

# Politecnico di Torino

Corso di Laurea in Management Engineering A.a. 2023/2024 Sessione di Laurea Luglio 2024

# Interaction between VC Investments and lagged M&A Activity across different countries

Relatore:

Prof. Marco Cantamessa

Candidato:

Florindo Sarpi

# **TABLE OF CONTENTS**

| 1 | Intr  | oduction                                                                     | 12 |
|---|-------|------------------------------------------------------------------------------|----|
| 2 | Lite  | rature review                                                                | 14 |
|   | 2.1   | Venture Capital Financing                                                    | 14 |
|   | 2.2   | The importance of Exit in the VC Industry                                    | 19 |
|   | 2.3   | Key Determinants and Cross-Country Variations in Venture Capital Investments | 24 |
| 3 | Met   | hodology                                                                     | 34 |
|   | 3.1   | Research questions                                                           | 34 |
|   | 3.2   | Sample selection                                                             | 35 |
|   | 3.2.1 | Selection of appropriate factors as independent variables                    | 35 |
|   | 3.2.2 | Selection of appropriate factors as dependent variables                      | 38 |
|   | 3.2.3 | Selection of appropriate data sources                                        | 39 |
|   | 3.2.4 | Selection of a set of countries                                              | 43 |
| 4 | Pre   | iminary Analysis                                                             | 45 |
|   | 4.1   | Qualitative analysis of graphs                                               | 45 |
|   | 4.2   | Qualitative Analysis - USA                                                   | 45 |
|   | 4.3   | Qualitative Analysis - Italy                                                 | 48 |
|   | 4.4   | Correlations Analysis per country                                            | 51 |
| 5 | Em    | pirical research                                                             | 56 |
|   | 5.1   | Hypotheses                                                                   | 56 |
|   | 5.2   | Autoregressive Distributed Lag (ADL) model                                   | 57 |
|   | 5.3   | VC Market Maturity Indicator                                                 | 58 |
|   | 5.4   | Statistical Experimental Procedure                                           | 58 |
|   | 5.4.1 | Methodological note on the choice of the temporal lag                        | 59 |
|   | 5.4.2 | Methodological note on the choice of the statistics technique                | 60 |
|   | 5.4.3 | Note on the interpretation of regression coefficients and line equations     | 61 |
| 6 | Res   | ults                                                                         | 62 |
|   | 6.1   | VC market maturity                                                           | 62 |
|   | 6.2   | Results of the analysis on the N° of VC Investments                          | 63 |
|   | 6.3   | Results of the analysis on the VC Equity Value                               | 67 |
| 7 | Con   | clusions                                                                     | 71 |
|   | 7.1   | Discussion                                                                   | 71 |
|   | 7.2   | Limitations and Future Research Directions                                   | 73 |
| 8 | Bib   | iography                                                                     | 74 |
| Δ | PPEN  | DIX                                                                          | 80 |

| A1. USA            | 80  |
|--------------------|-----|
| A2. Israel         | 88  |
| A3. United Kingdom | 96  |
| A4. France         | 104 |
| A5. Germany        | 112 |
| A6. Spain          | 120 |
| A7. Italy          |     |
| A8. Netherlands    | 137 |
| A9. Japan          | 145 |
| A10. Canada        | 153 |

# LIST OF FIGURES

| Figure 2.1.1 – The players in the Venture Capital Industry                | 15  |
|---------------------------------------------------------------------------|-----|
| Figure 2.1.2 – Venture financing lifecycle                                | 17  |
| Figure 2.2.1 - US VC-Backed Exits: % IPOs vs % M&As                       | 21  |
| Figure 2.2.2 - IPOs and M&A US VC-Backed Activity                         | 22  |
| Figure 2.2.3 - IPO and M&A US VC-Backed Transactions                      | 22  |
| Figure 2.3.1 – VC Investments By Region                                   | 25  |
| Figure 2.3.2 – Leading Global Regions by VC Investments                   | 25  |
| Figure 4.2.1 – M&A number of deals vs VC number of deals in the USA       | 46  |
| Figure 4.2.2 - M&A Value vs VC Equity Value in the USA                    | 47  |
| Figure 4.2.3 – GDP and Long-term interest rates in the USA                | 48  |
| Figure 4.3.1 - M&A number of deals vs VC number of deals in Italy         | 49  |
| Figure 4.3.2 - M&A Value vs VC Equity Value in Italy                      | 50  |
| Figure 4.3.3 – GDP and Long-term interest rates in Italy                  | 51  |
| Figure A1.1 - M&A number of deals vs VC number of deals in the USA        | 80  |
| Figure A1.2 - M&A Value vs VC Equity Value in the USA                     | 81  |
| Figure A1.3 - GDP and Long-term interest rates in the USA                 | 81  |
| Figure A2.1 - M&A number of deals vs VC number of deals in Israel         | 88  |
| Figure A2.2 - M&A Value vs VC Equity Value in Israel                      | 89  |
| Figure A2.3 - GDP and Long-term interest rates in Israel                  | 89  |
| Figure A3.1 - M&A number of deals vs VC number of deals in United Kingdom | 96  |
| Figure A3.2 - M&A Value vs VC Equity Value in United Kingdom              | 97  |
| Figure A3.3 - GDP and Long-term interest rates in United Kingdom          | 97  |
| Figure A4.1 - M&A number of deals vs VC number of deals in France         | 104 |
| Figure A4.2 - M&A Value vs VC Equity Value in France                      | 105 |
| Figure A4.3 - GDP and Long-term interest rates in France                  | 106 |
| Figure A5.1 - M&A number of deals vs VC number of deals in Germany        | 112 |
| Figure A5.2 - M&A Value vs VC Equity Value in Germany                     | 113 |
| Figure A5.3 - GDP and Long-term interest rates in Germany                 | 113 |
| Figure A6.1 - M&A number of deals vs VC number of deals in Spain          | 120 |
| Figure A6.2 - M&A Value vs VC Equity Value in Spain                       | 121 |
| Figure A6.3 - GDP and Long-term interest rates in Spain                   | 122 |
| Figure A7.1 – M&A number of deals vs VC number of deals in Italy          | 129 |

| Figure A7.2 - M&A Value vs VC Equity Value in Italy                        | 130 |
|----------------------------------------------------------------------------|-----|
| Figure A7.3 - GDP and Long-term interest rates in Italy                    | 130 |
| Figure A8.1 - M&A number of deals vs VC number of deals in the Netherlands | 137 |
| Figure A8.2 - M&A Value vs VC Equity Value in the Netherlands              | 138 |
| Figure A8.3 - GDP and Long-term interest rates in Netherlands              | 138 |
| Figure A9.1 - M&A number of deals vs VC number of deals in Japan           | 145 |
| Figure A9.2 - M&A Value vs VC Equity Value in Japan                        | 146 |
| Figure A9.3 - GDP and Long-term interest rates in Japan                    | 147 |
| Figure A10.1 - M&A number of deals vs VC number of deals in Canada         | 153 |
| Figure A10.2 - M&A Value vs VC Equity Value in Canada                      | 154 |
| Figure A10.3 - GDP and Long-term interest rates in Canada                  | 154 |

# LIST OF TABLES

| Table 4.4.1 – Correlation between "Number of M&A deals", and "Number of VC Investments" per country and per temporal lag |
|--------------------------------------------------------------------------------------------------------------------------|
| Table 4.4.2 – Correlation between "Value of M&A deals", and "Value of VC Investments" per country and per temporal lag   |
| Table 6.1.1 - VC market maturity indicator for 2022                                                                      |
| Table 6.2.1 - Correlations between $N^\circ$ of VC Investments and $N^\circ$ of VC Investments with lag 64               |
| Table 6.2.2 - R-squared (Analysis on the N° of VC Investments)                                                           |
| Table 6.2.3 - P-Values for Regression 1 (Analysis of the N° of VC Investments)                                           |
| Table 6.2.4 - P-Values referred to Regression 3 (Analysis of the N° of VC Investments)66                                 |
| Table 6.3.1 - Correlations between VC Equity Value and VC Equity Value with lag67                                        |
| Table 6.3.2 - R-squared (Analysis on the VC Equity Value)                                                                |
| Table 6.3.3 - P-Values for Regression 1 (Analysis on VC Equity Value)69                                                  |
| Table 6.3.4 - P-Values referred to Regression 3 (Analysis of the N° of VC Investments)70                                 |

#### **GLOSSARY**

Throughout the thesis, the terminology included in this glossary will be reiterated on several occasions. The purpose of this section is to make it easier to understand the concepts and technical terms used in this work by offering comprehensive and precise definitions. This will help readers navigate and interpret the text more effectively.

**Start-up**: a startup is a recently formed company that is usually distinguished by innovation, scalability, and a focus on solving a certain market demand or issue. Many times, startups work in developing sectors and use technology to disrupt established business models. Usually still in the early phases of development, these businesses are looking for quick expansion and frequently depend on outside financing, including venture capital, to support their expansion.

**Venture Capital (VC)**: Venture Capital (VC) is a type of finance given by investors to startups and small businesses that show great development potential but might not have access to more conventional sources of capital. Venture capitalists usually take equity shares in the business in return for their investment and actively participate in directing its operations and strategic orientation. This kind of investment has a greater risk, but should the business flourish, it may provide large profits.

Mergers and Acquisitions (M&A): M&A, or Mergers and Acquisitions, is a strategic business activity in which businesses are consolidated via a variety of transactions including takeovers, mergers, acquisitions, and consolidations. Combined assets, resources, and operations of two or more companies are the goals of M&A activities, which also seek to improve competitiveness, increase market share, and enter new markets. These are sometimes complicated transactions that need meticulous preparation, discussion, and regulatory clearance.

**Initial Public Offering (IPO)**: An IPO, or Initial Public Offering, is the procedure by which a privately owned corporation makes its shares available to the public for the first time, therefore becoming a publicly listed firm. A corporation may raise money from outside investors to support its objectives for development and expansion by holding an IPO. Together with giving current owners liquidity, this historic occasion makes it possible for investors to freely purchase and sell the company's shares on the stock market.

#### **ABSTRACT**

Venture Capital (VC) is widely recognized as a crucial factor for startup growth, and several policies are often designed by governments to ensure a higher availability of this type of finance. However, there is a concern that in an economy without economic dynamism and the resulting prospects for growth, venture capital may not help promote the projected growth. Conversely, the weakness of venture capital may be a sensible response by investors and it could signal that something in the economy is not working properly.

This work particularly investigates the causal and temporal relationship between Mergers and Acquisitions (M&A) and Venture Capital investments, arguing that a more active M&A market may act as a precursor, with a certain time lag, to increased Venture Capital activity, because investors react positively to better exit opportunities. Few studies have investigated the complex dynamics between M&A and VC markets, this study aims to fill the gap through a cross-country perspective, contributing to the academic debate and offering insights to investors, governments, and policymakers.

A systematic review of the literature on subject matter has been conducted. Furthermore, a total of 10 relevant nations have been specifically selected, and comprehensive data has been obtained regarding their GDP, long-term interest rates, number and value of venture capital investments, as well as the number and value of mergers and acquisitions investments.

A preliminary analysis with correlations and graphs was first carried out for each country. Based on the temporal lags identified, a multivariate linear regression model has been developed and the regression line equation derived. Furthermore, an indicator for Venture Capital market maturity has been defined and calculated, in order to identify three clusters of countries. Finally, an Autoregressive Distributed Lag (ADL) model was run to also leverage the time series information of lagged VC activity that serves as the dependent variable.

The findings of the study demonstrate that the number and the value of VC investments in a given year and country can be explained with statistical significance by the number of M&A deals, GDP, and long-term interest rates with a temporal lag. The model confirms enhanced

predictability in more mature VC markets, like USA, Canada, UK and Israel, where lagged M&A activity significantly influences both the value and the number of VC transactions. The USA, with its well-established financial market, exhibits the most robust results, exceptionally showing that lagged M&A transactions, GDP, and long-term interest rates outweigh the significance of the autoregressive component of lagged VC transactions.

In contrast, the results highlight that in less mature markets, such as Japan, Italy, and Spain, the influence of lagged M&A activity on VC investments is poorer, reflecting the absence or weakness of a virtuous system that supports this dynamic.

Overall, the application of the ADL model and the interpretation of the results on the basis of VC market maturity constitute novel elements in the research field in which the study fits, and are intended to stimulate the academic research in the complex determinants of the VC market and the joint cross-country dynamics with the M&A market.

# 1 Introduction

Innovation financing has seen a substantial transformation in recent decades with emerging enterprises changing the way they access capital.

In particular, Venture Capital (VC) finance is playing an increasingly important role in supporting and encouraging entrepreneurial innovation and consequently fostering technological advancement and economic progress.

The final purpose of Venture Capital is to generate big capital gains by investing in high-growth innovative businesses and exiting them at the proper moment and with an attractive valuation. The exit strategy is determined by several factors and in recent years there has been a shift in the paradigm with Venture Capitalists preferring an exit via Mergers and Acquisitions (M&A), unlike in the past when they preferred exits via Initial Public Offerings (IPOs).

However, the landscape of Venture Capital investments is dynamic, driven by a wide range of macroeconomics and sectoral factors. Many studies have investigated the importance of the exit strategy and some studies tried also to formalize the key determinants and the cross-country variations in Venture Capital financing.

Several academic papers compared the IPO activity with the Venture Capital market, but the literature relating M&A and VC market is much poorer.

This thesis aims to fill this gap by analyzing the causal and temporal links between M&A and VC markets to contribute and stimulate new perspectives to the academic discourse. Through a cross-country perspective, the analysis will examine possible relationships and time lags, suggesting that the M&A activity influences the Venture Capital market with a certain time lag.

As a first step, the current literature will be reviewed to provide the reader with an overview of Venture Capital financing, the importance of an exit strategy, the determinants, and cross-country variances in Venture Capital investments.

Based on the literature review, 10 countries (USA, Israel, Canada, Japan, Germany, Spain, Italy, France, Netherlands, United Kingdom) will be analyzed to understand if VC activity and lagged M&A activity are correlated both in terms of number of investments as well as in terms of value of investments.

Furthermore, the GDP and the long-term interest rates will also be considered in order to build a multivariate linear regression model using macroeconomic variables and M&A activity, trying to predict the number and the value of VC investments in a given country. Three country clusters have been identified through the definition and calculation of an indicator for the venture capital market maturity. Lastly, for the first time in this field of research, an Autoregressive Distributed Lag (ADL) model has been developed to take VC transactions with lag into account.

The objective of the research is to clarify how changes in lagged M&A activity may affect the dynamics of the VC market, across countries with different VC market maturity. The study aims to improve knowledge of the intricate interrelationships between these two essential components of the financial markets, and other essential factors such as GDP and long-term interest rates, stimulating the academic debate and providing insights that could assist investors, governments, and entrepreneurs in making informed decisions.

#### 2 Literature review

# 2.1 Venture Capital Financing

Venture capital (VC) is a form of financing provided by professional investors to new firms that exhibit long-term growth potential. VC has emerged as a critical source for startup financing, providing both financial resources and strategic expertise that can contribute to innovation and ultimately economic growth (Wright & Robbie, 1998).

The objective of VC is to invest in the infrastructure of the startup (fixed assets and working capital in terms of balance sheet, and manufacturing, marketing, and sales in terms of expense investments) until it becomes credible and big enough to be sold with the help of an investment banker (Zider, 1998).

From an accounting point of view, VCs provide cash to the startup (asset), getting shares issued by the company (equity).

Generally, VCs do not invest in the development stage of a startup, while they usually finance the early growth stage of startups with high long-term development potential.

Venture Capital is essential as a source of financing for high-risk startups that would not have access to the debt capital market. Their investors are insurance companies, pension funds, and financial firms, which expect a return of 25-35% per year over the lifetime of the investment. Given the high risk, it is just a small fraction of their total portfolio.

However, Venture Capital is not only financing, but it also provides startups with technical expertise and a useful network for potential clients and business development (Zider, 1998).

Concerning the investment profile, VCs choose companies in industries that are growing fast, thus focusing on the middle part of the industry S-curve. These segments have high growth rates and are more likely to have exit opportunities because investment bankers are continually looking for new issues, easy to sell, with high relative valuations and consequently high commissions for the bank, which account for 6-8% of the amount raised through an Initial Public Offer (IPO) (Zider, 1998).

As represented in Figure 2.1.1, there are four main players in the venture capital industry:

- Entrepreneurs

- Venture Capitalists (VCs)
- **Private Investors**

government

**Investment Bankers** 

The entrepreneurs are the startups that have ideas and need funds for financing; the private investors look for high returns on investments; the investment bankers need companies to sell. Venture Capitalists are in the middle between the other three players, profiting from the creation of a market for them (Zider, 1998).

**Entrepreneurs** Investment 5 Capitalists bankers Ideas **IPOs** Stock Private Investors Corporations and

*Figure 2.1.1 – The players in the Venture Capital Industry* 

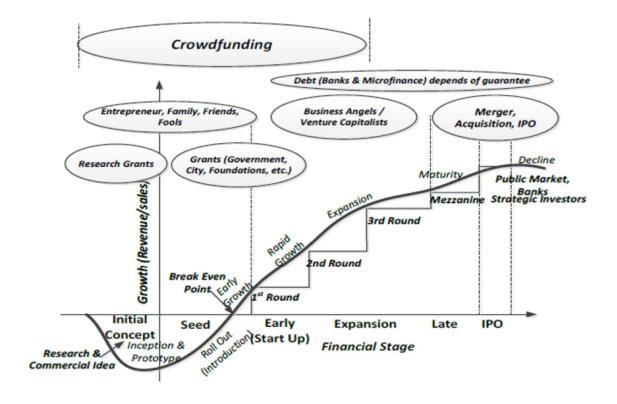
Source: Own elaboration based on Bob Zider, 1998, Harvard Business Review November-December

Public markets and

corporations

Among VCs, Limited partners (LPs) give funds to General Partners (GPs), who then invest the money in young firms like startups (Lemley and McCreary, 2020).

The Venture Capital cycle begins with raising a venture fund, continues with the investment in, monitoring of, and enhancement of businesses, ends when the venture capital firm closes profitable deals (exit) and gives its investors their money back, and restarts with the venture capitalists raising additional funds (Lerner and Gompers, 2001).


As reported in Figure 2.1.2, showing Venture financing, the first step is Seed financing, necessary for the design and development of the business Idea and the beginning of the startup phase (Rossi, 2014).

At this stage, the primary investors in new businesses are the entrepreneur's family and/or business angels. Product development and early marketing are funded by startup capital. Enterprises may be in the initial stages of development or have recently commenced operations and have not yet engaged in commercial product sales. Funding is necessary at this point to implement R&D for the new concept or product. Once the product has taken shape, a specific amount of venture capitalists will join the company since they wish to establish the firm (Rossi, 2014).

After developing its product, the company needs additional funding to start producing and marketing it. This is known as the post-created stage. The business hasn't made any money yet. High advancement occurs during the Expansion-Development stage. Capital is utilized in this stage of the firm to finance acquisitions, develop new services and products, boost working capital, and/or increase output (Rossi, 2014).

The Cycle ends with the exit. A successful exit enables venture capitalists (VCs) to obtain further funding from limited partners (LPs). This, in turn, enables the VCs to undertake fresh investments, so augmenting the expansion of the portfolio firm, its sector, and the economy at large (Espenlaub, Khurshed & Mohamed, 2014).

*Figure 2.1.2 – Venture financing lifecycle* 



Source: Lasrado & Lugmayr, 2013

There are several pieces of evidence from the literature arguing that VC-backed companies have better performance than non-VC-backed ones.

According to Puri & Zarutskie (2012), the firms in the economy that receive venture capital financing are below 0.5%. However, venture financing supported 56% of the companies that underwent Initial Public Offerings (IPOs) between 1995 and 2018 and remained operational by the end of 2019 (Lerner, Nanda, 2020).

Following the works of Chemmanur et al. (2011), and Puri & Zarutskie (2012), there is evidence that Venture Capital decreases the likelihood of firm failure and increases firm sales, contributing to the market performance of these firms.

The two main ways that VC investments have been shown to have increased efficiency are through the initial selection of firms that were already more efficient than their peers without VC backing, and the significant improvement in those companies' operational efficiency after receiving VC funding. Moreover, the positive impact of VC backing and the associated efficiency gains, significantly increase the likelihood of a successful exit (through an IPO or

acquisition) for the invested firms (Chemmanur et al., 2011).

The growth rate of global Venture Capital has exceeded that of the USA, leading to an increase in the concentration in a few large VC firms and a focus on a narrow range of industries, often related to software (Lender & Nanda, 2020).

According to the National Venture Capital Association (NVCA) study of 2002, for every \$1,000 in assets, Venture Capital-backed companies invested nearly three times as much in R&D, paid nearly three times as much in federal taxes, produced nearly twice as many exports, and had roughly twice as many sales between 1970 and 2000.

According to Kortum & Lerner's (2000) estimation, these companies provide roughly 14% of innovation even though they only contribute approximately 3% of R&D spending overall.

There is also a difference in the threshold for failure. When a VC-backed firm fails, it tends to be larger in terms of the number of employees and sales, but less profitable than a non-VC-backed firm at the time of the failure. This suggests that Venture Capitalists give their firms time and resources to grow before deciding on termination (Puri & Zarutskie, 2012).

VCs are aware that most of the companies in their portfolio will fail, but the return that one successful company could get justifies the investment. The expected return over five years for one or two years of financing is 10 times the capital invested, although, on average "good plans, people and businesses succeed only one in ten times" (Zider, 1998).

VC funds show, in fact, a distribution pattern of returns that diverges from the typical bell curve seen in normal distributions. They follow instead a power law curve, with a significant skewness in the return's distribution, meaning that a small portion of firms yield a substantial portion of profits (Cochrane, 2004).

There is a certain level of information asymmetry characterizing the Venture Capital industry. Compared to potential investors, entrepreneurs are more aware of the caliber of their projects. (Aquilina, Del Villar, Sanchez & Cornelli, 2024).

Information Asymmetry is the circumstance in which one party to a transaction (typically the business and the entrepreneur looking for funding) has access to more or superior knowledge than the other party, which in this case is the Venture Capitalist.

According to Hall and Lerner (2010), information asymmetries are particularly detrimental to

innovative and young businesses.

To better understand the information asymmetry in VC industry, one can refer to the work of Cumming & Johan (2008).

# 2.2 The importance of Exit in the VC Industry

When a VC invests in a company, it focuses hugely on the "exit strategy", that is "the ways funders and founders can cash out their investment" (Lemley & McCreary, 2020), or "the process by which the founders of privately held firms leave the firm they helped to create" (DeTienne, 2010).

The objective of VCs is to get paid by selling the company, turning the equity they have invested into cash.

The importance that Venture Capital (VC) plays in the broader economic development is recognized by policymakers. The Venture Capital business is likely to expand more slowly or perhaps stagnate if the VC cannot exit successfully because of inefficiencies in the capital markets. This would harm the level of entrepreneurial activity in an economy (Espenlaub, Khurshed & Mohamed, 2014).

There are generally two main possible options when talking about high-growth innovative venture exit strategies: Initial Public Offering (IPO) and Merger and Acquisitions (M&A).

The former consists of the process through which a privately held firm goes public, by selling for the first time its shares to the public. To go public, the company needs to be beyond a certain stage in the lifecycle, and the timing of the IPO is also influenced by market conditions, with firms more likely to go public when comparable firms' valuation improves, suggesting a more favorable investor sentiment (Ritter & Welch, 2002).

The latter is a strategic transaction where one bigger firm acquires another one, to achieve growth, enter new markets, or obtain competitive advantages. The M&A process involves several steps: identifying potential targets, conducting due diligence, negotiating terms, and integrating the target company post-acquisition (DePamphilis, 2019).

Young companies with outside equity investors are more likely to be targeted for Mergers and Acquisitions (M&A) because they give angels or Venture Capitalists the first chance to sell all or part of their equity stakes when the company is being acquired (Cotei & Farhat,

2017).

According to Cumming & Johan (2007), other exit possibilities are:

# - Secondary sales

The entrepreneur does not sell; instead, the VC sells to another VC.

# - Buybacks

The business owner buys back (repurchases) the venture capitalist's interest.

## - Write-offs (liquidation)

Startups may recognize at an early stage that their ventures are not viable or successful and decide to exit the market rather than persist with something unlikely to succeed. In this case, the startup sells the assets to pay off creditors and investors in the predetermined order of priority.

Eric Ries in his book "The Lean Startup" (2011) talks about early exits as chances for less promising firms and business ideas to "fail fast and learn quickly."

According to Wennberg & Detienne (2014), Exit strategies, M&A, and IPOs are complex choices that need accurate planning and evaluation of several variables, such as the venture's performance, the entrepreneur's objectives, and market conditions. These exit strategies are essential components of strategic management in the entrepreneurship sector, providing avenues to realize the value that entrepreneurs and their teams have built. They are not just means to end the entrepreneurial journey.

Incumbent players are increasingly buying startups, because either they value the technology or because they have lots of expenditure capacity, but it is also a way to eliminate a potential competitor who might leapfrog them in Schumpeterian competition (Lemley & McCreary, 2020).

According to Schwienbacher (2018), Incumbents have an incentive to make a higher offer than what the company would raise through an IPO.

Those companies are willing to pay very high premiums to protect their franchises (Norbäck,

2013).

From the point of view of VCs in terms of reputation and innovation, Amor & Kooli (2019) analyzed a comprehensive dataset of U.S. IPOs and M&As from 1996 to 2015. Their findings show a phenomenon called "grandstanding" with M&A exit strategies that are as crucial as IPOs in enhancing the reputation of young VC firms. To establish their name, young venture capitalists often take a smaller premium in M&A transactions; this is comparable to the greater underpricing seen in Initial Public Offerings (IPOs).

As shown in Figure 2.2.1, in the US, while almost 1 in 2 exits was by IPO in the 1990s, only about 1 in 10 was in the 2010s (Lemley & McCreary, 2020).

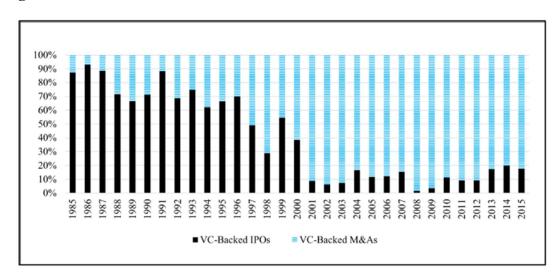



Figure 2.2.1 - US VC-Backed Exits: % IPOs vs % M&As

Source: NATL Venture Capital ASS'N, 2014 YEARBOOK, at 14 fig. 9, 15 fig. 10 (2014), NATL Venture Capital ASS'N, 2016 YEARBOOK, at 64 fig. 4.03, 68 fig. 4.07 (2016)

The rise in Venture Capital investments, which have a short holding duration of five to ten years, has significantly accelerated startup exits (Pisoni & Onetti, 2018).

As reported in Figure 2.2.2, which is an author elaboration based on the data from Pitchbook, published on the NVCA 2023 Yearbook, among the VC-backed exits through IPOs or M&A in the USA from 2009 and 2022, on average less than 1 over 10 is through IPOs. Looking at this last figure for 2022, it is only 3%.

100%
90%
80%
70%
60%
50%
40%
30%
2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022

Figure 2.2.2 - IPOs and M&A US VC-Backed Activity

■ VC-backed IPO %

Source: Own elaboration based on data from Pitchbook published on NVCA 2023 Yearbook

■ VC-backed M&A %

Comparing the Number of VC-backed Acquisitions (M&A) with the Number of VC-backed IPOs from Figure 2.2.3, it is possible to notice that in the 5 years between 2017 to 2021, the number of US-based venture capitalist-backed businesses that have been acquired exceeded between eight to fourteen times the one of companies that go public.

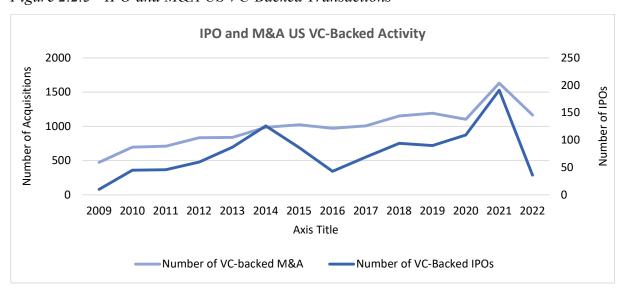



Figure 2.2.3 - IPO and M&A US VC-Backed Transactions

Source: Own elaboration based on data from Pitchbook published on NVCA 2023 Yearbook

Looking at the above data, one wonders why for VC-backed companies an exit in the form of

M&A has recently become much more popular than one via IPO.

Analyzing the exit choice between IPO and M&A by entrepreneurs and VCs, one can refer to the work of Bayar & Chemmanur (2010).

The authors found that one of the major aspects determining this choice is the competition in the product market: a stand-alone firm faces the product market on its own after an IPO, while an acquired firm can benefit from the support of the acquirer, potentially enhancing its competitive position (Bayar & Chemmanur, 2010).

Another aspect they found crucial in the choice between IPO and M&A is the difference in information asymmetry, with potential acquirers generally having better industry-specific knowledge to value the firm more accurately than IPO market investors (Bayar & Chemmanur, 2010).

The other crucial point is related to the private benefits of control post-exit, in IPOs, entrepreneurs can maintain some control over the firm and benefit from it, while in acquisitions, they may lose these benefits but can negotiate from a position of lesser information asymmetry (Bayar & Chemmanur, 2010).

A strong point in favor of M&A instead of IPO is the avoidance of the cost of complying with the Sarbanes-Oxley Act, "which requires public companies to audit their internal controls, from inventory tracking to the security of their competitive systems..." (Wall Street Journal, February 2005).

Moreover, evidence shows that IPOs have higher valuations than acquisitions with a valuation premium that is 22% higher in IPOs over takeovers (Brau, Francis & Kohers, 2003). This can also be explained by the fact that IPO firms tend to be higher than growth firms (Poulsen & Stegemoller, 2008). In the article of Brau et al. (2003), it is also highlighted the influence of the industry on the exit decision. Particularly, firms in less concentrated industries and those associated with high-tech are observed to favor IPOs, indicating a strategic selection based on industry dynamics and perceived market valuations (Brau, Francis & Kohers, 2003).

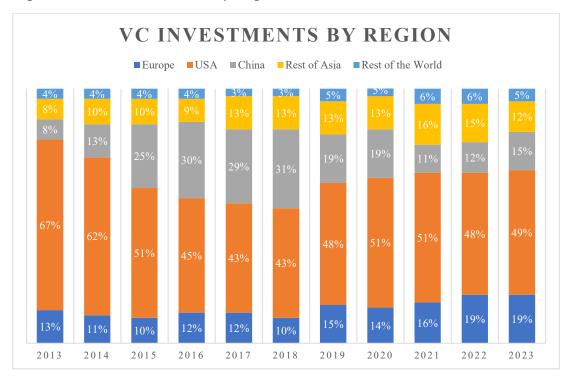
The need for liquidity and the time horizon of the investment are two other key elements to consider. Takeovers are often associated with a liquidity discount compared to IPOs, where insiders in takeovers accept a lower payout for the benefits of immediate liquidity. The fast cash-out option and liquidity consideration make takeovers a more appealing option for insiders looking for quick gains than IPOs, which may offer higher but delayed returns. (Brau,

Francis & Kohers, 2003).

Brau et al., also summarize the increasing trend found in the recent decades toward M&A over IPOs as due to a combination of factors such as regulatory complexities associated with IPOs, the immediate liquidity advantages that acquisitions offer to firm insiders, and the shifting industry consolidation in favor of consolidation (Brau, Francis & Kohers, 2003).

# 2.3 Key Determinants and Cross-Country Variations in Venture Capital Investments

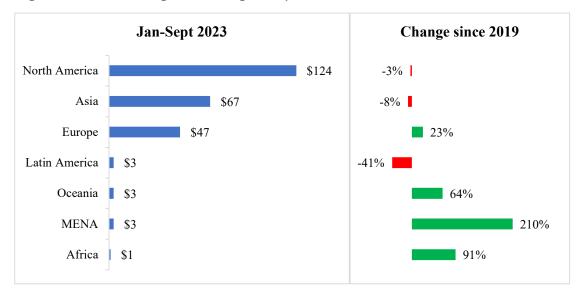
The largest Venture Capital industry in the world is in the United States. Venture capital is an American creation, not diffused globally as quickly as other financial innovations (Hege, Palomino & Schwienbacher, 2009).


The Venture Capital market started in the 60s in the US, financing companies like Microsoft, Apple, Inter, or 3Com., which are currently a reference in the market. In Europe, it started much later, in the 80s (Félix, Pires & Gulamhussen, 2012).

Europe is second in the world in terms of R&D investments, but it has only been since the late 1990s that Europe has seen growth in the venture capital (VC) sector. In 1999, investments reached \$12 billion, or nearly 25% of US levels. (Hege et. Al., 2009).

To update these figures with very recent data, one can cite the report "Global Tech and VC – Q3 2023" from Dealroom.co, which is a global provider of data and intelligence on startups. As reported in Figure 2.3.1, Europe reached a historical peak in VC Investments in 2023, which accounted for 19% of global VC Investments and consolidated the positive trend of the last years. China has lost half of the share in 2023 compared to 2018, with a 2023 percentage of VC investments that accounted for 15%, far below the 31% it had 5 years before.

The USA has been confirmed to be the giant in the VC industry, generating half of the global Investments.


Figure 2.3.1 – VC Investments By Region



Source: Own elaboration based on the report "Global Tech and VC – Q3 2023" from Dealroom.co

Of the three biggest regions in the world by VC Investments (North America, Asia, and Europe), Europe is the only one growing in 2023 compared to 2019 (+23% Jan-Sept 2023 vs same period 2019). In Figure 2.3.2, it is reported the investments done in the period January-September 2023 with the percentage change since 2019.

Figure 2.3.2 – Leading Global Regions by VC Investments



Source: Own elaboration based on the report "Global Tech and VC - Q3 2023" from Dealroom.co

The USA is almost stable in the values of 2019 (-3%), while Asia has shown a bigger contraction (-8%).

Among the emerging regions, MENA (Middle East and North Africa) is the one growing the most, with an increase of +210% vs 2019.

By using this data, it is possible to see that Europe has reached about 38% of US levels in 2023, which is a step closer to bridging the gap, but it is still lagging behind the USA.

This European delay is historically due to distinct characteristics and outcomes in terms of several factors like taxation, regulatory environments, cultural attitudes towards entrepreneurship and risk as well as the structure and development of the stock market. Concerning this last point, the likelihood and the route of exit are likely to be influenced by variations in national stock market activity levels (Black & Gilson 1998; Cumming, Fleming & Schwienbacher 2006; Cumming and MacIntosh 2003). The likelihood of exiting via public markets, or initial public offerings (IPOs), rises with more active stock markets.

Due to its environment that encourages high-risk investments, especially in technology-focused businesses, and its robust stock market, which offers plenty of exit opportunities through IPOs, the United States has historically led the world in venture capital (Black & Gilson, 1998).

On the contrary, Europe's VC market has been characterized by a less favorable regulatory and tax environment, cultural adversity over risk and entrepreneurship, and a historical absence of a dynamic stock market offering sufficient exit opportunities (Hege, Palomino & Schwienbacher, 2009).

The work of Hege et al. (2009) is one of the first international and comparative studies of the VC market. They studied the period between 1997 and 2003, characterized by a rapid increase in venture funding and contemporaneously by a rise in high-tech IPOs throughout Europe. They concluded that despite these developments, Europe continues to struggle with fragmented marketplaces because of various national laws and cultural norms, which affect

cross-border investments and startup growth (Hege et al., 2009).

Hege et. Al. (2009), found 4 main factors affecting VC investments:

- IPO Exits: a lack of IPO markets for VC exits could be one of the main reasons why
  there is a lag in venture financing, especially in countries like Germany or Japan (Black
  & Gilson, 1998)
- Stock Market Development: stock exchanges have a determinant role in venture development (Rajan & Zingales, 2003). The countries with a higher market capitalization/GDP ratio should show greater intensity and returns of the VC market.
- Law and Finance: VC is particularly affected by the quality of law enforcement due to the contractual relationship between venture investors and portfolio companies (La Porta et Al., 1997). A higher level of legal investor protection helps in achieving better venture performance.
- Tax Subsidies for Venture Capital and Related Fiscal and Legal Conditions: in some European countries, incentives for VC investors have been developed by governments. These public subsidies could be a factor in underperformance if they skew investment choices and encourage venture capitalists to back ventures they otherwise wouldn't (Lerner, 1999).

Hege et Al. (2009), in the conclusion of their study, argued that US venture capitalists behave in a way that is more aligned with theoretical predictions than European ones. Moreover, they did not find any difference between countries implementing a Common Law system or a Civil Law system.

Other factors analyzed in previous literature as determinants of VC activity in a cross-country setting are GDP growth, interest rates, IPO activity, total value of stock traded, stock turnover, R&D spending, and corporate income tax rate (Brunetti & Weder, 1998). Moreover, the legal, social, and political climate of a nation has a significant impact on the growth of the venture capital market and can account for significant regional variations (Bonini & Alkan 2011).

Also, private investment, which is a well-known indicator of a nation's degree of economic development and openness, is negatively correlated with institutional uncertainty (Brunetti & Weder, 1998).

Previously, it has been demonstrated how much literature has been concerned with analyzing the correlation between the stock market, and thus the market for IPOs, and VC activity. It has also been demonstrated how, however, by far the most frequently used way of exit by VC-backed companies in recent years is via M&A. Therefore, it is natural for research to be conducted on the relationship between the M&A market and the VC market. The investigation aims to ascertain whether a strong M&A market results in a stronger venture capital market and vice versa.

Phillips, G., & Zhdanov, A. (2017) made the first study in the academic literature analyzing the link between M&A activity and VC activity around the world. Studying data from the period between 1985 and 2014, they found a strong positive association between M&A activity and subsequent VC investments. Since many start-ups rely on Venture Capital funding and venture capitalists prefer exits through acquisitions over initial public offerings (IPOs), their findings imply that vibrant M&A markets have significant ex-ante incentive effects for fostering entrepreneurship and growth. In particular, their preliminary analysis of correlations between the M&A and the VC market shows that there is a strong association between them. Moreover, the correlation between current VC and lagged M&A activity is higher than the one between current M&A and lagged VC activity, thus suggesting that the M&A market generally tends to lead. They also found insignificant correlations between VC growth and lagged IPO growth (Philips & Zhadanov, 2017).

The work of Félix, Pires & Gulamhussen (2012) analyzes the determinants of Venture Capital Activity in Europe, aggregating data from 23 European countries for the period 1998-2003. They found a positive impact of the size of the M&A market and the market-to-book ratio on Venture Capital activity. This is the first research that considers the size of the M&A market as a factor influencing venture capital, providing a more complete examination of the effects of the exit environment.

All the factors analyzed by Félix et al. (2012) as determinants of the Venture Capital market, including the theoretical aspects supporting the choice from previous literature, will now be reported.

#### - GDP Growth

The Gross Domestic Product (GDP) is one of the indicators of national income and revenue for a nation's economy at a specific point in time. It is defined as the total market value of all final goods and services produced in a nation within a specified timeframe, which usually is one year (Kira, 2013).

An expanding economy has a positive impact on the Venture Capital demand because of more appealing opportunities for entrepreneurs and the emergence of new companies.

Gompers & Lerner (1998) argued that expansions in the macroeconomic system will result in a rise in the number of start-ups and a corresponding rise in the need for Venture Capital.

Moreover, Audretsch & Ács (1994) found a positive relationship between macroeconomic fluctuations and the emergence of new startups.

Félix et. Al. (2012) found a positive and statistically significant impact of GDP growth on VC investments.

#### - Interest rate

The level of interest rates has a negative effect on Venture Capital supply. When interest rates increase, investing in bonds becomes an appealing alternative to investing in VC funds, thus reducing the supply of funds for VC (Gompers & Lerner (1998).

However, interest rates have an ambiguous effect in terms of demand for Venture Capital financing. While higher interest rates can hinder business creation and expansion, they also make Venture Capital financing more appealing compared to traditional funding sources. As a result, the effect of interest rates on venture capital demand can vary, depending on which factor prevails.

Romain & Van Pottelsberghe (2004a) studied the effect of Short-term interest rates (1 year) and Long-term interest rates (10 years) on VC intensity, finding a substantial influence and indicating that the supply-side effect of interest rates is weaker than the demand-side effect.

The gap between the long-term and short-term interest rates is just as important as the long-term interest rate level. Venture capitalists would be less attracted to riskier investments the greater the disparity (Romain & Van Pottelsberghe, 2004a).

Félix et. Al. (2012) confirmed what was also found by Romain & Van Pottelsberghe (2004a), and by Gompers and Lerner (1998), arguing that long-term real interest rates are a determinant of VC investments with a negative effect on the supply side, canceled out by the positive impact on the demand-side.

## - Unemployment rate

Félix et. Al. (2012) found a negative impact of the unemployment rate on venture capital investments.

There are several ways that the unemployment rate can affect the need for venture capital. Lower economic expectations and less entrepreneurship are caused by higher unemployment rates. The effect on entrepreneurial incentives, however, varies depending on whether a person is employed or not. While jobless people have lower opportunity costs and stronger incentives to launch a new business (self-employment), employed people may view a lower expected return in the event of a business failure due to extended unemployment. Although the consequences are mixed overall, the negative effects of the incentives for employed individuals to start a business seem to be predominant since Félix et. Al. (2012) found a negative and statistically significant impact of the unemployment rate on VC activity. Another possible explanation could be that the unemployment rate is positively correlated to market labor rigidity, and the model they built may have captured the effect of this last variable.

#### Market capitalization growth

Jeng & Wells (2000) found no statistical significance of the impact of market capitalization growth on Venture Capital.

The market capitalization growth is a good indicator of what investors expect from the economy. Therefore, an increase in market capitalization is predicted to benefit

investors by providing more funds for Venture Capital investment. Additionally, higher market capitalization is expected to boost investor and entrepreneur confidence in economic growth, leading to increased demand for Venture Capital funds. However, the variable represents capital gains in the stock market, serving as an indicator of capital market returns. When these returns rise, investing in venture capital becomes comparatively less appealing than investing in stocks, resulting in a reduced supply of funds for venture capital. This last point may explain why Jeng & Wells (2000) did not find a statistically significant impact of market capitalization growth on Venture Capital intensity (Félix et. Al., 2012).

Félix et. Al. (2012) found a negative and statistically significant impact of market capitalization growth on VC activity. According to their interpretation of the data, the effect of rising capital market returns deterring venture capital (VC) seems to be more significant than the correlation between market capitalization growth and optimistic economic prospects.

# - Total Entrepreneurial Activity (TEA) index

There is a connection between Venture Capital and entrepreneurship. According to Gompers (1998), there will be more venture capital available in the market the more entrepreneurial activity there is.

The TEA (Total Entrepreneurship Activity) index is calculated by the Global Entrepreneurship Monitor (GEM) and is a number between 1 and 20 and takes into account the number of new entrepreneurs and new companies.

TEA impacts the demand for VC positively but could harm the supply side because, with a higher TEA, Venture Capitalists need to spend more time on the screening of projects to invest in (Félix et. Al., 2012).

Félix et. Al. (2012) found a negative and statistically significant impact of TEA on VC activity. They discussed the use of TEA in this analysis, saying that this indicator may not fully capture the entrepreneurial process. Since TEA includes both high-growth and low-growth entrepreneurial activities, it is not aligned with VC investment preferences which exclude low-growth businesses.

#### - IPO and M&A market size

The relationship between the IPO market and VC investments has been studied a lot, and it has been already mentioned in a lot of studies in the dedicated paragraph 2.2. Félix et. Al. (2012) conducted the first study on VC intensity determinants including also the M&A market and not only the IPO, in line with the most recent trends about the increasing frequency of exits through M&A instead of IPOs. It is expected that a more active M&A market will create a more favorable climate for the Venture Capital industry. Therefore, the size of the M&A market and the availability and demand for venture capital funds should be positively correlated (Félix et. Al., 2012).

Félix et al. (2012) found a positive impact of both IPO and M&A on VC activity.

#### - Market-to-book ratio

The market-to-book ratio has been a widely used indicator of company value. It is computed by dividing the company's market value at the end of its fiscal year by the total amount of common equity.

In research employing micro-level data (investee firm), the market-to-book ratio has been employed to assess the extent of information asymmetry (Gompers, 1995; Cumming & MacIntosh, 2003).

It has been used in this sense because it measures the discrepancy between recorded accounting values and market perceptions. A high ratio indicates that investors are paying more for the company's potential for future profits, which could be the result of better information or insights than what the book value of the company completely reflects. On the other hand, a low ratio could be the result of information asymmetry or a lack of openness and could suggest undervaluation or skepticism about the company's prospects.

There should be a positive correlation between the market-to-book ratio and the quantity of venture capital financing because greater ratios are linked to businesses or industries that have significant growth potential and are exposed to the highest agency costs, as confirmed by Gompers (1995).

The work of Félix et. Al. (2012) is the first one to assess the impact of information asymmetry through the market-to-book ratio at the macro level, hypothesizing a positive effect on Venture Capital activity. They found a positive and statistically significant effect, but they argued that this effect would be stronger and clearer using individual company data instead of aggregated ones.

# - Research and Development expenditure (R&D)

Gompers and Lerner (1998) found that if Research and Development (R&D) expenditure rises, potential business owners with exciting ideas could become more numerous. Thus, positively impacting the demand for VC.

In terms of supply, R&D is risky and the traditional financing sources are not appropriate. Gompers and Lerner (1998) also demonstrated that R&D is often associated with VC financing.

Félix et. Al. (2012) hypothesized a positive relationship between R&D expenditure and VC activity and confirmed this hypothesis with statistical significance.

# 3 Methodology

#### 3.1 Research questions

The Venture Capital (VC) sector has been subject to intense examination in academic literature due to its critical role in fostering startup growth and innovation.

The literature review that comes before this study describes the operational nuances of Venture Capital, with a focus on exit strategies, it explores the factors that influence VC investments and emphasizes how country environments differ from one another.

Notably, a paradigm shift in the preferred exit paths has been noted: Mergers and Acquisitions (M&A) have been increasingly common as the preferred exit strategy for VC-backed firms since the 2000s, whereas Initial Public Offerings (IPOs) previously held a dominant position. This change reflects more significant changes in the investing and economic domains rather than just a market trend.

Nonetheless, there is a lack of scholarly research explicitly comparing the M&A and Venture Capital market dynamics. Though several studies have compared the IPO and VC markets, there is a dearth of research specifically addressing M&A-VC dynamics.

M&A activity is one factor that determines venture capital intensity, according to a seminal study by Félix et al. (2012), suggesting a complex interaction. In a similar vein, Philips and Zhadanov (2017) investigate the relationship between M&A and Venture Capital investments in various nations; nonetheless, this field is still relatively unexplored, indicating a lack of thorough knowledge regarding the interrelationships between both markets.

Through an examination of the complex interrelationship between the M&A and VC markets, this thesis seeks to close this gap. Through a cross-country lens, the analysis aims to clarify how the rise of M&A as a popular exit strategy affects VC market dynamics. It will examine possible relationships and time lags, suggesting that a healthy M&A market not only precedes but also might accelerate Venture Capital market activity, but with certain temporal lags. This research seeks to add new perspectives to the academic discourse by analyzing the causal and temporal relationships between M&A and VC markets. By doing so, it hopes to provide a

more nuanced understanding that could help investors, policymakers, and entrepreneurs navigate the intricate web of exit strategies and startup financing.

# 3.2 Sample selection

To address the research question, the following preliminary steps were taken:

- i. Selection of appropriate factors as independent variables
- ii. Selection of appropriate dependent variables
- iii. Selection of appropriate data sources
- iv. Selection of a set of countries

## 3.2.1 Selection of appropriate factors as independent variables

The choice of factors to consider as independent variables of Venture Capital investments has been driven by the academic literature on the theme, the scope of the research, and the availability of reliable and comparable data.

For each country, the factors considered are the following:

- o GDP
- Number of M&A transactions
- Value of M&A investments
- Long-term interest rate

#### - GDP

The Gross Domestic Product (GDP) is an indicator of the economic health of a country as well as of economic progress. It has been included in the analysis of VC investments because of the already discussed evidence that a growing economy favors the emergence of start-ups and consequently Venture Capital investments. For the purpose of this research, it is interesting to analyze on a yearly basis.

## - Number of M&A transactions

The number of M&A transactions for a given country measures the number of all the transactions in Mergers or Acquisitions that involve companies of that country. For the purpose of this research, it is interesting to analyze on a yearly basis. The company involved could be either a Buyer (also known as an acquirer or acquiring company) which has the money and resources to take control of the other company, or a Seller (also known as an acquiree or acquired company) which is bought or absorbed by the acquiring company.

There can be three types of M&A transactions for a given country:

- Outbound M&A: a transaction involving a company of the country of interest acquiring or merging with a foreign company.
- Inbound M&A: a transaction involving a foreign company acquiring or merging with a company of the country of interest.
- National M&A: a transaction occurring within the borders of a single country, involving companies with headquarters in the same country.

To study the effect of the M&A market on the VC one, it is important to reflect on the impact each type of M&A transaction could have on the VC activity to understand if they are all relevant for the analysis.

# • The Outbound M&A activity's potential impact on VC activity

If companies from the given country actively acquire businesses abroad, this suggests a thriving and expanding business environment. This could lead to greater knowledge sharing, market expansion, and access to new technologies or markets. All these factors could positively impact the growth of the Venture Capital market in the home country. Outbound M&A activity may also indicate the presence of successful and financially stable companies, which could attract more domestic Venture Capital investment.

### • The Inbound M&A activity's potential impact on VC activity

Inbound Mergers and Acquisitions introduce foreign capital, expertise, and innovative technologies into the domestic market. Increased Inbound M&A activity indicates that the country is perceived as an appealing investment destination, potentially bolstering confidence among local investors, including Venture Capitalists. Furthermore, foreign acquisitions facilitate partnerships or collaborations between local startups and international entities, potentially granting access to larger markets or superior resources.

# • The National M&A activity's potential impact on VC activity

National Mergers and Acquisitions reflect the overall health of the domestic economy and the business landscape dynamics. The number and the characteristics of such deals could indicate trends in the overall economy, industry consolidation, or market shifts. Regarding the Venture Capital market, national M&A activity could directly influence investment prospects, as successful exits through acquisitions might spur more entrepreneurs and investors to engage in the startup ecosystem.

Overall, all three types of M&A transactions could be relevant for analyzing the relationship between the M&A and the VC activity in each country.

### - Value of M&A investments

The value of M&A investments measures the economic and monetary value of all the M&A transactions that involve companies of a given country, being either acquirers or acquirees. For this research, it is interesting to analyze yearly.

The rationale for considering the value of M&A investments involving a given country is similar to the one of the previous variable, which is the number of M&A transactions.

The two factors should be considered together because they can provide complementary information.

For instance, in a given country, there might be a high volume of deals but with a cumulative financial impact relatively low. This could indicate the predominance of small-scale acquisitions, a focus on niche markets, or the prevalence of early-stage startups engaging in strategic partnerships rather than large-scale acquisitions.

To gain a comprehensive understanding of the joint dynamics between M&A and VC capital markets both the number of M&A transactions and the value of M&A transactions are important.

#### - Long-term interest rates

The long-term interest rate refers to the yield on government bonds with long maturities, typically 10-year or 30-year bonds, in a given country for a specific year. The interest rates are implied by the prices at which government bonds are traded on financial markets and the loan repayment is guaranteed by governments. They are one of the factors affecting corporate investments, in fact, they are favored by low long-term interest rates and discouraged by high interest rates. So, the variable can be considered as a key indicator of economic expansion and financial conditions within a country.

Long-term interest rates reflect the cost of borrowing for long-term investments, thus influencing the overall availability of capital in the economy and consequently having an impact on the VC market, as already discussed in paragraph 2.3.

For the purpose of this study, it is interesting to analyze long-term interest rates on a yearly basis.

### 3.2.2 Selection of appropriate factors as dependent variables

The dependent variables this study is interested in should be linked to VC market intensity.

For this purpose the factors considered for each country are two:

- Number of VC deals
- o VC Equity Value

### - Number of VC deals

The Number of VC deals measures the total count of Venture Capital deals that occur in a specific country over a defined year. This study should take into account only deals involving domestic startups, meaning that the investee company (the company in which the venture capital fund invests) must have headquarters in the same country under study.

There is no interest in making differences between VC deals involving a domestic VC (a Venture Capital with headquarters in the nation under study) or a foreign VC (a Venture Capital with headquarters in a different nation with respect to the one under consideration) since it is more relevant for the study to consider all the deals involving domestic startups.

For the same reason, it is not relevant to differentiate the sizes of the deals. All the investments from the early stage to later stages should be considered.

# - VC Equity Value

The VC Equity Value is the estimated total equity of the investor at the round date. It does not take into account the debt part of the investment.

It will measure the monetary value of the same deals identified in the previous point.

# 3.2.3 Selection of appropriate data sources

The analysis involves several variables. To get meaningful results it is fundamental to select reliable data sources and filter the data according to the specific objectives of the study.

The selection of the data sources should start from the variable of interest previously defined and the sources found in the literature.

The sources and rules for the independent variables will be the following:

GDP

The time series of the GDP per country have been taken from the World Bank's data

platform.

The World Bank is an international development organization owned by 187 countries.

It consists of five distinct organizations: IBRD, IDA, IFC, MIGA, and ICSID. It is one

of the largest research centers in the world in the field of development and its data and

reports go through rigorous quality control processes.

Data per country from 1985 to 2022 have been extracted.

The data source is World Development Indicators with the last updated date the 26<sup>th</sup>

of October 2023.

The indicator code is "NY.GDP.MKTP.CD".

The indicator name is: "GDP (current US\$)".

The source note is: "GDP at purchaser's prices is the sum of gross value added by all

resident producers in the economy plus any product taxes and minus any subsidies not

included in the value of the products. It is calculated without making deductions for

the depreciation of fabricated assets or for the depletion and degradation of natural

resources. Data are in current U.S. dollars. Dollar figures for GDP are converted from

domestic currencies using single-year official exchange rates. For a few countries

where the official exchange rate does not reflect the rate effectively applied to actual

foreign exchange transactions, an alternative conversion factor is used".

Source: The World Bank – World Development Indicators<sup>1</sup>

*Number of M&A transactions* 

The data for the number of M&A transactions per country have been taken from the

IMAA, which is the Institute for Mergers, Acquisitions, and Alliances.

The institute offers M&A statistics worldwide to users. The information provided is

current and comprehensive. It covers many regions and sectors and regularly updates

1 https://databank.worldbank.org/source/world-development-indicators

40

the M&A statistics. It can be used as a reputable source in academic studies on M&A since the data come from "Thomson Reuters" (formerly "Thomson Financial").

Thomson Reuters" (formerly "Thomson Financial") is the industry standard in the financial sector for M&A transactional information and volume analysis. The deals database tracks over 1 million M&A transactions worldwide dating back to the 1970s. It has been widely used by leading global financial publications, investment banks, and educational institutions.

For each country under study, the total number of M&A transactions for the available years was extracted from the database. These figures include Inbound, Outbound, and National transactions.

For some countries, the split between Inbound, Outbound, and National transactions was available and was extracted as well.

#### Sources:

- o IMAA Institute M&A statistics by countries<sup>2</sup>
- o LSEG Data and Analytics<sup>3</sup>
- *Value of M&A Investments*

The Value of M&A Investments per country has been taken from IMAA with the same logic explained in the previous point. Values are in millions of US\$.

#### Sources:

- o IMAA Institute M&A statistics by countries<sup>2</sup>
- o LSEG Data and Analytics<sup>3</sup>
- Long-term interest rates

The data regarding the historical series of long-term interest rates per country have been taken from OECD statistics. The Organization responsible for Economic Cooperation and Development (OECD) acts as a foundation pillar. It provides a wealth

<sup>2</sup> https://imaa-institute.org/mergers-and-acquisitions-statistics/ma-statistics-by-countries/

<sup>3</sup> https://www.lseg.com/en/data-analytics/products/deals-intelligence#t-m-and-a

of detailed, carefully gathered information. This enables comprehensive global

economic examination and assessment.

The OECD uses careful methods for getting, checking, and putting together data. It

works closely with national statistics offices and other trusted sources in member

countries. This makes sure the data is correct and consistent.

Additionally, the OECD sets standard definitions and methods for reporting data.

Member countries follow these rules when giving information. This uniformity

reduces differences in data, making it easier to compare countries and analyze results

accurately.

The Dataset used for the study is: Monthly Monetary and Financial Statistics

(MEI).

The variable extracted is: Long-term interest rates, Per cent per annum

The definition reported for the variable is: "Long term (in most cases 10 year)

government bonds are the instrument whose yield is used as the representative

'interest rate' for this area. Generally the yield is calculated at the pre-tax level

and before deductions for brokerage costs and commissions and is derived from

the relationship between the present market value of the bond and that at

maturity, taking into account also interest payments paid through to maturity."

Direct source of data: "In nearly all instances, data are provided by the national

central bank".

Data extracted on 11 Feb 2024 10:13 UTC (GMT) from OECD.Stat

Source: OECD Statistics<sup>4</sup>

4 https://stats.oecd.org/OECDStat Metadata/ShowMetadata.ashx?Dataset=MEI FIN&Coords=%5bSUBJECT%5d.%5bIRLT%5d&ShowOnWeb=true&Lang=en

42

The sources and rules for the dependent variables will be the following:

- Number of VC deals & VC Equity Value

The data concerning the Number of VC deals and the VC Equity Value have been extracted from Refinitiv Eikon (previously Thomson Eikon, Thomson One), now

called LSEG Data & Analytics.

LSEG Data & Analytics is a top provider that gives data and information about money

markets. Their platform lets people see and study details on venture capital deals as

well as equity investments. It has many helpful tools that give deep insight into these

financial activities.

Setting up the proper parameters for filtering has been essential to extracting the right

data.

For each country object of the study the following filters applied:

• Currency = USD

• Universe = Private Equity/VC

**Include: Focus Investments** 

Include: Private Equity Entities

• Deal Type: Venture Capital Deals

• Venture Capital Deals == true

• Investee Company Nation Include [Name of the Nation]

Output: Volume Analysis

3.2.4 Selection of a set of countries

The choice of the countries to analyze has been driven by the data availability to allow cross-

country comparisons. Only countries with complete and reliable data, in terms of all the

discussed variables, have been selected. All the countries of the G7 have been included in the

analysis. The 10 countries chosen accounts for 47.5% of 2024 global GDP according to a

forecast based on "World Economic Outlook Database, April 2024". The figure is even higher

in terms of percentage of global VC investments.

43

The countries selected are the following:

- Canada
- France
- Germany
- Israel
- Italy
- Japan
- Netherlands
- Spain
- United Kingdom
- United States of America

The identified sample of countries should enable cross-country comparisons, figuring out for instance if there are similar or different trends in Europe with respect to the USA and the peculiarity of individual countries.

Some countries have various business setups, rules, and levels of Venture Capital backing and Mergers or Acquisitions. This variety allows a thorough examination of how these factors influence each other across different national situations.

# 4 Preliminary Analysis

## 4.1 Qualitative analysis of graphs

To predict some outcomes a qualitative examination of the data has been carried out, using various graphs before moving on to the creation of hypotheses and statistical analysis.

The types of graphs that have been plotted are:

- M&A number of deals vs VC number of deals per country
- M&A Value vs VC Equity Value per country
- GDP and long-term interest rates per country

The following paragraphs report the qualitative analysis carried out for two countries: the United States and Italy, which represent in order the most and the least virtuous of the analyzed markets. To consult the qualitative analysis of the other countries, the reader is referred to the appendix.

### 4.2 Qualitative Analysis - USA

As an example, representative of the work done country by country, the graphs plotted for the USA are reported.

Figure 4.2.1 represents the number of Mergers and Acquisitions (M&A) deals compared to Venture Capital (VC) deals in the USA. It shows two curves: one representing the number of M&A deals (blue one) and the other representing the number of VC deals (grey one) over the years.

The two variables seem to be correlated, with the VC deals following the M&A deal pattern with around a two-year temporal lag. This implies that following the temporal lag period, VC increases or drops in a manner consistent with an increase or reduction in M&A activity.

It is also notable that there are periods in which the two lines move together, without a particular temporal lag, thus suggesting that other factors may influence the VC market independently or simultaneously with M&A activity.

To state a clearer cause rather than just correlation, a deeper analysis is needed. Looking at other economic factors could help determine this.

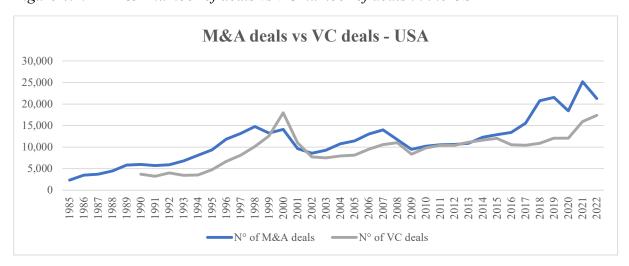



Figure 4.2.1 – M&A number of deals vs VC number of deals in the USA

Source: Own elaboration based on data from Refinitiv Eikon (previously Thomson Eikon, Thomson One), now called LSEG Data & Analytics, and from IMAA

Plotted over the same period as the preceding graph, Figure 4.2.2 shows the value of Venture Capital (VC) equity (grey curve) vs Mergers and Acquisitions (M&A) value (blue curve) in the United States. Although the two measures are on different scales, it is possible to compare them since the M&A value is plotted against the left primary y-axis, and the VC equity value is plotted against the right secondary y-axis in this graph.

The lag of two years identified in the previous graph when comparing M&A deals and VC deals seems not to be present when looking at the M&A value and VC Equity value. In fact, the values of M&A and VC equity seem to fluctuate in closer synchrony, sometimes with no particular lag or with just a one-year lag.

Prominent economic events, such as the dot-com bubble and the 2007-2008 financial crisis, have had a noticeable effect on Venture Capital and M&A activity.

The M&A values seem to fluctuate more than VC equity values, probably because of the

nature of M&A deals, which involve well-established companies and large amounts of money.

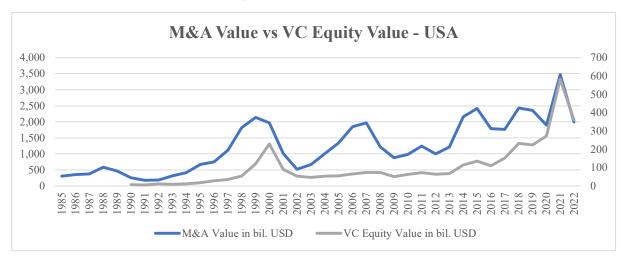



Figure 4.2.2 - M&A Value vs VC Equity Value in the USA

Source: Own elaboration based on data from Refinitiv Eikon (previously Thomson Eikon, Thomson One), now called LSEG Data & Analytics, and from IMAA

Figure 4.2.3 shows a graph of two distinct economic indicators for the US: long-term interest rates (shown with the gray line against the right y-axis) and the GDP in billions of USD (shown with the blue line against the left y-axis) for the years 1985 to 2022.

These graphs are very useful for understanding the economic environment in the USA.

Over the period displayed, the United States GDP has generally increased, signifying economic expansion. Certain noticeable variations might be related to economic cycles, such as recessions and expansions. Moreover, from 1985 until about 2012–2013, long-term interest rates were typically declining. After that, they stabilized and showed some minor variations, but they remained at a relatively low level compared to the previous levels.

**GDP** vs Long-term interest rates - USA 2012 2013 2014 2015 2015 2016 2017 2018 Long term interest rates (%) GDP in bil. USD

Figure 4.2.3 – GDP and Long-term interest rates in the USA

Source: Own elaboration based on World Bank's data and OECD statistics

# 4.3 Qualitative Analysis - Italy

The same qualitative analysis is reported also for Italy for the particular interest of the author.

Figure 4.3.1 shows the number of Mergers and Acquisitions (M&A) deals compared to the number of Venture Capital (VC) deals in Italy. The graph has two lines: the blue line represents the M&A deals, and the grey line represents the VC deals over the years between 1991 and 2022. The data suggests that VC deals generally have the same trends as M&A deals, but the changes are less pronounced and do not exhibit a consistent delay as observed in the US market (no particular temporal lag is evident). It seems that the Italian market operates differently when it comes to VC deals compared to M&A activities. There may be specific factors unique to the Italian market that are responsible for this divergence in trends and the Italian VC market could be less mature than the USA one.



Figure 4.3.1 - M&A number of deals vs VC number of deals in Italy

Source: Own elaboration based on data from Refinitiv Eikon (previously Thomson Eikon, Thomson One), now called LSEG Data & Analytics, and from IMAA

Figure 4.3.2 shows the comparison between the value of Mergers and Acquisitions (M&A) and the value of Venture Capital (VC) equity in Italy. The blue line represents the M&A Value, while the grey line represents the VC Equity Value, with each aligned to its own y-axis. In Italy, the relationship between Mergers and Acquisitions (M&A) and Venture Capital (VC) values seems to be more complex than in the United States. There are instances where increases in M&A value do not correspond with increases in VC equity value, suggesting that the Italian markets may react differently to economic events or market influences. The two variables seem to be weakly correlated and sometimes anticorrelated. It is also relevant to highlight the huge increase in VC Equity Value in Italy in the couple of years 2021-2022.

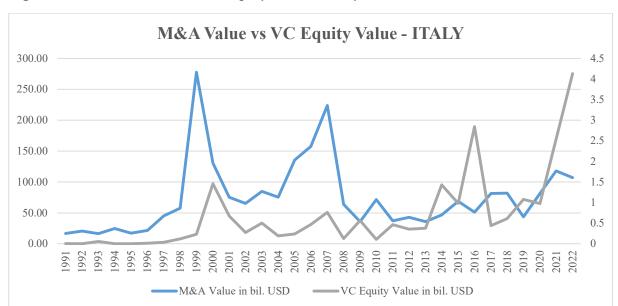



Figure 4.3.2 - M&A Value vs VC Equity Value in Italy

Source: Own elaboration based on data from Refinitiv Eikon (previously Thomson Eikon, Thomson One), now called LSEG Data & Analytics, and from IMAA

Finally, in Figure 4.3.3, a comparison between Italy's Gross Domestic Product (GDP) and long-term interest rates is shown, providing an insight into the country's economic performance. The GDP trend, represented by the blue line, shows variations over time, reflecting Italy's economic highs and lows. The long-term interest rates, shown in grey, are decreasing over time in line with global economic trends. However, there are noticeable fluctuations that warrant closer scrutiny to fully comprehend within the context of Italy's economic situation.

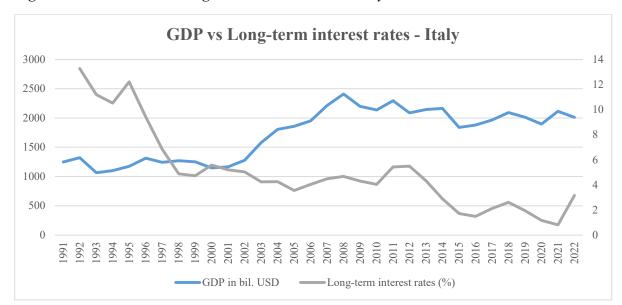



Figure 4.3.3 – GDP and Long-term interest rates in Italy

Source: Own elaboration based on World Bank's data and OECD statistics

In the Italian market, the relationship and timing between VC and M&A activity show nuances that distinguish them from the patterns observed in the US (Figure 4.2.1). While the number of M&A transactions in Italy fluctuates significantly, VC transactions show a steady and gradual trend over time. The clear timing between M&A and VC activity, which was evident in the US data, suggests that VC transactions in Italy do not directly follow the growth of M&A or that there may be unique factors unlike in the US market, where VC activity seemed to respond to M&A activity with a continuous lag. The Italian VC market may be influenced by local market situations, regulatory settings, or economic policies that differ from those in the US, or due to differences in investment strategies, financing cycles, or industry sectors that dominate the Italian market.

## 4.4 Correlations Analysis per country

Another preliminary study was undertaken to calculate the correlation between the two time series with lags of 0, 1, 2, 3, 4, and 5 years for each country.

The time series analyzed are both the number and the value of M&A investments and Venture Capital investments by year and nation, in order to calculate the following correlations:

• Correlation between N° of M&A deals and N° of VC Investments

Correlation between the value of M&A deals and the value of VC Investments

The correlation is a statistical analysis that allows us to measure and analyze the degree and the direction of the relationship between two variables.

It is important to say that even if two variables show a high correlation, it does not imply that they have a causal relationship. While it is true the opposite, for sure if two variables have a causal relationship, they show a high correlation. In other words, causation implies correlation, but correlation does not necessarily imply causation.

So, this is why the analysis of the correlation can only be considered as a preliminary analysis.

There are two possible correlations: positive or negative.

The correlation is positive when the variables change in the same direction. An increase in the first variable corresponds to an increase in the second variable, and a decrease in the first variable corresponds to a decrease in the second variable.

The correlation is negative when the variables change in opposite directions. An increase in the first variable corresponds to a decrease in the second variable, and a decrease in the first variable corresponds to an increase in the second variable.

To study the correlation, Karl Pearson's coefficient of correlation has been calculated. It is usually indicated with the letter  $\rho$ , and it measures, with a number from -1 to 1, the degree of linear relationship between two variables.

There are three significant possibilities:

- $\rho = 1$  indicates a perfect positive linear relationship
- $\rho = -1$  indicates a perfect negative linear relationship
- $\rho = 0$  indicates no linear relationship

The formula used to calculate the Pearson's correlation coefficient is:

$$\rho = \frac{\sum (X_i - \bar{X})(Y_i - \bar{Y})}{\sqrt{\sum (X_i - \bar{X})^2 * \sum (Y_i - \bar{Y})^2}}$$

#### Where:

- $X_i$  and  $Y_i$  are individual data points at the year i.
- $\overline{X}$  and  $\overline{Y}$  are the means of the first variable X and the second variable Y respectively over all the years considered.

In this paper the Pearson's correlation coefficient will be interpreted as follows:

- $0 \le |\rho| < 0.3$  is considered as a weak correlation
- $0.3 \le |\rho| < 0.7$  is considered as a moderate correlation
- $|\rho| \ge 0.7$  is considered as a strong correlation

The two preliminary hypotheses this study will formulate are:

H1: The N° of M&A deals and the N° of VC Investments per country are positively correlated with a certain temporal lag.

H2: The value of M&A deals and the value of VC Investments per country are positively correlated with a certain temporal lag.

Further analyses would be pointless if the VC and M&A markets did not show a significant positive correlation.

For each country the time series of the variable "Number of M&A deals", "Number of VC Investments", "Value of M&A deals", "Value of VC Investments" were available and organized in a table.

To investigate the H1, the Pearson's coefficient for the variables Number of M&A deals (X) and Number of VC Investments (Y) for a given country has been calculated in 6 different ways:

- No temporal lag: considering the complete time series of the two variables
- 1 year lag: considering for X the time series starting and ending 1 year before Y
- 2 years lag: considering for X the time series starting and ending 2 years before Y
- 3 years lag: considering for X the time series starting and ending 3 years before Y

- 4 years lag: considering for X the time series starting and ending 4 years before Y
- 5 years lag: considering for X the time series starting and ending 5 years before Y

The following table (Table 4.4.1) shows in a compact way, the results of the Pearson's correlation coefficient calculation for "Number of M&A deals", and "Number of VC Investments" for the countries object of the study. A color scale from red to green was used, where the closer the cell is to green, the higher the correlation. Conversely, the closer the cell is to red, the worse the correlation. In bold is the highest correlation identified for each country.

Table 4.4.1 – Correlation between "Number of M&A deals", and "Number of VC Investments" per country and per temporal lag

|         |             | Co  | rrelation betv | veen N° of M& | &A deals and I | N° of VC Inves | tments |
|---------|-------------|-----|----------------|---------------|----------------|----------------|--------|
|         |             | no  | 1-year         | 2-year        | 3-year         | 4-year         | 5-year |
|         |             | Lag | lag            | lag           | lag            | lag            | lag    |
|         | USA         | 76% | 81%            | 83%           | 82%            | 74%            | 62%    |
|         | ISRAEL      | 81% | 86%            | 79%           | 78%            | 67%            | 56%    |
|         | UK          | 81% | 83%            | 76%           | 80%            | 73%            | 61%    |
|         | FRANCE      | 59% | 50%            | 49%           | 66%            | 63%            | 47%    |
| Country | GERMANY     | 66% | 70%            | 54%           | 52%            | 52%            | 35%    |
| Country | SPAIN       | 56% | 70%            | 55%           | 62%            | 65%            | 51%    |
|         | ITALY       | 66% | 58%            | 37%           | 43%            | 49%            | 49%    |
|         | NETHERLANDS | 47% | 44%            | 44%           | 56%            | 54%            | 50%    |
|         | JAPAN       | 5%  | 5%             | 9%            | 20%            | 33%            | 45%    |
|         | CANADA      | 43% | 34%            | 38%           | 36%            | 32%            | 25%    |

To investigate the H2, the Pearson's coefficient for the variables Value of M&A deals (X) and Value of VC Investments (Y) for a given country has been calculated in 6 different ways:

- No temporal lag: considering the complete time series of the two variables
- 1 year lag: considering for X the time series starting and ending 1 year before Y
- 2 years lag: considering for X the time series starting and ending 2 years before Y
- 3 years lag: considering for X the time series starting and ending 3 years before Y
- 4 years lag: considering for X the time series starting and ending 4 years before Y
- 5 years lag: considering for X the time series starting and ending 5 years before Y

The results confirm H1. In each country analyzed, the Number of M&A deals and the Number of VC Investments are moderately or strongly correlated with different temporal lags.

For instance, the USA shows a strong correlation (0.83) with 2-year temporal lags, in line with what has been previously shown and discussed in Figure 4.2.1.

Similarly, Italy shows a moderate correlation (0.66) with no temporal lag, in line with what has been previously discussed and shown in Figure 4.3.1.

The following table (Table 4.4.2) shows compactly, the results of the Pearson's correlation coefficient calculation for "Value of M&A deals", and "Value of VC Investments" for the countries object of the study. A color scale from red to green was used, where the closer the cell is to green, the higher the correlation. Conversely, the closer the cell is to red, the worse the correlation. In bold is the highest correlation identified for each country.

Table 4.4.2 – Correlation between "Value of M&A deals", and "Value of VC Investments" per country and per temporal lag

|         |             | Corre     | lation betwee | en value of M | &A deals and v | value of VC Inv | vestments |
|---------|-------------|-----------|---------------|---------------|----------------|-----------------|-----------|
|         |             | no 1-year |               | 2-year        | 3-year         | 4-year          | 5-year    |
|         |             | Lag       | lag           | lag           | lag            | lag             | lag       |
|         | USA         | 80%       | 70%           | 66%           | 65%            | 53%             | 47%       |
|         | ISRAEL      | 44%       | 35%           | 33%           | 46%            | 50%             | 47%       |
|         | UK          | 59%       | 62%           | 48%           | 49%            | 36%             | 18%       |
|         | FRANCE      | 26%       | 32%           | 25%           | 21%            | 20%             | 27%       |
| Country | GERMANY     | 32%       | 42%           | 37%           | 22%            | 8%              | 15%       |
| Country | SPAIN       | 14%       | 17%           | 20%           | 34%            | 34%             | 1%        |
|         | ITALY       | 19%       | 28%           | 2%            | -14%           | -2%             | -16%      |
|         | NETHERLANDS | 49%       | 36%           | 32%           | 43%            | 16%             | 10%       |
|         | JAPAN       | 25%       | 38%           | 43%           | 47%            | 38%             | 34%       |
|         | CANADA      | 75%       | 58%           | 43%           | 53%            | 43%             | 36%       |

The results confirm H2. In each country analyzed, the value of M&A deals and the value of VC Equity Investments are moderately correlated with different lags, except for the US and Canada where the correlation is strong, and Italy where it is weak or negative.

For instance, the USA shows a strong correlation (0.80) with no temporal lags, in line with what has been previously shown and discussed in Figure 4.2.2. Similarly, Italy shows a weak correlation (0.28) with a 1-year temporal lag and negative correlations with 3 to 5 years lag, in line with what has been previously discussed and shown in Figure 4.3.2.

# 5 Empirical research

# 5.1 Hypotheses

Thanks to the preliminary analysis conducted, it is possible to affirm that, in a given country, the number of VC investments is correlated with the number of M&A deals, while the value of VC investments is correlated with the value of M&A deals, with different temporal lags depending on the country analyzed.

Evidence from the literature review shows that other macroeconomic variables, like GDP and long-term interest rates, play an important role in influencing the number/value of VC Investments.

The insights taken from the literature and the results obtained in the preliminary analysis, can be used to formulate further hypotheses in line with the objectives of this study.

More specifically, an in-depth statistical study will be conducted to see whether it is possible to estimate the number/value of VC deals using a country's time series of M&A deals, GDP, and long-term interest rates, and to what degree of accuracy. Moreover, the influence of the Venture Capital Market maturity on the predictability will be assessed. Finally, the impact of the past historical series of the dependent variable will be evaluated, performing the Autoregressive Distributed Lag (ADL) analysis.

H3: VC activity can be explained by the lagging M&A activity, especially in countries with strong VC market maturity.

H3.1: The number of VC investments in a given year and country can be predicted with statistical significance using the time series of the number of M&A deals, GDP, and long-term interest rates, with a certain temporal lag.

H3.2: The value of VC investments in a given year and country can be predicted with statistical significance using the time series of the value of M&A deals, GDP, and long-

term interest rates, with a certain temporal lag.

H4: Using lagged VC activity improves the predictability of the model, with an effect on the significance of the other variables depending on the maturity of the VC market.

# 5.2 Autoregressive Distributed Lag (ADL) model

The data collected allows to analyze the historical series of the variables for a period between 1985-1991 to 2022 depending on the country.

To explain the variability of the Number (or the Value) of VC investments it is possible to use the independent variables previously discussed through a multivariate linear regression model. However, since the historical series of VC transactions are available, adding this information to the model should allow to better explain the variability. The ADL model perfectly fits this purpose.

The Autoregressive Distributed Lag (ADL) model is a parametric model that incorporates the influence of explanatory variables and time series dynamics. It is composed of stochastic regression using time series containing explanatory variables with their lag, and the historical values of the variable under study with its lag. The notation ADL  $(p_j, p)$  is often used, with  $p_j$  indicating the lag of the dependent variable and p indicating the lag of the independent variables (Lopo et al., 2014).

It is possible to represent the model with the following equation:

$$y_t = \beta_0 + \sum_{i=1}^k \sum_{j=1}^q \beta_{ji} x_{jt-i} + \sum_{i=1}^p \phi_i y_{t-i} + \varepsilon_t$$

in which:

- y<sub>t</sub>: dependent variable in time t;
- $\beta_0$ : a constant;
- $y_{t-i}$ : the dependent variable in t-i;
- $x_{it-i}$ : is the j<sup>th</sup> independent variable in t-i,  $i = \{1, ..., pj\}$ ,  $j = \{1, ..., p\}$ ;
- $\beta_{ii}$ : coefficient of the j<sup>th</sup> independent variable in t i;
- $\phi_i$ : coefficient of the dependent variable in t i;
- ε<sub>t:</sub> : random residual

## 5.3 VC Market Maturity Indicator

To interpret the results, it is interesting to consider also the maturity of the Venture Capital market in each country.

The ability of the models to explain the variability of VC investments could be affected by how developed the market is in that given country.

For this purpose, a dedicated indicator has been defined according to the following formula:

$$VC Market maturity = \frac{VC Equity Value (\$)}{GDP (\$)}$$

It measures the proportion of VC investment to the country's GDP and it has been calculated for each country, for the last year of analysis (2022).

### 5.4 Statistical Experimental Procedure

All data found and filtered from the sources already discussed in Chapter 3, have been collected in an Excel spreadsheet. Each country had a dedicated sheet in which the statistical analysis had been developed.

For each of the countries object of the study, the process has proceeded as follows:

- 1. Plot of the graphs "M&A number of deals vs VC Number of Investments", "M&A Value vs VC Equity Value" and "GDP vs Long-term interest rates"
- 2. Calculation of the correlations between the Number of VC investments and the lagged Number of M&A deals with lags from 0 to 5 years, and consequent determination of the temporal lag (lag with the highest correlation)
- 3. Calculation of the correlations between the value of VC investments and the lagged value of M&A deals with lags from 0 to 5 years, and consequent determination of the temporal lag (lag with the highest correlation)
- 4. Multivariate linear regression analysis with the number of VC investments as the

- dependent variable and the number of M&A deals, the GDP, and the long-term interest rates as independent variables with the temporal lag identified in step 2.
- 5. Multivariate linear regression analysis with the value of VC investments as the dependent variable and the value of M&A deals, the GDP, and the long-term interest rates as independent variables with the temporal lag identified in step 3.
- 6. Calculation of the correlations between the Number of VC investments and the Number of VC Investments with lag (from 1 to 5 years) and consequent determination of the temporal lag (lag with the highest correlation)
- 7. Calculation of the correlations between the VC Equity Value and the VC Equity Value with lag (from 1 to 5 years) and consequent determination of the temporal lag (lag with the highest correlation)
- 8. ADL analysis with the number of VC investments as the dependent variable and the number of VC investments with the temporal lag identified in step 6 as independent variable.
- 9. ADL analysis with the number of VC investments as the dependent variable, the number of VC investment with the lag identified in step 6, and the number of M&A deals, the GDP, and the long-term interest rates with the temporal lag identified in step 2 as independent variables.
- 10. ADL analysis with the value of VC investments as the dependent variable and the value VC investments with the temporal lag identified in step 7 as independent variable.
- 11. ADL analysis with the value of VC investments as the dependent variable, the value of VC investments with the lag identified in step 7, and the value of M&A deals, the GDP, and the long-term interest rates with the temporal lag identified in step 3 as independent variables.

## 5.4.1 Methodological note on the choice of the temporal lag

As previously explained in steps 4 and 5, the temporal lags found in steps 2 and 3 have been used for carrying out the regression analysis. The same logic has been applied in step 6 and 7

for determining the lags to be used for the ADL analyses performed in step 8, 9, 10, and 11. In fact, in steps 2 and 3 the correlations between the number and value of venture capital (VC) investments and mergers and acquisitions (M&A) activity have been analyzed, figuring out the peculiar time lags for each country included in the study.

It has been discovered that applying the time lag where the correlation was highest produced better linear regression outcomes.

This method finds support in theoretical and statistical evidence. In statistics, a larger correlation between variables is generally associated with a regression model that is more able to explain variance in the dependent variable.

Furthermore, it has been applied the same temporal lags found in the correlation study not only to directly involved variables (number/value of VC investments and number/value of M&A investments), but also to economic indicators such as GDP and long-term interest rates. This seeks to assure temporal consistency while also capturing the underlying dynamics of the interaction of Venture Capital, Mergers and Acquisitions, and macroeconomic variables.

# 5.4.2 Methodological note on the choice of the statistics technique

It has been chosen to conduct a multivariate linear regression analysis to investigate the relationship between VC investments and M&A investments, GDP, and Long-term interest rates.

Correlation analysis measures the strength and direction of a linear relationship between two variables, but it does not consider the influence of other factors interacting at the same time. In contrast, regression analysis not only describes these correlations but also quantifies the extent to which each independent variable impacts the dependent variable, allowing for deeper insights into data that involves several predictors and a response variable (Pandey S., 2020).

Furthermore, correlation coefficients do not indicate whether one variable changes in response to another. There is no attempt to classify one variable as "dependent" and another as "independent." This is done by regression analysis (Pandey S., 2020).

Beyond clarifying the relationships between the variables, the regression model has predictive

potential. Understanding how the variables interact makes it possible to estimate future VC investment trends based on changes in M&A activity, GDP, and interest rates.

### 5.4.3 Note on the interpretation of regression coefficients and line equations

The independent variables "long-term interest rates", "GDP", and "M&A investments" used as predicting variables are correlated with each other, so the model could be affected by multicollinearity. This makes it difficult to interpret the coefficients, thus determining the true relationship between the predicting variables and the outcome variable.

For this reason, and also because it was out of the scope of this study, no interpretation of the individual effects of each variable has been done.

When looking at the regression line equation, one should remember that it has been derived from the independent variables with a characteristic temporal lag.

Let's call t the temporal lag between the number of M&A investments and the number of VC investments identified in the country x.

To predict the number of VC investments in the country x in the year y, one should look at the regression line equation substituting in the independent variables the values they had in the year y - t.

### 6 Results

The results of the statistical analysis will be presented in an aggregated way.

The reader is referred to the appendix for more in-depth results by country, which include the graphs plot in the preliminary analysis, the multivariate linear regression output with the regression line equation, the ADL analyses and the interpretation.

# 6.1 VC market maturity

The VC Market Maturity Indicator has been calculated for each country as defined in paragraph 5.3 using 2022 data, which is the last year object of the study.

The indicator expresses the proportion of venture capital investment to the country's GDP.

Table 6.1.1 shows the results of VC market maturity in 2022 classified into three clusters of countries and represented with three different colors:

- Strong VC market maturity if the indicator is greater than 1% (represented in green)
- Moderate VC market maturity if the indicator is between 0.4% and 1% (represented in orange)
- Weak VC market maturity if the indicator is lower than 0.4% (represented in red)

Table 6.1.1 - VC market maturity indicator for 2022

| Country     | VC Market maturity indicator for 2022 |
|-------------|---------------------------------------|
| Israel      | 2.88%                                 |
| USA         | 1.41%                                 |
| Canada      | 1.31%                                 |
| UK          | 1.21%                                 |
| France      | 0.89%                                 |
| Netherlands | 0.51%                                 |
| Germany     | 0.47%                                 |
| Spain       | 0.33%                                 |
| Japan       | 0.21%                                 |
| Italy       | 0.21%                                 |

Israel, USA, Canada and UK were the countries with the strongest VC market maturity in 2022, according to the defined indicator.

France, the Netherlands and Germany showed moderate VC market maturity, while Spain, Japan and Italy were the countries with the weakest VC market maturity.

The three clusters will be used for the representation and interpretation of the results of the statistical analyses.

# 6.2 Results of the analysis on the $N^{\circ}$ of VC Investments

In the preliminary analysis (chapter 4) the calculation of the correlations between  $N^{\circ}$  of VC Investments and lagged  $N^{\circ}$  of M&A deals has been presented. This procedure was crucial for the identification of the temporal lag to apply in the regression model.

Thereafter, the correlation between N° of VC Investments and N° of VC Investments with a temporal lag from 1 year to 5 years has been calculated for each country. This is necessary for the identification of the temporal lag to apply to the autoregressive component of the ADL model.

The results are reported in table 6.2.1, which shows in a compact way, the results of the Pearson's correlation coefficient calculation for "N° of VC Investments", and "N° of VC Investments with lag" for the countries object of the study. A color scale from red to green was used, where the closer the cell is to green, the higher the correlation. Conversely, the closer the cell is to red, the worse the correlation. In bold is the highest correlation identified for each country.

*Table 6.2.1 - Correlations between N° of VC Investments and N° of VC Investments with lag* 

|         |             | Correlations between N° of VC Investments and N° of VC Investments with lag |             |             |             |             |  |
|---------|-------------|-----------------------------------------------------------------------------|-------------|-------------|-------------|-------------|--|
|         |             | 1-year lag                                                                  | 2-years lag | 3-years lag | 4-years lag | 5-years lag |  |
|         | USA         | 83%                                                                         | 59%         | 40%         | 23%         | 8%          |  |
|         | ISRAEL      | 90%                                                                         | 77%         | 64%         | 51%         | 41%         |  |
|         | UK          | 90%                                                                         | 74%         | 66%         | 59%         | 48%         |  |
|         | FRANCE      | 77%                                                                         | 53%         | 60%         | 50%         | 32%         |  |
| Country | GERMANY     | 86%                                                                         | 56%         | 37%         | 28%         | 29%         |  |
| Country | SPAIN       | 67%                                                                         | 55%         | 46%         | 29%         | 13%         |  |
|         | ITALY       | 73%                                                                         | 45%         | 41%         | 33%         | 16%         |  |
|         | NETHERLANDS | 69%                                                                         | 45%         | 43%         | 20%         | 11%         |  |
|         | JAPAN       | 90%                                                                         | 65%         | 9%          | 2%          | -1%         |  |
|         | CANADA      | 88%                                                                         | 73%         | 70%         | 21%         | -11%        |  |

As shown in the table 6.2.1, for each country the highest correlation is between VC investments and the same investments with one-year lag. Such correlation values are very high. It is possible to conclude that there is a strong positive correlation between the N° of VC Investments and the same variable with 1-year lag in all the countries object of the study. This means that including the autoregressive component with lag in the analysis should ameliorate the predictability of the model.

To analyze the formulated hypotheses, for each country, three different regression models with the  $N^{\circ}$  of VC Investments as dependent variable have been performed:

- Regression 1: Regression model with N° M&A deals, GDP, and Long-term interest rates as independent variables with their lag
- Regression 2: ADL Regression model with N° of VC Investments with the lags identified in table 6.2.1
- Regression 3: ADL Regression model with N° M&A deals, GDP, and Long-term interest rates with their lag, and N° of VC Investments with the lag identified in table 6.2.1

Table 6.2.2 shows in a compact way the R-squared obtained for the three regressions. The results are divided into the three clusters of countries discussed in the previous paragraph (paragraph 6.1).

*Table 6.2.2 - R-squared (Analysis on the N° of VC Investments)* 

|             | R-Squares (Analysis of the N° of VC Investments) |              |              |                          |                         |  |
|-------------|--------------------------------------------------|--------------|--------------|--------------------------|-------------------------|--|
| Country     | Regression 1                                     | Regression 2 | Regression 3 | Delta % Reg. 3 vs Reg. 1 | Delta % Reg. 3 vs Reg 2 |  |
| USA         | 82.6%                                            | 68.6%        | 84.0%        | 1.7%                     | 22.4%                   |  |
| UK          | 77.0%                                            | 80.6%        | 85.5%        | 11.0%                    | 6.0%                    |  |
| Israel      | 72.9%                                            | 81.6%        | 80.5%        | 10.4%                    | -1.2%                   |  |
| Canada      | 55.5%                                            | 78.2%        | 81.0%        | 45.8%                    | 3.5%                    |  |
| Germany     | 64.8%                                            | 73.7%        | 77.8%        | 20.1%                    | 5.5%                    |  |
| France      | 61.6%                                            | 58.6%        | 67.4%        | 9.4%                     | 14.9%                   |  |
| Netherlands | 49.3%                                            | 47.5%        | 63.6%        | 28.9%                    | 33.8%                   |  |
| Italy       | 51.4%                                            | 52.7%        | 63.2%        | 23.0%                    | 19.9%                   |  |
| Spain       | 50.3%                                            | 44.5%        | 59.3%        | 18.0%                    | 33.2%                   |  |
| Japan       | 21.1%                                            | 81.5%        | 83.7%        | 296.2%                   | 2.7%                    |  |

From the table above, it is immediate to notice that the countries with the highest R-squares in Regression 1 belong to those with the most mature VC markets. In fact, the USA are the country in which N° of M&A deals, GDP and Long-term interest rates with lag, better explain the variability of the N° of VC Investments (R-squared of 82.6%).

On the other hand, Japan is the country with the worst result for regression 1 (R-squared of only 21.1%).

Considering the results of the Regression 3, it is possible to affirm that the R-squares improve in all the countries considered, reaching good values of R-squared in all the countries object of the study

Adding the autoregressive component to the model in regression 3 increases the R-squared of Japan by 296.2%. Instead, the USA increased their R-squared by only 1.7%.

To reach robust conclusions, it is also crucial to look at the significance of the variables in the various regressions. To do so, one should refer to the p-values of the variables, which should be higher than 0.05 to be significant.

In table 6.2.3 the p-values for Regression 1 have been reported. The N° of M&A deals with lag is significant in all the considered countries, except for France and Japan. GDP is not significant in the countries where VC market maturity is weak, and a similar insight can be taken for Long term interest rates.

*Table 6.2.3 - P-Values for Regression 1 (Analysis of the N° of VC Investments)* 

|             | P-Values for Regression 1 (Analysis of the N° of VC Investments) |                 |                              |  |  |  |  |
|-------------|------------------------------------------------------------------|-----------------|------------------------------|--|--|--|--|
| Country     | GDP in bil. USD                                                  | N° of M&A deals | Long term interest rates (%) |  |  |  |  |
| USA         | 0.001                                                            | 0.000           | 0.000                        |  |  |  |  |
| UK          | 0.071                                                            | 0.000           | 0.002                        |  |  |  |  |
| Israel      | 0.012                                                            | 0.002           | 0.302                        |  |  |  |  |
| Canada      | 0.000                                                            | 0.003           | 0.005                        |  |  |  |  |
| Germany     | 0.592                                                            | 0.004           | 0.019                        |  |  |  |  |
| France      | 0.035                                                            | 0.147           | 0.002                        |  |  |  |  |
| Netherlands | 0.003                                                            | 0.001           | 0.048                        |  |  |  |  |
| Italy       | 0.511                                                            | 0.032           | 0.030                        |  |  |  |  |
| Spain       | 0.532                                                            | 0.021           | 0.554                        |  |  |  |  |
| Japan       | 0.476                                                            | 0.256           | 0.547                        |  |  |  |  |

Looking at the p-values referring to the ADL model (Regression 3), shown in table 6.2.4, it is immediately apparent that the autoregressive component, represented by the N° of VC investments with lag, is always significant except in the USA which deserve a separate discussion. In fact, in the USA GDP, N° of M&A deals and Long term interest rates with lag are significant, while the past VC transactions have no significance in explaining the N° of VC investments in the country.

GDP and Long term interest rates with lag lose their significance in the majority of the cases and in the totality of less mature markets adding the autoregressive component to the model. The N° of M&A deals with lag is still significant in the majority of the countries, especially in the most mature VC markets.

*Table 6.2.4 - P-Values referred to Regression 3 (Analysis of the N° of VC Investments)* 

|             | P-Values referred to Regression 3 (Analysis of the N° of VC Investments) |                 |                 |                              |  |  |
|-------------|--------------------------------------------------------------------------|-----------------|-----------------|------------------------------|--|--|
| Country     | N° of VC deals (ADL)                                                     | GDP in bil. USD | N° of M&A deals | Long term interest rates (%) |  |  |
| USA         | 0.138                                                                    | 0.004           | 0.000           | 0.001                        |  |  |
| UK          | 0.000                                                                    | 0.044           | 0.047           | 0.018                        |  |  |
| Israel      | 0.011                                                                    | 0.267           | 0.055           | 0.714                        |  |  |
| Canada      | 0.000                                                                    | 0.276           | 0.081           | 0.954                        |  |  |
| Germany     | 0.001                                                                    | 0.965           | 0.218           | 0.319                        |  |  |
| France      | 0.050                                                                    | 0.212           | 0.072           | 0.252                        |  |  |
| Netherlands | 0.003                                                                    | 0.033           | 0.007           | 0.257                        |  |  |
| Italy       | 0.008                                                                    | 0.486           | 0.056           | 0.355                        |  |  |
| Spain       | 0.010                                                                    | 0.217           | 0.034           | 0.791                        |  |  |
| Japan       | 0.000                                                                    | 0.081           | 0.612           | 0.416                        |  |  |

To conclude, the statistical analyses show that the N° of M&A deals with lag has a crucial importance in explaining the variability of the N° of VC investments, especially in the most mature markets. The ADL model helps to improve the R-squares in all the countries but with the addition of the autoregressive component, GDP and Long term interest rates lose their significance.

## 6.3 Results of the analysis on the VC Equity Value

In the preliminary analysis (chapter 4), the calculation of the correlations between VC Equity Value and lagged M&A Value has been presented. This procedure was crucial for the identification of the temporal lag to apply in the regression model.

Thereafter, the correlation between VC Equity Value and VC Equity Value with a temporal lag from 1 year to 5 years has been calculated for each country. This is necessary for the identification of the temporal lag to apply to the autoregressive component of the ADL model. The results are reported in table 6.3.1, which shows in a compact way, the results of the Pearson's correlation coefficient calculation for "VC Equity Value", and "VC Equity Value with lag" for the countries object of the study. A color scale from red to green was used, where the closer the cell is to green, the higher the correlation. Conversely, the closer the cell is to red, the worse the correlation. In bold is the highest correlation identified for each country.

Table 6.3.1 - Correlations between VC Equity Value and VC Equity Value with lag

|         |             | Correlatio | ns between VC | <b>Equity Value an</b> | d VC Equity Va | lue with lag |
|---------|-------------|------------|---------------|------------------------|----------------|--------------|
|         |             | 1-year lag | 2-years lag   | 3-years lag            | 4-years lag    | 5-years lag  |
|         | USA         | 77%        | 73%           | 70%                    | 55%            | 37%          |
|         | ISRAEL      | 83%        | 93%           | 84%                    | 73%            | 68%          |
|         | UK          | 80%        | 84%           | 73%                    | 70%            | 55%          |
|         | FRANCE      | 79%        | 74%           | 65%                    | 74%            | 62%          |
| Country | GERMANY     | 65%        | 85%           | 10%                    | 57%            | -63%         |
| Country | SPAIN       | 56%        | 43%           | 48%                    | 38%            | 20%          |
|         | ITALY       | 57%        | 37%           | 25%                    | 10%            | 36%          |
|         | NETHERLANDS | 52%        | 51%           | 51%                    | 31%            | 14%          |
|         | JAPAN       | 79%        | 67%           | 57%                    | 37%            | 25%          |
|         | CANADA      | 71%        | 78%           | 68%                    | 51%            | 37%          |

As shown in the table 6.3.1, for each country the highest correlation is between VC Equity Value and the same variable with one- or two-years lag. Such correlation values are very high. It is possible to conclude that there is a strong positive correlation between the N° of VC Investments and the same variable with 1- or 2-year lag in all the countries object of the study. This means that including the autoregressive component with lag in the analysis should ameliorate the predictability of the model.

To analyze the formulated hypotheses, for each country, three different regression models with the VC Equity Value as dependent variable have been performed:

- Regression 1: Regression model with M&A value, GDP, and Long-term interest rates as independent variables with their lag
- Regression 2: ADL Regression model with VC Equity Value with the lags identified in table 6.3.1
- Regression 3: ADL Regression model with M&A value, GDP, and Long-term interest rates with their lag, and N° of VC Investments with the lag identified in table 6.3.1

Table 6.3.2 shows in a compact way the R-squared obtained for the three regressions. The results are divided into the three clusters of countries discussed in paragraph 6.1.

*Table 6.3.2 - R-squared (Analysis on the VC Equity Value)* 

|             | R-Squares (Analysis on the Equity Value of VC Investments) |              |              |                          |                         |  |
|-------------|------------------------------------------------------------|--------------|--------------|--------------------------|-------------------------|--|
| Country     | Regression 1                                               | Regression 2 | Regression 3 | Delta % Reg. 3 vs Reg. 1 | Delta % Reg. 3 vs Reg 2 |  |
| USA         | 74.1%                                                      | 59.6%        | 80.6%        | 8.7%                     | 35.1%                   |  |
| UK          | 57.2%                                                      | 69.9%        | 74.6%        | 30.4%                    | 6.7%                    |  |
| Israel      | 59.1%                                                      | 86.1%        | 88.4%        | 49.6%                    | 2.6%                    |  |
| Canada      | 57.9%                                                      | 60.2%        | 80.2%        | 38.6%                    | 33.3%                   |  |
| Germany     | 40.0%                                                      | 72.8%        | 75.5%        | 88.9%                    | 3.8%                    |  |
| France      | 47.4%                                                      | 62.8%        | 67.9%        | 43.5%                    | 8.2%                    |  |
| Netherlands | 33.2%                                                      | 26.9%        | 43.3%        | 30.7%                    | 61.1%                   |  |
| Italy       | 34.5%                                                      | 32.0%        | 41.3%        | 20.0%                    | 29.4%                   |  |
| Spain       | 31.6%                                                      | 31.2%        | 40.1%        | 27.1%                    | 28.7%                   |  |
| Japan       | 26.8%                                                      | 61.8%        | 63.5%        | 137.1%                   | 2.9%                    |  |

From the table above, it is immediate to notice that the countries with the highest R-squares in Regression 1 belong to those with the most mature VC markets.

Similarly to the results of the analysis on the N° of VC investments, the USA are the country in which M&A value, GDP and Long-term interest rates with lag, better explain the variability

of the VC Equity Value (R-squared of 74.1%).

On the other hand, Japan is the country with the worst result for regression 1 (R-squared of only 26.8%).

Considering the results of the Regression 3, it is possible to affirm that the R-squares improve, reaching good values of R-squared, in all the countries considered.

Adding the autoregressive component to the model in regression 3 increases the R-squared of Japan by 137.1%. Instead, the USA increased their R-squared by only 8.7%.

To reach robust conclusions, it is also crucial to look at the significance of the variables in the various regressions. To do so, one should refer to the p-values of the variables, which should be higher than 0.05 to be significant.

In table 6.3.3 the p-values for Regression 1 have been reported. The M&A value with lag is significant in the most mature markets similarly to the GDP, while Long term interest rates are significant in half of the countries.

Table 6.3.3 - P-Values for Regression 1 (Analysis on VC Equity Value)

|             | P-Values for Regression 1 (Analysis on VC Equity Value) |           |                              |  |  |
|-------------|---------------------------------------------------------|-----------|------------------------------|--|--|
| Country     | GDP in bil.                                             | N° of M&A |                              |  |  |
| Country     | USD                                                     | deals     | Long term interest rates (%) |  |  |
| USA         | 0.003                                                   | 0.002     | 0.025                        |  |  |
| UK          | 0.018                                                   | 0.006     | 0.001                        |  |  |
| Israel      | 0.026                                                   | 0.753     | 0.563                        |  |  |
| Canada      | 0.231                                                   | 0.001     | 0.269                        |  |  |
| Germany     | 0.846                                                   | 0.255     | 0.157                        |  |  |
| France      | 0.620                                                   | 0.915     | 0.005                        |  |  |
| Netherlands | 0.681                                                   | 0.106     | 0.423                        |  |  |
| Italy       | 0.694                                                   | 0.811     | 0.011                        |  |  |
| Spain       | 0.804                                                   | 0.745     | 0.023                        |  |  |
| Japan       | 0.612                                                   | 0.308     | 0.158                        |  |  |

Looking at the p-values referring to the ADL model (Regression 3), shown in table 6.3.4, it is immediately apparent that the autoregressive component, represented by the VC Equity Value with lag, is always significant except in Italy and Spain where is slightly not significant. GDP and Long-term interest rates with lag lose their significance in almost the totality of the countries adding the autoregressive component to the model. The M&A value with lag is still significant in the most mature VC markets.

*Table 6.3.4 - P-Values referred to Regression 3 (Analysis of the N° of VC Investments)* 

|             | P-Values for Regression 3 (Analysis on VC Equity Value) |                    |                          |                              |  |  |  |
|-------------|---------------------------------------------------------|--------------------|--------------------------|------------------------------|--|--|--|
| Country     | VC Equity Value in bil. USD (ADL)                       | GDP in bil.<br>USD | M&A Value in bil.<br>USD | Long term interest rates (%) |  |  |  |
| TICA        |                                                         |                    |                          | ` ′                          |  |  |  |
| USA         | 0.004                                                   | 0.990              | 0.000                    | 0.923                        |  |  |  |
| UK          | 0.000                                                   | 0.209              | 0.031                    | 0.326                        |  |  |  |
| Israel      | 0.000                                                   | 0.529              | 0.301                    | 0.882                        |  |  |  |
| Canada      | 0.000                                                   | 0.094              | 0.001                    | 0.009                        |  |  |  |
| Germany     | 0.000                                                   | 0.265              | 0.159                    | 0.290                        |  |  |  |
| France      | 0.000                                                   | 0.838              | 0.969                    | 0.161                        |  |  |  |
| Netherlands | 0.036                                                   | 0.878              | 0.135                    | 0.316                        |  |  |  |
| Italy       | 0.099                                                   | 0.868              | 0.649                    | 0.155                        |  |  |  |
| Spain       | 0.070                                                   | 0.821              | 0.960                    | 0.093                        |  |  |  |
| Japan       | 0.000                                                   | 0.780              | 0.602                    | 0.558                        |  |  |  |

To conclude, the statistical analyses show that the value of M&A deals with lag has a crucial importance in explaining the variability of the VC equity value in the most mature markets. The ADL model helps to improve the R-squares in all the countries. With the addition of the autoregressive component, lagged GDP and Long term interest rates lose their significance, while lagged M&A value maintains its significance in the most mature VC markets.

#### 7 Conclusions

#### 7.1 Discussion

According to the literature review carried out, this is the first study that tried, applying a cross-country perspective, to develop a model for predicting with statistical significance the VC investments based on lagged M&A activity, lagged macroeconomic variables such as GDP and long-term interest rates. The main novelty points are the use of the Autoregressive Distributed Lag (ADL) model and the interpretation of the results through a VC market maturity indicator defined on purpose.

The results of the study confirm that the number of VC investments in a given year and country can be explained by the number of M&A deals, the GDP, and the long-term interest rates of that country with a certain temporal lag. The predictability of the model is better in more mature VC markets, where the lagged M&A activity has a crucial significance both in terms of value as well as in terms of N° of transactions.

The USA is the country with the best results, and the only country where the autoregressive component is not significant in the analysis of the N° of VC investments. This means that in the USA, lagged M&A transactions, GDP, and Long term interest rates are more significant than lagged VC transactions in explaining the N° of VC investments.

The results also confirm that the value of VC investments in a given year and country is explained by the value of M&A deals, the GDP, and the long-term interest rates of that country with a certain temporal lag. Also, in this case, it is particularly true in mature markets.

The study's findings indicate that lagged macroeconomic indicators and M&A transactions have a substantial impact on venture capital investments. Additionally, they highlight the variation in predictive capability across different countries. The diversity of maturation and dynamics of venture capital (VC) markets can be seen by the variation in R-squared values among nations. Notably, countries with well-established financial markets and strong

economic indicators (such as the United States, Canada, the United Kingdom, and Israel) exhibit better correlation and predictive capacity than those with less mature markets (such as Italy, Spain, and Japan) which have weak or missing virtuous systems.

The results clearly show that VC market maturity has an important influence on the interaction of VC and M&A operations. The more established venture capital ecosystem in mature economies makes for a more predictable environment that can be effectively modeled with the use of past data on macroeconomic factors and M&A activity. High R-squared values seen in the US, UK, and Israel provide proof of this. These nations not only provide excellent M&A exit opportunities but also maintain economic stability, which promotes regular investment patterns.

On the other hand, countries like Japan, with a considerably low R square of 21.1% for the number of VC investments and 26.8% for the value of VC investments, as well as Italy and Spain, show that where the market is not mature yet, the mechanism of M&A activity driving the VC one is weak or not in place.

The results also confirm the hypotheses that it is possible to predict with statistical significance the number and the value of VC investments in a given year and country with a certain temporal lag using the time series of the number or value of M&A deals, GDP, and long-term interest rates.

Adding the autoregressive component represented by the lagged VC activity, improves the predictability of the model. This means that leveraging the information on the historical series of the dependent variable has a crucial role in enhancing the R-squares. This effect is observed in every country under study, except for the USA, which has the largest venture capital market globally. In the USA, the autoregressive component is not significant in the analysis on the N° of VC investments, while lagged M&A transactions, GDP and Long term interest rates have a preponderant significance.

Overall, it is possible to conclude that a mechanism for driving the Venture Capital market through the M&A market exists; it is already well developed, especially in the United States, as well as in Israel, Canada and the United Kingdom, and it has been triggered to a lesser

extent in countries such as France and Germany, but it has not succeeded in triggering in countries like as Japan.

#### 7.2 Limitations and Future Research Directions

Although this study has limitations, it does provide direction and ideas for future research and improvements.

First, the study tried to interpret the results looking at the VC market maturity. An indicator trying to estimate the maturity of the VC market in the different countries has been defined for the purpose of classifying the countries in three different clusters of maturities. In studies where the indicator is not used just for simple clustering, a more sophisticated indicator could be defined that considers the different aspects of such a complex concept as VC market maturity.

Moreover, the study did not interpret the coefficients (sign and value) of the regression models due to the possible multi-collinearity of variables. To be able to assert anything about the impact of independent variables such as GDP and long-term interest rates, one would have to study their correlation with VC activity individually. Since the aim of the study was to particularly study the impact of M&A activity and to try to find an equation to predict VC activity based on macroeconomic variables such as GDP and long-term interest rates, this work was not done. The findings from the authoritative studies cited in the literature review that investigated the impact of these variables on VC activity can be verified in future studies using the dataset already built.

Furthermore, it would be interesting to replicate this study in other countries and also with a data split by industry to better understand the underlying phenomenon and, therefore, to give more detailed recommendations to policymakers and investors. From this perspective, further studies can investigate the impact on VC and on M&A investments of different governments' policies (regulations, taxation...) to identify what are the best strategies and provide recommendations.

## 8 Bibliography

Amor, S. B., & Kooli, M. (2020). Do M&A exits have the same effect on venture capital reputation than IPO exits? Journal of Banking and Finance, 111, 105704. <a href="https://doi.org/10.1016/j.jbankfin.2019.105704">https://doi.org/10.1016/j.jbankfin.2019.105704</a>

Aquilina M. & Cornelli G. & Sanchez del Villar M. (2024). Regulation, information asymmetries and the funding of new ventures. BIS Working Papers 1162, Bank for International Settlements. https://www.bis.org/publ/work1162.htm

Audretsch, D. B., & Ács, Z. J. (1994). New-firm startups, technology, and macroeconomic fluctuations. Small Business Economics, 6(6), 439–449. <a href="https://doi.org/10.1007/bf01064858">https://doi.org/10.1007/bf01064858</a>

Bayar, O., & Chemmanur, T. J. (2011). IPOs versus Acquisitions and the Valuation Premium Puzzle: A Theory of Exit Choice by Entrepreneurs and Venture Capitalists. The Journal of Financial and Quantitative Analysis, 46(6), 1755–1793. <a href="http://www.jstor.org/stable/41409667">http://www.jstor.org/stable/41409667</a>

Black, B. S., & Gilson, R. J. (1998). Venture capital and the structure of capital markets: banks versus stock markets. Journal of Financial Economics, 47(3), 243–277. <a href="https://doi.org/10.1016/s0304-405x(97)00045-7">https://doi.org/10.1016/s0304-405x(97)00045-7</a>

Bonini, S., & Alkan, S. (2011). The political and legal determinants of venture capital investments around the world. Small Business Economics, 39(4), 997–1016. https://doi.org/10.1007/s11187-011-9323-x

Brau, J. C., Francis, B. B., & Kohers, N. (2003). The Choice of IPO versus Takeover: Empirical Evidence. The Journal of Business, 76(4), 583–612. https://doi.org/10.1086/377032

Brunetti, A., & Weder, B. (1998). Investment and institutional uncertainty: A comparative study of different uncertainty measures. Weltwirtschaftliches Archiv, 134(3), 513–533. https://doi.org/10.1007/bf02707928

Chemmanur, T. J., Krishnan, K., & Nandy, D. K. (2011). How does venture capital financing improve efficiency in private firms? A look beneath the surface. The Review of Financial Studies, 24(12), 4037–4090. <a href="https://doi.org/10.1093/rfs/hhr096">https://doi.org/10.1093/rfs/hhr096</a>

Cochrane, J. H. (2005). The risk and return of venture capital. Journal of Financial Economics, 75(1), 3–52. <a href="https://doi.org/10.1016/j.jfineco.2004.03.006">https://doi.org/10.1016/j.jfineco.2004.03.006</a>

Cotei, C., & Farhat, J. (2017). The evolution of financing structure in U.S. startups. The Journal of Entrepreneurial Finance, 19(1). <a href="https://doi.org/10.57229/2373-1761.1307">https://doi.org/10.57229/2373-1761.1307</a>

Cumming, D. J., & Johan, S. (2008). Information asymmetries, agency costs and venture capital exit outcomes. Venture Capital, 10(3), 197–231. https://doi.org/10.1080/13691060802151788

Cumming, D. J., & MacIntosh, J. G. (2003). A cross-country comparison of full and partial venture capital exits. Journal of Banking and Finance, 27(3), 511–548. https://doi.org/10.1016/s0378-4266(02)00389-8

Dealroom.co. (2023). Global Tech and VC – Q3 2023. Retrieved from <a href="https://dealroom.co/reports/global-tech-and-vc-q3-2023">https://dealroom.co/reports/global-tech-and-vc-q3-2023</a>

DeTienne, D. R. (2010). Entrepreneurial exit as a critical component of the entrepreneurial process: Theoretical development. Journal of Business Venturing, 25(2), 203–215. https://doi.org/10.1016/j.jbusvent.2008.05.004

DePamphilis, D. M. (2019). Mergers, acquisitions, and other restructuring activities. In

Elsevier eBooks. <a href="https://doi.org/10.1016/c2017-0-02823-9">https://doi.org/10.1016/c2017-0-02823-9</a>

Espenlaub, S., Khurshed, A., & Mohamed, A. (2014). VC investments and global exits. The European Journal of Finance, 21(7), 608–628. <a href="https://doi.org/10.1080/1351847x.2013.871736">https://doi.org/10.1080/1351847x.2013.871736</a>

Félix, E. G. S., Pires, C. P., & Gulamhussen, M. A. (2012). The Determinants of Venture Capital in Europe — Evidence across countries. Journal of Financial Services Research, 44(3), 259–279. <a href="https://doi.org/10.1007/s10693-012-0146-y">https://doi.org/10.1007/s10693-012-0146-y</a>

Gompers, P. A. (1995). Optimal investment, monitoring, and the staging of venture capital. The Journal of Finance, 50(5), 1461–1489. <a href="https://doi.org/10.1111/j.1540-6261.1995.tb05185.x">https://doi.org/10.1111/j.1540-6261.1995.tb05185.x</a>

Gompers, P. A., Lerner, J., Blair, M. M., & Hellmann, T. (1998). What drives venture capital fundraising? Brookings Papers on Economic Activity, 1998, 149. <a href="https://doi.org/10.2307/2534802">https://doi.org/10.2307/2534802</a>

Gompers, P. A., & Lerner, J. (2001). The venture capital revolution. Journal of Economic Perspectives, 15(2), 145–168. <a href="https://doi.org/10.1257/jep.15.2.145">https://doi.org/10.1257/jep.15.2.145</a>

Hall, B. H., & Lerner, J. (2010). The Financing of R&D and Innovation. In Handbook of the economics of innovation (pp. 609–639). <a href="https://doi.org/10.1016/s0169-7218(10)01014-2">https://doi.org/10.1016/s0169-7218(10)01014-2</a>

Hege, U., Palomino, F., & Schwienbacher, A. (2009). Venture Capital performance: the disparity between Europe and the United States. Finance, Vol. 30(1), 7–50. https://doi.org/10.3917/fina.301.0007

Jeng, L. A., & Wells, P. C. (2000). The determinants of venture capital funding: evidence across countries. Journal of Corporate Finance, 6(3), 241–289.

#### https://doi.org/10.1016/s0929-1199(00)00003-1

Kira, A. R. (2013). The Factors Affecting Gross Domestic Product (GDP) in Developing Countries: The Case of Tanzania. European Journal of Business and Management, Vol.5, No.4, 2013, pp.148-158.

Kortum, S., & Lerner, J. (2000). Assessing the contribution of venture capital to innovation. The RAND Journal of Economics, 31(4), 674. <a href="https://doi.org/10.2307/2696354">https://doi.org/10.2307/2696354</a>

La Porta, R., López-De-Silanes, F., Shleifer, A., & Vishny, R. W. (1997). Legal determinants of external finance. The Journal of Finance, 52(3), 1131–1150. https://doi.org/10.1111/j.1540-6261.1997.tb02727.x

Lasrado, L. and Lugmayr, A. (2013). Crowdfunding in Finland - A new alternative disruptive funding instrument for businesses. Proceedings of the 17th International Academic MindTrek Conference: "Making Sense of Converging Media", MindTrek 2013, pp. 194-201. <a href="http://doi.org/10.1145/2523429.2523490">http://doi.org/10.1145/2523429.2523490</a>

Lemley, Mark A. and McCreary, Andrew, Exit Strategy (December 19, 2019). Stanford Law and Economics Olin Working Paper #542, Available at SSRN: https://ssrn.com/abstract=3506919

Lerner, J. (1999). The Government as venture Capitalist: The Long-Run Impact of the SBIR Program. The Journal of Business, 72(3), 285–318. https://doi.org/10.1086/209616

Lopo, A. B., Spyrides, M. H. C., Lucio, P. S., & Sigró, J. (2014). UV index modeling by Autoregressive Distributed Lag (ADL model). Atmospheric and Climate Science, 04(02), 323–333. <a href="https://doi.org/10.4236/acs.2014.42033">https://doi.org/10.4236/acs.2014.42033</a>

Norbäck, P., Persson, L., & Svensson, R. (2009). Creative destruction and productive

preemption. Social Science Research Network. <a href="https://doi.org/10.2139/ssrn.1752948">https://doi.org/10.2139/ssrn.1752948</a>

NVCA 2002 Yearbook

NVCA 2023 Yearbook with data from PitchBook

Pandey, S. (2020). Principles of correlation and regression analysis. Journal of the Practice of Cardiovascular Sciences, 6(1), 7. <a href="https://doi.org/10.4103/jpcs.jpcs\_2\_20">https://doi.org/10.4103/jpcs.jpcs\_2\_20</a>

Phillips, G., & Zhdanov, A. (2017). Venture capital investments and merger and acquisition activity around the world. <a href="https://doi.org/10.3386/w24082">https://doi.org/10.3386/w24082</a>

Pisoni, A., & Onetti, A. (2018). When startups exit: comparing strategies in Europe and the USA. Journal of Business Strategy, 39(3), 26–33. <a href="https://doi.org/10.1108/jbs-02-2017-0022">https://doi.org/10.1108/jbs-02-2017-0022</a>

Poulsen, A. B., & Stegemoller, M. (2008). Moving from Private to Public Ownership: Selling Out to Public Firms versus Initial Public Offerings. Financial Management, 37(1), 81–101. <a href="https://doi.org/10.1111/j.1755-053x.2008.00005.x">https://doi.org/10.1111/j.1755-053x.2008.00005.x</a>

Puri, M., & Zarutskie, R. (2012). On the Life Cycle Dynamics of Venture-Capital- and Non-Venture-Capital-Financed Firms. The Journal of Finance, 67(6), 2247–2293. https://doi.org/10.1111/j.1540-6261.2012.01786.x

Rajan, R. G., & Zingales, L. (2003). The great reversals: the politics of financial development in the twentieth century. Journal of Financial Economics, 69(1), 5–50. https://doi.org/10.1016/s0304-405x(03)00125-9

Ries, E. (2011). The lean startup: How today's entrepreneurs use continuous innovation to create radically successful businesses. Crown Business.

Ritter, J. R., & Welch, I. (2002). A review of IPO activity, pricing, and allocations. The Journal of Finance, 57(4), 1795–1828. https://doi.org/10.1111/1540-6261.00478

Rossi, M. (2014). The New Ways to Raise Capital: An Exploratory study of crowdfunding. International Journal of Financial Research, 5(2). <a href="https://doi.org/10.5430/ijfr.v5n2p8">https://doi.org/10.5430/ijfr.v5n2p8</a>

Romain, A., & Van Pottelsberghe, B. (2004a). The Determinants of Venture Capital: Additional evidence. Social Science Research Network. https://doi.org/10.2139/ssrn.2785064

Schwienbacher, A. (2008). Innovation and venture capital exits\*. The Economic Journal, 118(533), 1888–1916. https://doi.org/10.1111/j.1468-0297.2008.02195.x

Wall Street Journal, February 21, 2005. More Companies Pulling Deals to be Acquired.

Wennberg, K., & DeTienne, D. R. (2014). What do we really mean when we talk about 'exit'? A critical review of research on entrepreneurial exit. International Small Business Journal, 32(1), 4–16. <a href="https://doi.org/10.1177/0266242613517126">https://doi.org/10.1177/0266242613517126</a>

Wright, M., & Robbie, K. (1998). Venture capital and private equity: A review and synthesis. Journal of Business Finance & Accounting, 25(5 & 6), 521-570. https://doi.org/10.1111/1468-5957.00201

Zider Bob (1998). How Venture Capital Works. Harvard Business Review November-December Reprint Number 98611

#### **APPENDIX**

The results obtained for each country will be reported in full in this Appendix to enable the reader to delve into aspects of interest.

For each country, the reader can find a preliminary analysis with the graphs and the correlations analyses, the regression outputs with interpretation, the ADL analyses and finally the interpretation of the results.

#### A1. USA

#### Preliminary Analysis

10,000 5,000

Figure A1.1 compares the number of M&A transactions with the number of VC transactions in the US over the years.



Figure A1.1 - M&A number of deals vs VC number of deals in the USA

Source: Own elaboration based on data from Refinitiv Eikon (previously Thomson Eikon, Thomson One), now called LSEG Data & Analytics, and from IMAA

Figure A1.2 shows the trends of M&A Value (primary axis on the left) and VC Equity Value (secondary axis on the right) in the US over the years.

**M&A Value vs VC Equity Value - USA** 4,000 700 3,500 600 3,000 500 2,500 400 2,000 300 1,500 200 1,000 100 500 0 M&A Value in bil. USD VC Equity Value in bil. USD

Figure A1.2 - M&A Value vs VC Equity Value in the USA

Source: Own elaboration based on data from Refinitiv Eikon (previously Thomson Eikon, Thomson One), now called LSEG Data & Analytics, and from IMAA

Figure 6.1.3 below compares the annual development of GDP (primary axis on the left) with that of long-term interest rates (secondary axis on the right) in the US.

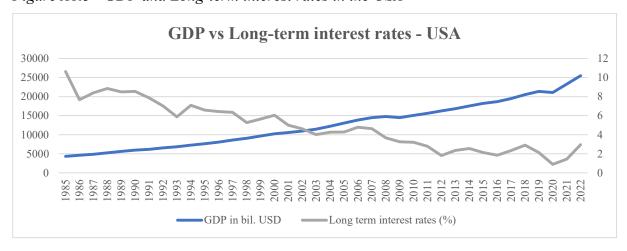



Figure A1.3 - GDP and Long-term interest rates in the USA

Source: Own elaboration based on World Bank's data and OECD statistics

The tables below show the correlations between the Number of M&A Deals and Number of VC Investments and the correlations between M&A Value and VC Equity Value, using a color scale with the highest correlation in green and the lowest correlation in red, and the time lag for which the correlation is highest is highlighted in bold.

## Correlation between $N^{\circ}$ of M&A and $N^{\circ}$ of VC Investments

| Correlation with no Lag | 76% | Strong Correlation   |
|-------------------------|-----|----------------------|
| Correlation 1-year lag  | 81% | Strong Correlation   |
| Correlation 2-year lag  | 83% | Strong Correlation   |
| Correlation 3-year lag  | 82% | Strong Correlation   |
| Correlation 4-year lag  | 74% | Strong Correlation   |
| Correlation 5-year lag  | 62% | Moderate Correlation |

## Correlation between M&A Value and VC Equity Value

| Correlation with no Lag | 80% | Strong Correlation   |
|-------------------------|-----|----------------------|
| Correlation 1-year lag  | 70% | Moderate Correlation |
| Correlation 2-year lag  | 66% | Moderate Correlation |
| Correlation 3-year lag  | 65% | Moderate Correlation |
| Correlation 4-year lag  | 53% | Moderate Correlation |
| Correlation 5-year lag  | 47% | Moderate Correlation |

## Regression Analysis

Regression Statistics

0,90865289

Multiple R

The statistical outputs of the regression, the interpretation of the results and finally the equation of the regression line are then reported.

## Regression on Number of VC Investments with a 2-year lag

| R Square<br>Adjusted R | 0,82565007 |           |         |       |                |
|------------------------|------------|-----------|---------|-------|----------------|
| Square                 | 0,80761388 |           |         |       |                |
| Standard Error         | 1633,94996 |           |         |       |                |
| Observations           | 33         |           |         |       |                |
| ANOVA                  |            |           |         |       |                |
|                        | df         | SS        | MS      | F     | Significance F |
| Regression             | 3          | 366648371 | 1,2E+08 | 45,78 | 4,03704E-11    |
| Residual               | 29         | 77423981  | 2669792 |       |                |
| Total                  | 32         | 444072353 |         |       |                |

|                              |              | Standard |        |           | Lower    | Upper    |
|------------------------------|--------------|----------|--------|-----------|----------|----------|
|                              | Coefficients | Error    | t Stat | P-value   | 95%      | 95%      |
| Intercept                    | 19100,44     | 4128,65  | 4,626  | 7,158E-05 | 10656,41 | 27544,48 |
| GDP in bil. USD              | -0,79        | 0,22     | -3,593 | 1,192E-03 | -1,23    | -0,34    |
| N° of M&A deals              | 0,81         | 0,12     | 6,971  | 1,155E-07 | 0,58     | 1,05     |
| Long-term interest rates (%) | -1928,82     | 422,47   | -4,566 | 8,470E-05 | -2792,87 | -1064,77 |

#### *Interpretation:*

Firstly, the model's statistical significance is indicated by the low p-value, which is significantly less than the 0.05 threshold.

This makes it possible to proceed with the interpretation of the other statistical findings. The r square has a strong value (higher than 0,7), meaning that the number of VC deals is explained for the 82.6% by the number of M&A deals, by the GDP, and by the Long-term interest rates of the USA.

All three independent variables are statistically significant given the p-values strongly lower than 0.05.

The number of VC investments in the USA can be predicted by the regression line of the equation:

$$y = -1928,82 \ Long - term \ interest \ rates \ (\%) + 0,814552 \ N^{\circ} \ of \ M&A \ deals - 0,78587 \ GDP \ in \ bil. \ USD + 19100,44$$

#### Regression VC Equity Value with no lag

| Regression Statistics |            |  |  |  |  |  |
|-----------------------|------------|--|--|--|--|--|
| Multiple R            | 0,86073602 |  |  |  |  |  |
| R Square              | 0,74086649 |  |  |  |  |  |
| Adjusted R            |            |  |  |  |  |  |
| Square                | 0,71405958 |  |  |  |  |  |
| Standard Error        | 64,2300645 |  |  |  |  |  |
| Observations          | 33         |  |  |  |  |  |

#### ANOVA

|            |    |           |        |           | Significance |
|------------|----|-----------|--------|-----------|--------------|
|            | df | SS        | MS     | F         | F            |
| Regression | 3  | 342051,18 | 114017 | 27,637141 | 1,202E-08    |
| Residual   | 29 | 119639,53 | 4125,5 |           |              |
| Total      | 32 | 461690,71 |        |           |              |

|                          | Standard     |         |        |         | Lower    | Upper   | Lower   | Upper   |
|--------------------------|--------------|---------|--------|---------|----------|---------|---------|---------|
|                          | Coefficients | Error   | t Stat | P-value | 95%      | 95%     | 95,0%   | 95,0%   |
|                          |              |         |        |         |          | -       | -       | -       |
| Intercept                | -391,452     | 123,312 | -3,174 | 0,004   | -643,653 | 139,251 | 643,653 | 139,251 |
| GDP in bil. USD          | 0,019        | 0,006   | 3,289  | 0,003   | 0,007    | 0,031   | 0,007   | 0,031   |
| M&A Value in bil. USD    | 0,074        | 0,022   | 3,375  | 0,002   | 0,029    | 0,119   | 0,029   | 0,119   |
| Long term interest rates |              |         |        |         |          |         |         |         |
| (%)                      | 31,731       | 13,398  | 2,368  | 0,025   | 4,328    | 59,134  | 4,328   | 59,134  |

#### *Interpretation:*

Firstly, the model's statistical significance is indicated by the low p-value, which is significantly less than the 0.05 threshold. This makes it possible to proceed with the interpretation of the other statistical findings.

It is possible to affirm that the value of VC investments can be strongly explained by the value of M&A deals, the GDP of the country, and Long-term interest rates with no temporal lag, given the R-squared of 0.7409.

All three independent variables are statistically significant given the p-values lower than 0.05.

The value of VC investments in the USA can be predicted by the regression line of the equation:

$$y = 31,731 Long - term interest rates(\%) + 0.074 M&A value in bil. USD + 0.019 GDP in bil. USD - 391,452$$

### ADL Analysis

The tables below show the correlations between the Number of VC deals and N° of VC deals with lag and the correlations between VC Equity Value and VC Equity Value with lag, using a color scale with the highest correlation in green and the lowest correlation in red, and the time lag for which the correlation is highest is highlighted in bold.

Correlation between N° of VC deals and N° of VC deals with lag

| 1 year lag  | 83% | Strong Correlation   |
|-------------|-----|----------------------|
| 2 years lag | 59% | Moderate Correlation |
| 3 years lag | 40% | Moderate Correlation |
| 4 years lag | 23% | Weak Correlation     |
| 5 years lag | 8%  | Weak Correlation     |

Correlation between VC Equity Value and VC Equity Value with lag

| 1 year lag  | 83% | Strong Correlation |
|-------------|-----|--------------------|
|             |     | Moderate           |
| 2 years lag | 59% | Correlation        |
|             |     | Moderate           |
| 3 years lag | 40% | Correlation        |
| 4 years lag | 23% | Weak Correlation   |
| 5 years lag | 8%  | Weak Correlation   |

| 1 year lag  | 77% | Strong Correlation   |
|-------------|-----|----------------------|
| 2 years lag | 73% | Strong Correlation   |
| 3 years lag | 70% | Strong Correlation   |
| 4 years lag | 55% | Moderate Correlation |
| 5 years lag | 37% | Moderate Correlation |

The statistical outputs of the ADL regression are reported below.

ADL Regression  $N^{\circ}$  of VC Investments with 1 year lag

| Regression Statistics |          |  |  |  |  |  |
|-----------------------|----------|--|--|--|--|--|
| Multiple R            | 0.828212 |  |  |  |  |  |
| R Square              | 0.685936 |  |  |  |  |  |
| Adjusted R Square     | 0.675467 |  |  |  |  |  |
| Standard Error        | 2069.562 |  |  |  |  |  |
| Observations          | 32       |  |  |  |  |  |

#### ANOVA

|            |    |          |          |          | Significance |
|------------|----|----------|----------|----------|--------------|
|            | df | SS       | MS       | F        | F            |
| Regression | 1  | 2.81E+08 | 2.81E+08 | 65.52187 | 4.91E-09     |
| Residual   | 30 | 1.28E+08 | 4283086  |          |              |
| Total      | 31 | 4.09E+08 |          |          |              |

|                                     |              | Standard |          |          |           | Upper    |
|-------------------------------------|--------------|----------|----------|----------|-----------|----------|
|                                     | Coefficients | Error    | t Stat   | P-value  | Lower 95% | 95%      |
| Intercept<br>N° of VC deals (1 year | 1738.183     | 1050.016 | 1.655388 | 0.108271 | -406.235  | 3882.602 |
| lag)                                | 0.858684     | 0.106082 | 8.094558 | 4.91E-09 | 0.642036  | 1.075332 |

# ADL Regression 2 years lag (GDP + M&A + Long-term interest rates) and with $N^{\circ}$ of VC deals with 1 year lag

| Regression Statistics |          |  |  |  |  |
|-----------------------|----------|--|--|--|--|
| Multiple R            | 0.916401 |  |  |  |  |
| R Square              | 0.839791 |  |  |  |  |
| Adjusted R Square     | 0.816056 |  |  |  |  |
| Standard Error        | 1558.087 |  |  |  |  |
| Observations          | 32       |  |  |  |  |
|                       |          |  |  |  |  |

## ANOVA

|    | SS       | MS          | F                   | Significance F |
|----|----------|-------------|---------------------|----------------|
| 4  | 3.44E+08 | 85895544    | 35.38239            | 2.26E-10       |
| 27 | 65546166 | 2427636     |                     |                |
| 31 | 4.09E+08 |             |                     |                |
|    |          | 27 65546166 | 27 65546166 2427636 |                |

|                                      | Coefficients St | andard Error | t Stat   | P-value  | Lower 95% | Upper 95% |
|--------------------------------------|-----------------|--------------|----------|----------|-----------|-----------|
| Intercept                            | 17335.99        | 4800.275     | 3.611459 | 0.001225 | 7486.643  | 27185.34  |
| $N^{\circ}$ of VC deals (1 year lag) | 0.228226        | 0.149185     | 1.529813 | 0.137696 | -0.07788  | 0.534329  |
| GDP in bil. USD                      | -0.7585         | 0.240166     | -3.15823 | 0.003885 | -1.25128  | -0.26572  |
| $N^{\circ}$ of M&A deals             | 0.702124        | 0.159284     | 4.40799  | 0.000149 | 0.3753    | 1.028949  |
| Long term interest rates (%)         | -1811.63        | 500.8583     | -3.61706 | 0.001207 | -2839.31  | -783.956  |

## ADL Regression VC Equity Value 1 years lag

| Regression Statistics |          |  |  |  |
|-----------------------|----------|--|--|--|
| Multiple R            | 0.772191 |  |  |  |
| R Square              | 0.596279 |  |  |  |
| Adjusted R Square     | 0.582822 |  |  |  |
| Standard Error        | 77.93151 |  |  |  |
| Observations          | 32       |  |  |  |

## ANOVA

|            | df | SS       | MS       | F        | Significance F |
|------------|----|----------|----------|----------|----------------|
| Regression | 1  | 269101.4 | 269101.4 | 44.30878 | 3 2.26E-07     |
| Residual   | 30 | 182199.6 | 6073.321 |          |                |
| Total      | 31 | 451301   |          |          |                |

|                                        | CoefficientsSta | ndard Error | t Stat   | P-value  | Lower 95% | Upper 95% |
|----------------------------------------|-----------------|-------------|----------|----------|-----------|-----------|
| Intercept                              | 28.49555        | 18.48729    | 1.541358 | 0.133713 | -9.26055  | 66.25164  |
| VC Equity Value in bil. USD 1 year lag | 0.824576        | 0.123876    | 6.656484 | 2.26E-07 | 0.571588  | 1.077564  |

ADL Regression no lag (GDP + M&A + Long-term interest rates) and with VC Equity Value with 1 year lag

| Regression Statistics |  |  |  |  |
|-----------------------|--|--|--|--|
| 0.897586              |  |  |  |  |
| 0.805661              |  |  |  |  |
| 0.77687               |  |  |  |  |
| 56.99422              |  |  |  |  |
| 32                    |  |  |  |  |
|                       |  |  |  |  |

#### **ANOVA**

|            | df | SS       | MS       | F        | Significance<br>F |
|------------|----|----------|----------|----------|-------------------|
| Regression | 4  | 363595.8 | 90898.95 | 27.98319 | 2.95E-09          |
| Residual   | 27 | 87705.23 | 3248.342 |          |                   |
| Total      | 31 | 451301   |          |          |                   |

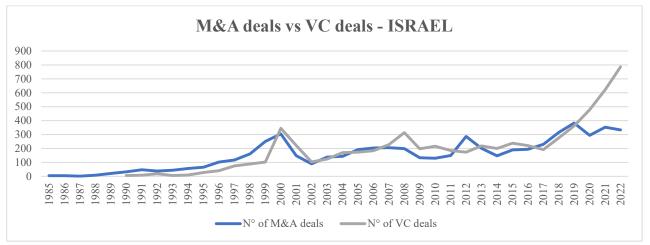
|                                        | Coefficient<br>s | Standard<br>Error | t Stat   | P-value  | Lower 95% | Upper<br>95% |
|----------------------------------------|------------------|-------------------|----------|----------|-----------|--------------|
| Intercept                              | -68.2661         | 155.3847          | -0.43934 | 0.663914 | -387.089  | 250.557      |
| VC Equity Value in bil. USD 1 year lag | 0.524268         | 0.167337          | 3.133013 | 0.004137 | 0.180921  | 0.867615     |
| GDP in bil. USD                        | 0.000102         | 0.008178          | 0.012529 | 0.990096 | -0.01668  | 0.016882     |
| M&A Value in bil. USD                  | 0.08497          | 0.020105          | 4.226231 | 0.000243 | 0.043717  | 0.126222     |
| Long term interest rates (%)           | 1.573062         | 16.20316          | 0.097084 | 0.923377 | -31.6731  | 34.8192      |

#### Interpretation of results

The USA have the biggest VC market in the world, and a strong VC market maturity. The regression models show very high values of R-squared, both in terms of N° of VC Investments (82.6%), as well as in terms of VC Equity Value (74.1%) with all the variables statistically significant.

The ADL analysis on the  $N^\circ$  of VC Investments does not ameliorate significantly the R-squared and the autoregressive component is not significant.

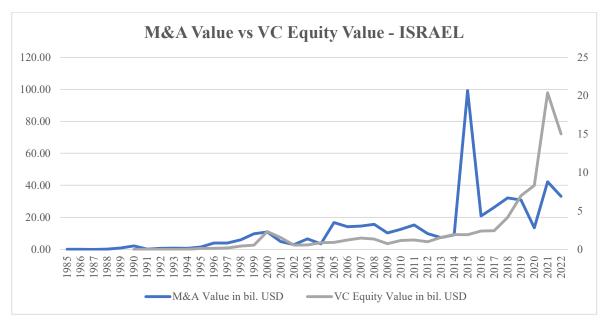
The ADL analysis on the VC Equity Value slightly ameliorate the R-squared, but losing significance of GDP and Long-term interest rates.


The variables N° of M&A deals and M&A Value have always been significant in all the analyses conducted.

#### A2. Israel

## **Preliminary Analysis**

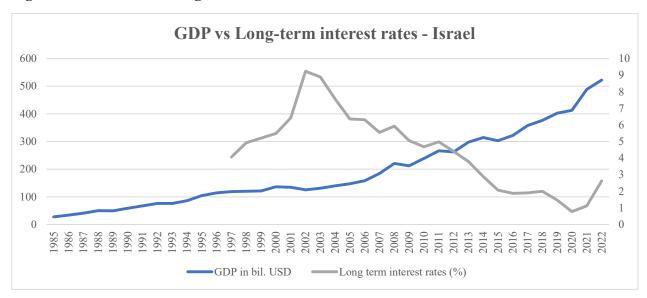
Figure A2.1 compares the number of M&A transactions with the number of VC transactions in Israel over the years.


Figure A2.1 - M&A number of deals vs VC number of deals in Israel



Source: Own elaboration based on data from Refinitiv Eikon (previously Thomson Eikon, Thomson One), now called LSEG Data & Analytics, and from IMAA

Figure A2.2 shows the trends of M&A Value (primary axis on the left) and VC Equity Value (secondary axis on the right) in Israel over the years.


Figure A2.2 - M&A Value vs VC Equity Value in Israel



Source: Own elaboration based on data from Refinitiv Eikon (previously Thomson Eikon, Thomson One), now called LSEG Data & Analytics, and from IMAA

Figure A2.3 below compares the annual development of GDP (primary axis on the left) with that of long-term interest rates (secondary axis on the right) in Israel.

Figure A2.3 - GDP and Long-term interest rates in Israel



Source: Own elaboration based on World Bank's data and OECD statistics

The tables below show the correlations between the Number of M&A Deals and Number of VC Investments and the correlations between M&A Value and VC Equity Value, using a color scale with the highest correlation in green and the lowest correlation in red, and the time lag for which the correlation is highest is highlighted in bold.

## Correlation between $N^{\circ}$ of M&A and $N^{\circ}$ of VC Investments

| Correlation with no Lag | 81% | Strong Correlation   |
|-------------------------|-----|----------------------|
| Correlation 1-year lag  | 86% | Strong Correlation   |
| Correlation 2-year lag  | 79% | Strong Correlation   |
| Correlation 3-year lag  | 78% | Strong Correlation   |
| Correlation 4-year lag  | 67% | Moderate Correlation |
| Correlation 5-year lag  | 56% | Moderate Correlation |

#### Correlation between M&A Value and VC Equity Value

| Correlation with no Lag | 44% | Moderate Correlation |
|-------------------------|-----|----------------------|
| Correlation 1-year lag  |     | Moderate Correlation |
| Correlation 2-year lag  |     | Moderate Correlation |
| Correlation 3-year lag  | 46% | Moderate Correlation |
| Correlation 4-year lag  | 50% | Moderate Correlation |
| Correlation 5-year lag  | 47% | Moderate Correlation |

#### Regression Analysis

The statistical outputs of the regression, the interpretation of the results and finally the equation of the regression line are then reported.

Regression on Number of VC Investments with a 1-year lag

| Regression Statistics |          |  |  |  |
|-----------------------|----------|--|--|--|
| Multiple R            | 0,854007 |  |  |  |
| R Square              | 0,729327 |  |  |  |
| Adjusted R            |          |  |  |  |
| Square                | 0,69066  |  |  |  |
| Standard Error        | 89,9363  |  |  |  |
| Observations          | 25       |  |  |  |

ANOVA

|            |    |          |            |            | Significance |
|------------|----|----------|------------|------------|--------------|
|            | df | SS       | MS         | F          | F            |
| Regression | 3  | 457685,4 | 152561,784 | 18,8614794 | 3,6064E-06   |
| Residual   | 21 | 169859,3 | 8088,53753 |            |              |
| Total      | 24 | 627544,6 |            |            |              |

|                          | Coefficient<br>s | Standard<br>Error | t Stat  | P-value | Lower<br>95% | Upper<br>95% |
|--------------------------|------------------|-------------------|---------|---------|--------------|--------------|
|                          |                  | 153,151           |         |         |              |              |
| Intercept                | -262,9158        | 7                 | -1,7167 | 0,1007  | -581,4122    | 55,5805      |
| GDP in bil. USD          | 0,9182           | 0,3344            | 2,7455  | 0,0121  | 0,2227       | 1,6138       |
| N° of M&A deals          | 1,0909           | 0,3090            | 3,5306  | 0,0020  | 0,4483       | 1,7335       |
| Long term interest rates |                  |                   |         |         |              |              |
| _(%)                     | 16,4588          | 15,5558           | 1,0581  | 0,3021  | -15,8912     | 48,8088      |

#### *Interpretation:*

Firstly, the model's statistical significance is indicated by the low p-value, which is significantly less than the 0.05 threshold. This makes it possible to proceed with the interpretation of the other statistical findings.

It is possible to affirm that the number of VC investments can be strongly explained by the number of M&A deals, the GDP of the country, and Long-term interest rates with no temporal lag, given the R-squared of 0.7293.

In this scenario, the p-values for GDP and the number of M&A transactions are both significant (less than 0.05), indicating that these variables have a statistically significant impact on the number of VC investments. However, the p-value for long-term interest rates is non-significant, implying that it may not have a meaningful effect on the dependent variable in this model. The variable will be kept in the regression line equation and the overall regression model because of its theoretical relevance and because removing it will not improve considerably the R square of the model.

The number of VC investments in Israel can be predicted by the regression line of the equation:

 $y = 16,4588 Long - term interest rates(\%) + 1.0909 N^{\circ} of M&A deals + 0.9182 GDP in bil. USD - 362,92$ 

#### Regression on Value of VC Investments with a 4-year lag

| Regression Statistics |          |  |  |  |
|-----------------------|----------|--|--|--|
| Multiple R            | 0,768686 |  |  |  |
| R Square              | 0,590878 |  |  |  |
| Adjusted R            |          |  |  |  |
| Square                | 0,522691 |  |  |  |
| Standard Error        | 3,498821 |  |  |  |
| Observations          | 22       |  |  |  |

#### **ANOVA**

|            |    |          |            |            | Significance |
|------------|----|----------|------------|------------|--------------|
|            | df | SS       | MS         | F          | F            |
| Regression | 3  | 318,2444 | 106,08146  | 8,66554677 | 0,00089911   |
| Residual   | 18 | 220,3515 | 12,2417503 |            |              |
| Total      | 21 | 538,5959 |            |            |              |

|                          | Coefficient<br>s | Standar<br>d Error | t Stat  | P-value | Lower<br>95% | Upper<br>95% |
|--------------------------|------------------|--------------------|---------|---------|--------------|--------------|
| Intercept                | -2,4779          | 5,9987             | -0,4131 | 0,6844  | -15,0807     | 10,1248      |
| GDP in bil. USD          | 0,0358           | 0,0148             | 2,4198  | 0,0263  | 0,0047       | 0,0669       |
| M&A Value in bil. USD    | 0,0143           | 0,0448             | 0,3193  | 0,7532  | -0,0798      | 0,1083       |
| Long term interest rates |                  |                    |         |         |              |              |
| (%)                      | -0,3713          | 0,6304             | -0,5889 | 0,5632  | -1,6957      | 0,9532       |

## Interpretation:

Firstly, the model's statistical significance is indicated by the low p-value, which is less than the 0.05 threshold. This makes it possible to proceed with the interpretation of the other statistical findings.

It is possible to affirm that the value of VC investments can be explained at a 59.1% level by the number of M&A deals, the GDP of the country, and Long-term interest rates with no temporal lag, given the R-squared of 0.5909.

In this scenario, the p-value for GDP is significant (less than 0.05), indicating that the variable has a statistically significant impact on the value of VC investments. However, the p-value for long-term interest rates and M&A value are non-significant, implying that they may not have a meaningful effect on the dependent variable in this model. The variables will be kept in the regression line equation and the overall regression model because of their theoretical relevance and because removing them will not improve considerably the R square of the model.

The value of VC investments in Israel can be predicted by the regression line of the equation:

$$y = -0.3713 Long - term interest rates(\%) + 0.0143 M&A Value in bil. USD + 0.0358 GDP in bil. USD - 2.4779$$

#### ADL Analysis

The tables below show the correlations between the Number of VC deals and N° of VC deals with lag and the correlations between VC Equity Value and VC Equity Value with lag, using a color scale with the highest correlation in green and the lowest correlation in red, and the time lag for which the correlation is highest is highlighted in bold.

Correlation between N° of VC deals and N° of VC deals with lag

| 1 year lag  | 90% | Strong Correlation   |
|-------------|-----|----------------------|
| 2 years lag | 77% | Strong Correlation   |
| 3 years lag | 64% | Moderate Correlation |
| 4 years lag | 51% | Moderate Correlation |
| 5 years lag | 41% | Moderate Correlation |

Correlation between VC Equity Value and VC Equity Value with lag

| 1 year lag  | 83% | Strong Correlation   |
|-------------|-----|----------------------|
| 2 years lag | 93% | Strong Correlation   |
| 3 years lag | 84% | Strong Correlation   |
| 4 years lag | 73% | Strong Correlation   |
| 5 years lag | 68% | Moderate Correlation |

ADL Regression N° of VC investment with 1 year lag

| Regression Stat   | istics   |
|-------------------|----------|
| Multiple R        | 0.903069 |
| R Square          | 0.815534 |
| Adjusted R Square | 0.809385 |
| Standard Error    | 75.28985 |
| Observations      | 32       |

#### ANOVA

|            | df | SS       | MS       | F        | Significance<br>F |
|------------|----|----------|----------|----------|-------------------|
| Regression | 1  | 751829   | 751829   | 132.6314 | 1.55E-12          |
| Residual   | 30 | 170056.8 | 5668.561 |          |                   |
| Total      | 31 | 921885.9 |          |          |                   |

|                                  |              | Standard |          |          |           | Upper    |
|----------------------------------|--------------|----------|----------|----------|-----------|----------|
|                                  | Coefficients | Error    | t Stat   | P-value  | Lower 95% | 95%      |
| Intercept N° of VC deals (1 year | 3.841928     | 22.05922 | 0.174164 | 0.862906 | -41.209   | 48.89286 |
| lag)                             | 1.11278      | 0.096624 | 11.51657 | 1.55E-12 | 0.915447  | 1.310113 |

# ADL Regression 1 year lag (GDP + M&A + Long-term interest rates) and with $N^{\circ}$ of VC deals with 1 year lag

| Regression Stati  | stics    |
|-------------------|----------|
| Multiple R        | 0.89741  |
| R Square          | 0.805344 |
| Adjusted R Square | 0.766413 |
| Standard Error    | 78.15212 |
| Observations      | 25       |

## ANOVA

|            |    |          |          |          | Significance |
|------------|----|----------|----------|----------|--------------|
|            | df | SS       | MS       | F        | F            |
| Regression | 4  | 505389.6 | 126347.4 | 20.68639 | 7.07E-07     |
| Residual   | 20 | 122155.1 | 6107.754 |          |              |
| Total      | 24 | 627544.6 |          |          |              |

|                             |              | Standard |          |          |           | Upper    |
|-----------------------------|--------------|----------|----------|----------|-----------|----------|
|                             | Coefficients | Error    | t Stat   | P-value  | Lower 95% | 95%      |
| Intercept                   | -138.612     | 140.3203 | -0.98783 | 0.335038 | -431.315  | 154.0906 |
| N° of VC deals (1 year lag) | 0.635359     | 0.227343 | 2.794716 | 0.011187 | 0.16113   | 1.109589 |
| GDP in bil. USD             | 0.394672     | 0.345776 | 1.141411 | 0.267182 | -0.3266   | 1.115947 |
| Total N° of M&A deals       | 0.639706     | 0.31332  | 2.041701 | 0.054594 | -0.01387  | 1.29328  |
| Long term interest rates    |              |          |          |          |           |          |
| (%)                         | 5.234226     | 14.10158 | 0.37118  | 0.714406 | -24.1812  | 34.64961 |

## ADL Regression VC Equity Value 2 years lag

| Regression Statistics |          |  |  |  |
|-----------------------|----------|--|--|--|
| Multiple R            | 0.928059 |  |  |  |
| R Square              | 0.861293 |  |  |  |
| Adjusted R Square     | 0.85651  |  |  |  |
| Standard Error        | 1.701038 |  |  |  |
| Observations          | 31       |  |  |  |

#### ANOVA

|            |    |          |          |          | Significance |
|------------|----|----------|----------|----------|--------------|
|            | df | SS       | MS       | F        | F            |
| Regression | 1  | 521.0492 | 521.0492 | 180.0739 | 5.72E-14     |
| Residual   | 29 | 83.91236 | 2.89353  |          |              |
| Total      | 30 | 604.9616 |          |          |              |

|           |              | Standard |          |          |           |          |
|-----------|--------------|----------|----------|----------|-----------|----------|
|           | Coefficients | Error    | t Stat   | P-value  | Lower 95% | 95%      |
| Intercept | -0.61851     | 0.389559 | -1.58772 | 0.123195 | -1.41525  | 0.178228 |

ADL Regression 4 years lag (GDP + M&A + Long-term interest rates) and with VC Equity Value with 2 years lag

| Regression Statistics |          |
|-----------------------|----------|
| Multiple R            | 0.940195 |
| R Square              | 0.883966 |
| Adjusted R Square     | 0.856664 |
| Standard Error        | 1.91734  |
| Observations          | 22       |

#### **ANOVA**

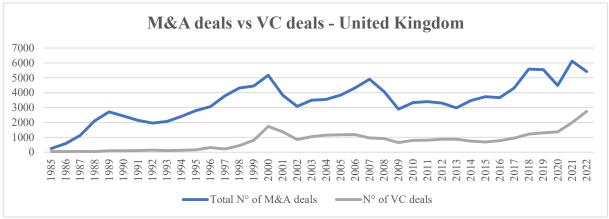
|            |    |          |          |          | Significance |
|------------|----|----------|----------|----------|--------------|
|            | df | SS       | MS       | F        | F            |
| Regression | 4  | 476.1006 | 119.0251 | 32.37728 | 9.53E-08     |
| Residual   | 17 | 62.49529 | 3.676194 |          |              |
| Total      | 21 | 538.5959 |          |          |              |

|                               | Coefficients | Standard<br>Error | t Stat   | P-value  | Lower 95% | Upper<br>95% |
|-------------------------------|--------------|-------------------|----------|----------|-----------|--------------|
| Intercept                     | -2.75047     | 3.287513          |          | 0.414401 |           | 4.185578     |
| VC Equity Value in bil. USD 2 |              |                   |          |          |           |              |
| years lag                     | 2.109024     | 0.321847          | 6.552872 | 4.92E-06 | 1.429986  | 2.788063     |
| GDP in bil. USD               | 0.005976     | 0.009294          | 0.642986 | 0.528811 | -0.01363  | 0.025584     |
| Total M&A Value in bil. USD   | 0.026245     | 0.024599          | 1.066913 | 0.300929 | -0.02565  | 0.078144     |
| Long term interest rates (%)  | 0.052734     | 0.351466          | 0.150041 | 0.882498 | -0.68879  | 0.794262     |

#### Interpretation of results

Israel has a strong VC market maturity. The regression models show high values of R-squared, both in terms of N° of VC Investments (72.9%), as well as in terms of VC Equity Value (59.1%).

The ADL analysis on the N° of VC Investments ameliorate the R-squared to 80.5%. GDP and Long-term interest rates are not significant.


The ADL analysis on the VC Equity Value significantly ameliorate the R-squared to 88.4%, but losing significance of M&A Value, GDP and Long-term interest rates.

#### A3. United Kingdom

#### Preliminary Analysis

Figure A3.1 compares the number of M&A transactions with the number of VC transactions in the UK over the years.

Figure A3.1 - M&A number of deals vs VC number of deals in United Kingdom



Source: Own elaboration based on data from Refinitiv Eikon (previously Thomson Eikon, Thomson One), now called LSEG Data & Analytics, and from IMAA

Figure A3.2 shows the trends of M&A Value (primary axis on the left) and VC Equity Value (secondary axis on the right) in the UK over the years.

M&A Value vs VC Equity Value - United Kingdom 1000.00 60 900.00 50 800.00 700.00 40 600.00 500.00 30 400.00 20 300.00 200.00 10 100.00 0.00 0 Total M&A Value in bil. USD VC Equity Value in bil. USD

Figure A3.2 - M&A Value vs VC Equity Value in United Kingdom

Source: Own elaboration based on data from Refinitiv Eikon (previously Thomson Eikon, Thomson One), now called LSEG Data & Analytics, and from IMAA

Figure A3.3 below compares the annual development of GDP (primary axis on the left) with that of long-term interest rates (secondary axis on the right) in the UK.

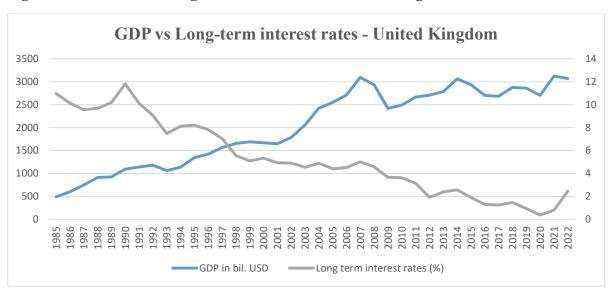



Figure A3.3 - GDP and Long-term interest rates in United Kingdom

Source: Own elaboration based on World Bank's data and OECD statistics

The tables below show the correlations between the Number of M&A Deals and Number of VC Investments and the correlations between M&A Value and VC Equity Value, using a color scale with the highest correlation in green and the lowest correlation in red, and the time lag for which the correlation is highest is highlighted in bold.

## Correlation between $N^{\circ}$ of M&A and $N^{\circ}$ of VC Investments

| Correlation with no Lag | 81% | Strong Correlation   |
|-------------------------|-----|----------------------|
| Correlation 1-year lag  | 83% | Strong Correlation   |
| Correlation 2-year lag  | 76% | Strong Correlation   |
| Correlation 3-year lag  | 80% | Strong Correlation   |
| Correlation 4-year lag  | 73% | Strong Correlation   |
| Correlation 5-year lag  | 61% | Moderate Correlation |

## Correlation between M&A Value and VC Equity Value

| Correlation with no Lag | 59% | Moderate Correlation |
|-------------------------|-----|----------------------|
| Correlation 1-year lag  | 62% | Moderate Correlation |
| Correlation 2-year lag  | 48% | Moderate Correlation |
| Correlation 3-year lag  | 49% | Moderate Correlation |
| Correlation 4-year lag  | 36% | Moderate Correlation |
| Correlation 5-year lag  | 18% | Weak Correlation     |

#### Regression Analysis

The statistical outputs of the regression, the interpretation of the results and finally the equation of the regression line were then reported.

## Regression on Number of VC Investments with a 1-year lag

| Regression Statistics |          |  |  |  |
|-----------------------|----------|--|--|--|
| Multiple R            | 0,87754  |  |  |  |
| R Square              | 0,770076 |  |  |  |
| Adjusted R Square     | 0,749174 |  |  |  |
| Standard Error        | 304,8427 |  |  |  |
| Observations          | 37       |  |  |  |

#### ANOVA

|            | df | SS      | MS       | F        | Significance<br>F |
|------------|----|---------|----------|----------|-------------------|
| Regression | 3  |         | 3423685  | 36,84192 | 1,21E-10          |
| Residual   | 33 | 3066658 | 92929,04 |          |                   |

|                          | Coefficients | Standard<br>Error | t Stat | P-value | Lower<br>95% | Upper<br>95% |
|--------------------------|--------------|-------------------|--------|---------|--------------|--------------|
| Intercept                | 1105,852     | 521,770           | 2,119  | 0,042   | 44,303       | 2167,401     |
| GDP in bil. USD          | -0,286       | 0,153             | -1,862 | 0,071   | -0,598       | 0,026        |
| Total N° of M&A deals    | 0,276        | 0,061             | 4,545  | 0,000   | 0,153        | 0,400        |
| Long term interest rates |              |                   |        |         |              |              |
| (%)                      | -128,723     | 38,574            | -3,337 | 0,002   | -207,203     | -50,243      |

#### *Interpretation:*

Firstly, the model's statistical significance is indicated by the low p-value, which is significantly less than the 0.05 threshold.

This makes it possible to proceed with the interpretation of the other statistical findings. The r square has a strong value (higher than 0,7), meaning that the number of VC deals is explained for the 77% by the number of M&A deals, by the GDP, and by the Long-term interest rates of the UK.

All three independent variables are statistically significant given the p-values lower than 0.05.

The number of VC investments in the UK can be predicted by the regression line of the equation:

$$y = -128.723 Long - term interest rates (%) + 0,276 N^{\circ} of M&A deals - 0,286 GDP in bil. USD + 1105.85$$

#### Regression VC Equity Value with 1-year lag

| Regression S   | tatistics |
|----------------|-----------|
| Multiple R     | 0,756206  |
| R Square       | 0,571847  |
| Adjusted R     |           |
| Square         | 0,532924  |
| Standard Error | 7,194585  |
| Observations   | 37        |

#### **ANOVA**

|            | df | SS         | MS       | F        | Significance F |
|------------|----|------------|----------|----------|----------------|
| Regression | 3  | 2281,42533 | 760,4751 | 14,69175 | 3,01936E-06    |
| Residual   | 33 | 1708,14795 | 51,76206 |          |                |
| Total      | 36 | 3989,57329 |          |          |                |

|                          | Standard     |        |        |         |           |        |  |
|--------------------------|--------------|--------|--------|---------|-----------|--------|--|
|                          | Coefficients | Error  | t Stat | P-value | Lower 95% | 95%    |  |
| Intercept                | 36,511       | 11,563 | 3,158  | 0,003   | 12,986    | 60,036 |  |
| GDP in bil. USD          | -0,009       | 0,004  | -2,483 | 0,018   | -0,017    | -0,002 |  |
| Total M&A Value in bil.  |              |        |        |         |           |        |  |
| USD                      | 0,021        | 0,007  | 2,931  | 0,006   | 0,006     | 0,035  |  |
| Long term interest rates |              |        |        |         |           |        |  |
| (%)                      | -3,249       | 0,885  | -3,672 | 0,001   | -5,050    | -1,449 |  |

#### *Interpretation:*

Firstly, the model's statistical significance is indicated by the low p-value, which is significantly less than the 0.05 threshold. This makes it possible to proceed with the interpretation of the other statistical findings.

It is possible to affirm that the value of VC investments can be explained by the value of M&A deals, the GDP of the country, and Long-term interest rates with no temporal lag, given the R-squared of 0.5718.

All three independent variables are statistically significant given the p-values lower than 0.05.

The value of VC investments in the UK can be predicted by the regression line of the equation:

$$y = -3.249 Long - term interest rates(\%) + 0.021 M&A value in bil. USD - 0.009 GDP in bil. USD + 36.511$$

#### ADL Analysis

The tables below show the correlations between the Number of VC deals and N° of VC deals with lag and the correlations between VC Equity Value and VC Equity Value with lag, using a color scale with the highest correlation in green and the lowest correlation in red, and the time lag for which the correlation is highest is highlighted in bold.

## Correlation between N° of VC deals and N° of VC deals with lag

| 1 year lag  | 90% | Strong Correlation   |
|-------------|-----|----------------------|
| 2 years lag | 74% | Strong Correlation   |
| 3 years lag | 66% | Moderate Correlation |
| 4 years lag | 59% | Moderate Correlation |
| 5 years lag | 48% | Moderate Correlation |

Correlation between VC Equity Value and VC Equity Value with lag

| 1 year lag  | 80% | Strong Correlation   |
|-------------|-----|----------------------|
| 2 years lag | 84% | Strong Correlation   |
| 3 years lag | 73% | Strong Correlation   |
| 4 years lag | 70% | Strong Correlation   |
| 5 years lag | 55% | Moderate Correlation |

The statistical outputs of the ADL regression are reported below.

ADL Regression  $N^{\circ}$  of VC investment with 1 year lag

| Regression Stat   | tistics  |
|-------------------|----------|
| Multiple R        | 0.898022 |
| R Square          | 0.806444 |
| Adjusted R Square | 0.800914 |
| Standard Error    | 271.5878 |
| Observations      | 37       |

#### ANOVA

|            |    |          |          |          | Significance |
|------------|----|----------|----------|----------|--------------|
|            | df | SS       | MS       | F        | F            |
| Regression | 1  | 10756115 | 10756115 | 145.8259 | 4.9E-14      |
| Residual   | 35 | 2581598  | 73759.95 |          |              |
| Total      | 36 | 13337713 |          |          |              |

|                                     | Standard     |          |          |          |           |          |
|-------------------------------------|--------------|----------|----------|----------|-----------|----------|
|                                     | Coefficients | Error    | t Stat   | P-value  | Lower 95% | 95%      |
| Intercept<br>N° of VC deals (1 year | 40.5486      | 75.67845 | 0.535801 | 0.595485 | -113.087  | 194.184  |
| lag)                                | 1.046042     | 0.086623 | 12.07584 | 4.9E-14  | 0.870189  | 1.221896 |

# ADL Regression 1 year lag (GDP + M&A + Long-term interest rates) and with $N^{\circ}$ of VC deals with 1 year lag

| Regressio  | n Statistics |
|------------|--------------|
| Multiple R | 0.924503     |

| R Square          | 0.854707 |
|-------------------|----------|
| Adjusted R Square | 0.836545 |
| Standard Error    | 246.0869 |
| Observations      | 37       |

## ANOVA

|            |    |          |          |          | Significance   |
|------------|----|----------|----------|----------|----------------|
|            | df | SS       | MS       | F        | $\overline{F}$ |
| Regression | 4  | 11399833 | 2849958  | 47.06103 | 5.79E-13       |
| Residual   | 32 | 1937881  | 60558.77 |          |                |
| Total      | 36 | 13337713 |          |          |                |

| -                        |              | Standard |          |          |           | Upper    |
|--------------------------|--------------|----------|----------|----------|-----------|----------|
|                          | Coefficients | Error    | t Stat   | P-value  | Lower 95% | 95%      |
| Intercept                | 831.0838     | 425.9844 | 1.950973 | 0.059863 | -36.618   | 1698.786 |
| N° of VC deals (1 year   |              |          |          |          |           |          |
| lag)                     | 0.68538      | 0.158751 | 4.317335 | 0.000142 | 0.362015  | 1.008744 |
| GDP in bil. USD          | -0.25952     | 0.124055 | -2.09201 | 0.044458 | -0.51221  | -0.00683 |
| Total N° of M&A deals    | 0.124856     | 0.060358 | 2.068593 | 0.046744 | 0.001911  | 0.2478   |
| Long term interest rates |              |          |          |          |           |          |
| (%)                      | -81.9199     | 32.9725  | -2.48449 | 0.018395 | -149.083  | -14.7571 |

## ADL Regression VC Equity Value 2 years lag

| Regression Statistics |          |  |  |  |  |
|-----------------------|----------|--|--|--|--|
| Multiple R            | 0.835971 |  |  |  |  |
| R Square              | 0.698847 |  |  |  |  |
| Adjusted R Square     | 0.68999  |  |  |  |  |
| Standard Error        | 5.903512 |  |  |  |  |
| Observations          | 36       |  |  |  |  |

## ANOVA

|            |    |          |          |          | Significance |
|------------|----|----------|----------|----------|--------------|
|            | df | SS       | MS       | F        | F            |
| Regression | 1  | 2749.764 | 2749.764 | 78.89954 | 2.21E-10     |
| Residual   | 34 | 1184.95  | 34.85146 |          |              |
| Total      | 35 | 3934.714 |          |          |              |

|                               | Standard     |         |          |          |           |          |
|-------------------------------|--------------|---------|----------|----------|-----------|----------|
|                               | Coefficients | Error   | t Stat   | P-value  | Lower 95% | 95%      |
| Intercept                     | -0.66365     | 1.35264 | -0.49063 | 0.626838 | -3.41254  | 2.085245 |
| VC Equity Value in bil. USD 2 |              |         |          |          |           |          |
| years lag                     | 1.606054     | 0.18081 | 8.882541 | 2.21E-10 | 1.238603  | 1.973504 |

ADL Regression 1 year lag (GDP + M&A + Long-term interest rates) and with VC Equity Value with 2 years lag

| Regression Statistics |          |
|-----------------------|----------|
| Multiple R            | 0.863585 |
| R Square              | 0.745779 |
| Adjusted R Square     | 0.712977 |
| Standard Error        | 5.68043  |
| Observations          | 36       |

#### ANOVA

|            |    |          |          |          | Significance |
|------------|----|----------|----------|----------|--------------|
|            | df | SS       | MS       | F        | F            |
| Regression | 4  | 2934.428 | 733.607  | 22.73532 | 7.58E-09     |
| Residual   | 31 | 1000.286 | 32.26728 |          |              |
| Total      | 35 | 3934.714 |          |          |              |

|                               | Coefficients | Standard<br>Error | t Stat   | P-value  | Lower 95% | Upper<br>95% |
|-------------------------------|--------------|-------------------|----------|----------|-----------|--------------|
| Intercept                     | 9.401954     | 10.80967          |          | 0.39111  | -12.6445  | 31.44843     |
| VC Equity Value in bil. USD 2 |              |                   |          |          |           |              |
| years lag                     | 1.278123     | 0.275011          | 4.647542 | 5.88E-05 | 0.717235  | 1.839011     |
| GDP in bil. USD               | -0.004       | 0.003114          | -1.28335 | 0.20888  | -0.01035  | 0.002355     |
| Total M&A Value in bil. USD   | 0.013027     | 0.005782          | 2.253048 | 0.031476 | 0.001235  | 0.024819     |
| Long term interest rates (%)  | -0.86586     | 0.867726          | -0.99785 | 0.326078 | -2.6356   | 0.903879     |

#### Interpretation of results

The UK has a strong VC market maturity. The regression models show high values of R-squared, both in terms of  $N^{\circ}$  of VC Investments (77.0%), as well as in terms of VC Equity Value (57.2%).

The ADL analysis on the  $N^{\circ}$  of VC Investments ameliorate the R-squared to 85.5% with all the variables statistically significant.

The ADL analysis on the VC Equity Value significantly ameliorate the R-squared to 74.6%, but losing significance of GDP and Long-term interest rates.

## A4. France

#### **Preliminary Analysis**

Figure A4.1 compares the number of M&A transactions with the number of VC transactions in France over the years.

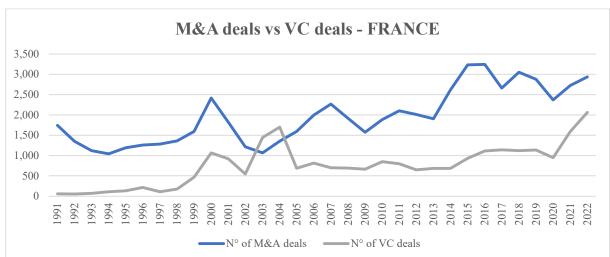



Figure A4.1 - M&A number of deals vs VC number of deals in France

Source: Own elaboration based on data from Refinitiv Eikon (previously Thomson Eikon, Thomson One), now called LSEG Data & Analytics, and from IMAA

Figure A4.2 shows the trends of M&A Value (primary axis on the left) and VC Equity Value (secondary axis on the right) in France over the years.

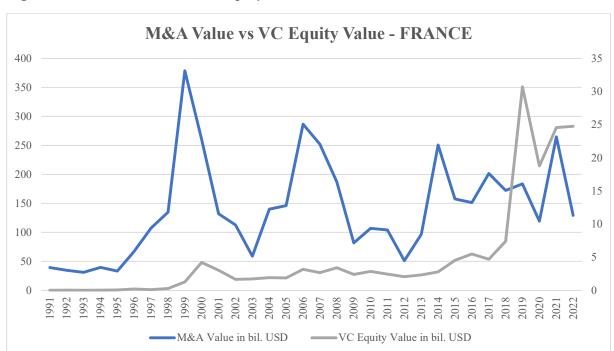



Figure A4.2 - M&A Value vs VC Equity Value in France

Source: Own elaboration based on data from Refinitiv Eikon (previously Thomson Eikon, Thomson One), now called LSEG Data & Analytics, and from IMAA

Figure A4.3 below compares the annual development of GDP (primary axis on the left) with that of long-term interest rates (secondary axis on the right) in France.

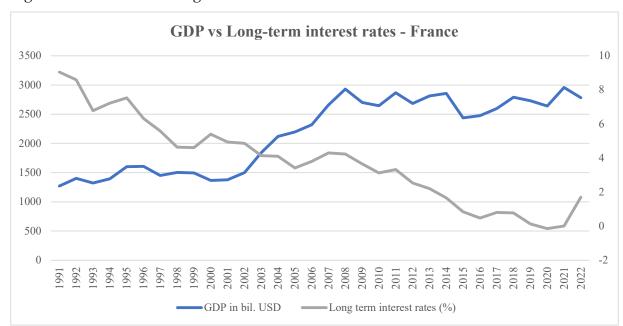



Figure A4.3 - GDP and Long-term interest rates in France

Source: Own elaboration based on World Bank's data and OECD statistics

The tables below show the correlations between the Number of M&A Deals and Number of VC Investments and the correlations between M&A Value and VC Equity Value, using a color scale with the highest correlation in green and the lowest correlation in red, and the time lag for which the correlation is highest is highlighted in bold.

## Correlation between N° of M&A and N° of VC Investments

| Correlation with no Lag | 59% | Moderate Correlation |
|-------------------------|-----|----------------------|
| Correlation 1-year lag  | 50% | Moderate Correlation |
| Correlation 2-year lag  | 49% | Moderate Correlation |
| Correlation 3-year lag  | 66% | Moderate Correlation |
| Correlation 4-year lag  | 63% | Moderate Correlation |
| Correlation 5-year lag  | 47% | Moderate Correlation |

### Correlation between M&A Value and VC Equity Value

| Correlation with no Lag | 26% | Weak Correlation     |
|-------------------------|-----|----------------------|
| Correlation 1-year lag  | 32% | Moderate Correlation |
| Correlation 2-year lag  | 25% | Weak Correlation     |
| Correlation 3-year lag  | 21% | Weak Correlation     |
| Correlation 4-year lag  | 20% | Weak Correlation     |
| Correlation 5-year lag  | 27% | Weak Correlation     |

#### Regression Analysis

The statistical outputs of the regression, the interpretation of the results and finally the equation of the regression line were then reported.

Regression on Number of VC Investments with a 3-year lag

| Regression Statistics |          |  |  |  |  |
|-----------------------|----------|--|--|--|--|
| Multiple R            | 0,784936 |  |  |  |  |
| R Square              | 0,616125 |  |  |  |  |
| Adjusted R            |          |  |  |  |  |
| Square                | 0,57006  |  |  |  |  |
| Standard Error        | 313,1067 |  |  |  |  |
| Observations          | 29       |  |  |  |  |

#### ANOVA

|            |    |         |          |          | Significance |
|------------|----|---------|----------|----------|--------------|
|            | df | SS      | MS       | F        | F            |
| Regression | 3  | 3933725 | 1311242  | 13,37513 | 2,09E-05     |
| Residual   | 25 | 2450895 | 98035,79 |          |              |
| Total      | 28 | 6384620 |          |          |              |

|                          |              | Standard |        |         | Lower    | Upper    |
|--------------------------|--------------|----------|--------|---------|----------|----------|
|                          | Coefficients | Error    | t Stat | P-value | 95%      | 95%      |
| Intercept                | 1867,853     | 598,502  | 3,121  | 0,005   | 635,215  | 3100,492 |
| GDP in bil. USD          | -0,350       | 0,157    | -2,229 | 0,035   | -0,673   | -0,027   |
| N° of M&A deals          | 0,208        | 0,139    | 1,495  | 0,147   | -0,078   | 0,494    |
| Long term interest rates |              |          |        |         |          |          |
| (%)                      | -168,902     | 49,273   | -3,428 | 0,002   | -270,383 | -67,421  |

#### *Interpretation:*

Firstly, the model's statistical significance is indicated by the low p-value, which is significantly less than the 0.05 threshold.

This makes it possible to proceed with the interpretation of the other statistical findings. The r squared value, which is around 0.616, suggests that the combined impacts of GDP, the number of M&A deals, and long-term interest rates explain around 61.6% of the variance in VC transactions in France. This indicates that the model has a reasonable amount of explanatory ability for understanding fluctuations in the Number of VC investments.

The variables GDP and Long-term interest rate are statistically significant given the p-values lower than 0.05. However, the number of M&A transactions, despite exhibiting a

positive coefficient, fails to attain statistical significance at the conventional threshold (p = 0.147) implying that they may not have a meaningful effect on the dependent variable in this model. The variable will be kept in the regression line equation and the overall regression model because of its theoretical relevance and because removing it will not improve considerably the R square of the model.

The number of VC investments in France can be predicted by the regression line of the equation:

$$y = -168.902 Long - term interest rates (\%) + 0,208 N^{\circ} of M&A deals - 0,350 GDP in bil. USD + 1867.853$$

Regression VC Equity Value with 1-year lag

| Regression Statistics |          |  |  |  |  |
|-----------------------|----------|--|--|--|--|
| Multiple R            | 0,688118 |  |  |  |  |
| R Square              | 0,473507 |  |  |  |  |
| Adjusted R            |          |  |  |  |  |
| Square                | 0,415007 |  |  |  |  |
| Standard Error        | 6,096528 |  |  |  |  |
| Observations          | 31       |  |  |  |  |

#### ANOVA

|            |    |          |          |          | Significance |
|------------|----|----------|----------|----------|--------------|
|            | df | SS       | MS       | F        | F            |
| Regression | 3  | 902,5311 | 300,8437 | 8,094234 | 0,000527     |
| Residual   | 27 | 1003,527 | 37,16765 |          |              |
| Total      | 30 | 1906,058 |          |          |              |

|                          |              | Lower | Upper  |         |        |        |
|--------------------------|--------------|-------|--------|---------|--------|--------|
|                          | Coefficients | Error | t Stat | P-value | 95%    | 95%    |
| Intercept                | 17,575       | 9,718 | 1,808  | 0,082   | -2,366 | 37,516 |
| GDP in bil. USD          | -0,002       | 0,003 | -0,501 | 0,620   | -0,008 | 0,005  |
| M&A Value in bil. USD    | 0,002        | 0,014 | 0,108  | 0,915   | -0,028 | 0,031  |
| Long term interest rates |              |       |        |         |        |        |
| (%)                      | -2,430       | 0,786 | -3,090 | 0,005   | -4,043 | -0,817 |

#### *Interpretation:*

Firstly, the model's statistical significance is indicated by the low p-value, which is significantly less than the 0.05 threshold. This makes it possible to proceed with the interpretation of the other statistical findings.

It is possible to affirm that the value of VC investments can be explained by the value of M&A deals, the GDP of the country, and Long-term interest rates with no temporal lag, given the R-squared of 0.4735. This indicates that approximately 47.35% of the variability observed in the value of VC investments can be accounted for by variations in the value of M&A deals, GDP, and long-term interest rates.

The variable long-term interest rates is statistically significant given the p-values lower than 0.05, while the variables GDP and M&A Value may not influence the model. However, the variables are still included in the regression line equation and the overall regression model due to their theoretical relevance, and deleting them will not significantly increase the model's R square.

The value of VC investments in France can be predicted by the regression line of the equation:

$$y = -2.430 Long - term interest rates(\%) + 0.002 M&A value in bil. USD - 0.002 GDP in bil. USD + 17.575$$

#### ADL Analysis

The tables below show the correlations between the Number of VC deals and N° of VC deals with lag and the correlations between VC Equity Value and VC Equity Value with lag, using a color scale with the highest correlation in green and the lowest correlation in red, and the time lag for which the correlation is highest is highlighted in bold.

Correlation between N° of VC deals and N° of VC deals with lag

|             |     | . )                  |
|-------------|-----|----------------------|
| 1 year lag  | 77% | Strong Correlation   |
| 2 years lag | 53% | Moderate Correlation |
| 3 years lag | 60% | Moderate Correlation |
| 4 years lag | 50% | Moderate Correlation |
| 5 years lag | 32% | Moderate Correlation |

## Correlation between VC Equity Value and VC Equity Value with lag

| 1 year lag  | 79% | Strong Correlation   |
|-------------|-----|----------------------|
| 2 years lag | 74% | Strong Correlation   |
| 3 years lag | 65% | Moderate Correlation |
| 4 years lag | 74% | Strong Correlation   |
| 5 years lag | 62% | Moderate Correlation |

The statistical outputs of the ADL regression are reported below.

ADL Regression  $N^{\circ}$  of VC investment with 1 year lag

| Regression Statistics |          |  |  |  |  |
|-----------------------|----------|--|--|--|--|
| Multiple R            | 0.765819 |  |  |  |  |
| R Square              | 0.586478 |  |  |  |  |
| Adjusted R Square     | 0.572219 |  |  |  |  |
| Standard Error        | 327.0405 |  |  |  |  |
| Observations          | 31       |  |  |  |  |

|            |    |         |          |          | Significance |
|------------|----|---------|----------|----------|--------------|
|            | df | SS      | MS       | F        | F            |
| Regression | 1  | 4399009 | 4399009  | 41.12934 | 5.16E-07     |
| Residual   | 29 | 3101709 | 106955.5 |          |              |
| Total      | 30 | 7500718 |          |          |              |

|                                  |              | Standard |          |          |           | Upper    |
|----------------------------------|--------------|----------|----------|----------|-----------|----------|
|                                  | Coefficients | Error    | t Stat   | P-value  | Lower 95% | 95%      |
| Intercept N° of VC deals (1 year | 180.4051     | 110.6781 | 1.629998 | 0.113917 | -45.9571  | 406.7673 |
| lag)                             | 0.838667     | 0.130772 | 6.413216 | 5.16E-07 | 0.571209  | 1.106125 |

ADL Regression 1 year lag (GDP + M&A + Long-term interest rates) and with  $N^{\circ}$  of VC deals with 1 year lag

| Regression Statistics |          |  |  |  |
|-----------------------|----------|--|--|--|
| Multiple R            | 0.820963 |  |  |  |
| R Square              | 0.67398  |  |  |  |
| Adjusted R Square     | 0.619643 |  |  |  |
| Standard Error        | 294.4994 |  |  |  |
| Observations          | 29       |  |  |  |

|            |    |         |          |          | Significance |
|------------|----|---------|----------|----------|--------------|
|            | df | SS      | MS       | F        | F            |
| Regression | 4  | 4303103 | 1075776  | 12.40375 | 1.31E-05     |
| Residual   | 24 | 2081517 | 86729.87 |          |              |
| Total      | 28 | 6384620 |          |          |              |

|                          |              | Standard |          |          |           | Upper    |
|--------------------------|--------------|----------|----------|----------|-----------|----------|
|                          | Coefficients | Error    | t Stat   | P-value  | Lower 95% | 95%      |
| Intercept                | 788.4857     | 768.4044 | 1.026134 | 0.31506  | -797.423  | 2374.395 |
| N° of VC deals (1 year   |              |          |          |          |           |          |
| lag)                     | 0.423751     | 0.205333 | 2.063721 | 0.050018 | -3.6E-05  | 0.847538 |
| GDP in bil. USD          | -0.20851     | 0.162648 | -1.28198 | 0.212097 | -0.5442   | 0.127178 |
| Total N° of M&A deals    | 0.248823     | 0.132217 | 1.881929 | 0.072028 | -0.02406  | 0.521705 |
| Long term interest rates |              |          |          |          |           |          |
| (%)                      | -75.8577     | 64.6576  | -1.17322 | 0.25222  | -209.304  | 57.58902 |

# ADL Regression VC Equity Value 1 year lag

| Regression Statistics |          |  |  |  |
|-----------------------|----------|--|--|--|
| Multiple R            | 0.824225 |  |  |  |
| R Square              | 0.679346 |  |  |  |
| Adjusted R Square     | 0.630015 |  |  |  |
| Standard Error        | 4.848412 |  |  |  |
| Observations          | 31       |  |  |  |

|            |    |          |          |          | Significance |
|------------|----|----------|----------|----------|--------------|
|            | df | SS       | MS       | F        | F            |
| Regression | 4  | 1294.873 | 323.7183 | 13.77109 | 3.72E-06     |
| Residual   | 26 | 611.1846 | 23.5071  |          |              |
| Total      | 30 | 1906.058 |          |          |              |

|                               |              | Standard |          |          |           | Upper    |
|-------------------------------|--------------|----------|----------|----------|-----------|----------|
|                               | Coefficients | Error    | t Stat   | P-value  | Lower 95% | 95%      |
| Intercept                     | 7.223801     | 8.133588 | 0.888144 | 0.382606 | -9.49503  | 23.94263 |
| VC Equity Value in bil. USD 1 |              |          |          |          |           |          |
| year lag                      | 0.667179     | 0.163309 | 4.085384 | 0.000374 | 0.331493  | 1.002864 |
| GDP in bil. USD               | -0.0005      | 0.002425 | -0.2067  | 0.837856 | -0.00548  | 0.004483 |
| Total M&A Value in bil. USD   | 0.000452     | 0.011376 | 0.039765 | 0.968585 | -0.02293  | 0.023836 |
| Long term interest rates (%)  | -1.02895     | 0.713167 | -1.44279 | 0.161021 | -2.49488  | 0.436987 |

#### Interpretation of results

France has a moderate VC market maturity. The regression models show good values of R-squared, both in terms of VC Investments (61.6%), as well as in terms of VC Equity Value (47.4%).

The ADL analysis on the N° of VC Investments does not significantly ameliorate the R-squared (67.4%). N° of M&A deals, GDP and Long-term interest rates are not significant.

The ADL analysis on the VC Equity Value significantly ameliorate the R-squared to 67.9%, but losing significance of M&A Value, GDP and Long-term interest rates.

#### A5. Germany

## Preliminary Analysis

Figure A5.1 compares the number of M&A transactions with the number of VC transactions in Germany over the years.

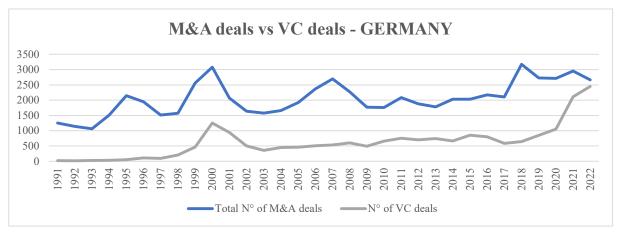



Figure A5.1 - M&A number of deals vs VC number of deals in Germany

Source: Own elaboration based on data from Refinitiv Eikon (previously Thomson Eikon, Thomson One), now called LSEG Data & Analytics, and from IMAA

Figure A5.2 shows the trends of M&A Value (primary axis on the left) and VC Equity Value (secondary axis on the right) in Germany over the years.

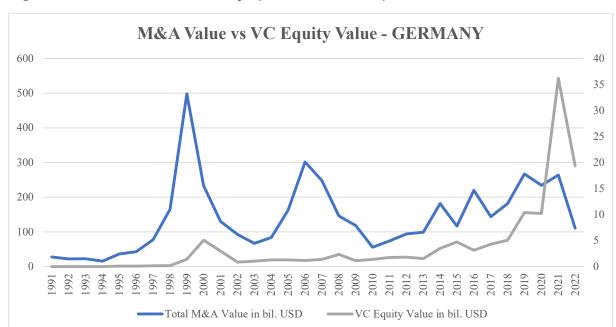



Figure A5.2 - M&A Value vs VC Equity Value in Germany

Source: Own elaboration based on data from Refinitiv Eikon (previously Thomson Eikon, Thomson One), now called LSEG Data & Analytics, and from IMAA

Figure A5.3 below compares the annual development of GDP (primary axis on the left) with that of long-term interest rates (secondary axis on the right) in Germany.

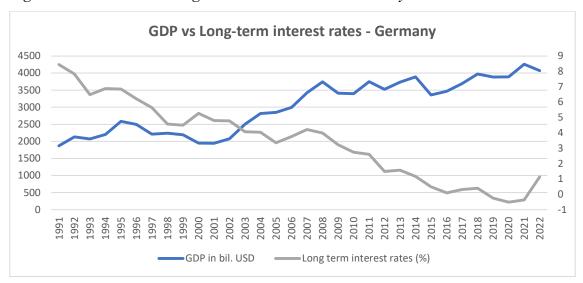



Figure A5.3 - GDP and Long-term interest rates in Germany

Source: Own elaboration based on World Bank's data and OECD statistics

The tables below show the correlations between the Number of M&A Deals and Number of VC Investments and the correlations between M&A Value and VC Equity Value, using a color scale with the highest correlation in green and the lowest correlation in red, and the time lag for which the correlation is highest is highlighted in bold.

## Correlation between $N^{\circ}$ of M&A and $N^{\circ}$ of VC Investments

| Correlation with no Lag | 66% | Moderate Correlation |
|-------------------------|-----|----------------------|
| Correlation 1-year lag  | 70% | Moderate Correlation |
| Correlation 2-year lag  | 54% | Moderate Correlation |
| Correlation 3-year lag  | 52% | Moderate Correlation |
| Correlation 4-year lag  | 52% | Moderate Correlation |
| Correlation 5-year lag  | 35% | Moderate Correlation |

#### Correlation between M&A Value and VC Equity Value

| Correlation with no Lag | 32% | Moderate Correlation |
|-------------------------|-----|----------------------|
| Correlation 1-year lag  | 42% | Moderate Correlation |
| Correlation 2-year lag  | 37% | Moderate Correlation |
| Correlation 3-year lag  | 22% | Weak Correlation     |
| Correlation 4-year lag  | 8%  | Weak Correlation     |
| Correlation 5-year lag  | 15% | Weak Correlation     |

#### Regression Analysis

The statistical outputs of the regression, the interpretation of the results and finally the equation of the regression line were then reported.

# Regression on Number of VC Investments with a 1-year lag

| Regression Statistics |          |  |  |  |  |
|-----------------------|----------|--|--|--|--|
| Multiple R            | 0,804829 |  |  |  |  |
| R Square              | 0,64775  |  |  |  |  |
| Adjusted R            |          |  |  |  |  |
| Square                | 0,608611 |  |  |  |  |
| Standard Error        | 337,0074 |  |  |  |  |
| Observations          | 31       |  |  |  |  |

|            |    |         |         |          | Significance |
|------------|----|---------|---------|----------|--------------|
|            | df | SS      | MS      | F        | F            |
| Regression | 3  | 5638956 | 1879652 | 16,55002 | 2,66E-06     |
| Residual   | 27 | 3066497 | 113574  |          |              |
| Total      | 30 | 8705454 |         |          |              |

|                              | Coefficients | Standard<br>Error | t Stat | P-value | Lower<br>95% | Upper<br>95% |
|------------------------------|--------------|-------------------|--------|---------|--------------|--------------|
| Intercept                    | 466,518      | 689,206           | 0,677  | 0,504   | -947,617     | 1880,652     |
| GDP in bil. USD              | -0,086       | 0,159             | -0,542 | 0,592   | -0,413       | 0,240        |
| Total N° of M&A deals        | 0,425        | 0,137             | 3,100  | 0,004   | 0,144        | 0,706        |
| Long term interest rates (%) | -122,412     | 48,993            | -2,499 | 0,019   | -222,939     | -21,886      |

#### *Interpretation:*

Firstly, the model's statistical significance is indicated by the low p-value, which is significantly less than the 0.05 threshold.

This makes it possible to proceed with the interpretation of the other statistical findings. The r square has a good value (higher than 0,6), meaning that the number of VC deals is explained for 64.78% by the number of M&A deals, by the GDP, and by the Long-term interest rates of Germany.

The variables "number of M&A deals" and "Long-term interest rates" are statistically significant given the p-values lower than 0.05. However, the variable "GDP", fails to attain statistical significance at the conventional threshold (p = 0.592) implying that it may not have a meaningful effect on the dependent variable in this model. The variable will be kept in the regression line equation and the overall regression model because of its theoretical relevance and because removing it will not improve considerably the R square of the model.

The number of VC investments in Germany can be predicted by the regression line of the equation:

$$y = -122.412 \ Long - term \ interest \ rates \ (\%) + 0.425 \ N^{\circ} \ of \ M&A \ deals - 0.086 \ GDP \ in \ bil. \ USD + 466.518$$

#### Regression VC Equity Value with 1-year lag

| Regression Statistics |          |  |  |  |  |
|-----------------------|----------|--|--|--|--|
| Multiple R            | 0,632148 |  |  |  |  |
| R Square              | 0,399611 |  |  |  |  |
| Adjusted R            |          |  |  |  |  |
| Square                | 0,332901 |  |  |  |  |
| Standard Error        | 5,870509 |  |  |  |  |
| Observations          | 31       |  |  |  |  |

#### **ANOVA**

| '          |    |          |          |          | Significance |
|------------|----|----------|----------|----------|--------------|
|            | df | SS       | MS       | F        | F            |
| Regression | 3  | 619,3273 | 206,4424 | 5,990284 | 0,002885     |
| Residual   | 27 | 930,4978 | 34,46288 |          |              |
| Total      | 30 | 1549,825 |          |          |              |

|                          |              | Standard |        |         | Lower   | Upper  |
|--------------------------|--------------|----------|--------|---------|---------|--------|
|                          | Coefficients | Error    | t Stat | P-value | 95%     | 95%    |
| Intercept                | 5,020        | 11,997   | 0,418  | 0,679   | -19,597 | 29,636 |
| GDP in bil. USD          | 0,001        | 0,003    | 0,196  | 0,846   | -0,005  | 0,006  |
| Total M&A Value in bil.  |              |          |        |         |         |        |
| USD                      | 0,014        | 0,012    | 1,163  | 0,255   | -0,010  | 0,037  |
| Long term interest rates |              |          |        |         |         |        |
| (%)                      | -1,318       | 0,906    | -1,455 | 0,157   | -3,176  | 0,541  |

#### *Interpretation:*

Firstly, the model's statistical significance is indicated by the low p-value, which is significantly less than the 0.05 threshold. This makes it possible to proceed with the interpretation of the other statistical findings.

It is possible to affirm that the variance in the value of VC investments can be explained at 39.96% by the value of M&A deals, the GDP of the country, and Long-term interest rates with no temporal la.

All three independent variables are not statistically significant given the p-values lower than 0.05.

Because the coefficients lack statistical significance, it is prudent to use caution when attempting to use them to create a regression equation. While it is technically possible to create a regression equation using these coefficients, the lack of statistical significance

shows that such an equation may not be able to forecast VC equity value using the given independent variables.

The value of VC investments in Germany can be predicted by the regression line of the equation:

$$y = -1.318 Long - term interest rates(\%) + 0.014 M&A value in bil. USD + 0.001 GDP in bil. USD + 5.020$$

#### ADL Analysis

The tables below show the correlations between the Number of VC deals and N° of VC deals with lag and the correlations between VC Equity Value and VC Equity Value with lag, using a color scale with the highest correlation in green and the lowest correlation in red, and the time lag for which the correlation is highest is highlighted in bold.

Correlation between N° of VC deals and N° of VC deals with lag

| 1 year lag  | 86% | Strong Correlation   |
|-------------|-----|----------------------|
| 2 years lag | 56% | Moderate Correlation |
| 3 years lag | 37% | Moderate Correlation |
| 4 years lag | 28% | Weak Correlation     |
| 5 years lag | 29% | Weak Correlation     |

Correlation between VC Equity Value and VC Equity Value with lag

| 1 year lag  | 65%  | Moderate Correlation |
|-------------|------|----------------------|
| 2 years lag | 85%  | Strong Correlation   |
| 3 years lag | 10%  | Weak Correlation     |
| 4 years lag | 57%  | Moderate Correlation |
| 5 years lag | -63% | Anticorrelation      |

The statistical outputs of the ADL regression are reported below.

ADL Regression N° of VC investment with 1 year lag

| Regression Sta    | Regression Statistics |  |  |  |  |  |
|-------------------|-----------------------|--|--|--|--|--|
| Multiple R        | 0.858698              |  |  |  |  |  |
| R Square          | 0.737363              |  |  |  |  |  |
| Adjusted R Square | 0.728306              |  |  |  |  |  |
| Standard Error    | 280.7856              |  |  |  |  |  |
| Observations      | 31                    |  |  |  |  |  |

|            |    |         |          |          | Significance |
|------------|----|---------|----------|----------|--------------|
|            | df | SS      | MS       | F        | F            |
| Regression | 1  | 6419078 | 6419078  | 81.41847 | 6.44E-10     |
| Residual   | 29 | 2286376 | 78840.56 |          |              |
| Total      | 30 | 8705454 |          |          |              |

|                                  |              | Standard |          |          |           | Upper    |
|----------------------------------|--------------|----------|----------|----------|-----------|----------|
|                                  | Coefficients | Error    | t Stat   | P-value  | Lower 95% | 95%      |
| Intercept N° of VC deals (1 year | 40.82369     | 83.77921 | 0.487277 | 0.629725 | -130.524  | 212.1714 |
| lag)                             | 1.066355     | 0.118179 | 9.023218 | 6.44E-10 | 0.824652  | 1.308058 |

ADL Regression 1 year lag (GDP + M&A + Long-term interest rates) and with  $N^{\circ}$  of VCdeals with 1 year lag

| Regression Statistics |          |  |  |  |
|-----------------------|----------|--|--|--|
| Multiple R            | 0.882168 |  |  |  |
| R Square              | 0.77822  |  |  |  |
| Adjusted R Square     | 0.7441   |  |  |  |
| Standard Error        | 272.5024 |  |  |  |
| Observations          | 31       |  |  |  |

#### ANOVA

|            |    |         |          |         | Significance |
|------------|----|---------|----------|---------|--------------|
|            | df | SS      | MS       | F       | F            |
| Regression | 4  | 6774757 | 1693689  | 22.8083 | 3.49E-08     |
| Residual   | 26 | 1930697 | 74257.57 |         |              |
| Total      | 30 | 8705454 |          |         |              |

|                          |              | Standard |          |          |           | Upper    |
|--------------------------|--------------|----------|----------|----------|-----------|----------|
|                          | Coefficients | Error    | t Stat   | P-value  | Lower 95% | 95%      |
| Intercept                | 66.66934     | 566.5891 | 0.117668 | 0.907235 | -1097.97  | 1231.31  |
| N° of VC deals (1 year   |              |          |          |          |           |          |
| lag)                     | 0.741874     | 0.189692 | 3.910936 | 0.000589 | 0.351956  | 1.131792 |
| GDP in bil. USD          | -0.00575     | 0.130311 | -0.04416 | 0.965117 | -0.27361  | 0.262103 |
| Total N° of M&A deals    | 0.163359     | 0.129328 | 1.263139 | 0.21775  | -0.10248  | 0.429196 |
| Long term interest rates |              |          |          |          |           |          |
| (%)                      | -44.9651     | 44.28955 | -1.01525 | 0.31934  | -136.004  | 46.07334 |

## ADL Regression VC Equity Value 2 years lag

| Regression Statistics |          |  |  |  |
|-----------------------|----------|--|--|--|
| Multiple R            | 0.85296  |  |  |  |
| R Square              | 0.727541 |  |  |  |
| Adjusted R Square     | 0.717811 |  |  |  |
| Standard Error        | 3.862666 |  |  |  |
| Observations          | 30       |  |  |  |

|            |    |          |          |          | Significance |
|------------|----|----------|----------|----------|--------------|
|            | df | SS       | MS       | F        | F            |
| Regression | 1  | 1115.551 | 1115.551 | 74.76788 | 2.15E-09     |
| Residual   | 28 | 417.7653 | 14.92019 |          |              |
| Total      | 29 | 1533.316 |          |          |              |

|                               |              | Standard |          |          |           |           |
|-------------------------------|--------------|----------|----------|----------|-----------|-----------|
|                               | Coefficients | Error    | t Stat   | P-value  | Lower 95% | Upper 95% |
| Intercept                     | -1.16929     | 0.935068 | -1.25049 | 0.221471 | -3.08469  | 0.746108  |
| VC Equity Value in bil. USD 2 |              |          |          |          |           |           |
| years lag                     | 2.318151     | 0.268092 | 8.646842 | 2.15E-09 | 1.768989  | 2.867313  |

ADL Regression 1 year lag (GDP + M&A + Long-term interest rates) and with VC Equity Value with 2 years lag

| Regression Statistics |          |  |  |  |
|-----------------------|----------|--|--|--|
| Multiple R            | 0.868902 |  |  |  |
| R Square              | 0.754991 |  |  |  |
| Adjusted R Square     | 0.715789 |  |  |  |
| Standard Error        | 3.876476 |  |  |  |
| Observations          | 30       |  |  |  |

#### ANOVA

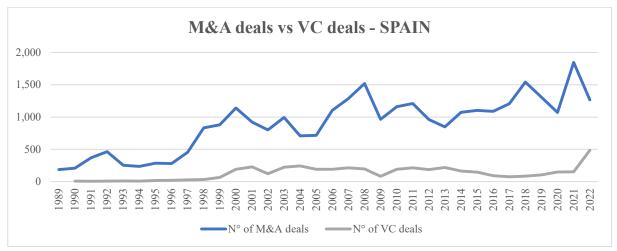
|            |    |          |          |          | Significance |
|------------|----|----------|----------|----------|--------------|
|            | df | SS       | MS       | F        | F            |
| Regression | 4  | 1157.64  | 289.4099 | 19.25924 | 2.42E-07     |
| Residual   | 25 | 375.6767 | 15.02707 |          |              |
| Total      | 29 | 1533.316 |          |          |              |

|                              |              | Standard |          |          |           | Upper    | Lower    |
|------------------------------|--------------|----------|----------|----------|-----------|----------|----------|
|                              | Coefficients | Error    | t Stat   | P-value  | Lower 95% | 95%      | 95,0%    |
| Intercept                    | -12.0579     | 8.50196  | -1.41825 | 0.168464 | -29.568   | 5.452214 | -29.568  |
| VC Equity Value in bil. USD  |              |          |          |          |           |          |          |
| 2 years lag                  | 2.34532      | 0.395475 | 5.930387 | 3.44E-06 | 1.530824  | 3.159816 | 1.530824 |
| GDP in bil. USD              | 0.002175     | 0.001908 | 1.140054 | 0.265069 | -0.00175  | 0.006106 | -0.00175 |
| Total M&A Value in bil.      |              |          |          |          |           |          |          |
| USD                          | 0.011195     | 0.007719 | 1.45032  | 0.159401 | -0.0047   | 0.027093 | -0.0047  |
| Long term interest rates (%) | 0.781264     | 0.722222 | 1.08175  | 0.289688 | -0.70618  | 2.268708 | -0.70618 |

## Interpretation of results

Germany has a moderate VC market maturity. The regression models good moderate values of R-squared in terms of VC Investments (64.8%), and moderate value in terms of VC Equity Value (40.0%).

The ADL analysis on the N° of VC Investments ameliorate the R-squared to 77.8%. N° of M&A deals, GDP and Long-term interest rates are not significant.


The ADL analysis on the VC Equity Value significantly ameliorate the R-squared to 75.5%, but losing significance of M&A Value, GDP and Long-term interest rates.

A6. Spain

#### Preliminary Analysis

Figure A6.1 compares the number of M&A transactions with the number of VC transactions in Spain over the years.

Figure A6.1 - M&A number of deals vs VC number of deals in Spain



Source: Own elaboration based on data from Refinitiv Eikon (previously Thomson Eikon, Thomson One), now called LSEG Data & Analytics, and from IMAA

Figure A6.2 shows the trends of M&A Value (primary axis on the left) and VC Equity Value (secondary axis on the right) in Spain over the years.

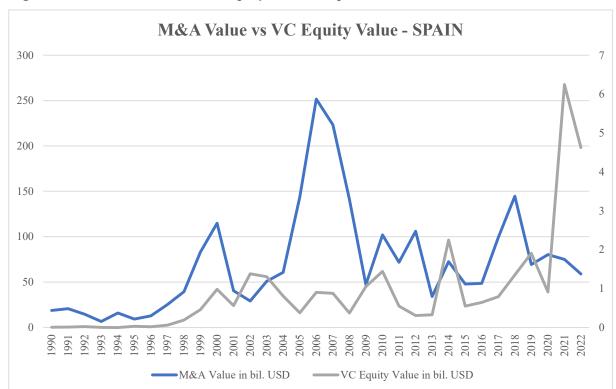



Figure A6.2 - M&A Value vs VC Equity Value in Spain

Source: Own elaboration based on data from Refinitiv Eikon (previously Thomson Eikon, Thomson One), now called LSEG Data & Analytics, and from IMAA

Figure A6.3 below compares the annual development of GDP (primary axis on the left) with that of long-term interest rates (secondary axis on the right) in Spain.

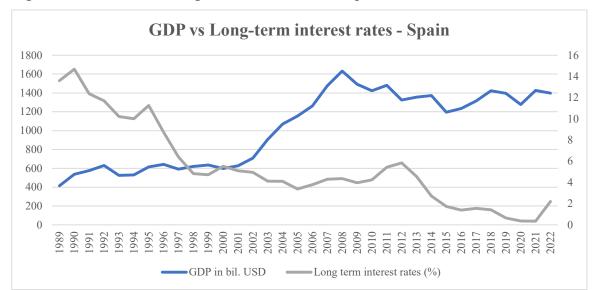



Figure A6.3 - GDP and Long-term interest rates in Spain

Source: Own elaboration based on World Bank's data and OECD statistics

The tables below show the correlations between the Number of M&A Deals and Number of VC Investments and the correlations between M&A Value and VC Equity Value, using a color scale with the highest correlation in green and the lowest correlation in red, and the time lag for which the correlation is highest is highlighted in bold.

Correlation between N° of M&A and N° of VC Investments

| Correlation with no Lag | 56% | Moderate Correlation |
|-------------------------|-----|----------------------|
| Correlation 1-year lag  | 70% | Strong Correlation   |
| Correlation 2-year lag  | 55% | Moderate Correlation |
| Correlation 3-year lag  | 62% | Moderate Correlation |
| Correlation 4-year lag  | 65% | Moderate Correlation |
| Correlation 5-year lag  | 51% | Moderate Correlation |

#### Correlation between M&A Value and VC Equity Value

| Correlation with no Lag | 14% | Weak Correlation     |
|-------------------------|-----|----------------------|
| Correlation 1-year lag  | 17% | Weak Correlation     |
| Correlation 2-year lag  | 20% | Weak Correlation     |
| Correlation 3-year lag  | 34% | Moderate Correlation |
| Correlation 4-year lag  | 34% | Moderate Correlation |
| Correlation 5-year lag  | 1%  | Weak Correlation     |

#### Regression Analysis

The statistical outputs of the regression, the interpretation of the results and finally the equation of the regression line were then reported.

Regression on Number of VC Investments with a 1-year lag

| Regression S   | tatistics |
|----------------|-----------|
| Multiple R     | 0,709011  |
| R Square       | 0,502696  |
| Adjusted R     |           |
| Square         | 0,451251  |
| Standard Error | 76,04713  |
| Observations   | 33        |

#### ANOVA

|            |    |          |          |          | Significance |
|------------|----|----------|----------|----------|--------------|
|            | df | SS       | MS       | F        | F            |
| Regression | 3  | 169530,4 | 56510,13 | 9,771488 | 0,000129     |
| Residual   | 29 | 167711,8 | 5783,165 |          |              |
| Total      | 32 | 337242,2 |          |          |              |

|                          |              | Lower  | Upper  |         |          |         |
|--------------------------|--------------|--------|--------|---------|----------|---------|
|                          | Coefficients | Error  | t Stat | P-value | 95%      | 95%     |
| Intercept                | 45,075       | 91,688 | 0,492  | 0,627   | -142,448 | 232,598 |
| GDP in bil. USD          | -0,037       | 0,059  | -0,632 | 0,532   | -0,157   | 0,083   |
| N° of M&A deals          | 0,165        | 0,068  | 2,430  | 0,021   | 0,026    | 0,305   |
| Long term interest rates |              |        |        |         |          |         |
| (%)                      | -3,894       | 6,512  | -0,598 | 0,554   | -17,212  | 9,424   |

#### *Interpretation:*

Firstly, the model's statistical significance is indicated by the low p-value, which is less than the 0.05 threshold.

This makes it possible to proceed with the interpretation of the other statistical findings. The r square has a value of 0.5027, meaning that the number of VC deals is explained for the 50.3% by the number of M&A deals, by the GDP, and by the Long-term interest rates of Spain.

The number of M&A deals is the only independent variable statistically significant given the p-value lower than 0.05. However, the variables "Long-term interest rates" and "GDP",

fail to attain statistical significance at the conventional threshold (respectively p = 0.554 and p = 0.532) implying that it may not have a meaningful effect on the dependent variable in this model. The variables will be kept in the regression line equation and the overall regression model because of their theoretical relevance and because removing them will not improve considerably the R square of the model.

The number of VC investments in the Spain can be predicted by the regression line of the equation:

$$y = -3.894 Long - term interest rates (%) + 0.165 N^{\circ} of M&A deals - 0.037 GDP in bil. USD + 45.075$$

## Regression VC Equity Value with 4-year lag

| Regression Statistics |          |  |  |  |  |
|-----------------------|----------|--|--|--|--|
| Multiple R            | 0,56182  |  |  |  |  |
| R Square              | 0,315642 |  |  |  |  |
| Adjusted R            |          |  |  |  |  |
| Square                | 0,236678 |  |  |  |  |
| Standard Error        | 1,167756 |  |  |  |  |
| Observations          | 30       |  |  |  |  |

|            |    |          |          |          | Significance |
|------------|----|----------|----------|----------|--------------|
|            | df | SS       | MS       | F        | F            |
| Regression | 3  | 16,35268 | 5,450893 | 3,997269 | 0,018214     |
| Residual   | 26 | 35,45501 | 1,363654 |          |              |
| Total      | 29 | 51,80769 |          |          |              |

|                          |              | Lower | Upper  |         |        |        |
|--------------------------|--------------|-------|--------|---------|--------|--------|
|                          | Coefficients | Error | t Stat | P-value | 95%    | 95%    |
| Intercept                | 2,371        | 1,188 | 1,996  | 0,056   | -0,070 | 4,813  |
| GDP in bil. USD          | 0,000        | 0,001 | -0,251 | 0,804   | -0,002 | 0,002  |
| M&A Value in bil. USD    | 0,001        | 0,005 | 0,329  | 0,745   | -0,008 | 0,011  |
| Long term interest rates | 0.202        | 0.004 | 2 422  | 0.022   | 0.274  | 0.021  |
| (%)                      | -0,202       | 0,084 | -2,422 | 0,023   | -0,374 | -0,031 |

#### *Interpretation:*

Firstly, the model's statistical significance is indicated by the low p-value, which is significantly less than the 0.05 threshold. This makes it possible to proceed with the interpretation of the other statistical findings.

It is possible to affirm that the value of VC investments can be partially explained by the value of M&A deals, the GDP of the country, and Long-term interest rates with no temporal lag, given the R-squared of 0.3156.

Among the three independent variables, just the long-term interest rates is statistically significant given the p-values lower than 0.05.

Because the coefficients lack statistical significance, it is prudent to use caution when attempting to use them to create a regression equation. While it is technically possible to create a regression equation using these coefficients, the lack of statistical significance shows that such an equation may not be able to forecast VC equity value using the given independent variables.

The value of VC investments in Spain can be predicted by the regression line of the equation:

$$y = -0.202 Long - term interest rates(\%) + 0.001 M&A value in bil. USD - 0.0002 GDP in bil. USD + 2.371$$

#### ADL Analysis

The tables below show the correlations between the Number of VC deals and N° of VC deals with lag and the correlations between VC Equity Value and VC Equity Value with lag, using a color scale with the highest correlation in green and the lowest correlation in red, and the time lag for which the correlation is highest is highlighted in bold.

Correlation between N° of VC deals and N° of VC deals with lag

| 1 year lag  | 67% | Moderate Correlation |
|-------------|-----|----------------------|
| 2 years lag | 55% | Moderate Correlation |
| 3 years lag | 46% | Moderate Correlation |
| 4 years lag | 29% | Weak Correlation     |
| 5 years lag | 13% | Weak Correlation     |

## Correlation between VC Equity Value and VC Equity Value with lag

| 1 year lag  | 56% | Moderate Correlation |
|-------------|-----|----------------------|
| 2 years lag | 43% | Moderate Correlation |
| 3 years lag | 48% | Moderate Correlation |
| 4 years lag | 38% | Moderate Correlation |
| 5 years lag | 20% | Weak Correlation     |

The statistical outputs of the ADL regression are reported below.

ADL Regression  $N^{\circ}$  of VC investment with 1 year lag

| Regression Statistics |          |  |  |  |  |
|-----------------------|----------|--|--|--|--|
| Multiple R            | 0.667337 |  |  |  |  |
| R Square              | 0.445339 |  |  |  |  |
| Adjusted R Square     | 0.42685  |  |  |  |  |
| Standard Error        | 77.10111 |  |  |  |  |
| Observations          | 32       |  |  |  |  |

| 11110111   |    |          |          |          |              |
|------------|----|----------|----------|----------|--------------|
|            |    |          |          |          | Significance |
|            | df | SS       | MS       | F        | F            |
| Regression | 1  | 143187.5 | 143187.5 | 24.08706 | 3.02E-05     |
| Residual   | 30 | 178337.4 | 5944.581 |          |              |
| Total      | 31 | 321524.9 |          |          |              |

|                                     | Standard     |          |          |          |           | Upper    |
|-------------------------------------|--------------|----------|----------|----------|-----------|----------|
|                                     | Coefficients | Error    | t Stat   | P-value  | Lower 95% | 95%      |
| Intercept<br>N° of VC deals (1 year | 35.34402     | 24.50851 | 1.442112 | 0.15963  | -14.709   | 85.39708 |
| lag)                                | 0.830475     | 0.169213 | 4.907857 | 3.02E-05 | 0.484895  | 1.176055 |

ADL Regression 1 year lag (GDP + M&A + Long-term interest rates) and with  $N^{\circ}$  of VC deals with 1 year lag

| Regression Statistics |          |  |  |  |  |
|-----------------------|----------|--|--|--|--|
| Multiple R            | 0.770318 |  |  |  |  |
| R Square              | 0.59339  |  |  |  |  |
| Adjusted R Square     | 0.533152 |  |  |  |  |
| Standard Error        | 69.58479 |  |  |  |  |
| Observations          | 32       |  |  |  |  |

|            |    |          | •        | •        | Significance |
|------------|----|----------|----------|----------|--------------|
|            | df | SS       | MS       | F        | F            |
| Regression | 4  | 190789.7 | 47697.43 | 9.850685 | 4.77E-05     |
| Residual   | 27 | 130735.1 | 4842.042 |          |              |
| Total      | 31 | 321524.9 |          |          |              |

|                          | Coefficients | Standard<br>Error | t Stat   | P-value  | Lower 95% | Upper 95% |
|--------------------------|--------------|-------------------|----------|----------|-----------|-----------|
| Intercept                | 23.13965     | 84.5645           |          | 0.786449 | -150.372  | 196.6517  |
| N° of VC deals (1 year   |              |                   |          |          |           |           |
| lag)                     | 0.549237     | 0.198753          | 2.763418 | 0.010174 | 0.14143   | 0.957043  |
| GDP in bil. USD          | -0.06944     | 0.054948          | -1.26383 | 0.217095 | -0.18219  | 0.043299  |
| Total N° of M&A deals    | 0.14047      | 0.063043          | 2.22816  | 0.034393 | 0.011116  | 0.269823  |
| Long term interest rates |              |                   |          |          |           |           |
| (%)                      | -1.65875     | 6.18451           | -0.26821 | 0.790576 | -14.3483  | 11.03081  |

## ADL Regression VC Equity Value 1 year lag

| Regression Statistics |          |
|-----------------------|----------|
| Multiple R            | 0.55835  |
| R Square              | 0.311755 |
| Adjusted R Square     | 0.288813 |
| Standard Error        | 1.110786 |
| Observations          | 32       |

#### ANOVA

|            |    |          |          |          | Significance |
|------------|----|----------|----------|----------|--------------|
|            | df | SS       | MS       | F        | F            |
| Regression | 1  | 16.76688 | 16.76688 | 13.58913 | 0.000897     |
| Residual   | 30 | 37.01536 | 1.233845 |          |              |
| Total      | 31 | 53.78224 |          |          |              |

|                                         |              | Standard |          |          |           |           |
|-----------------------------------------|--------------|----------|----------|----------|-----------|-----------|
|                                         | Coefficients | Error    | t Stat   | P-value  | Lower 95% | Upper 95% |
| Intercept VC Equity Value in bil. USD 1 | 0.443748     | 0.244248 | 1.816794 | 0.079252 | -0.05507  | 0.942568  |
| year lag                                | 0.641388     | 0.17399  | 3.686343 | 0.000897 | 0.286053  | 0.996724  |

# ADL Regression 4 years lag (GDP + M&A + Long-term interest rates) and with VC Equity Value with 1 year lag

| Regression Statistics |          |
|-----------------------|----------|
| Multiple R            | 0.633502 |
| R Square              | 0.401325 |
| Adjusted R Square     | 0.305537 |
| Standard Error        | 1.11384  |
| Observations          | 30       |

|            |    |          |          |          | Significance |
|------------|----|----------|----------|----------|--------------|
|            | df | SS       | MS       | F        | F            |
| Regression | 4  | 20.79171 | 5.197928 | 4.189718 | 0.009868     |
| Residual   | 25 | 31.01598 | 1.240639 |          |              |
| Total      | 29 | 51.80769 |          |          |              |

|                               |              | Standard |          |          |           |           |
|-------------------------------|--------------|----------|----------|----------|-----------|-----------|
|                               | Coefficients | Error    | t Stat   | P-value  | Lower 95% | Upper 95% |
| Intercept                     | 1.748852     | 1.179726 | 1.482422 | 0.150725 | -0.68084  | 4.178544  |
| VC Equity Value in bil. USD 1 |              |          |          |          |           |           |
| year lag                      | 0.39728      | 0.210027 | 1.891566 | 0.070189 | -0.03528  | 0.82984   |
| GDP in bil. USD               | -0.00019     | 0.00081  | -0.22875 | 0.820924 | -0.00185  | 0.001482  |
| Total M&A Value in bil. USD   | 0.000223     | 0.004351 | 0.051209 | 0.959566 | -0.00874  | 0.009185  |
| Long term interest rates (%)  | -0.14799     | 0.084789 | -1.74541 | 0.093194 | -0.32262  | 0.026634  |

## Interpretation of results

Spain has a weak VC market maturity. The regression models show a moderate value of R-squared in terms of  $N^{\circ}$  of VC Investments (50.3%), and a weak value in terms of VC Equity Value (31.6%).

The ADL analysis on the  $N^{\circ}$  of VC Investments slightly ameliorate the R-squared to 59.3%. GDP and Long-term interest rates are not significant.

The ADL analysis on the VC Equity Value slightly ameliorate the R-squared to 40.1%, but losing significance of all the variables.

#### A7. Italy

#### **Preliminary Analysis**

Figure A7.1 compares the number of M&A transactions with the number of VC transactions in Italy over the years.



Figure A7.1 – M&A number of deals vs VC number of deals in Italy

Source: Own elaboration based on data from Refinitiv Eikon (previously Thomson Eikon, Thomson One), now called LSEG Data & Analytics, and from IMAA

Figure A7.2 shows the trends of M&A Value (primary axis on the left) and VC Equity Value (secondary axis on the right) in Italy over the years.

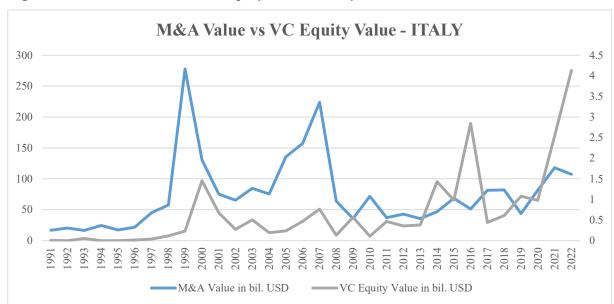



Figure A7.2 - M&A Value vs VC Equity Value in Italy

Source: Own elaboration based on data from Refinitiv Eikon (previously Thomson Eikon, Thomson One), now called LSEG Data & Analytics, and from IMAA

Figure A7.3 below compares the annual development of GDP (primary axis on the left) with that of long-term interest rates (secondary axis on the right) in Italy.

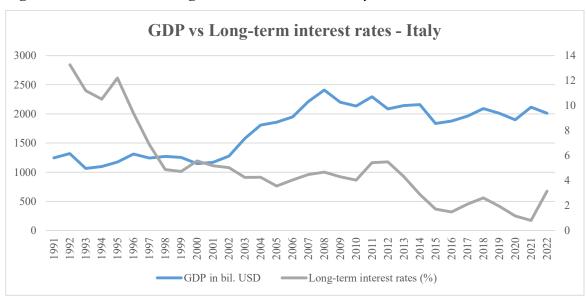



Figure A7.3 - GDP and Long-term interest rates in Italy

Source: Own elaboration based on World Bank's data and OECD statistics

The tables below show the correlations between the Number of M&A Deals and Number of VC Investments and the correlations between M&A Value and VC Equity Value, using a color scale with the highest correlation in green and the lowest correlation in red, and the time lag for which the correlation is highest is highlighted in bold.

#### *Correlation between N° of M&A and N° of VC Investments*

| Correlation with no Lag | 66% | Moderate Correlation |
|-------------------------|-----|----------------------|
| Correlation 1-year lag  | 58% | Moderate Correlation |
| Correlation 2-year lag  | 37% | Moderate Correlation |
| Correlation 3-year lag  | 43% | Moderate Correlation |
| Correlation 4-year lag  | 49% | Moderate Correlation |
| Correlation 5-year lag  | 49% | Moderate Correlation |

### Correlation between M&A Value and VC Equity Value

| Correlation with no Lag | 19%  | Weak Correlation    |
|-------------------------|------|---------------------|
| Correlation 1-year lag  | 28%  | Weak Correlation    |
| Correlation 2-year lag  | 2%   | Weak Correlation    |
| Correlation 3-year lag  | -14% | Inverse Correlation |
| Correlation 4-year lag  | -2%  | Inverse Correlation |
| Correlation 5-year lag  | -16% | Inverse Correlation |

#### Regression Analysis

The statistical outputs of the regression, the interpretation of the results and finally the equation of the regression line were then reported.

Regression on Number of VC Investments with no lag

| Regression Statistics |          |  |  |  |  |  |
|-----------------------|----------|--|--|--|--|--|
| Multiple R            | 0,716979 |  |  |  |  |  |
| R Square              | 0,514058 |  |  |  |  |  |
| Adjusted R Square     | 0,460065 |  |  |  |  |  |
| Standard Error        | 48,76038 |  |  |  |  |  |
| Observations          | 31       |  |  |  |  |  |

|            |    |          |          |          | Significance |
|------------|----|----------|----------|----------|--------------|
|            | df | SS       | MS       | F        | F            |
| Regression | 3  | 67908,84 | 22636,28 | 9,520745 | 0,000185068  |
| Residual   | 27 | 64194,51 | 2377,574 |          |              |
| Total      | 30 | 132103,4 |          |          |              |

|                          |              | Standard |        |         |           | Upper   |
|--------------------------|--------------|----------|--------|---------|-----------|---------|
|                          | Coefficients | Error    | t Stat | P-value | Lower 95% | 95%     |
| Intercept                | 91,577       | 72,567   | 1,262  | 0,218   | -57,318   | 240,472 |
| GDP in bil. USD          | -0,018       | 0,027    | -0,667 | 0,511   | -0,074    | 0,038   |
| N° of M&A deals          | 0,098        | 0,044    | 2,259  | 0,032   | 0,009     | 0,188   |
| Long-term interest rates |              |          |        |         |           |         |
| (%)                      | -9,520       | 4,159    | -2,289 | 0,030   | -18,054   | -0,986  |

#### *Interpretation:*

Firstly, the model's statistical significance is indicated by the low p-value, which is significantly less than the 0.05 threshold.

This makes it possible to proceed with the interpretation of the other statistical findings. The number of VC deals is explained for the 51.4% by the number of M&A deals, by the GDP, and by the Long-term interest rates of Italy.

All the independent variables are statistically significant given the p-values lower than 0.05, except for the "GDP" which has a p = 0.511.

The number of VC investments in Italy can be predicted by the regression line of the equation:

$$y = -9.520 \ Long - term \ interest \ rates \ (\%) + 0.098 \ N^{\circ} \ of \ M&A \ deals - 0.018 \ GDP \ in \ bil. \ USD + 91.577$$

#### Regression VC Equity Value with 1-year lag

| Regression     | Statistics  |
|----------------|-------------|
| Multiple R     | 0,586965404 |
| R Square       | 0,344528386 |
| Adjusted R     |             |
| Square         | 0,268897046 |
| Standard Error | 0,806197539 |
| Observations   | 30          |

|            |    |             |             |             | Significance |
|------------|----|-------------|-------------|-------------|--------------|
|            | df | SS          | MS          | F           | F            |
| Regression | 3  | 8,882340234 | 2,960780078 | 4,555365351 | 0,010777     |
| Residual   | 26 | 16,89881625 | 0,649954471 |             |              |
| Total      | 29 | 25,78115649 |             |             |              |

|                          |              | Standard |        |         | Lower  | Upper  |
|--------------------------|--------------|----------|--------|---------|--------|--------|
|                          | Coefficients | Error    | t Stat | P-value | 95%    | 95%    |
| Intercept                | 1,917        | 1,125    | 1,704  | 0,100   | -0,396 | 4,230  |
| GDP in bil. USD          | 0,000        | 0,000    | -0,398 | 0,694   | -0,001 | 0,001  |
| M&A Value in bil. USD    | 0,001        | 0,003    | 0,242  | 0,811   | -0,005 | 0,006  |
| Long-term interest rates |              |          |        |         |        |        |
| (%)                      | -0,181       | 0,066    | -2,756 | 0,011   | -0,316 | -0,046 |

#### *Interpretation:*

Firstly, the model's statistical significance is indicated by the p-value equal to 0.01, which is less than the 0.05 threshold. This makes it possible to proceed with the interpretation of the other statistical findings.

It is possible to affirm that the value of VC investments can be partially explained by the value of M&A deals, the GDP of the country, and Long-term interest rates with no temporal lag, given the R-squared of 0.3445.

Among the three independent variables, just the long term interest rates is statistically significant given the p-values lower than 0.05.

Because some coefficients lack statistical significance, it is prudent to use caution when attempting to use them to create a regression equation. While it is technically possible to create a regression equation using these coefficients, the lack of statistical significance shows that such an equation may not be able to forecast VC equity value using the given independent variables.

The value of VC investments in Italy can be predicted by the regression line of the equation:

$$y = -0.181 Long - term interest rates(\%) + 0.001 M&A value in bil. USD - 0.0002 GDP in bil. USD + 1.917$$

## ADL Analysis

The tables below show the correlations between the Number of VC deals and N° of VC deals with lag and the correlations between VC Equity Value and VC Equity Value with lag, using a color scale with the highest correlation in green and the lowest correlation in red, and the time lag for which the correlation is highest is highlighted in bold.

## Correlation between N° of VC deals and N° of VC deals with lag

| 1 year lag  | 73% | Strong Correlation   |
|-------------|-----|----------------------|
| 2 years lag | 45% | Moderate Correlation |
| 3 years lag | 41% | Moderate Correlation |
| 4 years lag | 33% | Moderate Correlation |
| 5 years lag | 16% | Weak Correlation     |

Correlation between VC Equity Value and VC Equity Value with lag

| 1 year lag  | 57% | Moderate Correlation |
|-------------|-----|----------------------|
| 2 years lag | 37% | Moderate Correlation |
| 3 years lag | 25% | Weak Correlation     |
| 4 years lag | 10% | Weak Correlation     |
| 5 years lag | 36% | Moderate Correlation |

The statistical outputs of the ADL regression are reported below.

ADL Regression N° of VC investment with 1 year lag

| Regression Stat   | istics   |
|-------------------|----------|
| Multiple R        | 0.726062 |
| R Square          | 0.527166 |
| Adjusted R Square | 0.510861 |
| Standard Error    | 46.41008 |
| Observations      | 31       |

|            |    |          |          |          | Significance |
|------------|----|----------|----------|----------|--------------|
|            | df | SS       | MS       | F        | F            |
| Regression | 1  | 69640.37 | 69640.37 | 32.33228 | 3.78E-06     |
| Residual   | 29 | 62462.98 | 2153.896 |          |              |
| Total      | 30 | 132103.4 |          |          |              |

|                                     | Standard     |          |          |          |           |          |
|-------------------------------------|--------------|----------|----------|----------|-----------|----------|
|                                     | Coefficients | Error    | t Stat   | P-value  | Lower 95% | 95%      |
| Intercept<br>N° of VC deals (1 year | 21.32369     | 15.79518 | 1.350012 | 0.187456 | -10.9811  | 53.62846 |
| lag)                                | 0.864388     | 0.152016 | 5.686148 | 3.78E-06 | 0.55348   | 1.175297 |

ADL Regression NO lag (GDP + M&A + Long-term interest rates) and with  $N^{\circ}$  of VC deals with 1 year lag

| Regression Stati  | stics    |
|-------------------|----------|
| Multiple R        | 0.795092 |
| R Square          | 0.632171 |
| Adjusted R Square | 0.575582 |
| Standard Error    | 43.23078 |
| Observations      | 31       |

## <u>ANO</u>VA

|            |    |          |          |          | Significance |
|------------|----|----------|----------|----------|--------------|
|            | df | SS       | MS       | F        | F            |
| Regression | 4  | 83511.95 | 20877.99 | 11.17127 | 2.08E-05     |
| Residual   | 26 | 48591.4  | 1868.9   |          |              |
| Total      | 30 | 132103.4 |          |          |              |

|                          |              | Standard |          |          |           | Upper    |
|--------------------------|--------------|----------|----------|----------|-----------|----------|
|                          | Coefficients | Error    | t Stat   | P-value  | Lower 95% | 95%      |
| Intercept                | 29.214       | 67.86132 | 0.430496 | 0.670383 | -110.277  | 168.7049 |
| N° of VC deals (1 year   |              |          |          |          |           |          |
| lag)                     | 0.562651     | 0.194727 | 2.889432 | 0.007684 | 0.162383  | 0.962918 |
| GDP in bil. USD          | -0.01712     | 0.024234 | -0.70627 | 0.4863   | -0.06693  | 0.032698 |
| Total N° of M&A deals    | 0.078565     | 0.039276 | 2.000313 | 0.056012 | -0.00217  | 0.159299 |
| Long term interest rates |              |          |          |          |           |          |
| (%)                      | -3.92348     | 4.165268 | -0.94195 | 0.354889 | -12.4853  | 4.638355 |

# ADL Regression VC Equity Value 1 year lag

| Regression Statistics |          |  |  |  |  |
|-----------------------|----------|--|--|--|--|
| Multiple R            | 0.565256 |  |  |  |  |
| R Square              | 0.319514 |  |  |  |  |
| Adjusted R Square     | 0.296049 |  |  |  |  |
| Standard Error        | 0.785638 |  |  |  |  |
| Observations          | 31       |  |  |  |  |

|            |    |          |          |         | Significance |
|------------|----|----------|----------|---------|--------------|
|            | df | SS       | MS       | F       | F            |
| Regression | 1  | 8.404536 | 8.404536 | 13.6166 | 0.000922     |
| Residual   | 29 | 17.89958 | 0.617227 |         |              |
| Total      | 30 | 26.30412 |          |         |              |
|            |    |          |          | •       |              |

|                               |              | Standard |          |          |           |           |
|-------------------------------|--------------|----------|----------|----------|-----------|-----------|
|                               | Coefficients | Error    | t Stat   | P-value  | Lower 95% | Upper 95% |
| Intercept                     | 0.271984     | 0.184637 | 1.473069 | 0.151504 | -0.10564  | 0.64961   |
| VC Equity Value in bil. USD 1 |              |          |          |          |           |           |
| year lag                      | 0.759732     | 0.205886 | 3.690068 | 0.000922 | 0.338648  | 1.180815  |

ADL Regression 1 year lag (GDP + M&A + Long-term interest rates) and with VC Equity Value with 1 year lag

| Regression Statistics |          |
|-----------------------|----------|
| Multiple R            | 0.6429   |
| R Square              | 0.41332  |
| Adjusted R Square     | 0.319452 |
| Standard Error        | 0.777825 |
| Observations          | 30       |

#### ANOVA

|            |    |          |          |          | Significance |
|------------|----|----------|----------|----------|--------------|
|            | df | SS       | MS       | F        | F            |
| Regression | 4  | 10.65588 | 2.663969 | 4.403174 | 0.007853     |
| Residual   | 25 | 15.12528 | 0.605011 |          |              |
| Total      | 29 | 25.78116 |          |          |              |

|                               | Coefficients | Standard<br>Error | t Stat   | P-value  | Lower 95% | Upper 95% |
|-------------------------------|--------------|-------------------|----------|----------|-----------|-----------|
| Intercept                     | 1.066759     | 1.193818          | 0.89357  | 0.380074 | -1.39195  | 3.525473  |
| VC Equity Value in bil. USD 1 |              |                   |          |          |           |           |
| year lag                      | 0.444908     | 0.259856          | 1.712136 | 0.099251 | -0.09027  | 0.980091  |
| GDP in bil. USD               | -7.4E-05     | 0.000444          | -0.1678  | 0.868091 | -0.00099  | 0.00084   |
| Total M&A Value in bil. USD   | 0.001231     | 0.002674          | 0.460448 | 0.649175 | -0.00428  | 0.006739  |
| Long term interest rates (%)  | -0.11067     | 0.075397          | -1.46786 | 0.154612 | -0.26596  | 0.044611  |

## Interpretation of results

Italy has a weak VC market maturity. The regression models show a moderate value of R-squared in terms of N° of VC Investments (51.4%), and a weak value in terms of VC Equity Value (34.5%).

The ADL analysis on the N° of VC Investments ameliorate the R-squared to 63.2%. GDP and Long-term interest rates are not significant.

The ADL analysis on the VC Equity Value slightly ameliorate the R-squared to 41.3% but losing significance of all the variables.

#### A8. Netherlands

#### Preliminary Analysis

Figure A8.1 compares the number of M&A transactions with the number of VC transactions in the Netherlands over the years.

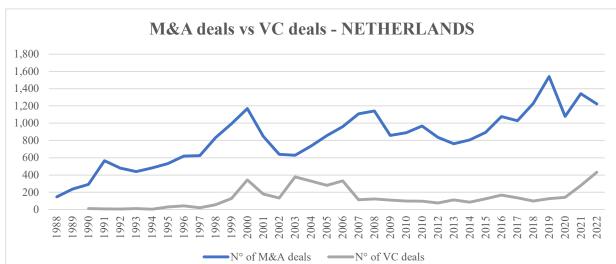



Figure A8.1 - M&A number of deals vs VC number of deals in the Netherlands

Source: Own elaboration based on data from Refinitiv Eikon (previously Thomson Eikon, Thomson One), now called LSEG Data & Analytics, and from IMAA

Figure A8.2 shows the trends of M&A Value (primary axis on the left) and VC Equity Value (secondary axis on the right) in the Netherlands over the years.

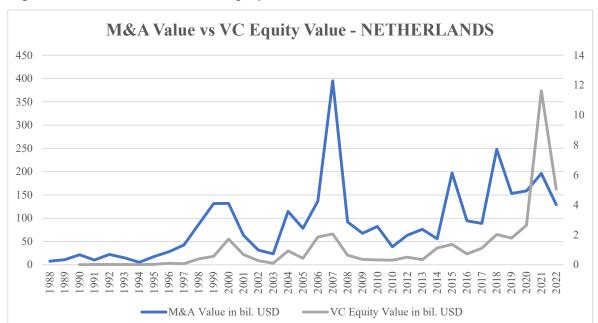



Figure A8.2 - M&A Value vs VC Equity Value in the Netherlands

Source: Own elaboration based on data from Refinitiv Eikon (previously Thomson Eikon, Thomson One), now called LSEG Data & Analytics, and from IMAA

Figure A8.3 below compares the annual development of GDP (primary axis on the left) with that of long-term interest rates (secondary axis on the right) in the Netherlands.

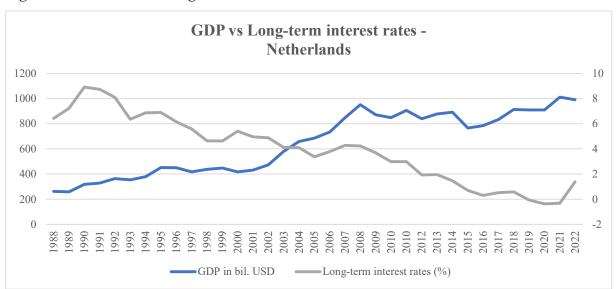



Figure A8.3 - GDP and Long-term interest rates in Netherlands

Source: Own elaboration based on World Bank's data and OECD statistics

The tables below show the correlations between the Number of M&A Deals and Number of VC Investments and the correlations between M&A Value and VC Equity Value, using a color scale with the highest correlation in green and the lowest correlation in red, and the time lag for which the correlation is highest is highlighted in bold.

#### Correlation between N° of M&A and N° of VC Investments

| Correlation with no Lag | 47% | Moderate Correlation |
|-------------------------|-----|----------------------|
| Correlation 1-year lag  | 44% | Moderate Correlation |
| Correlation 2-year lag  | 44% | Moderate Correlation |
| Correlation 3-year lag  | 56% | Moderate Correlation |
| Correlation 4-year lag  | 54% | Moderate Correlation |
| Correlation 5-year lag  | 50% | Moderate Correlation |

## Correlation between M&A Value and VC Equity Value

| Correlation with no Lag | 49% | Moderate Correlation |
|-------------------------|-----|----------------------|
| Correlation 1-year lag  | 36% | Moderate Correlation |
| Correlation 2-year lag  | 32% | Moderate Correlation |
| Correlation 3-year lag  | 43% | Moderate Correlation |
| Correlation 4-year lag  | 16% | Weak Correlation     |
| Correlation 5-year lag  | 10% | Weak Correlation     |

#### Regression Analysis

The statistical outputs of the regression, the interpretation of the results and finally the equation of the regression line were then reported.

Regression on Number of VC Investments with a 3-year lag

| Regression Statistics |          |  |  |  |  |
|-----------------------|----------|--|--|--|--|
| Multiple R            | 0,702172 |  |  |  |  |
| R Square              | 0,493045 |  |  |  |  |
| Adjusted R            |          |  |  |  |  |
| Square                | 0,438728 |  |  |  |  |
| Standard Error        | 87,86476 |  |  |  |  |
| Observations          | 32       |  |  |  |  |

|            |    |          |          |          | Significance |
|------------|----|----------|----------|----------|--------------|
|            | df | SS       | MS       | F        | F            |
| Regression | 3  | 210234,8 | 70078,28 | 9,077243 | 0,000233     |
| Residual   | 28 | 216166   | 7720,216 |          |              |
| Total      | 31 | 426400,9 |          |          |              |

|                          |              | Lower   | Upper  |         |         |         |
|--------------------------|--------------|---------|--------|---------|---------|---------|
|                          | Coefficients | Error   | t Stat | P-value | 95%     | 95%     |
| Intercept                | 279,129      | 135,476 | 2,060  | 0,049   | 1,619   | 556,640 |
| GDP in bil. USD          | -0,423       | 0,132   | -3,193 | 0,003   | -0,694  | -0,151  |
| N° of M&A deals          | 0,298        | 0,081   | 3,654  | 0,001   | 0,131   | 0,465   |
| Long-term interest rates |              |         |        |         |         |         |
| _(%)                     | -25,754      | 12,481  | -2,063 | 0,048   | -51,320 | -0,187  |

#### *Interpretation:*

Firstly, the model's statistical significance is indicated by the low p-value, which is significantly less than the 0.05 threshold.

This makes it possible to proceed with the interpretation of the other statistical findings. The number of VC deals is explained for the 49.3% by the number of M&A deals, by the GDP, and by the Long-term interest rates of Netherlands.

All three independent variables are statistically significant given the p-values lower than 0.05.

The number of VC investments in the Netherlands can be predicted by the regression line of the equation:

$$y = -25.754 Long - term interest rates (%) + 0,298 N^{\circ} of M&A deals - 0,423 GDP in bil. USD + 279.129$$

#### Regression VC Equity Value with no lag

| Regression Statistics |          |  |  |  |  |
|-----------------------|----------|--|--|--|--|
| Multiple R            | 0,575766 |  |  |  |  |
| R Square              | 0,331506 |  |  |  |  |
| Adjusted R            |          |  |  |  |  |
| Square                | 0,262352 |  |  |  |  |
| Standard Error        | 1,841069 |  |  |  |  |
| Observations          | 33       |  |  |  |  |

|            |    |          |          |          | Significance |
|------------|----|----------|----------|----------|--------------|
|            | df | SS       | MS       | F        | F            |
| Regression | 3  | 48,74533 | 16,24844 | 4,793707 | 0,007839     |
| Residual   | 29 | 98,29656 | 3,389536 |          |              |
| Total      | 32 | 147,0419 |          |          |              |

|                          | Coefficients | Standard<br>Error | t Stat   | P-value  | Lower<br>95% | Upper<br>95% |
|--------------------------|--------------|-------------------|----------|----------|--------------|--------------|
| Intercept                | 0,411134     | 2,649886          | 0,155152 | 0,877777 | -5,00849     | 5,830758     |
| GDP in bil. USD          | 0,001144     | 0,00276           | 0,414684 | 0,681425 | -0,0045      | 0,006788     |
| M&A Value in bil. USD    | 0,007956     | 0,004768          | 1,668843 | 0,105911 | -0,00179     | 0,017707     |
| Long-term interest rates |              |                   |          |          |              |              |
| (%)                      | -0,19697     | 0,242464          | -0,81238 | 0,42319  | -0,69287     | 0,29892      |

#### *Interpretation:*

Firstly, the model's statistical significance is indicated by the low p-value, which is significantly less than the 0.05 threshold. This makes it possible to proceed with the interpretation of the other statistical findings.

It is possible to affirm that the value of VC investments can be just partially explained by the value of M&A deals, the GDP of the country, and Long-term interest rates with no temporal lag, given the R-squared of 0.3315.

All three independent variables are not statistically significant given the p-values higher than 0.05.

Because the coefficients lack statistical significance, it is prudent to use caution when attempting to use them to create a regression equation. While it is technically possible to create a regression equation using these coefficients, the lack of statistical significance shows that such an equation may not be able to forecast VC equity value using the given independent variables.

The value of VC investments in the Netherlands can be predicted by the regression line of the equation:

# y = -0.197 Long - term interest rates(%) + 0.008 M&A value in bil. USD + 0.001 GDP in bil. USD + 0.411

### ADL Analysis

The tables below show the correlations between the Number of VC deals and N° of VC deals with lag and the correlations between VC Equity Value and VC Equity Value with lag, using a color scale with the highest correlation in green and the lowest correlation in red, and the time lag for which the correlation is highest is highlighted in bold.

Correlation between N° of VC deals and N° of VC deals with lag

| 1 year lag  | 69% | Moderate Correlation |
|-------------|-----|----------------------|
| 2 years lag | 45% | Moderate Correlation |
| 3 years lag | 43% | Moderate Correlation |
| 4 years lag | 20% | Weak Correlation     |
| 5 years lag | 11% | Weak Correlation     |

Correlation between VC Equity Value and VC Equity Value with lag

| 1 year lag  | 52% | Moderate Correlation |
|-------------|-----|----------------------|
| 2 years lag | 51% | Moderate Correlation |
| 3 years lag | 51% | Moderate Correlation |
| 4 years lag | 31% | Moderate Correlation |
| 5 years lag | 14% | Weak Correlation     |

The statistical outputs of the ADL regression are reported below.

ADL Regression  $N^{\circ}$  of VC investment with 1 year lag

| Regression Statistics |          |  |  |  |
|-----------------------|----------|--|--|--|
| Multiple R            | 0.68918  |  |  |  |
| R Square              | 0.474969 |  |  |  |
| Adjusted R Square     | 0.457468 |  |  |  |
| Standard Error        | 86.38548 |  |  |  |
| Observations          | 32       |  |  |  |

|            |    |          |          |          | Significance |
|------------|----|----------|----------|----------|--------------|
|            | df | SS       | MS       | F        | F            |
| Regression | 1  | 202527.3 | 202527.3 | 27.13952 | 1.29E-05     |
| Residual   | 30 | 223873.5 | 7462.451 |          |              |
| Total      | 31 | 426400.9 |          |          |              |

|                                  |              | Standard |          |          |           | Upper    |
|----------------------------------|--------------|----------|----------|----------|-----------|----------|
|                                  | Coefficients | Error    | t Stat   | P-value  | Lower 95% | 95%      |
| Intercept N° of VC deals (1 year | 45.19997     | 24.30239 | 1.859898 | 0.072731 | -4.43214  | 94.83208 |
| lag)                             | 0.754694     | 0.144867 | 5.20956  | 1.29E-05 | 0.458836  | 1.050552 |

ADL Regression 3 years lag (GDP + M&A + Long-term interest rates) and with  $N^{\circ}$  of VC deals with 1 year lag

| Regression Statistics |          |  |  |  |
|-----------------------|----------|--|--|--|
| Multiple R            | 0.797302 |  |  |  |
| R Square              | 0.63569  |  |  |  |
| Adjusted R Square     | 0.581718 |  |  |  |
| Standard Error        | 75.85124 |  |  |  |
| Observations          | 32       |  |  |  |

#### ANOVA

|            |    |          | •       |          | Significance |
|------------|----|----------|---------|----------|--------------|
|            | df | SS       | MS      | F        | F            |
| Regression | 4  | 271058.8 | 67764.7 | 11.77818 | 1.15E-05     |
| Residual   | 27 | 155342.1 | 5753.41 |          |              |
| Total      | 31 | 426400.9 |         |          |              |

|                          |              | Standard |          |          |           | Upper    |
|--------------------------|--------------|----------|----------|----------|-----------|----------|
|                          | Coefficients | Error    | t Stat   | P-value  | Lower 95% | 95%      |
| Intercept                | 133.1804     | 125.2712 | 1.063137 | 0.297137 | -123.855  | 390.2156 |
| N° of VC deals (1 year   |              |          |          |          |           |          |
| lag)                     | 0.491822     | 0.151263 | 3.251432 | 0.003075 | 0.181456  | 0.802189 |
| GDP in bil. USD          | -0.27558     | 0.122871 | -2.2428  | 0.033319 | -0.52769  | -0.02346 |
| Total N° of M&A deals    | 0.218823     | 0.074406 | 2.94094  | 0.006637 | 0.066155  | 0.371491 |
| Long term interest rates |              |          |          |          |           |          |
| (%)                      | -13.2358     | 11.44165 | -1.15681 | 0.257482 | -36.7121  | 10.2405  |

# ADL Regression VC Equity Value 1 year lag

| Regression Statistics |         |  |  |  |
|-----------------------|---------|--|--|--|
| Multiple R            | 0.51846 |  |  |  |
| R Square              | 0.26880 |  |  |  |
| Adjusted R Square     | 0.24443 |  |  |  |
| Standard Error        | 1.88382 |  |  |  |
| Observations          | 32      |  |  |  |

|            |    |         |        |        | Significance |
|------------|----|---------|--------|--------|--------------|
|            | df | SS      | MS     | F      | F            |
| Regression | 1  | 39.138  | 39.138 | 11.029 | 0.002        |
| Residual   | 30 | 106.463 | 3.549  |        |              |
| Total      | 31 | 145.601 |        |        |              |

|                               |              | Standard |        |         |           | Upper  |
|-------------------------------|--------------|----------|--------|---------|-----------|--------|
|                               | Coefficients | Error    | t Stat | P-value | Lower 95% | 95%    |
| Intercept                     | 0.6414       | 0.3760   | 1.7058 | 0.0984  | -0.1265   | 1.4094 |
| VC Equity Value in bil. USD 1 |              |          |        |         |           |        |
| year lag                      | 0.5453       | 0.1642   | 3.3209 | 0.0024  | 0.2099    | 0.8806 |

ADL Regression NO lag (GDP + M&A + Long-term interest rates) and with VC Equity Value with 1 year lag

| Regression Statistics |         |  |  |  |  |  |
|-----------------------|---------|--|--|--|--|--|
| Multiple R            | 0.65813 |  |  |  |  |  |
| R Square              | 0.43313 |  |  |  |  |  |
| Adjusted R Square     | 0.34915 |  |  |  |  |  |
| Standard Error        | 1.74841 |  |  |  |  |  |
| Observations          | 32      |  |  |  |  |  |

#### **ANOVA**

|            |    |         |        |       | Significance |
|------------|----|---------|--------|-------|--------------|
|            | df | SS      | MS     | F     | F            |
| Regression | 4  | 63.064  | 15.766 | 5.157 | 0.003        |
| Residual   | 27 | 82.537  | 3.057  |       |              |
| Total      | 31 | 145.601 |        |       |              |

|                               |              | Standard |         |         |           | Upper  |
|-------------------------------|--------------|----------|---------|---------|-----------|--------|
|                               | Coefficients | Error    | t Stat  | P-value | Lower 95% | 95%    |
| Intercept                     | 1.3042       | 2.5548   | 0.5105  | 0.6138  | -3.9377   | 6.5461 |
| VC Equity Value in bil. USD 1 |              |          |         |         |           |        |
| year lag                      | 0.3773       | 0.1705   | 2.2134  | 0.0355  | 0.0275    | 0.7271 |
| GDP in bil. USD               | -0.0004      | 0.0027   | -0.1548 | 0.8782  | -0.0060   | 0.0051 |
| Total M&A Value in bil. USD   | 0.0070       | 0.0045   | 1.5394  | 0.1353  | -0.0023   | 0.0163 |
| Long term interest rates (%)  | -0.2429      | 0.2376   | -1.0222 | 0.3158  | -0.7304   | 0.2446 |

## Interpretation of results

The Netherlands have a moderate VC market maturity. The regression models show good value of R-squared in terms of N° of VC Investments (49.3%), and weak value in terms of VC Equity Value (33.2%).

The ADL analysis on the N° of VC Investments ameliorate the R-squared to 63.6%. Only Long-term interest rates are not significant.

The ADL analysis on the VC Equity Value significantly ameliorate the R-squared to 43.3%, but losing significance of M&A Value, GDP and Long-term interest rates.

## A9. Japan

## **Preliminary Analysis**

Figure A9.1 compares the number of M&A transactions with the number of VC transactions in Japan over the years.

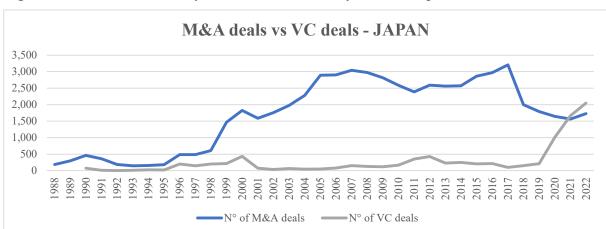



Figure A9.1 - M&A number of deals vs VC number of deals in Japan

Source: Own elaboration based on data from Refinitiv Eikon (previously Thomson Eikon, Thomson One), now called LSEG Data & Analytics, and from IMAA

Figure A9.2 shows the trends of M&A Value (primary axis on the left) and VC Equity Value (secondary axis on the right) in Japan over the years.

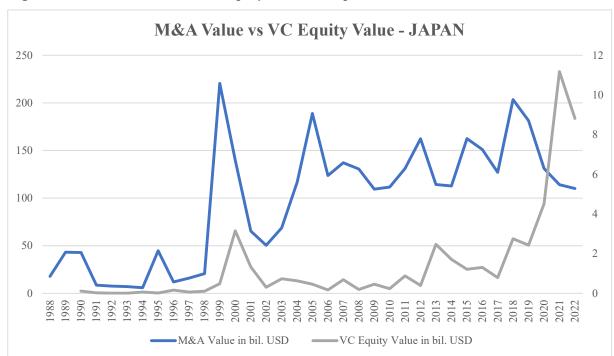



Figure A9.2 - M&A Value vs VC Equity Value in Japan

Source: Own elaboration based on data from Refinitiv Eikon (previously Thomson Eikon, Thomson One), now called LSEG Data & Analytics, and from IMAA

Figure A9.3 below compares the annual development of GDP (primary axis on the left) with that of long-term interest rates (secondary axis on the right) in Japan.

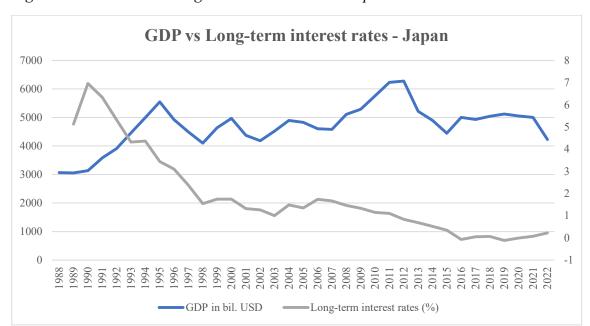



Figure A9.3 - GDP and Long-term interest rates in Japan

Source: Own elaboration based on World Bank's data and OECD statistics

The tables below show the correlations between the Number of M&A Deals and Number of VC Investments and the correlations between M&A Value and VC Equity Value, using a color scale with the highest correlation in green and the lowest correlation in red, and the time lag for which the correlation is highest is highlighted in bold.

Correlation between N° of M&A and N° of VC Investments

| Correlation with no Lag | 5%  | Weak Correlation     |
|-------------------------|-----|----------------------|
| Correlation 1-year lag  | 5%  | Weak Correlation     |
| Correlation 2-year lag  | 9%  | Weak Correlation     |
| Correlation 3-year lag  | 20% | Weak Correlation     |
| Correlation 4-year lag  | 33% | Moderate Correlation |
| Correlation 5-year lag  | 45% | Moderate Correlation |

#### Correlation between M&A Value and VC Equity Value

| Correlation with no Lag | 25% | Weak Correlation     |
|-------------------------|-----|----------------------|
| Correlation 1-year lag  | 38% | Moderate Correlation |
| Correlation 2-year lag  | 43% | Moderate Correlation |
| Correlation 3-year lag  | 47% | Moderate Correlation |
| Correlation 4-year lag  | 38% | Moderate Correlation |
| Correlation 5-year lag  | 34% | Moderate Correlation |

## Regression Analysis

The statistical outputs of the regression, the interpretation of the results and finally the equation of the regression line were then reported.

Regression on Number of VC Investments with a 5-year lag

| Regression Statistics |          |  |  |  |
|-----------------------|----------|--|--|--|
| Multiple R            | 0,4597   |  |  |  |
| R Square              | 0,211324 |  |  |  |
| Adjusted R            |          |  |  |  |
| Square                | 0,116683 |  |  |  |
| Standard Error        | 442,175  |  |  |  |
| Observations          | 29       |  |  |  |

#### ANOVA

|            |    |         |          |        | Significance   |
|------------|----|---------|----------|--------|----------------|
|            | df | SS      | MS       | F      | $\overline{F}$ |
| Regression | 3  | 1309721 | 436573,8 | 2,2329 | 0,109231       |
| Residual   | 25 | 4887967 | 195518,7 |        |                |
| Total      | 28 | 6197689 |          |        |                |

|                          | Standard<br>Coefficients Error t Stat P-value |         |        | Lower<br>95% | Upper<br>95% |          |
|--------------------------|-----------------------------------------------|---------|--------|--------------|--------------|----------|
|                          |                                               |         |        |              | _            |          |
| Intercept                | 648,119                                       | 835,026 | 0,776  | 0,445        | 1071,650     | 2367,888 |
| GDP in bil. USD          | -0,102                                        | 0,141   | -0,723 | 0,476        | -0,392       | 0,188    |
| N° of M&A deals          | 0,147                                         | 0,127   | 1,163  | 0,256        | -0,113       | 0,408    |
| Long-term interest rates |                                               |         |        |              |              |          |
| (%)                      | -51,082                                       | 83,644  | -0,611 | 0,547        | -223,349     | 121,185  |

## *Interpretation:*

None of the independent variables (GDP, number of M&A deals, long-term interest rates) appear to have statistically significant associations with the number of Venture Capital investments, as evidenced by p-values greater than 0.05.

The total regression model is similarly not statistically significant, implying that the combined effect of the independent variables does not adequately explain the variation in the number of VC investments.

This is why it is not recommended to proceed with writing the linear regression line equation.

## Regression VC Equity Value with 3-year lag

| Regression Statistics |          |  |  |  |  |
|-----------------------|----------|--|--|--|--|
| Multiple R            | 0,517644 |  |  |  |  |
| R Square              | 0,267956 |  |  |  |  |
| Adjusted R            |          |  |  |  |  |
| Square                | 0,186617 |  |  |  |  |
| Standard Error        | 2,274761 |  |  |  |  |
| Observations          | 31       |  |  |  |  |

#### ANOVA

|            |    |          |          |          | Significance |
|------------|----|----------|----------|----------|--------------|
|            | df | SS       | MS       | F        | F            |
| Regression | 3  | 51,13998 | 17,04666 | 3,294337 | 0,03557      |
| Residual   | 27 | 139,7125 | 5,174535 |          |              |
| Total      | 30 | 190,8524 |          |          |              |

|                          | Standard     |       |        |         | Lower  | Upper  |
|--------------------------|--------------|-------|--------|---------|--------|--------|
|                          | Coefficients | Error | t Stat | P-value | 95%    | 95%    |
| Intercept                | 3,422        | 3,990 | 0,858  | 0,399   | -4,765 | 11,609 |
| GDP in bil. USD          | 0,000        | 0,001 | -0,513 | 0,612   | -0,002 | 0,001  |
| M&A Value in bil. USD    | 0,009        | 0,009 | 1,038  | 0,308   | -0,009 | 0,028  |
| Long-term interest rates |              |       |        |         |        |        |
| (%)                      | -0,504       | 0,348 | -1,451 | 0,158   | -1,217 | 0,209  |

## *Interpretation:*

Firstly, the model's statistical significance is indicated by the p-value of 0.0356, which is less than the 0.05 threshold. This makes it possible to proceed with the interpretation of the other statistical findings.

It is possible to affirm that the value of VC investments can be just partially explained by the value of M&A deals, the GDP of the country, and Long-term interest rates with no temporal lag, given the R-squared of 0.268.

All three independent variables are not statistically significant given the p-values higher than 0.05.

Because the coefficients lack statistical significance, it is prudent to use caution when attempting to use them to create a regression equation. While it is technically possible to create a regression equation using these coefficients, the lack of statistical significance shows that such an equation may not be able to forecast VC equity value using the given independent variables.

The value of VC investments in Japan can be predicted by the regression line of the equation:

$$y = -0.504 Long - term interest rates(\%) + 0.009 M&A value in bil. USD + 0.0004 GDP in bil. USD + 3.422$$

## ADL Analysis

The tables below show the correlations between the Number of VC deals and N° of VC deals with lag and the correlations between VC Equity Value and VC Equity Value with lag, using a color scale with the highest correlation in green and the lowest correlation in red, and the time lag for which the correlation is highest is highlighted in bold.

Correlation between N° of VC deals and N° of VC deals with lag

| 1 year lag  | 90% | Strong Correlation   |
|-------------|-----|----------------------|
| 2 years lag | 65% | Moderate Correlation |
| 3 years lag | 9%  | Weak Correlation     |
| 4 years lag | 2%  | Weak Correlation     |
| 5 years lag | -1% | Anticorrelation      |

Correlation between VC Equity Value and VC Equity Value with lag

| 1 year lag  | 79% | Strong Correlation   |
|-------------|-----|----------------------|
| 2 years lag | 67% | Moderate Correlation |
| 3 years lag | 57% | Moderate Correlation |
| 4 years lag | 37% | Moderate Correlation |
| 5 years lag | 25% | Weak Correlation     |

The statistical outputs of the ADL regression are reported below.

ADL Regression  $N^{\circ}$  of VC investment with 1 year lag

| Regression Statistics |          |  |  |  |  |
|-----------------------|----------|--|--|--|--|
| Multiple R            | 0.902743 |  |  |  |  |
| R Square              | 0.814945 |  |  |  |  |
| Adjusted R Square     | 0.808776 |  |  |  |  |
| Standard Error        | 199.4253 |  |  |  |  |
| Observations          | 32       |  |  |  |  |

## <u>ANOVA</u>

|            |    |         |          |          | Significance |
|------------|----|---------|----------|----------|--------------|
|            | df | SS      | MS       | F        | F            |
| Regression | 1  | 5254228 | 5254228  | 132.1138 | 1.62E-12     |
| Residual   | 30 | 1193114 | 39770.46 |          |              |
| Total      | 31 | 6447342 |          |          |              |

|                                     |              | Standard |          |          |           | Upper    |
|-------------------------------------|--------------|----------|----------|----------|-----------|----------|
|                                     | Coefficients | Error    | t Stat   | P-value  | Lower 95% | 95%      |
| Intercept<br>N° of VC deals (1 year | 1.988539     | 42.91403 | 0.046338 | 0.963348 | -85.6536  | 89.63068 |
| lag)                                | 1.269087     | 0.110412 | 11.49408 | 1.62E-12 | 1.043595  | 1.494579 |

# ADL Regression 5 years lag (GDP + M&A + Long-term interest rates) and with $N^{\circ}$ of VC deals with 1 year lag

| Regression Statistics |          |  |  |  |
|-----------------------|----------|--|--|--|
| Multiple R            | 0.915014 |  |  |  |
| R Square              | 0.837251 |  |  |  |
| Adjusted R Square     | 0.810126 |  |  |  |
| Standard Error        | 205.0071 |  |  |  |
| Observations          | 29       |  |  |  |

#### ANOVA

|            |    |         |          |         | Significance |
|------------|----|---------|----------|---------|--------------|
|            | df | SS      | MS       | F       | F            |
| Regression | 4  | 5189019 | 1297255  | 30.8665 | 3.81E-09     |
| Residual   | 24 | 1008670 | 42027.92 |         |              |
| Total      | 28 | 6197689 |          |         |              |

|                          |              | Standard |          |          |           | Upper    |
|--------------------------|--------------|----------|----------|----------|-----------|----------|
|                          | Coefficients | Error    | t Stat   | P-value  | Lower 95% | 95%      |
| Intercept                | 595.171      | 387.1854 | 1.537173 | 0.137331 | -203.94   | 1394.282 |
| N° of VC deals (1 year   |              |          |          |          |           |          |
| lag)                     | 1.221013     | 0.12709  | 9.607438 | 1.07E-09 | 0.958711  | 1.483315 |
| GDP in bil. USD          | -0.11895     | 0.065375 | -1.81949 | 0.081335 | -0.25388  | 0.015978 |
| Total N° of M&A deals    | 0.03078      | 0.059898 | 0.51387  | 0.612042 | -0.09284  | 0.154403 |
| Long term interest rates |              |          |          |          |           |          |
| (%)                      | -32.1118     | 38.83017 | -0.82698 | 0.416395 | -112.253  | 48.02976 |

# ADL Regression VC Equity Value 1 year lag

| Regression Statistics |          |
|-----------------------|----------|
| Multiple R            | 0.785823 |
| R Square              | 0.617517 |
| Adjusted R Square     | 0.604768 |
| Standard Error        | 1.568937 |
| Observations          | 32       |

#### ANOVA

|            |    |          |         |         | Significanc |
|------------|----|----------|---------|---------|-------------|
|            | df | SS       | MS      | F       | e F         |
|            |    |          | 119.225 |         | _           |
| Regression | 1  | 119.2255 | 5       | 48.4349 | 9.9E-08     |
| _          |    |          | 2.46156 |         |             |
| Residual   | 30 | 73.84685 | 2       |         |             |
| Total      | 31 | 193.0724 |         |         |             |

|                               | Coefficient<br>s | Standard<br>Error | t Stat  | P-value | Lower 95% | Upper<br>95% |
|-------------------------------|------------------|-------------------|---------|---------|-----------|--------------|
|                               |                  |                   | 1.12687 | 0.26872 |           | 1.01817      |
| Intercept                     | 0.362041         | 0.321278          | 7       | 8       | -0.2941   | 8            |
| VC Equity Value in bil. USD 1 |                  |                   | 6.95951 |         |           | 1.19794      |
| year lag                      | 0.926165         | 0.133079          | 9       | 9.9E-08 | 0.654382  | 8            |

# ADL Regression 3 years lag (GDP + M&A + Long-term interest rates) and with VC Equity Value with 1 year lag

| Regression Statistics |          |  |  |  |
|-----------------------|----------|--|--|--|
| Multiple R            | 0.797031 |  |  |  |
| R Square              | 0.635259 |  |  |  |
| Adjusted R Square     | 0.579145 |  |  |  |
| Standard Error        | 1.636268 |  |  |  |
| Observations          | 31       |  |  |  |

#### ANOVA

|            |    |          |          |          | Significance |
|------------|----|----------|----------|----------|--------------|
|            | df | SS       | MS       | F        | F            |
| Regression | 4  | 121.2407 | 30.31017 | 11.32086 | 1.87E-05     |
| Residual   | 26 | 69.61174 | 2.677375 |          |              |
| Total      | 30 | 190.8524 |          |          |              |

|                               |              | Standard |          |          |           | Upper    |
|-------------------------------|--------------|----------|----------|----------|-----------|----------|
|                               | Coefficients | Error    | t Stat   | P-value  | Lower 95% | 95%      |
| Intercept                     | 1.181907     | 2.903404 | 0.407076 | 0.687284 | -4.78613  | 7.14994  |
| VC Equity Value in bil. USD 1 |              |          |          |          |           |          |
| year lag                      | 0.824136     | 0.161062 | 5.116897 | 2.47E-05 | 0.493069  | 1.155203 |
| GDP in bil. USD               | -0.00015     | 0.000523 | -0.28275 | 0.779608 | -0.00122  | 0.000926 |
| Total M&A Value in bil. USD   | 0.003483     | 0.006594 | 0.528168 | 0.601862 | -0.01007  | 0.017036 |
| Long term interest rates (%)  | -0.15372     | 0.259198 | -0.59307 | 0.558255 | -0.68651  | 0.379066 |

## Interpretation of results

Japan has a weak VC market maturity. The regression models show very low values of R-squared, both in terms of  $N^{\circ}$  of VC Investments (21.1%), as well as in terms of VC Equity Value (26.8%).

The ADL analysis on the N° of VC Investments greatly ameliorate the R-squared to 83.7%. M&A deals and Long-term interest rates are not significant.

The ADL analysis on the VC Equity Value significantly ameliorate the R-squared to 63.5%, but losing significance of M&A Value, GDP and Long-term interest rates.

#### A10. Canada

#### **Preliminary Analysis**

Figure A10.1 compares the number of M&A transactions with the number of VC transactions in Canada over the years.

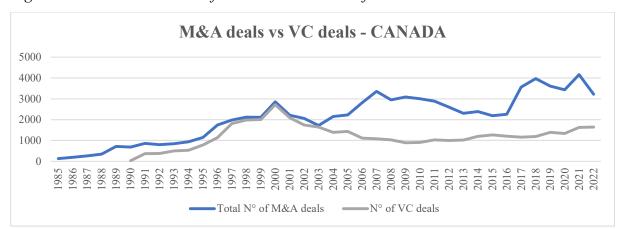



Figure A10.1 - M&A number of deals vs VC number of deals in Canada

Source: Own elaboration based on data from Refinitiv Eikon (previously Thomson Eikon, Thomson One), now called LSEG Data & Analytics, and from IMAA

Figure A10.2 shows the trends of M&A Value (primary axis on the left) and VC Equity Value (secondary axis on the right) in Canada over the years.

M&A Value vs VC Equity Value - CANADA 2007 2008 2009 996 997 998 2004 2005 Total M&A Value in bil. USD VC Equity Value in bil. USD

Figure A10.2 - M&A Value vs VC Equity Value in Canada

Source: Own elaboration based on data from Refinitiv Eikon (previously Thomson Eikon, Thomson One), now called LSEG Data & Analytics, and from IMAA

Figure A10.3 below compares the annual development of GDP (primary axis on the left) with that of long-term interest rates (secondary axis on the right) in Canada.

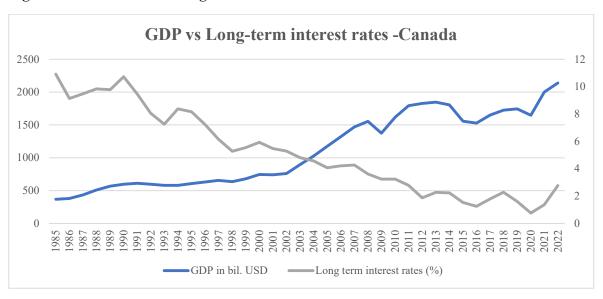



Figure A10.3 - GDP and Long-term interest rates in Canada

Source: Own elaboration based on World Bank's data and OECD statistics

The tables below show the correlations between the Number of M&A Deals and Number of VC Investments and the correlations between M&A Value and VC Equity Value, using a color scale with the highest correlation in green and the lowest correlation in red, and the time lag for which the correlation is highest is highlighted in bold.

## Correlation between N° of M&A and N° of VC Investments

| Correlation with no Lag | 43% | Moderate Correlation |
|-------------------------|-----|----------------------|
| Correlation 1-year lag  | 34% | Moderate Correlation |
| Correlation 2-year lag  | 38% | Moderate Correlation |
| Correlation 3-year lag  | 36% | Moderate Correlation |
| Correlation 4-year lag  | 32% | Moderate Correlation |
| Correlation 5-year lag  | 25% | Weak Correlation     |

## Correlation between M&A Value and VC Equity Value

| Correlation with no Lag | 75% | Strong Correlation   |
|-------------------------|-----|----------------------|
| Correlation 1-year lag  | 58% | Moderate Correlation |
| Correlation 2-year lag  | 43% | Moderate Correlation |
| Correlation 3-year lag  | 53% | Moderate Correlation |
| Correlation 4-year lag  | 43% | Moderate Correlation |
| Correlation 5-year lag  | 36% | Moderate Correlation |

## Regression Analysis

The statistical outputs of the regression, the interpretation of the results and finally the equation of the regression line were then reported.

## Regression on Number of VC Investments with no lag

| Regression S   | tatistics |
|----------------|-----------|
| Multiple R     | 0,74515   |
| R Square       | 0,555248  |
| Adjusted R     |           |
| Square         | 0,509239  |
| Standard Error | 390,9874  |
| Observations   | 33        |

#### ANOVA

|            | df | SS      | MS       | F       | Significance F |
|------------|----|---------|----------|---------|----------------|
| Regression | 3  | 5534682 | 1844894  | 12,0683 | 2,66012E-05    |
| Residual   | 29 | 4433262 | 152871,1 |         |                |
| Total      | 32 | 9967944 |          |         |                |

|                          |              | Standard |        |         |           | Upper    |
|--------------------------|--------------|----------|--------|---------|-----------|----------|
|                          | Coefficients | Error    | t Stat | P-value | Lower 95% | 95%      |
| Intercept                | 2729,063     | 673,546  | 4,052  | 0,000   | 1351,507  | 4106,620 |
| GDP in bil. USD          | -1,396       | 0,284    | -4,908 | 0,000   | -1,977    | -0,814   |
| Total N° of M&A deals    | 0,438        | 0,133    | 3,280  | 0,003   | 0,165     | 0,711    |
| Long term interest rates |              |          |        |         |           |          |
| (%)                      | -188,031     | 62,034   | -3,031 | 0,005   | -314,905  | -61,157  |

## *Interpretation:*

Firstly, the model's statistical significance is indicated by the low p-value, which is significantly less than the 0.05 threshold.

This makes it possible to proceed with the interpretation of the other statistical findings. The r square has a good value, meaning that the number of VC deals is explained for the 55.5% by the number of M&A deals, by the GDP, and by the Long-term interest rates of Canada.

All three independent variables are statistically significant given the p-values lower than 0.05.

The number of VC investments in Canada can be predicted by the regression line of the equation:

$$y = -188.031 Long - term interest rates (\%) + 0,438 N^{\circ} of M&A deals - 1.396 GDP in bil. USD + 2729.063$$

## Regression VC Equity Value with no lag

| Regression S   | tatistics |
|----------------|-----------|
| Multiple R     | 0,760888  |
| R Square       | 0,578951  |
| Adjusted R     |           |
| Square         | 0,535395  |
| Standard Error | 5,043173  |
| Observations   | 33        |

ANOVA

|            |    |          |          |          | Significance |
|------------|----|----------|----------|----------|--------------|
|            | df | SS       | MS       | F        | F            |
|            |    |          |          |          | 1,22496E-    |
| Regression | 3  | 1014,181 | 338,0603 | 13,29188 | 05           |
| Residual   | 29 | 737,5742 | 25,43359 |          |              |
| Total      | 32 | 1751,755 |          |          |              |

| -                        |              | Standard |        |         |           | Upper |
|--------------------------|--------------|----------|--------|---------|-----------|-------|
|                          | Coefficients | Error    | t Stat | P-value | Lower 95% | 95%   |
| Intercept                | -11,142      | 7,397    | -1,506 | 0,143   | -26,271   | 3,987 |
| GDP in bil. USD          | 0,005        | 0,004    | 1,223  | 0,231   | -0,003    | 0,013 |
| Total M&A Value in bil.  |              |          |        |         |           |       |
| USD                      | 0,051        | 0,014    | 3,799  | 0,001   | 0,024     | 0,079 |
| Long term interest rates |              |          |        |         |           |       |
| (%)                      | 0,818        | 0,725    | 1,128  | 0,269   | -0,666    | 2,302 |

#### *Interpretation:*

Firstly, the model's statistical significance is indicated by the low p-value, which is significantly less than the 0.05 threshold. This makes it possible to proceed with the interpretation of the other statistical findings.

It is possible to affirm that the value of VC investments can be explained by the value of M&A deals, the GDP of the country, and Long-term interest rates with no temporal lag, given the R-squared of 0.579.

Among the three independent variables, just the value of M&A investments is statistically significant given the p-values lower than 0.05.

Because some coefficients lack statistical significance, it is prudent to use caution when attempting to use them to create a regression equation. While it is technically possible to create a regression equation using these coefficients, the lack of statistical significance shows that such an equation may not be able to forecast VC equity value using the given independent variables.

The value of VC investments in the Canada can be predicted by the regression line of the equation:

y = 0.818 Long - term interest rates(%) + 0.051 M&A value in bil. USD + 0.005 GDP in bil. USD - 11.142

## ADL Analysis

The tables below show the correlations between the Number of VC deals and N° of VC deals with lag and the correlations between VC Equity Value and VC Equity Value with lag, using a color scale with the highest correlation in green and the lowest correlation in red, and the time lag for which the correlation is highest is highlighted in bold.

Correlation between N° of VC deals and N° of VC deals with lag

| 1 year lag  | 88%  | Strong Correlation   |
|-------------|------|----------------------|
| 2 years lag | 73%  | Strong Correlation   |
| 3 years lag | 70%  | Moderate Correlation |
| 4 years lag | 21%  | Weak Correlation     |
| 5 years lag | -11% | Anticorrelation      |

Correlation between VC Equity Value and VC Equity Value with lag

| 1 year lag  | 71% | Strong Correlation   |
|-------------|-----|----------------------|
| 2 years lag | 78% | Strong Correlation   |
| 3 years lag | 68% | Moderate Correlation |
| 4 years lag | 51% | Moderate Correlation |
| 5 years lag | 37% | Moderate Correlation |

The statistical outputs of the ADL regression are reported below.

ADL Regression N° of VC investment with 1 year lag

| Regression Statistics |          |  |  |  |
|-----------------------|----------|--|--|--|
| Multiple R            | 0.884499 |  |  |  |
| R Square              | 0.782339 |  |  |  |
| Adjusted R Square     | 0.775084 |  |  |  |
| Standard Error        | 247.9588 |  |  |  |
| Observations          | 32       |  |  |  |

ANOVA

|            |    |         |          |          | Significance |
|------------|----|---------|----------|----------|--------------|
|            | df | SS      | MS       | F        | F            |
| Regression | 1  | 6629724 | 6629724  | 107.8292 | 1.88827E-11  |
| Residual   | 30 | 1844508 | 61483.59 |          |              |
| Total      | 31 | 8474232 |          |          |              |

|                                  |              | Standard |          |          |             | Upper    |
|----------------------------------|--------------|----------|----------|----------|-------------|----------|
|                                  | Coefficients | Error    | t Stat   | P-value  | Lower 95%   | 95%      |
| Intercept N° of VC deals (1 year | 266.3883     | 106.0477 | 2.511966 | 0.017618 | 49.80989532 | 482.9666 |
| lag)                             | 0.822885     | 0.079245 | 10.38408 | 1.89E-11 | 0.661045388 | 0.984725 |

ADL Regression NO lag (GDP + M&A + Long-term interest rates) and with  $N^{\circ}$  of VC deals with 1 year lag

| Regression Statistics |          |  |  |  |  |
|-----------------------|----------|--|--|--|--|
| Multiple R            | 0.899759 |  |  |  |  |
| R Square              | 0.809566 |  |  |  |  |
| Adjusted R Square     | 0.781354 |  |  |  |  |
| Standard Error        | 244.4782 |  |  |  |  |
| Observations          | 32       |  |  |  |  |

## ANOVA

|            |    |         |          |          | Significance |
|------------|----|---------|----------|----------|--------------|
|            | df | SS      | MS       | F        | F            |
| Regression | 4  | 6860453 | 1715113  | 28.69542 | 2.25501E-09  |
| Residual   | 27 | 1613779 | 59769.58 |          |              |
| Total      | 31 | 8474232 |          |          |              |

|                          |              | Standard |          |          |              | Upper    |
|--------------------------|--------------|----------|----------|----------|--------------|----------|
|                          | Coefficients | Error    | t Stat   | P-value  | Lower 95%    | 95%      |
| Intercept                | 293.8463     | 565.4547 | 0.519664 | 0.607532 | -866.3708733 | 1454.064 |
| N° of VC deals (1 year   |              |          |          |          |              |          |
| lag)                     | 0.73553      | 0.107758 | 6.825742 | 2.48E-07 | 0.514428579  | 0.956632 |
| GDP in bil. USD          | -0.27521     | 0.247673 | -1.11116 | 0.276295 | -0.783389096 | 0.232978 |
| Total N° of M&A deals    | 0.16751      | 0.092271 | 1.815423 | 0.080582 | -0.021813516 | 0.356834 |
| Long term interest rates |              |          |          |          |              |          |
| (%)                      | 2.963655     | 50.94911 | 0.058169 | 0.954042 | -101.5752838 | 107.5026 |

## ADL Regression VC Equity Value 2 years lag

| Regression Statistics |          |  |  |  |  |
|-----------------------|----------|--|--|--|--|
| Multiple R            | 0.776027 |  |  |  |  |
| R Square              | 0.602218 |  |  |  |  |
| Adjusted R Square     | 0.588501 |  |  |  |  |
| Standard Error        | 4.809889 |  |  |  |  |
| Observations          | 31       |  |  |  |  |

# ANOVA

|            |    |          |          |          | Significance |
|------------|----|----------|----------|----------|--------------|
|            | df | SS       | MS       | F        | F            |
| Regression | 1  | 1015.727 | 1015.727 | 43.90427 | 2.90496E-07  |
| Residual   | 29 | 670.9159 | 23.13503 |          |              |
| Total      | 30 | 1686.642 |          |          |              |

|                                               | Coefficients | Standard<br>Error | t Stat   | P-value  | Lower 95%   |
|-----------------------------------------------|--------------|-------------------|----------|----------|-------------|
| Intercept VC Equity Value in bil. USD 2 years | -0.64497     | 1.345129          | -0.47948 | 0.635191 | 3.396065133 |
| lag                                           | 1.624037     | 0.2451            | 6.62603  | 2.9E-07  | 1.122751943 |

ADL Regression NO lag (GDP + M&A + Long-term interest rates) and with VC Equity Value with 2 years lag

| Regression Statistics |          |
|-----------------------|----------|
| Multiple R            | 0.8958   |
| R Square              | 0.802458 |
| Adjusted R Square     | 0.772066 |
| Standard Error        | 3.579769 |
| Observations          | 31       |

#### **ANOVA**

|            |    |          |          |          | Significance |
|------------|----|----------|----------|----------|--------------|
|            | df | SS       | MS       | F        | F            |
| Regression | 4  | 1353.459 | 338.3648 | 26.40433 | 7.9745E-09   |
| Residual   | 26 | 333.1834 | 12.81474 |          |              |
| Total      | 30 | 1686.642 |          |          |              |

|                                         |              | Standard |          |          |             | Upper    |
|-----------------------------------------|--------------|----------|----------|----------|-------------|----------|
|                                         | Coefficients | Error    | t Stat   | P-value  | Lower 95%   | 95%      |
| Intercept VC Equity Value in bil. USD 2 | -20.3415     | 6.422178 | -3.16739 | 0.003906 | 33.54250855 | -7.14056 |
| years lag                               | 1.337765     | 0.239118 | 5.594572 | 7.05E-06 | 0.846250262 | 1.82928  |
| GDP in bil. USD                         | 0.00541      | 0.003111 | 1.738736 | 0.093911 | 0.000985648 | 0.011805 |
| Total M&A Value in bil. USD             | 0.038661     | 0.009906 | 3.902726 | 0.000602 | 0.018298383 | 0.059023 |
| Long term interest rates (%)            | 1.964578     | 0.693733 | 2.831894 | 0.008816 | 0.538589406 | 3.390566 |

## Interpretation of results

Canada has a strong VC market maturity. The regression models show good values of R-squared, both in terms of N° of VC Investments (55.5%), as well as in terms of VC Equity Value (57.9%).

The ADL analysis on the N° of VC Investments significantly ameliorate the R-squared to 81.0%. N° of M&A deals, GDP and Long-term interest rates are not significant.

The ADL analysis on the VC Equity Value significantly improve the R-squared to 80.2%. In this case, only GDP is not significant enough.