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Summary

Non-melanoma skin cancer (NMSC) is a term that refers mainly to
basal cell carcinomas (BCCs) and squamous cell carcinomas (SCCs).
NMSC is the most common form of cancer in Caucasians, with a
growing incidence worldwide. Among the possible treatments, radio-
therapy is often preferred as a tissue-preserving non-surgical option,
which shows effectiveness in terms of cosmetic results and local control.
Vessel morphologies vary with different tumour stages and as a result
of treatment, so cutaneous blood flow can be used as a biomarker to
diagnose NMSC. Optical coherence tomography angiography (OCTA)
can visualize both the microstructure and vasculature of skin non-
invasively and could thus be used in treatment planning and follow-up.
The objective of this thesis is to understand whether feature extrac-
tion on OCTA can quantitatively assess lesion-dependent changes in
skin microvasculature, as a result of radiotherapy.
The dataset was obtained at the Vienna General Hospital by recruit-
ing 20 patients with BCC, SCC, or actinic keratosis. It’s comprised
of 146 acquisitions, with 18 of them being healthy volumes, used as a
baseline, and the remaining belonging each to a different timepoint:
before, right after, 3 months after, and 6 months after radiotherapy.
Each time, 4 OCT volumes are acquired and then processed to obtain
an OCTA volume through an intensity-based method. These ar-
rays are semi-automatically segmented and further masked to ignore,
during feature extraction, any areas that might lack angiographic
information. A 2D projection is also computed along the depth axis
of the 3D volume. Skeletonizations of both 2D and 3D arrays are
computed.
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The features are chosen to describe the peculiarities of NMSC vas-
cularization. Therefore, some parameters, such as branch tortuosity
and entropy, describe how chaotically the vessels are intertwined with
each other. Others, like vascular density, number of trees, and mean
radius, observe how packed the blood vessels are and if their dimen-
sion changes between different timepoints. The variation of certain
parameters with depth is calculated as well. These features allow to
further compare lesions to healthy skin and see, for example, whether
vascularization is the densest closer or further from the surface.
The statistical analysis performed on the extracted data shows that,
overall, 37 features change significantly across timepoints (p<0.05),
with very strong evidence (p<0.0001) for most of them. They describe
the vascular architecture as denser, more chaotic and branched, and
closer to the surface in lesions than in healthy skin. Moreover, the
post-hoc analysis indicates that pairs of timepoints often statistically
differ from each other. The foundations for the reproducibility of
these results are laid by developing two Python pipelines: one semi-
automatic class for the initial computing of the OCTA volume, and
an automatic pipeline for feature extraction.
This thesis shows that quantitative parameters extracted from OCTA
data allow to distinguish different timepoints in NMSC lesions treated
with radiotherapy, with a consistent trend of features converging back
to healthy values. Notably, these features are easily interpretable and
give direct insight into the evolution of the lesions. Future studies
that combine these vascular features with radiomics might be able to
provide methods that accurately and non-invasively predict NMSC
lesions’ response to treatment, thus opening the door to personalized
radiotherapy for each patient.
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Chapter 1

Introduction

1.1 Radiotherapy for non-melanoma skin cancer

Non-melanoma skin cancers (NMSCs) are the most common ma-
lignant tumor among fair-skinned people, with a growing incidence
worldwide [1]. The term is mainly used to define [2]:

• Basal-cell carcinomas (BCCs): slow-growing, locally invasive
epidermal tumors with a metastatic rate of < 0.1%. They are
associated with intermittent and childhood sun exposure.

• Squamous-cell carcinomas (SCCs): they arise from dysplastic
epidermal keratinocytes, and have a higher metastatic rate of
0.3% to 3.7%. They are associated with chronic UV exposure.

BCCs and SCCs represent 99% of NMSCs [3].
Surgery is the most common practice to treat NMSC. However,
whether exclusive or adjuvant, radiotherapy may be preferred for
older patients with comorbidities, and tumors involving a sensitive
part of the face that, with surgery, may result in an unacceptable
functional or cosmetic deficit [3] [4].
Radiotherapy is a treatment modality that delivers ionizing radiation
towards tissue to destroy tumor cells, while sparing healthy ones as
much as possible (Figure 1.1). The radiation impairs cancer cells’
ability to reproduce and kills them by damaging their DNA structure.
Fortunately, healthy cells are generally less susceptible to radiotherapy
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than cancerous ones, since the latter have a high replication rate and
defects in their DNA damage response pathways [4] [5].

Figure 1.1: Representation of the effect of radiotherapy on cancer cells. Taken
from [6].

Nevertheless, the primary aim of radiotherapy is to achieve optimal
tumor control probability (TCP) while minimizing the risk of normal
tissue complications (NTCPs). This can be achieved by correctly
localizing the target and accurately planning the fractionation.
NMSCs are radioresponsive: radiotherapy has shown local control
rates exceeding 90-95%, irrespective of the dose or dose per fraction,
and optimal cosmetic results [4]. Therefore, radiotherapy is often
recommended as a tissue-preserving option, especially for lesions that
are localized and in early stages.
Different tumors have different vascular architectures, which also vary
at different stages of the same lesion and as a result of treatment.
Therefore, the recognition and quantification of distinctive features
in these different vascular structures may help in diagnosing and
monitoring NMSC, as well as in radiotherapy treatment planning and
follow-up.

1.2 Overview on OCT and OCTA

Optical coherence tomography (OCT) is an imaging method based
on the optical scattering of internal tissue micro-structures, which are
discriminated at their interfaces due to their different refractive indices
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[7]. By decorrelating OCT signals that are repeatedly acquired at the
same location, light scattered from moving erythrocytes is contrasted
with respect to the static background. This functional extension
of OCT visualizes microvasculature and is called optical coherence
tomography angiography (OCTA). These techniques can be applied in
dermatology, and thus present a non-invasive alternative to traditional
histology and offer the possibility of carrying out longitudinal studies
[8].

1.2.1 Theoretical principles behind OCT

OCT uses the delays of back-reflected light in the near-infrared (NIR)
to resolve the depth at which the waves are reflected. NIR light
travels too fast to be measured directly, so a reference measurement
is done through an interferometer.
Low-coherence interferometry is the underlying principle of all OCT
modalities, as the broadband light source it uses has, by definition,
low temporal coherence. This means that two waves coming from
the same optical source maintain a fixed phase relation only within a
short timeframe, corresponding to a low coherence length.
The beam produced by the optical source is split between the reference
arm, where it’s reflected by the reference mirror, and the sample arm
of the system, where it’s reflected by the sample itself. When these
two reflected beams are recombined, their waves superimpose and an
interference signal is detected. Interference is constructive when the
two beams reinforce each other, and destructive when they cancel
each other out. The interference signal can be obtained only if the
path lengths of the two arms are equal within the coherence length
of the source, which is in the order of micrometers.
The axial resolution (δz) in air of OCT equals the round-trip coherence
length, which is half the standard coherence length [9][10]:

δz = 2ln(2)
π

∗ λ2
0

∆λFWHM
(1.1)
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where λ0 is the central wavelength and λFWHM is the wavelength
range of the source, defined as the width at the intensity level equal
to half the maximum intensity [9].
The lateral resolution δx depends on the spot size of the laser beam,
which, for a gaussian profile, is the radius w0 where the beam intensity
drops at 1

e2 . It can be thus calculated as a function of the beam
diameter at FWHM:

δx =
ñ

2ln(2) ∗ w0 =
ñ

2ln(2) ∗ 2λ0

π

fsys

n ∗ d
(1.2)

where fsys is the focusing length, n the refractive index of the media
and d the diameter of the collimated incident beam at the focusing
lens [9]. A better lateral resolution can be achieved, but at the cost
of a shallower depth of focus.

1.2.2 OCT modalities

Two main categories of OCT systems exist: time-domain (TD) and
frequency domain (FD) systems. They differ in the optical source,
in the usage of the reference mirror and in the chosen detector.
Ultimately, these modalities differ in how they are able to reconstruct
the depths of the reflective interfaces from the detected signal.
TD-OCT systems employ a broad-band light source, a scanning
reference mirror and a simple photodetector, as shown in Figure
1.2. The position of the mirror is mechanically changed to match
the optical path length of the back-reflected beam in the sample
arm. The interference signal is present when the displacement of the
reference mirror is equal, within the coherence length, to the depth at
which the reflection happened in the sample. This allows the depth
to be obtained.
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Figure 1.2: On the left, schematic representation of TD-OCT. On the right, graph
of the intensity of the interference signal (green) with respect to the displacement
of the reference mirror. ∆z indicates double the coherence length (equal to the
axial resolution). Taken from [10].

FD-OCT systems are further divided into two types: spectral
domain (SD) and swept source (SS) OCT, both shown in Figure 1.3.

Figure 1.3: Schematic representation of the two FD-OCT systems. Taken from
[10].

Different wavelengths penetrate at different depths, with longer
ones reaching deeper and not being scattered as much. The inter-
ference signal presents a cosinus for each reflective element in the
sample, with the modulation periodicity depending on its depth and
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the amplitude proportional to the reflectivity of the layer. There-
fore, the depths can be reconstructed by computing the fast Fourier
transform (FFT) of the signal: there’s one peak for each reflection,
with the height proportional to the intensity of the reflection and the
position corresponding to its depth [11]. Figure 1.4 shows a simple
example, where the sample has only one interface, such as a mirror:
the symmetric additional peaks are mirror images.

Figure 1.4: Graphs representing the application of the FFT on the interference
signal obtained in FD-OCT, where ∆k represents the spectral bandwidth and is
proportional to the axial resolution (Eq. 1.1). Taken from [10].

SD-OCT employs a broad-band source, a stationary reference mir-
ror and a spectrometer. The spectrometer disperses the beam into
its spectral components with a diffraction grating, thus recording the
spectrum. Detection is done with a camera, a 1D charged-coupled
device (CCD) array. The FFT of the signal is performed on the
workstation. On the other hand, SS-OCT employs a sweeping light
source, a stationary reference mirror and a simple photodetector. The
light source consists of a rapidly-tunable laser that can illuminate at
a narrow wavelenght, eliminating the need of a diffraction grating.
The signal that is processed by the FFT is a combination of all the
signals detected at the chosen wavelengths.
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Figure 1.5: Graphical representation of acquired OCT data. Modified from [12].

As shown in 1.5, an OCT volume is composed by the combination
of B-scans, which, in turn, are the combination of A-lines, which are
depth-resolved reflectivity profiles of the sample [10]. An en-face im-
age is a representation of the volume from above, created by flattening
the depth information, and is perpendicular to the A-lines. An OCT
volume can also be divided into cross-scans, which are orthonormal
sections to the en-face and the B-scans.

TD-OCT SD-OCT SS-OCT
Light source Broadband Broadband Sweeping

Detector Photodetector Spectrometer Photodetector
Reference mirror Moving Stationary Stationary

Depth reconstruction Mirror displacement FFT FFT

Table 1.1: Quick overview of the main differences between the three OCT
modalities: time domain (TD), spectral domain (SD) and swept source (SS).

A general overview of the OCT systems can be seen in Table 1.1.
TD-OCT is the system that takes the longest to gather the data,
as it requires for the reference mirror to be moved many times to
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reconstruct a single A-line. SS-OCT is thus preferred, as it’s much
faster and doesn’t employ as complex of a detector as SD-OCT does.
This is crucial, since OCTA is based on the premise that the only
thing that moves between the acquisitions are blood cells. If a patient
moves, which happens more often than not, having a faster acquisition
time means reducing the effect of movement artifacts.

1.2.3 OCTA techniques

As previously said, an OCTA image is computed by decorrelating
two or more OCT images taken at the same location in quick succes-
sion. The motion contrast can be obtained by an intensity-based, a
phase-based or a complex-based technique. The first two evaluate,
respectively, differences in the intensity or phase of subsequent OCT
volumes. For a number N of B-scans acquired at the same position
y, the angiographic volume is computed as follows [10]:

A(x, y, z) = 1
N − 1

N−1Ø
i=0

|∆T (x, z)i| (1.3)

with ∆T (x, z) representing the i-th difference in logarithmically-scaled
intensity or phase between A-lines repeatedly acquired at the same
position y. Phase-based OCTA tends to have higher contrast than
the other. However, the intensity-based technique may be preferred
for its simplicity and the lower sensitivity to motion artifacts.

1.3 Purpose of the study

Reconstructing skin microvasculature in 3D is of interest for NMSC di-
agnosis, with many techniques used for this purpose. These, however,
present significant shortcomings. High resolution episcopic microscopy
(HREM) provides a very accurate 3D reconstruction, but requires
excision. Computed tomography angiography (CTA) is accurate and
non-invasive, but uses ionising radiation and requires a contrast agent.
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Dermoscopy is a non-invasive, label-free, and clinically established
technique and provides accurate information without using harmful
radiation. However, its penetration depth is up to 200 µm, which is
too shallow for a complete evaluation of the vascular architecture of
certain lesions [7][13].
OCTA is fast, non-invasive, label-free and penetrates tissues with
electromagnetic wavelengths that don’t cause any damage. It can ac-
curately reconstruct vascular micro-structures and resolve individual
vessels, reaching depths of up to 1.5 mm. Therefore, it offers a valid
alternative to the other available techniques and could be used to
aid in NMSC diagnosis and, in longitudinal studies, for radiotherapy
treatment planning and follow-up. In fact, OCTA has already found
many clinical applications, especially in ophthalmology, where it’s
used for diabetic retinopathy, macular degeneration, and glaucoma,
to name a few [12].
The objective of this thesis is to understand whether feature ex-
traction on OCTA data can quantitatively assess lesion-dependent
changes in skin microvasculature, as a result of radiotherapy. In order
to do so, lesions are imaged before and after the start of radiother-
apy treatment, thus conducting a longitudinal study. A statistical
analysis assesses whether these parameters change significantly over
the course of the 6-month-long follow-up. It’s also crucial for these
values to progressively get closer to the healthy baseline, which would
arise from radiotherapy’s effectiveness. Afterwards, the significant
features are commented and contextualized, in order to understand
whether they can give descriptive insight into the mutating vascular
morphologies. This is particularly important to further solidify OCTA
as a technology that can provide clear and interpretable information,
that can be useful in decision-making in clinical settings.
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Chapter 2

Materials and Methods

2.1 The dataset

The dataset was obtained in an IRB-approved study (Medical Univer-
sity of Vienna, no. 1246/2013) conducted at the Center for Medical
Physics and Biomedical Engineering of the Vienna General Hospital.
A total of 20 patients, affected by BCC, SCC, or actinic keratosis
(AK), were recruited. AK is a precancerous lesion that can develop
into SCC. The diagnoses were confirmed with biopsy, and all patients,
once surgery was deemed inapplicable, were treated with superficial
orthovoltage radiotherapy (Section 2.2).

Figure 2.1: Timeline of the imaging sessions. Healthy volumes may be acquired
at any session.
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Each patient that enrolls in the study shows up for imaging sessions
before, right after, 3 months after, and 6 months after the start
of radiotherapy treatment (Figure 2.1). This allows to follow the
evolution of vasculature morphology and verify if OCTA can be used
to quantify these changes.
Initially, the dataset contained 293 volumes, across all timepoints,
from which the ones with the highest quality were selected for the
segmentation process. The final dataset used in this thesis is thus
composed by a total of 146 volumes, detailed in Table 2.1. Notably,
not all patients were monitored throughout all timepoints. This is
due to two factors:

• patients were not recruited at the same time, so some of them
are still in earlier treatment stages;

• some patients withdrew from treatment, so further acquisitions
were not possible.

Moreover, since acquisitions of poor quality have not been selected
for the final dataset, not all patients have a corresponding healthy
volume.

Patients
Total (#) Lesion type

20 BCC, SCC or AK
Only pre-post (#) Only pre-3M (#) All timepoints (#)

7 6 7

Acquisitions
Total (#) Healthy (#) Pre (#) Post (#) 3M (#) 6M (#)

146 18 43 40 27 18

Table 2.1: Overview on the acquired dataset. Pre: before radiotherapy; post:
right after radiotherapy; 3M: 3 months after radiotherapy; 6M: 6 months after
radiotherapy.
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2.2 The radiotherapy treatment

Orthovoltage radiotherapy is ideal for superficial lesions (< 5 mm),
as it uses low-energy X-rays, from 80 kVp to 250 kVp.
For the enrolled patients, treatment was delivered on the skin surface
with a Gulmay D3300 orthovoltage therapy unit, while applying a
custom lead shielding to protect healthy skin surrounding the lesion.
The properties of the unit are showed in Table 2.2.

Gulmay D3300 orthovoltage therapy unit
Target material Focal spot Filtration (Be) α

β

W 8 mm 3 mm 10 Gy

Table 2.2: Main properties of the radiotherapy unit. Be: beryllium; W: tungsten.

The clinical target volume (CTV) included a margin of 5 mm to
20 mm around the visible lesion, as tumor cells may still be present
outside the diagnosed area. The fractionation of the dose is individual,
e.g. 36 Gy over 6 treatment sessions (36 Gy

6 fx ) or 50 Gy over 20 sessions
(50 Gy

20 fx ).

2.3 The laboratory OCT system

A high-resolution OCT system based on a swept-source from Insight
Photonic Solutions, USA, was used for the measurements. Its main
operating parameters are displayed in Table 2.3.

High-resolution SS-OCT system
Central Bandwidth Lateral Axial Field of Depth

wavelength resolution resolution view
1300 nm 29 nm 31.5 µm 27.3 µm 1 cm2 1-1.5 mm

Table 2.3: Properties of the laboratory SS-OCT system.
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Figure 2.2: OCT setup. Insight: laser source; 25/75% fiber coupler; PC: polar-
ization control; C: circulator; 50/50% fiber coupler; FC: fiber collimator; M1, M2:
mirrors, with M2 being the reference mirror; Gx, Gy scanning galvanometers; SL:
scan lens; S: sample; DBD: dual-balance detector [14]. Taken from [14].

See Figure 2.2 for a schematic representation of the laboratory
system, which functions as follows [14]:

• Beam splitting: light from the laser source is split into two
beams by a fiber coupler, with a proportion of 25% of the optical
power to the reference arm and 75% to sample arm.

• Sample arm: the beam that travels through the sample arm is
released into free space by fiber collimators (FC), towards the
object that needs to be investigated. Two scanning galvanometric
mirrors move the beam through the surface of the sample. More
precisely, one of them allows to scan every A-line of a single B-
scan, and the other one allows to move between different B-scans.
Each time, 4 B-scans are acquired at the same location, before
moving to the following one.

• Reference arm: the beam reaches the reference mirror, which
reflects it back.

• Beam recombination: the two back-reflected beams are redi-
rected by two circulators towards a 50/50% fiber coupler for
recombination.
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• Detection: lastly, a dual-balance-detector (DBD) records the
interference signal and a data acquisition (DAQ) card digitizes it.

2.4 Acquisition protocol

The acquisition protocol is divided into a series of tasks that can be
grouped on whether they’re performed before, during, or after the
acquisition takes place (Figure 2.3).

Figure 2.3: Pipeline of the acquisition process.

2.4.1 Before the acquisition

A series of tasks has to be carried out before the patient arrives:

• Calibration: in order to identify valid sweep points, the system
is calibrated with the dedicated Insight Photonics laser control
program. The calibration produces a data valid vector (DVV) file,
which contains the indices of the reliable A-line points. The DVV
file is crucial during processing, and without it image quality gets
heavily compromised. Calibration needs to be done only once
a day, unless experiments with different settings are performed
between patients.
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• Disinfection: all objects the patient will be in touch with are
disinfected. These are the glass slide, the support for the glass
slide, the protective goggles, and two cushions for the legs, for
patient comfort. Normally, the examination table the patient lies
on is not disinfected, as a suitable waxed paper roll is used as a
cover, and replaced for each patient.

Figure 2.4: Picture showing the glass slide after being attached in front of the
scanning lens. The 3D-printed support is not in contact with the lens itself, but
is kept at a distance. Glass slide: transparent, but for an opaque band; support:
white; medical tape: white, ragged texture.

• Glass slide insertion: the disinfected glass slide (Figure 2.4)
is attached with medical tape to its 3D-printed support made
of a bio-compatible material, which allows it to be firmly placed
in front of the scanning lens (SL). The glass slide flattens the
skin in a stabilized position. Even if skin surface is never exactly
parallel to the en-face of the OCT volume, reduced variability in
the sample-SL distance is very important. As the depth of focus
is fixed during acquisition, a flattened skin surface leads to a more
consistent quality across slices in the acquired volume. It also
makes it easier for the operator to focus the laser at the desired
depth. Moreover, the glass slide helps to attenuate undesired
reflections.
However, the glass slide can be utilized only if the placement of
the lesion allows total adherence with the skin: it’s impossible
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to place it on the nose, and similarly curved structures. In these
situations, the acquisition is carried out in any case, at the cost
of additional reflections on the surface and diminished resolution
at the borders of the volume.

• Software setup: the computer station has two screens. On
the left, the laser control program has already been started for
the calibration process. On the right, a laboratory custom-made
LabView software (Figure 2.6) is used to control the acquisition
process.

2.4.2 During the acquisition

The patient lies down on the examination table, in a supine position
or laterally, depending on the placement of the lesion. Once the
patient is lying down, they wear protective goggles to comply with
laser safety regulations, even if the laser is not used in proximity of
their eyes. Then, the acquisition process can start:

• Sweep start: firstly, it’s ensured that the patient is correctly
wearing the protective goggles. Then, the laser control program
is used to start the sweep, which means that, at that moment,
the laser beam starts exiting the probe.

• Probe placement: as the imaging system is mounted on a
wheeled cart (Figure 2.5), it can be moved around the bed to get
in the vicinity of the lesion. Moreover, the cart can be lifted in the
vertical direction, and a series of levers and knobs on the system
itself allow to fine-tune positioning with careful rotations, back-
and-forth movements and further up-and-down sliding. Thus,
the probe is placed in the desired position, with the glass slide
adhering to the skin. If the slide is not used, there’s no contact
whatsoever with the skin.

• Water: air pockets are always present between skin and glass,
so distilled water is used to fill them, as it has a refractive index
similar to that of tissues. This reduces unwanted reflections.
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(a) Side view of the OCT probe. (b) The OCT probe mounted on the cart.

Figure 2.5: Pictures of the imaging setup right before acquisition.

• Fine-tuning: The LabView software (Figure 2.6) allows to
visualize a live preview of a B-scan of the current investigated
volume with background subtraction. Moreover, it allows to
switch between fixed B-scan positions. This is important for a
series of reasons:

– to understand whether, throughout the volume, there’s ap-
propriate skin-glass contact and thus whether more pressure
should be applied;

– to fine-tune the position of the probe with knobs and levers,
so that the imaging volume is centered at the desired skin
volume. This is particularly important if no glass slide is
used;

– to ensure that image quality is satisfactory: more water may
need to be added, the position of the probe may need to be
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fine-tuned, or a setting in the interferometer may need to be
changed.

Figure 2.6: Simplified schematic of the interface of the custom LabView software.
Only the components cited in the text are present. START: starts showing data in
the three plots; Acquiring: turns on while acquiring; GO!: starts the acquisitions;
Galvo: allows to shift between different B-scans in the preview; B-scan: live B-scan
preview; Interferogram: plot of the interferometric signal; FFT linear: plot of FFT
of the interferometric signal; STOP: raw data downloading can be lengthy - if little
time passed from the previous acquisition, this button is pressed so that the new
downloading starts after the previous, without interrupting it; Patient Code: label
of folder in which data will be saved.

• Acquisition: once everything has been fine tuned, the acquisition
is commenced through the LabView software. At the same time,
the data is downloaded into the corresponding folder of the
computer, as labeled in LabView. A total of 4 volumes are
imaged in the same position in around 20 seconds. Adding the
time needed to fully download the data, it takes 1-2 minutes to
complete an acquisition.
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This process, except for the sweep start, is repeated for every lesion.
Notably, some lesions have a larger extension than the 1 cm2 FOV, so
more positions of the same lesion are often taken. Moreover, especially
for acquisitions lacking the glass slide, more imagings may be done
without moving the probe at all, and the best one is later picked out.
After the desired lesions, or healthy skin, are imaged, the sweep is
stopped through the laser control program. Then, pictures of each
investigated surface are taken with a ruler alongside as reference.
Only then, can the patient take off the protective goggles and exit
the examination room.
It’s important to note that, ideally, two operators are in the examina-
tion room: one managing the OCT system and the other operating
the softwares.

2.4.3 After the acquisition

A series of tasks has to be carried out after the patient leaves:
• Cleaning up: the glass slide is thrown away in the appropriate

container. Then, the protective goggles, the 3D-printed glass
slide support, and the leg cushions are disinfected. Lastly, the
waxed paper on which the patient lied down is ripped and thrown
away, and a replacement is placed on the bed for the next patient.

• Checkup on acquired data: after ensuring it’s all there, it’s
moved to a specific folder alongside the rest of the dataset. It’s
fundamental to move the DVV file in the same folder as the OCT
data.

• Picture labeling: the imaged sections are highlighted and
labeled, so that these pictures can be cross-referenced with the
folder names in which the relative acquisitions are stored, as seen
in Figure 2.8. This is particularly important if different positions
of the same lesion were imaged.

• Additional notes: about.txt file that contains useful informa-
tion, whether it’s important to interpret the acquired data or
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patient-specific tips for the next imaging session.

The process is concluded when the current date folder appears as
shown in figure 2.7.

Figure 2.7: Typical structure of an acquisition folder. The main dataset folder
contains all patients’ folders, which are divided into timepoints. Each timepoint
corresponds to an acquisition folder. Each ST0XX_20250924_posX_X folder contains
the OCT data acquired in that location.

Figure 2.8: Example of labeled picture.
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2.5 Processing protocol

The raw OCT data is divided into 32 files named B_scans0XX. Every
file is a 1D array of size: 2176 * 512 * 64, where 2176 is the length of
an A-line, 512 the width of a B-scan, and 64 the number of scans per
file. The volumes have a lateral pixel spacing of 0.0196 mm and an
axial pixel spacing of 0.0137 mm.
The processing protocol is composed of four sections:

• Data processing: each file of raw data is reshaped, processed
and combined so that it turns first into 4 separate OCT volumes
and then into a single OCTA array.

• Segmentation: the OCTA arrays are turned into binary masks,
where the vessels are equal to 1 and everything else is equal to 0.

• Feature extraction: performed on the segmentation. The
parameters are saved into Excel files, one for each timepoint.

• Statistical analysis: to determine which features are able to
differentiate between different timepoints.

21



Materials and Methods

2.5.1 Data processing

Figure 2.9: Pipeline of the processing of raw OCT data into an OCTA volume.

Previously, data processing was being done in Matlab. However,
for scalability and the possibility of running the pipeline with a
GPU, everything was adapted and optimized in Python, with a few
improvements and additions. The pipeline can be visualized in Figure
2.9. The custom OCTAProcessing class has four inputs:

• variable_name: the initial part of the files that contain the raw
OCT data. In our case, it’s set as B_scans.

• automatic_ROI_and_glass, ask_confirmation: these flags, if
set to True, allow for, respectively, the automatic determination
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the region of interest (ROI), and the possibility of asking the user
if they’re satisfied with the chosen ROI, automatic or not.

• patient_files_path: the path to a JSON file, which has to be
structured as follows:

1 [
2 {
3 " pat_number " : "ST0XX" ,
4 " pre " : " . \ \ Radiotherapy \\PatientXX_0XX\\20250101" ,
5 " post " : " . \ \ Radiotherapy \\PatientXX_0XX\\20250121" ,
6 "3M" : " . \ \ Radiotherapy \\PatientXX_0XX\\20250421" ,
7 "6M" : " . \ \ Radiotherapy \\PatientXX_0XX\\20250721" ,
8 "9M" : " . \ \ Radiotherapy \\PatientXX_0XX\\20251021"
9 }

10 ]

This allows to put in the same file all timepoint paths of all pa-
tients, and builds the foundations for an automatic, or semiauto-
matic, pipeline. There is no specific path for healthy acquisitions,
as they are done during one, or more, of the five visits. A 9M path
is also present, as some patients may also come 9 months after
radiotherapy. However, since very little data is present regarding
this timepoint, it is not considered throughout this thesis, and
only the other ones are mentioned.

The first function of the pipeline is ppOCT3D, which does the initial
processing of raw OCT data, schematized in Figure 2.13. This
function is structured as follows:

• Reading the DVV file: DVV.txt is read into a 1D array, where
each element is an integer number corresponding to a valid A-line
index.

• load_intensity_image: this function reads every 1D raw data
file and reshapes it into a 2D array, so that every column is an
A-line. Then, using the DVV file, the valid rows are selected.

• process_intensity_image: this function receives the output of
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the previous one. After subtracting to each row its mean for back-
ground removal and after applying zero-padding, it transforms
the image into a depth-resolved 2D array, through an inverse
FFT.

Figure 2.10: Schematic representation of the initial automatic ROI selection.
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• Automatic ROI selection: firstly, for each output of the previ-
ous step, a column is created, where each element is the maximum
value inside that row of the 2D array. As this array is also used
later, it will be called max_column_array. Then, the index of
the maximum value of that column is found. Of all these indexes,
one for each raw file, the 80th percentile is taken as the initial
index of the global ROI. The thickness of the ROI is either 500
or 400 pixels, depending on whether the range of the prelimi-
nary start values is more than 200 pixels or not. This takes into
consideration the possibility of a very sloped skin surface, which
requires a thicker ROI. The process can be visualized in Figure
2.10.

• Glass line removal: if a glass slide is used during acquisition,
its upper surface is going to be visible as a high-intensity line
throughout some B-scans (Figure 2.11).

(a) (b)

Figure 2.11: Comparison of the averages of the same 10 B-scans, before (a) and
after (b) the automatic selection of the glass cutting point.

The ROI must be adapted and lowered to eliminate it by finding a
glass cutting point, otherwise it’s impossible to align the skin cor-
rectly. For this purpose, the mean of all the max_column_array
is computed. Then, it’s smoothed with a low-pass Butterworth

25



Materials and Methods

filter. A peak search, restricted to those with a minimum height,
is then conducted on its gradient. The choice of the depth cutting
point is based on one of four situations:

– firstly, the variable manual_glass is a flag that, if set to True,
asks the user to manually input the depth cutting point; this
flag is initially defined as False;

– if only one peak is found, it’s assumed that the glass was
already removed in the initial ROI determination;

– if exactly two peaks are found, the first is assumed to be due
to the glass. Then, the glass cutting point is set as the peak
index plus 30 pixels;

– if there are more than two peaks, the choice is considered
to be uncertain, and manual_glass is set to True. This is
unless the second peak is equal to or more than 80% of the
maximum peak, in which case the first peak is assumed to be
due to the glass. Then, the glass cutting point is set as the
peak index, if selected, plus 15 pixels;

– if none of this conditions are met, then manual_glass is set
to True.

The process is schematized in Figure 2.12. Overall, let’s say that
the initial ROI is between rows 5 and 500, if the glass cutting
point is found to be 15, then the final ROI is located either
between 35 and 500 or between 50 and 500.
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Figure 2.12: Schematic representation of automatic glass cutting point detection.

• Row selection and reshaping: in every depth-resolved array,
only the rows contained in the final ROI are selected. Then
they’re reshaped into a 3D array, and each of these volumes
is concatenated one after the other. This volume is defined as
all_slices_array.
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Figure 2.13: Scheme representing how each of the 32 raw data files are processed.
These 32 obtained volumes are concatenated in the following steps.

The second main function of the pipeline is intensity_based_OCTA,
where the OCTA volume is computed:

• Separation of 4 OCT volumes: computation done according
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to the structure of all_slices_array, where one every four
A-lines belongs to the same OCT volume, in sequence (Figure
2.14). Then, in each of these 3D arrays the first 30 A-lines are
eliminated to account for the mirror artifact. It is caused by the
inertia of the galvanometer mirrors, since the passage from the
end position of a B-scan to the starting one of the next is not
instantaneous.

Figure 2.14: Scheme representing the separation of the 4 OCT volumes.

• Skin alignment: as visible in Figure 2.11, the skin is always
sloped with respect to the en-face of the volume. Therefore, it has
to be aligned before computing the OCTA, otherwise any analysis
concerning depth will be negatively affected. Since the glass slide
has been removed, the skin surface is the first, most prominent,
and continuous intensity profile. For this purpose, the algorithm
for skin detection developed by Li et al. is adapted into Python
[15]. Firstly, a weighted least square (WLS) filter is applied as
an edge-preserving smoothing method on each B-scan [16]. Skin
detection is reduced to a problem of finding the shortest path
between continuous points, while favouring lower-weight pixels,
which present a strong gradient. A result of the WLS filter can
be visualized in Figure 2.15.
This algorithm is thus based on the premise that, again, skin
is the first, most prominent and continuous intensity profile in
the volume. Crucially, the WLS filter is used exclusively for

29



Materials and Methods

skin detection, while all the next passages, starting from the
alignment, utilize the original OCT volumes.
Once the position of the surface is registered, the A-lines in each
volume are shifted, so that the detected skin surface points are
placed at the first layer of the 3D array. As shown in Figure 2.16,
skin surface is followed almost pixel per pixel.

(a) (b)

Figure 2.15: Comparison of a set of 10 averaged B-scans before (a) and after (b)
the application of the WLS filter.

• Intensity-based OCTA: the four aligned volumes are loga-
rithmically scaled [10]. The OCTA volume is computed as the
average of the three differences between sequentially acquired
volumes (Eq. 2.1).

volOCTA = ∆OCT2−OCT1 + ∆OCT3−OCT2 + ∆OCT4−OCT3

3 (2.1)

• Dermal-epidermal junction (DEJ) detection: ideally, the
DEJ should be found in every volume. Its location could be used
to detect changes in epidermis thickness and as a zero-point for
depth-related vascular calculations. This doesn’t always happen,
either due to suboptimal acquisitions, or the tumor breaking the
DEJ or obscuring it [13] [17]. Therefore, its detection is possible
only when the DEJ is clearly visible, or when it is not affected
by pathological structural changes.
Nevertheless, the DEJ detection will still be explained. The
implementation is again derived from the algorithm by Li et al.
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[15], with some modifications to account for noise. The method
is based on the DEJ presenting itself as a black stripe along the
volume:

– one of the aligned OCT volumes is selected, then, the pipeline
proceeds with the computation of the moving average of nine
cross-scans, centered around one cross-scan after the other;

– the detect_DEJ function takes as input an averaged cross-
scan and computes the gradient on the moving average of 5
A-lines centered around one line after the other. The gradient
is low-pass filtered, so that peak detection is less sensitive to
noise;

– peak detection is performed with the constraint of peaks being
a minimum of 10 pixels apart. The DEJ is detected as the
location of the only identified peak. If more are detected, the
previous A-lines DEJ location is assumed.

Figure 2.16 and Figure 2.17 show the results of skin surface and
DEJ detection.

Figure 2.16: Skin and DEJ overlay on the moving average over a central B-scan.
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Figure 2.17: Representation in 3D of the detected skin surface and DEJ, that
show how significant the slope is, and thus the importance of skin alignment.

The OCTA volume, which is the output of intensity_based_OCTA,
is defined as morph_angio. This array is not ready yet for visual-
ization and segmentation, but goes through the artifacts_removal
function:

• White line artifacts: sudden shifts in intensity in B-scans,
due to movement between subsequent acquisitions, appear as
white vertical lines in the OCTA en-face. They are corrected by
normalizing every B-scan by its mean [18].

• Projection artifacts: projections of superficial vessels appear
on lower layers, as if they are casting a shadow [18]. They are
corrected through a step-down exponential filtering method [19]:

P (i, j, k) = M(i, j, k) ∗ exp(−1
γ

i−1Ø
r=0

∗P (r, j, k)) (2.2)

where P is the array after the correction of the artifact, M is the
original volume, γ is the exponential decay constant, and (i,j,k)
are depth and lateral coordinates.
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• Overall quality improvement: before applying contrast en-
hancement, so that the vessel contrast more, a median filter is
used to account for remaining noise.

In order to verify the success of the processing, the pipeline also
outputs a series of en-face images, showed in Figures 2.18, 2.19, and
2.20.

Figure 2.18: En-face representations of selected OCTA volume sections at different
depths, obtained by computing the median intensity projection.

Figure 2.19: En-face representation of selected OCT volume section, obtained by
computing a maximum intensity projection (MIP).
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Figure 2.20: Depth color-coded MIP from a section of the OCTA volume.

These images are particuarly important, as they allow an initial
and quick qualitative assessment of the lesion, without having to wait
for segmentation and feature extraction.
The final array is thus ready for segmentation.

2.5.2 Segmentations and NaN masks

The outputs of the data processing pipeline are semi-automatically
segmented with the AMIRA software. These segmentations are 3D
binary masks, where 1 corresponds to vessels and 0 corresponds to
the background.
Certain areas in OCT volumes don’t contain any information. This
happens especially with acquisitions in thin and heavily sloped areas
such as the nose and the ear, which often leads to parts of the volume
being unusable (2.21b). Other volumes contain blisters or small
bubbles, that come out as angiographic signals in the OCTA volume,
even if they’re not blood vessels (2.21a).
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Therefore, with AMIRA, it was decided to manually create dedicated
binary masks, where the voxels that should be ignored are equal to 1,
and the rest are equal to 0. Since these voxels are then symmetrically
set as NaN in the segmentations, these masks are called NaN masks.
All of them were checked alongside a clinician, in order to confirm
that it was appropriate to judge certain areas as useless.

(a) (b)

Figure 2.21: Depth color-coded MIPs that show two different kinds of unwanted
areas. The left one (a) shows bubbles and blisters, that appear as green. The other
one (b), on the bottom right, shows an area with heavy artifacts due to the slope
of the ear.
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2.5.3 Feature extraction

Figure 2.22: Pipeline of the feature extraction process, which gets repeated for
every acquisition folder.

Feature extraction is performed on the segmentations, sometimes
referred to as binary masks or just masks. The Python pipeline,
summarized in Figure 2.22) is wholly automatic and uses a se-
ries of custom-made classes: OCTAFeatures, globalParameters,
ROIFeatures, applyNaNmasks and branchParameters.
OCTAFeatures loads the segmentations and, by calling functions from
the other classes, computes the values and saves them in a dedicated
excel file, one for each timepoint, which then gets downloaded into
the computer. It has three inputs:

• patient_files_path: the path to a JSON file, which is divided
into the timepoints and, for each one, contains the paths to the

36



Materials and Methods

binary segmentations and the NaN masks.

• variable_name, NaN_masks_name: which are, respectively, the
file extensions of the segmentations and the Nan masks.

Features are extracted both from the 3D vasculature arrays and their
2D projections. These flattened arrays, that are en-face visualizations,
give an additional insight into the vasculature architecture and allow
the operator to have a quicker overview than the 3D arrays do. These
are the necessary steps to obtain them:

• Grayscale en-face: sum of the vasculature mask along the
depth and normalization by dividing it with the length of the
depth axis, which results in a grayscale image (Figure 2.23a).

(a) (b)

Figure 2.23: Comparison between the en-face of a 3D vasculature segmentation
(a) and its binarization with the Otsu method (b).

• Linear thresholding: binarization with threshold found with
Otsu method (Figure 2.23b).

The applyNaNmasks class is then initialized and the NaN masks, if
created for the currently processed volume, are applied to both the
3D and 2D binarizations:
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• 3D segmentations: here, where the NaN mask is equal to 1,
the pixels are set as NaN.

• 2D segmentations: the 3D NaN mask is flattened in the same
way as the vasculature binary volume is. Then, where the 2D
NaN mask is equal to 1, the 2D segmentation is set to NaN.

Setting the useless areas to NaN allows for the next calculations to
ignore them. Before proceeding with feature extraction, both the
segmentations follow some post-processing steps:

• Morphological closing: for hole filling, it removes small dark
spots in favour of the blood vessels. As it’s a dilation followed by
an erosion, the dark holes that are closed are smaller than the
structuring element, and those that are bigger retain their original
size [20]. The structuring elements are a 2-by-2 square and a
2-by-2-by-2 cube, for the 2D and 3D segmentations respectively.

• Skeletonization: two additional arrays are created in the pipeline
by reducing blood vessels to 1-pixel wide representations, cen-
tered around their median axis [21]. This allows to capture the
essential characteristics of blood vessels.

• Small objects removal: blood vessels smaller than 21 pixels
are removed in both skeletons.

An example of the output of this section is shown in Figure 2.24.
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(a) (b)

Figure 2.24: On the right (b), overlap of a skeletonization (magenta) on its
corresponding segmentation mask (blue), after all post-processing steps. On the left
(a), the depth color-coded en-face of the OCTA volume the overlap was calculated
from.

Then, feature extraction stars with the branch-related parameters,
by calling a dedicated function from the branchParameters class.
They are calculated exclusively for the 2D arrays, as calculating most
of them for the 3D segmentations is too computationally heavy, due to
the high number of branches. The subsequent features are calculated:

• Number of endpoints: they are at the extremities of the
vascular trees. Endpoints have just 1 pixel in their 8-connected
neighborhood.

• Number of branchpoints: points at which branches separate
from each other. Branchpoints have 3 pixels or more in their
8-connected neighborhood. As they tend to aggregate, they’re
not counted individually, but one group is counted as a single
branchpoint.

• Number of branches and branches length: the pixels con-
tained between two endpoints, two branchpoints, or one endpoint
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and one branchpoint are considered to be branches. The length
is calculated by adding 2 to the number of these pixels. Branches
without two extremities, such as loops, are eliminated.

Figure 2.25: Picture showing branchpoints (red) and endpoints (blue) highlighted
on a skeleton.

• Tortuosity measures: for each branch, along with its extremi-
ties, three parameters are calculated [22]. These are:

– Distance metric (DM): ratio between the number of pixels
in the branch and the euclidean distance between its extremi-
ties (Eq. 2.3). The higher the value, the more tortuous the
branch is.

DM = branch length

euclidean distance between extremities
(2.3)

– Inflection count metric (ICM): the DM of the branch
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multiplied by the number of inflections along its path, which is
calculated as the number of times the vessel diverges from its
lowest-cost path (Eq. 2.4). Again, a high value corresponds
to a highly tortuous vessel.

ICM = DM ∗ n_inflections (2.4)

– Sum of angles metric (SOAM): a sum of the angles in the
vessel normalized by the branch length (Eq. 2.5). Two types
of angles are calculated: in-plane angles (IP), between the
tangent vectors of two adjacent pixels, and torsional angles
(TP), between the normal vectors of two subsequent voxels,
which are null in 2D arrays.

SOAM = 1
branch length

n−2Ø
j=1

ò
IP 2

j + TP 2
j (2.5)

The subsequent features are then calculated, for both 2D and 3D
segmentations and their skeletonizations, unless specified otherwise,
by calling globalParameters:

• Radius: distance between the skeleton and the border of the
corresponding segmentation. It’s calculated by computing the
distance transform within the vessel mask to the closest skeleton
pixel. Then, the distance values corresponding to the borders of
the vessels are taken as radii values.

• Vascular density (VD): ratio of the white pixels to the whole
size of the array, minus the number of NaN pixels.

• Avascular area (AA) and avascular volume (AV): defined
as portions of tissue that are further from the nearest blood vessel
than a predetermined value (Figure 2.26). This value is assumed
to be 150 µm, the maximum distance that necessary compounds
can travel before being metabolized by cells. Anything beyond
that can be assumed to be an avascular volume, or area, as it’s not
receiving enough oxygen due to the lack of close enough vessels
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[23]. Given the lateral and axial pixel spacings, the threshold
distances in pixels are:

max_lat_distance = max_distance

lat_pixel_spacing
≈ 8 pixels

max_ax_distance = max_distance

ax_pixel_spacing
≈ 11 pixels

(2.6)

Figure 2.26: Grayscale en-face of the 3D segmentation. Inside the red circle
there’s one of the avascular areas targeted by the pipeline.

To keep the code simpler and due to the two values differing by
just 3 pixels, the maximum distance is always assumed to be
equal to the lateral one, even in 3D.
A distance transform is computed on the complementary arrays
of the two segmentations. An area, in 2D, or a volume, in 3D, of
the array is considered to be avascular if it’s more than 8 pixels
distant from the nearest vessel. The number of avascular pixels,
or voxels, is thus calculated, and the percentage with the number
of total valid pixels is calculated as well.

• Shannon entropy: it quantifies the amount of uncertainty, or
information, associated with the description of the variable’s
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states. In information theory, it’s calculated as such:

H(X) = −
nØ

i=1
p(xi) log2 p(xi) (2.7)

where X is a discrete random variable and p(xi) is the probability
of the variable assuming value xi.
In our context, X represents the possible pixel values, 0 and 1, and
p(xi) is the probability distribution for one of these, calculated
as the total sum of that value divided by the total number of
valid pixels. The higher the entropy value of an array, the more
it can be described as chaotic, with the minimum being 0 and
the maximum being 1 (Figure 2.27).

(a) (b)

Figure 2.27: Comparison between two acquisitions with different entropy values.
The one on the right (b) is more chaotic, and the calculation reflects it: the
segmentation (blue) and its skeleton (magenta) have entropy values of respectively
0,998 and 0,458. The left one, on the other hand, has entropy values of 0,819 and
0,205, respectively for mask and skeletonization.

• Fractal dimension (FD): it’s an index used to describe the
complexity in a pattern and how detail changes with the scale at
which it is measured. The higher its value, the more complex and
irregular a pattern is. The function used in globalParameters
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class uses the box-counting method, which measures the change
in detail with increasingly smaller boxes [24].

• Number of trees (NT): the number of connected objects in a
vascular binary array is considered to be the number of vascular
trees.

• Distance-based metrics: they are calculated only in 3D. There
are two of these:

– the axial position of the center of mass of the segmentation
and its skeleton;

– the axial distance of a chosen voxel of the segmentation from
the top layer. The voxel is that with the highest distance
from the background.

It’s important to understand how some of these features vary within
the same array. The ROIFeatures class divides each of the four
arrays (2D and 3D segmentations and their skeletonizations) into
fixed-dimension ROIs (Table 2.4) and calculates for each of them VD
and Entropy. The same is done for AA and AV, while of course just
taking the two segmentations into account, as these two parameters
are not computed for the skeletonizations. By computing the max
value between all ROIs, it’s possible to assess these features where
they’re most intense.

Dimension ROI size (pixels) Step (pixels)
2D 64 x 60 32 x 30
3D 10 x 64 x 60 5 x 32 x 30

Table 2.4: Characteristics of the ROIs into which the arrays are divided.

Moreover, ROI values are used to create heatmaps of these features,
that allow for an assessment of how values are distributed in these
arrays. They are created for each acquisition and some examples are
shown in Figure 2.28.
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(a) (b)

(c) (d)

Figure 2.28: Heatmaps of vascular density and entropy across the 2D segmentation
and the 2D skeletonization of the same acquisition.

The ROIFeatures class also allows to calculate the variation of
VD and entropy along with depth. The 3D mask and its skeleton
are divided into slices that are 10 pixels thick, with a 5 pixel step.
Then, in order to characterize the distributions of these values, their
skewness is calculated. However, as the segmentations may have
different depths, a cutting point of 13 slices, so 70 pixels, is applied
to the distributions before skewness computations.
A total of 53 features are calculated for each acquisition. For a
summary, see Figure 2.29.
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Figure 2.29: All calculated features are listed here and divided by the arrays
from which they’re calculated. Mean radii are calculated both from the masks and
their skeletonizations: they’re under the former for convenience.

Overall, the outcome of the feature extraction process are 5 Excel
files, 4 relative to the timepoints and one for the healthy volumes.
These files are structured so that each column corresponds to a vari-
able, and each row corresponds to a different volume.

2.5.4 Statistical analysis

The purpose of the statistical analysis, shown in 2.30, is to determine
whether features change significantly across timepoints. Additionally,
boxplot diagrams help contextualize these results, hopefully showing,
with time, a return of values to the healthy baseline. Thus, this
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Figure 2.30: Pipeline of the statistical analysis.

analysis is fundamental in understanding which features can charac-
terize vascular changes after radiotherapy treatment and differentiate
between the timepoints. The analysis proceeds as such:

• Kruskal-Wallis (KW): it’s a nonparametric test used to assess
whether two or more independently sampled groups come from
the same distribution. The single variable of interest doesn’t need
to meet normality assumptions, but the groups should come from
populations that share the same distribution shape.
To test the null hypothesis, which states that the medians of
all groups are equal, all samples are combined and their values
are ranked. The ranks are summed separately for each group
and, along with the sample sizes, they are used to calculate the
H statistic. It reflects the variance in ranks between groups, so
the higher its value the more at least one group differs from the
others [25].
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The kruskal function used in the pipeline returns both the H
statistic and the p-value, using the assumption that H has a chi
square distribution [26]. All p-values are tested against α=0.05.
If they are lower than α, the null hypotesis is rejected, which
signals significant differences between the timepoints.

• Holm-Bonferroni (HB) correction: the Bonferroni method
is used to reduce the optimism of the KW test, as the previously
calculated p-values are multiplied by the number of total tests
performed.
However, the Bonferroni correction by itself is considered to be
too conservative, so Holm’s sequential version is used here [27].
All tests are ranked by their raw p-value, from lowest to highest.
Then, each corrected p-value is calculated as such:

pi, corrected = pi ∗ (Nt − i + 1) (2.8)

where Nt is the number of tests, or features, and pi is the i-th
ranked p-value. Starting from p1, its correction is tested against
α. All other values are then checked in ascending rank order, and
at the first pi, corrected higher than 0.05, all larger raw p-values
are automatically considered non-significant.

• Eta squared (η2): given the total variance in all values assumed
by a feature, it measures how much of that is associated with
those values being calculated in specific timepoints. Here, the η2

is obtained as such [28]:

η2
i = Hi − ntimepoints + 1

nvalues, i − ntimepoints
(2.9)

where Hi is the H statistic for that feature and nvalues, i is the
total number of values of that feature across all timepoints.
The higher the η2 value, the larger the effect of timepoints on
the value that a feature can assume.

• Dunn test: even if the KW test leads to significant results, it
cannot tell which groups are different from the others. Therefore,
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the Dunn test is essential as a post-hoc analysis to make pair-wise
comparisons.

η2

(effect size - equal or higher than)
Small Medium Large
0.0099 0.0588 0.1379

p-value
(significance - lower than)

Verified Strong Very strong
0.05 0.001 0.0001

Table 2.5: Table with noteworthy values regarding η2 and the p-value [28].

Overall, an ideal feature is one that presents a large H-value and
a corrected p-value lower than 0.05. This means that the feature
changes significantly across timepoints. An η2 higher than 0.1379
enforces the observation that the specific timepoint at which the
parameter is calculated largely affects its value. The Dunn test, as
a post-hoc analysis, shows for this feature which timepoints differ
significantly from each other. Lastly, boxplots diagram allow for a
visual assessment of the distribution of its values across timepoints,
showing a gradual return towards the healthy baseline.
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Results

3.1 Qualitative analysis

The images produced by the processing pipeline are important to
make a first assessment of the lesion and to contextualize the results
of the statistical analysis.

3.1.1 Determining the quality of the acquisition

As it was said in Section 2.1, the overall amount of acquired volumes
is much larger than the final selection. Some volumes are, in fact,
low-quality, which can be quickly determined by looking at the B-
scans, en-face and depth color-coded plots.
Figure 3.1 shows an acquisition taken from the nose. The insufficient
quality can be traced back to the lack of the glass slide. This leads
to more unwanted reflections, which compromise the overall quality,
and to a highly irregular surface, which affects skin alignment and
hinders the correct focusing of the laser. Therefore, vessels that are
out of focus appear to be blurry. Moreover, there are heavy movement
artifacts in the OCTA en-face. While these could be mainly caused
by the patient, they could have been partially mitigated by keeping
the skin firmer with the slide.
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(a) (b)

Figure 3.1: Images extracted from an acquisition taken at the nose: average of
10 B-scans, which shows a highly irregular skin surface (a); depth color-coded MIP
from a section of the OCTA volume, where heavy movement artifacts can be seen
(b).

(a) (b)

Figure 3.2: Images extracted from an acquisition taken at the leg: average of 10
B-scans, which shows a sloped planar surface (a); depth color-coded MIP from a
section of the OCTA volume (b).

Figure 3.2 shows images with higher quality. The skin here is
planar, and allows for the use of the glass slide. The flattened surface
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leads to a higher-quality OCTA processing, with no visible movement
artifacts and vessels being focused on more precisely.
Of course, some acquisitions are bound to have slightly suboptimal
quality, but the ones like that shown in Figure 3.1 are never consid-
ered for segmentation. With the fast raw data processing pipeline
implemented in the main data acquisition workstation, it could be
possible to take a quick look at the image outputs to determine
whether an additional acquisition is necessary.

3.1.2 Visual timepoint comparison

The premise that vasculature features may change across timepoints,
and the choice of the feature themselves, is based on qualitative obser-
vations. Visual monitoring is still crucial, both as a first assessment,
and as a way to contextualize features’ values.
Figure 3.4 shows a comparison of the same lesion across all timepoints.
A healthy portion of skin, from the same patient, can be used as
reference (Figure 3.3).

Figure 3.3: Depth color-coded MIP from a section of an OCTA volume of healthy
skin.
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(a) (b)

(c) (d)

Figure 3.4: Four figures showing the progression of a lesion throughout the
timepoints: pre (a), post (b), 3M (c), and 6M (d). The first two seem blurry, due
to the high density of the arrays.

As it can be seen, the pre and post radiotherapy lesions have very
peculiar layouts, so packed and dense that it’s very difficult to see
any vessels in the deeper layers. The healthy skin, on the other hand,
presents a much more organized vasculature, which is visibly far less
dense. Moreover, deeper vessels are clearly visible. The 3M and
6M vasculatures signal a return to structures that are progressively
more similar to the healthy ones. Vessel layouts are rare and more
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distinguishable than in the previous timepoints.

3.2 Quantitative analysis

Figure 3.5: Here all the significant features are displayed. VD: vascular density;
AA: avascular area; AV: avascular volume; ICM: inflection count metric; SOAM:
sum of angles metric; FD: fractal dimension; m: mask; s: skeleton.
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The null hypothesis is rejected for 36 of the features, which thus have
statistically significant differences across timepoints. Out of these,
6 present a strong statistical significance and 21 a very strong one.
Additionally, only 8 features present a medium size effect, with the
rest having a large one; this means that the variance seen in features
is largely due to the timepoint in which they are calculated. These
results are shown extensively in Figure 3.5.
The rejected features are displayed in Figure 3.6.

Figure 3.6: Here all the non-significant features are displayed. DM: distance
metric; VD: vascular density; m: mask; s: skeleton.

The results of the post-hoc analysis are displayed above the box-
plots as asterisks, where one indicates the presence of a statistically
significant difference, two indicate a strong one, and three indicate a
very strong one. This is a quick index of the boxplot diagrams below:

• Branch parameters: Figure 3.7 and Figure 3.8. These features
are calculated exclusively on branches, thanks to the skeletoniza-
tion.

• Global parameters: Figure 3.9, Figure 3.10, Figure 3.11, Figure
3.12, Figure 3.13 and Figure 3.14.
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• ROI parameters: Figure 3.15 and Figure 3.16. These features
are calculated on the ROIs in which an array is divided. Then,
the max of each of the ROI’s values is computed.

• Distance parameter: Figure 3.17, the distance of the innermost
point of the 3D segmentation from the surface.

• Depth-related parameters: Figure 3.18, where each feature
is the skewness of the distribution of a specific parameter along
with depth.

When looking at these boxplots, one has to pay attention to a set of
key characteristics:

• Relative positions: if all the boxplots are aligned, then the
feature is not able to discriminate timepoints.

• Trend: not only do they need to be shifted in height, but there
needs to be a trend that shows features’ values initially distant
from the healthy baseline and then slowly converging back towards
it.

• Interquartile range (IQR): sometimes, the pre- and post-
radiotherapy groups have a larger or smaller IQR than the healthy
baseline.

• Dunn’s test results: crucial to assess the entity of the difference
between timepoints. Sometimes, such as in Figures 3.16a and
3.16c, due to heavy outliers, the boxplots are barely visible.
In these cases, the post-hoc results are fundamental for the
interpretation of results.

All figures show that the first two timepoints drift consistently far
from the healthy baseline, with the last two slowly shifting back
towards it.
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(a) (b)

Figure 3.7: Boxplots of two tortuosity measures across timepoints, with Dunn’s
test results above.

(a) (b)

(c) (d)

Figure 3.8: Boxplots of branch-related parameters across timepoints, with Dunn’s
test results above.
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(a) (b)

(c) (d)

Figure 3.9: Boxplots across timepoints of the vascular density of 4 different arrays,
with Dunn’s test results above.
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(a) (b)

(c) (d)

Figure 3.10: Boxplots across timepoints of the fractal dimension of 4 different
arrays, with Dunn’s test results above.
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(a) (b)

(c) (d)

Figure 3.11: Boxplots across timepoints of the entropy of 4 different arrays, with
Dunn’s test results above.

60



Results

(a) (b)

(c) (d)

Figure 3.12: Boxplots across timepoints of 4 different avascular parameters, with
Dunn’s test results above.

(a) (b)

Figure 3.13: Boxplots of mean radius values across timepoints, in 2D and 3D.
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Figure 3.14: Boxplots of the number of trees across timepoints.

(a) (b)

(c) (d)

Figure 3.15: Boxplots across timepoints of the maximum vascular density values
of ROIs into which 4 different arrays were divided, with Dunn’s test results above.
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(a) (b)

(c) (d)

Figure 3.16: Boxplots across timepoints of the maximum entropy values of ROIs
into which 4 different arrays were divided, with Dunn’s test results above.
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Figure 3.17: Boxplots across timepoints of the distance from the surface of the
innermost point of the vasculature segmentation mask.

(a) (b)

Figure 3.18: Boxplots across timepoints of the skewness of vascular density and
entropy along with depth, with Dunn’s test results above.

3.2.1 Results without the NaN masks

If the NaN masks are not used, there are 35 significant features, of
which 19 present a p-value under 0.0001, and 29 have a large size
effect. The only feature that gains its significance with the NaN
masks is the mean radius calculated for the 2D arrays. Therefore, it
may seem that they might not be affecting results in a relevant way.
The post-hoc analysis proves otherwise.
In fact, by looking at the comparison shown in Figure 3.19, it’s
clear that the NaN masks allow for greater distinction between the
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timepoints, that overlap much less in the presented examples. This is
further proved by the results of Dunn’s test, that show more asterisks
in the right column of the figure.

(a) (b)

(c) (d)

(e) (f)

Figure 3.19: Comparison between the boxplots of some features, calculated before
applying the NaN masks (a,c,e) and after (b,d,f).
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Discussion

4.1 Conclusions

The results spark a series of observations:

• p-values and η2: many parameters assume significantly different
values, based on the timepoint they are calculated in. It’s observed
that the variance in these values is largely due to the timepoint
group to which they belong. These two assessments, that depend
respectively on the p-value and η2, support each other. Therefore,
it’s not far-fetched to say that quantitative measures extracted
from OCTA data change consistently depending on the time
elapsed from the start of radiotherapy.

• Dunn’s test: the previous observation, while precious, is not
enough to prove the usefulness of these features, as there’s no
assessment regarding which timepoints change from the others,
and which trend they present and how strong this trend is. Let’s
take Figure 3.10b: its corrected p-value is higher than its 3D
counterpart (Figure 3.10d), and, while the boxplots slowly con-
verge back to the healthy baseline, the 3M is still quite similar to
the pre- and post-radiotherapy timepoints. However, both the
healthy and 6M groups are significantly different from the the
post group. The trend of Figure 3.10d is much stronger: boxplots
in 3M, 6M, and healthy are aligned, significantly different from
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the pre- and post-radiotherapy ones, and they also have similar
IQRs.
Overall, optimal features behave as such:

– significant difference between pre-radiotherapy group and
healthy baseline: an untreated lesion is expected to have a
dissimilar vascular architecture with respect to healthy skin
[7] [12].

– values calculated immediately after radiotherapy are expected
to be close in distribution to the previous timepoint. Not
enough time is elapsed for the observer to expect significant
changes.

– the 3M and 6M groups gradually shift towards the healthy
boxplot and have similar IQRs. Not only this, but these
groups may not be significantly different from the latter, as
radiotherapy is being effective. Between them and the pre-
and post-radiotherapy groups a p-value under 0.05 should be
observed.

All of the features calculated for this thesis follow, more or less,
this ideal behaviour, with a convergence of values towards the
healthy baseline sometimes already from the 3M timepoint.

It’s equally crucial to showcase which changes, specifically, are
described by the features. These are the differences in vasculature
that are observed between healthy skin and lesions:

• Higher density: the vascular architecture in lesions is denser
(Figures 3.9 and 3.15), with the branches being more numerous,
shorter and of smaller girth (Figure 3.8c, Figure 3.8d and Figure
3.13).

• More complexity: blood vessels in the en-faces are less coiled
and tortuous (Figure 3.7) but, overall, lesions have a more complex
and chaotic layout (Figure 3.10, Figures 3.11 and 3.16). Moreover,
there’s a higher number of vascular beds, that branch more and
towards more directions (Figure 3.14, Figures 3.8a and 3.8b).
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• Less avascularities: avascular regions in lesions are less ex-
tended (Figures 3.12.

• Different distribution with depth: in lesions, the vascular
mass appears to be closer to the surface and with a higher density
towards the epidermis (Figure 3.17 and Figure 3.18).

It’s fundamental to calculate features for the whole volumes, as their
values capture general characteristics at a glance. In addition, the cal-
culation of these parameters also on the 2D flattened vascularization
proved to be useful for a series of reasons:

• Branch parameters: due to the lower number of elements,
computation is much faster. This is, however, just a minor aspect
that could be fixed in the future by optimizing the pipeline.

• Reduction of noise and artifacts: as these are flattened arrays,
noise has a lower effect than in the 3D volumes, allowing for more
significant results in 2D than in 3D.

• Unique characteristics: en-face visualizations allow to capture
vascular patterns that might otherwise be overlooked and are
usually used in dermoscopy for diagnosis.

Lastly, it’s important to remind that the NaN masks allowed for
greater statistical significance between the timepoints, showing the
importance of ignoring those useless sections that are bound to be
present inside these volumes.

4.1.1 Clinical interpretation of the results

Neo-angiogenesis is an established characteristic of skin tumors. Blood
vessels need to grow more extensively in order for NMSC to keep
developing, and the scope of this phenomenon has been linked to
tumor relapse [17] [23]. Therefore, vascular density is an essential
biomarker to describe vascular regrowth, alongside metrics such as
the number of trees, branches, endpoints and branchpoints.
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However, other parameters that quantify changes in transport effi-
ciency from vasculature to tissue are important as well. The avas-
cularity features, AA and AV, show a reduced number of voids in
lesions, as nutrients need to reach more areas to feed tumor growth
[23].
In NMSC, some vessels appear larger than in healthy skin and others
are very tiny and fragile [17]. Here, the average radius has been
detected to be lower in lesions, reflecting the larger influence of these
new, smaller vessels that have grown to reach new cells. This obser-
vation is supported by the fact that branches, on average, are also
detected to be shorter than in healthy tissue.
Moreover, this growth happens in a disorderly way, favoring fast
growth over efficiency, so that lesions have higher information entropy
and fractal dimension values. These parameters thus describe the
vascular architecture in NMSC as more complex.
Consequences that seemingly contrast with these previous observa-
tions come from the tortuosity values, that are significantly lower in
lesions. These results are actually due to lesion-specific characteristics
that stand out in en-face visualizations and are traditionally observed
in dermoscopy. In this technique, the vascular architectures of NMSC
lesions can present globular vessels, in the form of dots and blobs,
and arborized vessels [17] [29].
Lastly, the distance metric confirms what had already been observed,
which is that vessels tend to appear more superficially in NMSC
lesions than in healthy skin [30].
Overall, it can be said that the features calculated in this thesis
allow for an accurate assessment of the lesion-dependent vasculature
peculiarities that are often described in literature.

4.2 Limitations and future developments

A major limitation in the acquisition protocol stands with the shape
of the probe and of the glass slide. If OCTA were to become of
common use in dermatology, a more mobile probe would be necessary,
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perhaps with an arm that allows to twist it to reach more difficult
positions. This would be very useful especially with elder patients,
that often feel unconformable in moving into positions that allow the
probe to be placed correctly. Moreover, the glass slide is extremely
important, but the rectangular ones, used in microscopy, cannot be
applied in curved zones, like the nose. The development of more
appropriate slides will be useful in the future, if this technology is
to be used in clinical settings. These future prospects, being heavily
tied with budget, are more difficult to reach in short-term. However,
the more OCTA solidifies as a useful technology in clinical practice,
the more such proposals become more likely, in the future.
Concerning the vasculature segmentation themselves, while AMIRA
allows to create very accurate masks, doing so semi-automatically
takes a lot of time from the operator, and creates a bottleneck.
Therefore, implementing an automatic segmentation method in this
pipeline would make for a seamless transition from processing to
feature extraction [31].
The last future upgrades to the pipeline regard the feature extraction
process:

• Code optimization: the code may be optimized to allow for the
calculation of branch features for the 3D volumes too. Tortuosity
measures on 3D vascularizations would yield complementary
results to those obtained from the en-faces.

• DEJ inclusion: as previously said, sometimes it’s not possible
to detect the DEJ. This can be due to lesion-dependent structural
changes: for example, SCC and AK can present thick scales that
obscure it. However, it could be worth it to explore the possibility
of exploiting this as a possible feature, as, sometimes, not being
able to find the DEJ is the direct cause of a pathological state.

• Additional depth-related considerations: even if three skew-
ness measures showed statistically significant differences, these
parameters’ distributions with depth should be investigated more,
to help with the interpretation of the results.
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Research should also be done towards the identification of the
depth reached by each lesion, and its evolution throughout the
timepoints. This measure could be achieved with gradient-
dependent assessments on OCT A-lines.

• Dermoscopy-based features: features that are often used in
dermoscopy could potentially be implemented in the 2D section
of the pipeline [29].

• Radiomics: it has been demonstrated that OCTA radiomics can
be potentially combined with vascular parameters such as the ones
calculated in this thesis. First-order and texture features have
been shown to differentiate between pre- and post-radiotherapy
OCTA acquisitions, and more studies are being conducted in this
direction [32].

The addition of these features to the existing pipeline might help
in distinguishing specific lesions, namely BCC and SCC, that can
present different structures at the en-faces and different distributions
with depth [29] [30]. This, of course, depends heavily on the amount
of available data, as much of the specificity presented in this thesis is
due to the large number of analyzed volumes. If BCCs, SCCs and
AKs had been separated, this specificity would have been lost. This
is why this thesis characterized changes with respect to a healthy
baseline, which has been proven here to have quantifiable differences
from NMSCs.
Studies that develop methods and classifiers that integrate vascular
features along with radiomics, will open the door to patient-specific
radiotherapy treatment planning and follow-up, representing a promis-
ing direction towards precision medicine.

4.3 Final conclusions

Before drawing the last considerations, some important aspects of
the two Python pipelines ought to be highlighted:
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• OCTAProcessing class: it does the whole computation in 5-10
minutes, and wholly automatically, if the user wishes. It produces
the OCTA volume, cleaned from artifacts, and a useful series of
figures: B-scan visualizations, the rendering of the detected skin
surface, en-face images of both the OCT and the angiographic
volume. The quicker the clinicians get these images, the more
efficiently they may use their time, as further assessments could
be made on the lesion before the patient exits the examination
room.

• OCTAFeatures class: it provides automatically a large amount of
features in a suitable format for any statistical analysis. Its mod-
ularity allows for any modifications, additions, and combinations
one may want to make.

These pipelines come from the translation into Python of previously
existing Matlab pipelines, that have been optimized and expanded.
They are very useful, as they build the foundations for the repro-
ducibility of these results, which is crucial for the diffusion of the
technique.
This thesis demonstrated that it’s possible to quantitatively assess
radiotherapy-induced microvasculature changes in non-melanoma
skin cancer using OCTA. This thesis showed that these OCTA fea-
tures are not only a device for future prediction algorithms, but
give interpretable and clear information about the evolution of the
lesion. This is particularly valuable to establish the use of OCTA for
decision-making in clinical settings.
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