capturing the returning echoes, an image that maps the spatial distribution of
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acoustic impedance discontinuities within the irradiated tissues can be reconstructed.
The transducer converts the returning waves back into electrical signals, which
are then processed to generate images that reveal the structural properties of the
tissues under investigation.

US imaging can be performed in various modes. In this study, brightness-mode
(B-mode) ultrasound was employed, as it allows for two-dimensional imaging of the
muscle, whereas amplitude-mode (A-mode), which measures echoes along a single
line, was not used. For B-mode ultrasound, parameters such as muscle thickness,
cross-sectional area, pinnation angle, and fibre length are frequently employed to
assess fatigue levels [1]. In the context of this study, US imaging serves primarily as a
morphological reference, providing a structural map on which photoacoustic images
are subsequently overlaid. This approach enables the integration of functional
information from photoacoustic imaging with the anatomical context provided by
US. The main advantages of US include its safety due to non-ionizing radiation,
high temporal resolution, and the ability to target specific muscles of interest.
Limitations include a restricted field of view and reduced image quality at greater
depths, though these are not critical for the present application.

2.3.2 Photoacoustic Imaging
PAI is a hybrid imaging modality that combines optical illumination with US
detection. A nanosecond pulsed laser (pulse duration <10 ns) is commonly used
to illuminate the tissue. When the light is absorbed by tissue chromophores,
such as hemoglobin in blood vessels, melanin, lipid or water, the optical energy
is converted into heat, causing a minimal, slight and rapid temperature rise (on
the order of a few millidegrees). This temperature increase induces thermoelastic
expansion, which generates acoustic waves that are subsequently detected by
ultrasonic transducers [12, 13, 14]. From these acquired PA signals, PA images are
obtained using appropriate image reconstruction algorithms which in turn provide
the structural/functional information of the tissue of interest [13, 15]. A schematic
representation of the technique is shown in Figure 2.7 below.

Originally conceptualized over a century ago, the photoacoustic effect found
its first major biomedical applications in the early 2000s, driven by advances in
laser technologies and ultrasound detection systems. In recent years, PAI has been
increasingly applied in various biomedical domains, including breast imaging, der-
matology, vascular diagnostics, gastrointestinal assessment, adipose tissue analysis,
neurological research, and more recently, muscle and metabolic physiology [12, 13].
While many of these applications are still under active investigation, several have
already progressed toward clinical adoption, highlighting the translational potential
of PAI. Although it remains primarily a research modality in muscular studies, PAI’s
clinical integration has already begun in domains such as breast cancer diagnostics
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Figure 2.7: Overview of PA signal generation and image reconstruction, taken
from [15]. A short laser pulse heats the absorber, causing thermoelastic expansion
and emission of acoustic waves. These are detected by an ultrasound probe and
processed to form the PA image.

(e.g., Imagio), vascular visualization, and dermatologic assessment, supported by
CE-marked systems like MSOT Acuity and RSOM [12, 16, 17]. Central to these
clinical advances is the unique imaging mechanism of PAI, which leverages the fact
that endogenous chromophores, such as hemoglobin and melanin, have distinct
absorption spectra. By using multiple laser wavelengths, PAI enables the selective
excitation of these chromophores, facilitating their identification and quantification.
This spectroscopic capability allows for the extraction of rich functional data about
tissue composition, oxygenation status, and metabolic changes [12].

Several prior studies [18, 19, 20, 21, 22, 23, 24, 25] have employed multiwave-
length photoacoustic imaging to investigate skeletal muscle, with a primary focus
on quantifying different forms of hemoglobin (oxygenated, deoxygenated, and
total). These investigations demonstrate PAI’s ability to monitor real-time oxy-
genation dynamics, thus providing key insights into muscle function, fatigue, and
pathophysiological states.

Why PAI instead of NIRS?

An important methodological consideration concerns the choice of PAI over near-
infrared spectroscopy (NIRS) or other purely optical techniques. Several studies
[13, 19, 20, 21, 24] have highlighted the limitations of light-based methods and the
advantages offered by PAI. The main limitation of optical techniques such as NIRS
and diffuse optical tomography (DOT) lies in the strong scattering and absorption
of photons in biological tissues. While NIRS provides valuable information on
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tissue oxygenation, its effective imaging depth is limited. DOT can partially
mitigate this issue but still suffers from low spatial resolution (typically 5-10 mm).
Furthermore, NIRS signals often contain uncertain contributions from both muscle
and superficial tissues (particularly subcutaneous fat and skin), which complicates
the reliable separation and quantification of hemoglobin species. In contrast, PAI
overcomes these limitations by relying on US detection. Acoustic waves experience
approximately 1000 times less scattering than photons in tissue [12], enabling
deeper penetration with minimal distortion. As a result, PAI achieves greater
imaging depth and spatial resolution, while still preserving sensitivity to hemoglobin
oxygenation dynamics.

Spectral Unmixing

PA images representing the distribution of spectrally-distinct chromophores are
generally obtained with a two-step procedure. In a first step, optoacoustic tomo-
graphic images are reconstructed from the pressure signals generated by absorption
of short laser pulses. In the second step, spectral unmixing algorithms are imposed
on the images acquired at different excitation wavelengths in order to map the
distribution of different absorbing substances present in the tissue [26]. This step
is crucial because, while PAI excels in mapping spatial variations in optical ab-
sorption, it does not inherently distinguish between specific chromophores. This
limitation is addressed through spectral unmixing, a mathematical technique that
deciphers multi-wavelength PAI data by referencing the known absorption spectra
of target biomolecules. Endogenous chromophores such as oxygenated (HbO2) and
deoxygenated hemoglobin (Hb), lipids, and water exhibit characteristic spectral
profiles, allowing their contributions to the total signal to be resolved and quanti-
fied. In muscle imaging, this is particularly valuable for tracking dynamic changes
in oxygenation during contraction or ischemia-reperfusion events [21]. Spectral
unmixing algorithms, ranging from linear model-based approaches to advanced
machine learning techniques, enable the generation of functional maps that provide
insight into tissue oxygenation, perfusion, and metabolic state [12, 27].

2.3.3 High-Density Surface Electromyography
Motor commands originating in the central nervous system activate motor neurons,
which recruit motor units within the muscle. The resulting electrical activity
generates biopotentials that can be detected at the skin surface as electromyographic
(EMG) signals. The EMG signal is the result of the asynchronous summation of the
electrical potentials from multiple motor units (Figure 2.8). Surface EMG (sEMG)
is a common method used for acquiring signals from muscles during both static
and dynamic contractions and can be recorded from various parts of the body by
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placing electrodes on the skin surface above the target muscle [1, 5].

Figure 2.8: Illustration of the contribution of neural input and single muscle
fibers to motor unit action potentials (MUAPs), showing how the activation of
multiple motor units (MU1, MU2, MU3) combines to form the composite EMG
signal.

HD-sEMG builds on conventional sEMG by using multipolar electrodes arranged
in arrays or matrices, allowing signal acquisition from a much wider area of the
target muscle [1]. One of the main advantages of HD-sEMG is its ability to capture
detailed spatial information. While standard sEMG provides only the combined
activity of all motor units, HD-sEMG enables the differentiation of signals from
individual motor units. This allows for the extraction of richer data, such as
identifying innervation zones, estimating action potential, conduction velocity
(CV), locating tendons, and even decomposing individual MUAPs using advanced
algorithms [28]. A major application of HD-sEMG is in the study of muscle fatigue.
The primary myoelectric marker of fatigue is a decrease in conduction velocity,
which reflects the propagation speed of depolarization along the muscle fibers [29].
CV is estimated by measuring the delay between signals recorded at fixed distances
along the fibers [30]. In fatigue analysis, both frequency-domain and time-domain
parameters are typically combined to characterize the process. At the onset of a
sustained contraction, the EMG signal displays a characteristic spectral profile.
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As fatigue sets in and conduction velocity slows, the power spectrum shifts and
compresses toward lower frequencies. This shift is quantified using mean frequency
(MNF) and median frequency (MDF). Although these are spectral parameters
calculated in the frequency domain, they are usually plotted as a function of time
to track the fatigue progression. In the time domain, parameters such as average
rectified value (ARV) and root mean square (RMS) amplitude tend to increase
with fatigue, reflecting changes in signal amplitude. These descriptors, widely used
in fatigue studies, can be selected and combined depending on the experimental
protocol and the specific aspects of muscle function under investigation.
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Chapter 3

Materials and Methods

This chapter describes the experimental setup and the methodological framework
employed in this thesis. First, the instrumentation and acquisition procedures
are presented, including the integration of US, PAI and HD-sEMG. Then, the
experimental protocol adopted for data collection is outlined. Finally, the data
processing steps are detailed, covering image reconstruction, spectral unmixing,
and EMG feature extraction.

3.1 Experimental Setup

3.1.1 Imaging hardware
US and PA imaging were performed using a Verasonics Vantage 256 research
platform equipped with an L11-5v linear array transducer, featuring 128 elements
and a center frequency of 7.8 MHz. The Verasonics system, connected via PCIe
cable to a host computer running Matlab-based control software, provided a
flexible platform for transmitting, receiving, and processing US and PA data.
Imaging sequences were defined through Matlab scripts, enabling synchronized
control of acquisition parameters and laser triggering for PA imaging, as detailed
in Section 3.1.2. The Verasonics VSX interface, launched via Matlab, displayed
reconstructed US and PA images in real-time. This interface allowed runtime
adjustments of key parameters, such as time gain control, transmission voltage, and
acquisition settings, synchronized with the hardware through periodic hand-offs
between VSX and the RunAcq module. The RunAcq function transmitted all
parameters to the hardware, collected raw data into the RcvBuffer variable, and
returned reconstructed images to the VSX interface for display. Signal sampling was
set to 31.2 MHz, four times the transducer’s center frequency, to meet the Nyquist
criterion and ensure accurate digitization. After each session, raw US and PA data
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were stored for offline processing. The system architecture for US/PA sequencing
is illustrated in Figure 3.1. US imaging provided morphological references for
anatomical structures, while PA imaging enabled the assessment of tissue optical
absorption for functional metrics, such as oxygenated hemoglobin levels (HbO2),
as described in Section 3.3.3.

Figure 3.1: Vantage system architecture and data acquisition sequencing, taken
from [15].

3.1.2 Laser source and wavelength configuration
The photoacoustic signal was generated by illuminating the tissue with pulsed
laser light and detecting the resulting acoustic waves with the US transducer.
Illumination was provided by an Opotek Phocus Mobile SE system, a tunable
laser source based on ring-cavity optical parametric oscillator technology. This
configuration enables the generation of high pulse energies across the near-infrared
spectrum, providing sufficient penetration depth for biological tissues. The laser
delivered wavelengths in the range of 690-950 nm through two flexible optical fiber
bundles mounted laterally on either side of the transducer The experimental setup
is shown in Figure 3.1. This illumination geometry ensured uniform exposure of
the region of interest while avoiding obstruction of the acoustic detection path. For
each acquisition, the actual pulse energy was recorded via the StarLab software
(version 2.40, Build 8) and later used to normalize the photoacoustic measurements.

3.1.3 Load cell measurement and force feedback system
A load cell integrated into a custom wooden support continuously recorded the force
applied by the little finger, which was pushed upwards against a resistance. The
system provided real-time feedback, allowing subjects to maintain the target force
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Figure 3.2: a) Experimental setup showing the ultrasound transducer with
bifurcated fiber optic illumination. b) Experimental setup for US and PA imaging.
The Verasonics Vantage 256 research platform is positioned under the desk (left),
connected to a host computer (center) running the Matlab-based VSX interface,
which displays real-time US and PA images on the monitor. The Phocus Mobile
Laser System (rear) provides the laser source for PA imaging, controlled by a
separate computer (right). The setup includes the L11-5v linear array transducer
(not visible in this view) mounted during experiments.

steadily throughout the acquisition (Figure 3.3). This setup ensured controlled and
repeatable force output, forming a reliable foundation for the subsequent acquisition
of imaging and electrophysiological data.

3.1.4 HD-sEMG acquisition system and electrode grid
placement

HD-sEMG signals were acquired using the MEACS system, a CE-marked, modular,
and wireless device specifically designed for the study of neuromuscular activity by
the LISiN reasearch group at Politecnico di Torino [31, 32]. A single 32-channel
module, corresponding to the electrode grid applied on the target muscle, was
employed in this work. Signals were sampled at 2048 Hz with 16-bit resolution, an
ADC dynamic range of 2.4 V, and a front-end gain of 192 V/V. The system is fully
wireless and battery-powered, with electrode grids connected directly to the MEACS
probe, minimizing connecting cables and thereby reducing triboelectric noise and
movement artifacts. A General-purpose Acquisition Module (GAM) was used to
acquire and synchronize the load cell signal with the HD-sEMG data, ensuring
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Figure 3.3: Experimental setup featuring a load cell integrated into a custom
wooden support, used to continuously record the force applied by the little finger
pushing upwards against a resistance.

precise temporal alignment between force measurements and muscle activity. Force
measurement data was not saved for the subsequent analysis, but only used as a
visual feedback for the exercising subject.

HD-sEMG signals were recorded using a thin-film, ultrasound-transparent elec-
trode array consisting of 32 electrodes arranged in 4 columns and 8 rows. The array
was positioned on the forearm over the muscles responsible for finger movements,
with the primary target being the EDM muscle, the muscle extending the little
finger. Columns (8 electrodes each) were oriented perpendicular to the muscle
fibers, while rows (4 electrodes each) were aligned along the fiber direction, allowing
each row to capture signals along the fibers (as shown in Figure 3.4).

3.1.5 Preliminary evaluation of electrode array compatibil-
ity with photoacoustic imaging

PAI depends on optical absorption and subsequent acoustic wave generation, neces-
sitating an assessment of how electrode materials interact with light to potentially
influence signal detection. Prior to subject imaging, a preliminary evaluation was
conducted to determine whether the two-dimensional electrode array introduced
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Figure 3.4: Placement of the thin-film, ultrasound-transparent electrode array on
the forearm, featuring 32 electrodes in a 8x4 matrix. The array is positioned over
the EDM muscle, with columns (8 electrodes each) oriented perpendicular to the
muscle fibers and rows (4 electrodes each) aligned along the fiber direction.

signal attenuation, as it forms an additional layer between the skin and transducer.
This evaluation utilized a soft tissue-mimicking phantom with carbon pencil leads
embedded at varying depths to simulate absorbing structures. The electrode array
was placed to cover approximately half of the embedded inserts, enabling a direct
comparison of signal intensities between covered and uncovered regions (Figure 3.5
illustrates this setup). The test was repeated on two separate days to verify re-
peatability. On each day, PA images were acquired at 27 wavelengths from 690 nm
to 950 nm in 10 nm increments. For each wavelength, 10 laser pulses were delivered
at a 20 Hz repetition rate, yielding 10 frames per wavelength. On the second day,
an additional acquisition with 20 pulses per wavelength was performed to assess
the impact of extended averaging. Raw data were processed following the pipeline
outlined in Section 3.3.1, including delay-and-sum (DAS) beamforming, Hilbert
transform-based envelope detection, axial interpolation, decibel-scale conversion,
and laser energy normalization prior to frame averaging. Signal attenuation by the
electrode array was quantified by defining ROIs over inserts beneath (ROIinside)
and outside (ROIoutside) the array, with corresponding background noise ROIs
selected nearby. The signal-to-noise ratio (SNR) was computed for each as:

SNRdB = 20 · log10

3
µsignal

σnoise

4
, (3.1)

where µsignal is the mean intensity in the signal ROI and σnoise is the standard
deviation in the noise ROI. This analysis was applied to all 27 composite images
from each acquisition, with comparisons across days, pulse counts (10 vs. 20), and
normalization effects. Relevant findings are presented in Chapter 4.
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Figure 3.5: (a) Experimental setup for the preliminary phantom evaluation,
featuring the soft tissue-mimicking phantom with embedded carbon pencil leads
and the electrode array positioned to cover approximately half of the inserts for
comparative analysis. (b) Example photoacoustic image at 800 nm, with ROIs
defined inside (ROIinside) and outside (ROIoutside) the electrode array coverage,
used to quantify signal attenuation via SNR computation.

3.2 Experimental Protocol

3.2.1 Subject positioning and task description
Data acquisition was conducted on two healthy subjects, both over 18 years old,
comprising one male and one female. Prior to and following an exercise protocol,
each subject was seated on a chair with their right arm resting on a desk, ensuring
the wrist remained relaxed and adequately supported. The exercise involved an
isometric contraction of the little finger of the right hand, designed to induce muscle
fatigue; this was maintained at about 20% of the subject’s maximum voluntary
contraction for about one minute. To ensure safety, all individuals present in the
room wore protective goggles to guard against potential laser exposure. The L11-5v
probe was positioned perpendicular to the skin surface over the electrode matrix,
secured using standard acoustic coupling gel and an ultrasound gel pad. Before
placing the matrix on the forearm, the skin was thoroughly cleaned to optimize
contact and signal quality. Simultaneously, photoacoustic and HD-sEMG data
were acquired during both rest and fatigue conditions, facilitating a comprehensive
analysis of muscle activity.

3.2.2 Data acquisition parameters
Final data, encompassing the complete protocol, were collected across two acquisi-
tion sessions on separate days, yielding a total of six complete datasets. Throughout
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all experiments, PA and HD-sEMG signals were recorded simultaneously. For PAI,
a periodic illumination sequence employed ten different wavelengths, ranging from
700 to 925 nm in 25 nm increments. At each wavelength, the laser delivered short
pulses of 5-7 ns duration at a repetition rate of 20 Hz; ten pulses were delivered per
wavelength, with a corresponding PA frame captured for each pulse. This resulted
in ten consecutive frames per wavelength, which were subsequently averaged to
enhance the SNR and produce one representative frame per wavelength. All acqui-
sitions were conducted under both resting and exercise conditions. For subsequent
analyses, two wavelength sets were evaluated: the full set of ten wavelengths and
a reduced subset of three (750, 800, and 850 nm). The latter was selected to
highlight the distinct optical absorption properties of Hb and HbO2; Hb shows
higher absorption around 750 nm, both chromophores exhibit equal absorption at
the isosbestic point of 800 nm, and HbO2 dominates absorption at 850 nm. While
HD-sEMG data were collected exclusively during exercise conditions, all raw PA
data were stored for offline reconstruction and quantitative processing. Table 3.1
below provides a comprehensive summary of the acquisition parameters, detailing
the conditions, wavelength ranges, EMG data collection, and any observed issues
across the two subjects over Day 1 and Day 2 experiments.

Subject Trial Day Conditions Wavelength Range Number of Wavelengths EMG / Notes
Male 1 1 Rest + Fatigue 690–910 nm (20 nm step) 11 Fatigue only; 22% data loss EMG
Male 2 1 Rest + Fatigue 700–925 nm (25 nm step) 10 Fatigue only; All ok
Female 1 1 Rest + Fatigue 700–925 nm (25 nm step) 10 Fatigue only; All ok
Female 2 1 Rest + Fatigue 700–925 nm (25 nm step) 10 Fatigue only; 3% data loss EMG
Male 1 2 Rest + Fatigue 700–925 nm (25 nm step) 10 Rest + Fatigue x2; All ok
Male 2 2 Rest + Fatigue 700–925 nm (25 nm step) 10 Rest + Fatigue; 0.5% data loss EMG

Table 3.1: Acquisition parameters for two healthy subjects (one male, one female)
across Day 1 and Day 2 experiments. Note that the first trial of the male subject on
Day 1 used a different wavelength range (690–910 nm with 20 nm step) compared
to the standard 700–925 nm with 25 nm step used in all other trials.

3.3 Data Processing and Analysis

3.3.1 Photoacoustic image reconstruction and processing
pipeline

All image processing was performed in Matlab R2023b (Mathworks, Inc., MA,
USA). As previously described, the Verasonics system allows raw data to be
saved in .mat files, which were subsequently loaded and analyzed in the software.
Each saved file, when loaded in Matlab, appears as a struct that contains the
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acquisition settings, the raw signals received by the transducer, and the transducer
specifications. During acquisition, all wavelengths were applied sequentially, with
the system automatically cycling through them in a continuous manner. To store
the raw data, a buffer containing approximately 700-750 frames was used. For each
wavelength, 10 valid samples were collected, resulting in 100 useful frames for a
complete cycle of 10 wavelengths. However, the buffer size exceeds this number
because of the time required by the laser to switch between wavelengths. Specifically,
the laser produced 10 frames with valid image data, followed by an average of
≈ 55 frames without useful information, before resuming with valid data at the
next wavelength. This corresponds to ≈ 2.75s needed for the laser to complete the
wavelength transition at a frame rate of 20 Hz (i.e., 20 × 2.75 ≈ 55 empty frames).
To identify the subset of frames corresponding to the actual useful information in
the buffer, an inspection routine was developed. This step was necessary because
the relevant frames within the buffer were not fixed a priori; for instance, data
acquired at 700 nm could appear in frames 50-59 in one acquisition or 63-72 in
another. The inspection procedure therefore allowed us to determine precisely
where each wavelength was located within the buffer. An example is shown in
Figure 3.6.

A second processing routine was implemented to load both the raw data and
the corresponding energy information. The laser energy for each acquisition was
recorded using the StarLab software, which saved the data in multiple .txt files.
Separate files were generated for each acquisition condition (e.g., rest or fatigue),
resulting in a set of energy logs. Each .txt file contained a header with general
acquisition information (such as minimum, maximum, and mean energy values,
standard deviation, and the total number of pulses), followed by two columns of
numerical data. The first column reported timestamps, which clearly reflected the
2.75 s interval corresponding to wavelength switching, while the second column
reported the measured pulse energy in Joules. These .txt files were subsequently
converted into .mat format for use in Matlab. For the main image reconstruction
stage, the raw datasets, stored as three-dimensional matrices of size 4096×128×700,
corresponding to temporal samples, transducer elements, and frames respectively,
were imported into Matlab. For each selected frame previously identified, the data
were organized into two key structures: dataset, containing the reshaped raw signals
(10 frames of dimension 1920 × 128) together with the acquisition parameters, and
scan, defining the spatial axes required for image formation. These variables were
generated using the get_variables function, which extracts the received channel
data and formats it according to the selected acquisition and reconstruction mode
(planewave US or PA). At this stage, the raw data were normalized for the laser
energy in accordance with the approach described by Diot et al. [33]. Specifically,
the single frames (dimension 1920 × 128) were scaled by multiplying them by the
maximum energy value recorded for the given dataset and condition across all
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Figure 3.6: Example of raw data received on the 64th transducer element,
illustrating the buffer structure with approximately 700-750 frames. The plot
shows 10 valid frames per wavelength (highlighted by peaks) within a cycle of
10 wavelengths, followed by approximately 55 empty frames due to the laser
wavelength transition, demonstrating the variability in frame positioning requiring
the inspection routine.

wavelengths, and dividing it by the energy corresponding to the specific frame
under analysis, as follows:

datanorm = data · Emax

Eframe

(3.2)

This normalization was introduced to compensate for fluctuations in laser pulse
energy, ensuring that frames acquired with lower pulse energy were appropriately
amplified and all data were scaled to a common reference level. Then, image recon-
struction was performed using a DAS beamforming algorithm. DAS is a standard
reconstruction method in US and PA imaging, where signals received by each
transducer element are temporally aligned (delayed) to compensate for differences
in propagation paths and then summed, enhancing coherent contributions from the
focal point while suppressing incoherent noise (as illustrated in Figure 3.7a). In the
implementation of DAS in PA mode, no transmission delay was considered, as the
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acoustic waves are generated directly within the tissue following optical absorption;
therefore, only the reception delay was accounted for. After DAS reconstruction
in PA mode, the processed data were stored in Matlab structures, organized
by acquisition condition and wavelength. Each wavelength field contained ten
consecutive frames. For each frame, three image representations were saved:

• BF: the raw beamformed data obtained after DAS reconstruction,

• im_lin: the image generated after applying the Hilbert transform and envelope
detection (i.e., |Hilbert(BF)|),

• im_dB: the logarithmic representation after dB conversion.

In addition, spatial information such as the scan axes was stored in the structure.
Finally, to obtain a representative image per wavelength, the ten frames were
averaged for each image modality. Specifically, the ten lin images were averaged,
the ten dB images were averaged, and the ten BF images were averaged for each
wavelength (see Figure 3.7b-d for an example mean frame at 800 nm under rest
condition). This averaging step not only provided a single representative frame
but also improved the SNR by reducing random variability across frames. To
compensate for inter-wavelength shifts, primarily observed in lower wavelengths,
the averaged images were then aligned using the Matlab function imregtform,
with the 925 nm image serving as the fixed reference and all lower wavelength
images (700–900 nm) as moving targets, ensuring greater similarity to the overall
dataset. The resulting aligned images were used as input for the subsequent spectral
unmixing analysis.

3.3.2 ROI selection and metric computation
To evaluate potential differences between rest and fatigue conditions, region-of-
interest (ROI) analysis was performed on the averaged images. A representative
reference image was first selected, and an ROI was manually delineated in Matlab
using the image acquired at 700 nm. The ROI was positioned in an area exhibiting
a strong photoacoustic signal, indicating the presence of absorbing chromophores,
though their specific nature was not determined at this stage. The same ROI
was then applied across all images within the acquisition, i.e., one averaged image
per wavelength. For each ROI, three metrics were extracted: the mean intensity,
the maximum intensity, and the 90th percentile of pixel intensities. By applying
the identical ROI to both rest and fatigue images, variability due to manual re-
selection was minimized, ensuring consistency across conditions. Additionally, a
further analysis was conducted. Starting with the image at 700 nm, the manually
delineated ROI was used as the basis for applying k-means clustering to identify
three distinct classes based on pixel intensity (illustrated in Figure 3.8 for the
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Figure 3.7: (a) Schematic of the DAS beamforming process in PA mode, show-
ing delayed signals xi(k − ∆i) from multiple transducer elements summed to
reconstruct the image, followed by post-processing (e.g., envelope detection and
log compression). Adapted from [15]. (b-d) Example mean frame at 800 nm
under rest condition: (b) BF image (raw beamformed data), (c) Im_lin image
(envelope-detected after Hilbert transform), and (d) Im_dB image (logarithmic dB
representation), averaged from ten consecutive frames to enhance SNR.

rest condition). This same class subdivision was preserved across all wavelengths,
and a mean spectrum was computed for each class over the wavelength range.
The resulting mean spectra for the three classes were plotted to visualize spectral
variations, with the plots reported in Chapter 4.

3.3.3 Spectral unmixing for oxygenated hemoglobin esti-
mation

As previously introduced, when a laser is used to illuminate a tissue of interest,
as in photoacoustic imaging, the chromophores within the tissue absorb the light
and emit acoustic waves, which can be detected by an ultrasound transducer. An
image acquired at a single wavelength primarily provides structural information,
representing the spatial distribution of chromophores that absorbed the light,
without distinguishing between different chromophore types. However, by acquiring
images at multiple wavelengths, it becomes possible to separate the contributions
of individual chromophores. This approach enables the extraction of physiological
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Figure 3.8: Schematic representation of the ROI selection and k-means clustering
process applied to the rest condition at 700 nm, showing the manually delineated
ROI (a) and the identification of three classes based on pixel intensity (b), with
the same subdivision preserved across all wavelengths.

information, such as the relative content of oxygenated hemoglobin versus total
hemoglobin in the muscle, which is the focus of the present study. To isolate the
contributions of individual chromophores from the multispectral images, a linear
spectral unmixing approach was employed. Spectral unmixing is the procedure
by which the measured spectrum of a mixed pixel is decomposed into a collection
of constituent spectra, or endmembers, and a set of corresponding fractions, or
abundances, that indicate the proportion of each endmember present in the pixel.
This process commonly adopts a linear mixture model (LMM), which assumes that
the measured spectrum at each image location M(r, λ) (with r denoting position
and λ the optical wavelength) is a linear combination of the spectral signatures
Si(λ) of K distinct materials, weighted by their relative abundance or concentration
at that specific image location ci(r):

M(r, λ) =
KØ

i=1
Si(λ) ci(r). (3.3)

Given knowledge of the spectral signatures Si(λ), the relative concentrations ci(r)
can be estimated by means of linear regression, a method generally referred to as
linear unmixing [27]. This was the approach adopted in the present work.

The linear spectral unmixing algorithm employed in this thesis was not developed
by the author but provided in Python and executed on Google Colab. The
algorithm requires input files in the HDF5 format. For this reason, the averaged
images previously obtained in Matlab were reorganized through a dedicated script
into multiple HDF5 files and subsequently used as input for the unmixing process.
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Each HDF5 file corresponds to a single dataset, containing linear-scale, dB, and
BF images. Several unmixing procedures were performed for each dataset. For
each image modality, two separate unmixings were carried out: one using the full
spectral range (700-925 nm, 25 nm steps), and one restricted to three wavelengths
(750, 800, and 850 nm). The rationale for this reduced set is that Hb exhibits higher
absorption near 750 nm, both chromophores share the same absorption at 800
nm (isosbestic point), and HbO2 becomes the dominant absorber around 850 nm.
The molar extinction coefficients of hemoglobin in water, reported by Scott Prahl
[34], were used as reference spectra. Specifically, both HbO2 and Hb spectra were
available in the range 250–1000 nm with a 2 nm step size, expressed in cm−1/M.
Since the acquisition wavelengths were sampled with 25 nm intervals, the spectral
data required interpolation to match the measurement grid. This was performed
in Matlab using the interp1 function with the spline interpolation method, in
order to generate values at the required wavelengths. These interpolated spectra
were then used as the reference signatures in the linear unmixing model.

Before applying spectral unmixing, several preprocessing strategies were explored
to improve the stability of the decomposition. These included pixel-wise min-max
scaling across wavelengths, global maximum normalization, image cropping, block-
wise spatial averaging, and intensity thresholding. In particular, min-max scaling
normalized each wavelength-specific image to its local dynamic range, whereas global
maximum normalization scaled all frames by the maximum intensity observed across
the entire dataset. Cropping was applied to remove background regions outside the
imaging field of interest, while block-wise averaging (Matlab blockproc, 3 × 3
window) was tested to reduce the number of pixels and mitigate local variability.
Intensity thresholding was also investigated by applying three different cutoff levels
to suppress low-intensity values likely dominated by noise. However, except for the
intensity thresholding, none of these preprocessing steps substantially improved
the unmixing performance. Therefore, the analysis presented in this thesis is based
solely on the laser energy normalization previously described.

Spectral unmixing was then performed on a pixel-wise basis using a constrained
linear least-squares solver. The model matrix contained the interpolated reference
spectra of HbO2 and Hb, and the measured spectrum at each pixel was fitted as a
non-negative linear combination of these signatures. The fitting was implemented
through the lsq_linear function in Python, with bounds enforcing non-negative
concentrations for both HbO2 and Hb. From the fitted coefficients, total hemoglobin
(HbT = HbO2 +Hb) was computed, and the oxygen saturation (sO2) was expressed
as the ratio HbO2/HbT. A check was included to avoid division by zero in pixels
with negligible signal. The resulting maps were subsequently restricted to the
selected ROI, both with and without the application of intensity thresholds.

Once the unmixing results were obtained, the resulting sO2 maps acquired under
both resting and fatigued conditions were further analyzed. A k-means clustering
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algorithm was applied to the unmixed images to segment the tissue into three
clusters based on oxygen saturation levels, corresponding to low, medium, and high
oxygenation. After identifying the three clusters, the resulting cluster map was
stored and subsequently applied to the original PA images. For each cluster, the
mean spectrum and standard deviation across wavelengths were computed. This
procedure enabled the generation of spectral curves that describe the behavior of
the three oxygenation clusters as a function of wavelength. These curves, together
with the centroid values obtained for each cluster, are presented in Chapter 4.

3.3.4 HD-sEMG signal processing and feature extraction
Raw EMG signals were first reconstructed from the acquired data levels and
converted from ADC units to volts referred to input (V RTI). For each channel,
the percentage of data loss was then computed as a quality check, with deviations
from zero observed in some acquisitions, as reported in Table 3.1. To correct for
baseline drift, the mean value was subtracted from each channel before further
processing. Subsequently, the monopolar signals were band-pass filtered between
20–400 Hz using a fourth-order Butterworth filter, in order to isolate the relevant
EMG frequency components. Since line noise at 50 Hz was visible in the power
spectral densities (PSDs) of certain channels, a fourth-order Butterworth notch
filter centered at 50 Hz with a narrow stopband (48–52 Hz) was applied. This
operation was performed prior to computing the single differential (SD) signals,
thereby reducing power line interference while preserving the physiological content
of the EMG. Although higher harmonics at multiples of 50 Hz were also detected
in the PSDs, these were not removed, as their presence was not expected to affect
the outcomes of this work. After these preprocessing steps, SD signals were derived
from the monopolar signals to improve spatial selectivity and suppress common-
mode noise. Differences were computed along the columns of the electrode grid,
i.e., aligned with the muscle fibers, resulting in an 8 × 3 SD channel configuration.
This orientation ensured that the obtained SD signals faithfully reflected the
physiological alignment of the EDM muscle.

The aim of the analysis was to evaluate if and how myoelectric manifestations of
muscle fatigue are distributed across the electrode grid. To do so, both monopolar
and SD signals were considered in the subsequent analyses. The rationale for
including both modalities is technical. Monopolar recordings, obtained by refer-
encing each electrode of the HD-EMG array to a reference electrode placed on
the wrist, provide a direct representation of the acquired signals but are more
prone to noise contamination and cross-talk from adjacent muscles. In contrast,
SD recordings, obtained as the difference between neighboring electrodes along the
muscle fibers, effectively attenuate common-mode disturbances and enhance the
selectivity toward MUAPs. For this reason, the analysis was conducted in parallel
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on both monopolar and SD signals: monopolar signals were used to illustrate the
quality and origin of the acquired data, while SD signals were employed to obtain
cleaner, spatially resolved maps of muscle activation. The combination of both
perspectives ensured a more comprehensive assessment of the spatial distribution
of myoelectric manifestations of fatigue across the electrode grid.

To quantitatively assess changes in muscle activation during sustained con-
traction, the RMS of the EMG signals was computed on non-overlapping 0.5 s
epochs for all channels. This procedure yielded approximately 100 RMS values
per channel. From these, three representative periods were selected: the onset,
the middle, and the final phase of the contraction. The onset and middle phases
were defined as the first and central epochs, respectively, while the final phase
was identified as the portion exhibiting the highest RMS value (indicative of peak
activation during fatigue), as subsequent epochs typically showed a decrease in
RMS, likely due to the subject no longer maintaining the contraction. For each
phase, the RMS values were spatially mapped, thus generating three activation
maps per configuration. These maps allowed for the visualization of changes in
muscle activation over time, highlighting electrodes under which higher RMS values
were observed, and providing insights into the localization and evolution of the
activation pattern during the task.

After generating the spatial RMS maps, a further analysis was performed to
investigate muscle fatigue in the most active region of the electrode grid. This anal-
ysis was conducted for both monopolar and SD signals, consistent with all preceding
procedures. The most active areas were identified from the previously obtained
RMS maps, and only the channels exhibiting the highest activity were selected,
as the objective was to assess fatigue in the region predominantly contributing
to muscle contraction. For each selected channel, RMS and MNF values were
computed on consecutive 0.5 s epochs, yielding time series that were then fitted
with a first-order polynomial in the least-squares sense, resulting in an equation
of the form y = px + q. The slope coefficient (p) was extracted for each channel,
and these slopes were averaged across the selected electrodes to obtain mean slope
values for both RMS and MNF. To verify the fitting process, the superimposed
polynomial fits were plotted alongside the corresponding RMS and MNF time series
for the selected electrodes. Figure 3.9 below summarizes the HD-sEMG processing
steps.
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Figure 3.9: Illustration of HD-sEMG signal processing pipeline for the first
acquisition (male subject, Day 1). (a) Electrode array placement on the forearm.
(b) Monopolar signals (left) and RMS value selection for channel 29 (right). (c)
Single differential signals (left) and RMS for channels 29–32 (right). (d) Interpolated
monopolar RMS maps for start, middle, and end phases. (e) Interpolated single
differential RMS maps for start, middle, and end phases. Color scale: RMS
amplitude (arbitrary units); orientation: lateral (up), medial (down), distal (left),
proximal (right).
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Results

4.1 Results of the preliminary evaluation of elec-
trode array compatibility

The preliminary phantom evaluation demonstrated the electrode array’s compati-
bility with PAI, revealing consistent but moderate signal attenuation (mean SNR
difference of 5.3 ± 0.2 dB between ROIinside and ROIoutside across 27 wavelengths
for the 10-frame acquisitions on Days 1 and 2, corresponding to a relative difference
of 18.8%). Repeatability between the two acquisition days was evident, with
normalized SNR profiles showing a mean variation of 7.6% relative to Day 1 values.
Increasing the number of averaged frames from 10 to 20 on Day 1 yielded a modest
SNR improvement of 0.2% on average (0.8% inside, −0.4% outside), suggesting
limited additional benefit from extended averaging in this setup. ROIs were selected
as described in Section 3.1.5 (see Figure 3.5 for an example placement). These
findings are detailed in Figure 4.1, showing unnormalized and normalized (pan-
els a, b) SNR comparisons across days, along with the effect of frame averaging on
Day 1 (panel c). Quantitative summaries, including mean differences, are provided
in Table 4.1.

Acquisition Frames Mean SNR outside (dB) Mean SNR inside (dB) Max SNR outside (dB) Max SNR inside (dB) Min SNR outside (dB) Min SNR inside (dB)
Day 1 10 27.98 ± 3.676 33.1 ± 3.868 39.22 45.39 23.98 27.66
Day 1 20 27.86 ± 3.622 33.35 ± 4.132 38.43 46.5 23.83 27.49
Day 2 10 30.11 ± 3.353 35.64 ± 3.935 41.42 50.8 26.1 30.44

Table 4.1: Mean SNR values measured inside and outside the electrode array
across different acquisition conditions and frame averaging levels.
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Figure 4.1: SNR analysis from the preliminary phantom evaluation across 27
wavelengths (690-950 nm). (a) Unnormalized SNR for Day 1 (left) and Day 2
(right) acquisitions, comparing ROIoutside (red) and ROIinside (blue). (b) Normalized
SNR (to initial value) for Day 1 and Day 2, with initial SNR indicated. (c) SNR
from 10-frame and 20-frame averaging on Day 1.
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4.2 Photoacoustic Imaging results

4.2.1 Full-Field Spectral Unmixing (Rest vs. Fatigue)

Full-field spectral unmixing was applied to the averaged photoacoustic images
across all six acquisitions, estimating distributions of oxygenated (HbO2) and
deoxygenated hemoglobin (Hb) for rest and fatigue conditions. For a representative
acquisition (Acquisition 1: Day 1, female subject), unmixing using the reduced
subset of three wavelengths (750, 800, 850 nm) produced images with localized
oxygenation fractions in superficial vascular structures during rest, transitioning to
more diffuse patterns in fatigue (Figure 4.2, left column). Extending to the full
set of 10 wavelengths (700-925 nm) yielded comparable spatial distributions but
with enhanced contrast in deeper regions, particularly for oxygenation fractions in
fatigue (Figure 4.2, right column). Similar trends in chromophore localization were
observed across the remaining acquisitions.

Figure 4.2: Full-field spectral unmixing results for a representative acquisition
(Acquisition 1: Day 1, female subject), comparing the reduced 3-wavelength subset
(750, 800, 850 nm; left column) to the full 10-wavelength set (700-925 nm; right
column). Images depict the oxygenation fraction [ HbO2

HbO2+Hb ], normalized to 0-1. Top
row: Rest condition, showing primarily superficial vascular signals. Bottom row:
Fatigue condition, exhibiting more extended patterns.
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4.2.2 ROI-Limited Spectral Unmixing
ROI-limited spectral unmixing was performed on the averaged PA images from all
six acquisitions, focusing on the manually delineated region over the EDM that
exhibited stronger PA signal (as defined in Section 3.3.2). For the representative
first acquisition of the male subject on Day 2, unmixing using the full 10-wavelength
set (700–925 nm in 25 nm steps) was applied to cropped versions of the original
images, followed by masking to confine the analysis to the ROI (Figure 4.3a).
This approach isolated signals to the central muscle region, reducing peripheral
artifacts in both rest and fatigue conditions. K-means clustering (k = 3) applied
to the 700 nm PA ROI image identified distinct pixel groups based on intensity in
both rest and fatigue, with the red-masked areas corresponding to blue clusters
(Cluster 1), yellow-clustered areas to red (Cluster 2), and white areas to yellow
(Cluster 3) (Figure 4.3b, left). The mean spectra per cluster, computed across
all wavelengths with standard deviation, showed varying absorption profiles, with
Cluster 2 exhibiting higher amplitudes at shorter wavelengths while Cluster 1
and Cluster 3 remained relatively constant and lower in intensity. Comparable
ROI-limited patterns and clustering results were observed in the other acquisitions.
In addition to intensity-based clustering, the unmixed sO2 maps obtained from the
same acquisitions were further analyzed using k-means clustering (k = 3) to group
pixels according to their oxygenation levels. The resulting cluster maps were then
used to extract the mean spectral response of each cluster from the original PA
images across all wavelengths. This enabled a direct comparison between regions
characterized by low, intermediate, and high oxygenation. The spectral curves,
along with their standard deviations, revealed distinct absorption trends associated
with different oxygenation levels, further highlighting functional differences within
the muscle tissue (Figure 4.4). Centroid values corresponding to each cluster for
both rest and fatigue conditions are reported in Table 4.2. These results complement
the intensity-based analysis described previously, providing additional physiological
insight.

4.2.3 Thresholded Spectral Unmixing
Thresholded spectral unmixing was applied to the averaged PA images from all six
acquisitions, using three cutoff levels (8000, 10000, and 15000 arbitrary units of
PA signal amplitude) to suppress low-intensity pixels by eliminating everything
below those values prior to unmixing, as described in Section 3.3.3. For the two
acquisitions of the male subject on Day 2, full-field results without ROI showed
progressively sparser SO2 distributions with increasing threshold levels in both rest
and fatigue conditions (Figure 4.5, top and middle rows). When limited to the ROI,
signals concentrated in central vascular areas at all thresholds, with rest exhibiting
more punctate patterns and fatigue displaying extended coverage compared to
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Subject/Day Acquisition Cluster 1 (Low) Cluster 2 (Mid) Cluster 3 (High)
Male/Day 1 1st Rest 0.0857 0.4218 0.7378
Male/Day 1 1st Fatigue 0.0101 0.2942 0.6369
Male/Day 1 2nd Rest 0.0236 0.3227 0.6703
Male/Day 1 2nd Fatigue 0.0339 0.3196 0.6285
Female/Day 1 1st Rest 0.0429 0.3648 0.7165
Female/Day 1 1st Fatigue 0.0342 0.3180 0.6454
Female/Day 1 2nd Rest 0.0411 0.3095 0.5946
Female/Day 1 2nd Fatigue 0.0380 0.3422 0.6575
Male/Day 2 1st Rest 0.0598 0.3625 0.6356
Male/Day 2 1st Fatigue 0.0907 0.4280 0.7460
Male/Day 2 2nd Rest 0.0782 0.3494 0.6270
Male/Day 2 2nd Fatigue 0.0438 0.3364 0.6596

Table 4.2: Cluster centroid values obtained from k-means segmentation of the
ROI in rest and fatigue conditions, across all acquisitions. Cluster 1 represents low
sO2, Cluster 2 mid sO2, and Cluster 3 high sO2.
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the full-field views (Figure 4.5, bottom row). Similar threshold effects were noted
across the other acquisitions.

4.2.4 Comparative analysis across acquisitions and condi-
tions

ROI-limited spectral unmixing metrics across the six acquisitions showed varying
mean SO2 fractions within the delineated region, with values ranging from 0.099
to 0.419 (Table 4.3). For the male subject on Day 1, mean SO2 decreased from
0.410 in rest to 0.099 in fatigue for the first acquisition, while the second showed
an increase from 0.193 to 0.232. The female subject on Day 1 exhibited modest
increases (0.228 to 0.271 for the first; 0.253 to 0.261 for the second). On Day 2, the
male subject’s first acquisition displayed a rise from 0.330 to 0.419, whereas the
second showed a slight decrease from 0.313 to 0.263. These values, normalized to a
maximum of 1 (fully oxygenated hemoglobin), highlight condition-specific shifts in
oxygenation within the ROI.

Subject/Day Acquisition Rest Mean SO2 Fatigue Mean SO2

Male/Day 1 1st 0.410 0.099
Male/Day 1 2nd 0.193 0.232
Female/Day 1 1st 0.228 0.271
Female/Day 1 2nd 0.253 0.261
Male/Day 2 1st 0.330 0.419
Male/Day 2 2nd 0.313 0.263

Table 4.3: ROI-limited mean SO2 values in rest and fatigue conditions across the
six acquisitions.

4.3 HD-sEMG Results

4.3.1 Spatial activation maps (RMS)
Spatial activation maps were generated from RMS values computed on 0.5 s
epochs for the monopolar and SD configurations across all channels in the six
acquisitions, with phases selected as the onset, middle, and final (highest RMS
epoch) of contraction per Section 3.3.4. For the first acquisition of the male subject
on Day 1, monopolar maps displayed RMS hotspots (> 2.8 × 10−4 V) concentrated
in the central-medial region during the onset phase, maintaining a stable central
distribution through the middle phase, and remaining similarly centered in the final
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phase (Figure 4.6, top row). SD maps showed comparable central stability, with
peak RMS values (up to 9 × 10−5 arbitrary units) in the medial-central electrodes
across all phases, exhibiting a more uniform circular pattern without notable
shifts (Figure 4.6, bottom row). Interpolation via spline method was applied for
visualization smoothness. Similar stable activation patterns were observed in the
remaining acquisitions.

4.3.2 Fatigue indicators (slopes for RMS and MNF)
Fatigue indicators were derived from linear fits to RMS and MNF time series
computed on 0.5 s epochs in the most active electrode regions, as identified from
spatial RMS maps per Section 3.3.4, for both monopolar and SD configurations
across all six acquisitions. For a representative first acquisition of the female
subject on Day 1 (monopolar signals, channels 13–24), RMS slopes across the
active channels ranged from 1.56 × 10−6 to 2.41 × 10−6 V/s, with a mean slope of
1.94 × 10−6 V/s, showing gradual increases over the 30 s contraction (Figure 4.7,
top row). MNF slopes in the same region varied from −0.47 to −0.35 Hz/s, with a
mean of −0.42 Hz/s, exhibiting consistent downward trends with minor fluctuations
(Figure 4.7, bottom row). Mean slopes for all acquisitions and configurations are
summarized in Table 4.4, revealing channel-specific variations within the active
regions.

Acquisition Configuration Active Channels Mean RMS Slope (V/s) Mean MNF Slope (Hz/s)

Male Day 1, 1st Monopolar 13–24 −6.82 × 10−7 −0.212
Male Day 1, 1st Single Diff. 17–28 −1.32 × 10−7 −0.0603
Male Day 1, 2nd Monopolar 13–24 4.80 × 10−7 −0.409
Male Day 1, 2nd Single Diff. 17–28 7.26 × 10−8 −0.619
Female Day 1, 1st Monopolar 13–28 1.94 × 10−6 −0.417
Female Day 1, 1st Single Diff. 13–28 3.88 × 10−7 −0.668
Female Day 1, 2nd Monopolar 13–28 6.10 × 10−7 −0.196
Female Day 1, 2nd Single Diff. 13,17,21–28 3.40 × 10−9 −0.654
Male Day 2, 1st Monopolar 25–32 −7.07 × 10−7 −0.382
Male Day 2, 1st Single Diff. 25–32 −3.28 × 10−7 −0.737
Male Day 2, 2nd Monopolar 25–32 1.64 × 10−6 −0.811
Male Day 2, 2nd Single Diff. 25–32 5.72 × 10−7 −1.111
Male Day 2, 3rd Monopolar 25–32 −2.27 × 10−7 −0.215
Male Day 2, 3rd Single Diff. 25–32 4.33 × 10−9 −0.670

Table 4.4: Mean RMS and MNF slope values computed in the most active channels
for each acquisition and configuration across the six experimental sessions.
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Figure 4.3: ROI-limited spectral unmixing results for the first acquisition of the
male subject on Day 2, using 10 wavelengths (700–925 nm in 25 nm steps) on
cropped images masked to the ROI. (a) Oxygenation fraction (SO2) distributions:
unmixed rest (top left), masked rest (top right), unmixed fatigue (bottom left),
and masked fatigue (bottom right), showing confined vascular signals in rest and
broader extension in fatigue. (b) K-means clustering (k = 3) on the 700 nm ROI
image for rest (left) and fatigue (right), with color-coded clusters (blue: Cluster 1
[red in mask], red: Cluster 2 [yellow in cluster], yellow: Cluster 3 [white in cluster]);
accompanying mean spectra per cluster across wavelengths, with standard deviation.
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Figure 4.4: Representative results of cluster-based spectral analysis performed
on the unmixed sO2 map of a male subject (Day 2 acquisition), in rest (top row)
and fatigue (bottom row) conditions. Left: Unmixed sO2 maps obtained through
spectral unmixing of the averaged PA images within the ROI. Center: K-means
clustering (k = 3) applied to the sO2 maps, segmenting the tissue into three
clusters based on oxygenation levels: low (blue), medium (yellow), and high (red).
Right: Cluster-wise mean PA spectra with standard deviation, computed from
the original PA images across wavelengths (700-925 nm, 25 nm steps). Distinct
spectral trends can be observed across clusters, reflecting physiological differences
between oxygenation levels and experimental conditions.
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Figure 4.5: Thresholded spectral unmixing results for the two acquisitions of the
male subject on Day 2, using 10 wavelengths (700–925 nm in 25 nm steps) and
cutoff levels of 8000 (left column), 10000 (middle column), and 15000 (right column)
arbitrary PA amplitude units. Top row: Full-field rest condition for 1st and 2nd

acquisitions. Middle row: Full-field fatigue condition for 1st and 2nd acquisitions.
Bottom rows: ROI-limited versions for rest and fatigue. Color scale: normalized
SO2 (0–1).
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Figure 4.6: Interpolated spatial RMS activation maps for the first acquisition of
the male subject on Day 1, showing onset (left column), middle (center column),
and final (right column) phases. Top row: Monopolar configuration, with stable
central-medial hotspots. Bottom row: SD configuration, displaying centered circular
patterns. Grid: 8 rows × 4 columns for monopolar configuration and 8 rows ×
3 columns for SD configuration (spline-interpolated for smoothness).
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Figure 4.7: Linear slope fits for RMS and MNF time series in the most active
region (channels 13–24) for the first acquisition of the female subject on Day 1,
monopolar configuration. Top row: RMS slopes for individual channels (blue lines)
with fits (red), mean slope = 1.94 × 10−6 V/s. Bottom row: MNF slopes for
individual channels (blue) with fits (red), mean slope = −0.42 Hz/s. Time axis:
0–30 s; y-axis: RMS (×104 V) or MNF (Hz).
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Chapter 5

Discussion

The preliminary phantom evaluation yielded unexpected yet insightful results
regarding the electrode array’s interaction with PA signals. Contrary to the initial
hypothesis that the matrix might attenuate the detected acoustic waves due to its
positioning as an additional layer between the tissue-mimicking phantom and the
transducer, unnormalized SNR values were significantly higher in regions beneath
the array across all tested wavelengths (690-950 nm). Between the two trials
conducted on separate days, the second acquisition exhibited slightly elevated SNR
levels compared to the first. This difference can be attributed to a substantially
lower standard deviation in the noise ROI for the second trial (an order of magnitude
below that of the first), while signal means remained comparable in magnitude,
suggesting reduced background noise overall. These observations may arise from
a combination of physical mechanisms, including improved acoustic coupling at
the electrode-phantom interface, reflections and wave redirection induced by the
array’s geometry and acoustic impedance, localized alterations in optical fluence,
and potential shielding of acoustic/electrical background noise. Such effects align
with existing literature on acoustic impedance matching and metallic interfaces in
US/PA systems [35, 36]. To disentangle these contributions, future experiments
could incorporate controls such as additional coupling gel or spectral analysis of
the signals.

Turning to the PAI analysis, the reconstructed images clearly delineated regions
of elevated optical absorption, consistent with the presence of chromophores in
the EDM muscle. In the ROI-based cluster analysis, consistent patterns emerged
across all acquisitions: the background cluster exhibited the lowest mean intensity,
remaining stable across wavelengths, while the intermediate cluster showed minimal
variation; in contrast, the cluster corresponding to high-PA-signal zones displayed
elevated amplitudes at shorter wavelengths, progressively declining toward longer
ones. This spectral trend was evident in both rest and fatigue conditions, potentially
reflecting a predominance of Hb (with peak absorption near 750 nm) over HbO2
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(peaking near 850 nm), though the analysis at this stage did not yet distinguish
specific chromophores and may simply indicate broader differential absorption
by tissue constituents at lower wavelengths. When applying k-means clustering
to the unmixed images, a complementary and more physiologically meaningful
trend emerged: the cluster associated with low oxygenation levels showed higher
PA amplitudes at lower wavelengths, whereas the high-oxygenation cluster exhib-
ited increased responses at longer wavelengths. This behavior aligns well with
the expected absorption characteristics of Hb and HbO2, further supporting the
interpretation of the spectral patterns observed in the non-unmixed data.

Spectral unmixing results, however, proved challenging to interpret, often yield-
ing ambiguous distributions. Physiologically, the EDM at rest was anticipated to
exhibit relatively high oxygenation fractions (sO2), with uniform ROI coverage;
during isometric contraction of the little finger, increased oxygen consumption and
potential capillary compression were expected to reduce local blood flow, leading
to decreased sO2 and possible spatial gradients from central to peripheral muscle
regions. In contrast, the acquired data revealed unexpectedly low mean sO2 values
within the ROI even at rest (approximately 0.2), accompanied by slight increases
during fatigue, a reversal of the predicted desaturation. Notably, the second rest
acquisition for the male subject on Day 2 showed higher oxygenation than the first,
possibly attributable to post-contraction revascularization enhancing perfusion.
These discrepancies suggest influences from methodological or instrumental factors,
such as the limited spectral resolution of the linear unmixing algorithm, the lin-
ear ultrasound transducer’s field of view, or motion artifacts during contraction.
Validation against alternative oxygenation measurement techniques is essential to
refine interpretations of contraction-induced changes.

The reviewed literature on PAI primarily addresses reperfusion dynamics post-
exercise [18, 22] or during/after cuff occlusion [20, 21, 24]. Occlusion studies
indicate that venous blockade maintains arterial inflow, elevating both HbO2 and
Hb signals due to impeded outflow, with gradual baseline recovery upon release;
arterial occlusion, conversely, diminishes incoming oxygenated blood, reducing
both species (particularly Hb), followed by rebound increases post-release. Post-
exercise investigations similarly document muscle reperfusion as a hallmark of
recovery. The work most akin to the present study is that of Karlas et al. [19], who
examined brachioradialis perfusion before, during, and after isometric contraction
using multispectral optoacoustic tomography at discrete wavelengths (750 nm mean
signal was considered as Hb, 800 nm as total blood volume, 850 nm as HbO2),
without spectral unmixing. Their temporal profiles revealed signal decreases during
contraction and subsequent increases afterward, mirroring expected hemodynamic
shifts.

Regarding HD-sEMG, the initial hypothesis of spatially localized muscle activa-
tion, stemming from the selective contraction of a discrete muscle, was unequivocally
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supported, with higher RMS activity confined to specific electrodes across all ac-
quisitions. Furthermore, the most active zones demonstrated fatigue signatures, as
evidenced by consistently negative MNF slopes, affirming established neuromuscular
physiology where spectral compression accompanies sustained effort.

Despite these advances, several limitations warrant acknowledgment. The
linear probe and linear spectral unmixing algorithm impose constraints on depth
penetration and quantitative accuracy, necessitating expanded investigations. In
vivo, unknown fluence distributions further complicate chromophore quantification,
underscoring the need for future simulations to enable corrections. Relating PA and
EMG observations remains challenging; for instance, the probe was positioned over
the array but not necessarily the most active electrodes, potentially misaligning
signals. Prospective refinements could include force signal recording to precisely
delineate contraction endpoints (bypassing RMS maxima), probe relocation to
EMG hotspots, and recruitment of additional subjects for robustness. In summary,
this study establishes the feasibility of integrating PAI with HD-sEMG for non-
invasive assessment of muscle hemodynamics and activation during fatigue. As a
safe, radiation-free modality, PAI holds growing clinical promise, and its synergy
with HD-sEMG could yield deeper insights into neuromuscular function, paving
the way for enhanced diagnostic and rehabilitative applications.
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