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Abstract

This study conducted a sensitivity analysis on key parameters within the life cycle assessment
(LCA) model of Rainbow’s Refurbishing of Electronic Devices methodology. Using verified data
from twelve refurbishment projects covering six device types (smartphones, gaming consoles,
laptops, PCs, tablets, and screens), the analysis identified which parameters most strongly
influence greenhouse gas (GHG) emissions in baseline and project scenarios. Results showed
that in the baseline scenario, the lifetime ratio between refurbished and new devices was the
most influential parameter, with an average importance of 4,857,903 kg COa2 eq, followed by
market share of refurbished devices (mean p; of 302,318 kg CO:2 eq), while recycling shares
were negligible (mean g of 4,268 kg CO2 eq). In the project scenario, residual value dominated
for most devices, obtaining an average importance of 1,139,103 kg CO2 eq for all device types.
Full and light refurbishment shares also had strong influence (mean y; of 71,504 and 37,351 kg
CO2 eq, on average, respectively), with their ranges amplifying sensitivity, particularly for
monitors. Transport parameters had device-specific effects: truck distance averaged 27,339 kg
CO2 eq in importance, whereas air distance reached 59,995 kg CO2 eq, largely due to the wide
range of distances and the high number of devices collected where it dominated. Finally,
recycling shares were consistently the least influential project parameter (average y; of 10,910
kg CO2 eq), reflecting their lower environmental footprint and narrower range. These results
highlight the importance of accurate data on lifetimes, residual values, and refurbishment
shares, while market shares, transport, and recycling parameters contribute comparatively
lower uncertainty and therefore do not require the same level of precision.
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Nomenclature

For clarity and ease of reference, the following table lists the acronyms, symbols, and key

terms used throughout this study, along with their definitions. This section is intended to

help readers quickly understand the terminology and ensure consistent interpretation of the

methodology and results.

Acronym De/nition

E voided Avoided Emissions
Epasetine Baseline Emissions
Eproject Project Emissions

GHG Greenhouse Gas

LCA Life Cycle Assessment
PC Portable Computer
RCC Rainbow Carbon Credits
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I. Introduction

A. Company Description

Rainbow is a French mission-driven company (société par actions simplifiée ¢ mission) founded
in 2021 and develops and operates a voluntary carbon crediting standard for industrial green
projects. Headquartered in Paris with branches in Lyon and Berlin, the company combines
environmental responsibility with technological innovation to support the transition toward a
low-carbon economy. Its core mission is to create measurable climate impact by certifying
sustainability-centric projects that reduce or remove greenhouse gas emissions, while ensuring
transparency, scientific rigor, and integrity throughout the process [1].

At the heart of its work, Rainbow operates the Rainbow Standard, a voluntary European
carbon crediting program designed for industrial decarbonization and removal projects. The
program issues RCCs, which represent verified reductions or removals of greenhouse gas
emissions. By focusing on industrial applications, the Rainbow Standard provides project
developers with a credible pathway to certification and gives credit buyers confidence in the
integrity and environmental value of the units they purchase [2].

Rainbow also manages a digital infrastructure that underpins the credibility of the standard.
The Rainbow Registry serves as a public platform where every project and carbon credit can
be traced throughout its entire lifecycle, from issuance to retirement, ensuring transparency
and preventing risks such as double counting. Complementing this, the Impact Certification
Platform provides project developers and accredited third-party validators with tools to
conduct assessments, validations, and certifications in a consistent and reliable way. A crucial
part of this infrastructure is the Monitoring, Reporting, and Verification (MRV) system, where
the LCA of the projects are implemented that ensure accurate, independently verified, and
transparently reported carbon credit calculations. This system provides the scientific backbone
of the Rainbow Standard, guaranteeing that each credit issued is based on rigorous and
verifiable data [3].

The credibility of Rainbow’s approach is strengthened by its recognized accreditations. In May
2024, it became the first program focused on circular economy projects to receive full
endorsement from the International Carbon Reduction and Offset Accreditation (ICROA).
This recognition places Rainbow among a very limited group of only twelve endorsed programs
worldwide, demonstrating its alignment with international best practices. Furthermore, its
methodologies are consistent with ISO standards for greenhouse gas accounting and
monitoring, which highlights its commitment to scientific rigor and methodological robustness

[1].

Rainbow aims to continually broaden the reach of its standard and infrastructure, developing
new methodologies and strengthening monitoring systems to accelerate industrial
decarbonization. By scaling across Europe and beyond, the company seeks to build trust in
carbon markets and contribute meaningfully to global net-zero goals.
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B. Context of the Study

To operationalize its framework, Rainbow has developed a set of methodologies that project
developers can use to quantify emission reductions. As of 2025, the program offers five
methodologies spanning different sectors as shown in Figure 1.

Refurbishing of
electronic devices

Biomass carbon
removal and storage

Biobased
construction materials

Rainbow
Methodologies

Biogas from

Battery second fife anaerobic digestion

Figure 1. List of Rainbow's methodologies as of 2025 [4].

Each of these methodologies is aligned with ISO standards for greenhouse gas accounting and
undergoes regular updates to maintain consistency with scientific and policy developments.

Among Rainbow’s methodologies, the Refurbishing of FElectronic Devices methodology is the
most widely applied, with the largest number of validated projects (12°. It targets the extension
of the lifetime of consumer electronics, such as smartphones, laptops, and tablets, that would
otherwise enter waste streams or require energy-intensive recycling and disposal processes. In
practice, the methodology involves restoring previously owned devices to a fully functional
state through a sequence of steps including diagnosis, cleaning, repairs, replacement of parts,
and performance testing [5].

The urgency of such an approach is underscored by the environmental footprint of small IT
and telecommunication equipment, which accounts for roughly 2% of global GHG emissions
[6] and is among the fastest growing sectors in emissions [7]. Beyond climate impacts, these
devices depend on the extraction of rare minerals and critical materials, while also contributing
to one of the most rapidly expanding streams of hazardous waste.

Furthermore, the majority of environmental impacts attributed to electronic devices occur
during the manufacturing stage [8], making this phase a primary driver of emissions. Extending
device lifetimes therefore represents a major lever for reducing GHG emissions, since fewer new
devices need to be produced. Repair and refurbishing directly address this challenge by
postponing end-of-life treatment and reducing demand for new manufacturing. Extending the
lifespan of devices not only avoids production-related emissions but also mitigates the
generation of electronic waste. While refurbishment is increasingly gaining mainstream
acceptance among consumers, it still faces barriers such as high repair costs, market
fragmentation, and limited consumer trust.
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Despite these challenges, refurbishing remains a particularly impactful approach. By tackling
both the climate and resource dimensions of electronics, it plays a central role in Rainbow’s
contribution to the circular economy and to broader efforts in industrial decarbonization.

The quantification of RCCs under the refurbishing methodology is based on an LCA framework
that compares a baseline scenario with the project scenario. Typically, the baseline scenario
reflects emissions from electronic devices in the current market without the project in place.
Two main functions are considered: (1) the end-of-life treatment of the original device (Device
A), and (2) the provisioning of a replacement device (Device B) [9].

The system boundary, illustrated in Figure 2, encompasses three life cycle stages:
1. Device A collection — e-waste collection from the municipality or separate programs
2. Device A e-waste treatment — landfilling, incineration, and default recycling.

3. Device B production — either as a new device or as a refurbished one, according to the

current market practices.

New device
manufacturing
Device
refurbishing

System boundary

Device A e-waste Device B
LEgend - [ treatment J [ production J

Figure 2. System boundary of the baseline scenario for the electronic refurbishing methodology [9].

Waste
treatment

By contrast, the project scenario consists of the refurbishment activity of discarded electronic
devices (collectively referred to as e-waste in the methodology) of the company in focus, thereby
displacing the need for new production. It also serves two functionalities as the baseline
scenario: (1) the waste treatment of e-waste after its first lifetime (Device A), and (2) the

refurbishment of e-waste to resell to the market (Device B) [9].

The system boundary also encompasses an equivalent of three life cycle stages:
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1. Collection of Device A — collection of e-waste directly from bulk or individual suppliers

2. Device A e-waste treatment — all discarded devices in the refurbishment facility are
assumed to be recycled due to limited project data

3. Device B production — either via light refurbishment or full refurbishment. Light
refurbishment involves cosmetic and software improvements and does not require the
replacement of parts. Full refurbishment includes light refurbishment plus repair and
replacement of non-functional pieces.

resiauavalo for — _

Y9 of devices of Device A Light A |Proq uction ri)f
—I;\. Y‘Lﬁ refurbishing B ceaning supplles
Production of

. Sorting { Software o
Electrici
Device #A ) updates i

o Full
refurbishing
Replacement Production of new pieces
of pieces (battery, screen...)

Device B

System boundary

£3

- ~ - = - Wast ™
. aste

‘ Distribution }—' Use H |

L ) treatment

L \
Legend Device A e-waste Device B
g treatment refurbishment

Figure 3. System boundary of the project scenario for the electronic refurbishing methodology [9].

The net emission is then obtained by calculating the difference between total baseline and total
project emissions. In simplified form, this relationship can be expressed as:

Eavoided = Ebaseline_Eproject (Equation 1)

The complete and detailed discussion of the methodology calculations for the baseline and

project scenarios are stated in Appendix VI.A.

Rainbow issues two types of RCCs. The first one is removal RCCs, which involves projects
that actively remove carbon and transform it into chemically and biologically stable compounds
that are highly resistant to environmental degradation. On the other hand, avoided RCCs
represent GHG emissions that are prevented thanks to a project’s intervention. These credits
are typically generated by initiatives that replace fossil fuels with cleaner energy or substitute
high-emission products with lower-emission alternatives. The refurbishment of electronic
devices methodology, therefore, issues the latter. One ton of CO2 equivalent removed
corresponds to one RCC [10].

In addition, the implementation of this methodology requires a wide range of parameters as

enumerated in the table below.
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Table 1. Inputs for the Refurbishment of Electronic Devices methodology.

Parameter

Unit

Source proof

Amount of sold devices in a
functioning state

Units of devices per
type

Company sales records

Portion of collected devices that
undergo light refurbishment, full
refurbishment, and recycling (should
total to 100%)

Percentage (%)

Refurbishing site records

Distance travelled during collection
from the source to the refurbishing
site including the mode of
transportation and the percent of
collected devices corresponding to the
latter two

km, mode of
transportation (air,
truck, boat,
personal, public),
percentage (%)

Refurbishing delivery
records

If applicable, secondary transport
distance associated with sending
collected devices from the project site
to another more specialized
refurbishing site, mode of
transportation, and the number of
devices corresponding to the latter
two

km, mode of
transportation (air,
truck, boat,
personal, public),
units of devices per

type

Refurbishing delivery
records

As stated in Table 1, some of these parameters can be directly obtained through project-level

monitoring, such as the number of devices refurbished and the percentages of devices

undergoing either recycling, light refurbishment, or full refurbishment. Others, however, are
difficult to obtain accurately such as the parameters associated with the distances due to lack
of project data (i.e. some companies only have the locations of the suppliers without the

breakdown per device type, some have a large amount of dataset of deliveries that requires

paid tools to provide accurate road distances, etc.)

The calculations itself also use fixed parameters from secondary scientific literature or

established databases. Parameters in this second category may require regular updating, since

they are influenced by technological progress and evolving market conditions. The most

significant parameters include the following:

DENSYS 2023-2025 Master Thesis Report — Lensoco
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Table 2. Influential fixed parameters used in the LCA calculations of the electronic refurbishing methodology.

Parameter Unit Source

Residual value, which determines the
innate portion of environmental
impacts of the device before
refurbishment. This is calculated Percentage (%)
using the ratio of the buyback price
to the price of the newly
manufactured device

StatCounter Global Stats
2024 [11]

Autorité de régulation des
communications
électroniques, des postes et
de la distribution de 1
Market share of refurbished devices Percentage (%) pie;e EZE Cljzlf?)n 5 062 4&{ 19]
Deloitte Consumer Trends
2022 [12]

L'Agence de l'environnement

Lifetimes of new and refurbished . L )
Years et de la maitrise de 1'énergie

devices (ADEME) 2022 [13]

Because the methodology depends on parameters with high uncertainty and temporal
variability, sensitivity analysis is essential. Implementing this measure identifies which of them
exert the greatest influence on results and where improvements in data quality are most
urgently needed. It also makes it possible to assess the robustness of the estimated emission
reductions in both baseline and project scenarios. Consequently, sensitivity analysis
strengthens methodological integrity and ensures that refurbishing projects certified under

Rainbow’s standard provide credible and scientifically sound RCCs.

C. Objectives of the Study

The main objective of this study is to identify the most influential parameters affecting baseline
and project scenario greenhouse gas (GHG) emissions per device type, and to evaluate how
variations in these parameters, which are based on real, verified data from Rainbow’s validated
electronic refurbishing projects, affect overall results. Specifically, the study aims to accomplish
the following;:

1. Assess the contribution of each life cycle stage to total GHG emissions in both baseline
and project scenarios for each device type.

2. Determine which devices are processed the most by refurbishment companies in
Rainbow’s records of validated projects and shortlist the types to be considered in the
sensitivity analysis.

3. Map the parameters associated with each life cycle stage and shortlist those most
significant for sensitivity analysis.

4. Rationalize the influence of the assessed parameters both on their corresponding
scenarios and device type.
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D.

Project Scope

This study evaluates Rainbow’s Refurbishment of Electronic Devices methodology, with a focus

on comparing baseline and project scenarios. The methodology is applied within a clearly

defined scope, summarized as follows:

The methodology version considered for Rainbow’s Refurbishment of Electronic Devices
is 2.3 and the model version is 2.5.3.

Baseline and project scenarios are analysed separately, including their respective life
cycle stages: device collection, end-of-life treatment, and manufacturing/refurbishment
of replacement devices as outlined in the Rainbow methodology (see Figures 2 and 3).

The analysis is limited to device types included in the twelve validated electronic
refurbishing projects as of June 2025.

All data for parameter shortlisting, device shortlisting, and sensitivity analysis are
obtained exclusively from this project set. This includes the input parameters and the
LCA results.

The gross GHG emissions of both baseline and project scenarios are treated as the sole
determinant for evaluating the impact of each parameter per device type.
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II. Methodology

The methodology outlines the approach used to perform the sensitivity analysis on key

parameters of Rainbow’s Refurbishment of Electronic Devices methodology. Devices were first
shortlisted based on the types most commonly used across the twelve validated projects,
followed by the selection of parameters through evaluation of existing LCA results from the
same set of projects. The sensitivity analysis was then conducted in two stages. First, the
Morris Global method was applied to quantify the influence of each parameter for every device
and scenario. This was followed by a manual sensitivity analysis on the most influential
parameters identified by the Morris method, aimed at assessing their behaviour across actual
data ranges.

A. Shortlisting of Devices

Twelve validated projects were identified from the Rainbow registry, and the number and types
of devices processed in each project were obtained from the MRV database. The total number
of sold devices per type was aggregated across all validated projects, after which the most
frequently refurbished device types sold were selected for inclusion in the sensitivity analysis.
This shortlisting ensures that the analysis reflects the most representative devices in Rainbow’s
database while maintaining computational efficiency.

Apple devices were excluded to retain methodological consistency. Although the GHG
calculations applied to Apple and generic devices follow the same equations (see Appendix
VIL.A), the production emission factors for Apple devices are sourced from Apple Product
Environmental Reports, while those for other devices are taken from ecoinvent version 3.11.
Including both would introduce heterogeneity in data sources, which could bias the results. For
this reason, only generic devices were retained in the final selection.

B. Shortlisting of Parameters

As summarized in Table 1 and Table 2, numerous parameters could be included in the
sensitivity analysis. However, to ensure efficiency and focus on the most impactful drivers, only
the parameters exerting the greatest influence on GHG emissions were shortlisted for both
baseline and project scenarios.

The shortlisting process was conducted as follows. First, validated LCA results generated
through the MRV platform were collected for each project from Rainbow’s Google Drive. For
each shortlisted device type (Section II.A), GHG emissions were disaggregated into the three
life cycle stages for both baseline and project scenarios: (1) Device A collection, (2) Device A
end-of-life treatment, and (3) Device B production. The relative contributions of each stage to
total scenario emissions were then calculated. Parameters corresponding to the most significant
life cycle stage(s) were subsequently identified and retained for sensitivity analysis.

Certain parameters were excluded for clarity and methodological consistency. The number of
sold devices was omitted, since total GHG emissions are directly proportional to this variable
and its influence is therefore self-evident. Secondary transport parameters were also excluded,
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as these were optional in the methodology and available for only three of the five analysed
projects, which would have limited comparability.

Several assumptions were applied to harmonize project data. Although methodology versions
varied slightly across projects, these were assumed to be homogeneous for the purpose of
comparison. In addition, for projects covering multiple monitoring periods, only the most
recent year of verified carbon credits was considered to ensure temporal consistency in the
dataset.

C. Sensitivity Analysis Calculations

Following the shortlisting of devices and parameters in Sections II.A and II.B, sensitivity
analysis was conducted to evaluate how uncertainties in input parameters influence the GHG
emissions estimated in both baseline and project scenarios. A two-stage framework was adopted
to ensure comprehensive identification of influential parameters while maintaining

computational feasibility.

1.  Global Sensitivity Analysis (GSA)

The first stage consisted of a global sensitivity analysis. GSAs aims to explore the full range
of variation of the input parameters and quantify their importance by analysing the resulting
output response surface [14]. This step is therefore important to quantify the influence of each
parameter and rank them.

Among the current GSA methods, the Morris method was selected because it requires relatively
low computational effort while still yielding results that are broadly comparable to more
computationally demanding yet more accurate approaches, such as Sobol [14].

In practice, the method works by slightly changing one parameter at a time while keeping all
other parameters fixed. The effect of this small change is then observed in the model output,
which in this study is the calculated GHG emissions per scenario per device. Each of these
calculated changes is called an elementary effect [14]. The formula for an elementary effect EE;
of parameter x; within a set of N parameters is:

Y(xl,xz,x3,...,x-+A,...,xN)—Y(xl,xz,x3,...,xN)
EEl- = l R (Equation 2)

where Y is the model output (overall GHG emissions), and A is the size of the change applied
to parameter x;. Note that a range should be set for each parameter x;.

To obtain reliable results, this process is repeated many times using different random starting
values for the parameters. Each sequence of calculations is often called a trajectory, meaning
a set of steps where each parameter is perturbed one after the other. Collecting results from
multiple trajectories provides a distribution of elementary effects for each parameter [14].

Finally, the influence of each parameter is assessed by calculating the mean of its elementary
effects. However, since a parameter can produce both positive and negative changes in the
model output, using the mean directly may result in cancellation effects and an
underestimation of its true impact. To address this, the mean of the absolute values of the
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elementary effects x; is calculated instead, providing a more robust measure of parameter

1
importance, as stated in u?za Z?ﬁrlE;: (Equation 3 [14].

1 on
‘Ll;k = _ZrzrlElrc'l (Equation 3)
ngr
Morris also covers the nonlinearity or interaction effects of the parameter by calculating the
standard deviation of EE;. However, such information is not relevant according to the goals of
the GSA for this thesis thereby it will be omitted.

a. Code Description

To implement the Morris sensitivity analysis for both the baseline and project scenarios per
filtered device type, a Python script was developed using the SALib library. The script connects
to Rainbow’s MRV platform through a GraphQL client to interface with the Refurbishing of
FElectronic Devices model (version 2.5.3).

The workflow of the script proceeded as follows. First, the parameters associated with the most
influential life cycle stages were identified, as described in Section II.A. Two categories of
parameters were considered: input parameters and fixed parameters. The ranges for the input
parameters were determined by collecting the minimum and maximum values from the twelve
validated projects. For inputs with only a single dataset (e.g., gaming consoles), a +50%
variation around the available value was assumed (see Section II.C.1.b for justification).
Likewise, if a parameter was missing for a given device (e.g., air transport distance for e-waste
collection), the average value of that parameter from other devices was assigned to allow
sensitivity analysis to proceed despite incomplete data.

For fixed parameters, the bounds were defined by applying a +50% variation to the currently
used values (see Section I1.C.1.b for rationale). Parameter combinations were then generated
using the SALib Morris sampling procedure with 50 trajectories. A literature-based guideline
for the Morris method recommends using approximately 10 to 50 trajectories to obtain reliable
sensitivity measures while keeping computational costs manageable. Therefore, a choice of 50
trajectories was applied in this study to ensure robust parameter screening without excessive
computational burden [15].

Special treatment was required for the parameters representing the distribution among light
refurbishment, full refurbishment, and recycling. Since these three shares must always sum to
100%, they are not independent of each other. To ensure this constraint was preserved, each
generated sample was adjusted accordingly, regardless of which parameter was directly
perturbed in a given trajectory.

Consequently, since all three are considered in the project scenario, a separate Morris run was
performed for each of the three parameters to maintain independence in the analysis. The final
u; of the other parameters were obtained as the average of the three separate runs.

Another modification concerned the lifetimes of new and refurbished devices in the baseline
scenario. Since these parameters are used as a ratio as per Equation A.19, the code treats the
two parameters as a ratio as well for convenience. This avoids infeasible values (e.g., lifetimes
less than one year or refurbished lifetimes exceeding those of new devices) and reflects the
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assumption that lifetimes are whole numbers. The bounds for this ratio were derived
consistently with other parameters: the ratio of the existing lifetimes was taken as the baseline,
and a +£50% variation was applied to define the minimum and maximum values.

The summary of the ranges of the parameters are located in Appendix VI.B.

For parameters excluded from the sensitivity analysis, the mean value across all twelve
validated projects was used. Secondary transport parameters were fully omitted in line with
the project scope defined in Section I.D. The consolidated inputs were structured into a Python
dictionary, which was passed into the Refurbishing of Electronic Devices GraphQL model.
Finally, the SALib Morris function was applied to calculate p*, which was used to rank the
relative influence of each parameter.

The complete Python implementation is provided in Appendix 0 and Appendix VI.D.

b. Assumptions

Several assumptions were necessary to operationalize the sensitivity analysis given data
limitations and methodological consistency requirements:

e For parameters with only a single available value across the validated projects (e.g.,
gaming consoles), a £50% range around the observed value was applied. This range
was selected as a conservative proxy to capture potential variability in the absence of
more comprehensive datasets without skewing the sensitivity results due to a relatively
wide range. Similarly, fixed parameters were assigned a +50% variation around their
default values to reflect plausible deviations without overstating uncertainty.

e Regardless of the adjustments made to ensure that the combined shares of full
refurbishment, light refurbishment, and recycling sum to 100% after sampling, it is
assumed that these proportional rescalings do not introduce bias or distort the relative
influence of each parameter in the Morris sensitivity analysis.

e In cases where device-specific data were unavailable for certain inputs (e.g., air
transport distance in e-waste collection), the average minimum and maximum value
across other devices was used to define its bounds. This assumption allowed the analysis
to include these parameters in a balanced way while maintaining comparability across

devices.

e Secondary transport parameters were excluded entirely, as only three out of five
projects reported data for this category. Given the limited coverage and optional
reporting status, their exclusion avoids introducing bias or uncertainty that would
outweigh potential analytical benefit.

e Although methodology versions varied across the validated projects, all projects were
treated as methodologically homogeneous for the purposes of sensitivity analysis. This
assumption was made to ensure comparability across the dataset and is justified by
the structural similarity of the methodological updates.
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e For each project, only the latest year of credit verification was considered. This
assumption ensures that the most recent and representative operational data are used,
reducing potential distortions from earlier project phases.

2. Local Sensitivity Analysis

While the Morris method provides a ranking of parameter importance, it does not reveal how
the model output behaves across the full range of each parameter. To address this, the GHG
emissions were recalculated for each device type and scenario while systematically varying the
selected parameters across the ranges defined in Section II.C.1. This procedure allowed for a
more detailed quantification of how variations in each parameter propagate into the total GHG
emissions, providing deeper insight into the magnitude and patterns of parameter influence
that cannot be captured by the global screening alone.

a. Code Description

The local sensitivity analysis was implemented in Python to evaluate in detail the effect of the
most influential parameters on baseline GHG emissions, as identified by the Morris GSA
screening for both baseline and project scenarios. Each parameter was varied across 10 equally
spaced points within its predefined range. For each value, a copy of the baseline input data
was updated, and where necessary, related shares within the device collection (e.g., full
refurbishment, light refurbishment, recycling) were proportionally rescaled to maintain a total
of 100%. The updated inputs were submitted to the Rainbow MRV model via GraphQL
queries, and the resulting total project and baseline emissions per device were recorded. All
outputs were stored in a dataframe, with parameters as rows and sampled points as columns,
and visualized using custom plotting functions to illustrate the response of GHG emissions to
parameter variations.

b. Assumptions

Assumptions made for the local sensitivity analysis method are the following:

e The base inputs used for the local sensitivity analysis were identical to those used for
the Morris GSA, so all assumptions described in Section II.C.1.b apply.

e Each parameter was evaluated at 10 equally spaced points across its predefined range.
This number of points was assumed sufficient to capture the trends in emissions while
keeping computational cost manageable.

e FEach parameter was varied one at a time, assuming that interactions between
parameters are negligible for the purpose of this local analysis except for the light
refurbished, full refurbished, and recycling percentages, where they are always adjusted
to sum up to 100%.

DENSYS 2023-2025 Master Thesis Report — Lensoco 18



III. Results and Discussion

The results of this study illustrate how variations in key parameters influence GHG emissions
in baseline and project scenarios across the most frequently refurbished device types in
Rainbow’s validated projects. By examining life cycle stage contributions, parameter
sensitivities, and device-specific behaviours, the analysis identifies the most significant emission
drivers and highlights where methodological assumptions matter most.

The discussion first considers the relative importance of life cycle stages, then evaluates the
influence of shortlisted parameters through global and local sensitivity analyses. These findings
provide insight into the comparability of results across devices, and the implications for
improving Rainbow’s refurbishment methodology to better capture the climate benefits of
electronic device reuse.

A. Identification of Devices and Parameters for Analysis

The number of sold units per device type across the twelve validated refurbishing projects are
shown in the figure below.
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Figure 4. Total number of units sold per device type across the twelve validated refurbishment projects.

Among the seven accounted device types, the top six were considered in the sensitivity analysis:
smartphone (488,782 units), gaming console (163,764 units), laptop (76,838 units), PC (26,469
units), tablet (21,885 units), and screen (11,923 units). Despite only excluding TVs, the six
remaining categories were retained because they represent clearly distinct product types, each
with unique use profiles, lifespans, and refurbishment value. TV was not included in the
sensitivity analysis since it is functionally and structurally similar to screens, making its
inclusion redundant. Furthermore, T'Vs and screens share comparable refurbishment pathways
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and market dynamics, so focusing on screens sufficiently captures the impacts associated with
this device category.

Subsequently, the parameters considered in the data analysis were determined. This was first
performed by assessing the contributions of each life cycle stage in the baseline and project
scenarios as illustrated in Figure 5 and Figure 6.

Tablet
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= PC
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©
Laptop
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% of the total GHG emissions

H Device A collection o Device A e-waste treatment m Device B production

Figure 5. Average contributions of the three life cycle stages of the baseline scenario.
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Figure 6. Average contributions of the three life cycle stages of the project scenario.

In the baseline scenario, Device B production accounted for the vast majority of overall GHG
emissions, averaging 98.09% across all device types. This was followed by the Device A e-waste
treatment stage, contributing an average of 1.78%, while the Device A collection stage
represented the smallest share at approximately 0.13% on average.

Based on equations A.13 — A.20 in Appendix VI.A, the parameters shortlisted for this scenario

among those in Table 1 and Table 2 were therefore:
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e the percentage of collected device that went to recycling
e market share of refurbished devices, and

e the lifetimes of new and refurbished devices

As noted in Section I1.C.1.a, the latter two parameters were treated as a ratio in the succeeding
sensitivity analysis.

On the other hand, Device B production comprised majority of the overall GHG emissions for
the project scenario as well. However, the Device A collection stage contributed more than the
Device A e-waste treatment stage. This leaves the following parameters for the sensitivity
analysis according to Equations A1 — A12:

e percentage of collected device that went to recycling

e percentage of collected device that went under full refurbishment

e percentage of collected device that went under light refurbishment

o distance travelled to the refurbishment facility per mode of transportation

o percentage of devices that were delivered to the refurbishment facility per mode of
transportation

Based on the breakdown of Device A collection emissions across the 12 projects, an average of
85.1% of devices were collected via truck and the remaining 14.9% via air travel. Therefore,
only these two transport modes were considered in the sensitivity analysis.

Among the two transportation-related parameters, only distance travelled was retained. This
decision was based on two factors. First, project data indicated that distances to refurbishment
facilities were highly variable and often more difficult to obtain accurately, introducing
significant uncertainty that warranted explicit sensitivity testing. Second, the influence of
transportation mode share was considered more predictable: since air transport has an emission
factor approximately three times higher than truck transport (per ton-km) [16][17]|, any
increase in the percentage of devices transported by air would consistently and linearly increase
emissions. As such, the effect of mode share was judged to be qualitatively clear and redundant,
whereas variability in transport distances represented a more meaningful source of uncertainty
for the analysis.

B. Sensitivity Analysis

Finally, a combination of global and local sensitivity analyses was conducted to evaluate the
influence of the shortlisted parameters from the previous section in both the baseline and
project scenarios, for each device type considered. The results are presented and discussed
below.

1. Baseline Scenario
a. Morris GSA

The Morris GSA was performed to quantify the influence of each parameter and rank them.
The influence of each considered baseline parameter, y;, per device is illustrated in Figure 7.

DENSYS 2023-2025 Master Thesis Report — Lensoco 21



lifetime ratio
1.00E+08
1.00E+07

e smartphone
e |aptOp

e tablet
— SCEEN
— PC

e (aMINg CONSOle

% of collected devices % market share of
sent to recycling refurbished devices

Figure 7. Calculated p*values from Morris GSA for the baseline scenario (logarithmic scale).
The rationale of the results from this assessment is further discussed in the next section.

b. Local SA

Local sensitivity analysis was performed to visualize the trend of each parameter across the
ranges in Appendix VI.B. The plots are shown in the Figure 8a-8b.

The lifetime ratio had the strongest influence in the baseline scenario with an average u; of
4,857,903 kg CO2 eq as shown in Figure 7. This parameter accounts for the fact that refurbished
devices are expected to have shorter lifetimes than new ones. As a result, the avoided
production of new devices is scaled down in proportion to this ratio (Equation A.19). For
instance, if a refurbished device lasts only half as long as a new device, it is credited with
avoiding only half of the emissions from producing a new device [18].

This finding aligns with the overall emissions profile of the baseline scenario. According to
Figure 5, emissions from producing new devices (through both refurbishment and
manufacturing) contribute the most to the overall baseline emissions. This is consistent with
Table B.2, which shows that over 87% of devices originate from new manufacturing in the
current market. Consequently, emissions from new device production are the dominant source
of baseline GHG emissions. The lifetime ratio acts as a direct multiplier in Equation A.19,
explaining why it is the most influential parameter and why baseline emissions increase
proportionally with it, as illustrated in Figure 8a-8b. The effect is further evident in these
figures, where the lifetime ratio exhibits the steepest slope across its range for all device types.
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Figure 8. Local sensitivity analysis for the baseline scenario of (a) smartphone, (b) gaming console, (c) laptop, (d)
PC, (e) tablet, and (f) screen.

On the other hand, the market share of refurbished devices is the second most influential
parameter, having an mean u; of 302,319 kg CO3 eq. This is because it governs the distribution
of emissions between refurbished and new devices in the Device B production life cycle stage,
as defined in Equations A.17 and A.18. However, its overall impact is relatively modest, since
the parameter varies only within +50% of its baseline value (for context, the average
refurbished market share is 8%). Intuitively, the effect is inversely proportional to total baseline
emissions: a higher market share of refurbished devices reduces emissions, because the emission
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factors for producing new devices are consistently higher than those for refurbishment
(Appendix E).

Finally, the parameter to which the baseline emissions are least sensitive to is the percentage
of collected devices sent to recycling (average p; of 4,268 kg COz eq). This is because this
parameter defines the amount of collected devices sent to recycling, and thus only factors into
the device e-waste treatment emissions (Equation A.14), which account for an average of just
1.78% of total baseline emissions across all devices (Figure 5). Moreover, the baseline emissions
increase as the recycling percentage rises, since the emission factor (EF) associated with
recycling is higher than that of municipal waste disposal methods such as incineration and
landfilling, as shown in the ecoinvent EF values (Appendix E).

c. Implication of Results

In the baseline scenario, the lifetime ratio is the most influential parameter among the three
assessed factors. Practically, this means that maintaining up-to-date lifetime values is critical
for reliable baseline GHG estimates. As Appendix VI.B indicates, the current lifetimes for new
and refurbished devices are based on 2022 data. These values should therefore be regularly
updated to reflect technological advances, changes in consumer usage patterns, and
improvements in device durability. Without such updates, the baseline scenario may
underestimate or overestimate emissions, limiting the accuracy of the results.

It was also found that the second key parameter is the market share of refurbished devices. At
present, the methodology applies 2024 market share values for France (taken from Autorité de
Régulation des Communications Electroniques, des Postes et de la Distribution de la Presse)
and 2022 for other European countries (taken from Deloitte Scandinavia) as detailed in
Appendix B). Given that changes in this parameter lead to only minor variations in total
baseline emissions, updating it is of lower priority compared to parameters such as device
lifetime.

Finally, the portion of collected devices sent to recycling was the least influential parameter in
the baseline scenario, implying that estimations for this parameter would be acceptable. This
is also supported by its resulting influence in the project scenario, as discussed in the following
section.

2. Project Scenario

a. Morris GSA

Similar to the baseline scenario, Morris GSA was used to quantify the influence of the
parameters considered to the project GHG emissions and rank them accordingly. The results
are plotted in Figure 9.
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Figure 9. Calculated p*values from Morris GSA for the project scenario (logarithmic scale).

Unlike the baseline scenario, however the parameters have varying rankings of influence
depending on the device. The rationale for the parameter’s behaviour are discussed more
thoroughly in the next section as the trend of the parameters across their respective ranges are
taken into consideration.

b. Local SA

Local sensitivity analysis was also performed for the baseline scenario to illustrate the trend of

each parameter across the ranges in Appendix VI.B. The plots are shown in the Figure 10a-f.

550000

500000

450000

400000

350000

300000

250000

10000000

9000000

8000000

7000000

6000000

5000000

4000000

3000000

10

310000

290000

270000

250000

230000

210000

190000

170000

150000

85000

75000

65000

55000

45000

35000

25000

DENSYS 2023-2025 Master Thesis Report — Lensoco

25



165000 350000
155000 330000
145000 310000
135000 290000
125000 270000
15000 250000
105000 230000
95000 210000
85000 190000
75000 170000
1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

—8— % of devices sent to full refurbishment —&— % of devices sent to light refurbishment
—8— % of devices sent to recycling —&—truck distance

—8— air distance —&— residual value

Figure 10. Local sensitivity analysis for the project scenario of (a) smartphone, (b) gaming console, (c) laptop, (d)
PC, (e) tablet, and (f) screen.

The plots show that there is considerable variation in influence of the parameters per device
type in the project scenario. As such, the behaviour of the parameters per device type is
discussed individually.

Smartphone

For the smartphone (Figure 10a), residual value has the most influence among the parameters,
with a pi of 245,345 kg CO2 eq. Residual value is the remaining economic worth of a used
device that is still functional and can be resold or refurbished. As shown in Equation A.10,
only lightly refurbished devices are assumed to have residual value, so some environmental
impacts from their first life are allocated to them, while fully refurbished devices are treated
as non-functional waste [19]. The device’s residual emissions are proportional to their residual
value, calculated as the ratio of the buyback price to the selling price of a new device as
summarized in Appendix VI.B. Because lightly refurbished devices make up the majority of
collected smartphones (an average of 73% as of Appendix VI.B), this parameter heavily
influences the Device B refurbishment stage. Moreover, it incorporates the EF of producing
new devices, which is considerably higher than that of either full or light refurbishment
(Appendix VILE). Together, these factors explain why residual value dominates the sensitivity
analysis for smartphones.

The next most important parameters are the percentages of fully refurbished and lightly
refurbished as seen in Figures 9 and 10a (y; of 119,813 kg CO2 eq and 47,845 kg CO2 eq,
respectively). These percentages determine how many devices are allocated to each end-of-life
pathway, directly affecting the overall environmental footprint. The percentage of fully
refurbished devices is the second key driver overall because full refurbishment is resource- and
energy-intensive, involving extensive repairs, component replacement, and testing, resulting in

the highest environmental footprint. Its wide range of 0 to 60% (Appendix VI.B) also makes
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project emissions highly sensitive to this parameter, since larger ranges allow greater variation
in total emissions during sensitivity analysis. Lightly refurbished devices are next, as this
process only involves cleaning and software updates, giving it a lower EF, but it constitutes
the largest portion of collected devices (40-90.86%, Appendix VI.B), so changes in this
parameter can still noticeably affect project emissions.

Transport parameters come next in influence, namely the air and truck distances associated
with Device A collection. As shown in Equation A.13, they determine the emissions from
transporting second-hand devices or e-waste to refurbishment facilities. Despite their very wide
ranges (0-17,271 km for air and 483-4,195 km for truck), their influence is relatively small (u;
of 20,310 kg COz2 eq for air and 25,719 kg CO2 eq) because transport-related impacts are much
lower than those of refurbishment and production (Appendix VI.E). This is supported by the
fact that Device A collection accounts for only about 3.5% of total project GHG emissions for
smartphones (Figure 6).

Finally, the percentage of recycled devices has the least influence, having a u; of only 8,144 kg
CO2 eq. Recycling primarily involves material recovery with relatively low energy and resource
inputs, resulting in the lowest EF among the processes (Appendix VILE). Its impact is further
constrained by its narrow range (0-24%) and by the fact that e-waste treatment of Device B,
where this parameter applies, contributes only 0.5% of total project GHG emissions for
smartphones (Figure 6).

Gaming Console

The residual value is also the dominant parameter in the project scenario for gaming consoles
(u;i =6,239,358 kg CO2 eq). The rationale is consistent with that of smartphones, as the
majority of collected devices are lightly refurbished (an average of 96.3%) and the EF of
producing new gaming consoles is considerably higher than that of either full or light
refurbishment (Appendix VL.E).

The rest of the parameter rankings are governed by the imposed range of values. In contrast
with smartphones, the second dominant parameter for this device type is air distance
(u; =266,606 kg CO2 eq). Although the environmental footprint of air transport is relatively
small as shown in Appendix VLLE and Figure 6, its wide range of 2,191-6,575 km makes it
more influential than the percentages of fully refurbished (u;=174,990 kg CO2 eq) and lightly
refurbished (u;=6,716 kg CO2 eq). In sensitivity analysis, parameters with larger variation
ranges exhibit higher influence because the output response is evaluated across the entire span
of possible values. Thus, even parameters with lower unit impacts can appear more sensitive

if the magnitude of their variation is sufficiently large.

The percentage of fully refurbished comes next due to its limited range of values (1.4-2.8%)
despite the relatively higher environmental footprint than air distance. However, it still
dominates truck distance (u;=94,570 kg CO2 eq) whose range is only 202 — 606 km as per
Appendix VI.B with an even smaller EF. Finally, the project emissions of gaming consoles are
least sensitive to the percentages of light refurbishment and recycling, as both parameters vary
within very restricted ranges, as noted previously.
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Laptop

For laptops, the sensitivity of project emissions is primarily governed by the magnitude of the
environmental footprints (EFs) rather than the range of parameter values. Residual value is
the dominant parameter (u;=143,375 kg CO2 eq), consistent with other device types, due to
the allocation of impacts from the production stage and the high EF associated with new
device manufacturing. The percentage of devices sent to full refurbishment follows (u; =75,296
kg CO2 eq), reflecting the process’s intensive material and energy requirements. Light
refurbishment (p;=23,001 kg CO2 eq) and recycling (u; =20,410 kg CO2 eq) come next in the
ranking; although their EFs are lower, they still influence results through their relative shares
of collected devices. Transport-related parameters (air and truck distance) have the least
influence, as their impacts are small compared to refurbishment and production, and the
parameter ranges are not wide enough to outweigh these differences (y; =17,214 kg CO3 eq for
air and p; =15,598 kg CO2 eq for truck).

pPC

From Figure 9 and Figure 10d, residual value remains the most influential parameter for PCs,
consistent with other device types (uj =78,079 kg CO2 eq). Truck distance is the second most
influential parameter (u;=24,498 kg CO2 eq) because PCs have the highest weight per unit
(5.4 kg), and truck transport accounts for 85% of device collection, whereas air transport
represents only 15%. As a result, the emissions from truck-based collection are the largest
among all devices according to Equation A.2, contributing 8% of total project emissions for
PCs (Figure 6). This higher magnitude makes truck distance more influential than the
percentages of devices sent to full refurbishment (u;=16,390 kg CO2 eq), light refurbishment
(u;i=15,822 kg CO2 eq), and recycling (u;=11,323 kg CO2 eq), which are ordered according to
their environmental footprints, as observed for smartphones, gaming consoles, laptops, and
tablets. These three refurbishment-related parameters still dominate air distance despite the
latter parameter having the widest range (0-8,548.84 km), because the ranges of the
refurbishment parameters — 0-30% for full refurbishment, 27.64-100% for light refurbishment,
and 0-42.35% for recycling — combined with their higher EFs and collection shares, result in
greater influence on total project emissions.

Tablet

The project emissions for tablets are most sensitive to residual value as shown in Figure 9 and
Figure 10e (u;=49,781 kg CO2 eq). The percentage of fully refurbished devices is the second
most influential parameter (u;=3,457 kg CO2 eq), reflecting its relatively high environmental
footprint and moderate range (0-10% from Appendix VI.B) and the associated high emissions
involved in this process listed in Appendix VLE. Air distance and truck distance follow in
influence (1,577 kg CO2 eq and 727 kg CO2 eq of u; values, respectively). Although transport
processes have lower environmental footprints (average contribution of 1.97%, Figure 6), the
wide ranges for air (0-17,293 km) and truck (0-2,217 km) amplify their effect on total
emissions. The percentage of devices sent to light refurbishment (range 59-100%) and recycling
(range 0-31%) are the least sensitive parameters, reflecting both lower environmental footprints
and narrower ranges (u; of 568 kg COz eq for the percentage of devices sent to light refurbishing
and 444 kg CO2 eq for the percentage of devices sent to recycling).
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Monitor

In contrast with other devices, the most influential parameter for monitor project emissions is
the percentage of lightly refurbished devices, having a u; of 130,153 kg CO2 eq. Although light
refurbishment has a relatively low EF, its range for monitors (0-77%, Appendix VI.B) is the
widest among all device types, and this high variability makes it more dominant than residual
value, which is typically the most influential parameter for other devices (u;=77,678 kg CO2
eq). Air transport ranks third, driven by its wide range (2,191-6,575 km) despite a lower EF
(u;i=53,771 kg CO2 eq). The percentage of fully refurbished devices follows, as its narrower
range (0-49.9%) limits its influence relative to air transport (u; =39,083 kg COz eq). Recycling
comes next; while its range (23-50.1%) is narrower than that of other devices, the values are
skewed toward the higher end, increasing its contribution to project emissions and placing it
above truck distance (p;=18,900 kg CO2 eq). Truck transport distance (196.77-2,206 km),
although comparable to other devices in range, has the lowest influence due to its relatively
small EF (u;=2,923 kg CO2 eq).

c. Implication of Results

In the project scenario, residual value consistently emerges as the dominant parameter for
smartphones, gaming consoles, laptops, PCs, and tablets, obtaining an average u; of 1,274,562
kg CO2 eq specifically across these devices. This reflects the allocation of a portion of
production-related environmental impacts to lightly refurbished devices, which constitute the
majority of collected units, as well as the high environmental footprint associated with
manufacturing new devices. Monitors are an exception, where the wide range in the percentage
of lightly refurbished devices causes light refurbishment to dominate sensitivity. Currently,
Rainbow calculates residual values per device using prices for 2023 as listed in Appendix VI.B.
New prices were taken from the manufacturer’s website where available, or from the
manufacturer’s store on Amazon. In both cases, French sources were used. Average buyback
prices were shared with Rainbow by Project Developers [20)].

Practically, residual values should then be updated regularly from reliable sources, as market
prices fluctuate with product release cycles and regional dynamics. OQutdated values risk
misrepresenting the emissions allocated to refurbished devices. A systematic approach, such as
annual collection of buyback and retail prices from manufacturer websites, online retailers, or
resale platforms, would help maintain accuracy. Since residual value strongly governs the
allocation of production-related emissions, keeping it up to date is essential for ensuring robust
and credible project results.

Refurbishment shares, including the percentages of devices sent to full and light refurbishment,
are also key determinants of project emissions, although their influence varies by device. Full
refurbishment generally exhibits higher environmental footprints due to the resource and
energy-intensive nature of the process (mean p; of 71,504 kg CO2 eq for all devices), whereas
light refurbishment contributes less per unit but can dominate sensitivity when its range is
wide, as observed for monitors (mean u; of 37,351 kg CO2 eq for all devices). Given the
influence of these parameters, it is essential that project developers provide accurate and up-
to-date data on refurbishment shares, as uncertainties or assumptions in these values can
significantly affect the robustness of the results. This step is also supported by the fact that
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the refurbishment of devices contributes the most emissions across all devices in the project
scenario as seen in Figure 6.

Furthermore, transport distances influence project emissions when depending on device
characteristics. Truck distance, on average, has a y; of 27,339 kg CO2 eq across all devices.
However, it is particularly significant for PCs, which are heavier (5.4 kg), and given the
assumption that 85% of devices are collected via truck, while air transport accounts for 15%.
Air distance was also deemed to be more influential gaming consoles and monitors, where the
wide ranges of distances considered (up to 17,293 km) and the large number of units sold
(175,687 in total) amplified its impact. As a result, air distance had a mean u; of 59,995 kg
CO2 eq for all devices, ranking second among transport-related parameters overall.

Emissions from device collection only account for 3.9% of total project emissions on average,
however, so it is not critical to obtain highly precise transport data from project developers.
The high sensitivity of air and truck distances observed for some devices is mainly a result of
the wide parameter ranges rather than the magnitude of their environmental footprints. In
practice, distances are also difficult to determine accurately, as refurbishing companies often
source devices from thousands of suppliers with numerous deliveries throughout the year. Thus,
estimates such as geodesic distances are considered valid, as they introduce only low to
moderate uncertainty given the relatively minor contribution of transport processes to overall

project emissions.

Lastly, the percentage of devices sent to recycling consistently exhibits lower sensitivity across
device types (mean u; of 10,910 kg CO2 eq), reflecting both its relatively low environmental
footprint and the narrower range of variation. This holds true in both the baseline and project
scenarios. Consequently, precise data for this parameter is less critical compared to the
percentages of full and light refurbishment. Since these three pathways are co-dependent and
must sum to 100%, prioritizing accuracy in the refurbishment shares inherently constrains the
recycling percentage within reasonable bounds.
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IV.Conclusion and Future Work

This study set out to evaluate and improve Rainbow’s Refurbishment of Electronic Devices

methodology by identifying the most influential parameters affecting baseline and project
scenario greenhouse gas (GHG) emissions across different device types. Drawing on real,
verified data from twelve refurbishing projects, the analysis first assessed the relative
contributions of life cycle stages, then shortlisted devices and parameters most relevant for
sensitivity analysis. By separately examining baseline and project scenarios, the study was able
to clarify how device production, refurbishment processes, collection, and recycling shape
overall emissions, and to rationalize the influence of specific parameters in relation to both
their environmental footprints and the ranges considered. In doing so, the work provides a
systematic understanding of which factors most strongly drive uncertainty in emission
estimates and highlights where methodological refinements or improved data collection can
most effectively strengthen the robustness of results.

From the analysis of device sales across Rainbow’s twelve refurbishment projects, six device
categories were shortlisted for sensitivity assessment: smartphone (488,782 units), gaming
console (163,764 units), laptop (76,838 units), PC (26,469 units), tablet (21,885 units), and
screen (11,923 units). These represent the majority of processed units and encompass distinct
product types with different use profiles, lifespans, and refurbishment values. TVs were
excluded since their structural and functional similarity to screens, as well as their comparable
refurbishment pathways and market dynamics, rendered separate analysis redundant.

In parallel, the parameters included in the sensitivity analysis were determined based on the
contributions of each life cycle stage. In the baseline scenario, Device B production dominated
total emissions, averaging 98.09% across all devices. The key parameters, which are the
percentage of collected devices sent to recycling, the market share of refurbished devices, and
the lifetime ratio between new and refurbished products, were selected because they directly
influence this dominant stage. Meanwhile, for the project scenario, Device B production again
represented the largest share of emissions with an average contribution of 94.54% across all
devices. Consequently, the residual value and the end-life shares of collected devices (full
refurbishment, light refurbishment, and recycled) were included. Device A collection
contributed an average of 3.94% of total emissions across all devices, so transport parameters
were considered in the sensitivity analysis. Only transport distance was retained due to its
high variability and associated uncertainty, while transport mode share was excluded because
its impact is predictable and linear. Furthermore, only air and truck were included since project
data showed that 85.1% of devices were collected by truck and 14.9% by air, with other
transport modes being negligible.

The sensitivity analysis demonstrated that the lifetime ratio between refurbished and new
devices is the most influential parameter for the baseline scenario. For all devices, the lifetime
ratio has the highest u; value, averaging 4,857,903 kg CO2 eq. It captures the fact that
refurbished devices generally have shorter lifetimes than new ones, which directly scales the
avoided production of new devices. And given that Device B production dominates total
baseline emissions, this makes the lifetime ratio the critical driver of baseline GHG estimates.
The second most influential parameter in the baseline scenario was the market share of



refurbished devices with a mean y; of 302,318 kg CO2 eq. While this parameter shifts the
balance between emissions from refurbishment and new production, its overall influence was
modest due to its narrower range of variation. Finally, the recycling share was consistently the
least influential parameter, having a u; of 4,268 kg CO2 eq on average for all devices. This is
because the recycling share only affects the e-waste treatment stage, which represents a very
small fraction of baseline emissions as previously mentioned. Taken together, these findings
highlight that reliable baseline estimates depend most strongly on accurate device lifetime
data, while market share and recycling values, though still relevant, introduce comparatively
lower uncertainty.

On the other hand, sensitivity analysis showed that residual value is the most influential
parameter for the majority of device types in the project scenario, with y; values averaging
1,274,562 kg COs2 eq specifically across smartphones, gaming consoles, laptops, PCs, and
tablets. This strong influence arises because residual value determines how much of the
emissions from manufacturing new devices are allocated to lightly refurbished devices, which
represent the dominant share of collected units (mean of 74%). The only exception was
monitors, for which the wide variation in the share of light refurbishment made this parameter
more influential than the residual value.

Moreover, across all devices, refurbishment shares emerged as key drivers of the project
scenario emissions. Full refurbishment generally exerted stronger influence due to its higher
environmental footprint, obtaining an average of 71,504 kg COz eq in y; for all devices. Light
refurbishment, on the other hand, was also shown to have the ability dominate sensitivity when
its range was sufficiently large, having an average u; of 37,351 kg CO2 eq across the device
types. Meanwhile, transport parameters showed device-specific behaviour. Despite truck
distance having an average y; of 27,339 kg CO2 eq across all devices, it was particularly
significant for PCs given their heavier weight and the assumption that 85% of devices are
collected via truck. Air distance had greater influence in general (mean p; of 59,995 kg CO2 eq
for all devices), ranking second among transport-related parameters overall. This is because it
is significant for gaming consoles and monitors, both of which has relatively wide ranges of air
transport distances considered and a large number of units sold. However, since device
collection processes account for only 3.9% of project emissions on average, the high sensitivity
of transport distances is primarily an artefact of their ranges rather than their intrinsic impacts,
meaning that approximate estimates such as geodesic distances are sufficient for robust results.
Recycling shares, by contrast, consistently ranked as the least influential parameter (average
u; of 10,910 kg COz2 eq for all devices) due to their lower environmental footprint and narrower
ranges, confirming that accuracy should be prioritised for refurbishment shares rather than
recycling. Taken together, these findings underscore the importance of maintaining up-to-date
residual values and reliable refurbishment data from project developers, while transport and
recycling parameters can be treated with less precision without compromising overall accuracy.

Overall, the sensitivity of project emissions is determined by the interplay between a
parameter’s environmental footprint, its range of variation, and the scenario context.
Parameters with high environmental impacts dominate the results even when their ranges are
narrow, whereas lower-impact parameters can become significant when their ranges are wide.

The analysis highlights that accurate, up-to-date data on critical parameters—particularly
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device lifetimes, residual values, and refurbishment shares—are essential for reliably
quantifying the climate benefits of electronic device reuse. At the same time, parameters such
as transport distances and recycling shares, which contribute less to overall emissions, can be
estimated with lower precision without substantially affecting results. These insights provide a
clear basis for prioritizing data collection and methodological refinements, ensuring that
resources are focused on the factors that most strongly influence emission estimates and the
robustness of the refurbishment methodology.

For future work, the robustness of the sensitivity analysis could be strengthened by
incorporating the continuously expanding pool of validated Rainbow refurbishment projects.
As more projects are added, the analysis would benefit from a larger and more representative
dataset, improving the reliability and generalizability of the findings. Methodologically, this
study applied Morris and local sensitivity analyses due to their computational efficiency and
suitability for a limited dataset, but future research could explore variance-based global
sensitivity methods or probabilistic uncertainty approaches as the dataset grows, to better
capture parameter interactions and non-linear effects. Extending the sensitivity analysis to
Rainbow’s other methodologies would provide a more comprehensive view of parameter
importance across different product categories and environmental contexts.
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VI. Appendix

A.  Refurbishing of Electronic Devices GHG Quantification

Calculation

1. Project Scenario

The project scenario consists of refurbishing used electronic devices, which serves two functions:
1) waste treatment of the device after its first life (Device A) and 2) refurbishing to produce a
“new” device (Device B). This process is broken down into 3 life cycle stages:

e Device A e-waste collection
e Device A e-waste treatment of scrap materials
e Device B refurbishing process

a. E-waste collection

The mass of e-waste collected equals the total mass of input used devices collected at the
refurbishing site annually.

Total mass of devices shall be calculated using the number of devices collected for each device
type (provided by the Project Developer), multiplied by the assumed mass of each device type
shown in Table 3.

For calculating transport distance, Project Developers shall provide the country and/or city
where used electronic devices are transported from and provide the average distance from the
collection source to the refurbishing project site.

It is assumed that transport within Europe is done 100% by truck, and overseas transport is
done by long-distance air freight.

Calculations involved are:
Ni,collected = Z Ni,sold/(1 - Rerate,i) (Equation A.1)
where,

® N coltectea Tepresents the amount of input collected devices of type i collected by the
project, in number of devices.

e Nj¢o1q represents the number of devices by type ii sold in a functioning state, and
shall be provided by the Project Developer for each verification.

* Reyqte,; represents the fraction of input used devices of device type 4 that are
recycled, saved for spare parts, or not successfully refurbished to a functioning state
by the project, and shall be provided by the Project Developer for each verification.

EP,collection = Z(Ni,collected * Wi * DC,i * RC,i) * EFtransport (Equation A'2)
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where,

e Ep cottection represents the sum of GHG emissions due to the transport of devices
collected for refurbishing in the project scenario, in kg CO2 eq.

*  Nicollectea Was calculated in Equation A.1.

e W, represents the weight in kilograms of device i, according to the presented in Table
B.5.

e D¢ ; represents the distance travelled for device collection in km, provided by the Project
Developer per sourcing country/city (CC) and device type 1.

e R, represents the fraction of the devices collected per sourcing country/city (C) and
device type 1.

*  EFanspore Tepresents the emission factor for transport in kg CO2 eq/ton-km according
to the ecoinvent database and includes truck or air freight.

b. E-waste collection

Devices collected by the project that cannot be refurbished undergo e-waste recycling.
Refurbishing projects typically have contracts with e-waste recycling companies that collect
and recycle such devices.

Project Developers shall provide the fraction of devices that are recycled, and they will be
modelled as mechanical e-waste recycling with shredding and separation.

Some non-refurbished devices may be kept onsite to harvest spare parts in the future, but due
to limited project data on this topic, they are assumed to be recycled.

Devices that are sold by the project in a non-functional state shall be treated in the calculations
as recycled devices.

Erecycling = Z(Ni,collected * Wi * Rerate,i * EFrecycling,i) (Equation A.3)
where,

*  Erecyclingrepresents the sum of GHG emissions due to the recycling process of
devices/scrap not suitable for refurbishing, in kg CO2 eq.

*  Nicouectea and Re,qeo; were described in Equation A.1.
e WW; is described in the section e-waste collection section of the project scenario.

e EFrecyciing,i represents the emission factor of recycling each device type. Refer to
Appendix E for the ecoinvent processes used.

Etransport = Z(Ni,collected * Rerate,i * Wi * Dscrap * EFtruck transport)(Equation Ad)

where,

*  Etransport represents the sum of GHG emissions due to the transport of devices/scrap
not suitable for refurbishing that are sent to recycling, in kg CO2 eq.
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* N cottectea and Repqre; wWere described in Equation A.1.
e IW; is described in the section e-waste collection section of the project scenario.

®  Dgcrqp represents the distance in km until the waste treatment facility. If not known,
this value is considered 100km.

o EFryck transport TePresents the emission factor of truck transport. Refer to Appendix E
for the ecoinvent processes used.

EP,waste treatment = Etransport + Erecycling (Equation A.5)

where,

e Ep waste treatment represents the sum of GHG emissions in the project scenario e-waste
treatment of non-refurbished devices, in kg CO2 eq.

c. Refurbishing process

This life cycle stage is composed of four main processes, each described below:
e light refurbishing impacts
e full refurbishing impacts
e residual value of input devices, and
e secondary transport of devices.

Light refurbishment impacts: The refurbishing process is split into two categories: light and
full refurbishment, representing the degree of intervention needed to restore the device to a
functioning state. Light refurbishment involves cosmetic and software improvements and does
not require the replacement of parts (e.g. new battery, new screen...). This distinction was
chosen because most environmental impacts from the refurbishing process come from
production of new replacement pieces.

e Light refurbishment includes inputs of cleaning alcohol, tissues, and cloth, and is
modeled after the detailed LCA of electronic device refurbishing from the ADEME
study [13].

Full refurbishment impacts: Full refurbishment includes light refurbishment plus repair and
replacement of non-functional pieces. Detailed project data on all replacement pieces and
inputs are rarely available, so full refurbishment impacts are modeled following the ADEME
study [13].

¢ Results from this study are used to obtain the ratio of impacts of a refurbished device
to the impacts of the corresponding new device. This ratio is then applied to the new
device production impacts to obtain the desired amount of emissions from refurbishing.
The emissions from refurbishing are modelled using the mix of ecoinvent processes used
in light refurbishment described above, plus production of commonly replaced parts
including screens, batteries, microphones and speakers.
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Residual value of input devices: In life cycle assessments, when a project uses waste as an
input, it typically enters the project system boundary with zero environmental impacts.
Refurbishing projects collect and refurbish used devices that are not always at the end of their
life and are not truly waste. They may still be functional and hold residual value from their
first life. This is evidenced by the fact that Project Developers sometimes pay for used devices,
as opposed to waste collection, where the waste generator must pay for waste treatment.

e In this case, some environmental impacts from the device’s first life should be allocated
to the refurbished device. It is assumed that only devices that undergo light
refurbishment were in good condition and had residual value and are allocated a share
of GHG emissions from the device’s first life. On the other hand, devices that undergo
full refurbishment are assumed to be non-functional waste and are not allocated any
environmental impacts from their first life.

e The residual value and corresponding allocated emissions are based on the ratio of the
buyback price to the selling price of a new manufactured device. An average ratio shall
be used for each device type and is shown in Table B.3. Alternatively, project developers
may provide a similar project-specific database with their own buyback data.

Secondary transport of devices: After the device is collected by the refurbishing project and
sorted, it may be sent to a different refurbishment site, for example to do speciality repairs.
project developers shall report such secondary transport by providing the distance transported,
and the number and type of devices making this transport.

Calculations involved in this life cycle stage are listed below.
Nlight refi — Z(Ni,collected * Reflight,i) (Equation A.6)
where,

*  Niignt ref,i represents the number of devices of type ¢ undergoing the light refurbishing
process and sold in a functional state.

* N coltectea Was described in Equation A.1.

e Refjigns; represents the fraction of devices of type ii undergoing the light refurbishing
process and sold in a functional state.

Nlight ref,i * (alCOhOI * EFalcohol

Equation A.7
+ paper x ¢ + cloth * EF 1) (Equation A.7)

Eiight ref = 2
where,
e crepresents the sum of GHG emissions due to the light refurbishing of a device type.
*  Nignt ref,i is calculated in Equation A.6.

e alcohol, paper and cloth represent the amount of cleaning alcohol, paper and cloth
needed to clean a device. These amounts were taken per device type from the ADEME
study, pages 45, 77, and 103.
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where,

where,

where,

EFgic0n01 TeDresents the emission factor, in kg COs2 eq, for cleaning alcohol composed of
70% ethylene and 30% water. Refer to Appendix E for the ecoinvent processes used.

EF,qper Tepresents the emission factor, in kg CO2 eq, of paper. Refer to Appendix E
for the ecoinvent processes used.

EF_o¢n represents the emission factor, in kg CO2 eq, of cloth used for cleaning. Refer
to ¢ for the ecoinvent processes used.

Nfull refi = Z(Ni,collected * Reffull,i) (Equation A.8)

Nfyir ref,i Tepresents the number of devices of type i7 undergoing the full refurbishing
process and sold in a functional state.

N; cottectea Was described in Equation A.1.

Reffryy i represents the fraction of devices of type i undergoing the full refurbishing
process and sold in a functional state.

Epuit ref = 2(Npwit ref,i * Reutires,i * EFruti ver) (Equation A.9)

Efyui rep Tepresents the sum of GHG emissions due to the full refurbishing of a device

type.
Nryir ref,i is calculated in Equation 8.

Reyiirer,i Tepresents the rate of full refurbishment activities modeled per device type .
This reflects the "amount" of refurbishment used as an input for that device.

Efuin ref represents the emission factor, in kg CO2 eq, of one full refurbishment activity.
This activity includes a mix of ecoinvent processes in Appendix E.

Ave.acquisition price;

Eresiauar = Z Nlight ref,i * Ave.selling price; EFew (Equation A.10)

Eresiquar represents the sum of residual GHG emissions from the device's first life
allocated to the refurbished device, for all devices.

Niight rer,i is calculated in Equation A.6.

Ave. acquisition price; represents the average price paid for the collected used devices
of type i (also called the buyback price).

Ave.selling price; represents the average selling price of a new device of type .

EF,, represents the emission factor in kg CO2 eq/kg due to the production of the
new device type 4. The emission factors of new devices are presented in Appendix E.

DENSYS 2023-2025 Master Thesis Report — Lensoco 41



Esecondary transport — Z(Nsecondary transport * Wi * Dsecondary transport * EF transport)

(Equation A.11)
where,
*  Esecondary transport répresents the sum of GHG emissions from secondary transport.

*  Ngecondary transpore 18 the number of devices of device type i that are sent for

secondary transport.
o W;and EFrgnsportare described in the project e-waste treatment calculations.

*  Dgecondary transport Tepresents the distance traveled for secondary device transport in
km per device type .

EP,refurbishment process — Elight ref + Efull ref + Eresidual + Esecondary transport

(Equation A.12)
where,

*  Eprefurbishment process represents the sum of GHG emissions in the project scenario
refurbishing process LCA step, kg COz2 eq.

2. Baseline Scenario

The baseline scenario consists of two main functions: 1) waste treatment of the device after its
first life (Device A) and 2) provisioning of a new device (Device B). This is broken down into
3 life cycle stages, which are detailed in the following sections:

e Device A collection
e Device A e-waste treatment

o Manufacturing of Device B

The baseline scenario structure remains valid for the entire crediting period but may be

significantly revised earlier if:

e The Project Developer notifies Rainbow of a substantial change in project operations
or baseline conditions, and/or

e The methodology is revised, affecting the baseline scenario.

The specific values within the baseline scenario will be updated annually, using project data
to accurately reflect the equivalent of the project’s annual operations.

The structure of the baseline scenario is the same whether the project consists of ongoing
operations or an expansion. In the former, project data from all annual site operations is
considered, and the baseline scenario is defined as the functional equivalent of all annual
operations. For an expansion project, only project data related to the expansion is considered,
because the normal annual operations would be the same in the baseline and project scenario,

and can therefore be excluded.
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a. E-waste collection

It is assumed that e-waste is transported by truck 100 km to its waste treatment center.

The mass of e-waste collected in the baseline scenario equals the total mass of input used
devices collected by the refurbishing project annually.

Total mass of devices shall be calculated using the number of devices collected for each device
type (provided by the project developer), multiplied by the assumed mass of each device type.

EB,collection = Z(Ni,collected * Wi * D) * EFtruck transport (Equation A-13)

where,

e Ep coutection Tepresents the sum of GHG emissions in kg CO2 eq due to the transport
of devices.

® N collecteq is calculated in Equation A.1.
e WW; is described in Equation A.2.

e D represents the distance of the device collection in kilometres, which is assumed to
be 100 km.

o EFryuck transport Tepresents the emission factor of truck transport in kg CO2 eq/ton-
km.

b. E-waste treatment

The treatment of e-waste is split between recycling, landfilling and incineration.

The proportion of e-waste recycled is based on national statistics obtained from the Eurostat
database for small IT devices, as defined by the Waste from Electrical and Electronic
Equipment (WEEE) directive [21]. Data for other countries where used devices are frequently
sourced are taken from the UN Global E-waste Monitor [22], and extrapolated where necessary.

First, the fraction of e-waste that is not separately collected is assumed to be collected with
municipal waste and incinerated or landfilled. In 2021, for example, this was an average of 31%
for the countries included in Eurostat [23].

The repartition between landfilling and incineration (with and without energy recovery) was
taken from Eurostat, and the total repartition for all EU countries from 2020 was used. This
resulted in 52% incineration and 48% landfilling [24].

Then, the fraction of e-waste that is separately collected is considered (average of 69% in the
EU in 2021) [23].

e This can be further broken down into the fraction successfully recycled/reused
(average of 79% for EU countries in 2021) and the fraction that could not be
recycled /reused (21%) [23].

e The separately collected e-waste that could not be recycled/reused is assumed to be
incinerated and landfilled, with the same proportions described in the e-waste
treatment section for the baseline scenario.
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EB,waste = Z(Ni,collected * Wi * (1 - RRrate,i)) * (Lrate * EFlandfill + Irate * EFincineration)

(Equation A.14)

where,

where,

Ep waste represents the sum of GHG emissions due to the e-waste treatment of devices
not separately collected.

Ni coltectea 18 calculated in Equation A.1.
Wi is described in Equation A.2.
RRyqte,i Tepresents the project's country waste reuse and recycling rate.

Lyqte represents the landfilling and incineration rates, respectively, described in
section e-waste treatment section.

EFygnariu represents the emission factor of treating e-waste via landfill, in kg CO2 eq/kg
using ecoinvent database, according to the breakdown of materials on pg. 11 of the
ADEME study [13].

o treatment of waste plastic, mixture, sanitary landfill = 50%
o treatment of waste glass, sanitary landfill = 10%
o treatment of waste aluminum, sanitary landfill = 40%

EFicineration Tepresents the emission factor of treating e-waste via incineration, in kg
CO2 eq/kg using ecoinvent database according to the following split:

o treatment of waste glass, municipal incineration = 10%

o treatment of waste plastic, consumer electronics, municipal incineration =

50%
o treatment of scrap copper, municipal incineration = 20%

o treatment of scrap aluminum, municipal incineration = 20%

EB,separate waste — Z(Ni,collected * Wi * RRrate,i * EFrecycling,i) (Equation A'15)

Ep separate waste Tepresents the sum of GHG emissions due to the e-waste treatment of
separately collected devices.

N; cottected> Wi, and RRy4¢.; are describe above.

EFyecyciing,irepresents the emission factor of recycling device 4, in kg CO2 eq/kg. Refer
to Appendix E. for the ecoinvent process implemented.
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EB,waste treatment — EB,separate waste T EB,waste (Equation A.16)

where,

e Epwaste treatment represents the sum of GHG emissions in the baseline scenario e-
waste treatment life cycle stage, in kg COz eq.

c. New device production

The number of new devices to consider in the baseline scenario corresponds to the number of
devices successfully refurbished and sold in a functional state in the project scenario. Note that
this does not necessarily equal the number of used devices collected, because a fraction of
devices cannot be successfully refurbished.

To quantify avoided GHG emissions, the baseline scenario must consider the market share of
the project technology already in use. Currently, new device purchases come from both new
manufacturing and existing refurbishing activities. The proportions of new and refurbished
devices are detailed in Table VI.B.1.

The process of manufacturing a new device is taken from the ecoinvent database: laptop, PC,
tablet, and screen (See Appendix E).

The emission factor for smartphones was based on ecoinvent data and adjusted to better
represent average smartphones. This was necessary because

1. smartphones are one of the most frequently refurbished devices, so special attention
should be paid to them

2. smartphone emission factors are notoriously variable, and
3. it has been noted that ecoinvent smartphone emission factors are underestimated.

The difference in lifetime between refurbished and new devices is accounted for in this life cycle
stage. The amount of new device production avoided in the baseline scenario is proportional
to the ratio of new and refurbished device lifetimes.

Calculations involved in this life stage are detailed below.

Enew device = Z(Ni,sold * fracnew * EFnew,i) (Equation A'17)

where,

o Epew device represents the sum of GHG emissions in kg COz eq due to the production
of new devices (i.e. excluding the market share of refurbished devices that are already

in use).
e Njgo1a Was described in Equation A.1.

e fracye, refers to the market share (in percentage) of new devices sold annually per
device type i, as presented in Table VI.B.1.
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o EF,.y; represents the emission factor in kg CO2 eq/kg due to the production of the
new device type 1.

ERefB = Z(Ni,sold * fracrefurb * Rfull ref,i * EFfull ref) (Equation A.18)
where,

e Egerp represents the sum of GHG emissions due to the refurbishing of used devices
according to the market shares in the baseline scenario.

® N so1q Was described in Equation A.1.

o fracyepyrp refers to the market share (in percentage) of refurbished devices sold
annually per device type i, as presented in Table VI.B.1.

*  Rrunires,i and EFpyy; rep are described in Equation A.9.

Refurbished devices are assumed to have a shorter lifespan than new devices. This is accounted
for in the following adjustment to avoided emissions from new device manufacturing:

Enew device lifetime adjusted = Z(Enew device * refurbished,i/ynew,i) (Equation A.19)
where,

*  Yrerurbishea,i Tepresents the expected lifespan of a refurbished device i in number of
years, as presented in Table VI.B.2.

e Y,.w,; represents the expected lifespan of a new device 4 in number of years, as presented
in Table VI.B.2.

EB,new device production = Enew device lifetime adjusted + Eref (Equation A.20)

where,

*  Epnew device production represents the sum of GHG emissions in the baseline scenario
new device production life cycle stage, in kg CO2 eq.

3. Avoided GHG Emissions

The total baseline GHG emissions, total project GHG emissions, and the project's avoided

emissions are calculated as follows.

PT‘O]eCt Emissions = EP,collection + EP,waste treatment + EP,refurbishing process

(Equation A.21)

Baseline Emissions = EB,collection + EB,waste treatment + EB,new device production

(Equation A.22)

Avoided Emissions = Baseline Emissions — Project Emissions (Equation A.23)
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B. Parameter Ranges

Table B.1. Ranges of values used per device in the sensitivity analysis.

Baseline Project
. Market Share . Distance
Device Value Recycling of Refurbished | Lifetime Ratio Residual Recycling %Light %Full Distance - truck travelled - air
Rate . Value Rate (km)
Devices (km)

Smartphone min 0 0.065 0.333333 0.055 0 40 1 483 0

max 24 0.195 1 0.165 24 90.86 60 4195 17271.53

mean 10.4 0.13 0.666667 0.11 10.4 73.24833 | 16.35167 | 1588.333 3158.921
Gaming min 0.45 0.03 0.3 0.07 0.45 94.45 1.4 202 2191.756
Console max 1.35 0.09 0.9 0.21 1.35 98.15 4.2 606 6575.268

mean 0.9 0.06 0.6 0.14 0.9 96.3 2.8 404 4383.512
Laptop min 0 0.04 0.3 0.07 0 41 0 0 0

max 59 0.12 0.9 0.21 59 100 47.665 2217 8696.331

mean 12.62443 0.08 0.6 0.14 12.62443 73.75486 | 13.62071 | 826.5735 4362.513
Tablet min 0 0.035 0.333333 0.1 0 59 0 0 0

max 31 0.105 1 0.3 31 100 10 2217 17293

mean 8.2 0.07 0.666667 0.2 8.2 88.875 2.925 680 7163
PC min 0 0.04 0.3 0.07 0 27.64 0 441.77 0

max 42.35 0.12 0.9 0.21 42.35 100 30.01 2552 8548.84

mean 14.34767 0.08 0.6 0.14 14.34767 71.84533 | 13.807 1179.59 2849.613
Screen min 23 0.03 0.285714 0.07 23 0 0 196.77 2191.756

max 50.1 0.09 0.857143 0.21 50.1 7 49.9 2206 6575.268

mean 36.55 0.06 0.571429 0.14 36.55 38.5 24.95 1201.385 4383.512




1. Market Share of Refurbished Devices

The market share of new and used devices sold annually in Furope was used to determine the
repartition of avoided new and refurbished devices in the baseline scenario. Most data were
available for smartphones and are taken from Deloitte Consumer Trends 2022 Report [12] and
ARCEP in 2024 [25].

Similar detailed data were not available for other device types. Survey responses on the interest
in buying a given refurbished device type were used to adjust the smartphone data in Table
B.2 proportionally to other device types. The results from PCs were applied to laptops.
Moreover, the gaming console value was chosen to have the most conservative value within the
list, which is of the screen.

Table B.2. Market percentage of new and refurbished devices used in the refurbishing

methodology.

Device type Z{}iii{s: share of refurbished Market share of new devices
Smartphone 13% 87%

PC 8% 92%

Tablet ™% 93%

Laptop 8% 92%

Screen 6% 94%

Gaming Console 6% 94%

Average 8% 92%

2. Residual Value

The devices considered were the most popular and recent models available on the European
market for smartphones and tablets. New device prices were obtained from the manufacturer’s
website or, where unavailable, from the manufacturer’s store on Amazon, using French sources
in both cases. Average buyback prices for each device category were provided by Rainbow’s
project developers and reflect the typical buyback price for devices from Europe in 2023. For
device types lacking specific buyback data, the average value of the available device types was
applied.



Table B.3. Residual values used in the refurbishing methodology.

Device Percent of Residual Value
Smartphone 11%
Tablet 20%
Laptop 14%
PC 14%
Screen 14%
Gaming Console 14%

3. Lifetime of New and Refurbished Devices

The lifetime of new and refurbished devices is listed in the table below. The resulting ratio

(lifetime of refurbished devices over lifetime of new devices) used in the baseline assessment

is also included in the table. This data is based on the ADEME report in 2024 [13].

Table B.4. Lifetimes of new and refurbished devices considered in the sensitivity analysis.

Device Type ?;ie;ri:)le New ?;ie;rise Refurbished Lifetime Ratio
Smartphone 3 2 0.666666667
Laptop 5 3 0.6

PC 5 3 0.6

Tablet 3 2 0.666666667
Screen 7 4 0.571428571
Gaming Console 5 3 0.6
4. Masses of Devices

Table B.5. Masses of devices considered in the sensitivity analysis.

Device Type Average Mass (kg)
Smartphone 0.2
iPhone 0.2
Laptop 1.6
MacBook 1.7
PC 5.4
iMac 4.5
Tablet 0.5
iPad 0.5
Screen 4.5
Gaming Console 2.97
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C. Baseline Python Code

from SALib.sample.morris import sample
from SALib.analyze.morris import analyze

from python_graphgl_client import GraphglClient

import numpy as np
import pandas as pd

import copy

from ..utils import (
find_value_in_process_tree,
load_combined_graphql,
plot_morris,
set_from_path,
get_from_path,
plot_manual,

)
from ..inputs.erefurbishment import (
Laptop,
Smartphone,
Tablet,
PC,
Monitor,
Gaming_console,
)
pd.set_option('display.max_rows', None) # Show all rows

pd.set_option('display.max_columns', None) # Show all columns

import matplotlib.pyplot as plt
import time
start = time.time()

client = GraphqglClient(endpoint="http://localhost:9000/graphql/")

query_graphgl = load_combined_graphql(
"queries/SensitivityOutput.graphql”,
"queries/ERefurbishingM2v2.graphql”,

device = Smartphone() #EDIT
device_type = device.device_type

num_trajectories=2 #EDIT
problem = device.baseline_morris_problem()

param_values = sample(problem, N=num_trajectories)
param_values = np.array([row for row in param_values])

emissions = np.array([])

variables = device.default_variables()

vars_locations = { # because they cannot be referenced directly and i dont want to declare the
variable dict twice bc it confuses me when i change variables per device ( ,,U' 'UT,,)

"recycled":["inputs","device_collection", @, "recycled"],

"market_share_refurbished": ["inputs","market_share_refurbished"],

"lifetime_ratio":["inputs"”,"lifetime_ratio"],

}

full_refurbished = variables["inputs"]["device_collection"][@]["full_refurbished"]
light_refurbished = variables["inputs"]["device_collection"][@]["light_refurbished"]
recycled_idx = problem["names"].index("recycled")

for row_idx, row in enumerate(param_values):
#scale the full and light refurbishment percentages



variables_morris = copy.deepcopy(variables)

# recycled = row[recycled_idx]

# scale = (100-recycled)/(full_refurbished+light_refurbished)
# full refurbished_new = scale*full_refurbished

# light_refurbished_new = scale*light_refurbished

recycled = row[recycled_idx]
scale = 100/(recycled+full_refurbished+light_refurbished)

row[recycled_idx] = recycled*scale
full_refurbished_new = scale*full_refurbished
light_refurbished_new = 100-full_refurbished_new-row[recycled_idx]

variables_morris["inputs"]["device_collection"][@]["full_refurbished"] = full_refurbished_new
variables_morris["inputs"]["device_collection"][@]["1light_refurbished"] = light_refurbished_new

for idx, (var,loc) in enumerate(vars_locations.items()):
set_from_path(variables_morris, loc,row[idx])

data = client.execute(query=query_graphql, variables=variables_morris)
assert "errors" not in data, f"GraphQL returned errors: {data['errors']}"

path = ["Baseline Total", f"Baseline device total: {device_type}"]
result = find_value_in_process_tree(data=data,path=path)["value"]

emissions=np.append(emissions, [result])

morris_results = analyze(problem, param_values, emissions)
morris_result_df = plot_morris(
morris_results=morris_results,
problem=problem,
device_type=device_type,
scenario="baseline",)

print(morris_result_df)

conduct_manual_sens = True #EDIT

if not conduct_manual_sens:
end = time.time()
print(f"Runtime: {end - start:.4f} seconds or {(end - start)/60:.4f} minutes")
quit()

num_vars_manual_sens = 3
vars_manual_sens = problem["names"
print(vars_manual_sens)

points = 10
cols = [f"Point {int(f)}" for f in range(10)]

manual_results_df = pd.DataFrame(index=vars_manual_sens, columns=cols)
for var in vars_manual_sens:

idx = problem["names"].index(var)

median = np.mean(problem["bounds"][idx])

emissions = np.array([])

bounds = problem["bounds"][idx]

step = (bounds[1] - bounds[@]) / (points - 1)

bounds_list = [bounds[@] + i * step for i in range(points)]

for new_var_value in bounds_list:
variables_manual = copy.deepcopy(variables)
set_from_path(variables_manual,vars_locations[var],new_var_value)

#scale
if var == "recycled":
scale = 100/ (new_var_value+full_refurbished+light_refurbished)

new_var_value *= scale
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full _refurbished_new = scale*full_refurbished
light_refurbished_new = scale*light_refurbished

variables_manual["inputs"]["device_collection"][@]["recycled"] = new_var_value

variables_manual["inputs"]["device_collection"][@]["full_refurbished"] =
full_refurbished_new

variables_manual["inputs"]["device_collection"][@]["1light_refurbished"] = 100 -
new_var_value - full refurbished_new

data = client.execute(query=query_graphql, variables=variables_manual)
assert "errors" not in data, f"GraphQL returned errors: {data['errors']}"

seline Total", f"Baseline device total: {device_type}"]

path = [’
= find_value_in_process_tree(data=data,path=path)["value"]

'Ba

result = fi

emissions=np.append(emissions, [result])
manual_results_df.loc[var] = emissions

print(manual_results_df)

plot_manual(
manual_results_df=manual_results_df,
device_type=device_type,
scenario="baseline"

)

end = time.time()
print(f"Runtime: {end - start:.4f} seconds or {(end - start)/60:.4f} minutes")
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D. Project Python Code

from SALib.sample.morris import sample
from SALib.analyze.morris import analyze

from python_graphgl_client import GraphglClient

import numpy as np
import pandas as pd

import matplotlib.pyplot as plt
import copy

from ..utils import (
find_value_in_process_tree,
load_combined_graphql,
plot_morris,
set_from_path,
get_from_path,
plot_manual,
remove_others_in_group,
remove_others_in_group_vars_locations,

)
from ..inputs.erefurbishment import (
Laptop,
Smartphone,
Tablet,
PC,
Monitor,
Gaming_console,
)
pd.set_option('display.max_rows', None) # Show all rows

pd.set_option('display.max_columns', None) # Show all columns

import time
start = time.time()

client = GraphqglClient(endpoint="http://localhost:9000/graphql/")

query_graphgl = load_combined_graphql(
"queries/SensitivityOutput.graphql”,
"queries/ERefurbishingM2v2.graphql”,

device = Tablet() #EDIT
device_type = device.device_type

cp_param_infocus = "light_refurbished" #EDIT
problem = device.project_morris_problem()
problem_modified = remove_others_in_group(problem,cp_param_infocus)

num_trajectories = 2 #EDIT
param_values = sample(problem_modified, N=num_trajectories)

vars_locations = { # because they cannot be referenced directly and i dont want to declare the
variable dict twice bc it confuses me when i change variables per device ( ,,U'\'0T,,)

"full_refurbished":["inputs","device_collection", @, "full_refurbished"],
"light_refurbished":["inputs","device_collection"”, @, "light_refurbished"],
"recycled":["inputs","device_collection", @, "recycled"],

"truck_distance": ["inputs","freight_transport", 0, "distance"],
"air_distance":["inputs","freight_transport”, 1, "distance"],

"residual_value":["inputs","residual_value"],

}

vars_locations_modified = remove_others_in_group_vars_locations(vars_locations, [cp_param_infocus])
# default values for the particular device, the sequence of variables should be the same as the

problem declaration because morris input transforms problem into an ARRAY AHHH
variables = device.default_variables()
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param_values = np.array([row for row in param_values])
emissions = np.array([])

# need to get rows where the recycled, light ref, and full ref are in
# need to adjust the other two variables

cp_param_infocus_idx = problem_modified['names'].index(cp_param_infocus)
for row_idx, row in enumerate(param_values):
# normalize refurbishing + recycled percentages
# Extract current values
device_collection = variables["inputs"]["device_collection"][@]
values = {
"recycled": device_collection["recycled"],
"light_refurbished": device_collection["light_refurbished"],
"full_refurbished": device_collection["full_refurbished"],

}

# Override the focused parameter from row
values[cp_param_infocus] = row[cp_param_infocus_idx]

# Normalize so the sum = 100
scale = 100 / sum(values.values())
for k in values:

values[k] *= scale

# Ensure sum is exactly 100 (fix floating-point drift)

others = [k for k in values if k != cp_param_infocus]
values[others[0]] = values[others[0]]

values[others[1]] = values[others[1]]

values[cp_param_infocus] = 100 - values[others[@]] - values[others[1]]

# Update param_values
param_values[row_idx, cp_param_infocus_idx] = values[cp_param_infocus]

# Deep copy variables and update
variables_morris = copy.deepcopy(variables)
variables_morris["inputs"]["device_collection"][@].update(values)

# inject morris sample into variables
for idx, (var, loc) in enumerate(vars_locations_modified.items()):
set_from_path(variables_morris, loc, param_values[row_idx][idx])

data = client.execute(query=query_graphqgl, variables=variables_morris)
assert "errors" not in data, f"GraphQL returned errors: {data['errors']}"

path = ["Project Total", f"Project device total: {device_type}"]
result = find_value_in_process_tree(data=data, path=path)["value"]

emissions = np.append(emissions, [result])

morris_results = analyze(problem_modified, param_values, emissions)
morris_result_df = plot_morris(

morris_results=morris_results,

problem=problem_modified,

device_type=device_type,

scenario="project",)

print(morris_result_df)

params_cp_idx_dict = {
"recycled": problem['names'].index("recycled"),
"light_refurbished": problem['names'].index("light_refurbished"),
"full_refurbished": problem['names'].index("full_refurbished"),

}

conduct_manual_sens = False
if not conduct_manual_sens:
end = time.time()
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print(f"Runtime: {end - start:.4f} seconds or {(end - start)/60:.4f} minutes")
quit()

to_remove = {} #EDIT
vars_manual_sens = [n for n in problem["names"] if n not in to_remove]

points = 10
cols = [f"Point {int(f)}" for f in range(10)]

manual_results_df = pd.DataFrame(index=vars_manual_sens, columns=cols)
for var in vars_manual_sens:

idx = problem["names"].index(var)

median = np.mean(problem["bounds"][idx])

emissions = np.array([])

bounds = problem["bounds"][idx]

step = (bounds[1] - bounds[@]) / (points - 1)

bounds_list = [bounds[@] + i * step for i in range(points)]

need_scaling = var in params_cp_idx_dict.keys()

for new_var_value in bounds_list:
variables_manual = copy.deepcopy(variables)

set_from_path(variables_manual,vars_locations[var],new_var_value)
recycled = variables_manual["inputs"]["device_collection"][@][ "recycled"]

light_refurbished = variables_manual["inputs"]["device_collection"][@]["1light_refurbished"]
full _refurbished = variables_manual["inputs"]["device_collection"][@]["full_refurbished"]

total = recycled+light_refurbished+full_refurbished
scale = 100/total

full _refurbished *= scale

light_refurbished *= scale

recycled = 100- full_refurbished- light_refurbished

variables_manual["inputs"]["device_collection"][@][ "recycled"] = recycled

variables_manual["inputs"]["device_collection"][@]["1light_refurbished"] = light_refurbished
variables_manual["inputs"]["device_collection"][@]["full_refurbished"]= full_refurbished

data = client.execute(query=query_graphql, variables=variables_manual)
assert "errors" not in data, f"GraphQL returned errors: {data['errors']}"

path = ["Project Total", f"Project device total: {device_type}"]
result = find_value_in_process_tree(data=data,path=path)["value"]

emissions=np.append(emissions, [result])
manual_results_df.loc[var] = emissions
print(manual_results_df)
plot_manual(
manual_results_df=manual_results_df,

device_type=device_type,
scenario="project",

end = time.time()
print(f"Runtime: {end - start:.4f} seconds or {(end - start)/60:.4f} minutes")
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E. Ecoinvent Processes and Values

Device type

Ecoinvent activity

Value

kg CO2 per

Smartphone*

consumer electronics production, mobile
device, smartphone | consumer electronics,
mobile device, smartphone | Cutoff, U, GLO

7.019982333

unit device

Tablet*

consumer electronics production, mobile
device, tablet | consumer electronics, mobile
device, tablet | Cutoff, U, GLO

83.35827488

unit device

PC**

computer production, desktop, without
screen | computer, desktop, without screen |
Cutoff, U, GLO

215.6814344

unit device

Laptop*

computer production, laptop | computer,
laptop | Cutoff, U, GLO

163.3984312

unit device

Screen

display production, liquid crystal, 17 inches |
display, liquid crystal, 17 inches | Cutoff, U,
GLO

352.449192

unit device

Gaming Console**

computer production, desktop, without
screen | computer, desktop, without screen |

Cutoff, U, GLO

280.0941959

unit device

Transport, truck market for transport, freight, lorry 7.5-16 0.25533238 ton-km
metric ton, EUROS5 | transport, freight, lorry
7.5-16 metric ton, EURO5 | Cutoff, U, RER
Transport, air market for transport, freight, aircraft, long 0.83159729 ton-km
haul | transport, freight, aircraft, long haul |
Cutoff, U, GLO
Smartphone treatment of used smartphone, mechanical 0.75013477 kg device
recycling treatment | used smartphone | Cutoff, U,
GLO
Tablet recycling treatment of used tablet, mechanical 0.61185203 kg device
treatment | used tablet | Cutoff, U, GLO
PC recycling treatment of used desktop computer, 0.42742733 kg device
mechanical treatment | used desktop
computer | Cutoff, U, GLO
Laptop recycling treatment of used laptop computer, 1.1323136 kg device
mechanical treatment | used laptop
computer | Cutoff, U, GLO
Screen recycling treatment of used liquid crystal display, 1.24942397 kg device
mechanical treatment | used liquid crystal
display | Cutoff, U, GLO
Gaming Console treatment of used desktop computer, 0.55507751 kg device
recycling mechanical treatment | used desktop
computer | Cutoff, U, GLO
Light market for ethanol, without water, in 99.7% 1.43747613 kg liquid
refurbishing®** solution state, from ethylene | ethanol,

without water, in 99.7% solution state, from
ethylene | Cutoff, U, RER
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Device type Ecoinvent activity Value kg CO2 per
Light market for water, completely softened | 0.00029925 kg liquid
refurbishing®** water, completely softened | Cutoff, U, RER
Light market for tissue paper | tissue paper | 2.85833221 kg material
refurbishing*** Cutoff, U, GLO
Light market for textile, knit cotton | textile, knit 8.40302083 kg material
refurbishing*** cotton | Cutoff, U, GLO
Full refurbishing market for ethanol, without water, in 99.7% 1.43747613 kg liquid
solution state, from ethylene | ethanol,
without water, in 99.7% solution state, from
ethylene | Cutoff, U, RER (0.007 kg)
Full refurbishing market for water, completely softened | 0.00029925 kg liquid
water, completely softened | Cutoff, U, RER
(0.003 kg)
Full refurbishing market for tissue paper | tissue paper | 2.85833221 kg material
Cutoff, U, GLO (0.005 kg)
Full refurbishing market for textile, knit cotton | textile, knit 8.40302083 kg material
cotton | Cutoff, U, GLO (0.005 kg)
Full refurbishing market for battery, Li-ion, NCA, 21.938971 kg material
rechargeable, prismatic | Cutoff, U, GLO
(0.1 kg)
Full refurbishing market for electronic component, passive, 55.4710502 kg material
mobile, earpiece and speaker | Cutoff, U,
GLO (0.002 kg)
Full refurbishing market for liquid crystal display, 110.279501 kg material
unmounted, mobile device | Cutoff, U, GLO
(0.1 kg)
E-waste treatment of waste glass, municipal 0.02731586 kg material
incineration incineration | waste glass | Cutoff, U, GLO
= 10%
E-waste treatment of waste plastic, consumer 3.0947596 kg material
incineration electronics, municipal incineration | waste
plastic, consumer electronics | Cutoff, U,
GLO = 50%
E-waste treatment of scrap copper, municipal 0.02273487 kg material
incineration incineration | scrap copper | Cutoff, U,
Europe without Switzerland = 20%
E-waste treatment of scrap aluminum, municipal 0.0255479 kg material
incineration incineration | scrap aluminum | Cutoff, U,

Europe without Switzerland= 20%

E-waste landfill treatment of waste plastic, mixture, sanitary | 0.0922268 kg material
landfill | waste plastic, mixture | Cutoff, U,
RoW = 50%

E-waste landfill treatment of waste glass, sanitary landfill | 0.01082863 kg material
waste glass | Cutoff, U, GLO = 10%

E-waste landfill treatment of waste aluminum, sanitary 0.01670508 kg material

landfill | waste aluminum | Cutoff, U, RoW
= 40%
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*removed the power adapter production and waste treatment, and the device waste
treatment

**removed the device waste treatment

**amount of each input varies by device type
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