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Abstract

Following the Generation IV International Forum, interest in advanced reactor systems
based on liquid metal cooling increased significantly in the last years. This has led to a greater
demand for deterministic tools that can guarantee reliable results at a low computational cost.
The ECCO cell code, adopted by the newcleo company for the design of its LFR units, produces
condensed and homogenised cross sections for subsequent core calculations in ERANOS. Al-
though ECCO was extensively validated for sodium fast reactor applications in the past, more
limited studies have been carried out so far for lead fast reactors. The same applies to the
generation of the input nuclear data libraries for the ECCO code.

This thesis aims at numerically validating the ECCO self-shielding module. The module is
implemented in the code to perform energy averaging of cross sections within resonance intervals,
to simplify their numerical integration. The first part of this work focuses on the analytical
description of the methods employed in ECCO and the creation of nuclear data libraries. The
second part delves into the numerical validation of the code by comparing LFR, cell simulations
with a Monte Carlo reference. This work shows that, when excessive discrepancies are found,
they are mostly related to the processing of the nuclear data libraries rather than the numerical
schemes in the code. Sensitivity and decomposition analyses are employed to evaluate the impact
of such discrepancies. Ultimately, the processing scheme for preparing nuclear data libraries for
ECCO is implemented and revised, suggesting solutions that could ease the validation process.

Hopefully, the findings of this study will contribute to upgrading and modernising the
systems of codes for preparing nuclear data libraries for the ECCO code. This would lay the
foundation for any subsequent validation activity on the ECCO code for lead coolant systems.
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Introduction

Over the last two decades, renewed interest in Generation IV nuclear fission reactors has grown
rapidly following the Generation IV International Forum (GIF). Classified by the GIF into six
main categories, these reactors aim at providing sustainable and safe energy at a low cost [1].
Among these categories are fast-spectrum reactors. This technology exploits the high energy
content of uranium fuel through the breeding process, in which uranium isotopes undergo neu-
tron capture and transmute into fissile isotopes such as Pu-239. In conventional thermal reactors,
the once-through cycle exploits only a small percentage of uranium resources corresponding to
the fissile U-235 isotope, which makes up just 0.7 % of natural uranium. At the end of the irradi-
ation cycle, the non-fissile materials account for the radioactive waste that must be stored safely.
Due to parasitic absorptions in U-238, plutonium isotopes tend to accumulate in the fuel. The
resulting mixture of uranium and plutonium isotopes can be processed into Mixed Oxide Fuels
(MOX) for the subsequent refuelling of both thermal and fast reactors. Fast reactors in particu-
lar enhance the energy release of MOX fuel through the fission of plutonium isotopes induced by
fast neutrons, whose contribution is limited in thermal reactors. Therefore, fast reactors have
the advantage of closing the fuel cycle, meaning that they can be refuelled with the residual ma-
terial from thermal reactors, thereby making better use of the world’s natural uranium reserves.
Furthermore, the fast neutron spectrum can induce fission reactions in transuranic elements,
such as americium and curium, thereby reducing the volume of nuclear waste. However, to
achieve this, neutrons must not be moderated within the core. The most promising solution is
to use liquid metals as coolants, whose heavy atoms prevent significant energy loss in collision
with them. Depending on whether liquid lead or sodium is used as coolant, these reactors are
classified as Lead Fast Reactors (LFR) or Sodium Fast Reactors (SFR), respectively.

In this context, the newcleo company aims at developing Small Modular Rectors (SMR)
based on lead coolant technology. SMRs are small-scale units with limited output power (typi-
cally between 10 and 300 MWe), which can be manufactured in modules and assembled at the
installation site. This could potentially solve the issues of construction delays and cost overruns
that have affected the nuclear industry in recent years [2, 3]. For the design of its LFR units,
newcleo adopted the ERANOS code and data system for neutronic calculations [4]. Developed
by the Commissariat a I’Energie Atomique (CEA), the ERANOS system was employed for anal-
ysis and design of liquid-metal fast reactors. It includes transport codes, nuclear data libraries,
and the ECCO cell and lattice code. The latter is the code used to generate energy-averaged
and homogenised cross sections, calculated at the lattice level, for subsequent use in full core
calculations [5]. To achieve this, the code relies on the Collision Probability (CP) method to
determine the spatial distribution of flux in two-dimensional subassemblies. Furthermore, accu-
rate treatment of resonant cross sections is performed using a fine energy group structure (1968
groups) alongside the Subgroup method. This method employs intra-group data within energy
groups where resonances occur. Multigroup cross sections and subgroup data are included in
the Nuclear Data Libraries (NDL), which are processed for ECCO by means of external codes,
such as NJOY and CALENDF.

The Autorité de Stireté Nucléaire (ASN) requires Scientific Computing Tools (SCT) that
are used for safety studies to be validated within an assessed validity Range. This range includes



variations in geometrical and physical parameters that describe the evolution of relevant physical
phenomena, for which the results of the SCT are assessed with a satisfactory accuracy [6]. Since
the ERANOS release, the ECCO code has been extensively validated for SFR applications [5,
7, 8, 9]. In fact, ERANOS was originally developed as a primary tool to support the design
and deployment of SFRs in France at the end of the last century. However, since the end of
the Superphénix campaign, the ERANOS system has not undergone significant development.
The same applies to the external tools for generating NDLs in the ECCO format. Furthermore,
limited studies have been conducted so far to validate ECCO for LFR applications [10].

During previous ECCO validation studies, significant discrepancies were found between
the ECCO and Monte Carlo results for LFR cells [11]. These differences are larger than those
typically observed for SFR cells [9] and require further investigation to determine their origin.
The aim of this thesis is to extend the previous numerical validation works performed on ECCO
for LFR cells and to determine the cause of these discrepancies. A complete numerical validation
of a neutronic code involves assessing the errors related to the uncertainties in the experimental
nuclear data and to the resolution schemes'
out by comparison with a reference SCT, such as a Monte Carlo code, provided the predictive
performance of the latter is superior to that of the SCT being validated [6]. In the context of this
thesis, the numerical validation will be performed on the ECCO self-shielding model, using the
OpenMC Monte Carlo code as a reference. This will be carried out using the ENDF/B-VIIIL.0
ECCO library, which is the result of an independent evaluation. The reason for conducting the
validation on a single module rather than the entire code is to identify the errors related to
the individual components of the code, thereby decomposing the discrepancy observed between
the ECCO and Monte Carlo results into its constituent parts. Indeed, validating the code
for highly simplified cells rules out other numerical modules’ contributions, leaving the self-
shielding module as the sole potential source of error. As will be revealed from the analysis, the
self-shielding module alone is sufficient to explain most of the discrepancy between ECCO and
the Monte Carlo code.

. Furthermore, the numerical validation is carried

The main contents of this thesis are organised as follows. The first three chapters delve
into the analytical descriptions of the numerical models underlying the ECCO code. The first
chapter provides an overview of some of the most popular mathematical models of the physical
laws governing the transport of neutrons in a nuclear reactor. The second chapter then provides
a description of the ECCO code and how the previous analytical models are applied within it.
Finally, the third chapter illustrates the procedures for generating ECCO and OpenMC NDLs.

The second part of this work is dedicated to the validation of the ECCO self-shielding
model. Chapter four presents the results of the sensitivity analysis conducted on a case study
representative of LFR applications, namely the Nuclear Energy Agency (NEA) Lead-cooled Fast
Reactor Benchmark [12]. Based on these findings, chapter five presents the results of the numer-
ical validation of the ECCO self-shielding module. Where significant errors are found, chapter
six assesses their effect on variables of interest for design purposes, such as the multiplication fac-
tor and Doppler reactivity change. This is performed through a decomposition analysis, which
uses the results of the two previous chapters in conjunction. Finally, chapter seven outlines a
potential procedure to mitigate the observed errors by modifying the reference procedures for
generating ECCO libraries.

!G. Rimpault, private communication
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Theoretical background



Chapter 1

Theoretical Background

The physical phenomena occurring in a nuclear fission reactor are described by the Neutron
Transport Equation, which governs the behaviour of neutrons within the fuel, the coolant, and
other media. Several approximations are typically introduced in a deterministic code to enable
the transport equation to be solved numerically. The following provides an insight into the main
steps that deterministic codes usually take to solve a criticality problem. This information will
guide in understanding the way the ECCO cell code solves the physical problem, and the impact
that each approximation has on the accuracy of the final solution.

1.1 The transport equation

The main purpose of a neutronic code is the solution of the Boltzmann equation, also known as
the Neutron Transport Equation. This equation represents the linearisation of the Boltzmann
kinetic theory under the hypothesis that neutrons never collide among them, which is indeed
an extremely rare event in a nuclear reactor. Nevertheless, the preferred approach to derive
the transport equation is a balance on the average number of neutrons contained within an
infinitesimal volume of a six-dimensional phase space at a given instant in time [13, 14, 15], i.e.

n(r, E,2,t) dV dE df, (1.1)

where n(7, E, £2,t) is the neutron angular density, which defines the expected number of neu-
trons per unit of volume V, energy E, and solid angle {2 at time ¢ [14]. The interactions of
neutrons with the medium are described by a quantity denoted as the microscopic cross section,
o.(E,2,t), which is related to the probability of a neutron undergoing a reaction x with a
nucleus. This quantity is actually the effective cross sectional area seen by the neutron colliding
with the nucleus (which depends on the specific reaction and isotope and does not necessarily
coincide with the geometric surface opposed by the atom) and is typically measured in cm?
(or barns, where 1 barn = 10724 ¢m?) [13, 14]. Furthermore, the assumption of an isotropic
medium enables the angular dependence in the cross section to be neglected, as the interactions
of neutrons with the medium are assumed to be independent of the angular direction of the
incident neutron. Instead, this quantity typically shows significant dependence on the incoming
neutron energy [13, 14].

The product of the microscopic cross section by the isotope density yields the macroscopic
cross section X (7, E,t) = N(F,t)o,(E,t), which is the probability per unit of path length of a
neutron undergoing a reaction x when colliding with the medium. Therefore, considering v dt as
the distance travelled by a neutron moving with velocity v in an interval of time dt, the quantity

RR,(T,E, 02,t) =n(F, E,2,t) v X.(7, E,t) dt dV dE df2, (1.2)

denoted as reaction rate, represents the expected number of reactions x occurring along this
distance for neutrons in position 7, with energy E and angular direction §2, at time ¢ [15, 13]. The
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quantity ¢(7, E, £2,t) = n(7, E, £2,t) v, which is defined as the angular neutron flux, physically
represent the track length travelled by neutrons per unit of phase space volume and time [15].
This is a fundamental quantity in fission reactor physics: once the medium composition and
cross sections are known, knowledge of the angular flux allows to compute the distribution of
reaction rates in the medium [13, 14, 15].

The Boltzmann equation is expressed as a balance of reactions contributing to the appear-
ance and disappearance of neutrons within an infinitesimal phase space volume dV dE df? per
unit of time [13, 16, 17], which leads to

190(7, E, 2 _ _ _

M”t) + 'Q : v¢(?a E7 'Qvt) + Zt(Fvat)gb(F’Ea Qa t) =

v
f dQ’/ dE' 3,7, E' — B, — 0,0)6(r, B, 7, 1)+ (1.3)
47 0

XZEE) / dE' vS(r, B OO, E' 1) + S(7, B, 0,t).
™ 0

The second and third terms on the left-hand side (LHS) represent the removal of neutrons from
the phase space volume. The former is the net leakage of neutrons through the boundaries of
the domain, while the latter represents the neutrons removed from the phase space by any type
of collision with the medium, where X(7, E,t) denotes the total cross section [13, 16, 14].

The terms on the right-hand side (RHS) accounts for neutrons that appear within the
phase space volume. The first term on the RHS gives the number of neutrons entering in the
phase space volume as a result of scattering reactions involving neutrons of any energy and
direction. This is expressed through the scattering cross section Ys(7, E' — F, 7 = 0,1,
which gives the probability per unit of path length of a neutron undergoing a scattering reaction
with energy E’ and angular direction 7 being emitted with energy E and direction {2 [13,
16, 14]. The second term on the RHS represents the number of neutrons emitted by fission
reactions. Assuming isotropic fission, a neutron has the same probability of being emitted in
any direction. Therefore, the fission spectrum y(F, £2), which gives the probability of a neutron
being emitted with energy E and direction 2, simplifies to x(FE)/4m. This allows the fission
source to be expressed in terms of the neutron scalar flux @(7, E’, t), which is defined as

&(F, B, 1) = 7{ i &(7, B, 13,1) (1.4)

i.e. the integration of the angular flux over all directions. Furthermore, v denotes the average
number of neutrons emitted by a fission reaction [13, 16, 14]. Finally, the term S(7, E, (2,t)
represents a generic neutron source.

The Boltzmann equation is therefore an integro-differential equation that is solved for the
angular flux by imposing boundary and initial conditions (BC & IC), which reads

QS(F, E7§7t - 0) :¢0(F7 Eaﬁ)a
(ﬁi(FBv E,ﬁm,t) :B(T/B — FBaﬁout — ﬁin)¢+(FlBa Eaﬁoutat) + <Z5m(TB, Eyrzimt)a

with 7p being a position on the domain boundary, §2;, denoting the incoming direction, such
that 2-A(Tg) < 0, and 2,,; denoting the outgoing direction, such that £2-7(7g) > 0, with 2(7g)
being the normal vector to the boundary surface in position 75 [13, 17, 18]. The term /3 denotes
the albedo parameter, which determines the fraction of outgoing flux that is reintroduced into
the system. In the case of a vacuum BC, which is one of the most frequent in reactor physics, the
parameter is equal to zero, and the flux at the boundaries coincides with the imposed incoming
flux, (ﬁm(?g,E,ﬁm,t) [13, 17, 18]
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1.1.1 The criticality problem and the Power Iteration method

The steady-state homogeneous transport equation describes the equilibrium between neutron
losses and neutrons generated by fissions in the nuclear reactor. This equation is obtained by
introducing the multiplication factor k in Eq. (1.3), which leads to

2-Vo(F, E, Q)+ 27, E)o(T, E, 2) = f de / dE' X,(r,E' — E, 2 — Q) ¢(r, E', )
47 0

B %y B0 ),
7 0
(1.7)

where k can be seen as the parameter that properly tunes the fission source ensuring the particle
balance between productions and losses. In fact, the introduction of the multiplication factor
transforms Eq. (1.3) into an eigenvalue problem [13, 14] where k is the largest eigenvalue, and
the flux ¢ is the associated eigenfunction. A self-sustaining system characterised by a k equal
to 1 is said to be critical.

In order to detail one of the most common approaches to the solution of Eq. (1.7), this
equation is expressed in a more pragmatic manner through the use of operators notation, i.e.

T6=b.0+  Fo, (1.8)

where T is the displacement-plus-removal operator and 0, and F are the scattering and fission
operators, respectively. The solution to this equation is performed with the power iteration
method [13], iteratively building a source term computed from the flux and the eigenvalue. For
the n-th iteration, the source is built as

n 1 - n

and this term is inserted in Eq. (1.8) to obtain
TelmtD) = D) 4 50, (1.10)

The solution of Eq. (1.10) will provide the flux at iteration i+1. At each iteration, the eigenvalue
is updated according to R

1) _ o) (FHD) (111)

(Fom)

where the terms enclosed within the brackets () denote an integration in the phase space domain.
Starting from an initial guess S?, the problem is solved iteratively until a convergence on the
eigenvalue is reached. These series of iterations takes the name of outer iterations. The resolution
of Eq. (1.10) by inverting the operators is in turn extremely challenging, and alternative methods,
some of them outlined in the following sections, are employed to address the spatial, energy, and
angular direction dependences of the transport equation.

Before entering into the details of these methods, it is common practice to handle the
scattering term in a more convenient way. Typically, the medium is assumed to be isotropic,
meaning that the scattering cross section has an angular dependence only on the cosine of the
scattering angle . Furthermore, the scattering cross section is expressed through an expansion
with its projection on the Legendre polynomials evaluated in the cosine of the scattering angle,
i.e.

o Xt
I E - EQ 50~ ?2&1@, E — E)P(uo). (1.12)
1=0
The approximation in the expansion above is given by the truncation of the summation up to
the anisotropy order L [14]. The Legendre polynomial is then expanded in terms of Legendre
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associated functions first and with the spherical harmonics afterwards. The reader may refer to
Appendix A for the definitions of the Legendre polynomials, the Legendre associated functions
and spherical harmonics, in addition to the complete derivation of the scattering term. The final
shape of the transport equation reads as

. L !
2-Vo(F,E, 02)+ Xy(r,E)(r, E, ) = /0 dE' Y 5,7, E' — E) Y. Y (Q)¢) (7, E')
1=0 B=—1

k 4” /O Y ( ’ ) ( ’ )7

where gblﬁ (7, E') are the moments of the angular flux, which are defined as the projection of the
angular flux over the adjoint spherical harmonics base, i.e.

oP (7, E) = ]{M A2 o(r, B, )WY (7). (1.14)

Several numerical models have been developed for the resolution of Eq. (1.13). Deterministic
models solve the transport equation by introducing a series of discretisation of the spatial, energy,
and angular variables. The following sections will detail a few of the main approximations that
are introduced in deterministic codes, focusing specifically on those implemented in ECCO.
Monte Carlo methods, on the other hand, aim to estimate a variable of interest by averaging
the behaviour of a sufficiently large number of neutron histories, sampled in accordance with
the physical laws that describe their transport and interactions with matter. In this sense, MC
methods are considered reference methods as they do not rely on discretisations. However, the
benefit of retrieving very accurate solutions is coupled with large computational costs. This
class of methods will be addressed later on in this chapter.

1.2 The multigroup approach

Inside a nuclear reactor, neutrons exhibit energies spanning several orders of magnitude, from 20
MeV to a few meV. To address the dependencies over such a wide energy range, the multigroup
formalism is customarily used in deterministic codes, including ECCO [14, 13, 19].

This method discretises the energy range into a series of G energy intervals, as illustrated
in figure 1.1. The conventional nomenclature prescribes that the index of the interval increases
with decreasing energy values. In general, a standard nomenclature is attributed to significant
energy intervals, whose boundaries depend on the context. The thermal range is defined as the
interval containing neutrons with an energy of the same magnitude of the energy scale associated
with thermal agitation of the medium’s atoms. This ranges from few eV to fractions of meV.
The fast range contains neutrons with energy of the order of MeV to KeV. The term epithermal
range is then used to describe the interval between.

Group g¢
f—/%
\ \ // | \ // \ \ \ N
\ \ // \ \ // \ \ \ B
Eq Eg_4 E, Ey Es Eq Ey

Figure 1.1: The multigroup model subdivision of the continuous energy range into a series of G
discrete groups. It can be noted that as the index of the energy interval increases, the energy
decreases.

The number and boundaries of each energy interval, also known as energy group, are entirely
arbitrary. For instance, within ECCO they are chosen to be constant and equivalent to a specific
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lethargy window. Given the strong dependence of the cross sections on the energy variable, it
should be clear from now on that the refinement of the energy discretisation will strongly affect
the final accuracy of the solution.

The next step is to integrate Eq. (1.13) on the energy group g, defined by the energy interval
[Eg, Eg—l], i.e

Eg1 — — Eg1 —
/ dE Q-Vo(T,E, 2) + dE Xy(T,E)¢(F, E, 2) =

E, B,
E 1 E,
/9 Z/g K ZES”E_)E Zyﬁ O E)  (115)
B=—1
Bt g LXE) S B e e e ) 1...G
“, kmg,zl/g, VS, )BT, B) forg=1...

Next, the multigroup angular flux for a generic energy group g is defined as

By

6,7, ) :/ dE ¢(7, E, D), (1.16)

Eq

and used to define the multigroup total cross section

[ dE 5y(F, B, Q)¢(r, E, Q)
by (T, 12)

This procedure, also known as energy condensation, requires further discussion. First, this defi-
nition ensures the preservation of the reaction rates within each group, as it can be observed by
taking the multigroup flux from the denominator of the above expression to the LHS. Secondly,
the cross section now depends on the angular direction, thereby increasing the level of complex-
ity of the solution and requiring a large amount of data to be stored. Therefore, the common
practice is to use the scalar flux as a weighting function for the computation of the multigroup
cross sections [20, 17, 21].

Sig(T, 02) = (1.17)

Still, the shape of the scalar flux is not known a priori, since it is the solution of the
transport equation itself, leading to what would seem a contradiction. Hence, preparation of
the multigroup cross section is usually performed using well-known shapes of the scalar flux
in specific energy ranges. For example, it could be possible to use the thermal Maxwellian
distribution in the low-energy region, the fission spectrum in the high-energy region, or the 1/F
shape in the slowing-down region [22, 23]. In a similar fashion, the other multigroup parameters
are defined, i.e.

8 Poot o8
P1(T) :/E dE ¢y (T, E), (1.18)
)
Ey 1
Xo :/ dE \(E), (1.19)
Eg
. nggl’*l dE' v5;(F, E)O(r, E) (120
1% n\r) = y .
1 Py (T)
Eg1 Egr1 5 = B (=
g dE g dE" Xg(T BT — E) (T, EY)
Stgq (F) = T . (1.21)
¢l7g/(r)

The term in (1.21) is also referred to as the group-transfer cross section and represents the
probability for a neutron to be scattered from the group ¢’ to the group g. As in the previous
case, it can be computed by means of the scalar flux rather than the moments of the angular
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flux. By making this hypothesis, the Boltzmann equation is expressed as

2 Vg7, 2) + 51 4(F) g (7, 2) =

o 50 (1.22)
ZZ sigg' Z Y ( ¢lg +772V2fg Sy () forg=1...G.
'=11=0

The scattering source for the group ¢ is defined as the sum of all neutrons that, scattered from
every group ¢ # g, reach the specific group g. This can be added to the fission source, fixed
from the outer iterations, to obtain the source term for group g, which reads

a L
=D Zaige (™ Z Yﬁ ¢lg + T Z vy (T)y (T), (1.23)

g'#g1=0

allowing the transport equation to be expressed in a more convenient form, i.e.

2-Vy (7, 2) + Lt g (F) by (7, 2) — Zzslgg Zyﬁ (F) = Qu(F, ) forg=1...G,

(1.24)
where the self-scattering term, which expresses the neutrons that undergoing scattering in g are
re-emitted in the same group, is made explicit in the LHS. The system of equations described
by Eq. (1.24) provides the angular flux ¢4(7, 2) for each energy group. Fixed the fission source,
the system of equations described in Eq. (1.24) consists of a set of equations coupled together
by the scattering source in Q4. Since up-scattering (collisions in which the neutrons increase
their energy, moving from lower energy groups to high energy groups) is absent outside the
thermal range, the coupling between the energy groups is for the most part lower triangular [19,
17]. This considerably facilitate the solution of Eq. (1.24), since the flux of the highest energy
group ¢ can be retrieved and used to compute the down-scattering source of the second group.
Then, ¢ and ¢o are used to compute the source of the third group, and so forth for all groups
outside the thermal range, within the framework of the Gauss-Siedel method [24]. Within the
thermal region, the up-scattering generates an almost full coupling between the energy groups,
and the solution of Eq. (1.24) requires iterations over all the thermal energy groups, commonly
referred to as thermal iterations [24, 17]. Finally, fixed the source term Qg, Eq. (1.24) can’t be
easily inverted. The equation is therefore solved iteratively by progressively updating the self-
scattering source through inner iterations [24, 17]. This complex system of nested iterations,
which is schematized in Algorithm 1, represents the most common way of resolving energy
dependence within the transport equation when multigroup formalism is adopted.

As mentioned above, one of the main drawbacks involved in multigroup formalism lies in
the difficulty of calculating multigroup cross sections as in Eq. (1.17). The computation of the
groups-averaged cross sections in correspondence with large resonances, in particular, requires
particular care due to the sudden variations of the cross section and flux in narrow intervals.
This issue, also known as energy self-Shielding, will be outlined in the following chapter, where
the algorithms used by ECCO to tackle this task will be presented.

1.3 The collision probability method

As outlined in the previous section, the classical approach for solving the Boltzmann equation
using the multigroup method involves calculating the angular neutron flux within each energy
group used to discretise the energy variable. These equations are coupled together through
source terms and scattering reactions. The solution is found by means of a series of nested
iterations, i.e. the outer and inner iterations, and eventually the thermal iterations. The outer
iterations solve the eigenvalue problem and evaluate the source terms, which provide the coupling
between the energy groups. The inner iterations solve for the angular and spatial dependencies
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Algorithm 1: Basic iterative scheme employed by deterministic code using the multi-
group formalism

Data: Group structure, multi group cross sections
Result: Multi group fluxes, kcyr
Initialize Fission Source Sy;
Initialize Multiplication Factor k;
Initialize scattering source;
// outer iterations
do
for g =1,9 > gtherma,9 =9+ 1do
Solve Eq. (1.24); // inner iterations
Compute down-scattering source in Eq. (1.23);
end
while &, have not converged do
forall g € { thermal range } do
// thermal iterations
Solve Eq. (1.24); // inner iterations
Update scattering source in Eq. (1.23);
end
end
Update fission source from Eq. (1.9);
Update multiplication factor k£ from Eq. (1.11) ;

while &k has not converged,

of the angular flux in Eq. (1.24) within each energy group, for the fixed source provided by the
outer iterations, thereby determining the flux distribution [13, 14, 17].

Many methods have been developed to address the angular and spatial dependencies of the
neutron flux. As the Collision Probability (CP) method is the numerical method employed in the
ECCO cell code, this section will examine it in detail. The CP method is based on an integral
transport method. This class of methods solves for the integral form of the Boltzmann equation,
which is obtained by integrating the angular dependence out of the transport equation. This
technique leaves only the spatial and energy dependences of the neutron flux to be addressed
[13].

The integral form of the Boltzmann equation is obtained from Eq. (1.24). After some
manipulations, detailed in Appendix B, the integral form of the transport equation for the
scalar flux reads

!/ —Tg(F/—>F) 1.2
/dV 47T|r — 7"’|2 ’ (1.25)

where Qq(7') represents the neutrons emitted isotropically by fission, scattering reactions, and
eventual external sources at a given position 7. This is multiplied by an exponential term, which
is the Kernel of the integral transport equation [14, 24, 25, 13]. This attenuation factor gives
the probability that neutrons, emitted at any location 7 within the domain, reach the given
location 7. The exponent in this term, 7,(7" — 7), is the optical path length [14, 24, 25, 13],
defined as

(= 7) = / ds" S 5 (Fo — 5"92), (1.26)
0

with s being a position along the characteristic line 7 + sf2. Therefore, the scalar flux at
any position in space 7 is given by the sum of all neutrons that, emitted isotropically at any
point 7 of the domain by scattering, fission reactions, and external sources, reach the specific
location 7 without undergoing any collisions. In principle, the volume integral is performed on
an infinite volume. However, integration can also be performed for finite domains by imposing

10
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appropriate boundary conditions. For instance, the source term in Eq. (1.25) may vanish outside
the boundaries [13]. Then, the Volume of the domain is discretised into a set of regions, each
with volume Vj}, with j = 1,..., N. The sources are assumed to be constant and isotropic within
each region, and both sides in Eq. (1 25) are multiplied by X} 4(7) and integrated over Vj, leading
to

v dv a0 1.27
v (7 / o7 ZQQ’/ Am|F — 7|2’ (1.27)

which can be expressed as
‘/j Etvgvj ¢g7.7 = ZQQJ ‘/:L ngij’ (128)

where
1 _
Dy =7 . dV &4(7), (1.29)
J
1
Bai =g / AV S14(F) B,(7), (1.30)
e —74(T'—T)

Py = / AV 5, (F / W (1.31)

The terms P, ;; are the Collision Probabilities (CPs), representing the probability that a neutron,
emitted isotropically in a given region V;, will have its first collision within the region V; [25,
13]. Assuming that the total cross section is uniform within each region, the reduced collision
probabilities [25] can be defined as

—74(T'—T)

Pg ij / , €
= = = av AV'——, 1.32
Pos 2. oV Vi Ar|r — 7| ( )
which are characterised by the reciprocity property, i.e.
Pg,ijVi = Dg,jiVj- (1.33)

This property can be used in Eq. (1.28), which can be simplified further to obtain the final
formulation of the CP method

Dyj = Z Qg.j Pgij- (1.34)
J

The solution to the transport equation is then performed as follows: the domain is divided into
N regions, and the source terms (fixed from the outer iterations) and CPs are computed in each
region. The CPs are then organised into a N x N matrix in Eq. (1.34) and the scalar fluxes are
computed. Further details of the CPs computation will be provided in Chapter 2, where they
will be applied for cross sections and flux calculations within the ECCO cell code.

1.4 The Monte Carlo solution of the transport equation

The Monte Carlo methods are a class of computational algorithms that solve the transport
equation using a stochastic approach. In this case, systematic errors arising from the approxi-
mation of energy, angle, and space variables in deterministic solutions are replaced by statistical
uncertainties [13]. This is achieved by describing the physical models without relying on approx-
imations. For example, whereas deterministic codes require the discretisation of energy using
the multigroup model, Monte Carlo methods perform energy-continuous calculations instead.
The statistical nature of this method makes it highly suitable for reactor physics applications,
since the behaviour of neutrons within the domain results from many random processes. In fact,
the cross sections represent the probability per unit of path length of neutrons undergoing a spe-
cific reaction [13, 26, 14]. Another example is the energy of the neutron following a scattering
collision, which is governed by a random process (see Appendix C).

11
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In neutron transport theory, Monte Carlo methods describe the general behaviour of a
population of neutrons by simulating the individual histories of a smaller set of neutral particles.
These histories describe the frequency and type of reactions that neutrons undergo from the
moment they enter the domain until they disappear, either due to capture reactions or because
they exit the domain [25, 15]. The frequency and type of reactions are randomly sampled from
the probability distributions that describe the physical laws, using random number generators
[27, 28], which determine the stochastic nature of the method. As the laws describing the random
process are reproduced exactly, the results faithfully represent the physical world. However,
when the general behaviour of the population is inferred from these histories, it is subject to
statistical uncertainty depending on the number of particles simulated, as described below.

1.4.1 The Central Limit theorem

A random variable £ is defined as the numerical outcome of a random process, e.g. the energy
or the angular direction of the neutron after a scattering reaction [27, 28]. The random process
can be described by a Probability Density Functions (PDF), f(£), such that f(£)d§ gives the
probability of the outcome of the random process being in the neighbourhood d¢ [27, 28, 25]. A
PDF, in order to be defined as such, must satisfy the normalisation property, i.e.

JEFGEt (1.35)

where the integration runs over the range where the random variable is defined. The PDF is
used to evaluate the n — th-order moment of the random variable [28], defined as

Bl = [ dg € 1(6). (1.36)

The first-order moment, i.e. FE[{], coincides with the definition of the average value of the
random variable. The second-order moment is instead associated with the variance of the random
variable, i.e.

o%(¢] = B¢ - B = [ de (¢ - B 1(©) = Bl - (ElE)) (1.37)

which represents the statistical dispersion of the random variable around its mean value [27].

The objective of statistical analysis is to determine the mean and variance of a random
process from a set of sampled random variables, denoted by &7 ... &y, which are all distributed
according to the same PDF. Many techniques have been developed for sampling a random
variable from its statistical distribution. However, the details of these methods are beyond the
scope of this work, and the reader is referred to [27, 28]. First, the sample mean is defined as

_ 1 XN
En =~ 6 (1.38)
N =
which represents an unbiased estimator of the mean, as it can be demonstrated that E[£ ] = E[¢]
[28]. Defining the standard deviation o[¢] = \/02[£], it can be demonstrated [13] that
o
ofey) = 28 (1.39)

This result implies the following: when considering a random process with outcome £ distributed
according to a PDF f(¢), the variance o2[¢] represents the distribution of ¢ around the mean
value E[¢]. If this mean value is estimated with £, sampling from f(£) a set & ...&n, and
this process is repeated many times, it is expected that the sample means will be distributed
around the true mean with variance o2[€ y], which decreases as the number of sampled random

12
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variables increases [13]. To evaluate the spread in this distribution, the unbiased estimator of

the variance is defined as N
1 _
2 _ } : C 2 1.4
for which E[S?] = o?[¢] [28].

Egs. (1.38) and (1.40) are the formulations used to estimate the mean and variance of the
random process within the Monte Carlo methods. Previous results have shown that, as N — oo,
the sample mean converges to the true mean. However, simulating an infinite number of particles
is evidently unfeasible. Therefore, it is necessary to quantify how far the sample mean is from
the true mean for a fixed number of simulated particles, for which the central limit theorem
comes into action [13, 25, 27, 28]. The theorem is formulated as follows: let &; ...&y be a set of
random variables sampled from a PDF f(£) that describes a random process with mean value
p = E[€] and variance 02 = 02[¢]. Then, as N approaches infinity, the sample mean is normally
distributed, i.e.

f(fN)i 2052

= 1.41
o2 ( )

= VN exp l_N(fN—M)Z _

Another property of the PDF states that the integral of the function over the interval [a, b] yields
the probability that the random variable lies within that same interval. Integrating the normal
distribution for the sample mean over the interval [u + Ko /v N,u — KoV N] leads to

Plew < x7] = [ VN o [—N“N‘“)] (1.42)

VN n—K % Novor 202

where K is a generic integer number. The result of the integral gives the probability that the
sample mean lies within the interval [ — Ko /v N, + Ko/v/N]. This value is tabulated for
several values of K [13], e.g.

0.6826, for K =1

PlEy — | < K% ={ 0954, for K=2 (1.43)
N 0.997, for K =3

The sample mean, the final result of a MC calculation, is therefore usually reported alongside
its standard deviation, o/ VN, where the variance, o2, is estimated using Eq. (1.40). This
indicates that there is a 68.3 % probability that the sample mean is at a distance from the true
mean that is less than its standard deviation. This confidence interval, or statistical uncertainty,
decreases as the number of particles increases. However, this evidently comes at the cost of high
computational resources, as the standard deviation reduces proportionally to 1/ V'N.

Variance reduction techniques have been developed to address this issues. By defining the
weight function as
f(§)

wl©) = Fey

where f*(€) is a modified PDF [13], random variables can be sampled from this PDF instead of
f(&), and a new sample mean can be defined as

(1.44)

o 1 N
wly = N Zw(fi)fz‘y (1.45)

=1

which converges in probability to the true mean, but with a reduced variance depending on the
choice of the modified PDF. Therefore, the weight function describes the statistical contribution
of neutrons to the estimation of a physical variable, compensating for the modified sampling
process. The process is said to be analog if the weight of the neutrons remains constantly equal
to one, while it is said to be non-analog if it varies during the neutron history [25].
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1.4.2 The random walk

As outlined in the previous section, the Monte Carlo method for neutron transport consists of
randomly sampling from the PDF of the physical laws that describe the behaviour of neutrons
within the medium. These random variables are then used to calculate the sample mean and
sample variance. These quantities estimate the true mean and variance, and the sample mean is
also subject to statistical distribution. The random variables that are sampled are the outcomes
of the numerous reactions that neutrons undergo on their path through the medium. In practice,
the Monte Carlo method involves tracking a neutron from the moment it appears in the domain,
randomly sampling its reactions as it moves through the medium, until the moment it disappears.

Initially, the neutron source is sampled. If it is a fission source, the energy, location, and
angular direction of the neutron are randomly generated [26]. Then, the free flight length is
sampled from

() = Zy(s) exp [— /0 | Et(s)ds] , (1.46)

which is the PDF describing the probability of a neutron travelling a distance s between two
consecutive collisions [26]. If the neutron remains within the domain, the nuclide and the type of
reaction are sampled. If the reaction is an absorption, the neutron history terminates. Instead,
if the reaction is of the scattering type, a new free flight length and direction are sampled, and
the process is repeated until the neutron is absorbed or leaves the domain. During the random
walk, various quantities are recorded, such as the number and type of collisions, the emitted
particles, and so on. The sample means are then computed. These quantities are scored through
mathematical constructs called tallies, which play the role of "detectors" for the system.

1.4.3 Ciriticality calculations

Monte Carlo methods can be employed for criticality calculations in reactor physics. This
involves dividing the simulated particles into N generations, which are usually referred to as
batches of neutrons. Criticality calculations are closely related to random walks. Each time a
fission event is sampled, the weight of the particle in the n — th generation is updated as

; VEf
w —wEa,

(1.47)

where w is the weight of the neutron prior to collision [25]. The power iteration algorithm [25] is
employed by simulating N batches of M,, neutrons, approximately constant such that M, ~ M.
For each batch, neutrons have an initial weight w,, , approximately equal to one, such that

M,
> W = M. (1.48)
m=1

Afterwards, the random walks of M, neutrons are simulated and the multiplication factor of
the n — th batch is calculated as [25]

<

n

1

ko = —
Mm

w
1

(1.49)

/
m,n*

Each time a fission reaction takes place, the position is stored and the energy and direction of
the emitted neutrons are sampled. These values are then used to initialise the random walks of
the next generation of neutrons. For the first batch, the neutron source follows a user-defined
distributions. Regardless of the initial distribution, the source distribution will start to converge
between different batches. However, the multiplication factor of the I. batches, for which the

14



1.5. Perturbation theory

source distribution has not yet converged, is not representative of the real system. Therefore,
the sample mean of the multiplication factor is computed by excluding these batches [25], i.e.

k= NI, > k. (1.50)

When the new batch is initialised, the weight of neutrons is set to

Win,p = ;:";1 (1.51)
-

as this ensure that the neutron population between different batches remain approximately
constant [25].

1.4.4 Tallies

As mentioned above, a tally is a mathematical construct that calculates a given physical quantity
in a Monte Carlo simulation, using the contributions from each individual neutron history. At
each step of the random walk, the contributions to the estimators are stored depending on the
event that is sampled. Different types of tallies can be defined, and their performance depends
on the application. In the following, the definitions of different tallies for the estimation of the
reaction rate are presented. From these, for instance, estimation of the flux can be retrieved.

An analog estimator [25] simply counts the number of collisions, taking the weights of the
particles into account, i.e.

1
RR =) w;, (1.52)
=1

where I is the number of collisions counted. Note that for an analog calculation the estimator
coincides with the number of collisions. The collision estimator [25], defined as

[ ¥
RR, =) w;i=,
o 2

(1.53)

allows a lower variance than the analog estimator for the reaction rate of a given reaction z,
since the contribution to the estimator also comes from collisions in which the reaction does not
occur. In conclusion, recalling that the neutron flux is the path length travelled by neutrons
streaming through a volume per unit of time and volume [26], this quantity can be used to define
the track-length estimator [25], i.e.

T
RR =Y w; X, l;, (1.54)
i=1
where [; is the length of one of the T trajectories within the selected volume.

1.5 Perturbation theory

The perturbation theory is an extremely powerful tool in the hands of the nuclear reactor
designer. This framework of methods offers its user the possibility of understanding the impact
of a set of physical phenomena on the stationary state of the system. This usually involves
determining relationships between some integral parameters and elementary variables, such as
cross sections or geometrical data [29]. Among other possibilities, this method can be used to
compute reactivity coefficients, perform parametric analysis, and uncertainty evaluations.

In general, one might be interested in computing the evolution of a stationary system by
monitoring changes in the multiplication factor or reactivity coefficients, for example, following
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Chapter 1. Theoretical Background

a perturbation of the mathematical operators describing the Neutron Transport Equation. The
perturbation theory offers the possibility to compute the variation of these variables of interest
without having to solve again the Boltzmann equation for the perturbed state, provided that the
perturbation is small. As will be outlined, this requires the solution of the adjoint equation for
the reference states. The strength of this method is that, once this solution has been computed,

it can be used to determine the evolution of the system following any kind of small perturbation
[14].

The results of the perturbation theory provide the foundations for the Sensitivity Analysis
(SA). This kind of analysis relates the perturbation on an elementary parameter p, with the
variation generated on a variable of interest I, with the use of the so called Sensitivity Coefficients
(SC), i.e. S

I op

S(I,p) = T/ (1.55)
The following sections will provide an insight into the analytical foundations of perturbation
theory, and its application in computing perturbed multiplication factors and reactivity coeffi-
cients. Then, Chapter 4 will present an application of perturbation theory using the ERANOS
tools. In particular, the focus will be on the first-order approximation of perturbation theory,
as this enables the sensitivity coefficients to be derived independently of the perturbed state.
Three different typologies of perturbation theory are possible in ERANOS [29, 30]. These are:

1. SPT - Standard Perturbation Theory, to compute perturbations on the multiplication
factor.

2. GPT - Generalised Perturbation Theory, to compute perturbations on the reaction rates.

3. EGPT - Equivalent Generalised Perturbation Theory, to compute perturbations on reac-
tivity coefficients.

The second, which is not used in the framework of this thesis, will not be addressed in the
following sections. Before delving into the details of perturbation theory, the following provides
an overview of the concept of the adjoint function.

1.5.1 The Adjoint Neutron Transport Equation

An adjoint operator XT is defined such that, for every couple of vectors u and v, <u,f( v) =

()5 fu,v). The notation (,) denotes the multiplication of the two elements followed by integra-
tion over the entire phase space. The introduction of the adjoint operator enables an adjoint
Boltzmann equation to be defined as [25, 26, 14, 18]

—0-Vo'(7, B, Q)+ 2,7, B)¢' (7, E, 1) :% dQ’/ dE' ¥,(r,E = E', - 0ol (r, E', )
47 0

1VEf(F7E) o0 / 12 -I-f /
+ET/{) dE" x(E")®'(7, E'),

(1.56)
which is solved for the adjoint angular flux, ¢f(7, E’ ,ﬁl), with BC
¢T’_(?Ba Evﬁin, t) = B(?/B — 7B, ﬁout — ﬁin)gbt—i_(FlB, E, ﬁouta t) + Qb;‘rn(FBa E, ﬁina t)- (157)

In Eq. (1.56) the multiplication factor appears again, as it can be demonstrated that k =
Kt [13, 26]. Furthermore, the removal term coincides with its expression in the Boltzmann
equation for the angular flux. This operator is in fact said to be self-adjoint, as the adjoint
operator is the operator itself [25, 14]. Comparing the other terms in Eq. (1.56) with those in
Eq. (1.7), opposite signs for the leakage term are noticed, as well as the different angular and
energy dependencies exploited in the scattering and fission operators. These differences lead to
a physical interpretation of the adjoint flux. While the neutron flux, solution to Eq. (1.7), is
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1.5. Perturbation theory

a measure of the contributions from scattering and fission reactions occurring throughout the
entire phase space to neutrons removed at a given point in the same domain, the adjoint flux is
a measure of the contributions that a neutron removed at a given point in the phase space will
give to scattering and fission reactions throughout the entire domain [26].

The physical interpretation of the adjoint flux can be further detailed by defining the
detector response as

R; = /dV/dEfd(z o(F, B, 0)5;(7, E), (1.58)

where ¢ (7, E, £2) is solution to a time-dependent equation with an externally imposed source,
ie. (T —0s — F)qﬁ = Qext [13, 14]. By solving this equation for let = X;, the above expression
can be further elaborated into [13, 14, 18]

R; = (¢, %) = (07, Qear), (1.59)

from where it follows the concept of importance function. In fact, the adjoint flux can be
interpreted as the importance of a neutron, i.e. a measure of the contributions that neutrons
at a given point of the phase space give to the detector response [13, 14]. In the following, the
adjoint solution will find wide application in perturbation theory.

1.5.2 SPT - Standard Perturbation Theory
The Standard Perturbation Theory (SPT) [29, 30] provides the tools to compute the variation

in the multiplication factor dk, induced by a small perturbation to the mathematical operators
that describes the system’s stationary state, i.e.

Mo = (i — ;F) ¢ =0, (1.60)

where Lo = (T — és)gﬁ, and M is said to be the Boltzmann operator. The Boltzmann equation
is expressed with the same notation also for the adjoint solution, i.e.

Migh = (ii - ;FT) 6T =0. (1.61)

Supposing now that a small perturbation is introduced into the reference system, such that

L—IL'=L+4L
N . . . (1.62)
F—F =F+J0F
The perturbed system can now be described as
~ A 1 -
My = <L/ _ k/F,> ¢ =0, (1.63)

where ¢’ = ¢ + 0¢ and k' = k + 0k are the neutron flux and the multiplication factor in the
perturbed state, respectively. The next step is to multiply Eq. (1.61) by ¢’ and integrate it over
the whole phase space, and the same applies to Eq. (1.63) and ¢f. Subsequently the two results
are subtracted, leading to

(- )os)- (o go)=e e

which becomes, with some rearrangements,

<¢T7 (—5L - %F + ;,F’) ¢’> = 0. (1.65)
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1 -
Adding and subtracting the term <¢T, k/FgZ)’> and, noting that,

1 1 K-k 6k

PR T (109
it is obtained )
_ {4t T _ —SE) &

Sk <qb ) <5L k/éF) qﬁ>

— = - . (1.67)

k' (¢T, Fo/)
Supposing that the perturbation is sufficiently small, such that k¥’ ~ k, it follows that

ok Ok

1
where p =1 — Z is the reactivity. By replacing Eq. (1.68) into Eq. (1.67), the final expression

of the exact standard perturbation theory is obtained, i.e.

1A,
R

This expression can be further simplified by neglecting the higher order terms (5ﬁ6¢ = 0,
0Fé¢ = 0) and supposing that the perturbation is sufficiently small such that ¢’ ~ ¢ and
k' ~ k. These approximations leads to the expression of the first-order approximation of the

SPT, which reads
- <¢>T, <5ﬁ — ]16F> ¢>
) (1.70)

(¢t, Fg)

op =

1.5.3 EGPT - Equivalent Generalised Perturbation Theory

The Equivalent Generalised Perturbation Theory (EGPT) [29, 30] is used to compute the per-
turbation of variables which are defined as the difference in reactivity between a reference system
and a second system, here referred as modified system [29].

A typical application of EGPT is the evaluation of the perturbation of the Doppler and
Coolant-voiding coefficients. The difference in reactivity between the reference system, here
referred as state 1, and the modified system, referred as state 2 is defined as

1 1 1 1
—(1=-=)=-(1=-=)= - _ — 1.71
4 ( kz) ( kl) ki ko (L.71)
The perturbation on the reactivity difference reads
1 1 1 1 1 1 1 1
S Ap)=4p —Ap=(— |- (———|=(——— - (——— 1.72
a=a-d= (o) (-n) -G -(G-g) 0@

where k] and k) are the multiplication factors of the perturbed reference and the perturbed
modified systems, respectively. The last two terms can be expressed using Eq. (1.70), i.e the
SPT formulation approximated at the first-order, leading to

L (af-pm)e) (anfme)
’ (01, F11) (6%, Facpo) , .

which is the formulation of the first-order approximated EGPT.
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1.5. Perturbation theory

1.5.4 Sensitivity Coefficients

As will be detailed in Chapter 4, the ERANOS perturbation module allows the user to apply
perturbation theory, outlined in the previous sections, to evaluate the sensitivity coefficients.
For a generic variable of interest, these coefficients are defined as

01 100y 29m

S(U,0r29n) = (1.74)

T )
I O-r?z7g7n

where I is the variable of interest, and oy, ;. 4 is the cross section of the nuclide n, situated in
the region 7, for the reaction x and the energy group g. To simplify the notation, this parameter
will just be referred to using the single-index notation o;.

1.5.4.1 Sensitivity Analysis on the multiplication factor

The sensitivity coefficient of the multiplication factor due to a perturbation of o; is defined as

S(k,o;) = %k ‘i‘i (1.75)

By rewriting the variation of the mathematical operators of the Boltzmann Neutron Transport
Equation in terms of partial derivatives with respect to the cross sections o; [31, 25, i.e.
n oan
~ oM
SM =" ——boi, (1.76)
= 0o
and substituting Eq. (1.70) into Eq. (1.75), the sensitivity coefficient for the multiplication factor

can be rewritten as
oL 1 9F
AT et el
Sk (SO'Z' k<¢ ) (ao_io'z ]{360'7;0-1> ¢>

o) =5/ = (61, F)

(1.77)

Since L and F are integro-differential mathematical operators they are linear with respect to
the cross sections [30, 31|, hence

8AL _ o and 8A _ % . (1.78)
L [oF3 F o;

These relations allow to simply Eq. (1.77) into

5k 80, <¢T’ (i_ F)a ¢>

O T , (1.79)

| =

N 1~
where the suffix o; in (L — kF) denotes that the above equation includes only the operators
o
in which o; appears explicitly in their mathematical expression. In fact, for a generic operator
X independent of o3, it follows that

ox

80'1' -
The strength of this approach is that the computation of the sensitivity coefficients does not
require retrieving the solution in the perturbed state, and they can be computed once for all
provided that the direct and adjoint solutions of the reference system are known [7].

0. (1.80)
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1.5.4.2 Sensitivity Analysis on the reactivity change

Using the EGPT, it is possible to derive the sensitivity coeflicients for any generic reactivity
change. Using Eq. (1.73), it is possible to derive the SCs by means of the same approach used
in the previous section, which leads to

(5(Ap)/@ 1 <¢L (ﬁl - kllﬁl)gi ¢1> ) <¢$7 <f12— ];F2>Ui ¢2>

S(Ap,0:) = Tp

oi  Ap (@], F1¢1) (5, Fa)

(1.81)
Again, the solution for the perturbed state is not required. It can also be noted that the EGPT
sensitivity coefficients can be derived by the SCs for the SPT, since from Eq. (1.81) follows

1

1 1
S(Ap, Ui) = Xp i Sl(k‘l,()'i) + ?282(162,0'1') . (1.82)
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Chapter 2

ERANOS - The ECCO cell code

The ERANOS codes and data system, mainly used for neutronic analyses of fast-spectrum
reactors, includes many transport codes. Among them, the ECCO cell and lattice code is
used to calculate homogenised and energy-averaged cross sections, for consequent use in full
core calculations. Relying on the Collision Probability (CP) method, the code is well-suited to
neutronic analyses of two-dimensional subassemblies cells. Furthermore, the code treats self-
shielding effects using a fine energy group structure (1968 groups) and employing the subgroup
method.

As this thesis aims to numerically validate the self-shielding module, it is necessary to gain
an insight into the theory underlying the ECCO physical models, and how these are implemented
in the code through different algorithms. Only by understanding the analytical models, and the
approximations they introduce, can a solid procedure for code validation be developed. This
enables the errors arising from the different numerical models to be identified and distinguished.

2.1 The ECCO cell code

ERANOS 2.3N (European Reactor ANalysis Optimized calculation System) is a system of codes
and libraries developed within a European framework for performing various analyses related to
fast reactors. The functions of ERANOS span between cell, lattice and core calculations, fuel
depletion, shielding, perturbation analysis, and many others [32]. The ECCO code is required
to prepare condensed and homogenised cross sections (typically using a broad energy structure)
for subsequent use in core calculations, in accordance with the classical two-step approach [17].

The ECCO code relies on self-shielded cross sections using a fine group structure (1968 en-
ergy groups) for the resonant nuclides (or the most relevant isotopes), employing the Subgroup
method. For other isotopes, a broad energy structure (33 or 172 groups) is adopted. Flux calcu-
lations are performed using various methods, depending on whether the domain is homogeneous
or heterogeneous, such as P1, B1, CP and other models [33, 32]. A typical ECCO calculation
consists of successive steps, each involving a separate transport calculation. The sequence of
calculation steps, known as route, is defined by the user. Two main routes are recommended: the
fast route and the reference route. Given the increased availability of computational resources
over the past thirty years, the latter route, which is slower but more accurate, is generally pre-
ferred over the former. The main steps of the reference route are summarised in Figure 2.1
and reported below. Each time a calculation with a different group structure is required, unless
energy condensations are performed, a Nuclear Data Library (NDL) is recalled as input by the
code. ECCO requires NDLs to be in a specific format, known as ECCOLIB, obtained by pro-
cessing the ENDF-6 tapes (Evaluated Nuclear Data File) using a series of external codes, such
as NJOY and CALENDF. Chapter 3 describes the production of an ECCOLIB. The reference
ECCO route consists of the steps described hereafter.
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Chapter 2. ERANOS - The ECCO cell code

1. An initial calculation is performed in a homogeneous medium with a broad (33 or 172
groups) energy structure. This step can be considered as a kind of "initialisation", to
retrieve the cross sections (for all nuclides). A buckling search is performed at this stage.
This step requires an ECCOLIB as input with the data organised in the broad group
structure (33 or 172 groups). The library also contains subgroup data for self-shielding
treatment, as will be detailed later on.

2. The calculation of a heterogeneous medium with a broad energy structure is then per-
formed. Here, a more accurate solution, representative of the actual geometry, is obtained
by using the previously evaluated buckling. However, the group structure remains broad.
As previously, an ECCOLIB in the broad structure is required as an input.

3. The solution in a heterogeneous medium with a fine energy structure (1968 groups) is
obtained, with an accurate treatment of resonant nuclides. The most accurate solution
is obtained at this stage. Cross sections (and subgroup data) for resonant nuclides are
provided as an input in an ECCO library containing data organised within a 1968 group
structure. For other isotopes, for which data are absent in the fine structure ECCOLIB, the
cross sections are those evaluated in the previous step. Finally, condensation is performed
from the fine structure to the broad 33-group structure.

4. A calculation with the 33-group structure is performed using the cross sections of the
non-resonant nuclides produced in step two, alongside the condensed cross sections of the
resonant nuclides produced in the previous step. A new buckling search is performed, and
the cross sections are then homogenised.

5. A final calculation is performed in a homogeneous medium using the condensed and ho-
mogenised cross sections from the previous step.

Each transport calculation performs outer, thermal and inner iterations, resorting for each
group to the subgroup module and the CP method. Figure 2.2 shows a basic scheme of this
process.

Homogeneous cell
Broad Groups

|

Heterogeneous cell
Broad Groups

|

Heterogeneous cell
Fine Groups

l

Heterogeneous cell
Broad Groups

|

Homogeneous cell
Broad Groups

Figure 2.1: Scheme of the reference route implemented in ECCO. At each step the transport
equation is solved at the lattice level, with input data specified by the user. At the end, homoge-
neous and condensed cross sections are produced. The figure was adapted from [33].
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Figure 2.2: A basic scheme of the calculations performed in the ECCO code for each of the

user-defined steps. The figure was taken from [33].

2.2 The approximations in the deterministic model

In the same fashion as other deterministic models, ECCO introduces a series of approximations to
solve the transport equation, such as the collision probability method, or to compute resonance
integrals, such as the self-shielding model. These approximations generally represent a small

source of error as compared to the uncertainties in the nuclear data.
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Chapter 2. ERANOS - The ECCO cell code

framework of a licensing process, it is necessary to precisely and independently determine these
errors in order to establish whether they fall within an acceptable range. The main challenge
arises from potential error compensation when only reviewing the code’s overall results. It is
therefore essential to distinguish the contributions of the various numerical models to the overall
output in order to identify the related errors individually. The following sections will analyse
these approximations from an analytical point of view, in order to understand how they can
influence the accuracy of the results. Then, in the second part of this work, the source of errors
related to the self-shielding module will be isolated and validated individually against Monte
Carlo simulations.

2.2.1 The self-shielding Model

As seen in section 1.2, the multigroup formalism requires the collapsing of the cross sections
within several energy groups. Assuming that the cross sections are weighted with the scalar
flux (to drop the dependence on the angular direction), the equation that must be solved for a
generic cross section o, 4 (where x stands for a generic reaction) reads as

_Jag, 0:(7, E)YO(r, E) dE
el = 2,(7)

(2.1)

This operation is fundamental to prepare the cross sections used in lattice calculations and
subsequently in core calculations. However, prior to the beginning of transport calculations, the
knowledge of the scalar flux is unavailable. Hence, some approximations are applied [23, 22].
However, the main difficulty in computing the integral in Eq. (2.1) lies in the resonant nature of
the cross section of certain nuclides, which exhibit sudden and steep variations over wide energy
ranges. Within the same energy interval, the energy-dependent neutron flux tends to exhibit
depressions at energy values that coincide with the cross section peaks. Figure 2.3 shows a dip
in the flux coinciding with a large resonance peak in the U-238 absorption cross section [34].
As the reaction rate is given by the product of the flux and the cross section, which vary in
opposite ways, it shows a weak dependence on energy [23]. This phenomenon, known as energy
self-shielding, is particularly relevant for fast reactors, where the average energy variation of a
neutron upon a collision is considerably lower, and the probability of falling close to a resonance
is significant.

u23s

Unite arbitraire

" " ) L ) "
5 55 & 6.5 7 7.5 8 85
Energie (V)

Figure 2.3: Representation of the self-shielding effect. The flur shows depression at the energy
values where peaks of the resonances are present, while the reaction rate is almost constant over
the same energy interval. The figure was taken from [34].
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The resonance region of heavy nuclides, where the resonance structures are closely packed
together, typically coincides with the energy interval in which the 1/E shape of the scalar
flux is commonly assumed to solve Eq. (2.1), which turns out to be invalid due to the flux
depressions induced by the energy self-shielding effect. Even if the exact shape of the flux were
known, accurately resolving the integral would still require the use of thousands of points (which
may not be available experimentally), due to the steep cross section variations in very narrow
intervals. This would result in unacceptable computational costs and data storage requirements.
Other methods are thus required to deal with the collapse of the cross sections in the resonance
regions, which are commonly referred to as self-shielding models.

Several methods have been developed for producing self-shielded cross sections: these are
the ultra-fine energy calculation, the equivalence theory and the subgroup method [20, 17, 25].
The first method solves the slowing-down equation in the resonance region, thus achieving an
accurate solution but requiring significant computational resources. The second method solves
the equation in an equivalent set of infinite homogeneous media. The third method solves
Eq. (2.1) in the real medium by transforming the Riemann integral into a Lebesgue integral.
Within the scope of this thesis, only the subgroup method will be discussed in depth, since this
is the model implemented in ECCO for treating the self-shielding effects.

2.2.1.1 The analytical model of the Subgroup Method

The Subgroup method is retrieved by starting from the transport equation and explicitly iso-
lating a single resonant nuclide, denoted here by re, while all other nuclides are considered as a
single non-resonant moderator element, denoted here by nre. By neglecting the fission sources
in the slowing-down energy domain, the transport equation reads as

2-Vo(T, E, Q) + (Z;°(T, E) + Zy"(7))o(T, E, 2) =
1/E/are sTe(F, E/)@(F7 E/) IE 1/E/anre Ezre(f)@(ﬁ E’) dE/7 (2.2)
A JE (1-— 0/"6>E’ 47 JE (1 — O/”“e)E’

which is solved for energy values within a resonant energy group [20]. Within this energy interval,
the cross sections of the non-resonant nuclides are assumed to be constant in energy. In addition,
the scattering is assumed to be isotropic in the centre of mass and the collisions are assumed to
be isotropic and elastic. This enables the maximum fraction of energy lost by a neutron upon a

collision to be 6XpI‘€SS€d as
( > 2 ( )
A +1 ’ '

where A is the nuclide mass relative to the neutron mass [15]. The reader may refer to Ap-
pendix C for the full derivation of the elastic scattering term. The elastic cross section of the
non-resonant nuclide is approximately constant within the resonant energy interval, and it can
be assumed to coincide with the potential scattering cross section, denoted here by X7 [20].
Before going any further, it is necessary to review how the slowing down equation is commonly
solved in an infinite medium. As a result of an elastic collision, a neutron having energy E’ is
scattered within the energy interval [aF’, E’]. Depending on the mass of the target nucleus, the
width of this energy interval may be large or small compared to the resonance widths.

Depending on the situation, two different models have been developed: the Narrow Res-
onance (NR) model and the Wide Resonance (WR) model [25, 14, 16]. The reader may refer
again to Appendix C for full details of these models. In the following, the main features relevant
to the discussion will be provided. In the first model, the scattering interval is large compared
to the width of the isolated resonances, which holds true especially for light nuclides. In this
case, the scattering properties of the target nuclide are dominated by the potential scattering
cross section outside the resonance interval [14], leading to

dE' ~ 5,(7)C(E), (2.4)

/E/a Y7, E"®(F, E")
E (1 — a)E’
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where C(F) is computed as a function of the shape of the scalar flux [20]. In contrast, in the
WR model the scattering interval is very small compared to the width of the resonances. This
is particularly true for heavy elements, and assuming that o — 1, then E' &~ FE [20, 14], and it
follows that

[ B YD)
E (1—a)FE

The NR and WR models represent very peculiar cases and may not be adequate to correctly
describe more complicated systems, where a mixture of nuclide is present. Therefore, the Inter-

mediate Resonance (IR) model is introduced [25, 35, 20]. This is obtained by linearly combining
the two preceding models, i.e.

dE' ~ 5,(r, E)d(F, E). (2.5)

/E/a Yy(7, EO(T, E')

B (1—a)E dE' = \X,(T)C(E) + (1 — \) Xs(F, E)®(T, E), (2.6)

where A is the Goldstein-Cohen (GC) factor. The IR model is applied for the resonant nuclide
in Eq. (2.2) together with the NR model for the background nuclide. The transport equation
now reads

2-Vo(T, B, Q) + (Z°(F, E) + Z{"(7))$(T, E, 12) =

zwm) (2.7)
E )

L (2D s By, B)
w\"TE VTSR B

where the 1/E shape of the flux in a purely scattering medium is used to compute C'(E) [20].

The transport equation is then expressed in terms of the lethargy variable v = In E;ff , assuming

that the scattering with the resonant nuclide does not change the angular direction, leading to

1

2-Vo(T,u, Q) + (N (F)ok (u) + 27°(7)) ¢(7, u, 2) =

(e + 2pem), (28)
where it has been made use of the fact that ¢(u) = E¢(FE) [20] and
oy (u) = op(u) + A 0.%(u), (2.9)

remarking that
0;“(u) = 03" (u) + 0 (u). (2.10)

Observing Eq (2.9), it can be noted that when the GC factor is taken equal to 1 (i.e. the NR
assumption is made for the resonant nuclide), o3°(u) = 07¢(u). On contrary, when the GC factor
is taken equal to 0 (i.e. using the WR approximation for the resonant nuclide), o7¢(u) = o¢(u)
[25]. To address the self-shielding effect using the subgroup method in ECCO, the NR model
was adopted for resonant nuclides, since it provides a more accurate description of the closely
packed resonances of heavy nuclides at high and intermediate energies, where resonance widths
are typically small [4, 33]. In the context of this thesis, the GC factor is therefore set to one.
However, this model does not conform to the resonances of heavy nuclides at low energies,
where their width is usually large. These resonances must be accurately treated using a fine
energy group structure in the thermal and epithermal regions, without necessarily relying on the
subgroup method. Therefore, the width of the energy intervals in the 1968 group library was
chosen to correspond to a lethargy interval Au = 1/120 = 0.0083 [4, 7]. This value corresponds
to the average lethargy gain of a neutron upon collision with U-238, which can be computed as
B B F dE alna

Au=u—w=ln—=[ 1 B 2.11
U=u—uw=m aE/n(E)(l—a)E’ R (2.11)

which is approximately equal to 0.008 [15]. This implies that only a small fraction of the neutrons
will remain within the same energy group for every collision (approximately one quarter of the
total collisions) [7, 4].
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2.2. The approximations in the deterministic model

The total cross section is then condensed in terms of the lethargy, i.e.
ot ) = 10 Ufed(su)ﬂhu) du

4(T)
As mentioned above, solving this integral using the flux obtained from solving the slowing down
equation would give accurate results, but it would be very computationally expensive. Instead,
it can be observed in Eq. (2.8) that the lethargy dependence of the scalar flux is given only by

o3¢(u) (and hence by the total cross section, for A = 1). Thus, integration can be run over this
variable to obtain

Tt9(T) =

(2.12)

S, o) D07 () du [,y 07 B(F,07°) wy(0) doj*
B, () I, B 07°) wy(of®) dofe

(2.13)

where Dy = [min o(u), max o (u)], Ay, and wq(0o¢) is a probability density function, such that
wq(0oy) doy gives the probability that o, lies within the interval [0y, oy + doy] [34, 23]. Figure 2.4
shows this quantity as a function of a generic total cross section. The advantage here is that the
previous Riemann integral has been transformed into a Lebesgue integral, which has a simpler
numerical computation as the flux shows mild variations over the cross section.

12.5

10.0 4

=
o
1

w
=
1
T

ra

o
1

T

Microscopic total cross section a{u)

=

T
0.2 0.4 0.6 0.8 1.0 o
Lethargy u

S 5
o o
Probability density [1{o)

0.03 -

Figure 2.4: Representation of a lethargy-dependent total cross section, alongside a probability
density function showing the likelthood of the total cross section falling within an infinitesimal
interval. The figure was taken from [25].

Finally, the core of the subgroup method is to use numeric quadrature formula to solve
integral (2.13), i.e.
> ik DT, 015 k) Wk
o7 (F) ~ - , (2.14)

Y D015 k) Wk
k

where the resonant group g is divided into a number K of subgroups, hence the name of the
method. The pair of values {0 1, wi } ¢ k=1,x must be provided for every resonant nuclide and for
every resonant energy group [34, 23, 35]. These data makes up the so-called Probability Tables
(PT), which are contained within the ECCOLIB given as an input to the ECCO code. For the
partial cross section the procedure is similar, i.e.

S A, O3 (w) BT 07 () du [, doje B(F,07") [, doTE o1F wy(of*,0%)

Py (T) B Ip, . @(T,07¢) wy(oi®) doj®
D P(Foign) 2 Pk Ougs Y g BT, 07G k) won  (215)
_ K J -~k

> T 01k W > O ogn) wok
k k

04g(T) =
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Chapter 2. ERANOS - The ECCO cell code

where wy(0y, 0,)dodo, is the probability that for a partial cross section o, lying within [0, 0, +
do], the associated total cross section oy lies within [0y, oy 4+ doy] [34, 23]. Furthermore, it has
been defined

Toigk Wok = D Dg,jk Toog o (2.16)
j

which allows a set of pairs of values {0, i, w }4 k=1, to be provided to ECCO, without calcu-
lating again the probability weights [34]. Chapter 3 will present the methodology for calculating
the PTs for ECCO, using the CALENDF code and the Gaussian quadrature formula theory [36,
37].

The subgroup method allows to reduce significantly the amount of points required to com-
pute the condensed cross sections (from 80000 to 32000 for Usgsg, for example [4]). In addition,
to take into account the broadening of the resonances due to the Doppler effect, probability
tables must be provided at different levels of temperature.

2.2.1.2 ECCO implementation of the Subgroups Method

The solution of Egs. (2.14) and (2.15) requires knowledge of the scalar flux. Two approaches
can be determined, depending on whether the geometry is homogeneous or heterogeneous [9,
33]. For a homogeneous medium, consisting of only one resonant and one non-resonant nuclide
(result of the damping of all the other nuclides), the transport equation integrated over the solid
angle is expressed assuming elastic and isotropic scattering, leading to

Ela e (ENG(E Ejo S0 (E®(E'
(Xi°(B) + S/ (E))®(E) = [E w / /E WW (2.17)
+ox(B) | TS (EYB(E).
0

Considering a certain subgroup k € g, with non-resonant cross sections assumed to be constant
within the resonant group g, the transport equation reads

(Xign + X0 )Pgk = Sy + 85" (2.18)

where 57" is the neutron source due to fission and scattering on the non-resonant nuclides, also
assumed to be constant within the subgroup k, since the resonant groups are well below the
energy range in which the fission sources are present. ngk is instead the source due to scattering
on the resonant nuclide. The Statistical (ST) model makes the hypothesis that the resonances are
narrow, but in contrast to the NR model, they are not isolated but statistically distributed along
the energy interval and with a spacing much smaller than the maximum lethargy variation due
to scattering on the heavy nuclide [25, 23, 34]. This hypothesis, which is valid for the unresolved
resonance interval, can be extended to the higher extent of the resolved range (further details
about these two ranges will be provided in Chapter 3).

Therefore, for any subgroup k, the scattering source on the heavy nuclide is approximately
the same, and it can be replaced by the mean value over the whole group g, i.e.

re _/Ek/“ 5o () (E

) / 1 e / / ! __ qre
re — B~ /AEgzgo(E )b(E)dE = ST, (2.19)

Ey (1 - a)El '
and the scalar flux is now expressed as

STL'I‘€ +ST‘€ C

G, =P(0l,) = =2 g = ) 2.20
g,k (Jt,g,k) ZZZG n Z'Zeg,k Egge ( )
Nre

re
T Ttgk
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2.2. The approximations in the deterministic model

The numerator of this expression is constant within the group k, and the flux is used to compute
the condensed cross section in equation Egs. (2.14) and (2.15) as

re
J:z:7g k Wo,k
ppi Tt

k t,9 Ie &
re 295
ore, = =" . (2.21)
' g,k
D e
k t.9 re
Nre L9,k

The above self-shielding model has been derived by considering only one resonant nuclide, with
all the others being damped in the background moderator. The derivation for the case where N
resonant nuclides are considered is similar, but this time the lethargy dependence of the scalar
flux in equation (2.12) is given by the cross sections of all resonant nuclides. In this case, the
Lebesgue integral for the resonant nuclides re, (n € N) becomes [23]

ren 1) = fD'rel doyt- - fD'reN do;N i O(F,0{,...,00N) we(op,...,00) (2.2
o, (T) = .
t.g fDTel doy®t- - fDTeN doi™N &(F, 00, ...,00N) we(oy®, ... o0N)
and by making use of the statistical hypothesis [23]
n
wy(of™, ..., 00) = [Jwlof®), (2.23)
i=1
equation (2.22) is expressed again with the use of quadrature formulas:
Z Z U:,ann 7 agzlkl, e UIZ%N) Wy key - - - Wy ke
org (T) = : (2.24)

Z Z D(T atgkl,...,a:;{\;w) Wy ey - - - Wy ke

where ki ... ky are respectively the subgroups into which the group g has been divided for the
resonant nuclides 1...N. Using the same approach as above, the cross section for the resonant
nuclide re,, is derived as

TEn

Sy Em‘efx,g ko Woik - Woky

k1 ky b9 + ol 4 gleN
t 7k 17
oren = Nre 9 (2.25)

z,9 Z Z Wo k1 " "Wy kn ’

k 79 rei L. TeN
N N?"@ + tg7k1 + + o )

which is solved for every resonant nuclide [33]. For the heterogeneous case, the flux is computed
using the collision probability method (see Eq. (1.34) in Chapter 1). Therefore, in the case of
one single resonant nuclide, the self-shielded cross section is calculated for each region ¢ as

Z QRjyg Z o 9.k Pg,ij(Ztgk) Wok

ort = , (2.26)
o Z Qjg Z DPa,ij (Xt .9, k) Wy,k

where p; ; is the reduced collision probability. Knowledge of the sources generated in others re-
gions is required, and hence knowledge of the flux in the whole domain. Therefore, as mentioned
in the introduction to this chapter, an iterative procedure is performed between the production
of the self-shielded cross sections and the flux evaluation. Furthermore, since CPs also depend
on the cross sections, they must be re-evaluated each time the subgroup method is employed.

In the heterogeneous medium, the implemented collision probability summations make im-
practical the approach used previously for the case of more than one resonant nuclide. Therefore,
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Chapter 2. ERANOS - The ECCO cell code

ECCO adopts an iterative procedure, where a single nuclide is treated as resonant while all the
others are considered as non-resonant and damped in the moderator. The self-shielded cross
section is evaluated and the algorithm continues with another resonant nuclide, using the same
approach, until all the nuclides have been treated. The code then repeats the cycle until con-
vergence on the cross sections is reached [33]. The basic hypothesis of this method is that the
resonances of different nuclides do not overlap within a specific energy group. This hypothesis
is valid when a fine energy groups structure is adopted, but may not hold true when a broad
structure or many nuclides are considered.

It is worth mentioning that this iterative process can also be used in a homogeneous medium,
when many nuclides are present and the summation order in equations (2.25) increases largely
[33].

In conclusion, it has been outlined how ECCO generates self-shielded partial cross sections
using sets of quadrature points Qg g = {04k Wk }gk=1,x- The K couple of points, for each
group g, are provided by CALENDF using the method of moments, which yields mathematical
probability tables [36, 37]. Chapter 3 will detail how these values are produced by CALENDF
and integrated into the NDLs. For the production of self-shielded cross sections at different
temperatures, ECCO uses interpolation laws. These are not applied between the probability
tables, which may contain different numbers of subgroups at different temperatures due to
Doppler broadening, but rather applied on the moments reconstructed starting from the PTs
provided by CALENDF at predefined temperature levels. Afterwards, the interpolated moments
at the intended temperature are used to compute the new quadrature points [33, 8].

2.2.2 The flux solution

As highlighted in Figure 2.2, a procedure involving iterations between the flux computation and
self-shielded cross sections calculation is implemented. Since ECCO calculations are performed
in homogeneous and heterogeneous geometries, the flux solution is detailed in both contexts.

2.2.2.1 The collision probabilities and the Roth method

The flux solution in heterogeneous geometries is implemented in the ECCO code using the col-
lision probability method, as detailed in Section 1.3. The CPs are implemented using different
routines depending on the specific case. Some routines compute the collision probabilities ana-
lytically, provided the geometry is simple enough. Others resort instead to approximate methods
to calculate the collision probabilities. Among them, the Roth method is the one customarily
used within the ECCO cell code [33, 38].

This method divides complex geometries into smaller regions known as links. These regions
are simpler geometries for which collision probabilities can be computed using other routines,
e.g. with analytical formulations. For a generic link named A, let Pg"}ij be the CP calculated for
two regions ¢ and j within A. Since this approach is valid for any energy group, the group-index
notation is suppressed thereafter. Then, the probability that a neutron born in the region i
leaves the link A, P2, can be determined by imposing vacuum boundary conditions [33], which

18
leads to

n
pP=1->pf, (2.27)
j=1

where n is the number of regions into which the link is divided. The following step is to
determine how neutrons are transported between links. The quantity Nap gives the probability
of a neutron leaving the link A and arriving at the surface of link B. This quantity is determined
by contributions from other quantities:

e R,k represents the number of neutrons that travel from link A to link K without crossing
any other links. This term is generally related to the geometrical surface between the
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2.2. The approximations in the deterministic model

links.

o PX is the probability that a neutron crosses link K without having a collision. This

quantity is estimated through the reciprocity relation [33], which reads

" AV, X, P
Pi=1-Y bt g N (2.28)
=1

where S is the surface area of the boundary and Vj is the volume of the individual region.

Therefore, the number of neutrons that reach link B from link A is made up of two contributions:
the first are the neutrons that from link A reach directly link B, without having any collision.
The second is the contribution of all neutrons born from a collision in link A that reach any
other link K, stream through this link without colliding, and then reach link B. This can be
expressed mathematically as

Nup = Rap + ZRAK PSIS( Nkp, (2.29)
K

which is then arranged in a matrix form that reads
N =(I-RE)'R, (2.30)

where [ is the identity matrix and F is the transmission probability matrix, which is a diagonal
matrix containing the PX terms [33]. The R matrix can be computed once and for all at the
beginning of the calculations using the geometric data as input. Once each term in the N
vector is computed, the collision probabilities between links A and B are calculated with linear
combinations of the intra-link probabilities, i.e.

P, =P} +Pi Nap PS it A=B, (2.31)
P, =Pi Nap PZ if A+ B. ’

In order to improve the accuracy of the method, Roth x4 and Roth x6 methods were
developed for ECCO in rectangular and hexagonal lattices, respectively [33]. These methods
calculate the intra-link probabilities accordingly to the method described above, but this time
the cell is divided into its outer surfaces. The collision probabilities are then computed by taking
into account the possible combinations of the cell’s external surfaces. Consider, for example, a
rectangular lattice in which cells are divided into four external surfaces as shown in Figure 2.5.

S3

Sl S4

Sa

Figure 2.5: Roth x 4 method. The rectangular cell is divided into four external surfaces. The
figure was taken from [33].

The probability of a neutron born by collision in i escaping the link A through the surface

Sy is calculated as [33]
S,
A A
Pl = fpis. (2.32)
Similarly, the probability that a neutron entering the link A crosses surface S,, streams without
colliding, and exits the link through surface Sz is

max{Sg, 255 — Tn} .
f
max(25: + 92,25 + 51} L 7P (2.33)
Pég, =0 if a=p,

A _
Pg,s, =

31



Chapter 2. ERANOS - The ECCO cell code

where T} =Ty = Sy = S3 and Ty = T35 = S; = Sy4. Then, the formulation of Eq. (2.30) remains
unchanged, but this time the R matrix will have a larger dimension as it contains information
on neutron transport across different surfaces [33].

2.2.2.2 The fundamental mode solution in the homogeneous medium

The flux solution in a homogeneous medium can be derived from the transport equations under
the multigroup approximation, as derived in Section 1.2, which reads

S (7
2-Voo(T,2) + Ty gdg (T, 2) = ZZESIgQZYB ¢>,g )+ ZE:), (2.34)

g'=11=0 B=—1

where S, is the sum of the fission source and an eventual external source, which are both assumed
to be isotropic. If the medium is infinite, the flux will be isotropic and spatially uniform [33],
which leads to the trivial solution g

g
Xrg

)

d’g:

where S; is the fission and scattering source (from higher energy groups), and X 4 is the removal
scattering cross section (result of the total cross section minus the intra-group scattering cross
sections) [33]. In a finite domain, the Fundamental Mode (FM) method is employed for the flux
solution. For simplicity, the derivation will be detailed for a 1D geometry, but the methodology
can be extended to 2D and 3D geometries. The fundamental mode consists of separating the
angular and spatial dependencies in the neutron flux and source, i.e.

g (, 1) =g (1)e'P?, (2.36)
Sy(x) =84e7, (2.37)

where B2 is said to be the Buckling [33, 8]. Substituting these terms in Eq. (2.34) and dividing
everything by the exponential term, it is obtained

(ZBM+Etg d)g Zzzslgg ZYB

g'=11=0 B=—1

(2.35)

Sg (2.38)

where the moments of the angular flux are evaluated in a 1D geometry as

. A+1(—B)I\2 5, o _igw
oy = f a0y ) VP @) = [ag' [awo, ) (T GE0) R @a)

Because of the presence of the exponential factor, all terms except S = 0 vanish, and it follows

Wy =2m [l 6400) (”Ajrl) PO() =

1 (2.40)
20 +1 20+ 1\ 2
2m (202 ) [ auton P =2m (255) oy
T
Therefore, Eq. (2.38) now becomes
G o
21 + 1 S
(’LB/J, + Etg ¢g Z Z s,l7gg’ ¢l,g’ -Pl(:u') + ﬁ (241)
'=11=0

Then, the flux on the LHS is also expanded on the Legendre polynomials, and both sides are
multiplied by P,,(u) and integrated over p to obtain

zBZ 30 [ din i Pi(u) P ,gZ
20+ 1 S
55 2 Sty b / dh Pile) Pu(p) + 32 / dpt Pon(1).

g'=11=0

20+1 20+1

Cbl,g/dﬂ Pi(p) Pm(p) =
(2.42)
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Then, using the recursive relation of the Legendre polynomials [14], i.e

pP(p) = o=+ 1) Py (p) + 1P -1 (w)], (2.43)

20+1
together with the orthogonality property [14], i.e

[ B) Pty = 2 (2.44)

an equation for each projection of the neutron flux is obtained [8], which reads

l+1 .

ﬁ Béyy1,g +

2 Sg,lo
20+ 1 4r

ST BoI—1g+ X gbig = Z Yslgg Plg +
g'=1

24
20+1 (24)

where [ ranges between 0 and N + 1, N being the truncation order. The set of N + 1 equations
is solved by eliding the term ¢;;; assuming that this term vanishes, which leads to the Py
approximation [8, 33, 13, 25]. Then, in the P} approximation [8, 33] the equations for the first
two moments assume the shape

G
) S,
iBo1,g+ Lt gd0,g = E : 250,99’ P0,g' + 297770’ (2.46)
g'=1

G

7(1)079 + Et7179¢179 - Z Zs 1 gg’¢1 g’ (247)
g'=1

where X 1 4 is the total cross section weighted on the current instead of the scalar flux. The first
two orders of the flux are related to two well known physical quantities, which are the scalar flux
and the neutron current, respectively [33, 14]. In P; approximation, the equations are solved
for these two quantities, which leads to

5 B%S
=
Ditg — Xs,
@g = ¢07g = g Bz s 99 , (248)
Xrg+
" 3(Et 1,9 ZJs,l,gg)
’B|J + 514
_ 2.49
Z¢1,g Et 1,9 Es,l,gg’ ( )

where S; is the neutron source in group g originating from fission and scattering in other groups,
and S7 g4 is the first-order scattering neutron source. For higher orders, the consistent Py solution
uses the extended transport approximation [8, 33]. In this approximation, it is assumed that
strongly anisotropic scattering does not change the neutron energy, leading to an expression for
the scattering term that reads

G G
Z Yolgg Ly = Z /dE/dE'Zs,l(E’ — E)gy(E) =~ (2.50)
g'=1 g'=1

G G
> / dE / dE' S (E = EG(E) m 1y > Dstgg = 1955, for 1>2. (2.51)
=1

g'=1
Then, the higher-order projections of the neutron flux are

I i|B|pgi—1

A T R ¥

for [=2---N, (2.52)
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where the term A; is defined as [33]

aj

A =b_1+ s (2.53)

by + aj+1 e

byyr + -+
bn_1
for [ that ranges from 1 to N — 1 and for N =1, Ay = by_1, where
(1+1)2B?

= 2.54
U@+ 3) (2.:54)
bo =X 1,4, (2.55)
by =Xi1,9g — X ggi+1- (2.56)

In the inconsistent Py solution the extended transport approximation is applied also for the
[ =1 order, which leads to the solution

B, =28 = (2.57)
g+ 34,
g —\Bgil, (2.58)
D1 =2lill|B’jlg’l_l for [=2---N, (2.59)
with by this time equal to
bo = 5119 — Ls.ggit- (2.60)
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Chapter 3

The nuclear data libraries and the
ECCOLIB

The Nuclear Data Library (NDL) is the cornerstone of every deterministic or stochastic code.
This set of files contains all the information about the nuclides’ cross sections, properties and
reactions required for transport and shielding calculations in everyday practice. Generally, the
uncertainties in the nuclear data have a greater impact on the accuracy of the final results of a
neutronic code, compared to the approximations introduced by the solving algorithms. During
a numerical validation process, the results of the deterministic code are usually compared with
reference values, such as the results of Monte Carlo (MC) simulations. During a validation
process, it is essential to ensure consistency and coherency between the NDLs in the deterministic
and MC codes. If this is not the case, the differences between the NDLs may be non-negligible
and overshadow the errors arising from the deterministic models, making the validation process
impractical.

During the processing of NDLs, the data are not only manipulated to make them accessible
to the codes, but also integrated with additional information. For example, this applies to the
PTs, which are generated by CALENDF and implemented in ECCO, as outlined in Chapter 2.
In the second part of this work, the ECCO self-shielding model will be validated using the
ENDF/B-VIIL.0 ECCO library that is used for ERANOS calculations within newcleo , taking
as a reference the results of the OpenMC Monte Carlo code [39, 40]. Recognising the possible
differences between the libraries produced for ECCO and OpenMC will lay a solid foundation
for any future validation work, which will only be possible if the error sources are isolated from
those eventually generated by discrepancies in the NDLs.

Processing Evaluated Nuclear Data Files (ENDF), contained in the NDLs, requires the
precise concatenation of operations performed by external codes. Along the chain of procedures,
the user must make physical assumptions and perform the necessary informatics operations to
process the raw experimental data. This applies to the NDLs that are generated for both
ECCO and OpenMC, although they require two different workflows. Beyond the difference
in the NDL preparation routine, eventual incoherence in the physical assumptions may lead
to further discrepancies. The following chapter will provide the reader with the fundamental
knowledge about the production of the NDLs, leading to a better understanding of the eventual
discrepancies found when analysing the ECCO library.

3.1 ENDF/B Cross section Representations

The ENDF/B libraries are the result of the collaboration between the U.S’s Cross Section
Evaluation Working Group (CSEWG) and the international community [41]. These files contain
data on neutron and charged-particle reactions, activation, decay processes, and so on. The latest
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versions of the libraries, namely from version VI up to version VIII, follow the ENDF-6 format
(also shared by the European JEFF libraries [42, 43]). In this format, the NDL is divided into
several ENDF files (tapes), containing information for a single incident particle and other data
types. Each tape is subdivided into different materials (MAT), which contain several files (MF).
Each of the MF contains sections (MT), which include data (records) about the reaction and
its products between the material and the particle specified in the tape [41, 22]. A schematic
representation of this structure is reported in figure 3.1.

In the context of this thesis only incident-neutron data will be examined. In this tape, the
MF=1 file contains the description of the tape and general data characterizing the material, e.g.
the atomic mass, the energy and neutrons released per fission reaction for fissionable isotopes,
and so forth. The MF=2 file contains resolved and, if present, unresolved resonance parameters.
This data enables the reconstruction of resonant cross sections, as tabulating the pointwise data
would require excessive storage memory. File MF=3 contains the tabulations of the energy-
continuous cross sections, also called the dilute-average cross sections. Files MF=45 and 6
contain the energy and angle distribution of emitted neutrons, reaction products, and other
particles. Other files outside the intended focus of this work are also present [41].

Tape Ident First file First section First record
(TPID) (HEAD)
First Second file Second Second
material section record
] ] )i, Sy ]
L ] L | I Ny L |
Material File (MF) Section Record
(MAT) (MT) (MR)
i, Sy P i, S i Ny o — ]
Ei Ny iy |y ]
Last Last file Last section Last record
Material
Tape end Material File end Section end
(TEND) end (FEND (SEND)
(MEND)

Figure 3.1: Representation of the structure of and ENDF data tape in the ENDF-6 format. The
data are subdivided into materials (MAT), files (MF) and sections (MT). The latter contains
the sets of data (records). The figure was taken from [41].

For resonant materials, the cross sections are reconstructed by summing the background
(BG) cross sections from file MF=3 with the resonances computed from the parameters in file
MF=2 [41, 22]. Figure 3.2 shows the variation in the total cross section of U-238 throughout
the entire energy range, which has been partitioned in three groups: the Resolved Resonance
Range (RRR), the Unresolved Resonance Range (URR), and the Continuum.

In the RRR, the cross section resonances are sufficiently spaced that the experimental
resolution can determine their individual widths and distributions. In the context of this thesis,
the RRR has been extended to the thermal range, where the cross section is smooth again,
which is generally referred to as the Low Energy Region (LER) [41]. In the URR, although the
resonances are still not overlapping, they are so closely packed together that the experimental
resolution cannot determine their individual parameters. Therefore, the resonance parameters
given for this range in the MF=2 file are coefficients that describe the statistical distribution
of the width and spacing of the resonances [41]. In the Continuum, or the High-Energy Region
(HER), the resonances overlap and the cross section is smooth again [41]. Typically, the lighter
the isotope, the more the resonances shift towards higher energies. Therefore, for these elements,
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the evaluator can omit the URR data if it corresponds to energy values that are of no interest
in practical calculations. For the lightest isotopes, even resolved data can be omitted [22].

The cross section reported in figure 3.2 is therefore the result of the union of the background
cross section with the resonances outside the URR; in the latter interval, as will be detailed later
on, the resonance generation follows a stochastic process. Beyond the statistical approach, the
reconstruction of the resonances itself differs between the RRR and the URR. In the RRR,
different formalism can be used to reconstruct the cross sections, namely the Single-Level Breit-
Wigner (SLBW), the Multilevel Breit-Wigner (MLBW), the Reich-Moore (RM), and the Adler-
Adler (A-A) [41, 22]. The ENDF-6 tape includes indication from the evaluator regarding the
formalism that has to be used to reconstruct the resonances. In the URR, only the SLBW is
allowed [41, 22].

104
103
102

A

100

Total Cross-Section [b]

RRR URR CONTINUUM

_]_ . . . . . . . . .
10 1072 1071 100 10! 102 103 104 10° 10° 107
Energy [eV]

Figure 3.2: Plot of the energy-dependent total cross section of U-238 at 29/K. The energy range
has been divided into three intervals: the URR,the RRR, and the Continuum. The represented
cross section is given by the sum of the background cross sections and the resonances recon-
structed outside the URR.

3.2 ECCO library production workflow

In this section, the workflow required to produce an ECCO library (usually referred to as
ECCOLIB) will be outlined. Throughout the process, the ENDF-6 file must be converted into a
format that is accessible to ECCO. This involves processing the pointwise ENDF (PENDF) into
multigroup (1968, 172, 33) and subgroup data for ECCO calculations [44, 45]. This is achieved
using two codes, NJOY and CALENDF [22, 36|, together with two interface codes, namely
MERGE [46] and GECCO [47]. Figure 3.3 depicts the basic scheme used to process the NDLs
in the ECCO 1968 groups library. The final output of the process is a multigroup file (GENDF),
which is the actual ECCOLIB used within ECCO. The 33 and 172 groups ECCO libraries are
then produced by the CONDENA code, which condenses the 1968 PTs for the resonant nuclides
into broader group structures and merges them with the multigroup data produced for the
non-resonant nuclides [48, 44].

The NJOY and CALENDF codes work in a complementary way to process the NDLs.
The former is responsible for preparing the multigroup cross section data, scattering matrices,
and for the thermal scattering treatment. The latter produces multigroup cross sections and
probability tables, using a Gaussian quadrature, for the treatment of self-shielding in ECCO
(for the resonant nuclides). The MERGE interface then checks, makes consistent, and joins the
multigroup cross sections and PTs in a unique GENDF* file. The new file is then fed as input

37



Chapter 3. The nuclear data libraries and the ECCOLIB

to the GECCO code, which converts it to a format that can be read by ECCO. In the following,

each step is briefly described.

: l

NJOY CALENDF

RECONR

BROADR

UNRESR

THERMR
GROUPR

GEND PT file

MERGE

GECCO

ECCOLIB
(multigroup & subgroup data)

Figure 3.3: Workflow representation of the production of a 1968 groups ECCO library. Through-
out the process, the PENDF (which contains pointwise data) is elaborated into a GENDF (which
contains multigroup data). The output from the NJOY code (multigroup cross sections) is merged
with PTs produced by the CALENDF code, using the MERGE code. Finally, GECCO converts
the GENDF* file into the ECCOLIB. The figure was adapted from [}5].

3.2.1 The NJOY code

NJOY is the code used to elaborate the pointwise cross sections and resonance parameters in the
ENDF-6 format into a set of multigroup cross sections. NJOY is a multi-modular programme,
and each module must be executed in the prescribed order to manipulate the library correctly.
The modules are presented below in the order in which they are called for the processing of
ECCO-compatible NDLs. Unless otherwise specified , all information in this section refers to
the NJOY2016 manual [22].

3.2.1.1 RECONR
The RECONR module reads the ENDF-6 input and produces pointwise cross sections which are

then stored in a PENDF output. The cross sections are computed at 0 K on a common energy
grid, starting from the BG values in file MF=3 and the resonance parameters in file MF=2.
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3.2. ECCO library production workflow

NJOY uses linear interpolation schemes to reconstruct the cross sections at intermediate energies
between two neighbouring points. This makes it possible to compute summation cross sections
(elastic, fission, etc.) as the sum of their constituent partial cross sections. However, not all the
interpolation schemes in the ENDF-6 tape are linear. Starting from the input tape, RECONR
creates a union grid for all the cross sections, enabling linear interpolation while ensuring an
acceptable level of accuracy.

Then, RECONR, computes the cross sections on this grid in the resolved and unresolved
ranges. In the resolved range, the module uses one of the following formalism: SLBW, MLBW,
RM or A-A. In the URR, the SLBW computes the cross section using the statistical distribution
and average parameters in the MF=2 file. These data will eventually be overwritten by the self-
shielded values in the UNRESR module.

3.2.1.2 BROADR

The BROADR module is used to apply Doppler broadening to cross sections within the resolved
range. This is particularly important for reactions that exhibit resonances, such as elastic
scattering, capture, and fission. This is achieved by conserving the reaction rates between the
stationary state and the states at different temperatures. Then, the module computes a new
energy grid able to accommodate the Doppler-broadened cross sections.

3.2.1.3 UNRESR

The UNRESR module computes self-shielded effective cross sections on the BROADR, energy
grid within the URR. Due to the statistical uncertainty of the resonance distributions within
this range, energy-averaged cross sections can only be defined as

 Jgl 0x(B)B(E)dE

0:(E) = for £ € [E4, E», 3.1
( ) 512@(E)dE [ 1 2] ( )

where = stands for a generic reaction and the interval [Ep, Es] should be sufficiently small,
compared to the smooth variations in @(F), but should also contain a significant number of
resonances. To account for dips in the scalar neutron flux, UNRESR adopts the Bondarenko
method [49], which assumes that its shape can be described as

C(EB)

P =B + o

(3.2)
where C(F) is a slowly varying function of energy, oy is the total cross section of the nuclide and
oo is the background cross section, assumed to be constant within [E7, Es], which results from
the lumping together of the total cross sections of the other isotopes in the surrounding medium.
This term controls the effect on self-shielding of the isotope dilution in a material containing
more nuclides; for small values of og, the flux develops dips in correspondence of the peaks in
the total cross section oy(FE) and self-shielding is accounted for. Conversely, for large values of
oo the flux is dominated by this parameter alone and self-shielding effects are not taken into
account. When o tends to infinity, the effective cross section is said to be infinitely diluted.

The effective cross section is finally expressed as

2 E)C(E
[oBoE),
B, o0i(E)+ o9
Ex C(E
/ _CE) g
B oi(E)+ oo
which is further elaborated within the UNRESR module and solved at different temperatures.
The dilution choice is a free parameter that must be specified by the user. The parameter is not
known a priori, and it is common practice to provide a grid of values exploring the sensitivity
of the cross section to these values.

O'm(E) = for FE S [El, EQ], (33)
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3.2.1.4 THERMR

Within the thermal range (at energies lower than 1 €V) the scattering reactions cannot be simply
described by considering the target nucleus as free to recoil. The kinetic energy transferred in
each collision is comparable to the thermal motion of the nucleus and the excitation energy of
the atoms in crystalline and other molecular structures [14]. Therefore, the RECONR module
takes into account these effects by applying several models and writing the results in new MT
sections.

3.2.1.5 GROUPR

The task of the GROUPR module is to compute energy-averaged cross sections for use in the
multigroup method, i.e.
S5/ dE 04(E)D(E)

Opg = 2, . (3.4)
As outlined in Chapter 1, computing these quantities requires knowledge of the scalar flux.
Several options are available in the GROUPR module. For typical applications, the thermal
Maxwellian distribution, the 1/E shape, and the fission spectrum are employed in the thermal,
epithermal and fast regions, respectively. Where resonances are present, and the usual flux
shapes cannot be used, GROUPR produces multigroup Self-Shielded cross sections by applying
the Bondarenko model, as outlined in the UNRESR section. In this case too, the choice of
the background cross section oy determines how self-shielding is taken into account in the final
results.

Moreover, GROUPR elaborates scattering matrices, energy-angle distribution, prompt and
delayed fission spectrums, and the average number of neutrons emitted by fission into multigroup
structures.

3.2.2 CALENDF

CALENDF is the code, complementary to NJOY, used for the production of multigroup averaged
cross sections and probability tables for ECCO [36] (and other applications, such as TRIPOLI
[50, 51, 52]). For each nuclide and each resonant energy group, the probability tables are used
in the subgroup method to solve Egs. (2.25) and (2.26). As described in the previous chapter,
a probability table consists of a set of pairs of values Qg = {04k, wk}gr=1,k for each k —th
subgroup within the energy group g, and for a generic reaction (z can stand for total, fission,
capture, etc.). The value wy ) represents the discretisation of a continuous probability density
function representing the probability that the microscopic total cross section lies within an
infinitesimal interval, as shown in Figure 3.4. These pairs of values make up quadrature points
that can be used to solve the Lebesgue integral. The process of generating the discrete values
starting from the continuous total cross sections and PDF w is performed using the method of
moments [23, 37, 53] , which is discussed in the following section.

3.2.2.1 The Method of Moments

This method is based on the definition of the [ — th order moment of the total cross section, and
its subsequent expression in terms of a Lebesgue integral. This leads to

1
Ml,g = TUg /Aug Ué(u> du = / (T,lf w(at) dO’t, (35)

g

which can be computed by CALENDF reading from the MF=2 and MF=3 files in the ENDF-6
libraries. The [ — th moment can be expressed approximately in terms of the K doublets of
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Figure 3.4: Graphical representation of a probability table. The value p (in the context of this
thesis, referred to as w) is the probability that the total cross section lies within an infinitesimal
interval. The figure was taken from [53].

points Qt g = {04k, Wk } g k=1,K aS

K
Ml,g(Qt,g) = ng,k O'i,g,]w (36)
k=1

where the right-hand side represents a Gauss quadrature and, therefore, benefits from the math-
ematical strength of this type of quadrature. This includes the uniqueness of the quadrature for
each moment, as well as the generation of positive values of wy . [23, 8, 53]. In fact, this purely
mathematical approach generates the so-called mathematical probability tables, which differ
from those generated by other approaches such as the physical probability tables, for example
[20]. The computation of the 2K values {0y, wy}gr=1,x is performed by equating 2K exact
and approximated [ — th order moments, i.e.

Mg = M(Qry) for L<I1<L+2K —1, (3.7)

which represents a system of nonlinear equations with 2K unknowns. Due to the properties
of Gauss quadrature, this system has a unique solution [53]. Furthermore, the system of 2K
equations results in a system of 2K — 1 equations, as the PDF normalization condition constraint
requires

K
> wgk =1, (3.8)
k=1
which coincides with the preservation of the 0 —th order moment. Further details on the solution
to the system of nonlinear equations (3.7) can be found in Appendix D.

Once the quadrature for the total cross section has been derived, the quadrature for the
partial cross sections can be derived by conserving their moments [53, 23] , which leads to

1 l l
= du = d d * 3.9
Ml7$1g Aug /Aug UI(U) Ut(u) U /Dg,t Ot /Dg,z Ox O Oy W (Utvga:) ( )
K
~ ng,k; Uf‘,g,k Opgk for LIS L4+ K -1, (3.10)
k=1
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which represents a system of K linear equations. Once the probability tables have been retrieved,
the effective cross section at a given dilution can be computed as

Wg,kOz,9,k

Otqk + 00

k= 9,

029(00) = S —. (3.11)
Wy,k

i1 Ot.g.k T 00
By default, CALENDF produces the PTs for the partial reactions grouped into five main MT
numbers:

 Elastic scattering (MT=2)

o Capture (MT=101, sum of MT 102 to 117)

 Fission (MT=18)

o Inelastic scattering (MT=4)

o N,xn, i.e. any process emitting several neutrons, except fission (MT=16,17,24,25,30,37,41,42)

with the sum of the five reactions that yields the total cross section (MT=1) [53]. The accuracy
of the PT depends on the choice of the term K, while the term L represents the only remaining
degree of freedom. Preserving negative moments has been shown to generally yield more accurate
results [37, 54], providing a better numerical representation of the wide fluctuations in the cross
sections [53]. Within CALENDF, the moments to be conserved are determined by default
depending on the order of the table (and, therefore, on the accuracy). For the total cross
section, L takes values between 1 — K and K, while it ranges between (1 — K)/2 and (K —1)/2
for the partial cross sections [53]. In the code, the maximum allowed table order is K = 11.

3.2.2.2 Computation of the moments in the resolved and unresolved ranges

As mentioned above, CALENDF computes the moments by reading the data from the ENDF-6
tape. In the resolved range, calculating the moments is straightforward once the microscopic
cross section has been computed by adding the resonances, reconstructed from the parameters
in the MF=2 file, to the background cross sections read from the MF=3 file. The computation
of the BG cross section is performed by the code using cubic interpolation laws, which provide
a more accurate representation than other codes (such as NJOY, which uses linear laws).

In the RRR, CALENDF reconstructs the resonances using by default the formalism recom-
mended by the evaluator [53]. This is, in some sense, similar to what has already been outlined
for the NJOY module RECONR. Furthermore, CALENDF has an additional feature that al-
lows it to determine the most suitable formalism that best fits the resonance parameters. In
the URR, different formalisms are allowed within the code, but only the SLBW is recommended
in the ENDF-6 format for this interval. Within this range, the ENDF-6 provides mean values
and statistical distributions, including the Wigner distribution [25] for the resonance spacings
and the x? distribution for the partial widths [22, 41]. Although the parameters are energy
averaged, the energy dependence is given by their subdivision into intervals [41]. The code then
computes the moments using a stochastic approach. First, energy values are sampled from the
eigenvalues of a random matrix [53]. Random ladders of resonances are then generated using
the above statistical distributions, and cross sections are derived from the resonances using a
fine energy grid [55, 56]. Finally, x — ¢ Doppler broadening [25] is applied to produce the PTs
at the intended temperature [55, 56]. Once the procedure has been terminated, the code can
evaluate the moments and compute the PT.
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3.2.3 MERGE

The MERGE code [46] receives the NJOY and CALENDF output files (multigroup cross sec-
tions, matrices and PTs). First, the code performs some consistency tests, e.g. it checks that
the outputs contain the same isotopes, temperatures, group structure, etc. For the total and the
five main partial reactions, MERGE then compares the NJOY infinitely diluted group-averaged
cross sections with those produced by CALENDF, using the latter’s subgroup data.

By default, preference is given to the CALENDF values. In fact, the subgroup data can
represent the resonance fluctuations whether the NJOY provides only group-averaged values
(particularly in the URR) [45]. This means that the NJOY multigroup and scattering matrices
are corrected to match CALENDF, and the results are printed in a new GENDF* file. In this
file, the probability tables are printed in the MF=50 section. The NJOY multigroup values are
kept in the file wherever the CALENDEF subgroup data are not present.

However, due to the mathematical approach implemented in CALENDEF, it can occur that
some of the subgroup data are negative, and they are included in the final library. This is not an
issue, as long as the multigroup cross sections remain positive. However, in some cases, it can
occur that negative cross sections are produced for some groups, particularly when the shape of
the partial cross section differs significantly from the total cross section [45]. For these specific
groups, the NJOY values are used as a reference instead of the CALENDF ones, and the PTs
are scaled accordingly and printed in the MF=50 file [46, 45, 44].

3.24 GECCO

Although the MERGE code carries out a series of consistency tests before writing the data in
the GENDF*, the results of the comparison are limited to cross-checking the CALENDF and
NJOY values. The GECCO code [47] performs additional consistency checks, such as ensuring
that the main partial reactions sum up the total and that the response functions sum to the
main partial reaction [47, 57, 58]. For instance, this applies to the capture cross section, which is
obtained from several other response functions, such as (n,7), (n,a), (n,p) and so on. The code
also verifies that the group-averaged fission spectrum sums to unity and that the inelastic levels
sum to the total inelastic, among other checks [47, 58]. Then, corrective factors are applied to
the cross sections.

Finally, GECCO inverts the energy grid establishing the standard ordering of the energy
groups, and prints the data in the ECCOLIB format.

3.3 OpenMC library production workflow

The previous sections provided a basic overview of the processing workflow that, starting from
an ENDF-6 tape, produces a NDL for the ECCO code, with multigroup data in a fine struc-
ture (1968 groups) and subgroup data for the resonant nuclides. This procedure was applied
to generate the JEFF-3.1 and JEFF-3.1.1 ECCO libraries, which are included in the ERANOS
distribution, as well as the ENDF /B-VIIL.0 ECCOLIB, which results from an independent eval-
uation. The focus of the second part of this work will be the assessment of the self-shielding
capabilities of the latter library, by comparing the calculation results with a MC reference pro-
vided by the OpenMC code [39, 40].

Similarly to the ECCO code, OpenMC requires the ENDF-6 raw data to be processed into
a format that the MC code can handle. The raw data are processed in the ACE format using
NJOY and subsequently further elaborated and stored in the HDF5 format [59, 60]. The final
library will contain the PENDF data that have been processed at different temperatures. This
is one of the main advantages of using a MC code, as it avoids the approximations introduced
by the multigroup method.
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The ACE files, produced using NJOY, contain the cross sections interpolated on common
energy grids, probability tables in the URR, probability and cumulative density functions for
energy-angle distributions, etc. [61]. In addition to the RECONR, BROADR, and UNRESR
modules, which have been previously described for the ECCOLIB generation, additional modules
are also used: namely HEATR, GASPR, and PURR [22]. As the latter is the most relevant in
the context of this thesis, its functionalities are briefly described below.

PURR is the module used in place of UNRESR for the treatment of data in the unresolved
range, where the Bondarenko method employed in the latter module is not suitable for energy-
continuous MC methods [22]. At first, the PURR module generates ladder of resonances starting
from the resonance data in the MF=2 file, analogously to what is done in the CALENDF code.
The width and spacing of the resonances are sampled from the statistical distributions, and the
SLBW model is used to reconstruct the cross sections. Finally, PURR applies the x — ¢ model
to produce Doppler-broadened cross sections at the intended temperature.

To compute PTs, PURR applies the Levitt method [62], which significantly reduces the
storage resource requirement for MC applications. This method is based on the NR assumption
that the resonances are so close together that a scattered neutron can randomly enter any
resonance without this being correlated with the resonances at higher energies [62, 22]. As
shown in Figure 3.5, the total cross section is divided into several monotonically increasing
discrete bands. For each resonance ladder, the cross section points in each band are counted.
Then, the average cross section for each band is computed, and the associated discrete probability
is obtained by taking the ratio of the band entries to the total number of cross section values

[62]. This process is repeated, generating several ladders of resonances, until convergence is
reached [22].
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Figure 8.5: In the Levitt method, the total cross section is discretized into a number of intervals
called bands. For each band, the number of cross section points are counted, allowing to compute
the average value and the associated discrete probability. The figure was taken from [62].

The values of the partial reactions are associated with each total cross section point. There-
fore, probability tables for these partial reactions can be generated by computing the average
values of the partial cross sections associated with the total cross section in each discrete band.
However, it should be noted that this process only generates monotonically increasing PTs for
the total cross section.
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Within OpenMC, the PTs are then used for the cross section sampling [63]. Whenever a
neutron has an energy value F within the URR, the code determines two neighbouring values

E; and F;;q. Afterward, a band j is sampled from the cumulative distribution of the PT and
the cross section is computed by linear interpolation, i.e.

FE — E;
o(E)=0ij+ ﬁ(azﬂrl,j —0ij), (3.12)

where o5 ; is the average cross section in the band j of the PT at energy E;.

In conclusion, Figure 3.6 shows a visual representation of the PTs produced for Pu-239
using NJOY and a JEFF-3.1 NDL. Together with the background cross sections, these form the
data set used by the OpenMC code in the URR.
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Figure 8.6: Graphic visualization of the PTs produced by PURR for Pu-239 in a JEFF-3.1 NDL.
The PTs are plotted with OpenMC' starting from the HDF-5 files.
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Chapter 4

Sensitivity analysis of an LFR core

The primary function of the ECCO cell code is to prepare self-shielded, condensed, and ho-
mogenised cross sections for subsequent core calculations. As this thesis aims to numerically
validate the self-shielding model, in Chapter 5 the results of ECCO calculations will be com-
pared with those of the Monte Carlo reference. However, since an LFR cell is composed of
many nuclides, comparing the cross sections of each of them with those calculated using the MC
reference would require excessive time and computational resources.

Therefore, the first-order perturbation theory described in Section 1.5 will be applied to
derive Sensitivity Coefficients (SCs) for a representative LFR case, namely the Nuclear Energy
Agency (NEA) lead-cooled fast reactor benchmark, which is based on the ALFRED reactor core
design [12, 64, 65, 66]. To achieve this, the ENDF/B-VIIL.0 ECCO library will be used alongside
the tools provided by ERANOS. Within the code, the perturbation module offers the possibility
of breaking down the sensitivity coefficients into the contribution of each type of partial cross
section for each nuclide, as well as for specific regions and energy groups [30]. These sensitivity
coefficients will determine which nuclides and their specific reactions have the greatest impact
on a selected variable of interest. Therefore, the SCs will enable a smaller set of isotopes to be
selected for monitoring during the numerical validation of the ECCO cell code using the same
ENDF/B-VIIIL.0 NDL.

The variables of interest are usually selected at the beginning of any validation work. These
are the quantities influenced by the physical phenomena under consideration [6]. As this thesis
aims to numerically validate the ECCO self-shielding module, the variables of interest selected
were the effective multiplication factor and the Doppler reactivity change!. The former is one of
the most important parameters in neutronic analysis, and it is clearly impacted by the group-
averaged cross sections and thus by self-shielding effects. The latter quantifies the reactivity
change between two states at different temperatures. As this is related to the broadening of the
cross sections resonances, it is expected to be significantly influenced by self-shielding effects.

4.1 ERANOS setup

Due to ERANOS current limitations, it is not possible to perform sensitivity analysis using
the 3D nodal transport solver implemented in the code, namely VARIANT. Instead, the user
must employ finite difference flux solvers, based on diffusion or transport theory [29, 30]. In the
framework of this thesis, the transport theory will be applied with the BISTRO Sy solver [67,
68], as this avoids the issue of evaluating the perturbation of the material-dependent diffusion
coefficient!, i.e. 6D [69], and enables retrieving more accurate results.

The BISTRO module is a finite difference Sy solver for 2D geometries, i.e. X-Y and
R-Z. Given the significant variation in materials along the axial direction, the R-Z solver was se-

!Gérald Rimpault, private communication
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lected. Therefore, the hexagonal-lattice model of the reactor core was converted to a cylindrical-
equivalent model. For details of the reactor geometry design, the reader can refer to the bench-
mark specifications provided by NEA [12]. Figure 4.1 shows the results of the cylindrisation pro-
cess, carried out with the precise objective of conserving volumes, and therefore masses. Along
the radial direction, the hexagonal lattice has been replaced by a series of regions composed of
materials from the same sub-assemblies, but with a cylindrical geometry. The alternation of the
materials was designed with the aim of conserving as much as possible the distribution of the
sub-assemblies in the hexagonal lattice. The cylindrical R-Z description of the core was then
replicated within ERANOS.

56 Fuel Assemblies inner region
78 Fuel Assemblies outer region
12 Control Rods

4 Safety Devices

1+102 Dummy Assemblies

60 Barrel

156 Downcomer

(a) Hezagonal distribution of the sub-assemblies in the 3D NEA LFR benchmark model. The figure was
adapted from [12].

(b) Cylindrisation of the 3D model in the radial direction.

Figure 4.1: Cylindrisation of the NEA LFR benchmark core. While the axial composition has
remained intact, the hexagonal lattice has been converted into a series of concentric cylinders in
the radial direction.

Figure 4.2 shows the axial description of the sub-assemblies in the core. These are made
up of different components, each of which presents a different material composition. This distri-
bution remains unchanged in the R-Z geometry. The control rods were simulated for Beginning
of Cycle (BoC) conditions, while the shutdown rods were modelled as fully retracted. Each
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medium was simulated separately? in ECCO, according to the NEA benchmark specifications
(geometry, composition, temperature, etc. at hot full power conditions and BoL) [12], resulting
in the production of cell-homogenised cross sections, condensed into the ECCO 33 groups struc-
ture. For the derivation of the SCs for the Doppler reactivity change, a temperature increase
of 300 K in the MOX region was applied in both FINN and FOUT (internal and external fuel
assemblies, respectively).
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Figure 4.2: Axial distribution of the materials composing the sub-assemblies in the 3D NEA LFR
benchmark model, at BoC' conditions with the shutdown rods fully retracted. Each of the section
that axially compose one assembly represents a different medium. The names of the media are
the ones provided in the benchmark specifications. The figure was adapted from [12].

When deriving the SCs, it should be noted that the impact of each nuclide will depend not
only on its cross sections but also on its relative concentration. Figure 4.3, for example, shows
the relative isotopic concentrations of the internal fuel sub-assembly FINN. This heterogeneous
medium is made of three materials: the MOX material (fuel), the AIM1 (structural material),
and the lead coolant.

Listing 4.1 shows the settings adopted for the BISTRO R-Z solver. This solver uses the same
33-group structure that will be employed to derive the SCs. The integral convergence criterion
(on the multiplication factor) was set to 1 pcm, while the local convergence criterion was set to
10~ for most groups. A milder convergence criterion was set for a few groups in the epithermal
region to improve the convergence of the ERANOS solver’s transport iterations. However, as it
will be seen below, the impact of low-energy groups in LFR applications is minimal. The 1073
criterion was set for the inner iterations, which account for up-scattering phenomena.

2Credits to Matteo Falabino (newcleo) for the ECCO simulations of the NEA LFR benchmark cells.
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Figure 4.3: The internal fuel medium (FINN) has been conceptually subdivided into three macro
materials: MOX, AIM1 and coolant. The isotopic composition of each material is reported in
relative terms.

FD_DIFFUSION_MATRIX_COEFFICIENT -> COEFF_SET
GEOMETRY (GEO_RZ) ! EDL storing geometry data
MACRO (MACRO_SET) ! EDL storing (macroscopic) cross section data
HORIZONTAL_MESH 1 1
TRANSPORT; ! Option for tramnsport

FD_DIFFUSION_METHOD -> METHOD_SET
COEFFICIENT (COEFF_SET)
PLANE SUCCESSIVE_LINE_OVER_RELAXATION CALCULATION ;

DIRECTION_COSINE_AND_WEIGHT_CREATION ->PESI
SECTION_SET ’S4_SYMETRIQUE’ ;

RECTANGULAR_SN_TRANSPORT_ITERATION -> FLUX_TR
ANGULAR_FLUX -> FLUX_ANG_TR

METHOD (METHOD_SET)
COEFFICIENT (COEFF_SET)
DIRECTION (PESI)
AREA_OF_INTEREST 1 46 28 48 ! RZ Coordinates of fuel region
DIFFERENCING_SCHEME DIAMANT_TETA 0.9
CALCULATIONAL_PARAMETER

OUTER_ITERATION

MAXIMUM_NUMBER 200
INTEGRAL_CONVERGENCE 1.E-05
LOCAL_CONVERGENCE REP(25,1.E-04) 5.E-03 REP(3,1.E-03) REP(4,1.E-04)
TCHEBYCHEFF 4
INNER_ITERATION
MAXIMUM_NUMBER 30
LOCAL_CONVERGENCE 1.E-03

K_EFFECTIVE -> K_EFF_DIR_REF

ACCELERATION DIFFUSION ITERATION_DIFFUSION 20
SPECTRUM VARIABLE

CALCULATION DIRECT

MOMENT_STORAGE YES ;

Listing 4.1: Setting of the Sy BISTRO R-Z solver in ERANOS
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4.2. Sensitivity analysis results for the multiplication factor

4.2 Sensitivity analysis results for the multiplication factor

As described above, ERANOS breaks down the sensitivity coefficients according to nuclide,
reaction, energy group, and spatial region. Due to the linearity of the SCs, which allows their
summation, the sensitivity analysis will be approached by looking at the global coefficients and
then progressively refining the description by looking at the single constitutive parts. This
procedure is described in the following.

The SA was performed using the ERANOS tools distinguishing between the contributions
coming from all nuclides present in the LFR benchmark core. First, the SCs for the effective
multiplication factor for the entire reactor were assessed, using first-order Standard Perturbation
Theory (SPT) as described in Section 1.5. The SC is given by the sum of the contributions from
each region. For instance, the impact of the perturbed U-238 cross sections on the effective
multiplication factor is given by the sum of the contributions from all media containing U-238,
i.e. the internal and external fuel assemblies (FINN and FOUT in Figures 4.1 and 4.2). The
SCs were then summed over the contribution of each energy group. The obtained SCs for each
partial reaction (capture, fission, elastic and inelastic scattering, and (n,xn)) were then summed
in absolute value. The figure of merit that is obtained, i.e.

Sn=Y_D_> S(k.0rgan)| (4.1)
T g T

is not strictly a sensitivity coefficient. However, the advantage is that it allows the impact of each
nuclide to be ranked, avoiding compensations between large sensitivity coefficients of opposite
sign. This enables the identification of the nuclides with the greatest influence on the k.y.

Figure 4.4 shows the results of S, for a fraction of nuclides that account for 98.7 % of the
total impact. As expected, the largest contribution comes from the nuclides that compose the
MOX fuel (heavy fissile isotopes and oxygen). Next, a significant contribution is made by Fe-56
and Pb-208. These are the two most abundant nuclides in the cladding and coolant materials,
respectively (as shown in Figure 4.3). However, it can be concluded that these two materials
have a much lower impact on the multiplication factor than the fuel does. B-10, which is present
mainly in the control rods, also impacts the multiplication factor.
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Figure 4.4: NEA LFR benchmark core. Ranking of the nuclides’ contributions to the effective
multiplication factor. The ranking is based on the values obtained by summing the energy-
integrated SCs of the partial reactions in absolute values, for the entire core.

However, the same nuclide can be present at different concentrations in different regions of
the domain, having a different impact on the effective multiplication factor depending on the
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Chapter 4. Sensitivity analysis of an LFR core

location. Therefore, the analysis was further detailed by looking at the two different fuel media,
namely FINN and FOUT. Figure 4.5 shows the FOM §,, broken down by medium and nuclide,
denoted here with S,,,. The internal fuel, where the neutron flux is at its maximum, has a
greater impact than the external fuel. Furthermore, despite having half the concentration of
Pb-208, Pb-206 has a greater impact than the latter within the internal fuel. This can possibly
be attributed to the larger capture and inelastic cross sections of Pb-206.
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Figure 4.5: NEA LFR benchmark core. Ranking of the nuclides’ contributions to the effective
multiplication factor, subdivided between the contributions of FINN and FOUT. The SCs are
energy-integrated.

Once the ranking of the most important nuclides was established, the impact of each reac-
tion on the effective multiplication factor could be determined. This time, the SCs are reported
with their actual sign in order to assess the different impacts of each reaction. Figure 4.6 shows
the SCs for the three macro materials, with a focus on the nuclides that have the greatest impact
within each of them, as determined by the previous ranking. Once again, the dominant role
played by Pu-239 and U-238 is evident. In particular, the fission reaction of the former has the
opposite sign to the capture reaction of the latter. This is to be expected, as an increase in the
fission cross section of Pu-239 would result in an increase in the number of neutrons produced,
and thus an increase in the multiplication factor. Conversely, an increase in the capture cross
section of U-238 would determine a reduction in the neutron population, and thus a decrease in
the multiplication factor.

Furthermore, for the lead isotopes, particularly Pb-207 and Pb-206, the SA results in non-
negligible SCs of opposite signs. This supports the introduction of the FOM S,,, obtained by
summing the absolute values of the SCs, in order to perform the previous ranking. Indeed, if
SCs for the lead isotopes had been summed over all reactions with their actual signs, opposite
contributions would have cancelled each other out, resulting in overall little impact of the nu-
clide, although these were non-negligible in absolute value. Instead, using this methodology to
approach the ranking allows the importance of each nuclide to be appreciated, as a variation
in one of the partial reaction cross sections would have a significant impact on the multiplica-
tion factor. Looking at the graphs, it can also be concluded that the (n,xn) reactions do not
significantly contribute to the multiplication factor for any of the nuclides in the three materials.

The analysis was further refined by accounting for the energy dependence of the SCs.
Figure 4.7 shows the variation in energy of SCs for the most important nuclides (for each
material) and reactions. In the same graphs, the URR bounds (on the 33 groups structure) for
U-238 and Pu-239 are also reported. In Appendix E, the values of the SCs for some of the most
important nuclides are reported.
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Figure 4.6: NEA LFR benchmark core. Energy-integrated SCs for the effective multiplication
factor, broken down according to the five main partial reactions for the most important nuclides
in FINN and FOUT. The SCs are ulteriorly divided according to the three macro materials.

4.3 Sensitivity analysis results for the Doppler reactivity change

Similarly to what was done in the previous section, the SCs were derived using first-order
Equivalent Generalised Perturbation Theory (EGPT) for the Doppler reactivity change (see
Section 1.5). This term refers to the change in the system’s reactivity following an increase or
a decrease in fuel temperature, which causes the resonances of the cross sections to broaden or
to narrow, respectively, and thereby altering the probability of a neutron interacting with the
medium. For the purposes of this work, the reactivity change following a 300 K temperature
increase (from 1200 K to 1500 K) in the MOX of FINN and FOUT was analysed. As outlined in
Section 1.5, the SCs are computed in ERANOS by a linear combination of those derived using
the SPT for the reference (1200 K) and modified (1500 K) systems.
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Figure 4.7: NEA LFR benchmark core. Energy dependence of the SCs for the effective multipli-
cation factor, expressed using the ECCO 33 energy groups structure. The URR bounds of U-238
(yellow) and Pu-239 (green) are reported in dashed lines.

Figure 4.8 shows the FOM §,, computed for the entire core using the SCs of the Doppler
reactivity change in absolute values. Unlike in the previous ranking, where the impact of O-16
was smaller than that of the fuel isotopes (see Figures 4.4 and 4.5), it can be observed that this
nuclide plays a predominant role in the case of the Doppler reactivity change, having a greater
impact than U-238. This can be attributed to the large concentration of oxygen in the MOX
fuel and the non-negligible presence of O-16 resonances in the high-energy region. A significant
contribution is also given by the isotopes of the cladding, particularly Fe-56 and Ni-58. The
remaining contribution is mainly provided by the lead isotopes of the coolant.
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Figure 4.8: NEA LFR benchmark core. Ranking of the nuclides contribution to the Doppler
reactivity change. The ranking is made on the basis of the values obtained by summing the
energy-integrated SCs of the partial reactions in absolute values, for the entire core.

The FOM §,, was then broken down according to the contributions of the FINN and FOUT
fuel assemblies, as shown in figure 4.9. With respect to the SA for the effective multiplication
factor, the results revealed a more pronounced variation between the two fuel assemblies. This
is particularly evident for O-16, Fe-56, and the lead isotopes, for which the contribution of
the inner assemblies is approximately twice that of the outer assemblies. For lead isotopes in
particular, the chart shows that the contribution to the reactor is almost entirely provided by the
inner assemblies. Given that the increase in temperature is only imposed on the fuel isotopes,
for nuclides outside the MOX the SCs are mainly influenced by the different shapes of the direct
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4.3. Sensitivity analysis results for the Doppler reactivity change

and adjoint fluxes, between the reference and modified states (see the EGPT formulation in
Section 1.5). Thus the SCs could be influenced by more pronounced variations of the neutron
flux in the inner regions, than in the outer regions.
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Figure 4.9: NEA LFR benchamrk core. Ranking of the nuclides impact to the Doppler reactivity
change, with a subdivision between the contributions of FINN and FOUT. The SCs are energy-
integrated.

As it was done for the multiplication factor, Figure 4.10 shows the SCs for the Doppler
reactivity change, broken down according to the five main partial reactions. These are shown
for the most important isotopes in the three materials, as determined by the previous ranking.
Looking at the fuel isotopes, it can be seen once again that the predominant effect comes from
fission and capture reactions. However, this time, the elastic scattering of O-16 also plays a
predominant role, accounting for the total contribution observed in the previous ranking. As
the neutron flux in the inner assemblies shifts towards higher energies, the predominant effect
of the scattering (both elastic and inelastic) of O-16 and the lead isotopes may explain the
greater impact of FINN than that of FOUT. Indeed, these lighter isotopes tend to exhibit
resonances at higher energies, where the greater neutron flux of FINN could enhance neutron
scattering interactions. Additionally, since they affect the transport of neutrons towards lower-
energy regions where fuel isotopes’ capture resonances are located, the scattering reactions of
the structural and coolant materials can be expected to influence the Doppler effect [70].

Moreover, the opposite sign of the SCs for the capture reaction can be seen, which are
negative for the plutonium isotopes and U-235, and positive for U-238. To better understand the
consequence of opposite coefficients’ signs, consider the perturbation on the Doppler reactivity
change computed with the sensitivity coefficient, following a 1% relative variation in the capture
cross section, which reads

6(Apr) = S(Apr,0c)Apr, (4.2)

where App is the difference in reactivity between the states at different temperatures, which is
negative for a temperature increase, and S(Apr, o.) is the sensitivity coefficient for the Doppler
reactivity change (see Section 1.5). Then, from the moment that

0(Apr) = Ap' — Ap = (py — py) — (p2 — p1), (4.3)

where Ap’ is the change in reactivity in the perturbed states, it follows

(y = p1) < (p2 = p1) for S(Apr,0c) >0 (4.4)

or, alternatively,
(Py = p1) > (p2 = p1) for S(Apr,oc) <O0. (4.5)
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Figure 4.10: NEA LFR benchmark core. FEnergy-integrated SCs for the Doppler reactivity
change, broken down according to the five main reactions for the most important nuclides of
FINN and FOUT. The SCs are ulteriorly divided according to the three macro materials.

Since the reactivity decreases with temperature, both terms on each side are negative. Therefore,
it follows that in the case of U-238 (which has an overall positive SC), the magnitude of the
perturbed Doppler reactivity change between the reference and modified states will be greater
than between the non-perturbed states, as from expression (4.4) is determined

|05 = Pi| > |p2 — pal. (4.6)

This is a desirable effect, meaning that an increment in the concentration of U-238 increases
the negative reactivity span that follows a positive variation in temperature. This improves the
control of power excursions in nuclear reactors. When power, and thus temperature, increases,
the negative reactivity feedback is stronger and helps to restore the original configuration.
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4.3. Sensitivity analysis results for the Doppler reactivity change

From expression (4.5) it follows instead that

105 = Pi| < lp2 — pal, (4.7)

and therefore the magnitude of the perturbed Doppler reactivity change decreases with an in-
crease in the concentration of Pu-239 or U-235, since their coefficients are overall negative. This
is an undesirable effect, as greater negative reactivity variations are desirable for controlling
power excursions. In fact, the reduction in the magnitude of the Doppler coefficient with in-
creasing U-235 or MOX fuel enrichment has been the subject of several studies [71, 72, 73].
In conclusion, the sensitivity coefficients for the capture reaction of U-238 and Pu-239 can be
expected to have the opposite sign for the LFR benchmark core [74]. In the referenced work,
the EGPT formulation has the opposite sign to that in Eq. (1.81). Therefore, the SCs also have
the opposite sign.

Figure 4.11 shows the energy dependence of SCs for the Doppler reactivity change, evaluated
for the entire reactor. For U-238, the capture SCs have a significant impact within the RRR
and URR of U-238. This is to be expected, given that the Doppler effect is mainly associated
with the broadening of capture cross sections resonances, which are absent at higher energies.
For Pu-239, however, fission SCs also have a strong impact on the Doppler reactivity change in
the continuum range. As the cross sections outside the resonance intervals are less affected by
changes in temperature, these SCs are likely to be the result of indirect effects.

According to the EGPT formulation, these indirect effects arise from variations in the direct
and adjoint neutron fluxes between the reference and modified states (as already discussed for
the structural and coolant materials). These variations in the neutron flux at higher energies
could result from variations in the elastic scattering resonances of O-16, which was shown to
have a significant impact on the Doppler reactivity change. This nuclide is indeed affected by the
imposed temperature variation. Furthermore, variations in the Pu-239 fission cross section can
influence the transport of neutrons from high-energy regions to regions where capture resonances
are located [70]. Similar trends of the Pu-239 SCs for the Doppler reactivity change outside the
resonance intervals can be observed in the study by Fiorito et al. [75]. Furthermore, the SCs
for the Doppler reactivity change can be significantly impacted by the imposed temperature
variation [76].
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Figure 4.11: NEA LFR benchmark core. Energy dependence of the SCs for the Doppler reactivity
change, expressed using the ECCO 33 energy groups structure. The URR bounds of U-238
(yellow) and Pu-239 (green) are reported.
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Chapter 4. Sensitivity analysis of an LFR core

4.4 Comparison against Monte Carlo results

In addition to deterministic tools, stochastic MC codes can also be used to derive sensitivity
coefficients [74]. The main drawback of deriving SCs with MC codes is that the reactions
with a very low impact on the integral parameters are associated with very high statistical
uncertainty. However, the advantage is that SCs can be derived for an exact 3D description of
the core geometry. Within the newcleo C&M team, sensitivity analyses have been performed
on different reactor cores using the Serpent2 [77] MC code 3.

Therefore, the ERANOS SCs have been compared with those produced by MC simulations.
For Pu-239, figure 4.12 shows a comparison of the effective multiplication factor SCs of the partial
reactions and v, i.e. the average number of neutrons produced by fission.

The relative errors of ERANOS with respect to Serpent2 were defined as

ScERANOS _ SCSerpent

Rel. Err. = . (4.8)
SCSerpent
Eranos CAPTURE —— Eranos INELASTIC
0.07 Serpent MT=102 10 ---- Serpent MT=4 *1o0
2 0.06{ — Eranos FISSION —— Eranos v
€ ---- Serpent MT=18 *1o0 ---- Serpentv*lo
£ 0.05] — Eranos ELASTIC

---- Serpent MT=2 *10

102 103 104 10° 106 107
Energy (eV)

(a) Sensitivity coefficients
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(b) Relative errors

Figure 4.12: NEA LFR benchmark core. Comparison between the effective multiplication factor
SCs produced by FERANOS and Serpent2 for Pu-239, using the 33 group structure for the entire
core. Above, the SCs are reported for both the codes and compared for the main partial reactions
and v. Below, the relative errors are reported with the relative standard deviation.

3Credits to Darian Andreas Olivares (newcleo) for the Serpent2 simulations of the NEA LFR benchmark core.
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4.4. Comparison against Monte Carlo results

The relative errors of the elastic and inelastic reactions are not reported, since the statis-
tical noise does not permit comparison. The same assessment was made for U-238, shown in
figure 4.13. It can be noticed that, at lower energies, the relative errors are of the same order
of magnitude as the relative standard deviation, preventing any meaningful comparison in this
range. Despite this, in the energy range where they are comparable, the SCs are generally in
agreement. Even though the errors are not negligible, they can be considered acceptable given
the deterministic approximations within ERANOS and the different geometries (R-Z vs. 3D).
In Appendix E, the comparison for other nuclides is shown.
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Figure 4.13: NEA LFR benchmark core. Comparison between the effective multiplication factor
SCs produced by ERANOS and Serpent2 for U-238, using the 33 group structure. For v and
the inelastic scattering, the very low statistics at low energies does not produce any output in
Serpent2. In this range, the relative error is undefined. The comparison in made between the
SCs derived for the entire core.

Then, an attempt was made to produce SCs for the Doppler reactivity change using
Serpent2, applying Eq. (1.82) and the methodology outlined in Section 1.5.3.2. Figure 4.14
shows the results of a comparison between ERANOS and Serpent2 for Pu-239 and U-238. De-
spite the low statistical uncertainty of the SCs for the effective multiplication factor, the differ-
ence between the SCs for a 300 K temperature increase is considerably small and of the same
order of magnitude as the standard deviation of the SCs for the multiplication factor. Conse-
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Chapter 4. Sensitivity analysis of an LFR core

quently, as it can be seen in the figure, the SCs for the Doppler reactivity change are associated
with large statistical uncertainties, preventing any meaningful conclusion about the validity of
these results. However, as these SCs are the result of a purely algebraic manipulation of the SCs
for the effective multiplication factor, for which a reasonable accuracy was determined at both
temperatures, the ERANOS results can be considered valid. Further support for the reliability
of the ERANOS SCs could be obtained by comparing larger temperature increases, which would
allow a greater variation in the coefficients to be determined, thus leading to smaller statistical
uncertainties.
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Figure 4.14: NEA LFR benchmark core. Comparison between the U-238 and Pu-239 SCs for the
Doppler reactivity change produced by ERANOS and Serpent2, using the EGPT formulation.

4.5 Impact assessment of the first-order approximation

As described in the opening sections of this chapter, the SCs for both the effective multiplica-
tion factor and the Doppler reactivity change were derived using first-order approximated SPT
and EGPT. This approach is based on the assumption that the perturbations are computed
following small variations in the local parameters. In the following chapters, the SCs that have
been derived will be used to transpose the discrepancies in the cross sections, evaluated with
deterministic and stochastic codes, into discrepancies in integral parameters. However, these
discrepancies may not be small. Therefore, the error associated with the SCs due to the use of
the first-order approximation was assessed.

For this reason a second core calculation using the BISTRO solver was performed. In
this calculation, the media of the inner and outer fuel assemblies were originated with the
Pu-239 atomic density increased by 1%. This second system is here denoted as perturbed
state. The relative variation in the effective multiplication factor between the two states Ak/k
was computed and reported in table 4.1. This value was then compared with dk/k, obtained
by multiplying the SC for k.sy of Pu-239 for the entire core and all the reactions and energy
groups, by a 1% relative variation of the cross section. Increasing the atomic density by 1% is,
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4.6. Conclusions about the sensitivity analysis

in fact, equivalent to increasing by the same amount the microscopic total cross section over the
entire energy range. With this approach, it was possible to compare a value obtained using the
first-order approximated SPT (dk/k), with a value obtained by a direct calculation (Ak/k).

The same approach was adopted to assess the impact of the first-order approximation on
the EGPT. This time, the reference and modified (with a +300 K fuel temperature) states were
perturbed once again with a 1% increase in the Pu-239 atomic density. The relative variation
A(Ap)/Ap was compared with §(Ap)/Ap, which was obtained from the SC for the Doppler
reactivity change. The results are reported in table 4.1. The results in both cases are similar,
with a discrepancy between the direct and the approximated calculations of less than 10%.

Assessment for k. Assessment for Apr
Reference Perturbed Reference Modified Perturbed Modified &
Perturbed
(+1% Npy_239) (+300K)  (+1% Npy_939)  (+300K)
(+1% Npy_239)
k 1.02988 1.03403 k 1.02988 1.02846 1.03403 1.03261
Ak 415 [pcm] Ap —134.36 [pcm] —132.73 [pem]
A(A
ok 403 [pem] %pp) —1213 [pem)
Spu_239 0.44485 [] SPu_239 —1.33137 []
ok i(A
— 445 [pcm] (4p) —1331 [pcm]
k Ap
Rel. Diff. —9.6 [%] Rel. Diff. —9.8 [%]

Table 4.1: NEA LFR benchmark core. Results of the impact assessment of the first-order ap-
proxzimation, on both the effective multiplication factor and the Doppler reactivity change. The
values obtained by direct calculations are compared with those produced by first-order approxi-
mated SPT and EGPT, multiplying the SCs of Pu-239 for the entire core and all reactions and
energy groups, by a 1% relative variation in the cross section.

4.6 Conclusions about the sensitivity analysis

The sensitivity analysis was performed on the NEA lead-cooled fast reactor benchmark [12],
using the ERANOS tools. This analysis involves computing sensitivity coefficients, which are
defined as the relative variation in an integral parameter resulting from a relative variation in
the nuclear data. This enables determining which nuclides and their reactions are the most
impactful on a representative LFR system. Due to code limitations, the BISTRO Sy solver was
used to derive the SCs for a cylindrical equivalent geometry of the reactor core. The sensitivity
analysis was performed for the effective multiplication factor and the Doppler reactivity change,
using fist-order SPT and EGPT formulations. The latter parameter was examined by increasing
the temperature of the MOX fuel by 300 K, in both the internal and external fuel assemblies.

The ERANOS tools enable the SCs to be broken down by region, nuclide, reaction, and
group, exploiting the linearity of these coefficients. The absolute values of the SCs for the entire
core were summed, and then the analysis was refined by distinguishing between contributions
from the internal and external fuel assemblies. This allowed the nuclides to be ranked according
to their impact on lead fast reactor applications. A further refinement was performed by assessing
the SCs for each nuclide and reaction, with their actual sign.

This revealed the predominant roles of U-238 capture and Pu-239 fission. Compared to other
nuclides, these reactions have the greatest impact on both the effective multiplication factor and
Doppler reactivity change. Other fuel isotopes have been shown to significantly influence LFR
systems. For example, the elastic scattering reaction of O-16 substantially impacts the Doppler
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effect, and Pu-241 fissions significantly influence the multiplication factor. U-235 was found
to have very little impact on either parameter, which was attributed to the nuclide’s very low
concentration in the fuel material of the numerical benchmark. Nevertheless, given that it is
widely recognised as one of most important nuclides in nuclear reactors, this nuclide could be
of great interest for other applications.

Regarding the coolant isotopes, the elastic scattering is more predominant, with Pb-208
generally being the most influent nuclide. In fact, this isotope constitutes over half of the
coolant in the fuel assemblies. Similarly, the elastic scattering reaction of Fe-56 was found to
be the most noteworthy reaction for the cladding material. Finally, the analysis was refined
by assessing the SCs for the most significant nuclides and reactions using the ECCO 33 energy
group structure.

The accuracy of the SCs was then assessed by comparing them with Serpent2 simulation
results available internally to newcleo. In fact, Monte Carlo calculations can be exploited to
perform sensitivity analyses with an accurate description of the reactor geometry. However,
the main drawback is that SCs for reactions with minimal influence are associated with large
statistical uncertainty. In fact, it was only possible to draw meaningful conclusions for the
most significant reactions of some of the fuel isotopes. For U-238 and Pu-239, for example,
good agreement was generally found with Monte Carlo simulations of SCs for the effective
multiplication factor. Given the large approximation introduced by the cylindrical description
of the reactor core in ERANOS, the accuracy of the SCs for the multiplication factor was deemed
satisfactory for the purposes of this thesis. Instead, according to the EGPT formulation, the
SCs for the Doppler reactivity change result from the difference in the SCs for the multiplication
factor between two states, and thus a 300 K variation in the MOX fuel is too small to assess them
with an acceptable statistical uncertainty. Nevertheless, since the SCs for the multiplication
factor are reasonably accurate at both temperatures, those for the Doppler reactivity change can
also be considered to be sufficiently reliable, as they result from a purely algebraic manipulation.

Finally, the impact of using a first-order approximation was assessed. This was achieved
by comparing the SCs with the results of a direct calculation. The direct calculation involved
increasing by 1% the concentration of Pu-239 in the MOX fuel and then computing the variation
in the effective multiplication factor and Doppler reactivity change. The comparison revealed
that using a first-order approximation offsets the results obtained by the SCs from those obtained
by direct calculation by approximately 10%. For the purposes of this study, this difference was
deemed acceptable.
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Chapter 5

Validation of the ECCO self-shielding
model with the ENDF /B-VIII.O library

The ECCO cell code, together with the ENDF /B-VIII.0 based ECCO library used within the
newcleo team, aims to provide an accurate treatment of self-shielding effects. Since this study
focusses on analysing the performance of the ECCO self-shielding module, described in Section
2.2.1.2, the main challenge lies in isolating the errors generated by the deterministic approxi-
mations of the code from those introduced during the manipulation of the ENDF-6 data in the
ECCOLIB production process. Also, to separate the error related to the ECCO self-shielding
module from the error sources due to other models, e.g. cross section homogenisation and con-
densation, leakage model, Doppler broadening and so forth, the approach adopted by P. Jacquet
in his Ph.D. thesis [9] will be initially followed. Jaquet followed this approach for the numerical
validation of the ECCO cell code for the analysis of Sodium Fast Reactors (SFR).

Consistently with his approach, both spatially homogeneous and heterogeneous systems
will be considered. As described in the second chapter of this work, the computation of the
self-shielded cross section differs, in fact, in the two cases. Moreover, the heterogeneous case
poses the challenge of distinguishing errors related to the self-shielding model from those arising
from the use of collision probabilities. In the following sections, a first attempt will be made to
replicate the results obtained by Jacqet for SFR problems, in order to verify the consistency of
the workflow. Then, a case representative of an LFR system will be addressed.

5.1 Validation of self-shielding module in the homogeneous medium

To assess the self-shielding performance of ECCO, using the ENDF/B-VIII.0 ECCOLIB, the
reference route described in Chapter 2 was not followed. Indeed, this route is intended for
the homogenisation of heterogeneous cross sections, which is unnecessary in this case since the
medium is already homogeneous. Instead, only two steps were adopted within the code: the
first using a broad structure (33 or 172 groups) and the second using the fine 1968 energy group
structure. The cross sections were then condensed from the 1968 energy mesh to a broader
group structure. Listing 5.1 provides a description of the two steps within the code. In both
steps, the buckling was set equal to zero. This enabled an infinite medium to be simulated,
thereby avoiding any errors originating from the leakage model.

To avoid other error sources, additional simplifications were made. In line with Jacquet,
the cell temperature was set to 293 K, which is one of the temperatures at which nuclear data
are stored in the ECCOLIB. This choice avoids the need for cross-section interpolation between
neighbouring temperatures. Finally, it should be noted that the resonances are narrower at
lower temperatures. This should lead to a more pronounced self-shielding effect, and thus the
numerical model should encounter more difficulty with this problem than with one at a higher
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temperature. Furthermore, all geometry dilatations were neglected. The composition of the
homogeneous, infinite cell is detailed in the following sections.

20

->STEP_1_FUEL_IN

GEOMETRY HOMOGENEOQOUS

ELEMENTS ALL ! Self-shielding applied to all isotopes in cell
GROUP STRUCTURE OTHER 33 ! Or 172

INPUT LIBRARY ’ECCOLIB_ENDFB_80.33’ ! Or ECCOLIB_ENDFB_80.172
FLUX SOLUTION FM P1 CONSISTENT ORDER 1 ! Flux solution fundamental mode
BUCKLING 0.0;

->STEP_2_FUEL

GEOMETRY HOMOGENEQUS

GROUP STRUCTURE FINE ! 1968 group structure

INPUT LIBRARY ’ECCOLIB_ENDFB_80.1968"

ELEMENTS ALL

FLUX SOLUTION FM P1 CONSISTENT ORDER 1

BFROM 1
CONDENSE 33 ! Condense 1968 XS into 33 group structure
1 82 142 202 262 322 382 442 502 564 !'boundaries of 33 groups

624 686 746 808 868 928 988 1048 1108 1168 !in the 1968 structure
1228 1288 1336 1422 1480 1516 1579 1648 1708 1768
1837 1919 19562

PRINT DATA FLUXES CRO0SS SECTIONS MICROSCOPIC VECTORS ;

Listing 5.1: Two-steps calculation scheme adopted in ECCO for the evaluation of self-shielding
performance with the ENDF/B-VIII.0 library. The scheme differs from the reference route
because cross sections are not homogenised and a leakage model is not used. At the end of the
second step, the cross sections are condensed into a 33 group structure.

5.1.1 Analysis of the Sodium Fast Reactor homogeneous fuel pin

The results of the sensitivity analysis, performed in Chapter 4, revealed the importance of
nuclides U-238 and Pu-239, highlighting the need to properly calculate their cross sections.
Eventual errors in the computation of these quantities, for example due to incorrect treatment
of the self-shielding, would result in significant errors in the multiplication factor or Doppler
reactivity change. In his work, Jacquet assessed the numerical accuracy of the self-shielding
treatment of these nuclides considering three different media, whose compositions are reported
in Table 5.1 [9]. His approach consisted of analysing the impact of the resonances of the two
isotopes separately, and then when they are mixed together. The third case is used to determine
the impact of mutual self-shielding between the two heavy nuclides.

Concentration [atom/(b-cm)]

Isotope A B C
U-238 - 8.359E-03 7.040E-03
Pu-239  8.324E-03 - 1.313E-03
0O-16 1.657E-02
Na-23 8.410E-03
Fe-56 2.101E-02

Table 5.1: The nuclides and their respective atomic concentrations in the SFR cells considered
by Jacquet [9]. The concentrations of the nuclides O-16, Na-23, and Fe-56 are common to all
media. Medium A contains Pu-239, medium B contains U-238, and the third medium C contains
both nuclides.
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5.1. Validation of self-shielding module in the homogeneous medium

5.1.1.1 Check of internal reproducibility

In his work, Jacquet used the JEFF-3.1 ECCO library and compared its results with those of
the TRIPOLI-4® MC code [51, 52, 50], which used the same JEFF-3.1 NDL. In the present
analysis, the OpenMC Monte Carlo code was used as a reference for validation [40]. Due to
its high flexibility and fidelity, this open-source code is widely used within the international
community [39]. User-code interactions are greatly simplified through the support of a Python
API, enhancing the manageability of the input files. As described in Chapter 3, the code uses
NDLs in HDF5 format, which are generated from ACE files. Therefore, it benefits from the
suite of codes (e.g. NJOY) that have been developed for other well-established MC codes, such
as MCNP and Serpent [78, 77]. For these reasons, this code was adopted for the validation
purposes of this work.

Using an ECCOLIB based on the JEFF-3.1 and the same ECCO route (first step with
33 groups) the Jacquet’s infinite multiplication factor was replicated exactly with ECCO [9].
Table 5.2 shows the results of a comparison between ECCO, OpenMC, and TRIPOLI-4® results.
A significant discrepancy was found between OpenMC and ECCO results for case C, which was
considerably greater than the Jacquet reference result. However, the multiplication factor is
an integral parameter and is insufficient alone to identify the origin of this discrepancy. To
refine the investigation, the group-averaged cross sections computed with ECCO, OpenMC, and
TRIPOLI-4® were compared. The microscopic cross sections calculated using the 1968 structure
were condensed into the RRR, URR, and continuum of U-238 and Pu-239, in both the ECCO
and OpenMC codes. The energy bounds of these intervals vary for each nuclide and even between
different nuclear data evaluations, as shown in Table 5.3.

ko Homogeneous SFR fuel pin

Abs. Diff. [pem]
Medium TRIPOLI-4®  OpenMC  ECCO ECCO vs. TRIPOLI-4® ECCO vs. OpenMC
A 2.72051(9)  2.72032(~1) 2.71902 -149 -130
B 0.14741(5)  0.14744(~1) 0.14737 4 -7
C 1.40152(9) 1.40002(1)  1.40250 98 248

Table 5.2: SFR homogeneous fuel pin. The infinite multiplication factor is computed using
ECCO and OpenMC and the JEFF-3.1 library, in each of the three media. The values are
compared with Jacquet’s ECCO and TRIPOLI® results [9], which were obtained using the same
JEFF-3.1 NDL. As Jacquet’s results were exactly replicated, the ECCO values are reported only
once. The standard deviations of both Monte Carlo reference values are reported in parenthesis

(in pcm).

Table-5.4 illustrates the capture cross section of U-238 (J?sU) and the fission cross section

of Pu-239 (J;SQP 1), computed in the three-group structure using ECCO and OpenMC, and
compared with those calculated by Jacquet in the same energy mesh [9]. Furthermore, also the
cross sections condensed in the total energy range (from 107° eV to 1.96 MeV) were compared.
Once again, Jacquet’s ECCO cross sections were exactly replicated. Consistently with his work,
the relative error was defined as

ECCO _ ;MC

o

Rel. Err. = — e (5.1)

As it can be seen in the table, some discrepancies between the OpenMC and ECCO results were
found for Pu-239 in the unresolved resonance range. These errors may be due to differences in the
way the libraries have been processed for OpenMC and TRIPOLI-4®. The latter indeed shares
the URR treatment with ECCO, using mathematical Probability Tables (PTs) generated by the
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Pu-239 JEFF-3.1 & ENDF/B-VIIL.0

Interval Energy [eV] 33 Groups 295 Groups 1968 Groups Energy ECCO 33 [eV]

RRR [1.00e-05, 2.50e+03] 19 - 33 207-295 1108 - 1968 [1.00e-05, 2.034684e+03]
URR [2.50e+03, 3.00e+04] 13- 18 165 — 206 746 — 1107  [2.034684e+03,4.086771e+04]
Continuum [3.00e+04, 2.00e+07] 1-12 1-164 11745 [4.086771e+04,1.96403e+07]

U-238 ENDF/B-VIII.0

Interval Energy [eV] 33 Groups 295 Groups 1968 Groups Energy ECCO 33 [eV]

RRR  [1.00e-05, 2.00e+04]  15-33  183-295  868- 1968  [1.00e-05, 1.503439¢+04]
URR  [2.00e4+04,1.50e+05]  10-14  141-182 564 - 867  [1.503439e+04,3.01974e~+05]
Continuum  [1.50e405, 2.00e+07]  1-9 1-140 1-563 [3.01974e+05,1.96403¢+07]

U-238 JEFF-3.1

Interval Energy [eV] 33 Groups 295 Groups 1968 Groups Energy ECCO 33 [eV]

RRR [1.00e-05, 2.00e404] 15- 33 183 - 295 868 - 1968 [1.00e-05, 1.503439e+04]
URR [2.00e+04,3.00e+05] 9-14 129 - 182 502 - 867  [1.503439e+04,1.831564e+05]
Continuum  [3.00e+05, 2.00e+07] 1-8 1-128 1-501 [1.831564¢+05,1.96403¢+07]

Table 5.3: The energy bounds (second column) of the three energy intervals used for the cross
sections condensation have been condensed are reported for U-238 and Pu-239, in the JEFF-3.1
and ENDF/B-VIIIL.0 library. Columns three, four and five express the same energy intervals in
terms of discrete groups in the 33, the 295 (see AppendizF), and the 1968 groups structures,
respectively. The final column reports the energy values of the boundaries mapped in the ECCO
33-group structure.

CALENDF code for the Monte Carlo sampling, while the former uses the PTs generated by the
PURR module of NJOY. In contrast, good agreement was found with Jacquet’s TRIPOLI-4®
reference values for U-238 within the other energy intervals and media. This supports the validity
of OpenMC simulations. Therefore, it was decided to proceed with the ENDF/B-VIII.0 NDL
to determine whether the discrepancy between ECCO and OpenMC was also present with this
library. The switch to this library was already planned, as the final aim of this work is to assess
the performance of the ECCO self-shielding module with a more recent NDL.

5.1.1.2 ECCO self-shielding validation in a Sodium Fast Reactor cell with the
ENDF /B-VIIIL.O library

For the same SFR cells, Table 5.5 shows the results for the infinite multiplication factor, com-
pared between ECCO and OpenMC, using in both codes the ENDF/B-VIIL.0 NDL.

ko Homogeneous SFR fuel pin

Medium OpenMC ECCO Abs. Diff.

A 2.70463(~1) 2.70274  -189
B 0.14462(~1) 0.14440 -22
C 1.39514(1)  1.39225  -289

Table 5.5: SFR homogeneous fuel pin. Infinite multiplication factor computed for the three
different media, using OpenMC and ECCO with the ENDF/B-VIII.0 NDL. The standard devi-
ations of Monte Carlo reference values are reported in parenthesis (in pcm).
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Homogeneous infinite SFR fuel pin A B C
239Pu 23SU 239Pu 238U
c af c
TRIPOLI-4® b]  1.6547  0.1007  1.5899  0.0980

[
OpenMC [b]  1.6547  0.1007 1.5899  0.0980
[

ECCO bl  1.6542  0.1007 1.5898  0.0981
CONTINUUM RSD TRIPOLI-4® %] 0.002 0011  0.003  0.005
T OpenMC (%] 0.002 0.005 ~0.001 0.005
Rel Erp.  PCCO vs. TRIPOLI-4® [%] -0.034  -0.005 -0.004  0.082
" ECCO vs. OpenMC  [%] -0.034  -0.025 -0.008  0.048
TRIPOLI-4® [b] 1.6746 0.2643 1.8254 0.2514
OpenMC [b] 1.6683 0.2644 1.8144 0.2515
ECCO b] 1.6751 0.2644 1.8284 0.2515
URR RS TRIPOLL-4® %]  0.009 0004  0.005  0.004
T OpenMC (%]  0.008  0.001 ~0.001 0.002
Rel Erp.  PCCO vs. TRIPOLI-4® [%] 0.025  0.034  0.164  0.046
" ECCO vs. OpenMC  [%] 0.406 -0.020 0.772 -0.013
TRIPOLI-4® [b]  3.9239 09260 5.9155 0.7712
OpenMC [b]  3.9222 09261 59152  0.7712
ECCO [b]  3.9232  0.9228 5.9542  0.7681
RRR RSD TRIPOLI-4® % 0054  0.005 0013  0.007
T OpenMC [%]  0.046 0.003  0.007  0.004
Rel. Frp.  PCCOvs. TRIPOLI-4® [%] -0.018 -0.354  0.654  -0.403
el. IT.
ECCO vs. OpenMC  [%]  0.025  -0.365  0.660  -0.400
TRIPOLI-4® [b]  1.6581  0.4017 1.8036  0.2826
OpenMC [b]  1.6577  0.4019 1.8014  0.2827
ECCO [b]  1.6576  0.4014  1.8058  0.2823
Total energy range RSD TRIPOLI-4® % 0002 0003 0003  0.003
T OpenMC (%] 0.002 0.002  0.002  0.002
ECCO vs. TRIPOLI-4® [%] -0.030  -0.081  0.124  -0.110
Rel. Err.

ECCO vs. OpenMC (%] -0.009 -0.136 0.248 -0.166

Table 5.4: SFR homogeneous fuel pin. The microscopic cross sections, calculated using OpenMC
and ECCO with the 1968 group structure, are condensed in the RRR, URR and continuum
intervals of U-238 and Pu-239, as well as in the total energy range. For each medium, the
values are compared with those obtained by Jacquet in the same energy structure [9]. In each
code the JEFF-3.1 NDL is used. As the ECCO wvalues were replicated exactly , they are reported
only once in the table.

When the absolute differences between the two codes are compared with Jacquet’s reference
values in Table 5.2, larger discrepancies are evident in each medium. In relative terms, this is
particularly significant for cases B and C, with the ECCO simulations underestimating the
infinite multiplication factor.

Once again, to find the origin of those discrepancies, the analysis was refined by comparing
the microscopic cross sections. The cross sections were condensed again into the three-group
structure and the entire energy range and they are shown in Table 5.6. In contrast to the previous
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Pu

case, 0;39 was properly calculated within the URR, with very good agreement between the

MC and ECCO simulations. For UE%U, instead, large discrepancies were found in the URR. This
difference is considerably higher than that found by Jacquet in his work, as it can be observed
in Table 5.4. Looking at the resolved range, it seems that mild but significant errors are also
present in this interval. However, these values are comparable with Jacquet’s reference values [9)].
Moreover, the low-energy range is in general of little interest for fast reactor applications, since
the number of neutrons that slow down to these energies is extremely low. This is also reflected
in the difficulty of properly calculating this range in MC calculations, since the associated
statistical uncertainty is generally significant [9]. Since an energy mesh of three groups only
may hide information about the origin of these discrepancies, in the following sections cross
sections condensed into finer group structures will be compared.

Homogeneous infinite SFR fuel pin A B C
239Pu ESSU 0.;391)11 238U
OpenMC [b] 1.6518  0.1035 1.5951  0.1013
ECCO [b] 1.6509  0.1035 1.5948 0.1013
CONTINUUM Rel. Err. [%] -0.057 0.021 -0.023 0.081
R.S.D. [%] 0.002 0.003 0.003 0.005
OpenMC [b] 1.7227  0.2939 1.8584 0.2830
URR ECCO [b] 1.7240  0.3006 1.8595 0.2884
Rel. Err.  [%] 0.075  2.283  0.059  1.910
R.S.D. (%] 0.008 0.001 0.003 0.001
OpenMC [b] 3.8447  0.9103  5.8051  0.7626
RRR ECCO [b] 3.8437  0.9071  5.8482  0.7600
Rel. Err. [%] -0.026 -0.351 0.742 -0.343
R.S.D. (%] 0.043 0.003 0.007 0.001
OpenMC [b] 1.6588  0.3997 1.8120  0.2824
Total enerev rance ECCO [b] 1.6581  0.4014 1.8131 0.2843
SY TALEC  Rel. Err.  [%]  -0.045 0414  0.061  0.657
R.S.D. [%] 0.002 0.002 0.001 0.002

Table 5.6: SFR homogeneous fuel pin. The fission cross section of Pu-239 and the capture cross
section of U-238 are calculated using ECCO with the ENDF/B-VIII.0 NDL, and then condensed
from the 1968 groups structure into the RRR, URR, and continuum (and total energy range) of
their respective isotopes.

5.1.1.3 Pu-239 fission cross section

The Pu-239 fission cross section, computed using the 1968 group structure, was condensed into
33 and 295 group structures, as shown in Figure 5.1 for Case A. The energy bounds of the latter
structure are reported in Appendix F. The dashed vertical lines represent the energy boundaries
of the URR in the three-group structure. Hereafter, the focus will be on energies above 100 eV,
since this is the range of practical interest for fast reactor applications. Looking at the figure,
the considerably low relative error (ECCO vs. OpenMC) within the continuum range is evident.
However, resonances are not present in this interval and the self-shielding model is not applied.
In the resolved range, the error is also small, but it is of the same magnitude as the statistical
uncertainty. Therefore, it is not possible to draw any significant conclusion about the numerical
accuracy of the self-shielding model. Nevertheless, the cross sections computed with OpenMC
and ECCO are generally in good agreement.
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5.1. Validation of self-shielding module in the homogeneous medium

In the unresolved range, large errors of opposite sign are present. These errors are to
be expected [9], as the generation of resonances in this range is a stochastic process, and the
energy grids used in CALENDF and the PURR module of NJOY may differ. However, when
these errors are condensed into broader group structures, they tend to decrease significantly.
Moreover, because of errors of the same magnitude and opposite sign in different energy groups,
they compensate each other and therefore do not appear when the cross sections in the 1968
group structure are condensed into the three-group structure. This results in the negligible
errors observed in the URR in Table 5.6. In conclusion, the computation of the cross section
for this nuclide with the ENDF /B-VIII.O library can be considered to yield satisfactory results,
since the relative errors are generally low in the broad structure and are consistent with those
observed by Jacquet with the JEFF-3.1 NDL [9]. Furthermore, adopting the ENDF /B-VIII.O
NDL leads to a better agreement with OpenMC compared to the JEFF-3.1 ECCOLIB, which,
as shown in Section 5.1.1.1, may account for the ECCO overestimation of the Pu-239 fission
cross section.
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Figure 5.1: SFR homogeneous fuel pin, case A. Above, the Pu-239 fission cross section is com-
puted using the ENDF/B-VIII.0 NDL and compared between OpenMC and ECCO, using 33 and
295 group structures. Below, the relative errors for both group structures are reported. The black
vertical dashed lines indicate the URR energy bounds for Pu-239.

5.1.1.4 U-238 capture cross section

Figure 5.2 shows a comparison of the U-238 capture cross section between OpenMC and ECCO
for Case B, as well as the relative error in the 33 and 295 group structures. In this case, the larger
statistical uncertainty is associated with the high-energy region. In fact, this zone coincides with
the interval where the cross section has the lowest values. As the errors measured in this region
are smaller than the statistical uncertainty, they are meaningless. In the thermal region, the
errors are not negligible, but they are of less concern because of the low interest in this region
for fast reactor applications.

The errors in the URR pose instead a greater concern. In fact, this energy range is relevant
in LFR applications, since the capture cross section of U-238 in this interval significantly impacts
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the multiplication factor (as highlighted by the sensitivity analysis presented in Chapter 4).
Although these errors are smaller than those for Pu-239, they all have a positive sign. This
means that they will not cancel each other out when the cross section is condensed into the
three-group structure, leading to the non-negligible errors observed in Table 5.6.
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Figure 5.2: SFR homogeneous fuel pin, case B. Above, the capture cross section of U-238 is
computed using the ENDF/B-VIII.0 NDL and compared between OpenMC and ECCO, using 33
and 295 group structures. Below, the relative errors for both group structures are reported. The
black vertical dashed lines indicate the URR energy bounds for U-238.

Figure 5.3 shows a comparison of the U-238 normalised microscopic capture reaction rate,
calculated for Case B taking the product between aiSSU and the normalised neutron flux. This
is a necessary check, as preserving the reaction rate is at the core of the multigroup model.
Therefore, the errors in the capture cross section may originate from errors in the flux, which
could possibly be influenced by other nuclides and which would be compensated for by U-238
in order to preserve the reaction rate. However, it can be seen that the error in the capture
reaction rate fully reflects the errors in the cross section. Thus the error on the reaction rate
seems not affected by the error on the flux, which is shown in Figure 5.4. This suggests that the
errors may arise from an erroneous calculation of the cross sections within the ECCO code.

5.1.1.5 Probability tables evaluation

The errors observed in the capture cross section of U-238 in the URR suggest an incorrect data
treatment in this energy interval. As described in Chapter 3, both ECCO and OpenMC treat
the unresolved range using probability tables produced by CALENDF and the NJOY PURR
module, respectively. Using an ERANOS built-in procedure, it was possible to access the PTs
data in the libraries. This enabled the identification of energy groups in the 1968 ECCOLIB
that contain the PTs data. The procedure was applied to both the JEFF-3.1 and ENDF/B-
VIII.0 ECCO libraries. For each library, the relative error in the fission cross sections of Pu-239
and the relative error in the capture cross sections of U-238 were computed with respect to the
OpenMC references. Results are displayed in Figures 5.5 and 5.6 where the energy groups of
the 1968 structure containing the P'Ts have been coloured in purple.
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Figure 5.3: SFR homogeneous fuel pin, case B. Using the ENDF/B-VIII.0 NDL, The normalised
capture reaction rate of U-238 is computed using ECCO and OpenMC, taking the product between
the microscopic capture cross section and the normalised neutron fluz.
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Figure 5.4: SFR homogeneous fuel pin, case B. Normalised neutron flur are calculated with the
ENDF/B-VIII.0 NDL.

In both NDLs the energy groups belonging to the 1968 structure fully cover the resolved
and unresolved ranges with PTs for the Pu-239 fission cross section. The discrepancies found in
the URR for Pu-239 when using JEFF-3.1, already mentioned above, may in this case be due to
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inconsistencies in the NDL processing between PURR for OpenMC and CALENDF for ECCO.
However, these discrepancies do not occur when using the ENDF/B-VIII.0 NDL.

In the ENDF/B-VIIL.0 ECCO library, on the contrary, the PTs for the U-238 capture cross
section are not fully covering the URR. In the JEFF-3.1 NDL, where the PTs are present in
the URR, the cross section errors are much smaller and cancel each other out within the energy
range, as already observed for Pu-239. For the ENDF/B-VIII.0 NDL, instead, errors arise in
the URR where the PTs are missing.

To confirm that the lack of PTs is causing the discrepancies in the URR, two simulations of
the same medium (Case B) were performed using the Serpent2 MC code [77]. This code allows
the user either to enable (consistently with OpenMC) or to disable the sampling from the PTs
in the URR, which is equivalent to sampling from the energy distribution of the average values
of the cross sections, calculated by the RECONR module of NJOY (as outlined in Chapter 3).
Within ECCO, since the URR of U-238 lacks the PTs, the cross sections used in the calculations
are the multigroup averaged ones produced by the GROUPR module of NJOY, based on the
values produced by the RECONR and UNRESR modules. As the multigroup data used by
ECCO in energy regions where PTs are not present are produced consistently with the nuclear
data used by Serpent2 when the sampling from PTs is disabled, similar results are expected
between these two calculations.

Figure 5.7 shows the capture cross section values of U-238 calculated in the URR using
OpenMC, Serpent2 and ECCO. When the PTs sampling is enabled in Serpent2, the result
matches that produced by OpenMC. Conversely, when PTs sampling is disabled, the Serpent2
result matches that produced by ECCO. On the one hand, this provides confirmation of the
reliability of the OpenMC results, since the MC results match when the same URR treatment
methodology is applied. On the other hand, these results provide an evidence that the error
in the U-238 capture cross section is mainly due to the absence of PTs in the ENDF /B-VIII.0
ECCO library.

Figure 5.8 shows a comparison of the relative error between ECCO vs. OpenMC and
ECCO vs. Serpent2 without the PTs sampling, for the 33 and 295 group structures. As before,
disabling the P'Ts sampling yields lower errors in the URR, since ECCO and Serpent2 use similar
data in the unresolved range. However, this evidently yields an incorrect value compared to the
OpenMC reference solution. Outside the URR, the relative errors are identical, meaning that
the methodologies applied in OpenMC and Serpent2 are equivalent in these intervals.

5.1.2 Analysis of the LFR homogeneous fuel pin

The analysis of the SFR fuel pin showed the impact of missing PTs for U-238 in the URR.
However, this impact may be amplified by the fact that the investigation focused on very simple
media containing only a few nuclides, in which U-238 and Pu-239 play a predominant role.
Although these two nuclides are in general the most relevant, as demonstrated in the sensitivity
analysis in Chapter 4, the presence of many other nuclides could determine a different impact
on the overall behaviour of the medium.

For this reason, the same analysis was repeated but in a case representative of LFR ap-
plications, i.e. the Nuclear Energy Agency (NEA) lead-cooled fast reactor benchmark, based
on the ALFRED design, which was introduced in Chapter 4 [12, 64, 65, 66]. In particular, the
LFR fuel pin was examined. As before, the system was modelled as an infinite homogeneous
medium, obtained by smearing the nuclides present in the fuel pin materials (MOX, cladding
and coolant). In this case, more nuclides are present in the medium, and a larger error can be
expected due to mutual self-shielding effect between heavy isotopes. To treat the non-resonant
nuclides more accurately, the first step of the ECCO route used a 172 groups structure. Table 5.7
shows a comparison of the infinite multiplication factor estimated with ECCO and OpenMC,
highlighting the significant underestimation of ECCO with respect to the MC reference. The
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computed difference is close to the effective delayed neutron fraction of the ALFRED core [66,
79], i.e. about 315 pcm, highlighting the necessity of taking counteractive measures to reduce
this error. A similar discrepancy was found in a previous work on the ECCO validation in fuel
cells of the NEA LFR benchmark [11].

ko Homogeneous LFR fuel pin
OpenMC ECCO Abs. Diff. [pcm]
1.36428(1) 1.36148 -280

Table 5.7: LFR NEA benchmark, homogeneous fuel pin. Comparison of the infinite multiplica-
tion factor evaluated using OpenMC and ECCO with the ENDF/B-VIII.0 NDL. The standard
deviation of the Monte Carlo reference value is reported in parenthesis (in pcm).

As in the previous case, the cross sections produced using the 1968 group structure were
condensed into the three-group structure and reported in Table 5.8. In this case, the comparison
between ECCO and OpenMC is based on more nuclides, which were selected according to their
relevance, as highlighted by the sensitivity analysis performed in Chapter 4. Since the URR
does not exist for Pb-208, Fe-56, and O-16 (as all the resonances are resolved across the entire
energy range), it was decided to condense their cross sections within the same energy bounds of
U-238.

Homogeneous infinite LFR fuel pin

239 238 235 241 56 208 16
g P g, N Uf N Uf P s,eb;e s,elpb Us,e?

OpenMC  [b] 1.5948  0.1028 1.3823  1.8552 2.9016 6.3253 3.6264
ECCO [b] 1.5947  0.1029 1.3820 1.8542 2.9088 6.5500 3.6242

CONTINUUM Rel. Err. [%] -0.011 0.063 -0.021  -0.053  0.251  3.553 -0.060
R.S.D. [%] 0.001 0.003 0.001 0.001 0.001  0.001 0.001

OpenMC [b]  1.9206 0.2807 2.8275 4.0122 5.0341 10.7297 3.6336

URR ECCO [b] 1.9194 0.2846 2.8275 4.0142 5.0418 10.7820 3.6334

Rel. Err.  [%] -0.059 1.392  -0.001 0.048 0.152 0.488 -0.004

R.S.D. (%] 0.003 0.002 0.003 0.004 0.002 0.002 0.002

OpenMC [b] 5.1432  0.7397 83074 27.2650 5.5010 11.2409 3.7780

RRR ECCO [b] 5.1882 0.7386 8.2910 27.5704 5.5015 11.2415 3.7780

Rel. Err. [%] 0.874 -0.145  -0.197 1.120 0.009 0.006 < 0.001
R.S.D. [%] 0.011 0.005 0.011 0.165 0.005 0.005 0.005

OpenMC [b] 1.7325  0.2638 1.8487 2.4184 4.1805 8.9081  3.6491
ECCO [b] 1.7325  0.2652 1.8473  2.4172  4.1856  9.0247  3.6481
Rel. Err.  [%) 0.004 0.547 -0.074  -0.051 0.121 1.309 -0.028
R.S.D. (%] 0.002 0.002 0.002 0.002 0.002 0.001 0.001

Total energy range

Table 5.8: LFR NEA benchmark, homogeneous fuel pin. The cross sections of some of the
most relevant nuclides in the fuel pin, calculated with ECCO, the 1968 groups structure and
the ENDF/B-VIII.0 NDL, are condensed from into the RRR, URR, and continuum (and total
energy range) of their respective isotopes. For convention, the cross sections of Pb-208, Fe-56,
and O-16 have been condensed in the same energy bound of U-238.

Similarly to the SRF fuel pin case, outlined in Section 5.1.1.2, ECCO overestimates the
capture cross section of U-238 compared to OpenMC. This is most likely the main reason
behind the underestimation of the infinite multiplication factor, which will find confirmation in
Chapter 6 through a decomposition analysis. However, it can be noticed that the error is lower
compared to the previous SFR case. This is the beneficial effect of diluting a nuclide within a
mixture that contains a large number of other nuclides. In fact, as more nuclides are present, the
impact of each nuclide on the energy dips of the flux (which depend on the total cross section

75



Chapter 5. Validation of the ECCO self-shielding model with the ENDF /B-VIIL.0 library

of the medium) decreases. Therefore, the self-shielding phenomenon for the nuclide in question
is attenuated to some extent. Furthermore, analysis of the LFR fuel pin revealed significant
errors in the elastic scattering cross sections of Pb-208 and Fe-56 in the continuum energy range
of U-238. Non-negligible errors for the Pu-239 and Pu-241 fission can also be observed in the
resolved region. However, as in the previous case, larger errors in this range are to be expected
and are generally of lower concern. In the next sections, the differences between ECCO and
OpenMC will be analysed again with finer energy group structures. For each nuclide, purple
colour bands will be used again to represent the energy groups containing PTs.

5.1.2.1 U-238 & Pu-239 cross sections

Figure 5.9 shows a comparison of the U-238 and Pu-239 cross sections, computed using ECCO
and OpenMC with 33 and 295 energy group structures. The behaviour of the cross sections
relative errors is the same as in the SFR case. As already observed in the three-group structure,
the error in the U-238 capture cross section decreased in the homogeneous LFR fuel pin, due to
the nuclide smearing. This can be visually appreciated by comparing the U-238 capture cross
sections in Figure 5.2 and 5.9, which are calculated in the homogeneous SFR and LFR fuel pins,

respectively.
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Figure 5.9: LFR NEA benchmark, homogeneous fuel pin. The 0238[] and 0;3913“ are computed
using ECCO and OpenMC with the ENDF/B-VIII.0 NDL. The comparison is made using the
33 and the 295 groups structures.

5.1.2.2 U-235, Pu-241 and O-16 cross sections

Figure 5.10 shows a comparison of the U-235, Pu-241, and O-16 cross sections. Although PTs
lack for the former nuclide in the URR, the errors within this range are much smaller than those
of U-238. There are two possible explanations for this effect. First, the resonances of U-235 are
orders of magnitude lower than those of U-238. The second and most likely explanation is that
the concentration of U-235 in the numerical benchmark fuel pin is extremely low. Consequently,
the significant dilution of the nuclide in a mixture primarily composed of other isotopes makes it
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incapable of determining significant energy dips in the neutron flux, and the classical approach
used to prepare the cross sections in the NJOY code turns out to be sufficient to properly
compute the energy-averaged cross sections. However, this suggests that using the same library
in media with a higher concentration of U-235 would probably result in errors similar to the
ones observed for U-238.

Once again, Pu-241 fission shows very similar results to the ones of Pu-239 fission: al-
though the errors are large, they cancel each other out within the URR. Also, the excellent
self-shielding performance of the ENDF/B-VIII.0 ECCOLIB for O-16 is observed, as the PTs
produce negligible errors for the nuclide in both group structures.
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Figure 5.10: LFR NEA benchmark, homogeneous fuel pin. The 0;35 v a?lpu, and 0;6610 are
computed using ECCO and OpenMC with the ENDF/B-VIII.0 NDL. The cross sections are
condensed into the 33 and the 295 groups structures. For O-16, black vertical dashed lines

indicate the URR energy bounds of U-238.

5.1.2.3 Fe-56 and lead isotopes cross sections

The analysis with the three group structure revealed significant differences between ECCO and
OpenMC in the elastic scattering cross sections of Pb-208 and Fe-56 in the high-energy region.
These cross sections are compared between ECCO and OpenMC in Figures 5.11 and 5.12.
Looking at the relative error for Fe-56 in the 33 groups energy structure, it can be seen that this
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increases in correspondence of the large cross section dip and at energy values larger than 0.85
MeV, where PTs are not present. In fact, as it can be seen in Figure 5.13, the energy-continuous
cross section has several spikes in this region. These spikes are described by pointwise data in
the MF = 3 file of the ENDF-6 tape, and no resonance parameters are given in this energy
range. However, such abrupt variations in the cross sections could still provide self-shielding
effects, affecting the accuracy of group-averaged cross sections.

The same also holds for Pb-208, but in this case the largest discrepancies between ECCO
and OpenMC are found in the energy groups with PTs. Since all resonances are resolved for Pb-
208, these errors cannot be attributed to discrepancies between the PURR module of NJOY and
CALENDF. Eventually, all of these errors originate from the differences between the ENDF-6
tape manipulations performed by CALENDF and the RECONR module of NJOY.

The errors observed in the elastic scattering cross sections of Pb-208 are the highest among
the ones that were examined. These errors are particularly relevant for LFR, where lead acts
as a coolant, potentially leading to large impacts on neutronic calculations. For this reason, the
other isotopes that make up most of the coolant, namely Pb-206 and Pb-207, have also been
analysed. The errors in the elastic scattering cross sections, computed again by condensing the
1968 group structure into the 33 and 295 group structures, are shown in Figure 5.14. The figure
displays large errors also in the cross sections of these two nuclides, especially for Pb-207, where
the errors have the opposite sign to those of Pb-208.
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Figure 5.11: LFR NEA benchmark, homogeneous fuel pin. The Jz;];e is computed using ECCO

and OpenMC with the ENDF/B-VIII.0 NDL. The cross sections are condensed into the 33 and
the 295 groups structures. The black dashed lines represent the URR energy bounds of U-238.
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and OpenMC with the ENDF/B-VIII.0 NDL. The cross sections are condensed into the 33 and
the 295 groups structures. The black dashed lines represent the URR energy bounds of U-238.
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Figure 5.13: The elastic scattering cross sections of Fe-56 and Pb-206 are plotted with OpenMC
from the HDFS5 tapes. The spikes at energies larger than 1 MeV are not properly resonances,

thus they are not covered with PTs.

79



Chapter 5. Validation of the ECCO self-shielding model with the ENDF /B-VIIL.0 library

5 2
0 0
S X -4
g s s
-20 -6
—25{ — Rel. Err. —81 —— Rel. Err.
R.S.D. (¢10) R.S.D. (+10)
~340 103 104 10° 106 107 100 103 104 10° 106 107
Energy (eV) Energy (eV)
207 207
(a) lepb, 295 groups (b) 0876le7 33 groups
10 6
—— Rel. Erm. —— Rel. Erm.
8 R.S.D. (+10) 5 R.S.D. (+10)
6 4
4 3
SEPY | g 2
1
0 ﬂP—\’WJL'lll
ol—r—;‘_\_,_l_,—
-2
-1
-4
102 103 104 10° 10° 107 _2102 103 104 10° 10° 107
Energy (eV) Energy (eV)
206 206
(c) o, 295 groups (d) o, ", 33 groups
. . 207Pb 206Pb
Figure 5.14: LFR NEA benchmark, homogeneous fuel pin. The o, ;' ° and o /" are computed
b b

using ECCO and OpenMC with the ENDF/B-VIII.0 NDL. The cross sections are condensed
into the 33 and the 295 groups structures. The black dashed lines represent the URR energy
bounds of U-238.

5.1.3 Probability tables for LFR pin nuclides

The analysis of the ENDF/B-VIIL.0 ECCOLIB in the homogeneous, infinite LFR fuel pin re-
vealed the absence of PTs data within the URR of U-238 and U-235. In order to obtain a
complete overview of the library, the built-in procedure of ERANOS was employed again to
determine the energy groups containing the PTs for all of the NEA benchmark fuel pin nuclides
with an unresolved range contained within the 1968 ECCOLIB. As a reference, these groups
have been compared with those of the same nuclides in the JEFF-3.1 ECCOLIB. The results of
this comparison are shown in Figure 5.15 for the groups within the URR of each nuclide. The
lack of PTs data in the thermal region would be of lower concern for LFR applications.

The figure highlights the absence of PT data for U-238 and U-235 once again. Moreover,
the absence of the data for Zr-91 can be seen, even though this is of less concern given that this
isotope is present in only small quantities in the LFR benchmark fuel pin. Furthermore, it can
be seen that in the ENDF/B-VIII.0 ECCO library some nuclides have PTs that are otherwise
lacking in the JEFF-3.1 ECCOLIB. Among them, PTs are present for nuclides such as U-236
and Am-243, which are potentially relevant isotopes for fuel evolution calculations.

In conclusion, in light of the above results, it is possible to say that the lack of PTs within
the ENDF/B-VIIL.0 ECCOLIB is only a concern for U-238 and U-235, and it does not occur for
any other relevant isotopes. However, limiting the analysis to missing data only, particularly in
the unresolved range, does not rule out eventual errors arising from the handling of the ENDF-6
data during the P'Ts generation, as it was observed for lead isotopes.
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Figure 5.15: For the nuclides of the NEA LFR fuel pin which have an unresolved range and are
present in the 1968 ENDF/B-VIII.0 ECCOLIB, the energy groups containing PT data in the
URR are compared with the corresponding groups in the JEFF-3.1 ECCOLIB.

5.1.4 ENDF/B-VIII.0 comparison with JEFF-3.1

The comparison of the PTs for several nuclides revealed the crucial importance of the handling of
raw nuclear data contained in ENDF-6 tapes. In fact, producing the ECCOLIB is a very delicate
procedure, and the final results can easily be influenced by either the evaluator’s choices or the
raw data themselves. In Chapter 7, the influence that the settings adopted in the ECCOLIB
production workflow have on the errors observed in the lead isotopes will be discussed.

To conclude the analysis of the homogeneous LFR fuel pin, the relative errors obtained
using NDLs based on ENDF/B-VIII.0 in both ECCO and OpenMC were compared with those
obtained when using NDLs based on JEFF-3.1 in both codes. Figure 5.16 shows the results
of a comparison for six nuclides using a 33 group structure. Focusing on U-238, it is evident
the reduction in the cross section errors within the URR when using the JEFF-3.1 NDL. This
decrease of the error was also observed in the SFR fuel pin case, which was simulated using
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both libraries to assess the impact of the absence of PTs in the ENDF/B-VIIL.0 ECCOLIB (see
Figure 5.6). Similarly, the difference in the relative errors of the LFR fuel pin when using the
JEFF-3.1 and the ENDF/B-VIII.0 NDLs is due to the latter library’s lack of PTs data.
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Figure 5.16: LFR NFEA benchmark, homogeneous fuel pin. Comparison, with the 33 group
structure, of the relative errors (ECCO wvs. OpenMC) evaluated using ENDF/B-VIII.0 and
JEFF-3.1 NDL for both codes. For brevity, only the R.S.D. of the ENDF/B-VIIIL.0 simulations
are reported for reference. For each nuclide, the black dashed lines separate the three energy
regions, according to ENDF/B-VIII.(. For Fe-56 and Pb-208, the URR energy bounds are those
of U-238.

Moreover, it can be seen that, in the case of JEFF-3.1, the errors in the fission cross
section of the plutonium isotopes are slightly higher in the unresolved ranges. A similar trend
for Pu-239 was observed in Section 5.1.1.1 during the reproduction of the Jacquet’s TRIPOLI-
4% results with OpenMC. These discrepancies may, in fact, be caused by differences in data
handling within the URR between CALENDF and the PURR module of NJOY. Additionally,
the JEFF-3.1 ECCOLIB provides a better treatment, for Fe-56, of the energy intervals where
cross sections spikes are present, as described in Figure 5.13, and PTs are not included in the
ENDF /B-VIIL.0 ECCOLIB. It is fundamental to note that the errors in the elastic cross section
of Pb-208 are almost identical in the two libraries. In fact, when the raw data on the ENDF-6
tapes are compared, the evaluations of this nuclide are in very good agreement. This suggests
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that if consistency is maintained between the two ECCOLIB production workflows, the issue
that affects the handling of the JEFF-3.1 data will also persist in the case of ENDF /B-VIIL0.
As mentioned above, in Chapter 7 a deeper investigation on this topic will be conducted.

5.2 Validation of the self-shielding module in the heterogeneous
medium

The analysis performed in the previous section revealed that the observed errors in the cross
sections are primarily due to the nuclear data contained in the ECCOLIB rather than to the
numerical schemes and approximations employed in the ECCO cell code. However, as outlined in
Chapter 2, the computation of the cross sections differs between homogeneous and heterogeneous
media when using the subgroup method. Additionally, the flux solution is different too, with
the fundamental mode method and the collision probability method, respectively.

To exclude that the errors in the cross sections are influenced by the deterministic models,
a simulation of a heterogeneous medium was performed. As described in Chapter 2, the com-
putation of cross sections in the heterogeneous medium makes use of both collision probabilities
and subgroup data. Once again, to reduce the numerical errors that arise from the numerical
schemes, only two calculation steps are performed within ECCO. These steps are reported in
Listing 5.2. The main differences with respect to the homogeneous medium are the geometry
and flux-solution input data. The remaining input data set remains unchanged from the homo-
geneous case. Once again, the two-step resolution does not involve the spatial homogenisation
of the cross sections across the entire geometry.

->STEP_1_FUEL_IN
GEOMETRY ORIGINAL
ELEMENTS ALL
GROUP STRUCTURE OTHER 172
INPUT LIBRARY ’ECCOLIB_ENDFB_80.172°
FLUX SOLUTION CP P1 CONSISTENT ORDER 1 ! Flux solution collision
probability
BUCKLING 0.0
SELF SHIELDING NODBBSH; ! DBBSH option, used for CP in subcritical media,
is not used
->STEP_2_FUEL
GEOMETRY ORIGINAL
GROUP STRUCTURE FINE ! 1968 group structure
INPUT LIBRARY ’ECCOLIB_ENDFB_80.1968"
FIND_ELEMENTS_IN_LIST ! Apply self-shielding to elements in list
’U238° ... Pb208°’ ! Isotopes on the 1968 ENDF/B-VIII.0O ECCOLIB
FLUX SOLUTION CP P1 CONSISTENT ORDER 1
SELF SHIELDING NODBBSH

BFROM 1
CONDENSE 33 ! Condense 1968 XS into 33 group structure
1 82 142 202 262 322 382 442 502 564 !boundaries of 33 groups

624 686 746 808 868 928 988 1048 1108 1168 !in the 1968 structure
1228 1288 1336 1422 1480 1516 1579 1648 1708 1768
1837 1919 1952

PRINT DATA FLUXES CROSS SECTIONS MICROSCOPIC VECTORS ;

Listing 5.2: Two steps calculation implemented in ECCO for the evaluation of ENDF/B-VIII.0
self-shielding performances in a heterogeneous medium. In this case, collision probabilities are
implied for both the computation of the cross sections and the fluz-solution. The buckling is set
equal to zero to simulate an infinite medium.

5.2.1 Analysis of the LFR heterogeneous fuel pin

The analysis of the heterogeneous medium was conducted again on the LFR fuel pin. This
time, however, the three different regions - the MOX fuel, the cladding, and the coolant - were
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distinguished and described separately in the ECCO code. These regions and their geometrical
arrangement are described in Figure 5.17. As it can be seen in the figure, the hexagonal fuel pin
was converted to an equivalent cylindrical shape. The equivalence was achieved by conserving the
volumes of the three regions for two main reasons: first, this eliminates the vacuum space in the
fuel pin, which is smeared with the fuel pellet, adjusting its density accordingly, to avoid issues
with the code; second, it avoids the numerical error associated with the collision probabilities.
In fact, using a cylindrical geometry allows to use CPs that are computed analytically, thus
increasing the numerical accuracy. This approach is equivalent to that adopted by P. Jacquet
for the validation of ECCO in heterogeneous SFR fuel pins [9)].

1.36 cm
o ¢F T

Figure 5.17: The heterogeneous LFR fuel pin cell is reshaped into a cylindrical cell, conserving
the volumes of the MOX fuel (yellow), cladding (grey), and coolant (blue) regions, and removing
the void region. The geometrical configuration is described according to the NEA benchmark

[12].

For simplicity, the temperature was set equal to 293 K for the three regions, and the material
dilatations were not considered. To simulate an infinite cell, white boundary conditions were
set on the outer edge of the coolant region. The same materials and geometry were modelled
within OpenMC, and the results of a comparison for the infinite multiplication factor are shown
in Table 5.9 and compared with the ECCO result. The discrepancy observed between the
two simulations is approximately of the same magnitude as that observed for the homogeneous
medium. Once again, this difference is consistent with results found in Ref. [11].

ko Heterogeneous LFR fuel pin
OpenMC ECCO Abs. Diff. [pcm]
1.36799(1) 1.36503 -296

Table 5.9: LFR NEA benchmark, heterogeneous fuel pin. The infinite multiplication factor is
computed using OpenMC and ECCO with the ENDF/B-VIII.0 NDL. The standard deviation of

the Monte Carlo reference values is reported in parenthesis (in pcm).

Table 5.10 shows a comparison, between OpenMC and ECCO, of the cross sections of the
most important nuclides , condensed in the three and one group structures. In both codes, cross
sections were condensed using the flux of the region containing the specific isotope. Therefore,
cross sections are not homogenised over the entire fuel pin, but rather in the three materials
composing the fuel pin, namely the MOX fuel, cladding, and coolant (e.g. the U-238 capture
cross section is homogenised in the MOX material). Once again, significant errors can be
observed for the cross sections of U-238 in the URR, and the cross section of Pb-208 at high-
energies, analogously to what observed in the homogeneous cell. This is further highlighted in
Table 5.11, where the relative errors in the cross sections are compared between the homogeneous
and heterogeneous media.
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Heterogeneous infinite LFR fuel pin

23’:?1,)11 238U 235U 2411,)‘) 56Fe ZOSPb 160
Ot _MOX F._MOX T _MOX O _MOX Osel-CLAD Os,el-COOL Tsel-MOX

OpenMC [b]  1.5950 0.1027 1.3822 1.8551 2.8910 6.3197 3.6238

, ECCO [b] 15048 0.1028 1.3819 1.8541 2.8984 6.5449 3.6216
CONTINUUM ) Ber. %] -0.010 0.063 -0.022 -0.054 0.256 3.563 -0.061
RSD. [%  0.001 0.004 0.001 0.001 0.002 0.002 0.002

OpenMC [b]  1.9205 0.2802 2.8293 4.0279 4.9994 10.7206 3.6336

URR ECCO [b]  1.9193 0.2845 2.8295 4.0301 5.0069 10.7726 3.6335
Rel. Err. [%]  -0.058 1.523 0.007 0.054 0.151 0.485 -0.004

RSD. [% 0003 0.002 0.003 0.004 0.002 0.002 0.002

OpenMC [b]  5.1577 0.7267 8.3596 27.2733 5.5208 11.2416 3.7781

RRR ECCO [b]  5.2003 0.7254 8.3402 27.5450 5.5193 11.2421 3.7781
Rel. Err. [%]  0.827 0.183 -0.232 0.996 -0.027 0.005 <0.001

RSD. [% 0011 0.005 0.011 0.120 0.005 0.005 0.004

OpenMC [b]  1.7344 0.2621 1.8533 2.4237 4.1661 8.9068 3.6481

Total enerev rangeFCCO bl 17344 0.2637 1.8517 2.4224 4.1705 9.0226 3.6471
EY TANES  pel Err. (%] 0.001 0.594 -0.082 -0.052 0.106 1.299 -0.028

RSD. [%  0.002 0.002 0.002 0.004 0.002 0.002 0.002

Table 5.10: LFR NEA benchmark, heterogeneous fuel pin. The cross sections of the most im-
portant nuclides are computed using OpenMC and ECCO with the ENDF/B-VIII.0 NDL. These
have been then condensed into the three and one group structures. For each nuclide, the cross
section is computed with both codes in the same region (MOX, cladding, and coolant) where
the isotope is located. For convention, the cross sections of Pb-208, Fe-56, and O-16 have been
condensed in the same energy bound of U-238

Heterogeneous & homogeneous, infinite LFR fuel pins

Homogeneous -280

koo Abs. Diff.  [pem)] Heterogeneous -296

239 238 235 241 56 208 16
o Pu o. U Uf U o.f Pu o, Fe o, Pb o, (6]

Homogeneous  -0.011 0.063 -0.021  -0.053 0.251  3.553 -0.060
Heterogeneous  -0.010 0.063 -0.022 -0.054  0.256  3.563 -0.061

Homogeneous  -0.059 1.392  -0.001 0.048  0.152 0.488 -0.004
Heterogeneous  -0.058 1.523  0.007 0.0564  0.151  0.485 -0.004

Homogeneous 0.874 -0.145  -0.197 1.120  0.009  0.005 < 0.001
Heterogeneous 0.827 -0.183  -0.232 0.996 -0.027  0.005 <0.001

Homogeneous 0.004 0.5647  -0.074  -0.051  0.121 1.309 -0.028
Heterogeneous 0.001 0.594 -0.082  -0.052  0.106 1.299 -0.028

CONTINUUM  Rel. Err.  [%]

URR Rel. Err. (%]

RRR Rel. Err. [%)]

Total energy range  Rel. Err. %]

Table 5.11: The relative errors (ECCO vs. OpenMC) in the cross section of the seven most
relevant nuclides are calculated using the ENDF/B-VIII.0 NDL, and compared between the ho-
mogeneous and heterogeneous LFR fuel pins.

As the errors are similar in both cases, it can be concluded that the discrepancies of the cross
sections with respect to the MC references are poorly influenced by the ECCO solution schemes.
At the same time, their dependence on the nuclear data themselves is once again confirmed. The
same holds for finer group structures, as it can be seen in Figure 5.18 where the relative errors
for U-238 and Pb-208 in the heterogeneous case are shown. In this case, they exhibit the same
energy profile as that of the homogeneous medium, as visible in Figures 5.9 and 5.12.
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and o

5.3 Validation of the self-shielding module in the LFR fuel as-
sembly

In the previous sections, the homogeneous and heterogeneous LFR fuel pins were analysed,
highlighting the significant influence of the raw ENDF-6 data treatment, during the ECCOLIB
generation, on the final accuracy of the ECCO code. However, this analysis was conducted
with the precise aim of isolating as much as possible the numerical errors arising from the
numerical schemes implemented in ECCO. Therefore, the physical conditions set during the pin
modelling (e.g., the room temperature) differ greatly from the actual LFR operating conditions.
Moreover, adopting a two-step approach inside ECCO is different from the "reference" route,
which is the usual routine applied for the preparation of homogenised and condensed cross
sections for successive core calculations.

Therefore, in this section, the self-shielding performances of the ENDF/B-VIIL.0 ECCO
library are assessed within a framework that more closely resembles actual standard procedures
used in typical core design calculations. Consequently, production of the condensed and ho-
mogenised cross sections will be replicated, under operating conditions, on a lattice level within
a fuel assembly. As mentioned in Chapter 2, these would be the cross sections used in succes-
sive calculations in the classical two-step approach. However, in order to assess the numerical
accuracy of the procedure, a slightly modified "reference route" will be adopted, as shown in
Listing 5.3.

As the validation regards a lattice calculation, the only deviation from the reference route is
that the buckling is set equal to zero, thus simulating an infinite lattice of fuel assemblies. This
enabled ECCO simulation to be replicated exactly in OpenMC by applying reflective boundary
conditions to the outer edge of the assembly.

86



16
17
18
19
20

NN N NN
GUs W N =

5.3. Validation of the self-shielding module in the LFR fuel assembly

->STEP_1_FUEL
GEOMETRY HOMOGENEOUS
ELEMENTS ALL
GROUP STRUCTURE OTHER 172
INPUT LIBRARY ’ECCOLIB_ENDFB_80.172°
FLUX SOLUTION FM P1 INCONSISTENT ORDER 1
BUCKLING 0.0 ;
->STEP_2_FUEL
GEOMETRY ORIGINAL
GROUP STRUCTURE OTHER 172
INPUT LIBRARY ’ECCOLIB_ENDFB_80.172°
FLUX SOLUTION CP P1 INCONSISTENT ORDER 1
BFROM 1
SELF SHIELDING NODBBSH ! DBBSH option, used for CP in subcritical media, is
not used
PROFILE COLLISION PROBABILITIES ROTH 6 ; ! Apply Roth method with hexagonal
lattice
->STEP_3_FUEL
GEOMETRY ORIGINAL
GROUP STRUCTURE FINE
INPUT LIBRARY ’ECCOLIB_ENDFB_80.1968"°

FIND_ELEMENTS_IN_LIST ! Apply self-shielding to elements in list
>U238° ... ’Pb208’ ! Isotopes on the 1968 ENDF/B-VIII.O ECCOLIB

FLUX SOLUTION CP P1 INCONSISTENT ORDER 1

BFROM 1

SELF SHIELDING NODBBSH
PROFILE COLLISION PROBABILITIES ROTH 6
CONDENSE 33 ! Condense 1968 XS into 33 group structure
1 82 142 202 262 322 382 442 502 564 !boundaries of 33 groups
624 686 746 808 868 928 988 1048 1108 1168 !in the 1968 structure
1228 1288 1336 1422 1480 1516 1579 1648 1708 1768
1837 1919 1952 ;
->STEP_4_FUEL
GEOMETRY ORIGINAL
GROUP STRUCTURE OTHER 33
FLUX SOLUTION CP P1 INCONSISTENT ORDER 1
SELF SHIELDING NODBBSH
PROFILE COLLISION PROBABILITIES ROTH 6
BUCKLING 0.0
-> STEP_b5_FUEL
HOMOGENISE ! Homogenise cross sections
GEOMETRY HOMOGENEOQOUS
GROUP STRUCTURE OTHER 33
FLUX SOLUTION FM P1 INCONSISTENT ORDER 1
BFROM 4
PRINT DATA FLUXES CROSS SECTIONS MICROSCOPIC VECTORS ;

Listing 5.3: The usual "reference route" adopted in ECCO is slightly revised by applying the
buckling equal to zero in each step. This guarantees coherence when the infinite fuel assembly
simulation is replicated in OpenMC. The flux-solution model adopted in the hexagonal geometry
is the collisional probability using the Roth method.

The analysis was performed on the internal fuel assembly of the LFR core, which is shown
in Figure 5.19. As for the heterogeneous fuel pin, since the vacuum regions are generally not
modelled in ECCO, the gap space was smeared with the fuel pellet, and the density of the MOX
material was corrected to conserve the fuel mass. The same approach was taken for the internal
channel, by modelling an entire fuel pin made of steel material with a reduced density. In
OpenMC, instead, the original geometry was preserved, and the void gaps in the central channel
and fuel pins are modelled. This time, as the aim was to model a scenario that resembles realistic
operating conditions, the fuel temperature was set at 1200 K while the cladding and coolant
temperatures were set at 600 K, according to the numerical benchmark specifications [12]. It
is expected that these settings have a significant impact on the cross sections, due to Doppler
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broadening of the resonances. However, the thermal expansions of the materials were neglected
according with the benchmark specifications.
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Figure 5.19: Sketch of the NEA LFR benchmark inner fuel assembly. Three materials are
distinguished: the MOX fuel (yellow), the fuel pin and external wrapper steel (grey) and the
coolant (blue). The geometrical configuration is described according to the NEA benchmark [12].

Table 5.12 shows a comparison of the infinite multiplication factor between ECCO and
OpenMC. Although it decreased, the difference between the two values remains similar to that
observed for the LFR fuel pin. Also for this geometry, the results are consistent with those in
Ref. [11].

ks LFR internal fuel assembly
OpenMC ECCO Abs. Diff. [pcm]
1.28690(1) 1.28463 -227

Table 5.12: LFR NEA benchmark, heterogeneous fuel assembly. Infinite multiplication factor
computed using OpenMC and ECCO with the ENDF/B-VIII.0 NDL. The standard deviation of
the Monte Carlo reference value is reported in parenthesis (in pcm).

Within the standard usage of ECCO, it is common practice to compute homogenised and
condensed cross sections, by using the 33 group structures, on a lattice level, for the succes-
sive core calculations within ERANOS. Therefore, the homogenised microscopic cross sections
produced by ECCO were compared with those computed in OpenMC using the same group
structure. Microscopic cross section homogenisation, for a nuclide n located in a cell with vol-
ume V,,, is performed by weighting the macroscopic cross sections across the entire domain and
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then dividing by the expanded nuclide density throughout the whole region, i.e.

(5.2)

where x stands for the partial reaction, g is the energy group, Vi is the volume of the entire
domain, N, is the nuclide density in the cell, and r is any of the R regions in which the
domain is subdivided within ECCO. The latter determines the ECCO approximation in the
above equation. In OpenMC, instead, the homogenised microscopic cross sections are evaluated
by numerical integration, computing the reaction rates and fluxes across the entire domain
(without applying any spatial filter). This avoids incurring in spatial approximations.

Figure 5.20 shows a comparison of the condensed and homogenised cross sections between
OpenMC and ECCO for the six most important nuclides. Unlike in the previous cases, the
relative errors change in both sign and magnitude in the thermal region. This could be a
possible result of the use of CPs, which introduce an additional source of error. In fact, these
are calculated applying the Roth X 6 model which represents an additional approximation with
respect to the fuel pin case where the CPs computation is analytical. Moreover, the geometry
modelled in ECCO is approximated with respect to OpenMC.

Notably, it is possible to see that significant errors are still evident for U-238 and Pb-208 in
the same energy interval as before. However, it can be seen that the magnitude of the error in the
capture cross section of the former nuclide has decreased significantly. This can be expected as
a result of the change in the operating conditions, i.e. the effect of the temperature on the cross
sections, which could partially reduce self-shielding effects, mitigating the consequences of the
lack of PTs. For Pb-208, however, the magnitude of the errors has not decreased significantly.
This suggests that the PT generation could be affected by a systematic issue that persists at
different temperatures.

In conclusion, the analysis of the LFR fuel assembly revealed that the errors in the cross
section result from two independent sources: discrepancies arising from incongruences in the self-
shielding treatment between ECCO and OpenMC, and errors originating from CPs and geometry
approximations. As discussed in the previous sections, the former are related to differences in the
NDLs of the deterministic and Monte Carlo codes. These provide the predominant contribution
to the error observed in the high-energy regions (typically the URR and continuum) in the
homogenised and condensed cross sections of the fuel assemblies. The error trends are consistent
with those observed for the LFR fuel pin, and eventually they decrease in magnitude due to a
change in operating conditions, as in the case of U-238.

In the RRR, however, significant errors that did not appear in the previous analysis of the
fuel pin are evident. This could be attributed to the CPs model having a predominant effect
over the self-shielding model, although the two contributions are not clearly distinguishable.
Furthermore, these errors are of less concern due to the limited interest in the low-energy region
for LFR applications. Nevertheless, the analysis could be extended in future by assessing the
individual contributions of the two error sources in the ECCO code, by numerically validating
the ECCO CPs model in addition to the self-shielding model, isolating both from discrepancies
arising from the NDLs. This would enable the simultaneous impact of the two error sources to
be determined.
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Figure 5.20: LFR NEA benchmark, heterogeneous fuel assembly. Relative errors (ECCO wvs.
OpenMC) in the homogenised and condensed microscopic cross sections of the six most important
nuclides. The relative errors are shown using the 33 group structure.

5.4 Conclusions

Building on the analysis conducted by P. Jacquet in his PhD thesis [9], the ECCO self-shielding
model was numerically validated for LFR cells. Since the computation of self-shielded cross
sections differs in homogeneous and heterogeneous media (see Chapter 2), both scenarios were
analysed. For each medium, the cross sections calculated using ECCO were compared with
those calculated using the OpenMC Monte Carlo code. First, an attempt was made to replicate
Jacquet’s results for simplified SFR cells. In his work, Jacquet used the TRIPOLI-4® Monte
Carlo code as a reference for the validation, alongside the JEFF-3.1 NDL. Therefore, the same
library was used for the internal reproducibility tests in ECCO and OpenMC. While the ECCO
calculations for the infinite multiplication factor and cross sections matched Jacquet’s results
exactly, discrepancies were found in the fission cross section of Pu-239 within the URR between
OpenMC and TRIPOLI-4®. However, the good agreement between OpenMC and TRIPOLI-4®
for the capture cross section of U-238 supported the validity of OpenMC simulations. Such
discrepancies were therefore deemed to arise from incongruences in the NDL generation between
OpenMC and TRIPOLI-4®. The latter indeed shares with ECCO the same methodology to
generate PT within the URR, which could explain why such discrepancies do not appear between
the two codes.
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Consequently, the analysis proceeded using the more modern ENDF /B-VIII.0 NDL, which
is adopted by the newcleo company for designing its LFR units. Using this library in both
ECCO and OpenMC produced consistent results for Pu-239, whereas significant discrepancies
were found in the U-238 capture cross section, once again within the URR. A refined analysis of
the ECCO library revealed that PTs are absent within the URR for this nuclide. This explains
the errors in the cross sections, as supported by additional calculations using the Serpent2 Monte
Carlo code. Therefore, the analysis was performed on a case representative of LFR applications
such as the NEA lead-cooled fast reactor benchmark [12]. The heterogeneous and homogeneous
fuel pins were simulated using ECCO and OpenMC, with a temperature of 293 K imposed in the
medium. The self-shielding effect is in fact expected to be more pronounced at low temperatures,
where the resonances are narrower. As the LFR benchmark fuel pin is a more complex mixture
than the simplified SFR fuel pin, more nuclides were monitored.

In both geometries, significant discrepancies were again found in the U-238 capture cross
sections within the URR, due to the lack of PTs data. The same issue was found for U-235, but
this had minimal impact on the accuracy of the cross section due to the nuclide’s high dilution
in the benchmark medium. Nevertheless, the lack of PTs for U-235 could produce non-negligible
effects in different mixtures. Furthermore, large errors were found in the elastic scattering cross
sections of the lead isotopes, which turned out to be the greatest among the errors evaluated
for all nuclides. In particular, the discrepancies were found in energy groups where PTs are
present in the ECCOLIB. Therefore, these errors were deemed to arise from inconsistencies in
the preparation of the cross section data for the OpenMC and ECCO NDLs, performed by
the NJOY RECONR module for the former and the CALENDF code for the latter. For other
nuclides, such as O-16, Pu-241, and Fe-56, good agreement was found between OpenMC and
ECCO.

The analysis was then repeated on the LFR benchmark fuel assembly. This context is
of interest because it is closer to the purpose of the ECCO cell code in a design framework,
which is the preparation of condensed and homogenised cross sections at the lattice level. In
order to resemble a realistic design procedure, the assembly was modelled with temperature and
geometries according to the numerical benchmark [12]. In particular, the higher temperatures
are expected to significantly impact the self-shielding effects, compared to the previous case of
a fuel pin at room temperature. The validation process identified two main sources of error:
the self-shielding module (related, as described above, to the NDLs) and the CPs module. The
former was found to be the predominant error source in the URR and continuum ranges of several
nuclides. The latter instead showed to significantly affect the low-energy region. Furthermore,
changing the operating conditions notably reduced the magnitude of the error for U-238, whereas
it remained unchanged for the lead isotopes.

In light of the above results, it can be concluded that validating the ECCO self-shielding
module, using the ENDF/B-VIII.O, is complicated by errors primarily arising from inconsis-
tencies in the NDLs between ECCO and OpenMC. While it was possible to assess the errors
related to the self-shielding module for a set of isotopes, such as Pu-239, Pu-241, and O-16,
the same could not be achieved for U-238 and lead isotopes, due to errors arising from the
NDLs overshadowing those from the self-shielding treatment. Similar issues also emerged for
plutonium isotopes when calculations were performed using the JEFF-3.1 NDL, which were not
found by Jacquet due to the uniformity of the nuclear data for the URR treatment between
ECCO and TRIPOLI-4®. This analysis therefore highlights the crucial requirement for con-
sistency in the generation of NDLs for deterministic and stochastic codes in order to ensure
an accurate validation activity. Achieving this would enable the validation to be extended to
the CPs module in future work. This would allow the simultaneous impacts of self-shielding
and CPs approximations in heterogeneous geometries, such as fuel assemblies, to be assessed
individually.
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Chapter 6

Impact of the cross sections discrep-
ancies on the multiplication factor and
Doppler reactivity change

The numerical validation of the ECCO self-shielding module with the ENDF/B-VIIL.0 EC-
COLIB, as detailed in Chapter 5, revealed significant discrepancies between the self-shielded
cross sections, evaluated using ECCO and OpenMC. Analysis of the errors showed that they
primarily originate from the data contained in the ECCO library for the treatment of the self-
shielding effect. These discrepancies were observed in very simple media, such as a homogeneous
and infinite LFR fuel pin, as well as in more realistic cases, such as an LFR fuel assembly. While
simple media were analysed to isolate the errors related to the NDL from those originating from
other modules, the fuel assembly was studied to resemble actual applications of the ECCO cell
code, although the errors could not be isolated from those arising from the collision probabilities
module.

The validation process requires identifying and quantifying all potential sources of error
with the aim of minimising them as much as possible. Although errors in the cross sections
have been identified and quantified, their influence on the neutronic design variables of interest
has yet to be determined. This chapter therefore aims to assess the impact of the observed
differences in two distinct cases: the LFR fuel pin and core of the NEA lead-cooled fast reactor
benchmark [12, 64, 65, 66], respectively. While the former is of interest for validation purposes
and was indeed used in Chapter 5 to isolate the numerical errors in the self-shielding module,
the latter represents a typical design framework. Specifically, the objective is to evaluate the
impact of errors in the cross sections originating from the NDL on the multiplication factor and
on the Doppler reactivity change. This is achieved by means of a Decomposition Analysis (DA),
as outlined below.

6.1 Principles of a Decomposition Analysis

The DA is a procedure that employs the sensitivity coefficients to determine the impact of
differences in the nuclear data on the integral parameters. The definition of the SC in (1.75)
can be rearranged as

—_ = S(kz,ai) 5 (61)
k i
where the approximation is derived from the fact that the SCs obtained using a first-order
approximation are used alongside discrete variations in the cross sections. In fact, the first-
order approximated SPT only derives SCs for small perturbations in the elementary parameters.
However, the intention here is to apply this equation to discrepancies in the cross sections
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between ECCO and OpenMC. As observed in Chapter 5, these differences are significant for
specific nuclides and reactions. For example, the errors peaked at approximately 2% and 8%
for the capture and elastic scattering cross sections of U-238 and Pb-208, respectively, in the
LFR heterogeneous and infinite fuel pin (with the ECCO 33 group structure, see Figure 5.18).
Nevertheless, this approach enables the multiplication factor discrepancy between ECCO and
OpenMC to be broken down into the contributions of the differences observed between the
two codes in the cross sections for each reaction and nuclide. Individual contributions can be
estimated (subject to the limitations of the first-order approximation) by making the terms in
the above equation explicit, which leads to

ECCO\ 9. Jremte — gfeco
Ak =k — kECCO = S(k‘, g; ) C O.ECCOZ kEC’CO~ (62)
i

The above equation provides an estimate of the variation in the ECCO multiplication factor
that could be expected if the ECCO reference system were to be perturbed using the OpenMC
cross sections. By excluding the contributions of other numerical modules to the multiplication
factor and repeating this process for each nuclide and reaction, the sum of the contributions
would be consistent with the discrepancy observed between ECCO and OpenMC. Analogously,
the same analysis can be conducted on the Doppler reactivity change between two states at
different temperatures, leading to

OpenMC O_ECCO

i 7

‘ O-.ECCO ApECCO- (63)
7

g
A(Ap) = Ap — Appcco = S(Ap, a7 “0)

6.2 Decomposition Analysis in the LFR fuel pin

The decomposition analysis started with the LFR fuel pin of the NEA benchmark [12]. This
geometry was analysed in Chapter 5 for the validation of the ECCO self-shielding module, and
the observed errors in the cross sections were deemed to originate from the nuclear data in the
ECCOLIB. However, these errors were amplified by unphysical operating conditions, particularly
with regard to temperature. In the following, the impact of these discrepancies on the infinite
multiplication factor and Doppler reactivity change is assessed.

6.2.1 Decomposition Analysis of the infinite multiplication factor in the LFR
fuel pin

The analysis performed in Section 5.2.1 on the heterogeneous fuel pin revealed a difference
of 296 pcm in the infinite multiplication factor between OpenMC and ECCO. As the U-238
capture cross section calculated by ECCO in the URR was overestimated compared to that
calculated using OpenMC, this was considered the cause of the underestimation of the infinite
multiplication factor. To quantify this assumption, the DA based on Eq. (6.2) was conducted.

This required the use of ERANOS tools to derive the SCs for the infinite multiplication
factor of the LFR fuel pin. The same methodologies employed in Chapter 4 were used to derive
the SCs using the first-order SPT and the BISTRO R-Z solver on the equivalent cylindrical
fuel pin, which was described in Section 5.2.1. The SCs for some of the most relevant nuclides
are shown in Figure 6.1. As it was done for the LFR core, these SCs were integrated over all
the 33 energy groups and broken down into the five main partial reactions. Once again, the
predominant impact of U-238 and Pu-239 is evident. The figure also illustrates the negligible
contributions of Fe-56 and Pb-208.

Consequently, the 33-group SCs were multiplied by the cross section relative errors (OpenMC
vs. ECCO) in each group. As outlined in the introduction of this chapter, the result of this
operation is the relative variation in the infinite multiplication factor with respect to the ECCO
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Figure 6.1: LFR NEA benchmark, heterogeneous fuel pin at 294 K. The energy-integrated sensi-
tivity coefficients for the infinite multiplication factor are shown for the most important nuclides
and reactions.

reference state (Ak/kpcco), as if it were perturbed using the OpenMC cross sections. The rel-
ative variation of the infinite multiplication factor due to U-238 captures and Pb-208 scattering
is shown in Figure 6.2, alongside the corresponding cross sections relative errors.

Since the SCs for both U-238 captures and Pb-208 scattering are negative, the variation
in the infinite multiplication factor has opposite sign to the cross section error. Furthermore,
the difference in magnitude of the U-238 and Pb-208 SCs clearly determine a different effect
on the infinite multiplication factor. In the former case, large SCs enhance the variation in the
infinite multiplication factor induced by the errors in the capture cross section within the URR.
Conversely, although the errors in the elastic scattering cross section of Pb-208 are larger than
those of U-238, the variation in the infinite multiplication factor is much smaller in magnitude.
Therefore, the effect of the discrepancies in the Pb-208 isotope is, to a certain extent, damped.

Finally, the ko, relative variation due to the error on the self-shielded cross sections were
summed within the three-group structure of U-238 and multiplied by the infinite multiplication
factor calculated using ECCO. As a result, the absolute impact Ak of U-238 and Pb-208 in the
RRR, URR, and continuum of the former isotope could be computed. The results are shown
in Figure 6.3. The largest contribution comes from the U-238 capture cross section within the
URR. Chapter 5 showed that errors in the U-238 capture cross section are primarily due to a lack
of PTs data within the URR in the ENDF/B-VIIL.0 ECCO library. Given the current DA, it can
be concluded that the absence of these data accounts for 213 pcm, approximately two-thirds of
the 296 pcm discrepancy in the ko, of the LFR fuel pin, observed between OpenMC and ECCO.
Therefore, it would be suggested to revise the ENDF /B-VIII.0 ECCOLIB production workflow
to refine the URR treatment of U-238. Using properly evaluated data containing PTs (such
as those in OpenMC) would reduce the difference in the infinite multiplication factor between
OpenMC and ECCO by more than 200 pcm. Otherwise, the validation activity performed using
the ENDF/B-VIIL.0O ECCO library would be complicated by the fact that errors in the NDL
would overshadow the errors in the solution schemes.
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Figure 6.2: LFR NEA benchmark, heterogeneous fuel pin at 294 K. The relative impact (blue
line) on the infinite multiplication factor, Ak/kpcco, is assessed using a 33 group structure
and the ENDF/B-VIII.0 NDL, taking the product between SCs for the fuel pin and the relative
errors (OpenMC with respect to ECCO, green line) in the U-238 capture cross section, 0538 v,
and in the Pb-208 elastic scattering cross sections, o "Fb  The black dashed lines indicate the
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Figure 6.3: LFR NEA benchmark, heterogeneous fuel pin at 294 K. The absolute variation in
the infinite multiplication factor is assessed in the RRR, URR, and continuum of U-238, by

summing the contributions from errors in the cross sections obtained using a 33 group structure
and the ENDF/B-VIII.0 NDL.
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6.2.2 Decomposition Analysis of the Doppler reactivity change in the LFR
fuel pin

Building on the previous analysis, the impact on the Doppler reactivity change of the LFR fuel
pin was assessed. Since the choice of the temperature interval can influence the Doppler reactivity
change [76] four different fuel temperature values were examined. These values correspond to
those at which the NDL was generated for OpenMC. However, this means that errors resulting
from temperature interpolation in ECCO cannot be ruled out. Nevertheless, it has been shown
in the work of S. Rahlfs [8] that the impact of temperature interpolations on the reactivity is
generally small.

Table 6.1 shows the infinite multiplication factor evaluated using ECCO and OpenMC with
the ENDF/B-VIIIL.0 NDL, for each of the four temperature values. For each pair of temperatures,
the reactivity change between the higher and lower temperature states is computed using both
codes. The absolute and relative differences between the results of the two codes (OpenMC
with respect to ECCO) are shown in Table 6.2. As it can be seen, the discrepancies between
ECCO and OpenMC vary for each pair of temperatures. This suggests that there could be other
sources of numerical error in addition to those originating from discrepancies in the NDLs.

Therefore, a decomposition analysis was performed on the 1200-2500 K states, where the
relative difference is at its minimum, and the 600-900 K states, where it is at its maximum.
However, it should be noted that the difference in the reactivity change between 1200 K and
2500 K is comparable to the statistical uncertainty. The SCs were derived using the first-order
EGPT for both pairs of states. However, when Eq. (6.3) is applied, it is not determined a priori
in which state the relative variation in the cross sections should be computed. For the purposes
of this study, the relative differences were computed in the lower-temperature state. In fact,
discrepancies coming from the resonance self-shielding treatment are expected to be larger at
lower temperatures, thus leading to a conservative approach.

Furthermore, since the Doppler effect is related to the broadening of cross sections reso-
nances, the SCs for the Doppler reactivity change can have a non-negligible impact at lower
energies, compared to the case of the SCs for the multiplication factor. Consequently, the im-
pact of other isotopes, especially the heavier ones, should not be ruled out. As observed in
Chapter 5, the ECCO code tends to exhibit larger discrepancies with respect to OpenMC in the
thermal and epithermal regions. Although is not possible to determine a priori whether these
discrepancies are related to NDLs, they could still have a non-negligible influence on the Doppler
reactivity change, even though they occur in a region of low influence in LFR applications.

ks LFR heterogeneous fuel pin

900 K 1200 K 2500 K
ECCO OpenMC ECCO OpenMC ECCO OpenMC
1.35546  1.35767 (£ 1) | 1.35329 1.35540 (£ 1) | 1.34818 1.35026 (£ 1)
600 K ECCO 1.35864 -172.55 -290.85 -571.14
OpenMC  1.36104 (+ 1) 1182.37 (+ 2) -305.73 (+ 2) -586.58 (+ 2)
3 ECCO 1.35546 -118.30 -398.58
= 900 K
OpenMC  1.35767 (£ 1) 1123.36 (+ 2) 404.21 (+ 2)
1200 K ECCO 1.35329 -280.28
OpenMC 1.35540 (£ 1) -280.85 (£ 2)

Table 6.1: LFR NEA benchmark, heterogeneous fuel pin. The infinite multiplication factor is
evaluated using ECCO and OpenMC with the ENDF/B-VIII.0 NDL at four different MOX fuel
temperatures. The Doppler reactivity change, between the higher and lower temperature states,
is computed and reported (in pcm) in the central part of the table for each pair of temperature
values. The statistical uncertainty of the MC results is reported in pcm between brackets.
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A(Ap) LFR heterogeneous fuel pin
900 K 1200 K 2500 K
Abs. Diff. [pem] 9.82 1488  15.44

600 K pol pit. (%] 560 5.2 2.70
Abs. Diff.  [pcm] 5.06 -5.63
900K po pift. (% 428 -1.39
Abs. Diff.  [pcm] -0.57
1200 K pol pi. 9 20.20

Table 6.2: LFR NEA benchmark, heterogeneous fuel pin. The absolute and relative differences
in the Doppler reactivity change are computed for OpenMC with respect to ECCO, using the
ENDF/B-VIII.0 NDL.

Therefore, the DA was performed including several isotopes, as shown in Figure 6.4. The
isotopes for which the DA was performed are only a small selection of those that have the greatest
influence on the Doppler reactivity change, as determined by the ranking made in Chapter 4.
Other isotopes, such as O-16, Fe-56, and Pu-240, were intentionally omitted, since Chapter 5
showed that the errors in their cross sections are generally small. Therefore, these isotopes are
expected to have a negligible influence in the current DA. The absolute variation in the Doppler
reactivity change, A(Ap), is broken down into the contributions from the cross sections errors
in the RRR, URR, and continuum of their respective nuclides. It can be seen that Pu-241 has a
significant impact in the URR. This could be explained by the energy bounds of the unresolved
range of Pu-241 being in the epithermal region, which is where ECCO produces largest errors.
Lead isotopes, which are lighter elements with resonances at higher energies than fissile isotopes,
contribute more in the continuum energy range (considering the three energy regions of U-238),
where the errors in the cross sections are also larger. The impact of U-238 capture cross section
discrepancies is once again grater in the URR than in the other regions.

However, when the absolute variations in the Doppler reactivity change, as determined
by the errors in the cross sections, are summed across all energy intervals and nuclides, the
sum is relatively small for both pairs of temperatures. This variation, in the order of 1 pcm, is
consistent with the value shown in Table 6.2 for the 1200-2500 K variation, although comparable
to the statistical uncertainty, but less than the value for the 600-900 K variation. This suggests
that the difference in the reactivity change, between ECCO and OpenMC, varies between pairs
of temperatures due to other sources of numerical error, rather than errors originating from the
self-shielding treatment using the PTs data in the ECCOLIB. Indeed, errors in the cross sections
determine a variation in the Doppler reactivity change that remains negligible and approximately
constant across different temperature intervals. Determining these other sources of error requires
further investigation. Nevertheless, variations of the order of pcm can be considered considerably
small for typical neutronic applications, especially given that the statistical uncertainty is of a
similar order of magnitude.

However, the requirements for a validation process differ significantly from those for a design
activity. The DA conducted on the fuel pin aimed to assess the impact of the errors in the cross
sections on the infinite multiplication factor. This geometry was modelled to simulate a highly
simplified medium, which enabled the errors originating from the self-shielding module to be
isolated from those related to other solution schemes. Nevertheless, the infinite multiplication
factor of the fuel pin is of little interest to neutronic analyses, which focus on parameters relevant
to the entire reactor system instead. Moreover, errors in the cross section are exacerbated by
low temperature values, which enhance the effect of self-shielding, but are not realistic for actual
design frameworks. The next sections therefore analyse a case study representative of realistic
LFR neutronic design applications, such as the LFR benchmark core [66, 12].
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Figure 6.4: LFR NEA benchmark, heterogeneous fuel pin. The absolute variation in Doppler
reactivity change due to cross section errors is broken down into the contributions from the RRR,
URR, and continuum of their respective nuclides. For the lead isotopes, the energy intervals
follow the usual U-238 convention used for this study. The impact on the Doppler reactivity
change is assessed between two pairs of fuel temperature values: 600-900 K above and 1200-2500
K below.

6.3 Decomposition Analysis in the LFR core

In Chapter 5 was observed that the errors in the cross section decreased when moving from a
toy-model made of a few resonant isotopes to a realistic LFR fuel element. Building on this
analysis, the impact of the discrepancies in the ECCO library was assessed within a framework
relevant for design applications: the LFR reactor core of the NEA numerical benchmark [12].
In this case, the SCs derived in Chapter 4 for the same geometry and operating conditions will
be employed.

6.3.1 Decomposition Analysis of the effective multiplication factor in the
LFR core

In the classical two-step approach, the homogenised and condensed cross sections, which are
evaluated at the lattice level, are used in subsequent core calculations. A rigorous DA would
require the use of the relative errors in these quantities, within Egs. (6.2) and (6.3), to assess
the impact on the LFR core.
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However, performing a DA with discrepancies in these quantities would include the impact
of other error sources, such as the ones introduced by homogenisation, condensation, CPs, and
leakage models. It would be impossible to determine whether the relative variations in the
variables of interest are caused by errors in the cross sections arising from the self-shielding
module and the ECCO NDL, or by errors in the cross sections originating from other modules.
Therefore, the DA will be performed using relative errors in the microscopic cross sections of the
infinite, heterogeneous LFR fuel pin under the operating conditions specified in the numerical
benchmark (1200 K for the fuel and 600 K for the cladding and coolant). It is assumed that
the errors in the self-shielding module affecting the fuel pin will persist identically in the fuel
assembly and could potentially be shadowed by the errors in other modules (CPs, condensation,
leakage, etc.), making this a conservative approach. This was partially observed in Chapter 5,
when the heterogeneous fuel pin and fuel assembly were evaluated. However, in that case, a
significant change in the magnitude of the cross section errors resulted from the change in the
operating conditions.

Nevertheless, it should be noted that this approach does not allow the impact of the self-
shielding module to be distinguished from that of the Doppler broadening and the temperature
interpolation. However, the result obtained is more representative than considering the fuel pin
at room temperature. Furthermore, it has been shown in the work of S. Rahlfs [8] that the
errors due to the temperature interpolation tend to be confined to the thermal region, where
the relative difference between ECCO and OpenMC is less significant due to greater statistical
uncertainty.

In order to quantify the discrepancies between OpenMC and ERANOS, the effective mul-
tiplication factor of the LFR benchmark core was evaluated using both codes. Table 6.3 shows
the results obtained using the 3D Nodal Variational Transport VARIANT code, which is imple-
mented in ERANOS [4], and the Monte Carlo code. Of the other transport codes available in
ERANOS, the VARIANT module was chosen as it provides the most accurate estimation of the
effective multiplication factor. Therefore, additional numerical errors unrelated to the nuclear
data in the ENDF/B-VIII.0 ECCOLIB are, in principle, ruled out.

VARIANT OpenMC  Abs. Diff. [pcm]
kep 104549 1.04778(2) 229

Table 6.3: LFR core under operating conditions according to the numerical benchmark specifica-
tions [12]. The effective multiplication factor is evaluated using the the VARIANT flux solver for
the 3D geometry. The results are compared with the OpenMC result for the same core geometry.
The ENDF/B-VIII.0 NDL is used. The standard deviation of the Monte Carlo reference value
is reported in parenthesis (in pcm).

Consequently, as it was done in the LFR fuel pin case, the DA was performed taking the
product between the relative variation in the cross sections of the heterogeneous pin and the
sensitivity coefficients derived for the entire core. These latter were described in Chapter 4.
As mentioned above, the cross sections and SCs were calculated this time by imposing the
temperatures in the various media according to the numerical benchmark specifications.

Figure 6.5 shows the relative impact on the effective multiplication factor of the reactor
core, broken down into the 33 group structure. As it can be seen, the relative errors in the cross
sections of U-238 and Pb-208 (OpenMC with respect to ECCO), evaluated for the heterogeneous
fuel pin under operating conditions according to the numerical benchmark specifications, are not
significantly different to those observed in Section 5.3 (ECCO with respect to OpenMC) for the
heterogeneous fuel assembly, under the same operating conditions. This supports the initial
hypothesis in the introduction to this section, which implied that errors in the NDL and the
self-shielding module, evaluated in the fuel pin, would persist in the fuel assembly when the
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same operating conditions were imposed.

Secondly, it can be seen that the relative variation in the core effective multiplication factor,
caused by errors in the cross sections of both isotopes, differs considerably from that of the fuel
pin case. For U-238, this is a consequence of the decrease in the magnitude of the relative errors.
Therefore, the relative variation in the effective multiplication factor also decreases. For Pb-208,
for which the magnitude of the relative errors has not decreased, the relative variation in the
effective multiplication factor of the core is significantly higher in modulus than for the fuel pin.
Furthermore, this variation has the opposite sign to that of the infinite multiplication factor of
the fuel pin. This is due to the change in the magnitude and sign of the SCs for the lead isotopes,
which differ notably between the fuel pin and the core. This result could be interpreted physically
as follows. In the fuel pin, the smaller OpenMC estimate of the Pb-208 elastic scattering cross
section results in decreased neutron transfer towards lower energies. This hardens the neutron
spectrum of the infinite cell. Consequently, higher-energy neutrons can exploit more fissions
in the heavy nuclides, and the relative errors in the scattering cross section can increase the
infinite multiplication factor. In the LFR benchmark core, where vacuum boundary conditions
are imposed, the smaller Pb-208 elastic scattering cross section values could enhance the neutron
leakage. Therefore, negative discrepancies in the scattering cross section can lead to negative
variations in the effective multiplication factor.
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Figure 6.5: LFR core under operating conditions according to the numerical benchmark specifi-
cations [12]. The relative variation in the effective multiplication factor (blue line) is assessed
using a 33 groups structure and the ENDF/B-VIII.0 NDL, taking the product between SCs for
the reactor core and the relative errors (OpenMC with respect to ECCO, green line) in the U-
238 capture cross section, 0538 U and in the Pb-208 elastic scattering cross sections, UiOSP b The
black dashed lines indicate the URR bounds of U-238.

This is made more evident in Figure 6.6, where the absolute variation in the effective
multiplication factor, induced by the cross sections relative errors, is broken down again into the
contributions of each isotope in the three-group energy structure of U-238. Absolute variation
is obtained by multiplying the relative variation by the effective multiplication factor calculated
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using the VARIANT module (see Table 6.3). In this case, the impact of U-238 within the URR
is considerably smaller than in the fuel pin case and, in magnitude, it is even smaller than
the impact of Pb-208 at high energies. Moreover, the two impacts have the opposite signs,
and therefore they partially cancel each other out. The same applies to Pb-206 and Pb-207,
whose contributions of opposite sign compensate each other within the continuum. When the
contributions of all nuclides are summed together, the impact on the effective multiplication
factor of the LFR benchmark core is considerably smaller than the discrepancy observed in
Table 6.3 between VARIANT and OpenMC. Given the compensation of the errors generated
in the NDLs discrepancies, it can be concluded that this difference is due to other sources of
numerical error.

100+ [ U-238 capture XS Pb-207 elastic XS
75 | Il Pb-208 elastic XS  HHH Pb-206 elastic XS

50

251

0 2
—251

Ak [pcm]

_50_

_75,

—100 RRR URR CONTINUUM

Figure 6.6: LFR core under operating conditions according to the numerical benchmark specifi-
cations [12]. The absolute variation in the effective multiplication factor is assessed in the RRR,
URR, and continuum of U-238, summing the contributions from errors in the cross sections ob-
tained using a 33 group structure and the ENDF/B-VIII.0 NDL.

6.3.2 Decomposition Analysis of the Doppler reactivity change in the LFR
core

As with the fuel pin case, the DA of the LFR benchmark core was concluded with the assessment
of the impact on the Doppler reactivity change. In line with Table 6.1, Table 6.4 shows the
effective multiplication factor calculated using the VARIANT module and OpenMC for the
same four MOX fuel temperature values (applied to both internal and external fuel assemblies,
i.e. FINN and FOUT). Additionally, both values of the reactivity change are calculated for each
pair of temperatures, between the higher and lower temperature states. Then, Table 6.5 shows
the absolute and relative variation between the Monte Carlo and ERANOS results. Once again,
the comparison is made between OpenMC and the VARIANT module, since the latter excludes
potential numerical errors arising from the approximations in other modules.

Unlike in the fuel pin case, where the relative difference was at its minimum for the 1200-
2500 K variation, in the LFR benchmark core it is at its maximum. The minimum relative
difference occurs for the 900-1200 K variation instead. However, in this case too, the absolute
difference between the two states is comparable to the statistical uncertainty. In line with the
analysis of the fuel pin, the decomposition analysis was performed for the Doppler reactivity
change between these two pairs of temperatures.
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| kess LFR benchmark core

900 K 1200 K 2500 K
VARIANT OpenMC VARIANT OpenMC VARIANT OpenMC

1.04742 1.04970 (£ 2) 1.04549 1.04778 (£ 2) 1.04077 1.04328 (£ 2)

600 K VARIANT 1.05019 -251.82 -428.07 -861.84
OpenMC  1.05242 (+ 2) -246.22 (+ 3) 42078 (& 3) -832.45 (£ 3)

§ 900 VARIANT 1.04742 -176.24 -610.02
< OpenMC  1.04970 (+ 2) 17457 (& 3) -586.23 (& 3)

1200 VARIANT 1.04549 -433.78
OpenMC  1.04778 (& 2) -411.66 (+ 3)

Table 6.4: LFR NEA benchmark core. The effective multiplication factor is evaluated using the
VARIANT module and OpenMC' at four different MOX fuel temperatures (in both the internal
and external fuel assemblies). The ENDF/B-VIII.0 NDL is used. The Doppler reactivity change,
between the higher and lower temperature states, is computed and reported (in pcm) in the central
part of the table for each pair of temperature values. The statistical uncertainty of the MC results
is reported in pcm in brackets.

A(Ap) LFR benchmark core
900 K 1200 K 2500 K

Abs. Diff. [pem] 5.6 7.98 29.40
600 K pol pif. (%] 223  -L70  -3.41
Abs. Diff.  [pcm] 1.68 23.79
900K o Dift. (%] 0.95  -3.90
Abs. Diff.  [pcm] 22.12
1200 K pol pifr. 9 5.10

Table 6.5: LFR NEA benchmark core. The absolute and relative differences in the Doppler
reactivity change are computed for OpenMC with respect to the VARIANT module, using the
ENDF/B-VIII.0 NDL.

Figure 6.7 shows the absolute impact on the Doppler reactivity change for the same nuclides
analysed in the fuel pin case. Looking at the picture, it can be seen the change in the sign of
contributions of some nuclides, such as Pb-206, Pb-208, and Pu-239. Moreover, the variation in
the magnitude of the contributions between the two pairs of temperatures is more pronounced
than in the fuel pin case, with the errors impact being slightly larger for the 1200-2500 K
variation. This is also the interval in which the VARIANT-OpenMC variation is greatest.
However, as in the fuel pin case, the absolute impact of the discrepancies in the NDLs on the
Doppler reactivity change is negligible. As it was concluded for the fuel pin case, discrepancies
in the reactivity change can be attributed to other sources of numerical error.

6.4 Conclusions about the Decomposition Analysis

In order to assess the impact of the discrepancies observed in Chapter 5 between ECCO and
OpenMC, particularly for U-238 and the lead isotopes, a decomposition analysis was performed.
This type of analysis is performed by multiplying the sensitivity coefficients by the relative errors
in the cross sections. Thanks to the definition of the SCs, it is possible to individually determine
the contribution of these discrepancies to the differences observed between the two codes for a
given variable of interest. The dissimilarities in the ENDF/B-VIIL.0 NDLs, between OpenMC
and ECCO, were deemed to be the main cause of the cross sections errors. Therefore, by means
of the DA, it was possible to determine how the quality of the ECCO results would improve if
these inconsistencies were corrected.
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Figure 6.7: LFR NEA benchmark core. The absolute variation in the Doppler reactivity change
due to errors in the cross sections is broken down into the contributions from the RRR, URR,
and continuum of their respective nuclides. For the lead isotopes, the energy intervals follow the
usual U-238 convention of this study. The impact on the Doppler reactivity change is assessed
between two pairs of fuel temperature values: 900-1200 K above and 1200-2500 K below.

Chapter 5 showed that, although the errors in the cross sections originate mainly from dif-
ferences in the NDLs, they can be significantly influenced by the operating conditions applied,
particularly with regard to temperature. This was a concern, as unrealistic temperature values
(293 K) were required to isolate numerical errors during the validation process. Furthermore,
when the ECCO cell code is used in more realistic frameworks, such as assembly-level calcu-
lations, additional solution schemes may cause numerical errors that overshadow those arising
from the NDLs. Therefore, the DA was performed for two representative cases: the heteroge-
neous LFR fuel pin, at room temperature, and the LFR reactor core, under operating conditions
in accordance with the NEA numerical benchmark specifications [12]. In both cases, the analysis
was performed by multiplying the relative errors in the cross sections (calculated for the fuel pin)
by the respective SCs. These were derived following the methodologies described in Chapter 4
for both geometries and operating conditions. As the SCs were derived for the multiplication
factor and Doppler reactivity change, the DA was performed for these quantities. The variations
in these quantities were first assessed using a 33 group structure, and then by summing the con-
tributions in each of the usual three-groups structure (RRR, URR, and continuum). However,
using SCs derived with the first-order approximation in conjunction with discrepancies in the
cross-sections that are not small can negatively impact the accuracy of the analysis. Another
limitation arises from the fact that the SCs are derived using the BISTRO solver for an R-Z ge-
ometry, whereas the comparisons of the integral parameters are made for the actual the reactor
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core geometry.

Different trends are observed in the fuel pin and the reactor core with regard to the multipli-
cation factor. In the former, errors in the cross sections tend to be higher, particularly for U-238
within the URR, due to the lower applied temperature. Moreover, the impact of lead isotopes
SCs is minimal. Consequently, 213 out of 296 pcm difference observed between OpenMC and
ECCO for the infinite multiplication factor originate from the errors in the capture cross section
of U-238 within the URR, while the impact of Pb-208 is negligible. These errors in the capture
cross section of U-238 were attributed to the lack of PTs within the URR in the ENDF /B-VIII.0
ECCOLIB. This suggests that adding these data to the library would reduce the discrepancy
observed between ECCO and the Monte Carlo code by approximately two-thirds. In the reactor
core instead, the increase in the temperature values significantly decreases the errors for U-238.
Furthermore, the relative concentration of U-238 in relation to the total amount of materials is
much smaller in the reactor core than in the fuel pin. Therefore, the effect of lead on neutron
leakage could predominate, with the coolant significantly influencing the effective multiplication
factor. This could potentially explain the variation in the sensitivity coefficients for the infinite
and effective multiplication factors of the fuel pin and reactor core, respectively. Thus, at high
energies, the impact of Pb-208 is greater than that of U-238 within the URR, and they partially
compensate each other due to contributions of opposite signs. The same applies to Pb-206 and
Pb-207. Therefore, the discrepancy observed in the core effective multiplication factor, between
ERANOS and OpenMC, can be attributed to other sources of error. Furthermore, this analysis
only considered a limited number of reactions and nuclides located in the internal and external
fuel assemblies. Future work should extend the DA to include nuclides present in other regions
of the reactor. If significant discrepancies were to occur between ECCO and OpenMC for nu-
clides and reactions in regions not included here, this could potentially explain the discrepancy
observed between ERANOS and OpenMC in the effective multiplication factor. In that sense,
influence on neutron leakage of discrepancies in the lead self-shielding treatment in different
regions of the reactor should be investigated.

Regarding the impact on the Doppler reactivity change, this was evaluated at different MOX
fuel temperatures. In the case of the reactor, the fuel temperature was set for both the internal
and external fuel assemblies. Considerably small differences between ECCO (or ERANOS) and
OpenMC Doppler reactivity change are generally observed in both the fuel pin and the reactor
core. In particular, the DA revealed that the impacts of the errors in the cross sections of each
nuclide tend to be mild, and they usually cancel each other out. For pairs of temperatures for
which the discrepancies between the two codes are greater, the differences can be attributed to
other sources of numerical error. To determine these sources, further investigations are required.

In conclusion, it can be claimed that the errors in the cross sections, generated from inconsis-
tencies in the NDLs do not have a significant impact on the ECCO and ERANOS calculations
during standard procedures, typical of design calculations, employed for the LFR numerical
benchmark. However, it must be emphasised that a single case may not be fully representa-
tive of any kind of LFR system and that further investigation of other configurations may be
required. Indeed, the impact on the LFR benchmark core is of little concern due to errors com-
pensation effects, which may not occur in other systems. Nevertheless, the DA revealed that
the inconsistencies in the NDLs can excessively complicate the validation process, as the errors
they generate tend to overshadow those originating from the numerical schemes. Therefore, it
is suggested that the discrepancies in the NDLs be addressed in order to determine their origin
and correct them accordingly. This would facilitate the numerical validation of the ECCO cell
code with a modern set of data, such as the ENDF/B-VIIL.0 NDL.
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Chapter 7

Analysis of discrepancies origin within
the ECCOLIB production workflow

The previous part of this work delved into the analysis of an ENDF/B-VIIL.0 based ECCO
library, which is used by the newcleo team and which is the result of an independent evaluation.
The study has highlighted some issues with U-238 and the lead isotopes, and a decomposition
analysis was performed assessing the impact of these differences. Furthermore, a comparison
with the JEFF-3.1 ECCOLIB, which is part of the ERANOS code distribution [44], has revealed
that the lead isotopes are affected by a common issue in both libraries.

Following the conclusion of the Super-Phénix experience, the ERANOS distribution has
not undergone significant developments [69]. This also applies to the system of codes, described
in Chapter 3, for creating an ECCO NDL. In contrast, more recent NDLs have been developed
following the release of the JEFF-3.1 and JEFF-3.1.1 ECCO libraries [80, 44]. Meanwhile, only a
few studies dealt with the production of ECCO libraries using modern data [81, 82]. Therefore,
the final part of this work aims at doing the root causes of the discrepancies previously described
within the ECCOLIB production workflow. This will clarify whether any further modernisation
work is required on the ECCOLIB production workflow.

7.1 Manipulation of the ECCOLIB production workflow for the
handling of the lead isotopes errors

In the work of W.F.G. van Rooijen [82] new ECCO libraries were produced based on the
JENDL-4.0 [83], JEFF-3.1.2 [84], and ENDF/B-VII.0 [85] NDLs. ERANOS calculations were
then performed using the new libraries and the results were compared with those of the ZEBRA
MOZART numerical benchmark [86]. The benchmark values were obtained using the Monte
Carlo code MCNP [78].

As described in Chapter 3, the MERGE code allows the user to prioritise either the NJOY
or CALENDF multigroup cross section values, adjusting the output values of one of the two
codes to match those of the preferred code. Generally, it is a standard procedure to prioritise the
CALENDF values [46, 44]. However, in his study van Rooijen pointed out that the ERANOS
results were in better agreement with those of the MCNP code when preference was given to
the NJOY values [82]. This can be expected, as the MCNP code uses NJOY to produce its
NDL, employing the same methodologies for Doppler broadening, resonance reconstruction, and
linear interpolation, among others, as those described in Chapter 3 for OpenMC. Therefore,
the discrepancies observed in Chapter 5 between ECCO and OpenMC, particularly for the lead
isotopes, may similarly be caused by discrepancies between NJOY and CALENDF.
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7.1.1 Replica of the original JEFF-3.1 ECCOLIB

In order to conduct a detailed investigation, the suite of codes for the generation of ECCO
libraries described in Chapter 3 was revised and put to good use to generate ECCOLIB files
for selected isotopes. The NJOY, CALENDF, MERGE, and GECCO codes were set in place
using input files according to the CEA JEFF-3.1 ECCOLIB specifications [44]. The aim was
to replicate the existing JEFF-3.1 ECCOLIB, for the target isotope, to validate the production
workflow and the set of input data used to generate the new library. However, it must be
remarked that for the generation of the original CEA JEFF-3.1 ECCOLIB the NJOY-99.90
and CALENDF-2005 versions of the codes were used [44]. For this work, instead, the more
recent and up-to-date versions of the codes, namely NJOY-2016 and CALENDF-2010, were
used. Therefore, some minor discrepancies could be expected. Regarding the other codes, in
line with the original libraries, the MERGE-3.8 and GECCO-1.4 versions were used.

Using the codes mentioned above, separate ECCOLIB files were generated for all the nu-
clides present in the JEFF-3.1 ECCOLIB of the ERANOS distribution. The following focusses
on Pb-206, Pb-207, and Pb-208. The input files used for the generation of a library for Pb-208,
in the 1968 group structure, are given in Appendix G. Using the ERANOS procedure shown in
Listing 7.1, the infinite diluted energy-averaged cross sections were exported from the internally
produced library and the original JEFF-3.1 ECCOLIB, using the same group structure.

ECCO_FILE_EDITION

REFERENCE_FILE ’NEWCLEO.REF’ ! Or ECCOLIB_JEFF_31.REF
FILE ’NEWCLEO.1968°’ ! Or ECCOLIB_JEFF_31.1968
ISOTOPE °’Pb208° 1 2 1 1968 ; ! Same for Pb-207 and Pb-206

Listing 7.1: ERANOS routine used to print the values of the infinite diluted cross sections with
the 1968 group structure, stored in the ECCOLIB files.

Once infinite diluted cross sections were obtained, for both libraries, the ratio within each
of the 1968 groups was taken. Figure 7.1 shows the results of a comparison between the two
libraries for Pb-208 at 293 K. Looking at the picture, it can be noted that the two data sets
are in excellent agreement, with the discrepancy between the two being negligible for most of
the group and reactions. For the capture reaction only, non-negligible discrepancies occur in the
low-energy region. However, given the very small values of the capture reaction in this range,
these differences are of low concern and could be attributed to the numerical precision of the
codes.

As a further step in the internal validation of the libraries, these were tested within the
ECCO cell code. A simple, infinite, and homogeneous medium at 293 K was simulated, consisting
only of the tested isotope. As this medium contains only the lead isotopes and no fissile isotopes,
this had to be treated as a sub-critical medium within ECCO. The external imposed flux was
taken from the homogeneous, infinite LFR fuel pin analysed in Chapter 5. Listing 7.2 shows
the single-step calculation performed within the code using the 1968 group structure. Then, the
cross sections were condensed into the 33 group structure.

Table 7.1 shows a comparison of the group-averaged cross sections, calculated using the
original CEA and the newcleo JEFF-3.1 ECCO libraries, for a homogeneous medium made of
pure Pb-208. Once again, significant discrepancies are present only in the capture cross section,
but as before, the very small values of the cross section make these discrepancies negligible. As
a good agreement was also found for the other lead isotopes, the replica of the original JEFF-3.1
ECCOLIB for these nuclides can be considered successful.
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Figure 7.1: The 1968-group infinite diluted cross sections of Pb-208 are printed as stored in the
ECCOLIB produced internally at newcleo. Below, the ratio with the CEA original JEFF-3.1
ECCOLIB is taken for the main partial reactions.
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->STEP_1_FUEL_IN
GROUP STRUCTURE OTHER 1968

FLUX SOLUTION FM P1 CONSISTENT ORDER 1
GEOMETRY HOMOGENEQUS

FIND_ELEMENTS_IN_LIST ’Pb208° ! Or Pb-207 or Pb-206
INPUT LIBRARY ’NEWCLEO.1968° ! Or ECCOLIB_JEFF_31.1968
SUBCRITICAL FLUXB ’FLUX1968°’ ! From LFR homogeneous fuel pin

BUCKLING 0.0

SELF SHIELDING DBBSH

CONDENSE 33 ! Condense 1968 XS into 33 group structure
1 82 142 202 262 322 382 442 502 564 !boundaries of 33 groups
624 686 746 808 868 928 988 1048 1108 1168 !in the 1968 structure
1228 1288 1336 1422 1480 1516 1579 1648 1708 1768
1837 1919 1952 ;

PRINT DATA FLUXES CROSS SECTIONS MICROSCOPIC VECTORS;

Listing 7.2: Single-step calculation performed within the ECCO cell code with an external
imposed fluz.

7.1.2 Analysis of NJOY and CALENDF discrepancies

The JEFF-3.1 ECCOLIB replica for the lead isotopes ensured that the internal processing work-
flow was correct and that no errors were made when handling the raw data. As mentioned above,
the findings of van Rooijen suggest that using NJOY as a reference to adjust accordingly the
CALENDF PTs within the MERGE code could decrease the discrepancy between ERANOS and
a Monte Carlo code that uses NDLs processed with NJOY. Since it is a standard procedure to
normalise the NJOY values instead, using those of CALENDF as a reference, eventual incoher-
ences between NJOY and CALENDF could generate the discrepancies observed in Chapter 5
between ECCO and OpenMC. Therefore, the internally produced output files of NJOY and
CALENDF were analysed. Figure 7.2 shows a comparison of the elastic scattering cross sections
generated by CALENDF and NJOY for Pb-208 using the JEFF-3.1 NDL, before the MERGE
and GECCO codes manipulate the data and apply the correcting factors. Two sets of data
at 293 K were compared: the pointwise data in the PENDF file, which are reconstructed by
CALENDF and the NJOY RECONR module, and the multigroup data in the 1968 and 295
group structures. The latter are the infinite diluted energy-averaged cross sections calculated
by the GROUPR module for NJOY, and the infinite diluted cross sections calculated from the
probability tables as described in Chapter 3, for CALENDF. The NJOY and CALENDF in-
put files used to generate the multigroup cross section in the 295 group structure are given in
Appendix G.

Looking at the pictures, it can be seen that the discrepancies in the 295 group structure
have the identical shape to that observed in Section 5.1.2.3, where the Pb-208 elastic scattering
cross section produced by ECCO was compared with that of OpenMC for the homogeneous LFR
fuel pin. Although these discrepancies were observed when using the ENDF /B-VIII.0 NDL, it
was observed in Section 5.1.4 that the Pb-208 elastic scattering cross section exhibited similar
discrepancies in the JEFF-3.1 NDL. Moreover, the discrepancies between the two codes are
evident in the same energy interval for the pointwise data. This suggests that the discrepancies
observed in the group-averaged cross sections originate from the two codes performing a different
reconstruction of the pointwise data, starting from the raw ENDF-6 tapes. Such discrepancies,
outside the URR, are generally not observed for other isotopes [87].

Figure 7.3 shows a comparison of the elastic scattering cross sections of Pb-206 and Pb-207
produced using the 295 group structure, as calculated by NJOY and CALENDF. Also in this
case, the shape of the differences is similar to that observed between ECCO and OpenMC for
the LFR fuel pin (see Figure 5.14).

108




7.1. Manipulation of the ECCOLIB production workflow for the handling of the lead isotopes

errors

"0 G*() 200QD UIYM PAL UL PUD ‘Of G*() PUD 94 [°() UIIMNIAQq 2bUDLO UL ‘95 [*() MO]JAq

uYM uaLb U PaybLYbrYy 94D §aN)DA U0LLD 2029D]PY PAINAUWL0D §1 (fi4DAQY [PUIDLLO YT 07 199dSaL YN 02]OMAU) IUB[1P 202ID]2L DY) PUD ‘DUNIONUAIS ANOLE

£& Y] 0JUL PISUIPUOI 94D SUOLIIIS SSOLD Y, "S9LLDLQY Y10q bUIST ‘Q0E-qd
PIIDINIIDI 94D SUOLPIDIL |DILDA UIDUL PUD JDIOF Y] 4Of SUO0JIIS SSOLD YT,

flyuo bururnguod wnipaw snoduabowoy puv a2ppulur un buvmurs ‘ONDH UyRm
“U0s1DAUL0D $34D49Y) ODDH T °E-AAAL 021PMAU puv YHD [0upbii) 17, 2190

969°4¢- VO-HIVEY'E  €C-UPEVE'E  00+H0000°0
L88°€- - 70-HOLTZ'T  00+H0000°0  00+EH0000°0
86T'8T- - G0-H¢¥¢9'S  00+H0000°0  00+H0000°0
V6¢ L G0-H98LE'E  00+H0000°0  00+EHO000 0
6LC°C G0-H9L67'¢  00+H00000  00+H0000°0

G0-HPLL8'T  00+HO0000°0  00-+HO000 0
GO-HTLEP'T  00+HO0000'0  00+EHO0000°0
S0-HOPPI'T  00+H0000°0  00-+HO0000 0
90-Hg6¥¢'6  00+H0000°0  00+EHO0000 0
90-FTLY'L  00+H00000  00+H0000°0
90-H0269°S  00+H0000°0  00+HO000 0
90-d8GL6'€  00+H0000'0  00+EHO0000 0
90-d6.89°¢  00+H0000°0  00-+HO0000 0

TO+HISET'T  TOTHLSET'T | PO-HPATOY  €C-HES88'T  00+H00000 TO+HTIOPI'T TO+HTOVI'T €€
TO+HELET'T  TOHHELET'T | $O-H689T'C  00+H0000'0  00+HO00000 TO+HLLET'T TO+HLLET'T 43
TO+HCLET'T  TOHHELET'T | S0-HEGL8'9  00+H000000  00+HO00000 TO+HCLET'T TO+HGLET'T 1€
TO+HCLET'T  TO+HHCLET'T | GO-HESEE'E  00+HO000'0  00+HO0000'0 TO+HTILET'T TO+HECLET'T 0€
TOH+ATLETT  TOHHTLET'T | SO-H6TFF'C  00+H000000  00+HO00000 TO+HTLET'T TO+HTLET'T 6¢
TO+ATLET'T  TOHHTILET'T | GO-HCE06'T  00+HO000°0  00+H0000'0 TO+HILET'T TO+HTILET'T 8¢
TOH+ATLETT  TOHHTILET'T | 0-H6LSH'T  00+H00000  00+HO00000 TO+HTLET'T TO+HTLET'T LT
TO+HATLET'T  TO+HHTLET'T | GO-H960T'T  00+HO000'0 00+H0000'0 TO+HILET'T TO+HTILET'T 9¢
TO+HOLET'T  TO+HHOLET'T | 90-HC6€0°6  00+HO000'0  00+H0000'0 TO+HOLET'T TO+HOLET'T ¥4
TO+H69ET'T  TOHHGICT'T | 90-H8LLY'L  00+H0000'0  00+H00000 TO+HG9ET'T TO+HEIET'T Ve
TO+HLIET'T  TO+HHLIET'T | 90-HT9¢9°EC  00+HO000'0 00+H0000'0 TO+HLIST'T TO+HLIET'T €¢
TO+ASIET'T  TOHHSGICT'T | 90-HSLEET  00+H0000'0  00+HO00000 TO+HSGIET'T TO+HSGIET'T [44
T0+ATIET'T  TO+HHTIET'T | 90-HOTLGE  00+HO000°0  00+H0000'0 TO+HIIET'T TO+HIIET'T 1¢

c61'C 90-H.686'¢  00+H0000°0  00+HO000°0 TO+HPSET'T TO+HAPSET'T | 90-HSGS9C6'c  00+H00000  00+HO0000'0 TO+HPSET'T TO+HHPSET'T 0¢

cq9vI- 90-HE6¥T'c  00+H0000°0  00+HO0000°0 TO+HZHET'T TO+HHASHET'T | 90-HZ8TS'C  00+H00000  00+H00000 TO+HCHET'T TO+HHECHET'T 6T

766°€- 90-H0¥9¢'¢  00+H0000°0  00+HO000°0 TO+HEZET'T TO+HHETET'T | 90-HALYE'C  00+H00000  00+H00000 TO+HETET'T TO+HHETET'T 8T

1€8°C- 90-HT1S€EC  00+HO0000°0  00+HO0000°0 TO+HZ6ST'T TO+HHAT6CT'T | 90-HIE0F'C  00+H00000  00+H00000 TO+HC6ECT'T TO+HT6CT'T L1

6VIL 90-H¢€96'¢c  00+H0000°0  00+HO0000°0 TO+HTIFCT'T TO+HATIFCT'T | 90-HS99L°C  00+H0000°0  00+H00000 TO+HTIPET'T TO+HHIFCI'T 91T

7689~ 90-H06€€°€  00+H0000'0  00+HO000°0 TO+HLSIT'T TO+HLSTT'T | 90-HEIRG'E  00+HO0000°0  00+H0000'0 TO+HLGIT'T TO+HHLSGTT'T 1

8LT'T 90-HT199¢°S  00+H0000°0  00+HO0000°0 TO+HTZOT'T TO+HATIZOT'T | 90-HU8F0C'S  00+H00000  00+HO00000 TO+HTZOT'T TO+HIZOT'T 71

90-H€99¢'8  00+H0000°0  00+HO0000°0 TO+HTO80'T TO+HTIOSO'T | 90-HS6L9'8  00+H00000  00+H00000 TO+HTOS0'T TO+HTIOS0'T €T

PO-HEEEYT  CTUFISYT  00+H0000°0 TO+APSHOT TO+APSFO'T | #O-HOZEY'T  CC-UFIS9'T  00+H00000 TO+HAFSHO'T TO+HPSTO'T [4)

F0-HE€L9C°9  Tg-H8LL8'C  00+H00000 TO+HFE0T'T TO+HS60T'T | $0-H899C'9  Tg-H8LL8'EC  00+H00000 TO+HAFGOT'T TO+HS60T'T at

PO-HEPL9'8  TE-HOESE'E  00+HO000°0 O00+HPELY'6  00+HEELV'6 | PO-H6EL9'8  TE-HISTG'E  00+H00000 O00+HVCLY'6  00+HEECLY 6 0T

GO-HTL0€9  TZH69PT'T  00+H0000°0 00+HSOTT'S 00+HIOTT'S | GO-HOF0E'9  TE-H69PT'T  00+H00000 00+HSOTT'S 00+HIOTT'S 6

VO-HPIVEY  TE-HehLL'9  00+HO0000°0 00+HS8€0'9  00+H68€0'9 | FO-HEIVET  TE-dPFLL9  00+H00000 00+HESED'9  00+HLIE0™9 8

€O-HOPST'T  TC-HUF061'8  00+H0000°0 00+HLEO9T 00+HG6V09F | €0-HOPST'T  TE-HE06T'8  00+H00000 00+HLE09F  00+HST09 T L

FO-AP8FE'S  0¢-HO0000'T  90-HGL80°9  00+HLELT'S O00+HEVAT'G | PO-HESFE'S  02-HO000'T  90-HSGL809  O00+HLELT'S O00+HEVLI'G 9

- YO-HP0E9F  0G-HO000'T  SO-H6VIST  00+HIGIV 'S O00+HI6TFG | #O-HPOE9F  0G-HO000'T  SO-USPIST  O00+HI6IV'S 00+HI6TV G g

) $0-H00€L'8  TO-HPSSS'T  $O-HI68€C  00+H6¥CE L O00+HITTIF L | PO-HTOEL'S  TO-H6VS8'T  FO-HS68€C  00+HO0STE L 00+HITTF L 4

) VO-HSEV6'Y  00+HTTS6'T  PO-H69PL'E  00+H6ET9S 00+H699S°L | FO-HGEV6'F  00+HICS6'T  FO-H69VL'E  00+H8ETIG  00+HS899S L €

- PO-HE988°6  00+H8SLZ'C  TO-U8L90°€  00+HSCY0'€ 00+HT9C9'S | FO-HESSS'6  00+HSSLE'C  TO-HEL90°C  00+HLEVO'E  00+HTITI G 14

) 9 g - G - | €0-HUSFPEF  TO-HIOT0'S  00+dPSS0°C  00+HgeS8'c  00+HOCTY'S | €0-HEFPEY  T0-HA800°¢  00+HSESS0°C  00+HETS8C  00+HIETH S T

HJINLdVD OILSVTINI NX'N DOILSVTHd TVLOL | Hd4NLdVD OILSVTINI NX'N OLLSVTH TVLOL d4NLdVD  DILSVTANI NX'N OLLSVTH TVLOL

[%] eoustegIq eAlreley dITODDH T'¢-dJH 09[omaU d117000d T'¢-AJAl [eUISiI0 dnoxp

109



Chapter 7. Analysis of discrepancies origin within the ECCOLIB production workflow

—— NJOY —— CALENDF
2

10 PENDF 1968 GROUPS 295 GROUPS
2
c
Xe]
—
)
A 101
o 10%
)
o
o
=
i
©
w

100,
— 1.2 ]
9 1.1 7 ./M
4(-0‘ 10 =% T -.r.l‘ﬁ
© 0.9 1

0.8 ‘ ‘ 1 : i 1 i i

102 104 106 102 104 106 102 104 106
Energy (eV) Energy (eV) Energy (eV)

Figure 7.2: Pb-208, NJOY and CALENDF reconstruction and group-averaging of the elastic
scattering cross sections. The JEFF-3.1 ENDF-6 tapes are used. The picture on the left shows
the cross sections in the PENDF produced by both codes, starting from the ENDF-6 tapes. The
middle and right pictures show the infinite diluted cross sections in the 1968 and 295 group
structures. In each case, the ratio of CALENDEF with respect to NJOY is taken.
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Figure 7.8: Pb-206 and Pb-207, NJOY and CALENDEF group-averaging of the elastic scattering
cross sections. The JEFF-3.1 ENDF-6 tapes are used. The cross sections are calculated using
both codes with the 295 group structure. In each case, the ratio of CALENDF with respect to
NJOY is taken.

7.1.3 Generation and testing of a new ECCOLIB with NJOY values as a
reference

The discrepancies observed between NJOY and CALENDF provide an explanation for the dis-
crepancies observed between OpenMC and ECCO. The standard procedure in the MERGE code
is to use the CALENDF values as a reference, applying correction factors to the NJOY cross sec-
tions and scattering matrices to match the CALENDF infinite diluted multigroup cross sections.
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Therefore, the ECCO code uses PTs produced by CALENDF to treat the self-shielding effect,
and these remain unchanged in MERGE. The NJOY multigroup cross sections and scattering
matrices, which are corrected by MERGE, are stored and used only for energy groups where the
CALENDF values have been removed (e.g. due to negative values being produced). Conversely,
Monte Carlo codes such as OpenMC and MCNP use pointwise data in the RRR and PT data in
the URR to treat the self-shielding effect. Both of these are processed exclusively with NJOY.
Eventual inconsistencies between NJOY and CALENDF therefore induce discrepancies between
the deterministic and stochastic results.

In line with the work of van Rooijen [82], new ECCOLIB files were generated for the lead
isotopes using the JEFF-3.1 ENDF-6 tapes, this time giving preference to the NJOY values and
applying the correction factors to the CALENDF PTs. Thanks to the built-in "MISE A JOUR
BIBLIOTHEQUES ECCQO" procedure of ERANOS, it was possible to replace the data for the
lead isotopes in the original CEA JEFF-3.1 ECCOLIB with the newly generated ECCOLIB files
that used the NJOY values as a reference.

Consequently, the LFR homogeneous and infinite fuel pin was simulated again within
ECCO, using both the original and the new JEFF-3.1 ECCO libraries. Figure 7.4 shows a
comparison of the relative error in the Pb-208, Pb-206, and Pb-207 elastic scattering cross sec-
tions (ECCO with respect to OpenMC), obtained using both libraries and the JEFF-3.1 NDL
also for the Monte Carlo code. The comparison was made using the 33 and 295 group struc-
tures. Asit can be seen, using the newly generated ECCOLIB significantly reduces discrepancies
between the two codes, with negligible errors in both group structures.

In conclusion, the origin of the discrepancies in the lead isotope cross sections was found
to be the different cross section reconstructions performed by NJOY and CALENDF. However,
although the relative differences have decreased significantly when using NJOY as a reference in
MERGE, this does not necessarily imply that the NJOY-processed data are more accurate than
those of CALENDF. In fact, the decrease in the discrepancies is a consequence of consistency
being achieved between the NDLs of the deterministic and stochastic codes. Only by comparing
the results with experimental benchmarks can it be determined which of the two nuclear data
processing codes provides higher accuracy.

7.2 Causes of missing Probability Tables in the unresolved res-
onance range

The analysis performed for the lead isotopes does not apply to U-238 and U-235, for which the
PT data are missing within the entire unresolved resonance range. To determine the cause of
the absence of PTs, the CALENDF code was used to generate PTs for U-238 using both the
JEFF-3.1 and ENDF/B-VIII.0 NDLs. Analysis of the output files revealed that CALENDF
generated PTs data within the URR for both libraries.

Subsequent investigation of the MERGE code revealed that it determines which PTs are
included in the final version of the ECCOLIB. This selection is based on a threshold defined
by the lowest energy group containing PT data for the (n,xn) reactions. The code prints only
PTs corresponding to energy groups below this threshold in the MF=50 file of the GENDF*.
Conversely, energy groups above the threshold, which contain subgroup data for (n,xn) reactions,
are excluded. As a result, PTs for all the reactions are not stored in the ECCOLIB at energy
values higher than the (n,xn) threshold.

Listing 7.3 shows the probability tables produced by CALENDF for U-238, focusing on
the the 833th and 834th energy groups, using the ENDF/B-VIIL.0 tape. The first two columns
are reserved to the probability weights (first column) and the quadrature points for the total
reaction (second column). The subsequent columns contain the quadrature points for the partial
reactions. These partial reactions are grouped according to specific MT numbers, denoted by
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Figure 7.4: LFR infinite and homogeneous fuel pin. The relative error of ECCO with respect to
OpenMC'is calculated using the original CEA JEFF-3.1 ECCOLIB (green line) and the modified
JEFF-3.1 ECCOLIB (red line), where lead data are replaced with a new library obtained using
the NJOY walues as a reference in MERGE. The comparison is made for the elastic scattering
cross sections of Pb-208, Pb-206, and Pb-207, using 33 and 295 group structures. The black
dashed lines indicate the URR bounds of U-238. Purple coloured band highlight energy groups
containing PTS in the CEA JEFF-3.1 ECCOLIB.

the "KP" term in the output headers. For example, the third column contains quadrature points
for elastic scattering (KP=2), the fourth for capture (KP=101), and so on. As described in
Section 3.2.2, the MT=15 is used for the grouping of the (n,xn) reactions. The 833th group
contains PTs for the (n,xn), which are instead absent in the 834th. This implies that all PTs at
higher energies, including those for the unresolved range, will be excluded by MERGE. As the
PTs are removed for all reactions, this includes the PTs for the U-238 capture reaction.

However, PTs are not expected for the (n,xn) reactions at energies below the MeV order.
In fact, analysis of the ENDF-6 tape revealed that the threshold for the pointwise data of these
reactions is considerably higher than the energies at which PTs are produced by CALENDF
(e.g. the (n,2n) reaction has a threshold at 7 MeV for U-238). Indeed, when PTs are produced
using the JEFF-3.1 ENDF-6 tapes for U-238, subgroup values for the (n,xn) reactions are only
produced at energies higher than the threshold. This suggests that CALENDF is erroneously
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7.3. Conclusions about the production of an ECCOLIB based on the ENDF/B-VIIL.0 NDL

producing PTs for the (n,xn) reactions, below their threshold, using the resonance parameters.
Further investigation is needed to determine the cause of this misinterpretation of the raw data.

IG 833 ENG=1.995887E+4 2.012589E+4 NOR=11 I=-10 NPAR=4 KP= 2 101 18 15 0
8.577177-3 2.702000-1 2.553813-1 1.473369-2 8.503814-5 2.345894-9
3.056989-2 3.356845-1 2.721168-1 6.348261-2 8.504764-5 2.333613-9
5.346622-2 4.862693-1 4.212695-1 6.491268-2 8.710055-5 2.351507-9
8.956268-2 9.477604-1 7.324945-1 2.151805-1 8.534999-5 2.319240-9
1.642089-1 2.454326+0 2.107824+0 3.464147-1 8.757842-5 2.364274-9
3.371137-1 7.634160+0 7.146410+0 4.876781-1 7.025548-5 1.253467-9
2.286285-1 1.734318+1 1.617666+1 1.166443+0 7.169697-5 1.361733-9
5.136123-2 4.533995+1 4.441522+1 9.246360-1 9.160289-5 2.574466-9
2.388510-2 8.221654+1 8.118740+1 1.029055+0 8.481638-5 2.179661-9
9.418547-3 1.162899+2 1.153413+2 9.485815-1 8.688142-5 2.474245-9
3.208227-3 1.463174+2 1.447221+2 1.595256+0 8.517331-5 2.272760-9

IG 834 ENG=1.979324E+4 1.995887E+4 NOR= 7 I= -6 NPAR=3 KP= 2 101 18 0 0
2.450187-2 5.182770+0 4.871726+0 3.109943-1 4.962008-5
1.578773-1 6.938149+0 6.722362+0 2.157374-1 4.968623-5
4.647417-1 9.674722+0 9.275415+0 3.992562-1 4.963301-5
2.179142-1 1.410824+1 1.351148+1 5.967084-1 4.974602-5
6.585366-2 2.525063+1 2.490452+1 3.460587-1 4.977161-5
5.205890-2 3.693145+1 3.606454+1 8.668687-1 4.972921-5
1.705230-2 4.697313+1 4.639920+1 5.738785-1 4.984615-5

Listing 7.3: Portion of the CALENDLF output file containing PTs for U-238 at 294 K, produced
using the ENDF/B-VIII.0 NDL. The first column contains the weight, while the second column
contains the quadrature points for the total reaction. The following columns contain the
quadrature points of the partial reactions associated with the MTs numbers indicated by the
"KP" term in the headers.

7.3 Conclusions about the production of an ECCOLIB based on
the ENDF /B-VIII.0 NDL

The analysis of the production workflow of an ECCOLIB based on the ENDF/B-VIII.0 NDL
revealed two main issues. The first issue concerned the lead isotopes and also occurred when
the JEFF-3.1 NDL was used. Specifically, the NJOY and CALENDF codes differ in the cross
sections reconstruction starting from the raw data in the ENDF-6 tapes. In order to quantify
the impact of these discrepancies, the ECCOLIB production process had to be put in good use
internally at newcleo. The NJOY, CALENDF, MERGE and GECCO codes were therefore used
to generate a new ECCOLIB based on the JEFF-3.1 NDL for the lead isotopes. The quality of
these new libraries was assessed by comparing them with the original CEA JEFF-3.1 ECCOLIB.

Once good adherence with the original library was ensured, the production workflow of the
ECCOLIB could be revised for the lead isotopes by using the NJOY values as a reference in
the MERGE code and adjusting the CALENDF PTs accordingly. The LFR homogeneous and
infinite fuel pin, which was analysed in Chapter 5, was simulated again using the ECCO code
and the internally produced JEFF-3.1 ECCOLIB. Considerably better agreement was found
between the ECCO and OpenMC results when the new library was used. Notably, the relative
errors in the elastic scattering cross sections of the lead isotopes (Pb-206, Pb-207, and Pb-208)
decreased significantly compared to those observed in Chapter 5.

However, this result should be seen as a consequence of consistency being achieved between
the NDLs of the two codes, and it does not imply that ECCO calculations are inaccurate when
the CALENDF values are prioritised over those of NJOY. Although the numerical validation
process involves making comparisons with Monte Carlo results, complete validation requires
referencing the numerical results against experimental benchmarks. Only the latter process
can determine which codes fail in the cross section reconstruction. Nevertheless, inconsistencies
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in the nuclear data processing for ECCO and OpenMC complicate the numerical validation
process. In fact, the discrepancies in the NDLs overshadow the errors arising from the self-
shielding module, as detailed in Chapters 5 and 6.

The second issue concerned the absence of PTs for the URR of U-238 and U-235. These data
are removed by the MERGE code, which clears the PTs for all energy groups in which subgroup
data are present for the (n,xn) reactions. However, subgroup data for these reactions should not
be included within the URR of these nuclides, as the energy threshold is considerably higher.
Therefore, the latest version of CALENDEF used to generate ECCOLIB (the 2010 version) could
possibly be out of date with respect to the most recent NDLs. Although the ENDF-6 format has
remained unchanged in recent years, significant progress has been made in experimental accuracy
and detailed datasets that were previously inaccessible are now available. Indeed, when older
NDLs such as JEFF-3.1 are used, the PTs for (n,xn) reactions are produced correctly above
the threshold. Therefore, a revision of the CALENDF code is suggested in order to make it
compatible with the most recent ENDF-6 tapes.
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The newcleo company adopted the ERANOS codes and data system for the neutronic analysis of
its LFR units. ERANOS includes the ECCO cell and lattice code, which is a computational tool
used to prepare homogenised, energy-averaged cross sections for subsequent full core calcula-
tions. For the licensing process, newcleo requires its scientific computing tools to be extensively
validated for LFR applications. The aim of this thesis was to numerically validate the ECCO
code by comparing simulations of LFR cells with those of the OpenMC Monte Carlo code.
Specifically, the goal was to validate the ECCO self-shielding module. The analysis presented
in this study revealed that this module alone, together with the ENDF /B-VIIIL.0 based ECCO
Nuclear Data Library (NDL), explains most of the discrepancies encountered during previous
validation work on ECCO for LFR cells [11].

The first part of this thesis provides an overview of the analytical models that are employed
in the ECCO cell code, including the Multigroup formalism and the Collision Probability (CP)
method. Particular focus was given to the analytical description of the Subgroup method used
in ECCO to treat self-shielding effects. This method recasts the Riemann integrals required for
the energy condensation of cross sections into Lebesgue integrals, and consequently applying
Gauss quadrature formulas to numerically compute them. These quadrature formulas, also
known as Probability Tables (PTs), are produced for ECCO by the nuclear data processing code
CALENDF and integrated into the ECCO NDLs. The procedure for generating ECCO NDLs
is outlined in Chapter 3.

The second part of this thesis was dedicated to the numerical validation of the self-shielding
module. First, a Sensitivity Analysis (SA) was performed on a case representative of LFR
applications, namely the Nuclear Energy Agency (NEA) lead-cooled fast reactor benchmark
[12]. This analysis identified the nuclides and reactions with the greatest influence on the
effective multiplication factor and Doppler reactivity change. The selected set of nuclides and
reactions - for instance, U-238 capture, Pu-239 fission, and Pb-208 and Fe-56 elastic scattering -
was focused during the validation of the ECCO self-shielding module. The numerical validation
followed the approach adopted by P. Jacquet for the ECCO validation in SFR cells [9]. The
analysis was performed on both LFR and SFR cells, using the ENDF /B-VIII.0 ECCOLIB. For
specific purposes, the JEFF-3.1 NDL was also adopted.

Analysis of simple homogeneous media revealed that the significant discrepancies between
ECCO and OpenMC could primarily be attributed to the PTs contained in the ENDF /B-VIII.0
ECCO library. Noteworthy differences were found for U-238 and lead isotopes in particular.
For the former, the PTs are absent in the unresolved resonance range, resulting in ECCO
overestimating the capture cross section. For the latter, significant errors in the elastic scattering
cross sections were associated with energy groups containing PTs. Even when heterogeneous
media were analysed, the same cross section errors induced by the NDLs were evident. However,
in this case, numerical approximations induced by the CP method were also present.

Chapter 6 then presented the results of a Decomposition Analysis (DA), which broke down
the differences between ECCO/ERANOS and OpenMC according to the individual errors in the
nuclide cross sections that caused them. This determined the influence of the errors in the U-238
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capture and Pb-208 elastic scattering cross sections on the errors in the multiplication factor
and Doppler reactivity change. The DA was performed in two media: a simplified one, such as
the LFR heterogeneous and infinite fuel pin, and a more complex one, such as the LFR reactor
core, both defined according to the NEA numerical benchmark. In the former case, errors in the
U-238 capture cross section accounted for two thirds of the discrepancy observed in the infinite
multiplication factor of the fuel pin. In the latter case, the error in the effective multiplication
factor of the core, determined by the errors in the U-238 capture cross section, was compensated
for by that induced by the errors in the Pb-208 elastic scattering cross sections. This result
highlights the need for counteractive measures for the ECCO libraries. Indeed, the absence of
PTs for U-238 may complicate the ECCO validation.

Finally, Chapter 7 assessed the cause of the discrepancies in the ENDF/B-VIII.0 NDL.
Discrepancies in the lead isotopes cross sections are caused by different reconstructions of the
pointwise data operated by the NJOY and CALENDF codes. By revising the ECCOLIB pro-
duction workflow and applying corrective factors to the CALENDF PTs to match the NJOY
multigroup cross sections, differences in the lead cross sections within the homogeneous LFR
fuel pin could be significantly reduced. For U-238 (and U-235), the reason for the missing PTs
lies in the CALENDF misinterpretation of the threshold value for (n,xn) reactions. This value
determines the energy groups that contain PTs in the final ECCO NDL version.

In light of these results, the main conclusion to be drawn from this study is that the
CALENDF code needs to be updated. In fact, the (n,xn) threshold value is not misinterpreted
with older NDLs, such as the JEFF-3.1. Therefore, the CALENDF code may be outdated
with respect to the most modern NDLs, such as the ENDF/B-VIIL.0. Although its format is
still the ENDF-6 one, they could contain datasets that were not foreseen at the time the code
was developed. The primary objective of future work is therefore to modernise and update
the system of codes for the ECCOLIB generation, making it compatible with modern NDLs.
Furthermore, it would be valuable to develop a platform to assist users in managing the suite
of codes for the ECCOLIB generation. This would automate many informatics operations and
reduce the number of user-dependent actions that could affect the NDL quality, enhancing also
the reproducibility of the process.

Furthermore, detailed investigations are required to determine whether normalising the
CALENDF values for the lead isotopes, with respect to the NJOY values, can produce reliable
results. In fact, the reduction in the cross sections errors for these nuclides is simply the result of
consistency being achieved between the ECCO and OpenMC NDLs. However, this result alone
does not imply that the cross sections reconstruction performed by NJOY is more accurate than
that performed by CALENDEF. Comparisons with experimental benchmark data are needed to
determine which code more accurately reproduces the physical world. Moreover, the investiga-
tion should be expanded to assess the impact of using the NJOY values as a reference for all
other nuclides. In particular, it should be determined whether this could reduce the discrepancy
observed for Pu-239 in the unresolved range, found when using the JEFF-3.1 NDL in OpenMC
and TRIPOLI-4®.

Chapter 6 showed that the Doppler reactivity change calculated using ECCO or ERANOS
is poorly affected by errors originating from the NDLs. Furthermore, a significant discrepancy
in the effective multiplication factor of the LFR benchmark core was observed. Nevertheless, it
was determined that this discrepancy is likely unrelated to NDLs. However, the analysis was
limited to a small set of isotopes located in the fuel assemblies. It would be worthwhile to extend
the analysis investigating the role of other nuclides located in different regions of the reactor,
particularly focusing on the effect of the errors in the lead cross sections on neutron leakage.
Moreover, achieving a precise DA may require performing SA using the exact perturbation
theory in ERANOS, which could potentially reduce the discrepancies observed with Serpent2
Monte Carlo results. Nevertheless, the main constraint for both sensitivity and decomposition
analyses is the limitation of deriving sensitivity coefficients for a two-dimensional R-Z geometry

116



Conclusions and future perspectives

in ERANOS.

In conclusion, this thesis demonstrated the crucial importance of achieving consistency
between the NDLs for the deterministic and stochastic tools when carrying out a numerical vali-
dation. Generating the NDLs correctly for ECCO would lay the foundation for a comprehensive
validation of the ECCO cell code. Otherwise, errors arising from NDLs would complicate the as-
sessment of the code’s accuracy by overshadowing those arising from the models implemented in
ECCO. Resolving these issues would enable the validation activity to be extended in the future
by assessing the accuracy of the other numerical modules, such as the Collision Probabilities,
the Leakage model, and the homogenisation module.
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Appendix A

Complete derivation of the scattering
term

The scattering cross section is commonly expressed as the product between the pointwise cross
section and a Probability Density Function (PDF) [15, 14], i.e.

S, E = B2 - Q) =3, Ef(E' - E, 7 - 0), (A1)
where the scattering function f must satisfy the normalisation condition

/de’ AV f(E = B0 - 0) =1, (A.2)
0 47

Under the assumption of isotropic medium, the elastic scattering function has an angular de-
pendence only on the cosine of the scattering angle. Is therefore more convenient to express the
PDF with another function n that preserves the normalisation on this latter variable, i.e.

. . 2m 1 1
A0 f(E' = E, 0 = 0) :/ dgp/ dpo 5-1(E' = B, o), (A.3)
47 0 -1 ™

where the cosine of the scattering angle is expressed as pg = 7. 0. The PDF is then expanded
on a infinite series of Legendre polynomials, leading to

= 20+1
n(E — E, o) = 5 m(E" — E)Pi(uo), (A.4)
1=0

The expansion coefficients are the [-order moments of the scattering function, and are defined
by the projection of the PDF on the Legendre polynomials, i.e.

(B = B) = [ 0B > B, o) o). (A.5)

The Legendre polynomials [25, 14, 26] are a complete orthogonal set of functions that allows
the expansion of a generic function defined on the interval [-1,1]. These polynomials are defined
through the relations

Py(z) =1, (A.6)
A= = 02 1) for 1=1.2 (A7)
@) = 5@ ri=1,2... .
The first few Legendre polynomials are then
Po(z) =1, (A.8)
Pi(x) = x, .9)
1
Py(x) :5(3952 —1). (A.10)
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The orthogonality is ensured by the satisfaction of the relation

26

/ Py () Py(a)da = —2md (A.11)
T2+ 1

where 0,,,; is the Kronecker delta. In practice, the summation in equation (A.4) is truncated at

a specific order L. This is called the scattering anisotropy order, from the observation that for

L=0,

1
T}(E/ — E,uo) ~ 5770(E/ — E), (A12)
and therefore any possible PDF is characterised by a completely isotropic distribution. For every

increase of L, the representation of the angular dependence of the scattering function increases
in accuracy.

These polynomials are introduced since they allow the factorization of the cosine of the
scattering angle through the use of the Legendre addition theorem, i.e.

l
— (=B) s 5 iB(e—¢")
Py(po) = P ()P (u)e : (A.13)
o) = 2. 5 6

where the Legendre associated function is defined for a positive 3 as

s d°

2
dxB

while for negative [ they are related to positive indexes by means of

Pl(z) = (1-2)2 - P(a), (A.14)

R = (). (A.15)

The scattering cross section can now be expressed in terms of the preceding relations to obtain

Y(FE - E @ -0) = ZZQHW A)!

7, E g B () eiBle—¢)
et N (R [ Dsa (T BN = E)P ()P (1)e . (A.16)

where the [-order moment of the scattering cross section has been expressed as the product of
the pointwise definition and the PDF expressed by 7. In order to complete the derivation, it is
necessary to introduce an additional set of functions, namely the spherical harmonics [15, 14].
These are a complete orthonormal base on the surface of a sphere, defined as

- (B

As for the Legendre polynomials, the orthogonality of the spherical harmonics is ensured by

§ VP @Y () 42 = Gunbas, (A18)
4

with Y,%*(£2) being the complex conjugate of the spherical harmonic. In conclusion, the scat-
tering operator can be expressed by separating the different terms according to the variable of
integration, i.e.

7{ s / dE' (7, E' — E, 7 - 2o, E', ) = (A.19)
/ dE' Zzsl 7, E — E) Z Y/ () ¢ da2e(F E, )Y/ (D), (A.20)
0 1—0 B= 47
where the last term, i.e.
& (v, E) ]{ A2 é(r, B, 7)Y (), (A.21)

is defined as the moment of the angular flux.
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Appendix B

Derivation of the integral transport
equation

The integral form of the transport equation represents an equivalent form to the integro-
differential Boltzmann equation. Within the framework of the multigroup method, Eq. (1.24)
can be expressed by including the self-scattering term into the source term, which leads to

Q-Vog(T,2)+ Xt 4(T)y (T, 2) = Qy(T,2) forg=1...G. (B.1)

In the framework of the method of characteristics, the total derivative of the neutron flux can
be defined as [14, 25]

dpg(T,02)  0py(T, Q) dx  0py(T,2) dy  0gy(T, 2) dz
ds Oz ds Oy ds 0z ds’

under the assumption of steady-state conditions. Considering the leakage term on the LHS of
Eq. B.1, i.e.

(B.2)

— — 0 0
0-Vo,(r.72) = (Q + 0,2+ 0 ) 64, D), (B.3)
it can be noticed that this term coincides with the term in Eq.(B.2) where
&
Tds’
dy
=2 B.4
Yy ds ’ ( )
_d:
z ds’
which has solution
T = x0 + (25,
Yy =yo + {2ys, (B.5)
z = zg + (2,8,

which are the coordinates of the so-called characteristic line 7 = 7o + s§2 [14, 24]. Along this
line, which is specific to each point 7y and a fixed {2, the leakage term corresponds to the total
derivative of the neutron flux under steady-state conditions, and the Boltzmann equation can
be expressed along this line leading to

d _ _ _ _
£¢)g(70 + s{2, Q) + 2,579(?0 + SQ)(bg(?o + s{2, Q) = Qg(ﬁ) + sf2, Q) (B.6)

This equation is solved using the method of Lagrange [24], which first involves determining the
solution to the homogeneous problem, i.e.

qﬁZ(Fo + 802, 02) = Cexp [—/ ds' 2y 4(To + s'02) |, (B.7)
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which is also the solution to Eq. (B.6), but this time with C' as a function of the variable s [24].
Inserting the angular flux in Eq. (B.6) leads to an expression for C(s) that reads

ic(s) = Qqy(To + 592, 2) exp [/S ds' Xy 4(To + S/Q):| : (B.8)

ds
which is then integrated for all the previous points to 7y along the characteristic line, i.e. for s
that ranges from —oo to 0, which leads to

C(s) =C(—o0) + /j ds'Qq(To + s'02,02) exp l/s ds" Xy o (Fo + S”Q)] . (B.9)

This term can then be substituted into Eq. (B.7) in place of C, yielding the final shape of the
angular flux. It is then assumed that neutrons are not present at the extreme boundaries of
the domain, which is equivalent to affirming that for s — —oo, ¢, (7o + s£2,2) — 0 [24]. This
condition determines that C'(—oo) = 0, and the angular flux now reads

6 (70 + 502,10) = / ds' Q7o + 5'72, 12) exp [— / | ds”Z’t,g(ro—Fs"Q)}, (B.10)

from which the integral transport equation for the angular flux can easily be derived for s = 0.
Finally, changing the sign of the integration variables yields

6,7, T3) = /0 T d5Q, (Fo — 873, ) exp [— /0 " 45" 5, (7o — s"Q)] . (B.11)

The physical interpretation of this equation is that the angular flux at a given position is made by
the contribution of all neutrons that appear along the characteristic line, due to scattering and
fission reactions, and reach that specific position with the required angular direction. However,
along this path, neutrons can undergo several reactions that remove them from the characteristic
line. This attenuation of the flux is given by the exponential term in Eq. (B.11), i.e.

6*7'9(?*5/‘9_)@ = exp [—/ dSHELg(F() — SHQ)‘| 5 (B.12)
0

which is indeed the probability of the neutron undergoing a reaction at any point along its path
from the emission to the location 7. Usually, the exponent in this term, 7,(7 — ' — 7)), is
referred to as the optical path length [14, 24, 25, 13]. Furthermore, Eq. (B.11) does not require
integration to an infinite distance along the characteristic line. In fact, it is sufficient for the

integration to be performed up to the system boundaries, where the incoming flux is known [14,
24].

As the angular flux is generally of little interest in reactor physics applications, an integral
equation for the scalar flux is generally employed. Its derivation requires the assumption of an
isotropic source (isotropic fission and scattering) [14, 24], i.e.

— 1
Qy(7, 02) = 4ng(f’). (B.13)
7r
Then, Eq. (B.11) is integrated over all angular directions to obtain
oo 1 P
,(7) = fdrz/ ds'—Q, (F)e 0T =7, (B.14)
0 47
where 7 = 7y — s'(2. It can be noted that the integration in Eq. (B.14) with respect to £2 and

s’ can be further elaborated as a volume integral [13]. Using a spherical coordinate system, as
shown in Figure B.1, the incremental volume can be determined as

dV' = dds'(s')?, (B.15)
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Appendix B. Derivation of the integral transport equation

where (s')? = |F — 7|2,

Figure B.1: Schematization of the incremental volume dV , for a distance s from the location T.
Adapted from [13].

In conclusion, the integral equation for the scalar flux reads

dv’ —Tg(F/—>F) B.1
/ v 47T|’I” - 7"|2 ’ (B.16)

where the term that multiplies the isotropic source is known as the Kernel of the integral
transport equation. This represents the probability that neutrons, emitted isotropically in 7
due to scattering and fission reactions, are transported without colliding in 7 [24]. Therefore,
the physical interpretation of Eq. (B.16) is that the scalar flux at a given position is the sum
of the contributions from all neutrons emitted at any point within the domain, attenuated by
the probability of these neutrons reaching that specific location. Furthermore, although the
volume integral is performed over the infinite space, it is restricted to a finite domain if this is
surrounded by vacuum boundary conditions. In fact, in this case, the source term in Eq. (B.16)
will vanish outside the boundaries.
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Appendix C

The elastic scattering and the reso-
nance models

The scattering of neutrons with the medium of a fission nuclear reactor plays a key role in the
intended use of the nuclear fuel. The behaviour of neutrons strongly depends on the interactions
with the atoms composing the medium, laying the foundation for the reactor core design. When-
ever a neutron collides with an atom and a scattering reaction occurs, a fundamental distinction
must be made between whether the scattering is elastic or inelastic [15]. In the latter case, as
a result of the collision, the neutron is absorbed into the atom and an excited compound is
generated. The excited state is derived by the atom’s acquisition of the neutron kinetic energy,
in addition to the binding energy resulting from the interactions between the neutron and the
atom’s nucleus.

The excited energy can only take discrete values, also called energy levels. In the case of
heavy elements, the distribution of the energy levels is highly dense with low threshold values. In
the case of U-238, for example, the threshold energy is about 40 KeV and the energy difference
between the different levels is of the order of several KeV [15]. For light elements, on the other
hand, the thresholds can be of the order of the MeV and the spacing between the few levels of
the same order. Inelastic scattering is therefore a dominant effect only for heavy elements and
in the high-energy range.

Elastic scattering, on the contrary, is the dominant reaction for both heavy and light ele-
ments in the whole energy range. Nevertheless, some distinctions can be made depending on the
energy interval [14]. In the thermal region (in the eV range) the thermal motion of medium’s
atoms is not negligible and up-scattering reactions, with a consequent increase of the colliding
neutron’s energy, must be considered. In addition, in the thermal region, the particles that
bound in molecules are not free to recoil as a consequence of the collision, resulting in a strong
influence on the scattering cross section. In fast-spectrum reactors, however, only a very small
fraction of neutrons reside in the thermal energy range, and these effects can be neglected in
slowing down theory.

For the derivation of the scattering term for elastic collisions [88, 20, 15, 25], Figure C.1
shows the schematisation of a collision between an incident neutron and a stationary nuclide.
As a result of the collision, the neutron is deflected with a lower energy E. Since the collision is
elastic, the internal quantum states of the nucleus remain unchanged, and therefore the energy
lost by the neutron is transferred to the kinetic energy of the recoiling nucleus. The conservation
law is then applied in two reference systems: the LAB system and the Centre of Mass system
(CM). In the LAB, the position of the CM is given by

(m+ma)Fopr =m T+ ma Ta, (C.1)
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Appendix C. The elastic scattering and the resonance models

E,V _O Scattered neutron

v
EV
o N JON
incident neutron target Y Veu
nucleus

Es, Vi @ Recoiling nucleus

Figure C.1: Schematization of the elastic collision between the incident neutron and the target
nucleus at rest, in which momentum and kinetic energy are conserved. The neutron, initially
moving at velocity V', is deflected with velocity V' and angle 6.

where m and my4 are respectively the mass of the neutron and of the nucleus. The velocity of
the CM in the LAB is expressed as

I+AVeu =V =V+AV,, (C.2)

where V' and V are the velocities of the neutron before and after the collision, V 4 the recoil
velocity of the nucleus, A is the mass ratio between the neutron and the nucleus, approximated
by the mass number of the latter. The target nucleus is assumed at rest prior to the collision,
ie. V4 =0. From Eq. (C.2) follows

1 —
—V.
A+1
The neutron and recoiling nucleus are then described with respect to the CM reference frame
using Eq. (C.2), which leads to

= A —

Veu = (C.3)

— _ - 4
v =V —Vou A+1V’ (C4)
I A o
v = V — VCM = T-H(V — VA), (05)

_ _ 1
@;x = V/A —Vou = _THV/’ (C.6)
_ _ 1
@AZVA—VCMZ—TH(V—VA). (C.7)

It can be observed that in the CM reference frame, before and after the collision, the velocities
of the neutron and the nucleus have opposite direction and the total momentum of the system
is conserved [15], i.e.

v+AY, =0+ Avq=0. (C.8)
In the CM reference frame, the energy conservation equation is expressed as
1 1 1 1
5(1}’)2 + iA (Wy)? = 51)2 + iA v, (C.9)

and inserting v/; and v, from Eq.(C.8) in Eq. (C.9), it is obtained (v')? = v2. This information
is used to compute the kinetic energy of the neutron after the collision, in the LAB reference
frame, by computing V? starting from Eq. (C.5) [15], which leads to

V2= 0+ Vou)? =0 +VE,+27 - Vou. (C.10)
The first term is retrieved using the previous result and equation (C.4), i.e.

2
o = (o) = (A‘L) V)2, (C.11)
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while the last term is obtained by the cosine of the scattered neutron in the CM reference frame,
as described in figure C.1, i.e.
2A

20- VCM =20 VCM COSB = m(vl)2gp, (012)

_ _ _A (. 2 _ ()2
where ¥ = cos 8 and v = 5757 V’, since v* = (v')*.

The kinematic energy of the neutron after the collision can finally be expressed as a function
of the kinetic energy prior the collision as
B =ty E (A% +20A +1) (C.13)
=-_mV = —= . .
2 (A+1)2
From this relation it can be observed that the neutron conserves its initial energy when ¥ =1
(the neutron indeed maintains its initial direction), while the minimum energy that can remain

after the collision is obtained when ¥ = —1, and the neutron is reflected back. In this case
E = oF’, where
A—1\2
=(—1 . C.14
“ (A n 1) (14

Therefore, the lighter the target nucleus, the closer a will be to 0 and the greater the maximum
fraction of energy that a neutron can lose in a collision. So far, valuable information has been
retrieved about the energy values that a neutron can exhibit upon emerging from a collision,
but the actual probability of the neutron assuming these values remains to be determined. This
information can be recovered by introducing a probability density function f(¥), such that
f(P)d¥ gives the probability that the neutron emerges from the collision with an angle in the
neighbourhood d¥ in the CM reference frame. In reality, the neutron energy is the real variable
of interest, but since these two quantities are related, as already observed in Eq. (C.13), the
preservation of probability can be applied [15], which leads to

In(E" — E)dE| = |f(¥)d¥|, (C.15)

which implies that the probability that the neutron emerges from the collision with an angle
around ¥ in the CM reference frame must be equal to the probability that the neutron emerges
with an energy around E. The absolute value is introduced because an increase in F corresponds
to a decrease in ¥ (the largest is the energy of the neutron after the collision, the smallest is its
deflection). The PDF in terms of energy is then:

av

= (C.16)

W(E' = B) = 1)

And then, having obtained the Jacobian of the transformation from Eq. (C.13), it follows

: _ gy AT

N(E = B) = f(¥) 515 (C.17)

which is further simplified by assuming isotropic scattering in the CM, i.e. f(¥) = %, leading to
A+1)2 1

W — By = AFD" . (C.18)

IAE  (1-a)F

Thus, the neutron has the same probability of assuming any energy value in the interval [aE’, F’|
upon a collision, as shown in Figure C.2.
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n(E'=E)

1/(1-a)E' +----------

aE’ E'

Figure C.2: The PDF describing the neutron’s energy after the scattering, in the case of isotropic
scattering in the centre of mass reference frame. Under this hypothesis, the neutron has the same
probability of emerging with any energy value in [aE', E'].

However, it must be emphasised that the assumption of isotropic scattering in the CM does
not imply isotropy in the LAB. Indeed, the relation between the scattering angle in the CM and

in the LAB is given by [15]

1+ A
Mo = T (C.19)
(A2 +20A +1)2

where the assumption of isotropic scattering in the CM implies that ¥ = 0, but

2

o (C.20)

1
o= [ no()s) dw =
which corresponds to the condition of forward scattering [15], and it tends to isotropy only for
the heavy elements. As a last remark, Appendix A showed that the scattering cross section
is defined with the use of a joint PDF in energy and angular direction. The expansion of the
scattering operator with the Legendre polynomial leads to

L

~ o 2 1 o

Os¢ = / dE' f d? YT, E')Y l4+ m(E' — E)P(uo)o(r, E', 17), (C.21)
0 am =0 7

which can be further simplified by assuming isotropic scattering (e.g. L = 0), leading to
2 o / / ! 1 / e
Oy = / dE f A2 5,7, B —no(E' — E)é(F, B, 77), (C.22)
0 4r 4
since Py(19) = 1. The projection coefficient of the PDF is then

1
m(E' — E) = LIW(E/ — E, po)djpo, (C.23)

which requires knowledge of the joint PDF. However, all neutrons having an energy E after the
scattering will have the same scattering angle in the CM and in the LAB, and therefore the
PDF can be expressed with a Dirac delta in the angle corresponding to the energy E [25], which
yields

N(E" = B, po) =n(E" — E) d[uo — f(E))]. (C.24)

The computation of the zeroth order of the projection coefficient is straightforward thanks to
the properties of the Dirac delta and it coincides with the energy PDF. Since the PDF is zero
outside the interval [aE’, E'], the scattering operator is finally expressed as

R 1 /E/a Xs(7, E"O(T, E’)dE, (C.25)

050 = Am E (1—-a)E
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where the angular integration is carried out introducing the scalar flux.

Before proceeding further, additional information on the elastic scattering cross section must
be provided. In general, this can be seen as the sum of three components [16, 26] : the resonance
scattering, the interference scattering, and the potential scattering. The first term is related to
the formation of a compound nucleus upon a collision, in analogy to the inelastic collision, but
in this case with the re-emission of the neutron with unvaried kinetic energy. This term is highly
dependent on the energy, showing classical resonant structures. The second therm describes the
distortion of the resonances due to quantum interference with potential scattering [16]. The
latter term is independent of energy for large intervals and describes the classical "billiard-ball"
collision, which depends only on the atomic radius of the scattered nucleus. Figure C.3 reports
the elastic scattering cross sections for some representative nuclides, showing how the resonance
structures are imposed over an essentially constant cross section across almost the entire energy
range.

104_
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Cross section [b]
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— U-238 elastic
—— Fe-56 elastic
—— Pb-208 elastic

10-5 10-3 101 10! 103 105 107
Energy (eV)
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Figure C.3: Plot of the elastic scattering cross section for three representative nuclides. It can
be noted that, away from the resonance structures, the cross section is approrimately constant.

Therefore, when considering a specific energy group g, it is more convenient to separate
the scattering term between the resonant elements re and the non-resonant elements nre. The
scattering term takes the form

b — 1 /E/a” Xe(r, Eo(T, E') 1 /E/oz*”e Zre(r)e(r, B)

dE' + =
ir T e (1—ae)E’

/
i =T = dE, (C.26)

where, for the non-resonant elements, the scattering cross sections are reduced to only the poten-
tial scattering term [16],[20] . The previous expression can be further simplified by using three
resonance models: the Narrow Resonance (NR), the Wide Resonance (WR), and the Interme-
diate Resonance (IR) models [16, 20, 25, 14, 23], . The following will briefly go through each
of these assumptions and detail how they apply to the scattering term. These approximations
can be applied to both the resonant and non-resonant terms of Eq. (C.26), depending on the
specific situation.

In the NR model [23, 20], it is assumed that the width of the isolated resonance is much
smaller than the average energy loss of a neutron in a collision, which is particularly true for
light elements. It is assumed that the energy shape of the flux can be expressed as the product
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of two terms, i.e.

P(E) = f(E)e(E), (C.27)

where f(FE) describes the flux variations away from the resonances and ¢(FE) describes the flux
distribution close to the narrow resonance. Furthermore, it is assumed that, within the energy
interval of the scattering term, which is much larger than the narrow resonance, the flux is
essentially unperturbed by its presence. The flux shape is therefore described by f, and the
scattering cross section is described only by the potential scattering, which is independent of
the resonance structures, leading to

51 Ela Xs(7, E"Y®(T, E') , 1 Ela 3 (7 f(E") , 1 .
Osp = o /E A=) dE' ~ o /E 7(11) .y dE = —47r2p(r)C(E), (C.28)
where
(Bl F(E) ,
C(E)= /E 7(1 .y dE". (C.29)

In a homogeneous and non-absorbing medium, it can be shown that the energy dependence of
the flux is of the type ®(E) ~ 1/FE, which is usually referred to as the asymptotic condition [16,
20] . Since the resonances are narrow, it is assumed that they are spaced far enough apart such
that the flux assumes the asymptotic shape between them. This is commonly referred to as the
flux recovery approximation [14]. Using the asymptotic shape of the flux in Eq. (C.29) gives

I (02 e , 1
C’(E)_/E Toaim 4P _/E T -5 (C.30)

As mentioned above, the NR model is extremely valid for light elements, and it can be used to
a good extent for the moderator. For the absorber, this model may not be valid and the WR
model may provide better results. In this model [20, 23], on the contrary, the resonance interval
is very large compared to the average energy loss of a neutron in a collision, which remains
within the resonance interval. This condition can be taken to an extreme limit by assuming an
infinite mass of the heavy nuclide, which implies taking A — oo, or a — 1. This is equivalent
to the assumption that the neutron does not loose energy after a collision with the nucleus.
Therefore, E' ~ E, and

N 1 [E/e 37, E"NO(T, E') 1 [Ele 3 (7, E"O(T, E')
R —_ S 9 Y El — 1 7/\ S 9 9 E/ _
b0 = I /E (—ap  F=lma ), A—ap °
1, _ 1 (Bl 1 , 1 _ . (3)-1 (C.31)
17 (M E)e( B) lig, & /E A= a)iF = ;50 B B) lim == =

1
—Xs(F, E)P(F, E).
47

However, both the NR and the WR models represent two extreme cases, which may not be
appropriate for more complex cases, particularly when a mixture of nuclides is present. The
Intermediate Resonance (IR) model represents a linear combination of the above models using
the so called Goldstein-Cohen parameter A [25, 24], leading to

p 1

Osp = E[/\EP(F)C’(E) + (1= XNX(7, E)o(T, B)], (C.32)
where X ranges between 0 and 1, and must be specified for each energy group g depending on the
internal resonance structures (and therefore on the relative concentration of the heavy nuclides).

It can be noted that when X is equal to one, the IR model reduces to the NR model, while on
the contrary, when \ is equal to 0, it reduces to the WR model.
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Appendix D

Mathematical probability tables and
generation of partial cross sections

The derivation of the Gauss quadrature for partial cross sections is straightforward once the
quadrature Qg = {wk, 0k }gr=1,k for the total self-shielded cross section is known. In the
framework of the method of moments [20, 37, 35, 8]. The evaluation of the I-th order moments
of the total cross section is defined as

_ 1 ! _ I
Mg = Ay /Aug oi(u) du = /Dg o; w(oy) doy, (D.1)

and computed by the knowledge of the pointwise cross section. The moment can also be deter-
mined by using Gauss quadrature formula, which leads to

K
M,4(Qtg) = ng,k ai,g,k’? (D.2)
k=1

where K is the number of subgroups into which the group ¢ has been divided. The method of
moments retrieves the quadrature points as the ones that satisfy the system of 2K equations (in
2K unknowns {wg,0¢k}gx=1,Kk) that reads

Mg~ M(Qry) for L<I<L+2K -1, (D.3)

preserving 2K order moments. One degree of freedom is removed by imposing

N
> wer =1, (D.4)
k=1

which is equivalent to preserving the O-th order moment. The choice of the order moments to be
preserved is completely arbitrary. A logical choice would be to preserve the order moments from
0 to 2K — 1, but it has been shown that the best choice is to preserve negative order moments
[37], as for instance partial orders between -1 and 0 [54]. Solving the system of 2K nonlinear
equations (D.3) involves the procedure shown below for 0 < [ < 2K — 1, which can be extended
to other cases. Introducing the function

F(2) :/D _wlo) dat:/D w(on) S (200)! dor, (D.5)

gl—zot =

where a geometrical series expansion has been used [23, 8, 37, 20] , it can be noted that

00 2K-1
F(z)= Zzl /D Jiw(at) do; = Z zl/\/llnq + O(ZQK), (D.6)
=0 9 =0
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Appendix D. Mathematical probability tables and generation of partial cross sections

and then the PADE approximation [89] is used to expand F'(z), that now reads

ap + a1z + ag2® + - +ax 12571

14+biz+b22 4+ -+ brzX

F(z) = + O(Z%5). (D.7)

Equalizing Egs. (D.6) and (D.7), and multiplying the final term of the former by the denominator
of the latter, it is obtained

K-1 ] 2K—1 K
Z a;z) = < Z zl./\/ll,g> (1 + Z bmzm> , (D.8)
=0 1=0 m=1

with by = 1. By collecting terms of the same power of z [35], the set of 2K linear equations
reads as

n = Z Mm-m),g bm for n=0,1,..., K -1, (D.9)
0=> MNin-mygbm for n=01,... K—1 (D.10)
m=0

The system of K equations (D.10) can be solved for the coefficients b, which are then used in
the system of K equations (D.9) to solve for the coefficients a,. The next step is to factorise
the denominator of the PADE approximation, in Eq. (D.7), and then use a partial fraction
expansion [35], i.e

K-1

Z anz"
=0

K

2 — 2k z
k=1 k=1(1— —
H (2 = 2) ( Zk)
k=1

The conservation of moments is then applied in the expression of F'(z) in Eq. (D.6), which leads
to

F(z) =

2K -1 2K -1
F(z)= Z M, + O(z 2K Z ngkatgk—i-(’)( 2K)
=0 =0 A (D.12)
2K -1 K o .
3 S et 0 < S o)
1=0 k=1 t7g7k
By similarity between Egs. (D.11) and (D.12), it is possible to obtain
1
Otgk = — (D.13)
2

with the probability weight that are wgy = ¢;. These can now be obtained without the partial
fraction expansion: once the terms z; are known from the factorisation of the PADE approx-
imation denominator, the o4 terms are computed and the solution to the linear system of
K equations (D.2) (using the exact definition of the moments) will provide the missing terms.
Once the quadrature for the total cross section has been derived, producing the quadrature of
the partial cross section is straightforward. The moments for the partial cross section are defined
and solved using the quadrature Q4 = {wk, 0z i }gk=1,x [23, 8], i.e.

(Uta Ux)

1
po = —— . u)du = d doy 0y o} , D.14
Mizg Au, /Auga at u = /Dtg O't/D oy O (o) w(oy) ( )

and defining

B w*(o¢,04)
h(o)) = /D oy 0y T (D.15)
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it is possible to obtain
K
Mg = doy o} h(oy) w(oy) = > Wk Oagk af/’g’k for L<I<L+K-1, (D.16)
Dit.g k=1

where it has been set [23]
Ou,gk = h(0tgk)- (D.17)

The solution of the K linear equations (D.16) will then provide the partial quadrature set.
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Appendix E

Sensitivity analysis results

E.1 Sensitivity coefficients of the effective multiplication factor
in the NEA LFR benchmark

S(k, on,2r) MOX x
n r CAPTURE FISSION ELASTIC INELASTIC N,XN SUM
FINN -447E-04  3.42E-03  3.90E-06 -4.74E-05  6.50E-07  2.93E-03
U-235 FOUT -2.34E-04  1.72B-03  T7.46E-06 -2.32E-05  3.93E-07 1.47E-03
REACTOR -6.82E-04  5.15E-03  1.14E-05 7.06E-05  1.04E-06 4.41E-03
FINN -2.56E-03  1.09E-03  7.38E-06 -5.95E-05  1.00E-07 -1.52E-03
Am-241 FOUT -1.83E-03  8.25E-04  1.93E-05 -3.96E-05  8.47E-08 -1.02E-03
REACTOR -4.39E-03  1.92E-03  2.67E-05 -9.91E-05  1.85E-07 -2.55E-03
FINN -1.56E-03  T7.40E-03  1.18E-05 -7.24E-05  4.85E-08 5.79E-03
Pu-238 FOUT -1.12E-03  5.26B-03  3.11E-05 -4.63E-05  4.15E-08 4.13E-03
REACTOR -2.68E-03  1.27E-02  4.30E-05 -1.19E-04  9.00E-08 9.91E-03
FINN -3.26E-03  5.78E-03  4.7TE-05 -3.55E-04  3.00E-06 2.22E-03
Pu-242 FOUT -2.30E-03  4.33E-03  1.21E-04 -2.31E-04  2.52E-06 1.83E-03
REACTOR -5.65E-03  1.01E-02  1.69E-04 -5.85E-04  5.52E-06 4.04E-03
FINN -1.45E-03  0.00E+00  -2.63E-02 -1.16E-04  1.58E-10 -2.78E-02
0-16 FOUT -8.58E-04  0.00E4+00  -8.78E-03 -5.91E-05  1.13E-10 -9.70E-03
REACTOR -2.49E-03  0.00E+00  -3.64E-02 -1.79E-04  3.17E-10 -3.91E-02
FINN -1.36E-02  2.87E-02  1.52E-04 -1.25E-03  5.41E-06 1.40E-02
Pu-240 FOUT 9.72E-03  2.11E-02  3.89E-04 -8.17E-04  4.58E-06 1.10E-02
REACTOR -2.33E-02  4.98E-02  5.42E-04 -2.07E-03  9.98E-06 2.50E-02
FINN 2.71E-03  4.43E-02  2.29E-05 -3.39E-04  8.04E-06 4.13E-02
Pu-241 FOUT -1.97E-03  3.09E-02  5.96E-05 -218E-04  6.65E-06 2.88E-02
REACTOR -4.68E-03  T7.52E-02  8.27E-05 -5.58E-04  1.47E-05 7.00E-02
FINN -1.14E-01  3.38E-02  2.30E-03 -2.55E-02  3.75E-04 -1.03E-01
U-238 FOUT -5.81E-02  1.90B-02  4.41E-03 -1.24E-02  2.29E-04 -4.68E-02
REACTOR -1.72E-01  5.28E-02  6.73E-03 -3.79E-02  6.04E-04 -1.50E-01
FINN -2.86E-02  2.92E-01  2.69E-04 -2.05E-03  1.42E-05 2.62E-01
Pu-239 FOUT -2.07E-02  2.04E-01  7.08E-04 -1.33E-03  1.18E-05 1.83E-01
REACTOR -4.94E-02  4.97E-01  9.79E-04 -3.38E-03  2.60E-05 4.45E-01
SUM (FINN + FOUT)  -2.65E-01  7.04E-01  -2.65E-02 -4.49E-02  6.62E-04 3.69E-01
SUM (REACTOR) -2.65E-01  T7.04B-01  -2.78E-02 -4.49E-02  6.62E-04 3.67E-01

Table E.1: NEA LFR benchmark core. FEnergy-integrated SCs for the effective multiplication
factor for the most important nuclides of the MOX material in the fuel assemblies.
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E.1. Sensitivity coefficients of the effective multiplication factor in the NEA LFR benchmark

S(kyonzr) AIM1 x
n r CAPTURE FISSION ELASTIC INELASTIC N, XN  SUM
FINN -3.87E-04  0.00E+00 -6.81E-05  -5.69E-04  9.16E-07 -1.02E-03
Fe-57 FOUT -2.07E-04  0.00E+00  5.40E-05 2.73E-04  6.32E-07 -4.25E-04
REACTOR -9.03E-04  0.00E+00  1.27E-04 -L12E-03  1.93E-06 -1.89E-03
FINN -4.16E-04  0.00E+00  1.18E-04 2.57E-04  6.82E-07 -5.55E-04
Cr-53 FOUT 2.30E-04  0.00E400  2.12E-04 -1.38E-04  4.72E-07 -1.54E-04
REACTOR -LI3E-03  0.00E400  6.15E-04 -4.55E-04  1.4TE-06 -9.67E-04
FINN -7.56E-04  0.00E4+00  6.48E-05 -5.37E-04  5.49E-08 -1.23E-03
Mn-55 FOUT -4.46E-04  0.00E+00  1.43E-04 2.72E-04  5.14E-08 -5.74E-04
REACTOR 257E-03  0.00E4+00  4.55E-04 -LO6E-03  1.56E-07 -3.17E-03
FINN -7.76E-04  0.00E4+00 -1.77E-04  -4.56E-04  8.83E-08 -1.41E-03
Ni-60 FOUT -4.18E-04  0.00E+00  2.16E-04 243E-04  6.51E-08 -4.46E-04
REACTOR -L.76E-03  0.00E400  6.62E-04 -7.83E-04  2.05E-07 -1.88E-03
FINN -L11E-03  0.00E4+00 -1.35E-04  -349E-04  -8.66E-07 -1.59E-03
Fe-54 FOUT -6.14E-04  0.00E+00  2.48E-04 -1.85E-04  -4.91E-07 -5.52E-04
REACTOR -2.36E-03  0.00E+00  7.01E-04 -6.00E-04  -1.55E-06 -2.26E-03
FINN -851E-04  0.00E4+00 -2.14E-04  -133E-03  1.96E-07 -2.39E-03
Cr-52 FOUT -4.63E-04  0.00E+00  5.51E-04 -7.02E-04  1.45E-07 -6.14E-04
REACTOR -2.05E-03  0.00E+00  1.71E-03 2.27E-03  4.58E-07 -2.60E-03
FINN -3.53E-03  0.00E4+00 -895E-04  -866E-04  1.45E-08 -5.29E-03
Ni-58 FOUT -1.98E-03  0.00E+00  3.28E-04 -4.63E-04  1.05E-08 -2.12E-03
REACTOR -7.39E-03  0.00E+00  8.21E-05 -1.49E-03  3.30E-08 -8.80E-03
FINN -551E-03  0.00E4+00 -1.09E-03 ~ -T.80E-03  -1.69E-06 -1.44E-02
Fe-56 FOUT -3.07E-03  0.00E400  2.07E-03 -4.12E-03  -7.11E-07 -5.12E-03
REACTOR -1.36E-02  0.00E+00  5.50E-03 -1.35E-02  -2.33E-06 -2.16E-02
SUM (FINN + FOUT)  -2.08E-02  0.00E+00  1.43E-03 -1.86E-02  -4.32E-07 -3.79E-02
SUM (REACTOR) -3.17E-02  0.00E+00  9.86E-03 213E-02  3.69E-07 -4.32E-02

Table E.2: NEA LFR benchmark core. FEnergy-integrated SCs for the effective multiplication
factor for the most important nuclides of the AIM1 material in the fuel assemblies.

S(ky0nz,) COOLANT x
n r CAPTURE FISSION ELASTIC INELASTIC N,XN SUM

FINN -8.91E-04  0.00E4+00  9.00E-05 -341E-04  1.29E-06 -1.14E-03

Pb-204 FOUT -4.80E-04  0.00E4+00  1.98E-04 -1.82E-04  9.29E-07 -4.63E-04
REACTOR 217E-03  0.00E4+00  7.31E-04 -5.94E-04  2.89E-06 -2.03E-03

FINN -1.39E-03  0.00E4+00  1.21E-03 -3.53E-03  8.72E-05 -3.63E-03

Pb-207 FOUT T51E-04  0.00E4+00  2.91E-03 “1.81E-03  5.82E-05 4.15E-04
REACTOR -3.17E-03  0.00E4+00  1.05E-02 -6.18E-03  1.83E-04 1.38E-03

FINN -2.24E-03  0.00E4+00  1.49E-03 -5.21E-03  3.73E-05 -5.93E-03

Pb-206 FOUT -L19E-03  0.00E4+00  3.04E-03 -2.76E-03  2.58E-05 -8.88E-04
REACTOR -4.90E-03  0.00E4+00  1.12E-02 -9.03E-03  8.08E-05 -2.69E-03

FINN 4.17E-04  0.00E4+00  4.00E-03 2.69E-03  1.29E-04 1.02E-03

Pb-208 FOUT -2.29E-04  0.00E4+00  7.78E-03 -1.37E-03  8.66E-05 6.27E-03
REACTOR -8.73E-04  0.00E4+00  2.86E-02 “4.32E-03  2.72E-04 2.37E-02

SUM (FINN + FOUT)  -7.59E-03  0.00E+00  2.07E-02 L79E-02  4.26E-04 -4.34E-03
SUM (REACTOR) SL11E-02  0.00E4+00  5.11E-02 -2.01E-02  5.38E-04 2.04E-02

Table E.3: NEA LFR benchmark core. FEnergy-integrated SCs for the effective multiplication
factor for the most important nuclides of the coolant material in the fuel assemblies.
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Appendix E. Sensitivity analysis results

"o
U-238 U-238 Pu-239 Pu-239 Pu-241 Pu-240 0-16

g CAPTURE FISSION CAPTURE FISSION FISSION FISSION ELASTIC

1 -1.66E-07 2.53E-04 -2.05E-08 1.11E-04 1.07E-05 5.10E-05 -2.71E-05

2 -1.23E-06 3.21E-03 -2.03E-07 1.50E-03 1.38E-04 6.71E-04 -9.10E-05

3 -3.35E-05 7.84E-03 -1.77E-06 5.13E-03 4.36E-04 2.14E-03 7.14E-04

4 -5.41E-04 1.77E-02 -2.39E-05 1.39E-02 1.23E-03  5.79E-03 3.38E-04
5 -2.12E-03 2.14E-02 -1.19E-04 2.16E-02 2.03E-03 8.47E-03 -3.06E-03

6 -4.77E-03 2.06E-03 -2.82E-04 2.57E-02  2.47E-03 1.01E-02 -1.49E-03

7 -1.00E-02 2.39E-04 -1.14E-03 5.06E-02  5.00E-03 1.16E-02 -6.57E-03
8 -7.35E-03 2.79E-05 -1.41E-03 3.97E-02 4.40E-03 2.63E-03  -5.84E-03

9 -9.77E-03 1.43E-05 -2.29E-03 4.82E-02 6.30E-03 1.59E-03  -6.08E-03
10 -1.13E-02 1.78E-05 -2.77E-03 4.81E-02 6.96E-03 1.10E-03 -7.23E-03
11 -1.18E-02 5.41E-06 -2.71E-03 4.17E-02  6.39E-03 1.03E-03  -6.55E-03
12 -1.55E-02 1.15E-05 -2.97E-03 3.73E-02 6.12E-03  9.52E-04  -3.60E-03
13 -1.50E-02 3.60E-06 -2.87E-03 2.87E-02 4.99E-03 9.47E-04 -9.49E-04
14 -1.60E-02 9.22E-06 -3.54E-03 2.73E-02 5.17E-03 6.83E-04 -1.52E-04
15 -1.46E-02 6.25E-06 -3.84E-03 2.17E-02  4.55E-03  5.19E-04 1.23E-03
16 -1.11E-02 4.84E-06 -3.67E-03 1.62E-02 3.49E-03 2.13E-04 7.85E-04
17 -1.04E-02 5.83E-07 -4.41E-03 1.55E-02  3.82E-03  2.63E-04 8.02E-04
18 -9.76E-03 8.69E-07 -4.25E-03 1.46E-02  3.29E-03  3.37TE-04 6.20E-04
19 -7.44E-03 5.26E-07 -4.06E-03 1.26E-02  3.08E-03  4.67TE-04 4.13E-04
20 -5.89E-03 7.29E-06 -2.49E-03 9.81E-03 1.87E-03 2.37E-04 9.39E-04
21 -3.87E-03 1.18E-05 -2.47E-03 6.66E-03 1.22E-03  1.50E-05 3.35E-05
22 -1.19E-03 3.50E-09 -8.17E-04 2.05E-03  6.18E-04  3.90E-06 1.39E-04
23 -1.84E-03 2.86E-09 -1.74E-03 4.01E-03 7.48E-04 5.24E-06 -6.63E-05
24 -4.70E-04 1.84E-10 -4.85E-04 1.15E-03  1.74E-04 4.80E-07 -2.71E-05
25 -1.50E-04 3.19E-10 -2.70E-04 6.73E-04  7.62E-05 3.05E-07 -1.92E-04
26 -2.93E-04 9.17E-10 -2.75E-04 8.48E-04  8.08E-05 1.34E-07 -1.31E-04
27 -2.03E-04 2.47E-10 -5.06E-05 1.48E-04 1.69E-04 1.08E-07 -1.76E-05
28 -2.46E-04 9.02E-10 -1.26E-04 3.74E-04 591E-05 5.19E-07 -4.93E-05
29 -1.37E-05 1.99E-11 -1.21E-04 1.96E-04 7.72E-05 1.65E-09 -1.66E-04
30 -1.67E-04 1.37E-10 -6.85E-05 1.82E-04 1.38E-04 287E-09 -8.99E-05
31 -1.18E-05 1.50E-10 -6.25E-06 2.00E-04 6.69E-05 9.44E-08  -2.04E-05
32 -4.42E-07 2.21E-12 -3.57E-05 6.08E-05 3.82E-06 2.46E-09 -1.30E-05
33 -7.19E-08 3.32E-13 -1.81E-06 4.17E-06  6.10E-07  1.48E-10 1.69E-07
PART >0 0.00E+4-00 5.28E-02 0.00E+4-00 497E-01  7.52E-02 4.98E-02 6.01E-03
PART <0 -1.72E-01  0.00E+00 -4.93E-02  0.00E+400 0.00E400 0.00E+00 -4.24E-02
SUM -1.72E-01 5.28E-02 -4.93E-02 497E-01  7.52E-02 4.98E-02 -3.64E-02

Table E.J: NEA LFR benchmark core. Space-integrated SCs for the effective multiplication
factor for the most important nuclides of the MOX material in the fuel assemblies.
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E.1. Sensitivity coefficients of the effective multiplication factor in the NEA LFR benchmark

S(k,on,zg) AIM1

& COOLANT ™ T
Fe-56 Fe-56 Ni-58 Pb-208  Pb-206  Pb-207
g INELASTIC CAPTURE CAPTURE ELASTIC ELASTIC ELASTIC
1 1.63E-06  -2.63E-05  -2.93E-05  1.49E-06  6.23E-07  5.79E-07
P 1.34E-05  -1.32E-04  -3.68E-04  4.90E-05  2.12E-05  1.97E-05
3 2.38E-04  -3.59E-05  -1.03E-03  3.59E-04  1.32E-04  1.49E-04
4 6.53E-04  -6.91E-05  -1.06E-03  1.75E-03  5.79E-04  6.38E-04
5 554E-04  -1.26E-04  -3.19E-04  2.64E-03  8.23E-04  8.23E-04
6 9.31E-04  -2.82E-04  -1.52E-04  2.67E-03  1.13E-03  9.82E-04
7 8.52E-04  -8.73E-04  -2.80E-04  5.92E-03  2.76E-03  2.44FE-03
8 1.42E-03  -6.75E-04  -2.50E-04  2.88E-03  1.10E-03  1.03E-03
9 6.04E-04  -8.32B-04  -3.81E-04  3.33E-03  1.35E-03  1.33E-03
10 449E-05  -T.6TE-04  -486E-04  291E-03  1.05E-03  1.19E-03
11 2.97E-04  -1.44E-03  -3.63E-04  1.81E-03  5.17E-04  5.90E-04
12 5.76E-04  -8.8TE-04  -4.20E-04  1.33E-03  5.22E-04  2.98E-04
13 9.90E-04  -1.39E-03  -5.93E-04  S8.76E-04  3.74E-04  2.34E-04
14 570E-05  -5.23E-04  -4.27E-04  1.08E-03  4.20E-04  4.15E-04
15 425B-04  -1.88E-04  -6.57E-04  7.85E-04  3.08E-04  3.05E-04
16 2.97E-04  -1.46E-04  -6.04E-05  3.91E-04  155E-04  1.53E-04
17 3.71E-04  -1.83E-04  -4.73E-05  3.63E-04  1.65E-04  1.44E-04
18 3.41E-04  -1.87E-04  -4.67E-05  2.50E-04  1.02E-04  9.95E-05
19 1.69E-04  -2.07E-04  -5.56E-05  1.21E-04  5.00E-05  4.80E-05
20 6.90E-04  -3.45E-03  -4.37E-05  1.75E-04  7.52E-05  T.00E-05
21 1.46E-04  -1.50E-04  -4.15E-05  9.16E-05  3.95E-05  3.65E-05
92 1.15E-04  -7.29E-05  -2.01E-05  4.81E-06  1.81E-06  1.84E-06
23 3.23E-04  -1.78E-04  -4.89E-05  2.15E-04  9.49E-05  8.55E-05
24 148E-04  -9.71E-05  -2.65E-05  1.17E-04  5.24E-05  4.67E-05
25 2.80E-04  -5.90E-05  -1.61E-05  1.34E-04  6.04E-05  5.35E-05
26 2.10E-04  -9.45E-05  -2.56E-05  1.37E-04  6.17E-05  5.45E-05
27 8.54E-05  -8.45E-05  -2.29E-05  6.24E-05  2.82E-05  2.49E-05
28 1.09E-04  -7.52B-05  -2.05B-05  T7.12E-05  3.23E-05  2.84E-05
29 2.07E-04  -6.81E-05  -1.85E-05  1.04E-04  4.75E-05  4.17E-05
30 S121E-04  -7.22E-05  -1.96E-05  6.91E-05  3.14E-05  2.76E-05
31 478E-05  -1.30E-04  -3.51E-05  3.94E-05  1.79E-05  1.57E-05
32 2.01E-05  -445E-05  -1.20E-05  1.50E-05  6.81E-06  5.97E-06
33 2.05E-07  -5.33B-06  -1.41E-06  5.22B-07  2.37E-07  2.08E-07
PART >0 841E-03  0.00E+00  0.00E+00  2.97E-02  1.16E-02  1.10E-02
PART <0 2.92B-03  -1.36E-02  -7.38E-03  -1.06E-03 -4.75E-04  -4.23E-04
SUM 5.49E-03  -1.36E-02  -7.38E-03  2.86E-02  L11E-02  1.05E-02

Table E.5: NEA LFR benchmark core. Space-integrated SCs for the effective multiplication
factor for the most important nuclides of the AIM1 & coolant materials in the fuel assemblies.
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Appendix E. Sensitivity analysis results

E.2 Sensitivity coefficients for Doppler coefficient

S(Apr, onzr) MOX T
n T CAPTURE FISSION ELASTIC INELASTIC N, XN SUM

FINN -2.84E-03 -6.20E-03 6.42E-05 2.51E-04 4.45E-07  -8.73E-03
U-235 FOUT -1.25E-03 -3.89E-03 1.30E-05 1.20E-04 -9.93E-08 -5.01E-03
REACTOR -4.09E-03 -1.01E-02 7.73E-05 3.72E-04 3.45E-07 -1.37E-02
FINN -1.48E-02 -2.36E-03 1.18E-04 3.52E-04 5.84E-08  -1.66E-02
Am-241 FOUT -8.50E-03 -2.30E-03 3.51E-05 2.24E-04 -2.91E-08 -1.05E-02
REACTOR -2.32E-02 -4.66E-03 1.53E-04 5.76E-04 2.93E-08 -2.72E-02
FINN -1.08E-02 -1.45E-02 2.23E-04 4.12E-04 4.01E-08  -2.47TE-02
Pu-238 FOUT -6.37E-03 -1.34E-02 8.07E-05 2.62E-04 -7.08E-09 -1.95E-02
REACTOR -1.72E-02 -2.80E-02 3.04E-04 6.74E-04 3.30E-08  -4.42E-02
FIN -2.03E-02 -1.32E-02 8.16E-04 1.87E-03 2.32E-06  -3.08E-02
Pu-242 FOUT -1.05E-02 -1.25E-02 2.84E-04 1.22E-03 -4.84E-07 -2.15E-02
REACTOR -3.08E-02 -2.57E-02 1.10E-03 3.10E-03 1.84E-06  -5.24E-02
FINN -1.78E-02 -4.91E-02 4.43E-04 2.11E-03 8.10E-06  -6.44E-02
Pu-241 FOUT -1.04E-02 -4.90E-02 1.80E-04 1.31E-03 4.15E-08  -5.79E-02
REACTOR -2.82E-02 -9.81E-02 6.23E-04 3.42E-03 8.14E-06 -1.22E-01
FINN -7.17E-02 -6.82E-02 2.84E-03 6.93E-03 4.31E-06 -1.30E-01
Pu-240 FOUT -3.06E-02 -6.32E-02 1.14E-03 4.49E-03 -8.31E-07 -8.81E-02
REACTOR -1.02E-01 -1.31E-01 3.98E-03 1.14E-02 3.47E-06  -2.18E-01
FINN 4.57E-02 -8.09E-02 3.60E-02 1.22E-01 2.96E-04 1.24E-01
U-238 FOUT 1.19E-01 -5.74E-02 5.98E-03 6.05E-02 -4.10E-05  1.28E-01
REACTOR 1.65E-01 -1.38E-01 4.19E-02 1.83E-01 2.55E-04 2.51E-01
FINN 1.38E-03 0.00E+4-00 4.45E-01 2.48E-04 1.78E-10 4.47E-01
O-16 FOUT 1.32E-03 0.00E+00 1.87E-01 1.62E-04 -4.76E-12  1.88E-01
REACTOR 2.81E-03 0.00E4-00 7.20E-01 4.26E-04 1.84E-10 7.23E-01
FINN -2.18E-01 -5.35E-01 4.86E-03 1.48E-02 8.00E-06 -7.34E-01
Pu-239 FOUT -1.07E-01 -5.02E-01 1.96E-03 9.14E-03 -4.06E-06 -5.98E-01
REACTOR -3.24E-01 -1.04E+400 6.82E-03 2.39E-02 3.95E-06 -1.33E4-00
SUM (FINN + FOUT) -3.63E-01 -1.47E+400 6.87E-01 2.27E-01 2.73E-04  -9.23E-01
SUM (REACTOR) -3.63E-01 -1.47E+400 7.75E-01 2.27E-01 2.73E-04  -8.35E-01

Table E.6: NEA LFR benchmark core. Energy-integrated SCs for the Doppler reactivity change
for the most important nuclides of the MOX material in the fuel assemblies.
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E.2. Sensitivity coefficients for Doppler coefficient

S(Apr,onzyr) AIM1 T

n T CAPTURE FISSION ELASTIC INELASTIC N, XN SUM
FINN -2.22E-03 0.00E4-00 9.97E-03 1.47E-03 1.51E-07 9.21E-03
Ni-60 FOUT -6.92E-04 0.00E4-00 3.77E-03 8.95E-04 1.99E-08 3.97E-03
REACTOR -5.47E-03 0.00E+4-00 2.02E-02 2.78E-03 2.07E-07 1.75E-02
FINN -1.85E-03 0.00E+4-00 4.86E-03 8.87E-03 8.79E-07 1.19E-02
Fe-57 FOUT -6.63E-04 0.00E4-00 1.94E-03 3.82E-03 -7.93E-08 5.10E-03
REACTOR -4.35E-03 0.00E+4-00 9.58E-03 1.69E-02 1.01E-06 2.22E-02
FINN -1.97E-03 0.00E4-00 1.64E-02 1.11E-03 1.11E-06  1.56E-02
Fe-54 FOUT -4.06E-04 0.00E+-00 6.43E-03 6.76E-04 9.04E-07 6.70E-03
REACTOR -4.95E-03 0.00E+4-00 3.22E-02 2.10E-03 2.18E-06  2.94E-02
FINN -4.47E-03 0.00E4-00 1.19E-02 4.24E-03 3.56E-07 1.17E-02
Cr-52 FOUT -1.72E-03 0.00E4-00 3.73E-03 2.58E-03 5.22E-08 4.59E-03
REACTOR -1.06E-02 0.00E+00 2.17E-02 7.99E-03 5.05E-07 1.91E-02
FINN -2.76E-03 0.00E+4-00 1.90E-02 8.81E-04 6.31E-07 1.71E-02
Cr-53 FOUT -1.16E-03 0.00E4-00 7.99E-03 5.27E-04 -7.61E-08 7.36E-03
REACTOR -7.07E-03 0.00E+4-00 3.69E-02 1.71E-03 7.06E-07 3.15E-02
FINN -1.17E-02 0.00E+4-00 1.47E-02 3.52E-03 2.98E-07 6.45E-03
Mn-55 FOUT -5.63E-03 0.00E4-00 6.74E-03 1.70E-03 9.99E-08 2.81E-03
REACTOR -3.03E-02 0.00E+00 2.89E-02 6.91E-03 4.64E-07 5.59E-03
FINN -2.55E-03 0.00E+4-00 6.74E-02 2.81E-03 1.82E-08 6.77E-02
Ni-58 FOUT 2.34E-04 0.00E4-00 2.65E-02 1.71E-03 1.87E-10 2.84E-02
REACTOR -7.87E-03 0.00E+00 1.24E-01 5.30E-03 2.30E-08 1.22E-01
FINN -2.79E-02 0.00E+4-00 8.82E-02 2.74E-02 6.69E-06 8.78E-02
Fe-56 FOUT -1.13E-02 0.00E4-00 3.23E-02 1.62E-02 3.70E-06 3.72E-02
REACTOR -6.96E-02 0.00E+00 1.56E-01 5.25E-02 1.17E-05 1.39E-01
SUM (FINN + FOUT) -7.68E-02 0.00E+4-00 3.22E-01 7.85E-02 1.48E-05 3.24E-01
SUM (REACTOR) -1.40E-01 0.00E+4-00 4.30E-01 9.63E-02 1.68E-05 3.86E-01

Table E.7: NEA LFR benchmark core. Energy-integrated SCs for the Doppler reactivity change
for the most important nuclides of the AIM1 material in the fuel assemblies.

S(Apr,0ner) COOLANT x

n r CAPTURE FISSION ELASTIC INELASTIC N,XN  SUM
FINN -5.53E-03  0.00E4+00  1.29E-03 1.0SE-03  2.44E-06 -3.17E-03
Pb-204 FOUT 2.10E-03  0.00E4+00  2.20E-04 6.62E-04  4.30E-07 -1.22E-03
REACTOR -1.30E-02  0.00E4+00  2.52E-03 2.06E-03  3.61E-06 -8.39E-03
FINN -3.54E-03  0.00E4+00  2.22E-02 1.29E-02  5.69E-05  3.16E-02
Pb-207 FOUT -1.O4E-03  0.00E4+00  4.28E-03 7.32E-03  -1.80E-05 1.05E-02
REACTOR -9.11E-03  0.00E4+00  4.26E-02 252E-02  5.86E-05 5.88E-02
FINN -2.84E-03  0.00E+00  1.93E-02 1.65E-02  4.31E-05  3.31E-02
Pb-206 FOUT -3.13E-04  0.00E4+00  2.98E-03 LOIE-02  3.73E-07 1.27E-02
REACTOR -T72E-03  0.00E4+00  3.62E-02 3.16E-02  5.64E-05 6.01E-02
FINN 116E-04  0.00E+00  4.41E-02 7.96E-03  6.40E-05 5.22E-02
Pb-208 FOUT 2.20E-04  0.00E+00  5.68E-03 484E-03  -3.80E-05 1.07E-02
REACTOR 1.03E-04  0.00E+00  8.29E-02 143E-02  4.73E-05  9.73E-02
SUM (FINN + FOUT) -1.50E-02  0.00E4+00  1.00E-01 6.13E-02  1L.11E-04 1.46E-01
SUM (REACTOR) -2.97E-02  0.00E+00  1.64E-01 731E-02  1.66E-04 2.08E-01

Table E.8: NEA LFR benchmark core. Energy-integrated SCs for the Doppler reactivity change
for the most important nuclides of the coolant material in the fuel assemblies.
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Appendix E. Sensitivity analysis results

S(APT, Un,m,g)
MOX e
g U-238 U-238 Pu-239 Pu-239 Pu-241 Pu-240 0O-16

CAPTURE FISSION CAPTURE FISSION FISSION FISSION ELASTIC

1 2.05E-07 -6.37E-04 2.63E-08 -2.76E-04 -2.65E-05 -1.27E-04  2.94E-05
2 1.55E-06 -7.84E-03 2.63E-07 -3.62E-03 -3.31E-04 -1.62E-03  2.09E-04
3 3.90E-05 -1.98E-02 2.14E-06 -1.26E-02  -1.07E-03 -5.29E-03 -1.37E-03
4 6.38E-04 -4.65E-02 2.93E-05 -3.49E-02  -3.08E-03 -1.46E-02 -1.74E-04
5 2.34E-03 -5.68E-02 1.37E-04 -5.50E-02  -5.15E-03 -2.16E-02  1.02E-02
6 4.50E-03 -5.54E-03 2.79E-04 -6.63E-02 -6.37E-03 -2.61E-02  3.29E-03
7 8.93E-03 -6.37E-04 1.07E-03 -1.30E-01 -1.28E-02 -2.99E-02  4.68E-02
8 4.57E-03 -7.68E-05 9.43E-04 -1.04E-01 -1.15E-02 -6.93E-03  5.24E-02
9 4.03E-03 -4.05E-05 1.06E-03 -1.30E-01 -1.69E-02 -4.28E-03  5.56E-02
10 1.29E-03 -5.18E-05 4.64E-04 -1.32E-01 -1.90E-02 -3.00E-03  7.05E-02
11 -3.08E-03  -1.63E-05 5.46E-04 -1.18E-01  -1.79E-02 -2.92E-03  6.56E-02
12 -1.09E-02  -3.58E-05 1.92E-03 -1.09E-01 -1.77E-02 -2.77E-03  6.76E-02
13 -1.96E-02  -1.19E-05 3.45E-03 -8.84E-02 -3.83E-03 -2.95E-03  6.06E-02
14 -1.76E-02  -4.60E-05 6.70E-03 -8.84E-02  -9.98E-03 -2.23E-03  5.49E-02
15 -4.86E-03  -6.20E-05 1.16E-02 -7.17E-02 -1.17E-02 -1.78E-03  6.50E-02
16 5.75E-03 -6.27E-05 1.58E-02 -5.33E-02  -9.82E-03 -7.54E-04 4.21E-02
17 2.22E-02 -1.75E-06 2.57TE-02 -4.78E-02  -9.62E-03 -1.04E-03  4.72E-02
18 4.69E-02 -1.58E-06 3.65E-02 -2.70E-02  -3.60E-03 -2.22E-03  3.29E-02
19 5.66E-02 -5.22E-08 5.02E-02 7.51E-03  3.99E-03 -6.66E-04 2.85E-02
20 4.14E-02 -9.79E-05 4.13E-02 4.25E-02  9.07E-03 1.63E-04  2.06E-02
21 2.09E-02 -1.76E-05 5.42E-02 5.98E-02  1.31E-02 -7.28E-04  2.72E-03
22 -1.00E-03  -8.33E-08 2.04E-02 2.44E-02  9.28E-03 2.29E-06  5.90E-03
23 5.77E-03 -5.20E-08 4.34E-02 5.77TE-02  1.56E-02 -3.19E-05 -2.90E-03
24 -3.50E-03 1.19E-09 1.24E-02 2.13E-02  3.38E-03  7.52E-07 -1.55E-04
25 -9.74E-04  -5.27E-09 3.15E-03 9.62E-03 1.72E-03 -3.03E-06 -3.17E-03
26 1.60E-03 -2.20E-08 3.04E-03 1.25E-02 1.53E-03  2.34E-06  -5.41E-03
27 -2.30E-03 3.68E-09 7.09E-04 -1.70E-03  1.83E-03 -9.52E-07  1.18E-03
28 1.24E-03 -4.63E-09 7.17E-04 -2.35E-04  4.38E-04 2.55E-05  4.13E-04
29 -1.60E-04 2.38E-10 5.43E-04 1.86E-04  4.86E-04 1.93E-08 -2.24E-04
30 9.44E-05 -6.54E-10 3.63E-04 -1.33E-03  1.66E-03 2.46E-08 -4.17E-04
31 -1.28E-04 1.08E-09 7.72E-05 1.67E-03  2.13E-04 3.46E-07 -4.26E-04
32 -3.40E-06 1.39E-11 4.39E-05 6.51E-05  9.54E-06 1.49E-08  4.74E-05
33 -2.46E-07 8.34E-13 3.55E-06 8.04E-06 1.25E-06  3.54E-10  2.39E-06
PART >0 2.29E-01 6.20E-09 6.31E-03 2.37E-01 6.24E-02  1.95E-04  7.34E-01
PART <0 -6.42E-02  -1.38E-01  -3.31E-01  -1.28E+00 -1.60E-01 -1.32E-01 -1.42E-02
SUM 1.65E-01 -1.38E-01  -3.24E-01  -1.04E400 -9.81E-02 -1.31E-01  7.20E-01

Table E.9: NEA LFR benchmark core. Space-integrated SCs for the Doppler reactivity change
for the most important nuclides of the MOX material in the fuel assemblies.
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E.2. Sensitivity coefficients for Doppler coefficient

S(Apr,Onzg)
AIM1 & n,x
COOLANT
Fe-56 Fe-56 Ni-58 Pb-208 Pb-206 Pb-207
g ELASTIC CAPTURE ELASTIC ELASTIC ELASTIC ELASTIC
1 5.19E-07 3.05E-05 1.17E-07  -4.35E-06 -1.81E-06 -1.67E-06
2 -1.85E-05 1.55E-04 -3.67TE-06  -8.47E-05 -3.67E-05 -3.41E-05
3 -4.19E-04 3.91E-05 -7.22E-05 -6.21E-04 -2.29E-04 -2.57TE-04
4 -8.67E-04 7.50E-05 -1.39E-04  -2.79E-03  -9.26E-04 -1.02E-03
5 1.77E-04 1.22E-04 1.58E-04 -3.58E-03 -1.06E-03 -1.04E-03
6 -1.02E-03 2.13E-04 -3.23E-04  -3.28E-03  -1.40E-03 -1.22E-03
7 8.84E-03 5.56E-04 1.24E-03  -5.74E-03  -1.35E-03  -1.08E-03
8 2.70E-03 1.77E-04 2.41E-03 3.04E-03 1.10E-03 1.13E-03
9 1.46E-02 5.38E-05 1.36E-03 4.39E-03 1.32E-03 1.65E-03
10 9.94E-03 2.68E-04 3.19E-03 7.73E-03 3.60E-03 3.64E-03
11 7.22E-03 1.09E-03 1.17E-02 9.16E-03 3.86E-03 4.01E-03
12 2.06E-02 1.14E-03 4.16E-03 1.03E-02 3.99E-03 1.22E-02
13 7.07E-03 2.68E-03 1.43E-02 1.63E-02 6.63E-03 5.81E-03
14 7.11E-03 1.39E-03 5.65E-02 8.90E-03 3.48E-03 3.42E-03
15 1.68E-02 7.40E-04 4.26E-03 1.20E-02 4.75E-03 4.70E-03
16 1.20E-02 7.60E-04 4.43E-03 7.21E-03 2.88E-03 2.85E-03
17 1.93E-02 1.24E-03 7.81E-03 9.07E-03 5.31E-03 3.60E-03
18 1.68E-02 1.72E-03 6.79E-03 7.50E-03 3.07E-03 2.99E-03
19 1.44E-02 2.44E-03 5.63E-03 6.35E-03 2.65E-03 2.53E-03
20 1.31E-02 4.63E-02 4.92E-03 4.30E-03 1.83E-03 1.72E-03
21 3.22E-04 2.50E-03 1.27E-04 3.32E-04 1.41E-04 1.32E-04
22 4.69E-03 1.27E-03 1.66E-03 1.08E-03 4.80E-04 4.34E-04
23 -5.37E-03 2.95E-03 -1.87E-03  -2.74E-03  -1.22E-03  -1.09E-03
24 -2.30E-03 1.27E-03 -8.01E-04 -1.59E-03 -7.13E-04 -6.35E-04
25 -3.82E-03 6.16E-04 -1.30E-03  -1.65E-03  -7.46E-04 -6.60E-04
26 -6.06E-03 8.27E-04 -2.06E-03  -2.74E-03  -1.24E-03  -1.10E-03
27 1.26E-03 2.21E-04 4.27E-04 5.50E-04 2.50E-04 2.20E-04
28 3.43E-04 2.92E-04 1.15E-04 8.39E-05 3.83E-05 3.36E-05
29 -3.14E-04 3.01E-04 -1.06E-04 -1.82E-04 -8.26E-05 -7.25E-05
30 -4.97E-04 3.58E-04 -1.69E-04  -2.83E-04 -1.29E-04 -1.13E-04
31 -2.47E-04 5.81E-04 -8.46E-05 -1.75E-04  -7.97E-05 -6.99E-05
32 1.14E-06 8.09E-05 3.17E-07 -2.48E-06 -1.12E-06 -9.84E-07
33 1.77E-06 6.94E-06 5.95E-07 5.33E-07 2.44E-07 2.13E-07
PART >0 1.77E-01 1.42E-03 1.31E-01 1.08E-01 4.54E-02 5.10E-02
PART <0 -2.09E-02 7.10E-02 -6.93E-03  -2.55E-02  -9.22E-03  -8.39E-03
SUM 1.56E-01 6.96E-02 1.24E-01 8.29E-02 3.62E-02 4.26E-02

Table E.10: NEA LFR benchmark core. Space-integrated SCs for the Doppler reactivity change
for the most important nuclides of the AIM1 & coolant materials in the fuel assemblies.
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Appendix E. Sensitivity analysis results

E.3 Sensitivity coefficients comparison against MC results
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Figure E.1: NEA LFR benchmark reactor core. Comparison between the U-235 SCs produced
by ERANOS and Serpent2 for the effective multiplication factor.
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E.3. Sensitivity coefficients comparison

against MC results
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Figure E.2: NEA LFR benchmark core. Comparison between the Pu-241 SCs produced by ER-

ANOS and Serpent2 for the effective multiplication factor.
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Appendix F

Energy bounds of 295 group structure

Group Upper bound Group Upper bound Group Upper bound Group Upper bound

[MeV]

[MeV]

[MeV]

[MeV]

© 00 O Ot = W N

W W W W W W W W NDND-NDDNDDNIDNDDNDNNDN = = o e
N O U R W R O © 000Ut R WN RO © 00N Oo Ot s WwWw NNy = O

1.964033E4-01
1.915541E+01
1.868246E4-01
1.822119E+01
1.777131E4-01
1.733253E4-01
1.690459E+01
1.648721E+01
1.608014E4-01
1.568312E4-01
1.529590E4-01
1.491825E+01
1.454991E+01
1.419068E4-01
1.384031E4-01
1.349859E4-01
1.316531E+01
1.284025E+01
1.252323E+01
1.221403E4-01
1.191246E4-01
1.161834E+01
1.133148E+01
1.105171E4-01
1.077884E4-01
1.051271E4-01
1.025315E+01
1.000000E4-01
9.753099E-+00
9.512294E-+00
9.277435E+00
9.048374E+00
8.824969E-+00
8.607080E-+00
8.394570E-+00
8.187308E+00
7.985162E+00

75
76
7
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111

2.365332E+00
2.345703E+00
2.306932E+00
2.268802E-+00
2.231302E+00
2.122480E+00
2.018965E+00
1.969117E+00
1.920499E4-00
1.873082E4-00
1.826835E4-00
1.737739E4-00
1.652989E4-00
1.612176E4-00
1.572372E4-00
1.533550E4-00
1.495686E4-00
1.422741E+00
1.353353E4-00
1.287349E4-00
1.224564E4-00
1.194330E4-00
1.164842E4-00
1.108032E4-00
1.053992E4-00
1.002588E+-00
9.778344E-01

9.616723E-01

9.536916E-01

9.071795E-01

8.629359E-01

8.208500E-01

7.808167E-01

7.427358E-01

7.065121E-01

6.720551E-01

6.392786E-01
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149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185

1.356856E-01
1.290681E-01
1.227734E-01
1.167857E-01
1.110900E-01
9.803655E-02
8.651695E-02
8.229747E-02
7.635094E-02
6.737947TE-02
6.251086E-02
5.946217E-02
5.656217E-02
5.516564E-02
5.247518E-02
4.630919E-02
4.086771E-02
3.697864E-02
3.606563E-02
3.517517TE-02
3.430669E-02
3.182781E-02
2.928300E-02
2.808794E-02
2.739445E-02
2.605841E-02
2.478752E-02
2.417552E-02
2.357862E-02
2.187491E-02
2.133482E-02
1.930454E-02
1.703620E-02
1.661557E-02
1.503439E-02
1.326780E-02
1.170880E-02

223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259

3.535750E-04
3.043248E-04
2.753645E-04
2.144541E-04
2.039950E-04
1.670170E-04
1.486254E-04
1.367420E-04
1.300730E-04
1.013009E-04
9.166088E-05
7.889325E-05
7.567357E-05
6.790405E-05
6.144212E-05
5.559513E-05
5.157802E-05
4.785117E-05
4.551744E-05
4.016900E-05
3.726653E-05
3.372015E-05
3.051126E-05
2.902320E-05
2.760773E-05
2.498050E-05
2.260329E-05
1.945484E-05
1.760346E-05
1.592827E-05
1.370959E-05
1.122446E-05
1.067704E-05
9.905554E-06
9.189814E-06
8.315287E-06
7.523983E-06



E.3. Sensitivity coeflicients comparison against MC results

Group Upper bound Group Upper bound Group Upper bound Group Upper bound

[MeV] [MeV] [MeV] [MeV]
38 7.788008E+00 112 6.081006E-01 186 1.113775E-02 260 6.475952E-06
39 7.595721E400 113 5.784432E-01 187 1.033298E-02 261 6.160116E-06
40 7.408182E+00 114 5.502322E-01 188 9.118820E-03 262 5.346430E-06
41 7.225274E400 115 5.366469E-01 189 8.047330E-03 263 5.043477E-06
42 7.046881E+400 116 5.233971E-01 190 7.465858 E-03 264 4.000000E-06
43 6.872893E+00 117 5.104743E-01 191 7.101744E-03 265 3.927860E-06
44 6.703200E400 118 4.978707E-01 192 6.267267E-03 266 3.300000E-06
45 6.647573E400 119 4.735892E-01 193 5.530844E-03 267 3.059020E-06
46 6.592406E+00 120 4.504920E-01 194 5.004514E-03 268 2.600000E-06
47 6.537698E+00 121 4.285213E-01 195 4.528272E-03 269 2.382370E-06
48 6.376282E+00 122 4.076220E-01 196 4.307425E-03 270 2.100000E-06
49 6.218851E+00 123 3.877421E-01 197 4.097350E-03 271 1.855390E-06
50 6.065307E+00 124 3.688317E-01 198 3.707435E-03 272 1.670000E-06
51 5.915554E+400 125 3.508435E-01 199 3.526622E-03 273 1.440000E-06
52 5.769498E+00 126 3.337327E-01 200 3.354626E-03 274 1.300000E-06
53 5.488116E+00 127 3.174564E-01 201 3.035391E-03 275 1.123000E-06
54 5.220458 E+00 128 3.096183E-01 202 2.863392E-03 276 1.020000E-06
55 4.965853E4-00 129 3.019738E-01 203 2.746536E-03 277 8.764250E-07
56 4.843246E+400 130 2.945181E-01 204 2.612586E-03 278 8.194500E-07
57 4.607038E+00 131 2.872464E-01 205 2.485168E-03 279 6.825600E-07
58 4.493290E400 132 2.801543E-01 206 2.248673E-03 280 6.250000E-07
59 4.274149E+00 133 2.732372E-01 207 2.034684E-03 281 5.400000E-07
60 4.065697E4-00 134 2.599113E-01 208 1.841058E-03 282 4.139900E-07
61 3.867410E+400 135 2.472353E-01 209 1.665858E-03 283 3.000000E-07
62 3.678794E400 136 2.351775E-01 210 1.584613E-03 284 1.890000E-07
63 3.499377E+00 137 2.237077E-01 211 1.507331E-03 285 1.400000E-07
64 3.328711E+00 138 2.127974E-01 212 1.433817E-03 286 1.000000E-07
65 3.246525E400 139 2.024191E-01 213 1.363889E-03 287 5.800000E-08
66 3.166368E+00 140 1.925470E-01 214 1.234098E-03 288 4.200000E-08
67 3.088190E+00 141 1.831564E-01 215 1.010394E-03 289 3.000000E-08
68 3.011942E+-00 142 1.742237E-01 216 9.611165E-04 290 2.000000E-08
69 2.865048E+00 143 1.699221E-01 217 9.142423E-04 291 1.500000E-08
70 2.725318E+00 144 1.657268E-01 218 7.485183E-04 292 1.000000E-08
71 2.592403E400 145 1.616349E-01 219 6.772874E-04 293 6.900000E-09
72 2.465970E+00 146 1.576442E-01 220 5.829466E-04 294 5.000000E-09
73 2.425211E400 147 1.499558E-01 221 4.539993E-04 295 3.000000E-09
74 2.385126E+00 148 1.426423E-01 222 3.717032E-04 1.000010E-11

Table F.1: Energy bounds of the 295 group structure
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Appendix G

Input files for the generation of an
ECCOLIB for Pb-208

G.1 NJOY input file for generating a 1968 GENDF for Pb-208

moder

20 -21

reconr

-21 -22

’pendf Pb208 JEFF-3.1°/

8237/

.001/

o/

broadr

-21 -22 -23

8237 5/

.001/

293.6 573.6 973.6 1473.6 2973.6/
o/

unresr

-21 -23 -24

8237 5 1 0/

293.6 573.6 973.6 1473.6 2973.6/
1.e+10/

o/

thermr

0 -24 -25

08237 851001221 0/

293.6 573.6 973.6 1473.6 2973.6/
0.001 4.0/

groupr

-21 -25 0 -26

8237 20 0 4 1 5 1 0/ ECCO-1968 P1 5 TEMP
’gendf Pb208 JEFF-3.1°/

293.6 573.6 973.6 1473.6 2973.6/
1.e+10/

0.1 0.0253 1.32E+06 1.29E+06/

3/

3 221/ free gas

6/

6 221/ free gas

0/

3/

3 221/ free gas

6 221/ free gas

o/

3/

3 221/ free gas
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G.2. NJOY input file for generating a 295 GENDF for Pb-208

6 221/ free gas
0/

3/

3 221/ free gas
6 221/ free gas
0/

3/

3 221/ free gas
6 221/ free gas
0/

0/

moder

-26 27

stop

G.2 NJOY input file for generating a 295 GENDF for Pb-208

moder

20 -21

reconr

-21 -22

’pendf Pb208 JEFF-3.1°/

8237/

.001/

0/

broadr

-21 -22 -23

8237 5/

.001/

293.6 573.6 973.6 1473.6 2973.6/

0/

unresr

-21 -23 -24

8237 5 1 0/

293.6 573.6 973.6 1473.6 2973.6/

1.e+10/

0/

thermr

0 -24 -25

08237 8510012210/

293.6 573.6 973.6 1473.6 2973.6/

0.001 4.0/

groupr

-21 -25 0 -26

8237 1 0415 1 0/ ECC0-1968 P1 5 TEMP

’gendf Pb208 JEFF-3.1°/

293.6 573.6 973.6 1473.6 2973.6/

1.e+10/

295 /

1.0000100E-05 3.0000000E-03 5.0000000E-03 6.9000000E-03
1.0000000E-02 1.5000000E-02 2.0000000E-02 3.0000000E-02
4.2000000E-02 5.8000000E-02 1.0000000E-01 1.4000000E-01
1.8900000E-01 3.0000000E-01 4.1399000E-01 5.4000000E-01
6.2500000E-01 6.8256000E-01 8.1945000E-01 8.7642500E-01
1.0200000E+00 1.1230000E+00 1.3000000E+00 1.4400000E+00
1.6700000E+00 1.8553900E+00 2.1000000E+00 2.3823700E+00
2.6000000E+00 3.0590200E+00 3.3000000E+00 3.9278600E+00
4.0000000E+00 5.0434770E+00 5.3464300E+00 6.1601160E+00
6.4759520E+00 7.5239830E+00 8.3152870E+00 9.1898140E+00
9.9055540E+00 1.0677040E+01 1.1224460E+01 1.3709590E+01
1.5928270E+01 1.7603460E+01 1.9454840E+01 2.2603290E+01
2.4980500E+01 2.7607730E+01 2.9023200E+01 3.0511260E+01
3.3720150E+01 3.7266530E+01 4.0169000E+01 4.5517440E+01
4.7851170E+01 5.1578020E+01 5.5595130E+01 6.1442120E+01
6.7904050E+01 7.5673570E+01 7.8893250E+01 9.1660880E+01
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Appendix G. Input files for the generation of an ECCOLIB for Pb-208

1
1
3
5
9
1
1
2
3
4
6
9
1
1
2
2
3
4
5
8
1
1
1
1
2
2
3
3
4
5.
6
7
9
1
1
1
1
1
2
2
2
3
3
4
4
5
6
6
7
8
9
1
1
1
1
1
1
1
0

3/

.0130090E+02
.6701700E+02
.0432480E+02
.8294660E+02
.6111650E+02
.4338170E+03
.8410580E+03
.6125860E+03
.3546260E+03
.3074250E+03
.2672670E+03
.1188200E+03
.3267800E+04
.9304540E+04
.4175520E+04
.8087940E+04
.5175170E+04
.6309190E+04
.9462170E+04
.2297470E+04
.1678570E+05
.4264230E+05
.6572680E+05
.9254700E+05
.3517750E+05
.8015430E+05
.0961830E+05
.6883170E+05
.5049200E+05

2339710E+05

.0810060E+05
.4273580E+05
.0717950E+05
.0025880E+06
.1943300E+06
.4227410E+06
.6121760E+06
.8730820E+06
.1224800E+06
.3457030E+06
.4659700E+06
.0119420E+06
.3287110E+06
.0656970E+06
.8432460E+06
. 7694980E+06
.3762820E+06
.7032000E+06
.4081820E+06
.1873080E+06
.0483740E+06
.0000000E+07
.1051710E+07
.2214030E+07
.3498590E+07
.4918250E+07
.6487210E+07
.8221190E+07
.1 0.0253 1.32E+06 1.29E+06/

3 221/ free gas

6/

6 221/ free gas

o/
3/

3 221/ free gas

1.3007300E+02
2.0399500E+02
3.5357500E+02
6.7728740E+02
1.0103940E+03
1.5073310E+03
2.0346840E+03
2.7465360E+03
3.5266220E+03
4.5282720E+03
7.1017440E+03
1.0332980E+04
1.5034390E+04
2.1334820E+04
2.4787520E+04
2.9283000E+04
3.6065630E+04
5.2475180E+04
6.2510860E+04
8.6516950E+04
1.2277340E+05
1.4995580E+05
1.6992210E+05
2.0241910E+05
2.4723530E+05
2.8724640E+05
3.1745640E+05
3.8774210E+05
4.
5
6
7
9
1
1
1
1
1
2
2
2
3
3
4
4
5
6
6
7
8
9
1
1
1
1
1
1

7358920E+05

.3664690E+05
.3927860E+05
.8081670E+05
.5369160E+05
.0539920E+06
.2245640E+06
.4956860E+06
.6529890E+06
.9204990E+06
.2313020E+06
.3653320E+06
.5924030E+06
.0881900E+06
.4993770E+06
.2741490E+06
.9658530E+06
.9155540E+06
.5376980E+06
.8728930E+06
.5957210E+06
.3945700E+06
.2774350E+06
.0253150E+07
.1331480E+07
.2523230E+07
.3840310E+07
.5295900E+07
.6904590E+07
1.

8682460E+07

1.3674200E+02
2.1445410E+02
3.7170320E+02
7.4851830E+02
1.2340980E+03
1.5846130E+03
2.2486730E+03
2.8633920E+03
3.7074350E+03
5.0045140E+03
7.4658580E+03
1.1137750E+04
1.6615570E+04
2.1874910E+04
2.6058410E+04
3.1827810E+04
3.6978640E+04
5.5165640E+04
6.7379470E+04
9.8036550E+04
1.2906810E+05
1.5764420E+05
1.7422370E+05
2.1279740E+05
2.5991130E+05
2.9451810E+05
3.3373270E+05
4.0762200E+05
4.
5
6
8
9
1
1
1
1
1
2
2
2
3
3
4
5
6
6
7
7
8
9
1
1
1
1
1
1
1

9787070E+05

.5023220E+05
.7205510E+05
.2085000E+05
.6167230E+05
.1080320E+06
.2873490E+06
.5335500E+06
.7377390E+06
.9691170E+06
.2688020E+06
.3851260E+06
.7253180E+06
.1663680E+06
.6787940E+06
.4932900E+06
.2204580E+06
.0653070E+06
.5924060E+06
.0468810E+06
.7880080E+06
.6070800E+06
.5122940E+06
.0512710E+07
.1618340E+07
.2840250E+07
.4190680E+07
.5683120E+07
.7332530E+07
.9155410E+07

R R R R, R R O0O00 NN WWNNMNNMNNRE R RPRRPR OO NOOOOPE WWNNERE, R, R,RRPRNOPONNDERE RO WONERERPR,ONR-

.4862540E+02
.7536450E+02
.5399930E+02
.1424230E+02
.3638890E+03
.6658580E+03
.4851680E+03
.0353910E+03
.0973500E+03
.5308440E+03
.0473300E+03
.1708800E+04
.7036200E+04
.3578620E+04
.7394450E+04
.4306690E+04
.0867710E+04
.6562170E+04
.6350940E+04
.1109000E+05
.3568560E+05
.6163490E+05
.8315640E+05
.2370770E+05
.7323720E+05
.0197380E+05
.5084350E+05
.2852130E+05
.1047430E+05
.7844320E+05
.0651210E+05
.6293590E+05
.7783440E+05
.1648420E+06
.3533530E+06
.5723720E+06
.8268350E+06
.0189650E+06
.3069320E+06
.4252110E+06
.8650480E+06
.2465250E+06
.8674100E+06
.6070380E+06
.4881160E+06
.2188510E+06
.6475730E+06
.2252740E+06
.9851620E+06
.8249690E+06
.7530990E+06
.0778840E+07
.1912460E+07
.3165310E+07
.4549910E+07
.6080140E+07
.T7T71310E+07
.9640330E+07
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G.3. CALENDF input file for generating a 1968 groups Probability Table for Pb-208

6 221/ free gas
0/

3/

3 221/ free gas
6 221/ free gas
o/

3/

3 221/ free gas
6 221/ free gas
0/

3/

3 221/ free gas
6 221/ free gas
0/

o/

moder

-26 27

stop

G.3 CALENDF input file for generating a 1968 groups Proba-
bility Table for Pb-208

CALENDF
MODIFOPT LCORSCT .FALSE.
MODIFOPT LFORMRF .FALSE.
MODIFOPT LFORMUR .FALSE. 1
MODIFOPT LPSTPOS .TRUE.
ENERGIES 1.0E-5 20.0E+6
MAILLAGE READ
ECC01968
SPECTRE
3 zones
1.32E+6 1.29E+6
0.1 -1
0. 293.
TEFF 293.6
NDIL 1
1.0E+10
NFEV 9 8237 ’../../NDL/Jeff_3_1_endf/JEFF31N8237_0.ASC’
SORTies
NFSFRL 0 ’./Pb208293.6.sfr’
NFSF 12 ’./Pb208293.6.sf’
NFSFTP 11 ’./Pb208293.6.sft’
NFTP 10 ’./Pb208293.6.tp’
NFCS 18 ’./Pb208293.6.cs’
IPRECI 4
NIMP 0 80
REGROUTP
NFTP 10 ’./Pb208293.6.tp’
NFTPR 17 ’./Pb208293.6.tpr’
NIMP O 80
REGROUSF
NFSF 12 ’./Pb208293.6.sf’
NFSFR 13 ’./Pb208293.6.sfdr’
NIMP O 80
REGROUSF
NFSF 11 °./Pb208293.6.sft’
NFSFR 14 ’./Pb208293.6.sftr’
NIMP 0 80
END
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Appendix G. Input files for the generation of an ECCOLIB for Pb-208

G.4 CALENDF input file for generating a 295 groups Probabil-

ity Table for Pb-208

CALENDF
MODIFOPT LCORSCT
MODIFOPT LFORMRF
MODIFOPT LFORMUR
MODIFOPT LPSTPOS
ENERGIES 1.0E-5
MAILLAGE GENERE
3 zones
92 1.32E+6 1.

.9155410E+07

.7332530E+07

.5683120E+07

.4190680E+07

.2840250E+07

.1618340E+07

.0512710E+07

.5122940E+06

.6070800E+06

. 7880080E+06

.0468810E+06

.5924060E+06

.0653070E+06

.2204580E+06

.4932900E+06

.6787940E+06

.1663680E+06

.7253180E+06

.3851260E+06

.2688020E+06

.9691170E+06

.7377390E+06

.5335500E+06 1.

193 -1 1.3533530

.2873490E+06 1.

.1080320E+06

.6167230E+05

.2085000E+05

.7205510E+05

.5023220E+05

.9787070E+05

.0762200E+05

.3373270E+05

.9451810E+05

.5991130E+05

.1279740E+05

.7422370E+05

.5764420E+05

.2906810E+05

.8036550E+04

.7379470E+04

.5165640E+04

.6978640E+04

.1827810E+04

.6058410E+04

.1874910E+04

.6615570E+04

.1137750E+04

.4658580E+03

.0045140E+03

.7074350E+03

.8633920E+03

.2486730E+03

96

1
1
1
1
1
1
1
9
8
7
6
6.
5
4
4
3
3
2
2
2
1
1

P P P NNMNNDOWWD OO NN0O PP PR

NN WOANRFEFEFNMNNDNWWOOOOOFRLEFPEFEPNDMNODNDWDS DO 0O -

1
9
7
6
5
4
3
3
2
2
2
1
1
1
8.
6
5
3
2
2
2
1
1
7
4
3
2
2

.FALSE.
.FALSE.
.TRUE.
.TRUE.
20.0E+6

40330E+07

.8682460E+07
.6904590E+07
.5295900E+07
.3840310E+07
.2523230E+07
.1331480E+07
.0253150E+07
.2774350E+06
.3945700E+06
.5957210E+06
.8728930E+06

5376980E+06

.9155540E+06
.9658530E+06
.2741490E+06
.4993770E+06
.0881900E+06
.5924030E+06
.3653320E+06
.2313020E+06
.9204990E+06
.6529890E+06

4956860E+06
E+06
2245640E+06

.0539920E+06
.5369160E+05
.8081670E+05
.3927860E+05
.3664690E+05
.7358920E+05
.8774210E+05
.1745640E+05
.8724640E+05
.4723530E+05
.0241910E+05
.6992210E+05
.4995580E+05
.2277340E+05

6516950E+04

.2510860E+04
.2475180E+04
.6065630E+04
.9283000E+04
.4787520E+04
.1334820E+04
.5034390E+04
.0332980E+04
.1017440E+03
.5282720E+03
.5266220E+03
.7465360E+03
.0346840E+03

P R, R NMNNDMNNDOWOWLPEOOOOOOONO0ORR PP R PP

P NWPOOODOFRLEFELNNDNWPPOOOOEREREPERELNDNNDWOWWS OO N O =

.8221190E+07
.6487210E+07
.4918250E+07
.3498590E+07
.2214030E+07
.1051710E+07
.0000000E+07
.0483740E+06
.1873080E+06
.4081820E+06
.7032000E+06
.3762820E+06
.7694980E+06
.8432460E+06
.0656970E+06
.3287110E+06
.0119420E+06
.4659700E+06
.3457030E+06
.1224800E+06
.8730820E+06
.6121760E+06
.4227410E+06

.1943300E+06
.0025880E+06
.0717950E+05
.4273580E+05
.0810060E+05
.2339710E+05
.5049200E+05
.6883170E+05
.0961830E+05
.8015430E+05
.3517750E+05
.9254700E+05
.6572680E+05
.4264230E+05
.1678570E+05
.2297470E+04
.9462170E+04
.6309190E+04
.5175170E+04
.8087940E+04
.4175520E+04
.9304540E+04
.3267800E+04
.1188200E+03
.2672670E+03
.3074250E+03
.3546260E+03
.6126860E+03
.8410580E+03

R E P NDNONODMNWWD OO NN R R R B

H N WP OOTOOFRLFEFNNWPPOONEE, R, R RERNDNDOWS OO N OO

.T7T71310E+07
.6080140E+07
.4549910E+07
.3165310E+07
.1912460E+07
.0778840E+07
.7530990E+06
.8249690E+06
.9851620E+06
.2252740E+06
.6475730E+06
.2188510E+06
.4881160E+06
.6070380E+06
.8674100E+06
.2465250E+06
.8650480E+06
.4252110E+06
.3069320E+06
.0189650E+06
.8268350E+06
.5723720E+06
.3533530E+06

.1648420E+06
.7783440E+05
.6293590E+05
.0651210E+05
. 7844320E+05
.1047430E+05
.2852130E+05
.5084350E+05
.0197380E+05
.7323720E+05
.2370770E+05
.8315640E+05
.6163490E+05
.3568560E+05
.1109000E+05
.6350940E+04
.6562170E+04
.0867710E+04
.4306690E+04
.7394450E+04
.3578620E+04
.7036200E+04
.1708800E+04
.0473300E+03
.5308440E+03
.0973500E+03
.0353910E+03
.4851680E+03
.6658580E+03
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G.5 MERGE input file for generating a 1968 GENDF* for Pb-

= D OO, NWOOOFREFLFNDDOOAONRPFP,NDNW-NR -

.5846130E+03
.2340980E+03
.4851830E+02
.7170320E+02
.1445410E+02
.3674200E+02
.8893250E+01
.55695130E+01
.0169000E+01
.9023200E+01
.9454840E+01
.1224460E+01
.3152870E+00
.3464300E+00
.3000000E+00
.1000000E+00
.3000000E+00
.1945000E-01
.1399000E-01
.0000000E-01

WO RFRr P, WONFEFEFPNWOWOOAONEFENDWOO - -

.5073310E+03
.0103940E+03
.T728740E+02
.5357500E+02
.0399500E+02
.3007300E+02
.5673570E+01
.1578020E+01
.7266530E+01
.7607730E+01
.7603460E+01
.0677040E+01
.5239830E+00
.0434770E+00
.0590200E+00
.8553900E+00
.1230000E+00
.8256000E-01
.0000000E-01

10 293.6 1.0000000E-01
5.8000000E-02 4.2000000E-02
1.5000000E-02 1.0000000E-02
3.0000000E-03 1.0000100E-05
TEFF 293.6
NDIL 1

1.

OE+10

H O R FPE NP OOOORNWDD R P WO O~

.4338170E+03
.6111650E+02
.8294660E+02
.0432480E+02
.6701700E+02
.0130090E+02
.7904050E+01
.7851170E+01
.3720150E+01
.4980500E+01
.5928270E+01
.9055540E+00
.4759520E+00
.0000000E+00
.6000000E+00
.6700000E+00
.0200000E+00
.2500000E-01
.8900000E-01

.0000000E-02
.9000000E-03

= 010~ NWOOOEFLNWHPE OO DNPD O

.3638890E+03
.1424230E+02
.5399930E+02
.7536450E+02
.4862540E+02
.1660880E+01
.1442120E+01
.5517440E+01
.0511260E+01
.2603290E+01
.3709590E+01
.1898140E+00
.1601160E+00
.9278600E+00
.3823700E+00
.4400000E+00
.7642500E-01
.4000000E-01
.4000000E-01

2.0000000E-02
5.0000000E-03

NFEV 9 8237 ’../../NDL/Jeff_3_1_endf/JEFF31N8237_0.ASC’
SORTies
NFSFRL O ’./Pb208293.6.sfr’
NFSF 12 ’./Pb208293.6.sf’
NFSFTP 11 ’./Pb208293.6.sft’
NFTP 10 ’./Pb208293.6.tp’
NFCS 18 ’./Pb208293.6.cs’
IPRECI 4
NIMP 0 80
REGROUTP

NFTP 10 ’./Pb208293.6.tp’
NFTPR 17 ’./Pb208293.6.tpr’
NIMP O 80
REGROUSF

NFSF 12 ’./Pb208293.6.sf’
NFSFR 13 °’./Pb208293.6.sfdr’
NIMP O 80
REGROUSF

NFSF 11 ’./Pb208293.6.sft’
NFSFR 14 °’./Pb208293.6.sftr’
NIMP O 80

208
5
20 21 22 23 24 25 26
19680 /
/
/

G.6 GECCO input file for generating a 1968 ECCOLIB for
Pb-208

20 0 0 40 41
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Appendix G. Input files for the generation of an ECCOLIB for Pb-208

8192 8 16 8
73
7788888910909
9999911 16 17 17 18 18 18
18 19 19 19 19 20 20 20 20 20 21 21
21 21 22 22 22 23 23 23 24 24 25 25
26 26 27 28 28 29 30 31 32 34 35 36
38 40 43 43 48 55 63 74 90 150 69 15
67 49

’ECC0-1968 JEFF-3.1 LIBRARY’

’JEFF-3.1°

8237

’NON-FISSILE’

1

221

8237 207.9766 ’Pb208°’ ’Pb’

0.000 3.937 0.000 0.000 0.000E+00

0.602214 1.602176E-13 0.0

O O O O

1968
00
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