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Abstract 

This study conducted a sensitivity analysis on key parameters within the life cycle assessment 

(LCA) model of Rainbow’s Refurbishing of Electronic Devices methodology. Using verified data 

from twelve refurbishment projects covering six device types (smartphones, gaming consoles, 

laptops, PCs, tablets, and screens), the analysis identified which parameters most strongly 

influence greenhouse gas (GHG) emissions in baseline and project scenarios. Results showed 

that in the baseline scenario, the lifetime ratio between refurbished and new devices was the 

most influential parameter, with an average importance of 4,857,903 kg CO2 eq, followed by 

market share of refurbished devices (mean 𝜇𝑖
∗ of 302,318 kg CO2 eq), while recycling shares 

were negligible (mean 𝜇𝑖
∗ of 4,268 kg CO2 eq).  In the project scenario, residual value dominated 

for most devices, obtaining an average importance of 1,139,103 kg CO2 eq for all device types. 

Full and light refurbishment shares also had strong influence (mean 𝜇𝑖
∗ of 71,504 and 37,351 kg 

CO2 eq, on average, respectively), with their ranges amplifying sensitivity, particularly for 

monitors. Transport parameters had device-specific effects: truck distance averaged 27,339 kg 

CO2 eq in importance, whereas air distance reached 59,995 kg CO2 eq, largely due to the wide 

range of distances and the high number of devices collected where it dominated. Finally, 

recycling shares were consistently the least influential project parameter (average 𝜇𝑖
∗ of 10,910 

kg CO2 eq), reflecting their lower environmental footprint and narrower range. These results 

highlight the importance of accurate data on lifetimes, residual values, and refurbishment 

shares, while market shares, transport, and recycling parameters contribute comparatively 

lower uncertainty and therefore do not require the same level of precision.  
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Nomenclature 

For clarity and ease of reference, the following table lists the acronyms, symbols, and key 

terms used throughout this study, along with their definitions. This section is intended to 

help readers quickly understand the terminology and ensure consistent interpretation of the 

methodology and results. 

Acronym  Definition 

𝐸𝑎𝑣𝑜𝑖𝑑𝑒𝑑 Avoided Emissions 

𝐸𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 Baseline Emissions 

𝐸𝑝𝑟𝑜𝑗𝑒𝑐𝑡 Project Emissions 

GHG Greenhouse Gas 

LCA Life Cycle Assessment 

PC Portable Computer 

RCC Rainbow Carbon Credits 
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I. Introduction 

A. Company Description 

Rainbow is a French mission-driven company (société par actions simplifiée à mission) founded 

in 2021 and develops and operates a voluntary carbon crediting standard for industrial green 

projects. Headquartered in Paris with branches in Lyon and Berlin, the company combines 

environmental responsibility with technological innovation to support the transition toward a 

low-carbon economy. Its core mission is to create measurable climate impact by certifying 

sustainability-centric projects that reduce or remove greenhouse gas emissions, while ensuring 

transparency, scientific rigor, and integrity throughout the process [1]. 

At the heart of its work, Rainbow operates the Rainbow Standard, a voluntary European 

carbon crediting program designed for industrial decarbonization and removal projects. The 

program issues RCCs, which represent verified reductions or removals of greenhouse gas 

emissions. By focusing on industrial applications, the Rainbow Standard provides project 

developers with a credible pathway to certification and gives credit buyers confidence in the 

integrity and environmental value of the units they purchase [2]. 

Rainbow also manages a digital infrastructure that underpins the credibility of the standard. 

The Rainbow Registry serves as a public platform where every project and carbon credit can 

be traced throughout its entire lifecycle, from issuance to retirement, ensuring transparency 

and preventing risks such as double counting. Complementing this, the Impact Certification 

Platform provides project developers and accredited third-party validators with tools to 

conduct assessments, validations, and certifications in a consistent and reliable way. A crucial 

part of this infrastructure is the Monitoring, Reporting, and Verification (MRV) system, where 

the LCA of the projects are implemented that ensure accurate, independently verified, and 

transparently reported carbon credit calculations. This system provides the scientific backbone 

of the Rainbow Standard, guaranteeing that each credit issued is based on rigorous and 

verifiable data [3]. 

The credibility of Rainbow’s approach is strengthened by its recognized accreditations. In May 

2024, it became the first program focused on circular economy projects to receive full 

endorsement from the International Carbon Reduction and Offset Accreditation (ICROA). 

This recognition places Rainbow among a very limited group of only twelve endorsed programs 

worldwide, demonstrating its alignment with international best practices. Furthermore, its 

methodologies are consistent with ISO standards for greenhouse gas accounting and 

monitoring, which highlights its commitment to scientific rigor and methodological robustness 

[1]. 

Rainbow aims to continually broaden the reach of its standard and infrastructure, developing 

new methodologies and strengthening monitoring systems to accelerate industrial 

decarbonization. By scaling across Europe and beyond, the company seeks to build trust in 

carbon markets and contribute meaningfully to global net-zero goals. 
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B. Context of the Study 

To operationalize its framework, Rainbow has developed a set of methodologies that project 

developers can use to quantify emission reductions. As of 2025, the program offers five 

methodologies spanning different sectors as shown in Figure 1.  

 

Figure 1. List of Rainbow's methodologies as of 2025 [4]. 

Each of these methodologies is aligned with ISO standards for greenhouse gas accounting and 

undergoes regular updates to maintain consistency with scientific and policy developments.  

Among Rainbow’s methodologies, the Refurbishing of Electronic Devices methodology is the 

most widely applied, with the largest number of validated projects (12°. It targets the extension 

of the lifetime of consumer electronics, such as smartphones, laptops, and tablets, that would 

otherwise enter waste streams or require energy-intensive recycling and disposal processes. In 

practice, the methodology involves restoring previously owned devices to a fully functional 

state through a sequence of steps including diagnosis, cleaning, repairs, replacement of parts, 

and performance testing [5]. 

The urgency of such an approach is underscored by the environmental footprint of small IT 

and telecommunication equipment, which accounts for roughly 2% of global GHG emissions 

[6] and is among the fastest growing sectors in emissions [7]. Beyond climate impacts, these 

devices depend on the extraction of rare minerals and critical materials, while also contributing 

to one of the most rapidly expanding streams of hazardous waste.  

Furthermore, the majority of environmental impacts attributed to electronic devices occur 

during the manufacturing stage [8], making this phase a primary driver of emissions. Extending 

device lifetimes therefore represents a major lever for reducing GHG emissions, since fewer new 

devices need to be produced. Repair and refurbishing directly address this challenge by 

postponing end-of-life treatment and reducing demand for new manufacturing. Extending the 

lifespan of devices not only avoids production-related emissions but also mitigates the 

generation of electronic waste. While refurbishment is increasingly gaining mainstream 

acceptance among consumers, it still faces barriers such as high repair costs, market 

fragmentation, and limited consumer trust. 



DENSYS 2023-2025 Master Thesis Report – Lensoco 9 

Despite these challenges, refurbishing remains a particularly impactful approach. By tackling 

both the climate and resource dimensions of electronics, it plays a central role in Rainbow’s 

contribution to the circular economy and to broader efforts in industrial decarbonization. 

The quantification of RCCs under the refurbishing methodology is based on an LCA framework 

that compares a baseline scenario with the project scenario. Typically, the baseline scenario 

reflects emissions from electronic devices in the current market without the project in place. 

Two main functions are considered: (1) the end-of-life treatment of the original device (Device 

A), and (2) the provisioning of a replacement device (Device B) [9]. 

The system boundary, illustrated in Figure 2, encompasses three life cycle stages: 

1. Device A collection — e-waste collection from the municipality or separate programs 

2. Device A e-waste treatment — landfilling, incineration, and default recycling. 

3. Device B production — either as a new device or as a refurbished one, according to the 

current market practices.  

Figure 2. System boundary of the baseline scenario for the electronic refurbishing methodology [9]. 

By contrast, the project scenario consists of the refurbishment activity of discarded electronic 

devices (collectively referred to as e-waste in the methodology) of the company in focus, thereby 

displacing the need for new production. It also serves two functionalities as the baseline 

scenario: (1) the waste treatment of e-waste after its first lifetime (Device A), and (2) the 

refurbishment of e-waste to resell to the market (Device B) [9].  

The system boundary also encompasses an equivalent of three life cycle stages: 
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1. Collection of Device A — collection of e-waste directly from bulk or individual suppliers 

2. Device A e-waste treatment — all discarded devices in the refurbishment facility are 

assumed to be recycled due to limited project data 

3. Device B production — either via light refurbishment or full refurbishment. Light 

refurbishment involves cosmetic and software improvements and does not require the 

replacement of parts. Full refurbishment includes light refurbishment plus repair and 

replacement of non-functional pieces. 

 

Figure 3. System boundary of the project scenario for the electronic refurbishing methodology [9]. 

The net emission is then obtained by calculating the difference between total baseline and total 

project emissions. In simplified form, this relationship can be expressed as: 

𝐸𝑎𝑣𝑜𝑖𝑑𝑒𝑑 = 𝐸𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒−𝐸𝑝𝑟𝑜𝑗𝑒𝑐𝑡  (Equation 1) 

The complete and detailed discussion of the methodology calculations for the baseline and 

project scenarios are stated in Appendix VI.A. 

Rainbow issues two types of RCCs. The first one is removal RCCs, which involves projects 

that actively remove carbon and transform it into chemically and biologically stable compounds 

that are highly resistant to environmental degradation. On the other hand, avoided RCCs 

represent GHG emissions that are prevented thanks to a project’s intervention. These credits 

are typically generated by initiatives that replace fossil fuels with cleaner energy or substitute 

high-emission products with lower-emission alternatives. The refurbishment of electronic 

devices methodology, therefore, issues the latter. One ton of CO2 equivalent removed 

corresponds to one RCC [10].  

In addition, the implementation of this methodology requires a wide range of parameters as 

enumerated in the table below. 
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Table 1. Inputs for the Refurbishment of Electronic Devices methodology. 

Parameter Unit Source proof 

Amount of sold devices in a 

functioning state 

Units of devices per 

type 
Company sales records 

Portion of collected devices that 

undergo light refurbishment, full 

refurbishment, and recycling (should 

total to 100%) 

Percentage (%) Refurbishing site records 

Distance travelled during collection 

from the source to the refurbishing 

site including the mode of 

transportation and the percent of 

collected devices corresponding to the 

latter two 

km, mode of 

transportation (air, 

truck, boat, 

personal, public), 

percentage (%) 

Refurbishing delivery 

records 

If applicable, secondary transport 

distance associated with sending 

collected devices from the project site 

to another more specialized 

refurbishing site, mode of 

transportation, and the number of 

devices corresponding to the latter 

two 

km, mode of 

transportation (air, 

truck, boat, 

personal, public), 

units of devices per 

type 

Refurbishing delivery 

records 

 

As stated in Table 1, some of these parameters can be directly obtained through project-level 

monitoring, such as the number of devices refurbished and the percentages of devices 

undergoing either recycling, light refurbishment, or full refurbishment. Others, however, are 

difficult to obtain accurately such as the parameters associated with the distances due to lack 

of project data (i.e. some companies only have the locations of the suppliers without the 

breakdown per device type, some have a large amount of dataset of deliveries that requires 

paid tools to provide accurate road distances, etc.)  

The calculations itself also use fixed parameters from secondary scientific literature or 

established databases. Parameters in this second category may require regular updating, since 

they are influenced by technological progress and evolving market conditions. The most 

significant parameters include the following: 
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Table 2. Influential fixed parameters used in the LCA calculations of the electronic refurbishing methodology. 

Parameter Unit Source 

Residual value, which determines the 

innate portion of environmental 

impacts of the device before 

refurbishment. This is calculated 

using the ratio of the buyback price 

to the price of the newly 

manufactured device 

Percentage (%) 
StatCounter Global Stats 

2024 [11] 

Market share of refurbished devices Percentage (%) 

Autorité de régulation des 

communications 

électroniques, des postes et 

de la distribution de la 

presse (ARCEP) 2024 [12] 

 

Deloitte Consumer Trends 

2022 [12] 

Lifetimes of new and refurbished 

devices 
Years 

L'Agence de l'environnement 

et de la maîtrise de l'énergie 

(ADEME) 2022  [13]  

 

Because the methodology depends on parameters with high uncertainty and temporal 

variability, sensitivity analysis is essential. Implementing this measure identifies which of them 

exert the greatest influence on results and where improvements in data quality are most 

urgently needed. It also makes it possible to assess the robustness of the estimated emission 

reductions in both baseline and project scenarios. Consequently, sensitivity analysis 

strengthens methodological integrity and ensures that refurbishing projects certified under 

Rainbow’s standard provide credible and scientifically sound RCCs. 

C. Objectives of the Study 

The main objective of this study is to identify the most influential parameters affecting baseline 

and project scenario greenhouse gas (GHG) emissions per device type, and to evaluate how 

variations in these parameters, which are based on real, verified data from Rainbow’s validated 

electronic refurbishing projects, affect overall results. Specifically, the study aims to accomplish 

the following: 

1. Assess the contribution of each life cycle stage to total GHG emissions in both baseline 

and project scenarios for each device type. 

2. Determine which devices are processed the most by refurbishment companies in 

Rainbow’s records of validated projects and shortlist the types to be considered in the 

sensitivity analysis. 

3. Map the parameters associated with each life cycle stage and shortlist those most 

significant for sensitivity analysis. 

4. Rationalize the influence of the assessed parameters both on their corresponding 

scenarios and device type. 
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D. Project Scope 

This study evaluates Rainbow’s Refurbishment of Electronic Devices methodology, with a focus 

on comparing baseline and project scenarios. The methodology is applied within a clearly 

defined scope, summarized as follows: 

• The methodology version considered for Rainbow’s Refurbishment of Electronic Devices 

is 2.3 and the model version is 2.5.3. 

• Baseline and project scenarios are analysed separately, including their respective life 

cycle stages: device collection, end-of-life treatment, and manufacturing/refurbishment 

of replacement devices as outlined in the Rainbow methodology (see Figures 2 and 3). 

• The analysis is limited to device types included in the twelve validated electronic 

refurbishing projects as of June 2025. 

• All data for parameter shortlisting, device shortlisting, and sensitivity analysis are 

obtained exclusively from this project set. This includes the input parameters and the 

LCA results.  

• The gross GHG emissions of both baseline and project scenarios are treated as the sole 

determinant for evaluating the impact of each parameter per device type.  
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II. M ethodology 

The methodology outlines the approach used to perform the sensitivity analysis on key 

parameters of Rainbow’s Refurbishment of Electronic Devices methodology. Devices were first 

shortlisted based on the types most commonly used across the twelve validated projects, 

followed by the selection of parameters through evaluation of existing LCA results from the 

same set of projects. The sensitivity analysis was then conducted in two stages. First, the 

Morris Global method was applied to quantify the influence of each parameter for every device 

and scenario. This was followed by a manual sensitivity analysis on the most influential 

parameters identified by the Morris method, aimed at assessing their behaviour across actual 

data ranges. 

A. Shortlisting of Devices 

Twelve validated projects were identified from the Rainbow registry, and the number and types 

of devices processed in each project were obtained from the MRV database. The total number 

of sold devices per type was aggregated across all validated projects, after which the most 

frequently refurbished device types sold were selected for inclusion in the sensitivity analysis. 

This shortlisting ensures that the analysis reflects the most representative devices in Rainbow’s 

database while maintaining computational efficiency. 

Apple devices were excluded to retain methodological consistency. Although the GHG 

calculations applied to Apple and generic devices follow the same equations (see Appendix 

VI.A), the production emission factors for Apple devices are sourced from Apple Product 

Environmental Reports, while those for other devices are taken from ecoinvent version 3.11. 

Including both would introduce heterogeneity in data sources, which could bias the results. For 

this reason, only generic devices were retained in the final selection. 

B. Shortlisting of Parameters 

As summarized in Table 1 and Table 2, numerous parameters could be included in the 

sensitivity analysis. However, to ensure efficiency and focus on the most impactful drivers, only 

the parameters exerting the greatest influence on GHG emissions were shortlisted for both 

baseline and project scenarios. 

The shortlisting process was conducted as follows. First, validated LCA results generated 

through the MRV platform were collected for each project from Rainbow’s Google Drive. For 

each shortlisted device type (Section II.A), GHG emissions were disaggregated into the three 

life cycle stages for both baseline and project scenarios: (1) Device A collection, (2) Device A 

end-of-life treatment, and (3) Device B production. The relative contributions of each stage to 

total scenario emissions were then calculated. Parameters corresponding to the most significant 

life cycle stage(s) were subsequently identified and retained for sensitivity analysis. 

Certain parameters were excluded for clarity and methodological consistency. The number of 

sold devices was omitted, since total GHG emissions are directly proportional to this variable 

and its influence is therefore self-evident. Secondary transport parameters were also excluded, 
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as these were optional in the methodology and available for only three of the five analysed 

projects, which would have limited comparability. 

Several assumptions were applied to harmonize project data. Although methodology versions 

varied slightly across projects, these were assumed to be homogeneous for the purpose of 

comparison. In addition, for projects covering multiple monitoring periods, only the most 

recent year of verified carbon credits was considered to ensure temporal consistency in the 

dataset. 

C. Sensitivity Analysis Calculations 

Following the shortlisting of devices and parameters in Sections II.A and II.B, sensitivity 

analysis was conducted to evaluate how uncertainties in input parameters influence the GHG 

emissions estimated in both baseline and project scenarios. A two-stage framework was adopted 

to ensure comprehensive identification of influential parameters while maintaining 

computational feasibility.  

1. Global Sensitivity Analysis (GSA) 

The first stage consisted of a global sensitivity analysis. GSAs aims to explore the full range 

of variation of the input parameters and quantify their importance by analysing the resulting 

output response surface [14]. This step is therefore important to quantify the influence of each 

parameter and rank them. 

Among the current GSA methods, the Morris method was selected because it requires relatively 

low computational effort while still yielding results that are broadly comparable to more 

computationally demanding yet more accurate approaches, such as Sobol [14].  

In practice, the method works by slightly changing one parameter at a time while keeping all 

other parameters fixed. The effect of this small change is then observed in the model output, 

which in this study is the calculated GHG emissions per scenario per device. Each of these 

calculated changes is called an elementary effect [14]. The formula for an elementary effect 𝐸𝐸𝑖 

of parameter 𝑥𝑖 within a set of N parameters is: 

𝐸𝐸𝑖 =
𝑌(𝑥1,𝑥2,𝑥3,…,𝑥𝑖+∆,…,𝑥𝑁)−𝑌(𝑥1,𝑥2,𝑥3,…,𝑥𝑁)

∆
  (Equation 2) 

where Y is the model output (overall GHG emissions), and Δ is the size of the change applied 

to parameter 𝑥𝑖. Note that a range should be set for each parameter 𝑥𝑖. 

To obtain reliable results, this process is repeated many times using different random starting 

values for the parameters. Each sequence of calculations is often called a trajectory, meaning 

a set of steps where each parameter is perturbed one after the other. Collecting results from 

multiple trajectories provides a distribution of elementary effects for each parameter [14]. 

Finally, the influence of each parameter is assessed by calculating the mean of its elementary 

effects. However, since a parameter can produce both positive and negative changes in the 

model output, using the mean directly may result in cancellation effects and an 

underestimation of its true impact. To address this, the mean of the absolute values of the 
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elementary effects 𝑥𝑖 is calculated instead, providing a more robust measure of parameter 

importance, as stated in 𝜇𝑖
∗=

1

𝑛𝑅
∑ |𝐸𝑘

𝑟|𝑛𝑘
𝑟=𝑟   (Equation 3 [14]. 

𝜇𝑖
∗ =

1

𝑛𝑅
∑ |𝐸𝑘

𝑟|𝑛𝑘
𝑟=𝑟   (Equation 3) 

Morris also covers the nonlinearity or interaction effects of the parameter by calculating the 

standard deviation of 𝐸𝐸𝑖. However, such information is not relevant according to the goals of 

the GSA for this thesis thereby it will be omitted. 

a. Code Description 

To implement the Morris sensitivity analysis for both the baseline and project scenarios per 

filtered device type, a Python script was developed using the SALib library. The script connects 

to Rainbow’s MRV platform through a GraphQL client to interface with the Refurbishing of 

Electronic Devices model (version 2.5.3). 

The workflow of the script proceeded as follows. First, the parameters associated with the most 

influential life cycle stages were identified, as described in Section II.A. Two categories of 

parameters were considered: input parameters and fixed parameters. The ranges for the input 

parameters were determined by collecting the minimum and maximum values from the twelve 

validated projects. For inputs with only a single dataset (e.g., gaming consoles), a ±50% 

variation around the available value was assumed (see Section II.C.1.b for justification). 

Likewise, if a parameter was missing for a given device (e.g., air transport distance for e-waste 

collection), the average value of that parameter from other devices was assigned to allow 

sensitivity analysis to proceed despite incomplete data. 

For fixed parameters, the bounds were defined by applying a ±50% variation to the currently 

used values (see Section II.C.1.b for rationale). Parameter combinations were then generated 

using the SALib Morris sampling procedure with 50 trajectories. A literature-based guideline 

for the Morris method recommends using approximately 10 to 50 trajectories to obtain reliable 

sensitivity measures while keeping computational costs manageable. Therefore, a choice of 50 

trajectories was applied in this study to ensure robust parameter screening without excessive 

computational burden [15].  

Special treatment was required for the parameters representing the distribution among light 

refurbishment, full refurbishment, and recycling. Since these three shares must always sum to 

100%, they are not independent of each other. To ensure this constraint was preserved, each 

generated sample was adjusted accordingly, regardless of which parameter was directly 

perturbed in a given trajectory.  

Consequently, since all three are considered in the project scenario, a separate Morris run was 

performed for each of the three parameters to maintain independence in the analysis. The final 

𝜇𝑖
∗ of the other parameters were obtained as the average of the three separate runs.  

Another modification concerned the lifetimes of new and refurbished devices in the baseline 

scenario. Since these parameters are used as a ratio as per Equation A.19, the code treats the 

two parameters as a ratio as well for convenience. This avoids infeasible values (e.g., lifetimes 

less than one year or refurbished lifetimes exceeding those of new devices) and reflects the 
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assumption that lifetimes are whole numbers. The bounds for this ratio were derived 

consistently with other parameters: the ratio of the existing lifetimes was taken as the baseline, 

and a ±50% variation was applied to define the minimum and maximum values. 

The summary of the ranges of the parameters are located in Appendix VI.B. 

For parameters excluded from the sensitivity analysis, the mean value across all twelve 

validated projects was used. Secondary transport parameters were fully omitted in line with 

the project scope defined in Section I.D. The consolidated inputs were structured into a Python 

dictionary, which was passed into the Refurbishing of Electronic Devices GraphQL model. 

Finally, the SALib Morris function was applied to calculate μ*, which was used to rank the 

relative influence of each parameter.  

The complete Python implementation is provided in Appendix 0 and Appendix VI.D. 

b. Assumptions 

Several assumptions were necessary to operationalize the sensitivity analysis given data 

limitations and methodological consistency requirements: 

• For parameters with only a single available value across the validated projects (e.g., 

gaming consoles), a ±50% range around the observed value was applied. This range 

was selected as a conservative proxy to capture potential variability in the absence of 

more comprehensive datasets without skewing the sensitivity results due to a relatively 

wide range. Similarly, fixed parameters were assigned a ±50% variation around their 

default values to reflect plausible deviations without overstating uncertainty. 

• Regardless of the adjustments made to ensure that the combined shares of full 

refurbishment, light refurbishment, and recycling sum to 100% after sampling, it is 

assumed that these proportional rescalings do not introduce bias or distort the relative 

influence of each parameter in the Morris sensitivity analysis. 

• In cases where device-specific data were unavailable for certain inputs (e.g., air 

transport distance in e-waste collection), the average minimum and maximum value 

across other devices was used to define its bounds. This assumption allowed the analysis 

to include these parameters in a balanced way while maintaining comparability across 

devices. 

• Secondary transport parameters were excluded entirely, as only three out of five 

projects reported data for this category. Given the limited coverage and optional 

reporting status, their exclusion avoids introducing bias or uncertainty that would 

outweigh potential analytical benefit. 

• Although methodology versions varied across the validated projects, all projects were 

treated as methodologically homogeneous for the purposes of sensitivity analysis. This 

assumption was made to ensure comparability across the dataset and is justified by 

the structural similarity of the methodological updates. 
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• For each project, only the latest year of credit verification was considered. This 

assumption ensures that the most recent and representative operational data are used, 

reducing potential distortions from earlier project phases. 

2. Local Sensitivity Analysis 

While the Morris method provides a ranking of parameter importance, it does not reveal how 

the model output behaves across the full range of each parameter. To address this, the GHG 

emissions were recalculated for each device type and scenario while systematically varying the 

selected parameters across the ranges defined in Section II.C.1. This procedure allowed for a 

more detailed quantification of how variations in each parameter propagate into the total GHG 

emissions, providing deeper insight into the magnitude and patterns of parameter influence 

that cannot be captured by the global screening alone. 

a. Code Description 

The local sensitivity analysis was implemented in Python to evaluate in detail the effect of the 

most influential parameters on baseline GHG emissions, as identified by the Morris GSA 

screening for both baseline and project scenarios. Each parameter was varied across 10 equally 

spaced points within its predefined range. For each value, a copy of the baseline input data 

was updated, and where necessary, related shares within the device collection (e.g., full 

refurbishment, light refurbishment, recycling) were proportionally rescaled to maintain a total 

of 100%. The updated inputs were submitted to the Rainbow MRV model via GraphQL 

queries, and the resulting total project and baseline emissions per device were recorded. All 

outputs were stored in a dataframe, with parameters as rows and sampled points as columns, 

and visualized using custom plotting functions to illustrate the response of GHG emissions to 

parameter variations.  

b. Assumptions 

Assumptions made for the local sensitivity analysis method are the following: 

• The base inputs used for the local sensitivity analysis were identical to those used for 

the Morris GSA, so all assumptions described in Section II.C.1.b apply. 

• Each parameter was evaluated at 10 equally spaced points across its predefined range. 

This number of points was assumed sufficient to capture the trends in emissions while 

keeping computational cost manageable. 

• Each parameter was varied one at a time, assuming that interactions between 

parameters are negligible for the purpose of this local analysis except for the light 

refurbished, full refurbished, and recycling percentages, where they are always adjusted 

to sum up to 100%. 
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III. Results and Discussion  

 

The results of this study illustrate how variations in key parameters influence GHG emissions 

in baseline and project scenarios across the most frequently refurbished device types in 

Rainbow’s validated projects. By examining life cycle stage contributions, parameter 

sensitivities, and device-specific behaviours, the analysis identifies the most significant emission 

drivers and highlights where methodological assumptions matter most. 

The discussion first considers the relative importance of life cycle stages, then evaluates the 

influence of shortlisted parameters through global and local sensitivity analyses. These findings 

provide insight into the comparability of results across devices, and the implications for 

improving Rainbow’s refurbishment methodology to better capture the climate benefits of 

electronic device reuse. 

A. Identification of Devices and Parameters for Analysis 

The number of sold units per device type across the twelve validated refurbishing projects are 

shown in the figure below. 

 

Figure 4. Total number of units sold per device type across the twelve validated refurbishment projects. 

Among the seven accounted device types, the top six were considered in the sensitivity analysis: 

smartphone (488,782 units), gaming console (163,764 units), laptop (76,838 units), PC (26,469 

units), tablet (21,885 units), and screen (11,923 units). Despite only excluding TVs, the six 

remaining categories were retained because they represent clearly distinct product types, each 

with unique use profiles, lifespans, and refurbishment value. TV was not included in the 

sensitivity analysis since it is functionally and structurally similar to screens, making its 

inclusion redundant. Furthermore, TVs and screens share comparable refurbishment pathways 
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and market dynamics, so focusing on screens sufficiently captures the impacts associated with 

this device category.  

Subsequently, the parameters considered in the data analysis were determined. This was first 

performed by assessing the contributions of each life cycle stage in the baseline and project 

scenarios as illustrated in Figure 5 and Figure 6. 

 

Figure 5. Average contributions of the three life cycle stages of the baseline scenario. 

 

 

Figure 6. Average contributions of the three life cycle stages of the project scenario. 

In the baseline scenario, Device B production accounted for the vast majority of overall GHG 

emissions, averaging 98.09% across all device types. This was followed by the Device A e-waste 

treatment stage, contributing an average of 1.78%, while the Device A collection stage 

represented the smallest share at approximately 0.13% on average.  

Based on equations A.13 – A.20 in Appendix VI.A, the parameters shortlisted for this scenario 

among those in Table 1 and Table 2 were therefore:  
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• the percentage of collected device that went to recycling 

• market share of refurbished devices, and  

• the lifetimes of new and refurbished devices 

As noted in Section II.C.1.a, the latter two parameters were treated as a ratio in the succeeding 

sensitivity analysis. 

On the other hand, Device B production comprised majority of the overall GHG emissions for 

the project scenario as well. However, the Device A collection stage contributed more than the 

Device A e-waste treatment stage. This leaves the following parameters for the sensitivity 

analysis according to Equations A1 – A12: 

• percentage of collected device that went to recycling 

• percentage of collected device that went under full refurbishment 

• percentage of collected device that went under light refurbishment 

• distance travelled to the refurbishment facility per mode of transportation 

• percentage of devices that were delivered to the refurbishment facility per mode of 

transportation 

Based on the breakdown of Device A collection emissions across the 12 projects, an average of 

85.1% of devices were collected via truck and the remaining 14.9% via air travel. Therefore, 

only these two transport modes were considered in the sensitivity analysis. 

Among the two transportation-related parameters, only distance travelled was retained. This 

decision was based on two factors. First, project data indicated that distances to refurbishment 

facilities were highly variable and often more difficult to obtain accurately, introducing 

significant uncertainty that warranted explicit sensitivity testing. Second, the influence of 

transportation mode share was considered more predictable: since air transport has an emission 

factor approximately three times higher than truck transport (per ton-km) [16][17], any 

increase in the percentage of devices transported by air would consistently and linearly increase 

emissions. As such, the effect of mode share was judged to be qualitatively clear and redundant, 

whereas variability in transport distances represented a more meaningful source of uncertainty 

for the analysis. 

B. Sensitivity Analysis 

Finally, a combination of global and local sensitivity analyses was conducted to evaluate the 

influence of the shortlisted parameters from the previous section in both the baseline and 

project scenarios, for each device type considered. The results are presented and discussed 

below. 

1. Baseline Scenario 

a. Morris GSA 

The Morris GSA was performed to quantify the influence of each parameter and rank them. 

The influence of each considered baseline parameter, 𝜇𝑖
∗, per device is illustrated in Figure 7. 
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Figure 7. Calculated μ*values from Morris GSA for the baseline scenario (logarithmic scale). 

The rationale of the results from this assessment is further discussed in the next section. 

b. Local SA 

Local sensitivity analysis was performed to visualize the trend of each parameter across the 

ranges in Appendix VI.B. The plots are shown in the Figure 8a-8b.  

The lifetime ratio had the strongest influence in the baseline scenario with an average 𝜇𝑖
∗ of 

4,857,903 kg CO2 eq as shown in Figure 7. This parameter accounts for the fact that refurbished 

devices are expected to have shorter lifetimes than new ones. As a result, the avoided 

production of new devices is scaled down in proportion to this ratio (Equation A.19). For 

instance, if a refurbished device lasts only half as long as a new device, it is credited with 

avoiding only half of the emissions from producing a new device [18].  

This finding aligns with the overall emissions profile of the baseline scenario. According to 

Figure 5, emissions from producing new devices (through both refurbishment and 

manufacturing) contribute the most to the overall baseline emissions. This is consistent with 

Table B.2, which shows that over 87% of devices originate from new manufacturing in the 

current market. Consequently, emissions from new device production are the dominant source 

of baseline GHG emissions. The lifetime ratio acts as a direct multiplier in Equation A.19, 

explaining why it is the most influential parameter and why baseline emissions increase 

proportionally with it, as illustrated in Figure 8a-8b. The effect is further evident in these 

figures, where the lifetime ratio exhibits the steepest slope across its range for all device types. 
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Figure 8. Local sensitivity analysis for the baseline scenario of (a) smartphone, (b) gaming console, (c) laptop, (d) 

PC, (e) tablet, and (f) screen. 

On the other hand, the market share of refurbished devices is the second most influential 

parameter, having an mean 𝜇𝑖
∗ of 302,319 kg CO2 eq. This is because it governs the distribution 

of emissions between refurbished and new devices in the Device B production life cycle stage, 

as defined in Equations A.17 and A.18. However, its overall impact is relatively modest, since 

the parameter varies only within ±50% of its baseline value (for context, the average 

refurbished market share is 8%). Intuitively, the effect is inversely proportional to total baseline 

emissions: a higher market share of refurbished devices reduces emissions, because the emission 

7.00E+05

9.00E+05

1.10E+06

1.30E+06

1.50E+06

1.70E+06

1.90E+06

2.10E+06

2.30E+06

2.50E+06

1 2 3 4 5 6 7 8 9 10

em
is

si
on

s 
(k

g 
C

O
2 

eq
)

point

1.00E+07

1.50E+07

2.00E+07

2.50E+07

3.00E+07

3.50E+07

4.00E+07

1 2 3 4 5 6 7 8 9 10

em
is

si
on

s 
(k

g 
C

O
2 

eq
)

point

2.00E+05

3.00E+05

4.00E+05

5.00E+05

6.00E+05

7.00E+05

8.00E+05

9.00E+05

1.00E+06

1.10E+06

1.20E+06

1 2 3 4 5 6 7 8 9 10

em
is

si
on

s 
(k

g 
C

O
2 

eq
)

point

2.00E+05

2.50E+05

3.00E+05

3.50E+05

4.00E+05

4.50E+05

5.00E+05

5.50E+05

6.00E+05

1 2 3 4 5 6 7 8 9 10

em
is

si
on

s 
(k

g 
C

O
2 

eq
)

point

5.00E+04

1.00E+05

1.50E+05

2.00E+05

2.50E+05

3.00E+05

1 2 3 4 5 6 7 8 9 10

em
is

si
on

s 
(k

g 
C

O
2 

eq
)

point

2.00E+05

3.00E+05

4.00E+05

5.00E+05

6.00E+05

7.00E+05

8.00E+05

1 2 3 4 5 6 7 8 9 10

em
is

si
on

s 
(k

g 
C

O
2 

eq
)

point



DENSYS 2023-2025 Master Thesis Report – Lensoco 24 

factors for producing new devices are consistently higher than those for refurbishment 

(Appendix E). 

Finally, the parameter to which the baseline emissions are least sensitive to is the percentage 

of collected devices sent to recycling (average 𝜇𝑖
∗ of 4,268 kg CO2 eq). This is because this 

parameter defines the amount of collected devices sent to recycling, and thus only factors into 

the device e-waste treatment emissions (Equation A.14), which account for an average of just 

1.78% of total baseline emissions across all devices (Figure 5). Moreover, the baseline emissions 

increase as the recycling percentage rises, since the emission factor (EF) associated with 

recycling is higher than that of municipal waste disposal methods such as incineration and 

landfilling, as shown in the ecoinvent EF values (Appendix E).  

c. Implication of Results 

In the baseline scenario, the lifetime ratio is the most influential parameter among the three 

assessed factors. Practically, this means that maintaining up-to-date lifetime values is critical 

for reliable baseline GHG estimates. As Appendix VI.B indicates, the current lifetimes for new 

and refurbished devices are based on 2022 data. These values should therefore be regularly 

updated to reflect technological advances, changes in consumer usage patterns, and 

improvements in device durability. Without such updates, the baseline scenario may 

underestimate or overestimate emissions, limiting the accuracy of the results. 

It was also found that the second key parameter is the market share of refurbished devices. At 

present, the methodology applies 2024 market share values for France (taken from Autorité de 

Régulation des Communications Électroniques, des Postes et de la Distribution de la Presse) 

and 2022 for other European countries (taken from Deloitte Scandinavia) as detailed in 

Appendix B). Given that changes in this parameter lead to only minor variations in total 

baseline emissions, updating it is of lower priority compared to parameters such as device 

lifetime. 

Finally, the portion of collected devices sent to recycling was the least influential parameter in 

the baseline scenario, implying that estimations for this parameter would be acceptable. This 

is also supported by its resulting influence in the project scenario, as discussed in the following 

section.  

2. Project Scenario 

a. Morris GSA 

Similar to the baseline scenario, Morris GSA was used to quantify the influence of the 

parameters considered to the project GHG emissions and rank them accordingly. The results 

are plotted in Figure 9. 
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Figure 9. Calculated μ*values from Morris GSA for the project scenario (logarithmic scale). 

Unlike the baseline scenario, however the parameters have varying rankings of influence 

depending on the device. The rationale for the parameter’s behaviour are discussed more 

thoroughly in the next section as the trend of the parameters across their respective ranges are 

taken into consideration. 

b. Local SA 

Local sensitivity analysis was also performed for the baseline scenario to illustrate the trend of 

each parameter across the ranges in Appendix VI.B. The plots are shown in the Figure 10a-f.  
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The plots show that there is considerable variation in influence of the parameters per device 

type in the project scenario. As such, the behaviour of the parameters per device type is 

discussed individually. 

Smartphone 

For the smartphone (Figure 10a), residual value has the most influence among the parameters, 

with a 𝜇𝑖
∗ of 245,345 kg CO2 eq. Residual value is the remaining economic worth of a used 

device that is still functional and can be resold or refurbished. As shown in Equation A.10, 

only lightly refurbished devices are assumed to have residual value, so some environmental 

impacts from their first life are allocated to them, while fully refurbished devices are treated 

as non-functional waste [19]. The device’s residual emissions are proportional to their residual 

value, calculated as the ratio of the buyback price to the selling price of a new device as 

summarized in Appendix VI.B. Because lightly refurbished devices make up the majority of 

collected smartphones (an average of 73% as of Appendix VI.B), this parameter heavily 

influences the Device B refurbishment stage. Moreover, it incorporates the EF of producing 

new devices, which is considerably higher than that of either full or light refurbishment 

(Appendix VI.E). Together, these factors explain why residual value dominates the sensitivity 

analysis for smartphones. 

The next most important parameters are the percentages of fully refurbished and lightly 

refurbished as seen in Figures 9 and 10a (𝜇𝑖
∗ of 119,813 kg CO2 eq and 47,845 kg CO2 eq, 

respectively). These percentages determine how many devices are allocated to each end-of-life 

pathway, directly affecting the overall environmental footprint. The percentage of fully 

refurbished devices is the second key driver overall because full refurbishment is resource- and 

energy-intensive, involving extensive repairs, component replacement, and testing, resulting in 

the highest environmental footprint. Its wide range of 0 to 60% (Appendix VI.B) also makes 
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project emissions highly sensitive to this parameter, since larger ranges allow greater variation 

in total emissions during sensitivity analysis. Lightly refurbished devices are next, as this 

process only involves cleaning and software updates, giving it a lower EF, but it constitutes 

the largest portion of collected devices (40–90.86%, Appendix VI.B), so changes in this 

parameter can still noticeably affect project emissions.  

Transport parameters come next in influence, namely the air and truck distances associated 

with Device A collection. As shown in Equation A.13, they determine the emissions from 

transporting second-hand devices or e-waste to refurbishment facilities. Despite their very wide 

ranges (0–17,271 km for air and 483–4,195 km for truck), their influence is relatively small (𝜇𝑖
∗ 

of 20,310 kg CO2 eq for air and 25,719 kg CO2 eq) because transport-related impacts are much 

lower than those of refurbishment and production (Appendix VI.E). This is supported by the 

fact that Device A collection accounts for only about 3.5% of total project GHG emissions for 

smartphones (Figure 6). 

Finally, the percentage of recycled devices has the least influence, having a 𝜇𝑖
∗ of only 8,144 kg 

CO2 eq. Recycling primarily involves material recovery with relatively low energy and resource 

inputs, resulting in the lowest EF among the processes (Appendix VI.E). Its impact is further 

constrained by its narrow range (0–24%) and by the fact that e-waste treatment of Device B, 

where this parameter applies, contributes only 0.5% of total project GHG emissions for 

smartphones (Figure 6). 

Gaming Console 

The residual value is also the dominant parameter in the project scenario for gaming consoles 

(𝜇𝑖
∗=6,239,358 kg CO2 eq). The rationale is consistent with that of smartphones, as the 

majority of collected devices are lightly refurbished (an average of 96.3%) and the EF of 

producing new gaming consoles is considerably higher than that of either full or light 

refurbishment (Appendix VI.E). 

The rest of the parameter rankings are governed by the imposed range of values. In contrast 

with smartphones, the second dominant parameter for this device type is air distance 

(𝜇𝑖
∗=266,606 kg CO2 eq). Although the environmental footprint of air transport is relatively 

small as shown in Appendix VI.E and Figure 6, its wide range of 2,191–6,575 km makes it 

more influential than the percentages of fully refurbished (𝜇𝑖
∗=174,990 kg CO2 eq) and lightly 

refurbished (𝜇𝑖
∗=6,716 kg CO2 eq). In sensitivity analysis, parameters with larger variation 

ranges exhibit higher influence because the output response is evaluated across the entire span 

of possible values. Thus, even parameters with lower unit impacts can appear more sensitive 

if the magnitude of their variation is sufficiently large. 

The percentage of fully refurbished comes next due to its limited range of values (1.4–2.8%) 

despite the relatively higher environmental footprint than air distance. However, it still 

dominates truck distance (𝜇𝑖
∗=94,570 kg CO2 eq) whose range is only 202 – 606 km as per 

Appendix VI.B with an even smaller EF. Finally, the project emissions of gaming consoles are 

least sensitive to the percentages of light refurbishment and recycling, as both parameters vary 

within very restricted ranges, as noted previously. 
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Laptop 

For laptops, the sensitivity of project emissions is primarily governed by the magnitude of the 

environmental footprints (EFs) rather than the range of parameter values. Residual value is 

the dominant parameter (𝜇𝑖
∗=143,375 kg CO2 eq), consistent with other device types, due to 

the allocation of impacts from the production stage and the high EF associated with new 

device manufacturing. The percentage of devices sent to full refurbishment follows (𝜇𝑖
∗=75,296 

kg CO2 eq), reflecting the process’s intensive material and energy requirements. Light 

refurbishment (𝜇𝑖
∗=23,001 kg CO2 eq)  and recycling (𝜇𝑖

∗=20,410 kg CO2 eq) come next in the 

ranking; although their EFs are lower, they still influence results through their relative shares 

of collected devices. Transport-related parameters (air and truck distance) have the least 

influence, as their impacts are small compared to refurbishment and production, and the 

parameter ranges are not wide enough to outweigh these differences (𝜇𝑖
∗=17,214 kg CO2 eq for 

air and 𝜇𝑖
∗=15,598 kg CO2 eq for truck). 

PC 

From Figure 9 and Figure 10d, residual value remains the most influential parameter for PCs, 

consistent with other device types (𝜇𝑖
∗=78,079 kg CO2 eq). Truck distance is the second most 

influential parameter (𝜇𝑖
∗=24,498 kg CO2 eq) because PCs have the highest weight per unit 

(5.4 kg), and truck transport accounts for 85% of device collection, whereas air transport 

represents only 15%. As a result, the emissions from truck-based collection are the largest 

among all devices according to Equation A.2, contributing 8% of total project emissions for 

PCs (Figure 6). This higher magnitude makes truck distance more influential than the 

percentages of devices sent to full refurbishment (𝜇𝑖
∗=16,390 kg CO2 eq), light refurbishment 

(𝜇𝑖
∗=15,822 kg CO2 eq), and recycling (𝜇𝑖

∗=11,323 kg CO2 eq), which are ordered according to 

their environmental footprints, as observed for smartphones, gaming consoles, laptops, and 

tablets. These three refurbishment-related parameters still dominate air distance despite the 

latter parameter having the widest range (0–8,548.84 km), because the ranges of the 

refurbishment parameters — 0–30% for full refurbishment, 27.64–100% for light refurbishment, 

and 0–42.35% for recycling — combined with their higher EFs and collection shares, result in 

greater influence on total project emissions. 

Tablet 

The project emissions for tablets are most sensitive to residual value as shown in Figure 9 and 

Figure 10e (𝜇𝑖
∗=49,781 kg CO2 eq). The percentage of fully refurbished devices is the second 

most influential parameter (𝜇𝑖
∗=3,457 kg CO2 eq), reflecting its relatively high environmental 

footprint and moderate range (0-10% from Appendix VI.B) and the associated high emissions 

involved in this process listed in Appendix VI.E. Air distance and truck distance follow in 

influence (1,577 kg CO2 eq and 727 kg CO2 eq of 𝜇𝑖
∗ values, respectively). Although transport 

processes have lower environmental footprints (average contribution of 1.97%, Figure 6), the 

wide ranges for air (0–17,293 km) and truck (0–2,217 km) amplify their effect on total 

emissions. The percentage of devices sent to light refurbishment (range 59–100%) and recycling 

(range 0–31%) are the least sensitive parameters, reflecting both lower environmental footprints 

and narrower ranges (𝜇𝑖
∗ of 568 kg CO2 eq for the percentage of devices sent to light refurbishing 

and 444 kg CO2 eq for the percentage of devices sent to recycling). 
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Monitor 

In contrast with other devices, the most influential parameter for monitor project emissions is 

the percentage of lightly refurbished devices, having a 𝜇𝑖
∗ of 130,153 kg CO2 eq. Although light 

refurbishment has a relatively low EF, its range for monitors (0–77%, Appendix VI.B) is the 

widest among all device types, and this high variability makes it more dominant than residual 

value, which is typically the most influential parameter for other devices (𝜇𝑖
∗=77,678 kg CO2 

eq). Air transport ranks third, driven by its wide range (2,191–6,575 km) despite a lower EF 

(𝜇𝑖
∗=53,771 kg CO2 eq). The percentage of fully refurbished devices follows, as its narrower 

range (0–49.9%) limits its influence relative to air transport (𝜇𝑖
∗=39,083 kg CO2 eq). Recycling 

comes next; while its range (23–50.1%) is narrower than that of other devices, the values are 

skewed toward the higher end, increasing its contribution to project emissions and placing it 

above truck distance (𝜇𝑖
∗=18,900 kg CO2 eq). Truck transport distance (196.77–2,206 km), 

although comparable to other devices in range, has the lowest influence due to its relatively 

small EF (𝜇𝑖
∗=2,923 kg CO2 eq). 

c. Implication of Results 

In the project scenario, residual value consistently emerges as the dominant parameter for 

smartphones, gaming consoles, laptops, PCs, and tablets, obtaining an average 𝜇𝑖
∗ of 1,274,562 

kg CO2 eq specifically across these devices. This reflects the allocation of a portion of 

production-related environmental impacts to lightly refurbished devices, which constitute the 

majority of collected units, as well as the high environmental footprint associated with 

manufacturing new devices. Monitors are an exception, where the wide range in the percentage 

of lightly refurbished devices causes light refurbishment to dominate sensitivity. Currently, 

Rainbow calculates residual values per device using prices for 2023 as listed in Appendix VI.B. 

New prices were taken from the manufacturer’s website where available, or from the 

manufacturer’s store on Amazon. In both cases, French sources were used. Average buyback 

prices were shared with Rainbow by Project Developers [20]. 

Practically, residual values should then be updated regularly from reliable sources, as market 

prices fluctuate with product release cycles and regional dynamics. Outdated values risk 

misrepresenting the emissions allocated to refurbished devices. A systematic approach, such as 

annual collection of buyback and retail prices from manufacturer websites, online retailers, or 

resale platforms, would help maintain accuracy. Since residual value strongly governs the 

allocation of production-related emissions, keeping it up to date is essential for ensuring robust 

and credible project results. 

Refurbishment shares, including the percentages of devices sent to full and light refurbishment, 

are also key determinants of project emissions, although their influence varies by device. Full 

refurbishment generally exhibits higher environmental footprints due to the resource and 

energy-intensive nature of the process (mean 𝜇𝑖
∗ of 71,504 kg CO2 eq for all devices), whereas 

light refurbishment contributes less per unit but can dominate sensitivity when its range is 

wide, as observed for monitors (mean 𝜇𝑖
∗ of 37,351 kg CO2 eq for all devices). Given the 

influence of these parameters, it is essential that project developers provide accurate and up-

to-date data on refurbishment shares, as uncertainties or assumptions in these values can 

significantly affect the robustness of the results. This step is also supported by the fact that 
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the refurbishment of devices contributes the most emissions across all devices in the project 

scenario as seen in Figure 6. 

Furthermore, transport distances influence project emissions when depending on device 

characteristics. Truck distance, on average, has a 𝜇𝑖
∗ of 27,339 kg CO2 eq across all devices. 

However, it is particularly significant for PCs, which are heavier (5.4 kg), and given the 

assumption that 85% of devices are collected via truck, while air transport accounts for 15%. 

Air distance was also deemed to be more influential gaming consoles and monitors, where the 

wide ranges of distances considered (up to 17,293 km) and the large number of units sold 

(175,687 in total) amplified its impact. As a result, air distance had a mean 𝜇𝑖
∗ of 59,995 kg 

CO2 eq for all devices, ranking second among transport-related parameters overall. 

Emissions from device collection only account for 3.9% of total project emissions on average, 

however, so it is not critical to obtain highly precise transport data from project developers. 

The high sensitivity of air and truck distances observed for some devices is mainly a result of 

the wide parameter ranges rather than the magnitude of their environmental footprints. In 

practice, distances are also difficult to determine accurately, as refurbishing companies often 

source devices from thousands of suppliers with numerous deliveries throughout the year. Thus, 

estimates such as geodesic distances are considered valid, as they introduce only low to 

moderate uncertainty given the relatively minor contribution of transport processes to overall 

project emissions. 

Lastly, the percentage of devices sent to recycling consistently exhibits lower sensitivity across 

device types (mean 𝜇𝑖
∗ of 10,910 kg CO2 eq), reflecting both its relatively low environmental 

footprint and the narrower range of variation. This holds true in both the baseline and project 

scenarios. Consequently, precise data for this parameter is less critical compared to the 

percentages of full and light refurbishment. Since these three pathways are co-dependent and 

must sum to 100%, prioritizing accuracy in the refurbishment shares inherently constrains the 

recycling percentage within reasonable bounds. 



 

IV. Conclusion and Future Work  

This study set out to evaluate and improve Rainbow’s Refurbishment of Electronic Devices 

methodology by identifying the most influential parameters affecting baseline and project 

scenario greenhouse gas (GHG) emissions across different device types. Drawing on real, 

verified data from twelve refurbishing projects, the analysis first assessed the relative 

contributions of life cycle stages, then shortlisted devices and parameters most relevant for 

sensitivity analysis. By separately examining baseline and project scenarios, the study was able 

to clarify how device production, refurbishment processes, collection, and recycling shape 

overall emissions, and to rationalize the influence of specific parameters in relation to both 

their environmental footprints and the ranges considered. In doing so, the work provides a 

systematic understanding of which factors most strongly drive uncertainty in emission 

estimates and highlights where methodological refinements or improved data collection can 

most effectively strengthen the robustness of results. 

From the analysis of device sales across Rainbow’s twelve refurbishment projects, six device 

categories were shortlisted for sensitivity assessment: smartphone (488,782 units), gaming 

console (163,764 units), laptop (76,838 units), PC (26,469 units), tablet (21,885 units), and 

screen (11,923 units). These represent the majority of processed units and encompass distinct 

product types with different use profiles, lifespans, and refurbishment values. TVs were 

excluded since their structural and functional similarity to screens, as well as their comparable 

refurbishment pathways and market dynamics, rendered separate analysis redundant.  

In parallel, the parameters included in the sensitivity analysis were determined based on the 

contributions of each life cycle stage. In the baseline scenario, Device B production dominated 

total emissions, averaging 98.09% across all devices. The key parameters, which are the 

percentage of collected devices sent to recycling, the market share of refurbished devices, and 

the lifetime ratio between new and refurbished products, were selected because they directly 

influence this dominant stage. Meanwhile, for the project scenario, Device B production again 

represented the largest share of emissions with an average contribution of 94.54% across all 

devices. Consequently, the residual value and the end-life shares of collected devices (full 

refurbishment, light refurbishment, and recycled) were included. Device A collection 

contributed an average of 3.94% of total emissions across all devices, so transport parameters 

were considered in the sensitivity analysis. Only transport distance was retained due to its 

high variability and associated uncertainty, while transport mode share was excluded because 

its impact is predictable and linear. Furthermore, only air and truck were included since project 

data showed that 85.1% of devices were collected by truck and 14.9% by air, with other 

transport modes being negligible. 

The sensitivity analysis demonstrated that the lifetime ratio between refurbished and new 

devices is the most influential parameter for the baseline scenario. For all devices, the lifetime 

ratio has the highest 𝜇𝑖
∗ value, averaging 4,857,903 kg CO2 eq. It captures the fact that 

refurbished devices generally have shorter lifetimes than new ones, which directly scales the 

avoided production of new devices. And given that Device B production dominates total 

baseline emissions, this makes the lifetime ratio the critical driver of baseline GHG estimates. 

The second most influential parameter in the baseline scenario was the market share of 
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refurbished devices with a mean 𝜇𝑖
∗ of 302,318 kg CO2 eq. While this parameter shifts the 

balance between emissions from refurbishment and new production, its overall influence was 

modest due to its narrower range of variation. Finally, the recycling share was consistently the 

least influential parameter, having a 𝜇𝑖
∗ of 4,268 kg CO2 eq on average for all devices. This is 

because the recycling share only affects the e-waste treatment stage, which represents a very 

small fraction of baseline emissions as previously mentioned. Taken together, these findings 

highlight that reliable baseline estimates depend most strongly on accurate device lifetime 

data, while market share and recycling values, though still relevant, introduce comparatively 

lower uncertainty. 

On the other hand, sensitivity analysis showed that residual value is the most influential 

parameter for the majority of device types in the project scenario, with 𝜇𝑖
∗ values averaging 

1,274,562 kg CO2 eq specifically across smartphones, gaming consoles, laptops, PCs, and 

tablets. This strong influence arises because residual value determines how much of the 

emissions from manufacturing new devices are allocated to lightly refurbished devices, which 

represent the dominant share of collected units (mean of 74%). The only exception was 

monitors, for which the wide variation in the share of light refurbishment made this parameter 

more influential than the residual value. 

Moreover, across all devices, refurbishment shares emerged as key drivers of the project 

scenario emissions. Full refurbishment generally exerted stronger influence due to its higher 

environmental footprint, obtaining an average of 71,504 kg CO2 eq in 𝜇𝑖
∗ for all devices. Light 

refurbishment, on the other hand, was also shown to have the ability dominate sensitivity when 

its range was sufficiently large, having an average 𝜇𝑖
∗ of 37,351 kg CO2 eq across the device 

types. Meanwhile, transport parameters showed device-specific behaviour. Despite truck 

distance having an average 𝜇𝑖
∗ of 27,339 kg CO2 eq across all devices, it was particularly 

significant for PCs given their heavier weight and the assumption that 85% of devices are 

collected via truck. Air distance had greater influence in general (mean 𝜇𝑖
∗ of 59,995 kg CO2 eq 

for all devices), ranking second among transport-related parameters overall. This is because it 

is significant for gaming consoles and monitors, both of which has relatively wide ranges of air 

transport distances considered and a large number of units sold. However, since device 

collection processes account for only 3.9% of project emissions on average, the high sensitivity 

of transport distances is primarily an artefact of their ranges rather than their intrinsic impacts, 

meaning that approximate estimates such as geodesic distances are sufficient for robust results. 

Recycling shares, by contrast, consistently ranked as the least influential parameter (average 

𝜇𝑖
∗ of 10,910 kg CO2 eq for all devices) due to their lower environmental footprint and narrower 

ranges, confirming that accuracy should be prioritised for refurbishment shares rather than 

recycling. Taken together, these findings underscore the importance of maintaining up-to-date 

residual values and reliable refurbishment data from project developers, while transport and 

recycling parameters can be treated with less precision without compromising overall accuracy. 

Overall, the sensitivity of project emissions is determined by the interplay between a 

parameter’s environmental footprint, its range of variation, and the scenario context. 

Parameters with high environmental impacts dominate the results even when their ranges are 

narrow, whereas lower-impact parameters can become significant when their ranges are wide. 

The analysis highlights that accurate, up-to-date data on critical parameters—particularly 
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device lifetimes, residual values, and refurbishment shares—are essential for reliably 

quantifying the climate benefits of electronic device reuse. At the same time, parameters such 

as transport distances and recycling shares, which contribute less to overall emissions, can be 

estimated with lower precision without substantially affecting results. These insights provide a 

clear basis for prioritizing data collection and methodological refinements, ensuring that 

resources are focused on the factors that most strongly influence emission estimates and the 

robustness of the refurbishment methodology. 

For future work, the robustness of the sensitivity analysis could be strengthened by 

incorporating the continuously expanding pool of validated Rainbow refurbishment projects. 

As more projects are added, the analysis would benefit from a larger and more representative 

dataset, improving the reliability and generalizability of the findings. Methodologically, this 

study applied Morris and local sensitivity analyses due to their computational efficiency and 

suitability for a limited dataset, but future research could explore variance-based global 

sensitivity methods or probabilistic uncertainty approaches as the dataset grows, to better 

capture parameter interactions and non-linear effects. Extending the sensitivity analysis to 

Rainbow’s other methodologies would provide a more comprehensive view of parameter 

importance across different product categories and environmental contexts.  
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VI. Appendix 

A. Refurbishing of Electronic Devices GHG Quantification 

Calculation 

1. Project Scenario 

The project scenario consists of refurbishing used electronic devices, which serves two functions: 

1) waste treatment of the device after its first life (Device A) and 2) refurbishing to produce a 

“new” device (Device B). This process is broken down into 3 life cycle stages: 

• Device A e-waste collection 

• Device A e-waste treatment of scrap materials 

• Device B refurbishing process 

a. E-waste collection 

The mass of e-waste collected equals the total mass of input used devices collected at the 

refurbishing site annually. 

Total mass of devices shall be calculated using the number of devices collected for each device 

type (provided by the Project Developer), multiplied by the assumed mass of each device type 

shown in Table 3. 

For calculating transport distance, Project Developers shall provide the country and/or city 

where used electronic devices are transported from and provide the average distance from the 

collection source to the refurbishing project site. 

It is assumed that transport within Europe is done 100% by truck, and overseas transport is 

done by long-distance air freight. 

Calculations involved are: 

𝑁𝑖,𝑐𝑜𝑙𝑙𝑒𝑐𝑡𝑒𝑑 = ∑ 𝑁𝑖,𝑠𝑜𝑙𝑑/(1 − 𝑅𝑒𝑟𝑎𝑡𝑒,𝑖) (Equation A.1) 

where, 

• 𝑁𝑖,𝑐𝑜𝑙𝑙𝑒𝑐𝑡𝑒𝑑 represents the amount of input collected devices of type i collected by the 

project, in number of devices. 

• 𝑁𝑖,𝑠𝑜𝑙𝑑 represents the number of devices by type ii sold in a functioning state, and 

shall be provided by the Project Developer for each verification. 

• 𝑅𝑒𝑟𝑎𝑡𝑒,𝑖 represents the fraction of input used devices of device type i that are 

recycled, saved for spare parts, or not successfully refurbished to a functioning state 

by the project, and shall be provided by the Project Developer for each verification. 

 

𝐸𝑃,𝑐𝑜𝑙𝑙𝑒𝑐𝑡𝑖𝑜𝑛 = ∑(𝑁𝑖,𝑐𝑜𝑙𝑙𝑒𝑐𝑡𝑒𝑑 ∗ 𝑊𝑖 ∗ 𝐷𝐶,𝑖 ∗ 𝑅𝐶,𝑖) ∗ 𝐸𝐹𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡 (Equation A.2) 
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where, 

• 𝐸𝑃,𝑐𝑜𝑙𝑙𝑒𝑐𝑡𝑖𝑜𝑛 represents the sum of GHG emissions due to the transport of devices 

collected for refurbishing in the project scenario, in kg CO2 eq. 

• 𝑁𝑖,𝑐𝑜𝑙𝑙𝑒𝑐𝑡𝑒𝑑 was calculated in Equation A.1. 

• 𝑊𝑖 represents the weight in kilograms of device i, according to the presented in Table 

B.5. 

• 𝐷𝐶,𝑖 represents the distance travelled for device collection in km, provided by the Project 

Developer per sourcing country/city (CC) and device type i. 

• 𝑅𝐶,𝑖 represents the fraction of the devices collected per sourcing country/city (C) and 

device type i. 

• 𝐸𝐹𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡 represents the emission factor for transport in kg CO2 eq/ton-km according 

to the ecoinvent database and includes truck or air freight.  

b. E-waste collection 

Devices collected by the project that cannot be refurbished undergo e-waste recycling. 

Refurbishing projects typically have contracts with e-waste recycling companies that collect 

and recycle such devices. 

Project Developers shall provide the fraction of devices that are recycled, and they will be 

modelled as mechanical e-waste recycling with shredding and separation. 

Some non-refurbished devices may be kept onsite to harvest spare parts in the future, but due 

to limited project data on this topic, they are assumed to be recycled. 

Devices that are sold by the project in a non-functional state shall be treated in the calculations 

as recycled devices. 

𝐸𝑟𝑒𝑐𝑦𝑐𝑙𝑖𝑛𝑔 = ∑(𝑁𝑖,𝑐𝑜𝑙𝑙𝑒𝑐𝑡𝑒𝑑 ∗ 𝑊𝑖 ∗ 𝑅𝑒𝑟𝑎𝑡𝑒,𝑖 ∗ 𝐸𝐹𝑟𝑒𝑐𝑦𝑐𝑙𝑖𝑛𝑔,𝑖) (Equation A.3) 

where, 

• 𝐸𝑟𝑒𝑐𝑦𝑐𝑙𝑖𝑛𝑔represents the sum of GHG emissions due to the recycling process of 

devices/scrap not suitable for refurbishing, in kg CO2 eq. 

• 𝑁𝑖,𝑐𝑜𝑙𝑙𝑒𝑐𝑡𝑒𝑑 and 𝑅𝑒𝑟𝑎𝑡𝑒,𝑖 were described in Equation A.1. 

• 𝑊𝑖 is described in the section e-waste collection section of the project scenario. 

• 𝐸𝐹𝑟𝑒𝑐𝑦𝑐𝑙𝑖𝑛𝑔,𝑖 represents the emission factor of recycling each device type. Refer to 

Appendix E for the ecoinvent processes used. 

𝐸𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡  = ∑(𝑁𝑖,𝑐𝑜𝑙𝑙𝑒𝑐𝑡𝑒𝑑 ∗ 𝑅𝑒𝑟𝑎𝑡𝑒,𝑖 ∗ 𝑊𝑖 ∗ 𝐷𝑠𝑐𝑟𝑎𝑝 ∗ 𝐸𝐹𝑡𝑟𝑢𝑐𝑘 𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡)(Equation A.4) 

where, 

• 𝐸𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡  represents the sum of GHG emissions due to the transport of devices/scrap 

not suitable for refurbishing that are sent to recycling, in kg CO2 eq. 
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• 𝑁𝑖,𝑐𝑜𝑙𝑙𝑒𝑐𝑡𝑒𝑑 and 𝑅𝑒𝑟𝑎𝑡𝑒,𝑖 were described in Equation A.1. 

• 𝑊𝑖 is described in the section e-waste collection section of the project scenario. 

• 𝐷𝑠𝑐𝑟𝑎𝑝 represents the distance in km until the waste treatment facility. If not known, 

this value is considered 100km. 

• 𝐸𝐹𝑡𝑟𝑢𝑐𝑘 𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡  represents the emission factor of truck transport. Refer to Appendix E 

for the ecoinvent processes used. 

𝐸𝑃,𝑤𝑎𝑠𝑡𝑒 𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 = 𝐸𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡 + 𝐸𝑟𝑒𝑐𝑦𝑐𝑙𝑖𝑛𝑔 (Equation A.5) 

where, 

• 𝐸𝑃,𝑤𝑎𝑠𝑡𝑒 𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 represents the sum of GHG emissions in the project scenario e-waste 

treatment of non-refurbished devices, in kg CO2 eq. 

c. Refurbishing process 

This life cycle stage is composed of four main processes, each described below: 

• light refurbishing impacts 

• full refurbishing impacts 

• residual value of input devices, and 

• secondary transport of devices. 

Light refurbishment impacts: The refurbishing process is split into two categories: light and 

full refurbishment, representing the degree of intervention needed to restore the device to a 

functioning state. Light refurbishment involves cosmetic and software improvements and does 

not require the replacement of parts (e.g. new battery, new screen…). This distinction was 

chosen because most environmental impacts from the refurbishing process come from 

production of new replacement pieces. 

• Light refurbishment includes inputs of cleaning alcohol, tissues, and cloth, and is 

modeled after the detailed LCA of electronic device refurbishing from the ADEME 

study [13]. 

Full refurbishment impacts: Full refurbishment includes light refurbishment plus repair and 

replacement of non-functional pieces. Detailed project data on all replacement pieces and 

inputs are rarely available, so full refurbishment impacts are modeled following the ADEME 

study [13]. 

• Results from this study are used to obtain the ratio of impacts of a refurbished device 

to the impacts of the corresponding new device. This ratio is then applied to the new 

device production impacts to obtain the desired amount of emissions from refurbishing. 

The emissions from refurbishing are modelled using the mix of ecoinvent processes used 

in light refurbishment described above, plus production of commonly replaced parts 

including screens, batteries, microphones and speakers. 
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Residual value of input devices: In life cycle assessments, when a project uses waste as an 

input, it typically enters the project system boundary with zero environmental impacts. 

Refurbishing projects collect and refurbish used devices that are not always at the end of their 

life and are not truly waste. They may still be functional and hold residual value from their 

first life. This is evidenced by the fact that Project Developers sometimes pay for used devices, 

as opposed to waste collection, where the waste generator must pay for waste treatment. 

• In this case, some environmental impacts from the device’s first life should be allocated 

to the refurbished device. It is assumed that only devices that undergo light 

refurbishment were in good condition and had residual value and are allocated a share 

of GHG emissions from the device’s first life. On the other hand, devices that undergo 

full refurbishment are assumed to be non-functional waste and are not allocated any 

environmental impacts from their first life. 

• The residual value and corresponding allocated emissions are based on the ratio of the 

buyback price to the selling price of a new manufactured device. An average ratio shall 

be used for each device type and is shown in Table B.3. Alternatively, project developers 

may provide a similar project-specific database with their own buyback data. 

Secondary transport of devices: After the device is collected by the refurbishing project and 

sorted, it may be sent to a different refurbishment site, for example to do speciality repairs. 

project developers shall report such secondary transport by providing the distance transported, 

and the number and type of devices making this transport. 

Calculations involved in this life cycle stage are listed below. 

𝑁𝑙𝑖𝑔ℎ𝑡  𝑟𝑒𝑓,𝑖 = ∑(𝑁𝑖,𝑐𝑜𝑙𝑙𝑒𝑐𝑡𝑒𝑑 ∗ 𝑅𝑒𝑓𝑙𝑖𝑔ℎ𝑡,𝑖) (Equation A.6) 

where, 

• 𝑁𝑙𝑖𝑔ℎ𝑡  𝑟𝑒𝑓,𝑖 represents the number of devices of type i undergoing the light refurbishing 

process and sold in a functional state. 

• 𝑁𝑖,𝑐𝑜𝑙𝑙𝑒𝑐𝑡𝑒𝑑 was described in Equation A.1. 

• 𝑅𝑒𝑓𝑙𝑖𝑔ℎ𝑡,𝑖 represents the fraction of devices of type ii undergoing the light refurbishing 

process and sold in a functional state. 

𝐸𝑙𝑖𝑔ℎ𝑡  𝑟𝑒𝑓 = ∑
𝑁𝑙𝑖𝑔ℎ𝑡  𝑟𝑒𝑓,𝑖 ∗ (𝑎𝑙𝑐𝑜ℎ𝑜𝑙 ∗ 𝐸𝐹𝑎𝑙𝑐𝑜ℎ𝑜𝑙

+ 𝑝𝑎𝑝𝑒𝑟 ∗ 𝑐 + 𝑐𝑙𝑜𝑡ℎ ∗ 𝐸𝐹𝑐𝑙𝑜𝑡ℎ)
 (Equation A.7) 

where, 

• 𝑐 represents the sum of GHG emissions due to the light refurbishing of a device type. 

• 𝑁𝑙𝑖𝑔ℎ𝑡  𝑟𝑒𝑓,𝑖 is calculated in Equation A.6. 

• alcohol, paper and cloth represent the amount of cleaning alcohol, paper and cloth 

needed to clean a device. These amounts were taken per device type from the ADEME 

study, pages 45, 77, and 103. 



DENSYS 2023-2025 Master Thesis Report – Lensoco 41 

• 𝐸𝐹𝑎𝑙𝑐𝑜ℎ𝑜𝑙 represents the emission factor, in kg CO2 eq, for cleaning alcohol composed of 

70% ethylene and 30% water. Refer to Appendix E for the ecoinvent processes used. 

• 𝐸𝐹𝑝𝑎𝑝𝑒𝑟 represents the emission factor, in kg CO2 eq, of paper. Refer to Appendix E 

for the ecoinvent processes used. 

• 𝐸𝐹𝑐𝑙𝑜𝑡ℎ represents the emission factor, in kg CO2 eq, of cloth used for cleaning. Refer 

to c for the ecoinvent processes used. 

𝑁𝑓𝑢𝑙𝑙  𝑟𝑒𝑓,𝑖 = ∑(𝑁𝑖,𝑐𝑜𝑙𝑙𝑒𝑐𝑡𝑒𝑑 ∗ 𝑅𝑒𝑓𝑓𝑢𝑙𝑙,𝑖) (Equation A.8) 

where, 

• 𝑁𝑓𝑢𝑙𝑙  𝑟𝑒𝑓,𝑖 represents the number of devices of type ii undergoing the full refurbishing 

process and sold in a functional state. 

• 𝑁𝑖,𝑐𝑜𝑙𝑙𝑒𝑐𝑡𝑒𝑑 was described in Equation A.1. 

• 𝑅𝑒𝑓𝑓𝑢𝑙𝑙,𝑖 represents the fraction of devices of type i undergoing the full refurbishing 

process and sold in a functional state. 

𝐸𝑓𝑢𝑙𝑙  𝑟𝑒𝑓 = ∑(𝑁𝑓𝑢𝑙𝑙  𝑟𝑒𝑓,𝑖 ∗ 𝑅𝑓𝑢𝑙𝑙 𝑟𝑒𝑓,𝑖 ∗ 𝐸𝐹𝑓𝑢𝑙𝑙 𝑟𝑒𝑓) (Equation A.9) 

where, 

• 𝐸𝑓𝑢𝑙𝑙  𝑟𝑒𝑓 represents the sum of GHG emissions due to the full refurbishing of a device 

type. 

• 𝑁𝑓𝑢𝑙𝑙  𝑟𝑒𝑓,𝑖 is calculated in Equation 8. 

• 𝑅𝑓𝑢𝑙𝑙 𝑟𝑒𝑓,𝑖 represents the rate of full refurbishment activities modeled per device type i. 

This reflects the "amount" of refurbishment used as an input for that device. 

• 𝐸𝑓𝑢𝑙𝑙  𝑟𝑒𝑓 represents the emission factor, in kg CO2 eq, of one full refurbishment activity. 

This activity includes a mix of ecoinvent processes in Appendix E. 

𝐸𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 = ∑ 𝑁𝑙𝑖𝑔ℎ𝑡  𝑟𝑒𝑓,𝑖 ∗
𝐴𝑣𝑒.𝑎𝑐𝑞𝑢𝑖𝑠𝑖𝑡𝑖𝑜𝑛 𝑝𝑟𝑖𝑐𝑒𝑖

𝐴𝑣𝑒.𝑠𝑒𝑙𝑙𝑖𝑛𝑔 𝑝𝑟𝑖𝑐𝑒𝑖
∗ 𝐸𝐹𝑛𝑒𝑤 (Equation A.10) 

 

where, 

• 𝐸𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 represents the sum of residual GHG emissions from the device's first life 

allocated to the refurbished device, for all devices. 

• 𝑁𝑙𝑖𝑔ℎ𝑡  𝑟𝑒𝑓,𝑖 is calculated in Equation A.6. 

• 𝐴𝑣𝑒. 𝑎𝑐𝑞𝑢𝑖𝑠𝑖𝑡𝑖𝑜𝑛 𝑝𝑟𝑖𝑐𝑒𝑖 represents the average price paid for the collected used devices 

of type i (also called the buyback price). 

• 𝐴𝑣𝑒. 𝑠𝑒𝑙𝑙𝑖𝑛𝑔 𝑝𝑟𝑖𝑐𝑒𝑖 represents the average selling price of a new device of type i. 

• 𝐸𝐹𝑛𝑒𝑤 represents the emission factor in kg CO2 eq/kg due to the production of the 

new device type i. The emission factors of new devices are presented in Appendix E. 
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𝐸𝑠𝑒𝑐𝑜𝑛𝑑𝑎𝑟𝑦 𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡 = ∑(𝑁𝑠𝑒𝑐𝑜𝑛𝑑𝑎𝑟𝑦 𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡 ∗ 𝑊𝑖 ∗ 𝐷𝑠𝑒𝑐𝑜𝑛𝑑𝑎𝑟𝑦 𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡 ∗ 𝐸𝐹𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡)  

(Equation A.11) 

where, 

• 𝐸𝑠𝑒𝑐𝑜𝑛𝑑𝑎𝑟𝑦 𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡 represents the sum of GHG emissions from secondary transport. 

• 𝑁𝑠𝑒𝑐𝑜𝑛𝑑𝑎𝑟𝑦 𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡 is the number of devices of device type i that are sent for 

secondary transport. 

• 𝑊𝑖 and 𝐸𝐹𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡are described in the project e-waste treatment calculations. 

• 𝐷𝑠𝑒𝑐𝑜𝑛𝑑𝑎𝑟𝑦 𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡  represents the distance traveled for secondary device transport in 

km per device type i. 

𝐸𝑃,𝑟𝑒𝑓𝑢𝑟𝑏𝑖𝑠ℎ𝑚𝑒𝑛𝑡 𝑝𝑟𝑜𝑐𝑒𝑠𝑠 = 𝐸𝑙𝑖𝑔ℎ𝑡  𝑟𝑒𝑓 + 𝐸𝑓𝑢𝑙𝑙  𝑟𝑒𝑓 + 𝐸𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 + 𝐸𝑠𝑒𝑐𝑜𝑛𝑑𝑎𝑟𝑦 𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡    

(Equation A.12) 

where, 

• 𝐸𝑃,𝑟𝑒𝑓𝑢𝑟𝑏𝑖𝑠ℎ𝑚𝑒𝑛𝑡 𝑝𝑟𝑜𝑐𝑒𝑠𝑠 represents the sum of GHG emissions in the project scenario 

refurbishing process LCA step, kg CO2 eq. 

2. Baseline Scenario 

The baseline scenario consists of two main functions: 1) waste treatment of the device after its 

first life (Device A) and 2) provisioning of a new device (Device B). This is broken down into 

3 life cycle stages, which are detailed in the following sections: 

• Device A collection 

• Device A e-waste treatment 

• Manufacturing of Device B 

The baseline scenario structure remains valid for the entire crediting period but may be 

significantly revised earlier if: 

• The Project Developer notifies Rainbow of a substantial change in project operations 

or baseline conditions, and/or 

• The methodology is revised, affecting the baseline scenario. 

The specific values within the baseline scenario will be updated annually, using project data 

to accurately reflect the equivalent of the project’s annual operations. 

The structure of the baseline scenario is the same whether the project consists of ongoing 

operations or an expansion. In the former, project data from all annual site operations is 

considered, and the baseline scenario is defined as the functional equivalent of all annual 

operations. For an expansion project, only project data related to the expansion is considered, 

because the normal annual operations would be the same in the baseline and project scenario, 

and can therefore be excluded. 
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a. E-waste collection 

It is assumed that e-waste is transported by truck 100 km to its waste treatment center. 

The mass of e-waste collected in the baseline scenario equals the total mass of input used 

devices collected by the refurbishing project annually. 

Total mass of devices shall be calculated using the number of devices collected for each device 

type (provided by the project developer), multiplied by the assumed mass of each device type. 

𝐸𝐵,𝑐𝑜𝑙𝑙𝑒𝑐𝑡𝑖𝑜𝑛 = ∑(𝑁𝑖,𝑐𝑜𝑙𝑙𝑒𝑐𝑡𝑒𝑑 ∗ 𝑊𝑖 ∗ 𝐷) ∗ 𝐸𝐹𝑡𝑟𝑢𝑐𝑘 𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡 (Equation A.13) 

where, 

• 𝐸𝐵,𝑐𝑜𝑙𝑙𝑒𝑐𝑡𝑖𝑜𝑛 represents the sum of GHG emissions in kg CO2 eq due to the transport 

of devices. 

• 𝑁𝑖,𝑐𝑜𝑙𝑙𝑒𝑐𝑡𝑒𝑑 is calculated in Equation A.1. 

• 𝑊𝑖 is described in Equation A.2. 

• D represents the distance of the device collection in kilometres, which is assumed to 

be 100 km. 

• 𝐸𝐹𝑡𝑟𝑢𝑐𝑘 𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡  represents the emission factor of truck transport in kg CO2 eq/ton-

km. 

b. E-waste treatment 

The treatment of e-waste is split between recycling, landfilling and incineration. 

The proportion of e-waste recycled is based on national statistics obtained from the Eurostat 

database for small IT devices, as defined by the Waste from Electrical and Electronic 

Equipment (WEEE) directive [21]. Data for other countries where used devices are frequently 

sourced are taken from the UN Global E-waste Monitor [22], and extrapolated where necessary.  

First, the fraction of e-waste that is not separately collected is assumed to be collected with 

municipal waste and incinerated or landfilled. In 2021, for example, this was an average of 31% 

for the countries included in Eurostat [23]. 

The repartition between landfilling and incineration (with and without energy recovery) was 

taken from Eurostat, and the total repartition for all EU countries from 2020 was used. This 

resulted in 52% incineration and 48% landfilling [24]. 

Then, the fraction of e-waste that is separately collected is considered (average of 69% in the 

EU in 2021) [23]. 

• This can be further broken down into the fraction successfully recycled/reused 

(average of 79% for EU countries in 2021) and the fraction that could not be 

recycled/reused (21%) [23].  

• The separately collected e-waste that could not be recycled/reused is assumed to be 

incinerated and landfilled, with the same proportions described in the e-waste 

treatment section for the baseline scenario. 
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𝐸𝐵,𝑤𝑎𝑠𝑡𝑒 = ∑(𝑁𝑖,𝑐𝑜𝑙𝑙𝑒𝑐𝑡𝑒𝑑 ∗ 𝑊𝑖 ∗ (1 − 𝑅𝑅𝑟𝑎𝑡𝑒,𝑖)) ∗ (𝐿𝑟𝑎𝑡𝑒 ∗ 𝐸𝐹𝑙𝑎𝑛𝑑𝑓𝑖𝑙𝑙 + 𝐼𝑟𝑎𝑡𝑒 ∗ 𝐸𝐹𝑖𝑛𝑐𝑖𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛) 

 (Equation A.14) 

where, 

• 𝐸𝐵,𝑤𝑎𝑠𝑡𝑒 represents the sum of GHG emissions due to the e-waste treatment of devices 

not separately collected. 

• 𝑁𝑖,𝑐𝑜𝑙𝑙𝑒𝑐𝑡𝑒𝑑 is calculated in Equation A.1. 

• Wi is described in Equation A.2. 

• 𝑅𝑅𝑟𝑎𝑡𝑒,𝑖 represents the project's country waste reuse and recycling rate. 

• 𝐿𝑟𝑎𝑡𝑒 represents the landfilling and incineration rates, respectively, described in 

section e-waste treatment section. 

• 𝐸𝐹𝑙𝑎𝑛𝑑𝑓𝑖𝑙𝑙  represents the emission factor of treating e-waste via landfill, in kg CO2 eq/kg 

using ecoinvent database, according to the breakdown of materials on pg. 11 of the 

ADEME study [13]. 

o treatment of waste plastic, mixture, sanitary landfill = 50% 

o treatment of waste glass, sanitary landfill = 10% 

o treatment of waste aluminum, sanitary landfill = 40% 

• 𝐸𝐹𝑖𝑛𝑐𝑖𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 represents the emission factor of treating e-waste via incineration, in kg 

CO2 eq/kg using ecoinvent database according to the following split: 

o treatment of waste glass, municipal incineration = 10% 

o treatment of waste plastic, consumer electronics, municipal incineration = 

50% 

o treatment of scrap copper, municipal incineration = 20% 

o treatment of scrap aluminum, municipal incineration = 20% 

 

𝐸𝐵,𝑠𝑒𝑝𝑎𝑟𝑎𝑡𝑒 𝑤𝑎𝑠𝑡𝑒 = ∑(𝑁𝑖,𝑐𝑜𝑙𝑙𝑒𝑐𝑡𝑒𝑑 ∗ 𝑊𝑖 ∗ 𝑅𝑅𝑟𝑎𝑡𝑒,𝑖 ∗ 𝐸𝐹𝑟𝑒𝑐𝑦𝑐𝑙𝑖𝑛𝑔,𝑖) (Equation A.15) 

where, 

• 𝐸𝐵,𝑠𝑒𝑝𝑎𝑟𝑎𝑡𝑒 𝑤𝑎𝑠𝑡𝑒 represents the sum of GHG emissions due to the e-waste treatment of 

separately collected devices. 

• 𝑁𝑖,𝑐𝑜𝑙𝑙𝑒𝑐𝑡𝑒𝑑, 𝑊𝑖, and 𝑅𝑅𝑟𝑎𝑡𝑒,𝑖 are describe above. 

• 𝐸𝐹𝑟𝑒𝑐𝑦𝑐𝑙𝑖𝑛𝑔,𝑖represents the emission factor of recycling device i, in kg CO2 eq/kg. Refer 

to Appendix E. for the ecoinvent process implemented. 
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𝐸𝐵,𝑤𝑎𝑠𝑡𝑒 𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 = 𝐸𝐵,𝑠𝑒𝑝𝑎𝑟𝑎𝑡𝑒 𝑤𝑎𝑠𝑡𝑒 + 𝐸𝐵,𝑤𝑎𝑠𝑡𝑒 (Equation A.16) 

where, 

• 𝐸𝐵,𝑤𝑎𝑠𝑡𝑒 𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 represents the sum of GHG emissions in the baseline scenario e-

waste treatment life cycle stage, in kg CO2 eq. 

c. New device production 

The number of new devices to consider in the baseline scenario corresponds to the number of 

devices successfully refurbished and sold in a functional state in the project scenario. Note that 

this does not necessarily equal the number of used devices collected, because a fraction of 

devices cannot be successfully refurbished. 

To quantify avoided GHG emissions, the baseline scenario must consider the market share of 

the project technology already in use. Currently, new device purchases come from both new 

manufacturing and existing refurbishing activities. The proportions of new and refurbished 

devices are detailed in Table VI.B.1. 

The process of manufacturing a new device is taken from the ecoinvent database: laptop, PC, 

tablet, and screen (See Appendix E). 

The emission factor for smartphones was based on ecoinvent data and adjusted to better 

represent average smartphones. This was necessary because 

1. smartphones are one of the most frequently refurbished devices, so special attention 

should be paid to them 

2. smartphone emission factors are notoriously variable, and 

3. it has been noted that ecoinvent smartphone emission factors are underestimated.  

The difference in lifetime between refurbished and new devices is accounted for in this life cycle 

stage. The amount of new device production avoided in the baseline scenario is proportional 

to the ratio of new and refurbished device lifetimes. 

Calculations involved in this life stage are detailed below. 

𝐸𝑛𝑒𝑤 𝑑𝑒𝑣𝑖𝑐𝑒 = ∑(𝑁𝑖,𝑠𝑜𝑙𝑑 ∗ 𝑓𝑟𝑎𝑐𝑛𝑒𝑤 ∗ 𝐸𝐹𝑛𝑒𝑤,𝑖) (Equation A.17) 

 

where, 

• 𝐸𝑛𝑒𝑤 𝑑𝑒𝑣𝑖𝑐𝑒 represents the sum of GHG emissions in kg CO2 eq due to the production 

of new devices (i.e. excluding the market share of refurbished devices that are already 

in use). 

• 𝑁𝑖,𝑠𝑜𝑙𝑑 was described in Equation A.1. 

• 𝑓𝑟𝑎𝑐𝑛𝑒𝑤 refers to the market share (in percentage) of new devices sold annually per 

device type i, as presented in Table VI.B.1. 
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• 𝐸𝐹𝑛𝑒𝑤,𝑖  represents the emission factor in kg CO2 eq/kg due to the production of the 

new device type i. 

𝐸𝑅𝑒𝑓 𝐵 = ∑(𝑁𝑖,𝑠𝑜𝑙𝑑 ∗ 𝑓𝑟𝑎𝑐𝑟𝑒𝑓𝑢𝑟𝑏 ∗ 𝑅𝑓𝑢𝑙𝑙 𝑟𝑒𝑓,𝑖 ∗ 𝐸𝐹𝑓𝑢𝑙𝑙 𝑟𝑒𝑓) (Equation A.18) 

where, 

• 𝐸𝑅𝑒𝑓 𝐵 represents the sum of GHG emissions due to the refurbishing of used devices 

according to the market shares in the baseline scenario. 

• 𝑁𝑖,𝑠𝑜𝑙𝑑 was described in Equation A.1. 

• 𝑓𝑟𝑎𝑐𝑟𝑒𝑓𝑢𝑟𝑏 refers to the market share (in percentage) of refurbished devices sold 

annually per device type i, as presented in Table VI.B.1. 

• 𝑅𝑓𝑢𝑙𝑙 𝑟𝑒𝑓,𝑖 and 𝐸𝐹𝑓𝑢𝑙𝑙 𝑟𝑒𝑓 are described in Equation A.9. 

Refurbished devices are assumed to have a shorter lifespan than new devices. This is accounted 

for in the following adjustment to avoided emissions from new device manufacturing: 

𝐸𝑛𝑒𝑤 𝑑𝑒𝑣𝑖𝑐𝑒 𝑙𝑖𝑓𝑒𝑡𝑖𝑚𝑒 𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑 = ∑(𝐸𝑛𝑒𝑤 𝑑𝑒𝑣𝑖𝑐𝑒 ∗ 𝑌𝑟𝑒𝑓𝑢𝑟𝑏𝑖𝑠ℎ𝑒𝑑,𝑖/𝑌𝑛𝑒𝑤,𝑖) (Equation A.19) 

where, 

• 𝑌𝑟𝑒𝑓𝑢𝑟𝑏𝑖𝑠ℎ𝑒𝑑,𝑖 represents the expected lifespan of a refurbished device i in number of 

years, as presented in Table VI.B.2. 

• 𝑌𝑛𝑒𝑤,𝑖 represents the expected lifespan of a new device i in number of years, as presented 

in Table VI.B.2. 

𝐸𝐵,𝑛𝑒𝑤 𝑑𝑒𝑣𝑖𝑐𝑒 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 = 𝐸𝑛𝑒𝑤 𝑑𝑒𝑣𝑖𝑐𝑒 𝑙𝑖𝑓𝑒𝑡𝑖𝑚𝑒 𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑 + 𝐸𝑟𝑒𝑓 (Equation A.20) 

where, 

• 𝐸𝐵,𝑛𝑒𝑤 𝑑𝑒𝑣𝑖𝑐𝑒 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 represents the sum of GHG emissions in the baseline scenario 

new device production life cycle stage, in kg CO2 eq. 

3. Avoided GHG Emissions 

The total baseline GHG emissions, total project GHG emissions, and the project's avoided 

emissions are calculated as follows. 

𝑃𝑟𝑜𝑗𝑒𝑐𝑡 𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠 = 𝐸𝑃,𝑐𝑜𝑙𝑙𝑒𝑐𝑡𝑖𝑜𝑛 + 𝐸𝑃,𝑤𝑎𝑠𝑡𝑒 𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 + 𝐸𝑃,𝑟𝑒𝑓𝑢𝑟𝑏𝑖𝑠ℎ𝑖𝑛𝑔 𝑝𝑟𝑜𝑐𝑒𝑠𝑠   

(Equation A.21) 

 

𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒 𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠 = 𝐸𝐵,𝑐𝑜𝑙𝑙𝑒𝑐𝑡𝑖𝑜𝑛 + 𝐸𝐵,𝑤𝑎𝑠𝑡𝑒 𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 + 𝐸𝐵,𝑛𝑒𝑤 𝑑𝑒𝑣𝑖𝑐𝑒 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛   

(Equation A.22) 

 

𝐴𝑣𝑜𝑖𝑑𝑒𝑑 𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠 = 𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒 𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠 − 𝑃𝑟𝑜𝑗𝑒𝑐𝑡 𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠 (Equation A.23) 



 

B. Parameter Ranges 
Table B.1. Ranges of values used per device in the sensitivity analysis. 

Device Value 

Baseline Project 

Recycling 

Rate 

M arket Share 

of Refurbished 

Devices 

Lifetime Ratio 
Residual 

Value 

Recycling 

Rate 
%Light %Full 

Distance - truck 

(km) 

Distance 

travelled - air 

(km) 

Smartphone min 0 0.065 0.333333 0.055 0 40 1 483 0 

max 24 0.195 1 0.165 24 90.86 60 4195 17271.53 

mean 10.4 0.13 0.666667 0.11 10.4 73.24833 16.35167 1588.333 3158.921 

Gaming 

Console 

min 0.45 0.03 0.3 0.07 0.45 94.45 1.4 202 2191.756 

max 1.35 0.09 0.9 0.21 1.35 98.15 4.2 606 6575.268 

mean 0.9 0.06 0.6 0.14 0.9 96.3 2.8 404 4383.512 

Laptop min 0 0.04 0.3 0.07 0 41 0 0 0 

max 59 0.12 0.9 0.21 59 100 47.665 2217 8696.331 

mean 12.62443 0.08 0.6 0.14 12.62443 73.75486 13.62071 826.5735 4362.513 

Tablet min 0 0.035 0.333333 0.1 0 59 0 0 0 

max 31 0.105 1 0.3 31 100 10 2217 17293 

mean 8.2 0.07 0.666667 0.2 8.2 88.875 2.925 680 7163 

PC min 0 0.04 0.3 0.07 0 27.64 0 441.77 0 

max 42.35 0.12 0.9 0.21 42.35 100 30.01 2552 8548.84 

mean 14.34767 0.08 0.6 0.14 14.34767 71.84533 13.807 1179.59 2849.613 

Screen min 23 0.03 0.285714 0.07 23 0 0 196.77 2191.756 

max 50.1 0.09 0.857143 0.21 50.1 77 49.9 2206 6575.268 

mean 36.55 0.06 0.571429 0.14 36.55 38.5 24.95 1201.385 4383.512 

 

 



 

1. Market Share of Refurbished Devices 

The market share of new and used devices sold annually in Europe was used to determine the 

repartition of avoided new and refurbished devices in the baseline scenario. Most data were 

available for smartphones and are taken from Deloitte Consumer Trends 2022 Report [12] and 

ARCEP in 2024 [25].  

Similar detailed data were not available for other device types. Survey responses on the interest 

in buying a given refurbished device type were used to adjust the smartphone data in Table 

B.2 proportionally to other device types. The results from PCs were applied to laptops. 

Moreover, the gaming console value was chosen to have the most conservative value within the 

list, which is of the screen. 

Table B.2. Market percentage of new and refurbished devices used in the refurbishing 

methodology. 

Device type 
M arket share of refurbished 

devices 
M arket share of new devices 

Smartphone 13% 87% 

PC 8% 92% 

Tablet 7% 93% 

Laptop 8% 92% 

Screen 6% 94% 

Gaming Console 6% 94% 

Average 8% 92% 

 

2. Residual Value 

The devices considered were the most popular and recent models available on the European 

market for smartphones and tablets. New device prices were obtained from the manufacturer’s 

website or, where unavailable, from the manufacturer’s store on Amazon, using French sources 

in both cases. Average buyback prices for each device category were provided by Rainbow’s 

project developers and reflect the typical buyback price for devices from Europe in 2023. For 

device types lacking specific buyback data, the average value of the available device types was 

applied. 
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Table B.3. Residual values used in the refurbishing methodology. 

Device Percent of Residual Value 

Smartphone 11% 

Tablet 20% 

Laptop 14% 

PC 14% 

Screen 14% 

Gaming Console 14% 

 

3. Lifetime of New and Refurbished Devices 

The lifetime of new and refurbished devices is listed in the table below.   The resulting ratio 

(lifetime of refurbished devices over lifetime of new devices) used in the baseline assessment 

is also included in the table. This data is based on the ADEME report in 2024 [13].  

Table B.4. Lifetimes of new and refurbished devices considered in the sensitivity analysis.  

Device Type 
Lifetime New 

(years) 

Lifetime Refurbished 

(years) 
Lifetime Ratio 

Smartphone 3 2 0.666666667 

Laptop 5 3 0.6 

PC 5 3 0.6 

Tablet 3 2 0.666666667 

Screen 7 4 0.571428571 

Gaming Console 5 3 0.6 

 

4. Masses of Devices 

Table B.5. Masses of devices considered in the sensitivity analysis.  

Device Type Average M ass (kg) 

Smartphone 0.2 

iPhone 0.2 

Laptop 1.6 

MacBook 1.7 

PC 5.4 

iMac 4.5 

Tablet 0.5 

iPad 0.5 

Screen 4.5 

Gaming Console 2.97 

 



 

C. Baseline Python Code 
from SALib.sample.morris import sample 
from SALib.analyze.morris import analyze 
 
from python_graphql_client import GraphqlClient 
 
import numpy as np 
import pandas as pd 
 
import copy 
 
from ..utils import ( 
    find_value_in_process_tree, 
    load_combined_graphql, 
    plot_morris, 
    set_from_path, 
    get_from_path, 
    plot_manual, 
) 
 
from ..inputs.erefurbishment import ( 
    Laptop, 
    Smartphone, 
    Tablet, 
    PC, 
    Monitor, 
    Gaming_console, 
) 
 
pd.set_option('display.max_rows', None)      # Show all rows 
pd.set_option('display.max_columns', None)   # Show all columns 
 
import matplotlib.pyplot as plt  
import time 
start = time.time() 
 
client = GraphqlClient(endpoint="http://localhost:9000/graphql/") 
query_graphql = load_combined_graphql( 
    "queries/SensitivityOutput.graphql", 
    "queries/ERefurbishingM2V2.graphql", 
) 
 
#------------MORRIS ANALYSIS------------# 
 
device = Smartphone() #EDIT 
device_type = device.device_type 
 
num_trajectories=2 #EDIT 
 
problem = device.baseline_morris_problem() 
 
param_values = sample(problem, N=num_trajectories) 
param_values = np.array([row for row in param_values]) 
 
emissions = np.array([]) 
 
variables = device.default_variables() 
 
 
vars_locations = { # because they cannot be referenced directly and i dont want to declare the 

variable dict twice bc it confuses me when i change variables per device ( ,,⩌'︿'⩌,,) 

        "recycled":["inputs","device_collection", 0, "recycled"], 
        "market_share_refurbished": ["inputs","market_share_refurbished"], 
        "lifetime_ratio":["inputs","lifetime_ratio"], 
} 
 
full_refurbished = variables["inputs"]["device_collection"][0]["full_refurbished"] 
light_refurbished = variables["inputs"]["device_collection"][0]["light_refurbished"] 
recycled_idx = problem["names"].index("recycled") 
 
for row_idx, row in enumerate(param_values): 
    #scale the full and light refurbishment percentages 
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    variables_morris = copy.deepcopy(variables) 
 
    # recycled = row[recycled_idx] 
    # scale = (100-recycled)/(full_refurbished+light_refurbished) 
    # full_refurbished_new = scale*full_refurbished 
    # light_refurbished_new = scale*light_refurbished 
 
    recycled = row[recycled_idx] 
    scale = 100/(recycled+full_refurbished+light_refurbished) 
     
    row[recycled_idx] = recycled*scale 
    full_refurbished_new = scale*full_refurbished 
    light_refurbished_new = 100-full_refurbished_new-row[recycled_idx] 
 
    variables_morris["inputs"]["device_collection"][0]["full_refurbished"] = full_refurbished_new 
    variables_morris["inputs"]["device_collection"][0]["light_refurbished"] = light_refurbished_new 
 
    for idx,(var,loc) in enumerate(vars_locations.items()): 
        set_from_path(variables_morris,loc,row[idx]) 
 
    data = client.execute(query=query_graphql, variables=variables_morris) 
    assert "errors" not in data, f"GraphQL returned errors: {data['errors']}" 
 
    path = ["Baseline Total", f"Baseline device total: {device_type}"] 
    result = find_value_in_process_tree(data=data,path=path)["value"] 
 
    emissions=np.append(emissions,[result]) 
 
#------------PLOT------------# 
 
morris_results = analyze(problem, param_values, emissions) 
morris_result_df = plot_morris( 
    morris_results=morris_results,  
    problem=problem,  
    device_type=device_type, 
    scenario="baseline",) 
 
print(morris_result_df) 
 
 
 
#------------MANUAL SENSITIVITY ANALYSIS------------# 
 
conduct_manual_sens = True #EDIT 
if not conduct_manual_sens: 
    end = time.time() 
    print(f"Runtime: {end - start:.4f} seconds or {(end - start)/60:.4f} minutes") 
    quit() 
 
num_vars_manual_sens = 3  
vars_manual_sens = problem["names"] 
print(vars_manual_sens) 
 
points = 10 
cols = [f"Point {int(f)}" for f in range(10)] 
 
manual_results_df = pd.DataFrame(index=vars_manual_sens, columns=cols) 
for var in vars_manual_sens: 
    idx = problem["names"].index(var) 
    median = np.mean(problem["bounds"][idx]) 
    emissions = np.array([]) 
 
    bounds = problem["bounds"][idx] 
    step = (bounds[1] - bounds[0]) / (points - 1) 
    bounds_list = [bounds[0] + i * step for i in range(points)] 
    for new_var_value in bounds_list: 
        variables_manual = copy.deepcopy(variables) 
        set_from_path(variables_manual,vars_locations[var],new_var_value) 
 
        #scale 
        if var == "recycled": 
            scale = 100/(new_var_value+full_refurbished+light_refurbished) 
 
            new_var_value *= scale 
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            full_refurbished_new = scale*full_refurbished 
            light_refurbished_new = scale*light_refurbished 
 
            variables_manual["inputs"]["device_collection"][0]["recycled"] = new_var_value 
            variables_manual["inputs"]["device_collection"][0]["full_refurbished"] = 
full_refurbished_new 
            variables_manual["inputs"]["device_collection"][0]["light_refurbished"] = 100 - 
new_var_value - full_refurbished_new 
 
        data = client.execute(query=query_graphql, variables=variables_manual) 
        assert "errors" not in data, f"GraphQL returned errors: {data['errors']}" 
 
        path = ["Baseline Total", f"Baseline device total: {device_type}"] 
        result = find_value_in_process_tree(data=data,path=path)["value"] 
 
        emissions=np.append(emissions,[result]) 
    manual_results_df.loc[var] = emissions 
 
print(manual_results_df) 
 
plot_manual( 
    manual_results_df=manual_results_df, 
    device_type=device_type, 
    scenario="baseline" 
) 
 
end = time.time() 
print(f"Runtime: {end - start:.4f} seconds or {(end - start)/60:.4f} minutes")  
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D. Project Python Code 
from SALib.sample.morris import sample 
from SALib.analyze.morris import analyze 
 
from python_graphql_client import GraphqlClient 
 
import numpy as np 
import pandas as pd 
 
import matplotlib.pyplot as plt 
 
import copy 
 
from ..utils import ( 
    find_value_in_process_tree, 
    load_combined_graphql, 
    plot_morris, 
    set_from_path, 
    get_from_path, 
    plot_manual, 
    remove_others_in_group, 
    remove_others_in_group_vars_locations, 
) 
 
from ..inputs.erefurbishment import ( 
    Laptop, 
    Smartphone, 
    Tablet, 
    PC, 
    Monitor, 
    Gaming_console, 
) 
 
pd.set_option('display.max_rows', None)      # Show all rows 
pd.set_option('display.max_columns', None)   # Show all columns 
 
import time 
start = time.time() 
 
client = GraphqlClient(endpoint="http://localhost:9000/graphql/") 
query_graphql = load_combined_graphql( 
    "queries/SensitivityOutput.graphql", 
    "queries/ERefurbishingM2V2.graphql", 
) 
 
#------------MORRIS ANALYSIS------------# 
 
device = Tablet()  #EDIT 
device_type = device.device_type 
 
cp_param_infocus = "light_refurbished" #EDIT 
problem = device.project_morris_problem() 
problem_modified = remove_others_in_group(problem,cp_param_infocus) 
 
num_trajectories = 2 #EDIT 
param_values = sample(problem_modified, N=num_trajectories) 
 
vars_locations = { # because they cannot be referenced directly and i dont want to declare the 

variable dict twice bc it confuses me when i change variables per device ( ,,⩌'︿'⩌,,) 

        "full_refurbished":["inputs","device_collection", 0, "full_refurbished"], 
        "light_refurbished":["inputs","device_collection", 0, "light_refurbished"], 
        "recycled":["inputs","device_collection", 0, "recycled"], 
        "truck_distance": ["inputs","freight_transport", 0, "distance"], 
        "air_distance":["inputs","freight_transport", 1, "distance"], 
        "residual_value":["inputs","residual_value"], 
} 
 
vars_locations_modified = remove_others_in_group_vars_locations(vars_locations, [cp_param_infocus]) 
 
# default values for the particular device, the sequence of variables should be the same as the 
problem declaration because morris input transforms problem into an ARRAY AHHH 
variables = device.default_variables() 
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param_values = np.array([row for row in param_values]) 
emissions = np.array([]) 
 
# need to get rows where the recycled, light ref, and full ref are in 
# need to adjust the other two variables 
 
cp_param_infocus_idx = problem_modified['names'].index(cp_param_infocus) 
for row_idx, row in enumerate(param_values): 
    # normalize refurbishing + recycled percentages 
    # Extract current values 
    device_collection = variables["inputs"]["device_collection"][0] 
    values = { 
        "recycled": device_collection["recycled"], 
        "light_refurbished": device_collection["light_refurbished"], 
        "full_refurbished": device_collection["full_refurbished"], 
    } 
 
    # Override the focused parameter from row 
    values[cp_param_infocus] = row[cp_param_infocus_idx] 
 
    # Normalize so the sum = 100 
    scale = 100 / sum(values.values()) 
    for k in values: 
        values[k] *= scale 
 
    # Ensure sum is exactly 100 (fix floating-point drift) 
    others = [k for k in values if k != cp_param_infocus] 
    values[others[0]] = values[others[0]] 
    values[others[1]] = values[others[1]] 
    values[cp_param_infocus] = 100 - values[others[0]] - values[others[1]] 
 
    # Update param_values 
    param_values[row_idx, cp_param_infocus_idx] = values[cp_param_infocus] 
 
    # Deep copy variables and update 
    variables_morris = copy.deepcopy(variables) 
    variables_morris["inputs"]["device_collection"][0].update(values) 
 
    # inject morris sample into variables 
    for idx, (var, loc) in enumerate(vars_locations_modified.items()): 
        set_from_path(variables_morris, loc, param_values[row_idx][idx]) 
 
    data = client.execute(query=query_graphql, variables=variables_morris) 
    assert "errors" not in data, f"GraphQL returned errors: {data['errors']}" 
 
    path = ["Project Total", f"Project device total: {device_type}"] 
    result = find_value_in_process_tree(data=data, path=path)["value"] 
 
    emissions = np.append(emissions, [result]) 
 
 
#------------PLOT------------# 
 
morris_results = analyze(problem_modified, param_values, emissions) 
morris_result_df = plot_morris( 
    morris_results=morris_results,  
    problem=problem_modified,  
    device_type=device_type, 
    scenario="project",) 
 
print(morris_result_df) 
 
#------------MANUAL SENSITIVITY ANALYSIS------------# 
 
params_cp_idx_dict = { 
        "recycled": problem['names'].index("recycled"), 
        "light_refurbished": problem['names'].index("light_refurbished"), 
        "full_refurbished": problem['names'].index("full_refurbished"), 
    } 
 
conduct_manual_sens = False 
if not conduct_manual_sens: 
    end = time.time() 
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    print(f"Runtime: {end - start:.4f} seconds or {(end - start)/60:.4f} minutes") 
    quit() 
 
to_remove = {} #EDIT 
vars_manual_sens = [n for n in problem["names"] if n not in to_remove] 
 
points = 10 
cols = [f"Point {int(f)}" for f in range(10)] 
 
manual_results_df = pd.DataFrame(index=vars_manual_sens, columns=cols) 
for var in vars_manual_sens: 
    idx = problem["names"].index(var) 
    median = np.mean(problem["bounds"][idx]) 
    emissions = np.array([]) 
    bounds = problem["bounds"][idx] 
    step = (bounds[1] - bounds[0]) / (points - 1) 
    bounds_list = [bounds[0] + i * step for i in range(points)] 
 
    need_scaling = var in params_cp_idx_dict.keys() 
         
    for new_var_value in bounds_list: 
        variables_manual = copy.deepcopy(variables) 
 
        set_from_path(variables_manual,vars_locations[var],new_var_value) 
        recycled =  variables_manual["inputs"]["device_collection"][0][ "recycled"] 
        light_refurbished = variables_manual["inputs"]["device_collection"][0]["light_refurbished"] 
        full_refurbished = variables_manual["inputs"]["device_collection"][0]["full_refurbished"] 
         
        total = recycled+light_refurbished+full_refurbished 
        scale = 100/total 
        full_refurbished *= scale 
        light_refurbished *= scale 
        recycled = 100- full_refurbished- light_refurbished 
 
        variables_manual["inputs"]["device_collection"][0][ "recycled"] = recycled 
        variables_manual["inputs"]["device_collection"][0]["light_refurbished"] = light_refurbished 
        variables_manual["inputs"]["device_collection"][0]["full_refurbished"]= full_refurbished 
         
        data = client.execute(query=query_graphql, variables=variables_manual) 
        assert "errors" not in data, f"GraphQL returned errors: {data['errors']}" 
 
        path = ["Project Total", f"Project device total: {device_type}"] 
        result = find_value_in_process_tree(data=data,path=path)["value"] 
 
        emissions=np.append(emissions,[result]) 
 
    manual_results_df.loc[var] = emissions 
 
print(manual_results_df) 
 
 
plot_manual( 
    manual_results_df=manual_results_df, 
    device_type=device_type, 
    scenario="project", 
) 
 
 
end = time.time() 
print(f"Runtime: {end - start:.4f} seconds or {(end - start)/60:.4f} minutes")  
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E. Ecoinvent Processes and Values 

Device type Ecoinvent activity Value kg CO2 per 

Smartphone* consumer electronics production, mobile 

device, smartphone | consumer electronics, 

mobile device, smartphone | Cutoff, U, GLO 

7.019982333 unit device 

Tablet* consumer electronics production, mobile 

device, tablet | consumer electronics, mobile 

device, tablet | Cutoff, U, GLO 

83.35827488 unit device 

PC** computer production, desktop, without 

screen | computer, desktop, without screen | 

Cutoff, U, GLO 

215.6814344 unit device 

Laptop* computer production, laptop | computer, 

laptop | Cutoff, U, GLO 

163.3984312 unit device 

Screen display production, liquid crystal, 17 inches | 

display, liquid crystal, 17 inches | Cutoff, U, 

GLO 

352.449192 unit device 

Gaming Console** computer production, desktop, without 

screen | computer, desktop, without screen | 

Cutoff, U, GLO 

280.0941959 unit device 

Transport, truck market for transport, freight, lorry 7.5-16 

metric ton, EURO5 | transport, freight, lorry 

7.5-16 metric ton, EURO5 | Cutoff, U, RER 

0.25533238 ton-km 

Transport, air market for transport, freight, aircraft, long 

haul | transport, freight, aircraft, long haul | 

Cutoff, U, GLO 

0.83159729 ton-km 

Smartphone 

recycling 

treatment of used smartphone, mechanical 

treatment | used smartphone | Cutoff, U, 

GLO 

0.75013477 kg device 

Tablet recycling treatment of used tablet, mechanical 

treatment | used tablet | Cutoff, U, GLO 

0.61185203 kg device 

PC recycling treatment of used desktop computer, 

mechanical treatment | used desktop 

computer | Cutoff, U, GLO 

0.42742733 kg device 

Laptop recycling treatment of used laptop computer, 

mechanical treatment | used laptop 

computer | Cutoff, U, GLO 

1.1323136 kg device 

Screen recycling treatment of used liquid crystal display, 

mechanical treatment | used liquid crystal 

display | Cutoff, U, GLO 

1.24942397 kg device 

Gaming Console 

recycling 

treatment of used desktop computer, 

mechanical treatment | used desktop 

computer | Cutoff, U, GLO 

0.55507751 kg device 

Light 

refurbishing*** 

market for ethanol, without water, in 99.7% 

solution state, from ethylene | ethanol, 

without water, in 99.7% solution state, from 

ethylene | Cutoff, U, RER 

1.43747613 kg liquid 
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Device type Ecoinvent activity Value kg CO2 per 

Light 

refurbishing*** 

market for water, completely softened | 

water, completely softened | Cutoff, U, RER 

0.00029925 kg liquid 

Light 

refurbishing*** 

market for tissue paper | tissue paper | 

Cutoff, U, GLO 

2.85833221 kg material 

Light 

refurbishing*** 

market for textile, knit cotton | textile, knit 

cotton | Cutoff, U, GLO 

8.40302083 kg material 

Full refurbishing market for ethanol, without water, in 99.7% 

solution state, from ethylene | ethanol, 

without water, in 99.7% solution state, from 

ethylene | Cutoff, U, RER (0.007 kg) 

1.43747613 kg liquid 

Full refurbishing market for water, completely softened | 

water, completely softened | Cutoff, U, RER 

(0.003 kg) 

0.00029925 kg liquid 

Full refurbishing market for tissue paper | tissue paper | 

Cutoff, U, GLO (0.005 kg) 

2.85833221 kg material 

Full refurbishing market for textile, knit cotton | textile, knit 

cotton | Cutoff, U, GLO (0.005 kg) 

8.40302083 kg material 

Full refurbishing market for battery, Li-ion, NCA, 

rechargeable, prismatic | Cutoff, U, GLO 

(0.1 kg) 

21.938971 kg material 

Full refurbishing market for electronic component, passive, 

mobile, earpiece and speaker | Cutoff, U, 

GLO (0.002 kg) 

55.4710502 kg material 

Full refurbishing market for liquid crystal display, 

unmounted, mobile device | Cutoff, U, GLO 

(0.1 kg) 

110.279501 kg material 

E-waste 

incineration 

treatment of waste glass, municipal 

incineration | waste glass | Cutoff, U, GLO 

= 10% 

0.02731586 kg material 

E-waste 

incineration 

treatment of waste plastic, consumer 

electronics, municipal incineration | waste 

plastic, consumer electronics | Cutoff, U, 

GLO = 50% 

3.0947596 kg material 

E-waste 

incineration 

treatment of scrap copper, municipal 

incineration | scrap copper | Cutoff, U, 

Europe without Switzerland = 20% 

0.02273487 kg material 

E-waste 

incineration 

treatment of scrap aluminum, municipal 

incineration | scrap aluminum | Cutoff, U, 

Europe without Switzerland= 20% 

0.0255479 kg material 

E-waste landfill treatment of waste plastic, mixture, sanitary 

landfill | waste plastic, mixture | Cutoff, U, 

RoW = 50% 

0.0922268 kg material 

E-waste landfill treatment of waste glass, sanitary landfill | 

waste glass | Cutoff, U, GLO = 10% 

0.01082863 kg material 

E-waste landfill treatment of waste aluminum, sanitary 

landfill | waste aluminum | Cutoff, U, RoW 

= 40% 

0.01670508 kg material 
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*removed the power adapter production and waste treatment, and the device waste 

treatment 

**removed the device waste treatment 

***amount of each input varies by device type 

 

 


