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CHAPTER 0 – INTRODUCTION 
Context and Motivation 

The accelerating development of Artificial Intelligence (AI) over the past decade 
has profoundly reshaped technological, economic, and social landscapes. From 
language and vision models to autonomous agents and adaptive systems, AI has 
transitioned from a primarily research-driven domain to a strategic enabler of 
industrial innovation. Within this transformation, the manufacturing sector 
represents one of the most promising and complex frontiers. As companies 
increasingly integrate digital technologies, sensors, cloud infrastructures, and 
data analytics, AI becomes the cohesive layer connecting these elements into 
intelligent, self-adaptive ecosystems. 

The motivation behind this thesis stems from the growing need to understand 
how AI, and particularly the emerging paradigm of agentic AI, can be effectively 
leveraged within the manufacturing context. Traditional automation approaches 
are no longer sufficient to address the volatility, customization demands, and 
sustainability challenges that characterize contemporary industrial systems. 
Instead, intelligent, data-driven, and autonomous solutions are required to 
optimize processes, enhance decision-making, and extend value creation across 
the entire product lifecycle. 

Objectives 

The main objective of this research is to provide a comprehensive analysis of 
Artificial Intelligence and its specific application to the manufacturing domain, 
with a particular focus on AI agents as a transformative technological paradigm. 
The thesis aims to: 

1) Review the current state of AI technologies, models, and market dynamics, 
identifying their implications for organizations and Small and Medium-
sized Enterprises (SMEs). 

2) Examine the technical and conceptual foundations of AI agents, 
highlighting their architecture, capabilities, and advantages over 
traditional static models. 

3) Investigate the integration of AI and agentic systems throughout the 
manufacturing product lifecycle, from design and production to usage and 
end-of-life, emphasizing both benefits and limitations. 

4) Derive a synthesized framework illustrating how AI can drive a more 
intelligent, sustainable, and adaptive manufacturing ecosystem. 

Methodology 



The methodology adopted combines an extensive literature review with a 
structured analytical approach. The research draws from academic publications, 
industrial reports, and institutional sources to capture both the theoretical 
underpinnings and real-world applications of AI and agentic systems. Each 
chapter builds upon the previous one, forming a progressive exploration: from 
the general technological landscape of AI to the emergence of autonomous 
agents, to their concrete deployment in manufacturing. The selection of case 
studies follows thematic relevance, prioritizing evidence of practical 
implementation, scalability, and alignment with Industry 4.0 and sustainability 
objectives. Figures, tables, and conceptual models are employed to summarize 
complex findings and to facilitate cross-phase comparison. 

Structure of the Thesis 

The thesis is organized into three main chapters, followed by a concluding 
synthesis. 

 Chapter 1 introduces the current AI landscape, tracing its evolution, key 
technologies, and major stakeholders, while addressing the ethical, legal, 
and societal challenges of adoption. 

 Chapter 2 focuses on AI agents, outlining their defining characteristics, 
architectures, use cases, and advantages for companies, as well as the 
associated risks and limitations. 

 Chapter 3 applies the analysis to the manufacturing context, exploring the 
role of AI across all stages of the product lifecycle, from design and 
operations to end-of-life, culminating in a synthesis that highlights the 
transition towards an AI-driven, sustainable industrial ecosystem. 

This structure ensures both conceptual coherence and practical relevance, 
offering a comprehensive understanding of how AI and agentic systems are 
reshaping the manufacturing domain. 

CHAPTER 1 - ARTIFICIAL INTELLIGENCE 
TODAY 

1.1 A brief history and key definitions 

Artificial Intelligence formally emerged in 1956 at the Dartmouth Summer 
Research Project on Artificial Intelligence, where the term “artificial intelligence” 
was coined by John McCarthy and his colleagues, including Marvin Minsky, 
Nathaniel Rochester, and Claude Shannon [1]. However, foundational work began 



earlier: in 1943, Warren McCulloch and Walter Pitts introduced the first 
mathematical model of an artificial neuron, demonstrating the logic‑based 
computation abilities of simple neuron networks [2]. In 1950, Alan Turing 
published the seminal paper “Computing Machinery and Intelligence”, 
proposing the famous Turing Test as an operational measure of machine 
intelligence and reframing the question “Can machines think?” into a more 
practical framework [3]. 

During the symbolic AI era from the late 1950s through the mid‑1990s, research 
focused on expert systems and rule‑based knowledge representation, including 
logic programs such as the Logic Theorist and General Problem Solver, and 
knowledge‑based systems driven by inference engines [4]. Despite early 
successes, limitations in scalability and adaptability led to two major “AI winters,” 
where progress slowed and funding diminished [4]. 

Beginning around 2012, a paradigm shift occurred with the rise of machine 
learning and deep learning, thanks to increased computational power, large 
datasets, and new architectures like convolutional neural networks and large 
language models (LLMs). These approaches enabled major breakthroughs in 
computer vision, speech recognition, and natural language generation [5]. 

A widely accepted modern definition of AI characterizes it as “a system’s ability 
to correctly interpret external data, to learn from such data, and to use those 
learnings to achieve specific goals through flexible adaptation” [6]. Another 
commonly cited definition describes AI as systems capable of tasks such as 
learning, reasoning, decision‑making, creativity, and autonomy-functions 
traditionally associated with human intelligence [7]. 

1.2 Current AI technologies and models 

Artificial Intelligence encompasses several advanced technologies, each 
enabling distinct capabilities and applications within industry and research. 

First, Natural Language Processing (NLP) has made remarkable strides, 
especially with the rise of transformer‐based architectures such as BERT and 
GPT. These models now support tasks like machine translation, text 
summarization, question answering, and more, exhibiting human‐like fluency 
and performance in language understanding and generation [8] [9]. 

In computer vision (CV), breakthroughs such as convolutional neural networks 
(CNNs) and, more recently, Vision Transformers (ViTs) have significantly improved 
performance in image classification, object detection, segmentation and video 
analysis. Transformers in vision also enable modeling long-range dependencies 



with fewer inductive biases compared to CNNs and support multi-modal tasks 
that combine visual and textual input [10]. 

A central pillar of today's developments is Large Language Models (LLMs), 
massive neural networks trained on billions or even trillions of parameters. These 
models, such as GPT‑4 o, LLaMA, Claude 3 or Gemini, function as foundation 
models for a multiplicity of downstream tasks, combining both generative and 
understanding capabilities at scale [11]. 

Further, multi-modal LLMs (sometimes called VLMs or MM‑LLMs) have emerged 
as models capable of processing and generating across modalities (text, image, 
audio, video). These models open doors to applications like image captioning, 
video generation, and speech-to-text/generation all within one unified 
architecture [8] [12]. 

Finally, AI agents are autonomous systems built upon LLMs and enhanced 
machine learning, are increasingly targeting decision-making, task execution, 
and multi-step workflows without human prompting. These agentic AI systems 
extend far beyond static models, enabling proactive planning, tool usage, and 
real-time adaptation in complex environments [13]. 

1.3 Main market players 

The AI landscape today is dominated by three primary categories of players: Big 
Tech corporations, innovative startups, and the open-source communities. 

1.3.1 Big Tech incumbents 
Major technology firms, often referred to as “Big Tech”, play a dominant role 
across all layers of today’s AI landscape. NVIDIA leads the data‑center GPU 
market with roughly a 92 % global market share, supplying the backbone 
infrastructure for contemporary AI workloads. Its CUDA software ecosystem 
further strengthens its position as the de facto platform for AI development [14]. 
Hyperscalers like Microsoft, Amazon (AWS), and Google control most of the 
foundation‑model and model‑management platform market: Microsoft holds 
about a 39 % share, AWS 19 %, and Google 15 % in 2024. Microsoft’s strategic 
alliance with OpenAI and its enterprise AI offerings (e.g. Copilot, Azure AI) 
reinforce its leadership position [15] [16]. AWS couples its cloud dominance with 
proprietary chips (e.g. Trainium, Inferentia) and investments such as a 
multi‑billion‑dollar partnership with Anthropic. Google continues to invest 
heavily (circa US $20–25 billion in 2025 capital expenditures, with a significant 
portion allocated to AI) and builds its AI capabilities via Vertex AI and internal 
models (Gemini series) [15]. 



Other tech giants like Meta also shape the AI market via open‑weight initiatives 
such as the Llama models and large infrastructure investments (e.g. over $35 
billion in AI-related capital spending in 2024–2025) [17]. Meta CTO claims that 
such openness helps spawn innovation in startups and ecosystems that 
challenge legacy leadership [18]. 

1.3.2 Fast‑growing startups 
A wave of AI startups now rivals Big Tech in innovation and influence. OpenAI, 
though not a public company, is nearing a valuation of $150–300 billion, thanks 
to its GPT family and ChatGPT platform [15] [19]. Despite speculation, OpenAI has 
not released open-weight models; its strategy remains largely closed-source, in 
contrast to open-source challengers like China’s DeepSeek. 
Anthropic, also growing rapidly, focuses on safety‑centered LLMs and has formed 
major infrastructure alliances, including with AWS [15]. China‑based DeepSeek 
garnered attention by open-releasing its DeepSeek LLM and DeepSeek-Coder 
models, prompting significant global downloads and putting pressure on 
proprietary giants [20]. 
European startup Mistral AI, based in Paris, has raised over €600 million and 
offers open‑weight, performant LLMs, becoming one of the top global model 
creators outside the Bay Area [15]. 
Other notable startups include Hugging Face, which hosts open‑source models 
like BLOOM and a vibrant ecosystem, valued at several billion USD [15], as well as 
Cohere (Canadian NLP startup offering enterprise‑grade LLMs & APIs) and 
MindsDB (automated machine‑learning from business data, with open‑source 
roots). Specialized hardware startups such as Cerebras Systems, Astera Labs, 
Groq and others are innovating at the chip and data‑infrastructure level to 
compete with NVIDIA and AMD. 

1.3.3 Open‑source communities and ecosystems 
Beyond companies, community‑driven open‑source ecosystems are central to 
democratizing AI. Entities such as Hugging Face and Mistral focus on 
open‑weight or open‑source model releases, fostering transparency and broader 
access [15]. U.S. and international initiatives are emerging to support open AI 
development, including federal funding for open models and compute access 
[17]. 
Hardware players like AMD and NVIDIA support open‑source standards and 
tooling, for example, AMD’s ROCm platform and NVIDIA’s support of PyTorch and 
Linux Kernel improvements. Initiatives such as interoperability frameworks (e.g., 
from MLCommons or the Open Model Initiative) aim to improve model 
portability and safety, though no widely recognized "Model Context Protocol" 
currently exists [17]. The broader result is an ecosystem where startups and 



smaller groups can build, modify, and deploy powerful AI models outside closed 
corporate systems [16].  

1.4 Available services and applications  

Artificial Intelligence has evolved from a predominantly research-driven field into 
a broad ecosystem of services accessible to enterprises, institutions, and 
individual users. These solutions are typically delivered as cloud-based APIs, 
enterprise platforms, or consumer-facing applications, lowering the barriers to 
entry and enabling even small and medium-sized enterprises (SMEs) to benefit 
from advanced capabilities without developing models internally [6]. The main 
categories of AI services available today include chatbots and conversational 
agents, intelligent productivity tools, automation and robotic process 
automation (RPA), predictive analytics, and emerging multimodal generative AI 
applications. 

1.4.1 Chatbots and Conversational Agents 

Chatbots and virtual assistants represent one of the most visible applications of 
Natural Language Processing. Systems such as ChatGPT by OpenAI, Claude by 
Anthropic, or Gemini by Google, allow users to interact via natural language, 
providing answers, recommendations, or task execution support [8] [9]. 

 Strengths: they enable intuitive and human-like interaction, reduce 
workload in customer service and enterprise support functions, and can 
continuously improve through model fine-tuning. 

 Weaknesses: risks include hallucinations (generation of inaccurate or 
fabricated content), challenges regarding data privacy and regulatory 
compliance, and a high dependency on the quality and coverage of 
training data [11]. 

1.4.2 Intelligent Assistants and Productivity Tools 
Another rapidly growing area is the integration of AI into productivity 
ecosystems. Examples include Microsoft Copilot for Microsoft 365, Gemini for 
Workspace by Google, Notion AI, and specialized research assistants such as 
NotebookLM. These tools act as “co-pilots”, supporting tasks such as 
summarization, drafting, scheduling, or document creation as summarized in 
Table 1 [15]. 

 Strengths: seamless integration with widely adopted enterprise platforms, 
measurable time savings in routine activities, and adaptability to 
organizational knowledge bases. 



 Weaknesses: their adoption is often limited by subscription costs, potential 
gaps in domain-specific expertise, and risks of over-reliance, which may 
reduce users’ critical engagement with content [16]. 

Table 1 - Comparative overwiev 

Assistant Provider Main functions Strengths Weaknesses 

Microsoft Copilot Microsoft 

Integration with 
Office 365 (Word, 
Excel, PowerPoint, 
Outlook, Teams); 
text generation; 
summarization; 
data insights 

Seamless 
integration with 
Microsoft 
ecosystem; 
enterprise-ready 
security; high 
adoption in business 
contexts 

Subscription cost; 
limited to 
Microsoft 
ecosystem; 
occasional lack of 
domain-specific 
depth 

Gemini for 
Workspace 

Google 

Integration with 
Google Workspace 
(Docs, Sheets, 
Slides, Gmail, 
Meet); smart 
writing; meeting 
summarization 

Strong synergy with 
Google cloud tools; 
accessible UI; 
collaboration-
friendly 

Still less mature 
than Copilot in 
enterprise; tiered 
access within 
Google 
Workspace; data 
privacy concerns 

Notion AI Notion Labs 

Document 
drafting; content 
summarization; 
brainstorming; task 
management 
support 

Integrated into a 
popular productivity 
platform; affordable; 
good for 
individuals/SMEs 

Narrower 
enterprise 
adoption; not as 
powerful for 
complex analytics 
or workflows 

NotebookLM Google Research 

Research support; 
personalized “AI 
notebook” with 
citations and 
summaries of 
documents 

Strong in research 
and knowledge 
management; focus 
on reliable sources 
and citations 

Limited 
availability (still 
experimental); not 
optimized for 
enterprise 
workflows 

1.4.3 Automation and Robotic Process Automation (RPA) 
AI-driven automation extends traditional RPA platforms (e.g., UiPath, BluePrism, 
Automation Anywhere) by enabling the processing of unstructured data such as 
emails, forms, and invoices [14]. This technology is particularly suited for 
industries with repetitive, high-volume back-office tasks, such as banking, 
insurance, and logistics. 

 Strengths: significant efficiency gains, cost reduction, and scalability across 
operations. 

 Weaknesses: implementation often requires substantial upfront 
investment and complex integration; furthermore, RPA solutions show 
limited adaptability when workflows or processes change frequently [15]. 



1.4.4 Predictive Analytics and Decision Support Systems 
Predictive systems, built on machine learning and deep learning models, are now 
widely available through cloud AI platforms (e.g., AWS SageMaker, Google Vertex 
AI, Microsoft Azure AI). They support applications ranging from demand 
forecasting and fraud detection to predictive maintenance in manufacturing [5] 
[11]. 

 Strengths: these solutions enhance decision-making by providing data-
driven insights, offering measurable return on investment when effectively 
deployed. 

 Weaknesses: their reliability depends on the availability of large volumes of 
high-quality data; biases in datasets may lead to distorted outputs, and 
their deployment and monitoring often require specialized expertise [6]. 

Examples of predictive analytics applications across different industries are 
summarized in Table 2. 

Table 2 - Predictive analytics applications across industries 

Industry Use case Example tool Main benefit 

Manufacturing 
Predictive maintenance 
of machinery 

Azure IoT Central; PTC 
ThingWorx; Siemens 
MindSphere 

Reduced downtime; 
optimized asset 
utilization 

Healthcare 
Patient risk prediction; 
diagnostic support 

Google Cloud 
Healthcare API; 
Tempus AI; Medica’s AI 
diagnostics 

Improved diagnosis 
accuracy; proactive 
treatment 

Finance 
Fraud detection; credit 
scoring 

FICO; SAS Analytics; 
Azure AI 

Reduced financial 
losses; enhanced risk 
management 

Retail 
Demand forecasting; 
customer behavior 
analysis 

SAP Predictive 
Analytics; Amazon 
Forecast 

Better inventory 
management; 
personalized offers 

 

1.4.5 Emerging Multi-modal and Generative AI Services 
The latest frontier is represented by multi-modal AI models, capable of 
processing and generating across different modalities (text, image, audio, video). 
Examples include GPT-4o by OpenAI, Gemini 1.5 by Google, or image/video 
generation tools such as Stable Diffusion and Runway ML [12]. 

 Strengths: they open new opportunities in creative industries, education, 
and marketing by enabling cross-media generation and multimodal 
interaction. 

 Weaknesses: however, they raise significant ethical challenges (deepfakes, 
misinformation), demand very high computational resources, and pose 
unresolved questions around intellectual property and copyright [13]. 



In summary, the availability of AI services reflects a democratization of access to 
advanced technologies, accelerating adoption across industries. Their strengths 
lie in efficiency, scalability, and innovation potential, while their weaknesses 
highlight challenges of accuracy, ethics, and dependency on external providers. 
The effective adoption of these tools depends not only on their technical maturity 
but also on the strategic capacity of organizations to integrate them responsibly 
within their processes. 

1.5 Potential impact on work, business processes, and 
SMEs 
The rapid evolution of Artificial Intelligence (AI) is producing significant 
implications for the labor market, organizational processes, and SMEs. The 
diffusion of cloud-based services and foundation models has reduced barriers to 
adoption, enabling even smaller organizations to leverage advanced 
technologies that were previously reserved for large corporations [6] [7]. This 
democratization is reshaping competitive dynamics, requiring both firms and 
individuals to adapt strategically. 

1.5.1 Impact on work and workforce skills. 
AI technologies automate repetitive and rule-based tasks, such as back-office 
operations, routine data analysis, and document management, thus reducing 
the demand for low-skill labor in these areas [14] [15]. At the same time, they 
increase the need for high-skill profiles capable of managing, supervising, and 
co-developing AI systems. Studies highlight the emergence of new professional 
roles in AI system supervision, AI auditing, data governance, and human-AI 
workflow design [7] [11]. For many workers, this transformation requires reskilling 
and upskilling programs to remain competitive, while organizations must ensure 
ethical and inclusive transitions. Figure 1 illustrates the categories of tasks with 
the highest potential for automation or augmentation through AI, highlighting 
routine work that can be fully automated versus strategic tasks that are more 
likely to benefit from human–AI collaboration. 



 

Figura 1 - Categories of tasks most affected by AI: automation versus augmentation 

1.5.2 Impact on business processes. 
Within organizations, AI acts as a driver of efficiency and innovation across the 
value chain. Intelligent automation and Robotic Process Automation (RPA) 
extend beyond traditional workflows, allowing the processing of unstructured 
data such as invoices, contracts, or emails [14]. Predictive analytics tools support 
decision-making in areas such as demand forecasting, fraud detection, or 
predictive maintenance [5] [11]. Furthermore, generative AI and intelligent 
assistants enable knowledge management, rapid prototyping, and content 
creation [8] [15]. However, these benefits are balanced by risks: dependency on 
external providers, data security concerns, and potential over-reliance on 
algorithmic outputs [6]. 



Table 3 - Benefits and risks of AI adoption in business processes 

Functional area Benefits Risks / Challenges 

Operations & 
Automation 

Higher efficiency through automation of 
repetitive tasks; cost reduction; scalability 

High implementation costs: limited 
adaptability when workflows change 
frequently 

Decision-making & 
Analytics 

Enhanced forecasting accuracy; better risk 
management; data-driven insights 

Biased or low-quality data may distort 
outputs; need for specialized 
expertise 

Customer 
Interaction 

24/7 support via chatbots; personalized 
recommendations; improved engagement 

Risk of hallucinations; data privacy 
and compliance concerns 

Knowledge 
Management & 
Creativity 

Accelerated content creation; support in 
research and documentation; innovation in 
product design 

Over-reliance on AI outputs; 
intellectual property and copyright 
issues related to training data and 
output use 

SMEs Adoption 
Access to advanced tools without 
proprietary infrastructure; competitive 
differentiation; reduced entry barriers 

Cost sensitivity (especially for 
premium features); lack of internal 
expertise and customizations 

 

1.5.3 Impact on SMEs. 
SMEs represent a particularly interesting field of application. Historically, limited 
resources and lack of specialized personnel hindered their ability to adopt 
emerging technologies. With the advent of AI-as-a-Service, even small firms can 
now access advanced tools without developing proprietary infrastructures [6] [7]. 
For example, cloud-based platforms allow SMEs to deploy chatbots for customer 
support, predictive systems for inventory management, or generative tools for 
marketing content [11] [12]. These applications contribute to cost reduction, 
improved customer engagement, and competitive differentiation. Nevertheless, 
challenges persist: subscription costs, lack of internal expertise, and the risk of 
adopting generic solutions not aligned with specific business needs [15] [16]. As 
shown in Figure 2, large enterprises exhibit significantly higher AI adoption rates 
compared to SMEs, underscoring the structural advantage in resources and 
implementation capacity. 



 

Figura 2 - AI adoption gap between large corporations and SMEs. 

1.6 Ethical, legal, and societal challenges 
The rapid evolution of Artificial Intelligence (AI) not only brings opportunities for 
innovation and efficiency but also raises a series of ethical, legal, and societal 
challenges that must be critically addressed. These challenges span from issues 
of transparency and accountability to broader questions of social equity, labor 
dynamics, and human rights. Managing them responsibly is essential to ensure 
trust, sustainable adoption, and alignment with human values. 

1.6.1 Ethical challenges 

One of the most debated issues is algorithmic bias: AI systems trained on large 
datasets often inherit and amplify social, cultural, or gender biases present in the 
data [6] [11]. This can result in discriminatory outcomes in areas such as 
recruitment, financial services, or predictive policing. Closely related is the 
question of explainability. While deep learning and large language models 
provide impressive performance, their decision-making processes are often 
opaque (“black-box problem”), limiting users’ ability to understand or contest 
outcomes [5] [12]. 
Another central theme is responsibility for harm: when an AI system causes 
damage, through incorrect predictions, flawed recommendations, or 
autonomous actions, defining liability between developers, providers, and users 
becomes legally and ethically complex [7]. 



Tabella 4 - Ethical principles and technical measures in AI 

Ethical principle Description Technical / organizational measures 

Fairness & non-
discrimination 

Avoid biased or discriminatory 
outputs based on gender, 
ethnicity, age, or other protected 
attributes. 

Bias detection and mitigation tools; balanced 
datasets; fairness-aware algorithms; continuous 
monitoring and audits. 

Transparency & 
explainability 

Ensure that decisions made by AI 
systems can be understood and 
traced by stakeholders. 

Explainable AI (XAI) models; interpretable ML 
techniques (LIME, SHAP); transparent 
documentation of data training and model 
design. 

Accountability & 
responsibility 

Clearly define who is responsible 
in case of errors, harms, or misuse 
of AI. 

Governance frameworks; AI ethics boards; impact 
assessments; traceability logs. 

Privacy & data 
protection 

Protect users’ personal and 
sensitive data during collection, 
processing, and storage. 

Privacy-preserving techniques (federated learning, 
differential privacy, homomorphic encryption); 
compliance with GDPR and alignment with the 
EU AI Act. 

Safety & 
robustness 

Guarantee that AI systems 
behave reliably under diverse and 
unexpected conditions. 

Stress-testing and adversarial testing; red-
teaming; robust training; ongoing monitoring of 
deployed systems. 

Human oversight 
Ensure that final decision-making 
remains under meaningful 
human control. 

Designs ensuring meaningful human oversight, 
including “human-in-the-loop” or “human-on-the-
loop” mechanisms; override capabilities; training 
for oversight personnel. 

 

1.6.2 Legal challenges 

The deployment of AI also confronts significant legal uncertainties. First, data 
protection and privacy remain critical concerns. Regulations such as the EU’s 
General Data Protection Regulation (GDPR) impose strict obligations on how 
personal data is collected, processed, and stored, raising compliance challenges 
for AI models trained on large-scale datasets [6]. 
Second, intellectual property (IP) is an unresolved frontier. Generative AI systems 
produce original content (texts, images, designs) that may draw from 
copyrighted training data. This creates disputes over authorship, ownership, and 
potential infringement [12]. 
Additionally, emerging legislation like the EU AI Act, entered into force in June 
2024 and will be fully applicable by 2026, introduces a risk-based framework, 
categorizing AI systems from minimal to unacceptable risk and imposing 
requirements on high-risk applications (e.g., biometric identification, healthcare 



diagnostics, employment screening). These regulations could significantly 
influence the design and deployment strategies of companies and SMEs [11]. 

 
Figure 3 - Keeping up with Global Regulations Around AI: A Complicated Map (august 2024) 

1.6.3 Societal challenges 

On the societal level, AI raises questions about labor markets, inclusion, and trust. 
As discussed in Section 1.5, automation displaces routine jobs but creates 
demand for high-skill roles in AI supervision and governance [14] [15]. However, 
this transition risks exacerbating inequalities if reskilling programs are 
insufficient or unevenly distributed. 
AI also impacts democratic processes and information ecosystems. The rise of 
generative models capable of producing deepfakes and synthetic media raises 
concerns over misinformation, manipulation, and erosion of public trust in 
information sources [13]. This has led to calls for watermarking, content 
provenance systems, and stricter digital governance [17]. 
Finally, societal acceptance is crucial: surveys show that users’ trust in AI is fragile, 
heavily influenced by perceptions of safety, fairness, and transparency [6]. 
Without public confidence, even technically advanced solutions may encounter 
resistance to adoption. 



1.6.4 Towards responsible AI 

Addressing these ethical, legal, and societal issues requires a multi-stakeholder 
approach, involving policymakers, companies, academia, and civil society. 
International organizations, such as UNESCO and the OECD, have proposed 
global principles of trustworthy AI, stressing human oversight, robustness, 
fairness, and transparency [6]. 
From a corporate perspective, leading firms are beginning to adopt AI 
governance frameworks, including bias audits, ethics boards, and standardized 
reporting on AI models [15]. However, implementation remains uneven, and 
SMEs often lack the resources to establish such structures independently. 

In conclusion, ensuring that AI is developed and deployed responsibly is as critical 
as advancing its technical capabilities. Only by integrating ethical reflection, legal 
compliance, and societal dialogue can AI deliver sustainable benefits without 
undermining fundamental rights and social cohesion.  



CHAPTER 2 - FOCUS: AI AGENTS 

2.1 Definition of AI agent 
The concept of AI agents represents one of the most relevant recent evolutions 
in the field of Artificial Intelligence. While traditional models, often referred to as 
static models, are designed to perform specific tasks when prompted by human 
users, AI agents go beyond this paradigm by introducing autonomy, proactivity, 
and interaction with external environments [11]. 

A static model is typically characterized by a fixed set of capabilities: it receives 
an input, processes it according to its trained parameters, and produces an 
output. Large Language Models (LLMs), for example, can generate text or answer 
questions with high accuracy, but they remain reactive tools: without human 
prompting, they do not initiate actions or adapt to dynamic tasks [9] [11]. 

In contrast, an AI agent is an autonomous system built upon advanced models, 
often foundation models such as LLMs, combined with additional layers that 
enable reasoning, memory, planning, and interaction with tools or environments 
[13]. This shift allows agents not only to respond but also to act: they can break 
down complex goals into sub-tasks, decide which tools to use (e.g., search 
engines, APIs, robotic systems), and adapt their strategies according to feedback 
from the environment [11] [13]. 

One of the most cited definitions describes an AI agent as “a system situated in 
and interacting with an environment, capable of perceiving it through sensors 
and acting upon it through effectors, with the goal of achieving specific 
objectives” [7]. This definition underscores the agent’s continuous interaction 
loop, which distinguishes it from the one-shot functioning of static models. 

2.1.1 Comparative dimensions 
The main differences between static models and AI agents can be synthesized 
along several dimensions: autonomy, adaptability, goal orientation, and tool use. 
While static models are limited to executing predefined tasks, agents possess the 
capacity for self-directed operation and multi-step workflows [13]. 
Table 5 below provides a structured comparison between the two paradigms. 

Tabella 5 - Comparison between static AI models and AI agents 

Dimension Static AI Models AI Agents 

Input/Output Single input → single output Continuous perception-action loop 

Autonomy 
Primarily reactive; requires explicit 
prompts or external orchestration for 
complex tasks 

Proactive and autonomous in initiating tasks 



Dimension Static AI Models AI Agents 

Adaptability Limited, fixed behavior 
Dynamic, capable of learning from environmental 
feedback 

Goal 
orientation 

No intrinsic goals, task-bound 
Oriented towards objectives defined by human or 
context 

Tool use 
None or limited (e.g., APIs if 
connected) 

Can select, combine, and execute external tools 

Memory Typically, absent or very short-term 
Equipped with long-term and working memory 
capabilities 

Examples 
GPT for text generation, ResNet for 
image classification 

LangChain-based research assistants, robotic 
systems, autonomous software agents (e.g., using 
LangGraph or Microsoft Autogen 

 

2.1.2 Towards agentic AI 
This transition reflects a broader move from passive AI systems to agentic AI. The 
latter encompasses decision-making, multi-step reasoning, and adaptive 
behavior in real-world contexts [13]. By integrating perception, memory, and tool-
use, agents embody a form of operational intelligence closer to human-like 
problem-solving than static models ever could. 
To visually reinforce this distinction, Figure 4 illustrates the evolution from static 
models to agent-based architectures, showing how added layers (memory, 
planning, autonomy) transform a reactive tool into an active, context-aware 
system. 

 
Figure 4 - Evolution from static AI models to agent-based architecture. Original elaboration by the author, based on [7], [9], [11], 

[13] 

2.2 How they work: architecture and basic principles 
The functioning of AI agents is based on an architectural framework that extends 
the paradigm of large models into a dynamic, interactive system capable of 
perceiving, reasoning, and acting in complex environments. Unlike static AI 



models, which operate in a single input–output cycle, agents are designed as 
continuous loops of perception, decision, and action, mediated by four 
foundational principles: planning and reasoning, memory, tool use, and 
autonomy [11] [13]. 

2.2.1 Prompting and reasoning mechanisms 
Prompting represents the primary interface between the agent and its 
environment or human users. While in static models prompts serve only as 
queries for one-shot responses, in agentic systems prompting becomes iterative 
and context aware. Agents are capable of decomposing high level goals into sub-
prompts, generating reasoning chains, and reformulating queries to external 
tools when needed [9] [13]. This mechanism introduces a form of meta-reasoning, 
whereby the agent can evaluate intermediate outputs, refine them, and redirect 
its course of action.  

2.2.2 Memory: short-term, long-term, and episodic 
Another core distinction is the presence of memory layers. Static LLMs are 
constrained by short context windows, limiting their ability to “remember” 
beyond a few thousand tokens [11]. Agents, by contrast, integrate: 

 Short-term (working) memory, used to store the immediate conversational 
or task state. 

 Long-term memory, supported by external databases, vector stores, or 
knowledge graphs, allowing the agent to retrieve past interactions and 
contextual information [13]. 

 Episodic memory, enabling the system to recall sequences of experiences 
and adjust its strategy over time. 

The integration of memory fosters continuity and adaptation, qualities essential 
when deploying agents in business workflows or manufacturing contexts, as 
anticipated in Chapter 1.5 and further developed in Chapter 3. 

2.2.3 Tool use and environment interaction 
A defining characteristic of AI agents is their capacity to use tools. These may 
range from software APIs and search engines to robotic actuators in physical 
environments. Through frameworks like LangChain, LangGraph, or Microsoft 
Autogen, agents can dynamically select and orchestrate tools according to the 
problem at hand [13]. This capability transforms them from closed systems into 
open, modular ecosystems, where knowledge is extended beyond the model’s 
internal parameters. Table 6 provides an overview of the main categories of tools 
that agents can integrate, emphasizing their role in extending the agent’s 
capabilities beyond the core model. 



Tabella 6 - Categories of tools in AI agents 

Category Examples Role in agent workflows 

Data retrieval 
APIs, vector databases, knowledge 
graphs 

Access to external knowledge; long-term 
memory support 

Analytics 
Python execution, ML models, BI 
tools 

Data processing, predictive modeling, decision 
support 

Communication 
Email, messaging APIs, speech 
synthesis 

Interaction with humans or other systems 

Physical actuators Robotic arms, IoT devices, drones Execution of tasks in real-world environments 

Information 
retrieval 

Search engines, web scraping 
tools 

Access to up-to-date, real-time information from 
the internet 

 

2.2.4 Autonomy and self-directed behavior 
Perhaps the most distinctive feature of agents lies in their autonomy. By 
combining prompting, memory, and tool use, they can plan multi-step tasks, 
monitor their execution, and adjust strategies in response to feedback from the 
environment [7] [13]. Autonomy does not mean independence from human 
oversight: as highlighted in Chapter 1.6 on ethical and societal challenges, 
meaningful human control remains central. Instead, autonomy refers to the 
ability to operate proactively, reduce human micromanagement, and act as co-
pilots in decision making and operational contexts. This anticipates their role in 
intelligent automation and task execution for enterprises (Chapter 2.4) and their 
transformative potential in manufacturing processes (Chapter 3.4). 

2.2.5 Towards an integrated architecture 
Synthesizing these elements, the architecture of an AI agent can be visualized as 
a layered system: 

 Core model (often an LLM or multimodal foundation model) providing 
baseline reasoning and generative capabilities [11]. 

 Control layer managing prompting strategies, goal decomposition, and 
reasoning chains. 

 Memory layer ensuring context continuity and adaptive learning. 
 Tool interface enabling external actions, both digital and physical. 
 Orchestration layer integrating planning, memory, and tools to enable 

autonomous, goal-driven behavior (autonomy is an emergent property). 



In summary, the architecture of AI agents rests on four foundational elements: 
prompting, memory, tool use, and autonomy. Which, when combined, transform 
static models into adaptive and continuous operating systems. These principles 
should not be seen as isolated blocks but as interconnected components that 
shape the agent’s functionality and overall level of sophistication. Understanding 
these mechanisms provides the groundwork for the following sections, where 
real-world applications, business advantages, and current limitations will be 
explored. 

2.3 Real-world and experimental use cases  
The growing interest in AI agents has led to a rapid proliferation of both 
experimental prototypes in research laboratories and commercially available 
solutions on the market. These systems embody the architectural principles 
described in Section 2.2, reasoning, memory, tool use, and autonomy, while 
translating them into practical applications that extend beyond static large 
models. In this sense, real-world deployments of agents represent a natural 
evolution of the applications introduced in Chapter 1.4, where chatbots, 
intelligent assistants, and predictive systems were still bounded by reactive 
paradigms [8] [11]. 

A first category of use cases concerns research-oriented experimental agents. 
Academic institutions and industrial research labs have been at the forefront of 
testing agentic architectures in controlled environments. For instance, initiatives 
based on LangChain or LangGraph provide frameworks where agents can 
autonomously query databases, generate structured research reports, or design 
experiments by orchestrating multiple tools [13]. Projects such as AutoGPT and 
BabyAGI served as early proof-of-concepts for autonomous workflows and 
inspired further development in agentic AI, despite their limitations in reliability 
and scalability. While still limited by reliability and cost, these experiments have 
highlighted the potential of agents in domains such as scientific discovery and 
autonomous coding [9] [13]. 

In the commercial sphere, enterprise-oriented co-pilot agents are among the 
most visible applications. Building upon the productivity assistants discussed in 
Section 1.4.2, companies are now releasing enhanced versions with agentic 
capabilities. Microsoft Copilot and Gemini for Workspace, for example, have 
introduced features that go beyond one-shot text generation, enabling task 
orchestration across applications, proactive workflow management, and 
integration with enterprise knowledge bases [15]. These systems illustrate how 
the architectural principles of memory and tool use (see Section 2.2.2 and 2.2.3) 
can be concretely leveraged to create digital co-workers rather than simple 
assistants. 



A further line of development involves autonomous agents in customer-facing 
contexts. Companies in e-commerce and finance are experimenting with agents 
capable of not only answering queries but also executing transactions, adjusting 
offers dynamically, and escalating issues based on contextual awareness. 
Compared to traditional chatbots (Section 1.4.1), these agents demonstrate 
higher levels of autonomy and adaptive reasoning, bridging the gap between 
conversational interfaces and operational decision-making [11] [13]. 

Another promising domain is AI-driven robotics and IoT integration. Here, agents 
are connected to physical actuators, enabling real-time perception–action loops 
in dynamic environments. In manufacturing and logistics, for example, 
prototypes of robotic agents can coordinate fleets of autonomous vehicles, 
adjust production lines, or carry out predictive maintenance by accessing sensor 
data. These use cases anticipate the applications that will be analyzed in Chapter 
3, where manufacturing contexts provide fertile ground for embedding agentic 
intelligence [11] [13]. A graphical synthesis of these categories of use cases is 
provided in Figure 5, which situates agents along a continuum from 
experimental prototypes to enterprise-ready solutions. 

In addition, multi-agent simulation environments are emerging as valuable 
experimental grounds. Researchers have developed digital societies of agents 
capable of exhibiting emergent behaviors, cooperation, and competition, 
offering insights into collective intelligence and organizational dynamics [13]. 
Such simulations not only advance theoretical understanding but also provide 
testbeds for evaluating risks, such as coordination failures or bias propagation, 
which are critical for real-world deployment (further discussed in Section 2.5). 

Finally, specialized industry use cases demonstrate how agents can generate 
tangible value in high-stakes domains. In healthcare, experimental diagnostic 
agents assist doctors by autonomously retrieving medical literature, proposing 
differential diagnoses, and scheduling follow-ups, all while integrating memory 
of prior cases [11]. In finance, agents are being tested for autonomous trading 
strategies and real-time fraud detection, although strict regulatory oversight 
remains necessary [14]. These examples connect back to the broader applications 
of predictive analytics and decision support systems (Section 1.4.4), showing how 
agents transform them into continuous, adaptive, and autonomous processes. 

In summary, the landscape of agentic AI applications is highly heterogeneous, 
ranging from open-source experimental prototypes to enterprise-ready copilots 
and robotics integrations. What unites these initiatives is the progressive 
realization of the principles discussed in Section 2.2 and their convergence 
toward the needs of companies, as will be explored in Section 2.4. To reinforce 
this, Table 7 provides a comparative overview of selected real-world and 



experimental use cases, highlighting the transition from research prototypes to 
market-ready solutions. 

Tabella 7 - Selected real-world and experimental use cases of AI agents 

Domain Example Key Features 
Connection with 
agent principles 

Research 
prototypes 

AutoGPT, BabyAGI (research 
prototypes) 

Autonomous reasoning 
chains, task decomposition 

Prompting, memory, 
autonomy 

Enterprise 
copilots 

Microsoft Copilot, Gemini for 
Workspace 

Task orchestration, 
integration with apps 

Tool use, memory, 
autonomy 

Customer 
interaction 

Experimental e-commerce 
agents for personalized 
purchasing 

Execute transactions, 
adaptive offers 

Reasoning, 
autonomy 

Robotics & IoT Autonomous warehouse robots 
Sensor data integration, fleet 
coordination 

Perception–action 
loop, tool use 

Simulation 
environments 

Multi-agent societies 
Emergent collaboration, 
coordination 

Multi-agent 
reasoning, 
autonomy 

Specialized 
industries 

Healthcare diagnostic agents, 
financial trading bots 

Case memory, decision 
support 

Long-term memory, 
reasoning 

 

2.4 Specific advantages for companies 
The introduction of AI agents into corporate contexts offers tangible advantages 
that go beyond the incremental improvements provided by traditional AI 
systems. While static AI models already enabled significant progress in areas 
such as chatbots, predictive analytics, and productivity tools (see Chapter 1.4), the 
agentic paradigm extends these capabilities by adding autonomy, memory, and 
adaptive reasoning (as discussed in Chapter 2.2). For companies, this evolution 
translates into a set of strategic benefits that impact efficiency, decision-making, 
and innovation across the value chain. 

2.4.1 Intelligent Automation 
One of the clearest advantages of AI agents for enterprises lies in intelligent 
automation. Building upon the foundations of RPA (see Section 1.4.3), agents 
enhance automation by incorporating the ability to process unstructured data, 
adapt workflows in real time, and interact with heterogeneous systems. For 
example, whereas traditional RPA could extract structured data from invoices, an 



AI agent can autonomously classify non-standard documents, query external 
databases for missing information, and escalate ambiguous cases to human 
supervisors [11] [13]. 

This level of adaptability reduces the brittleness of conventional automation 
solutions and ensures scalability across dynamic environments. 

Moreover, intelligent automation driven by agents allows companies to achieve 
not only cost reduction but also resilience. By continuously monitoring execution 
and adapting to changes (e.g., regulation updates, fluctuating supply chains), 
agents align with the broader need for organizational agility emphasized in 
Chapter 1.5.2. In this sense, they act as dynamic enablers of process innovation 
rather than as rigid substitutes for human effort. 

2.4.2 Co-pilot Agents and Augmented Decision-Making 
A second area of corporate advantage comes from the deployment of co-pilot 
agents. These extend the concept of intelligent assistants introduced in Section 
1.4.2 by embedding proactive orchestration and memory. In practice, co-pilot 
agents operate as digital colleagues: they manage multi-step tasks, integrate 
enterprise knowledge bases, and provide contextual suggestions to human 
workers [15]. 

For instance, in project management, a co-pilot agent can autonomously track 
progress across multiple documents, flag inconsistencies, suggest resource 
reallocations, and even simulate alternative scenarios through predictive models 
[5] [11]. In knowledge-intensive industries such as consulting or engineering, 
agents become repositories of organizational memory, capable of retrieving past 
projects and adapting them to new contexts, thus reducing redundancy and 
accelerating time-to-solution. 

This augmentation resonates with the discussion in Chapter 1.5.1 about the 
transformation of workforce skills: rather than replacing human professionals, co-
pilot agents amplify their cognitive capacity, enabling more strategic focus and 
reducing cognitive overload. 

2.4.3 Task Execution and Operational Autonomy 
Beyond automation and assistance, AI agents offer companies the possibility of 
delegating entire tasks with minimal supervision. This capability builds on the 
autonomy principle outlined in Section 2.2.4 and is already visible in real-world 
deployments (see Chapter 2.3). Agents can, for example: 

 Execute end-to-end procurement tasks, from supplier identification to 
preliminary contract drafting. 



 Manage customer interactions not only by answering questions but also 
by completing transactions, offering personalized recommendations, and 
adjusting policies in real time [13] [14]. 

 Coordinate IoT devices and robotic systems in logistics or manufacturing, 
dynamically reallocating resources according to operational data streams 
[11]. 

Such task execution potential connects directly to the manufacturing scenarios 
that will be analyzed in Chapter 3. Here, the integration of agents with industrial 
IoT and predictive maintenance systems can close the loop between perception, 
reasoning, and action, unlocking a new generation of adaptive production 
processes. 

Importantly, operational autonomy does not imply a lack of oversight. As 
emphasized in Chapter 1.6, meaningful human control remains essential for 
safety, accountability, and trust. In corporate settings, this translates into hybrid 
workflows where agents handle execution while humans retain responsibility for 
supervision and high-stakes decisions. 

2.4.4 Strategic Implications for Enterprises 
From a strategic perspective, the adoption of AI agents brings advantages at 
multiple levels: 

 Efficiency gains: through the reduction of repetitive workload and 
minimization of human errors in structured and unstructured processes. 

 Innovation and agility: by enabling proactive, adaptive solutions that can 
adjust to dynamic environments, supporting resilience in uncertain 
markets. 

 Workforce transformation: by freeing human capital for higher-value 
activities, fostering human–AI collaboration, and encouraging reskilling 
initiatives. 

 Integration across the lifecycle: anticipating the role of AI agents in 
manufacturing (Chapter 3), where their capacity for memory and 
continuous adaptation aligns with the requirements of Industry 4.0 
ecosystems. 

2.5 Current risks and limitations 
Despite the remarkable progress described in Sections 2.2–2.4, the deployment 
of AI agents is still constrained by a set of risks and limitations that companies, 
researchers, and policymakers must carefully consider. These challenges echo 
with broader issues already highlighted in Chapter 1.6 on ethical, legal, and 



societal aspects, but acquire new nuances due to the autonomous and adaptive 
nature of agents. 

A first limitation concerns reliability and hallucinations. While large models have 
already shown a tendency to generate incorrect or fabricated outputs [11] [13], the 
problem is amplified in agentic contexts. An agent that relies on erroneous 
information may autonomously trigger incorrect actions or escalate flawed 
decisions. Unlike static chatbots, agents operate within multi-step workflows 
(see Section 2.2.1), where a single hallucination can propagate through an entire 
task chain. This increases operational risks in high-stakes environments such as 
finance, healthcare, or industrial manufacturing. 

Closely related is the issue of control and oversight. As noted in Section 2.2.4, 
autonomy is a defining feature of agents; however, this autonomy challenges 
traditional paradigms of accountability. Without robust “human-in-the-loop” 
mechanisms [6] [7], agents risk executing actions beyond their intended scope, 
raising questions of liability in case of errors. This is particularly critical when 
agents interact with IoT devices or robotic systems (see Section 2.3), where 
decisions are directly translated into physical operations. 

Another limitation is scalability and cost-efficiency. Although agents promise 
resilience and adaptability (see Section 2.4.1), they require continuous 
orchestration of memory layers, external tools, and reasoning loops [13]. This leads 
to significant computational overhead compared to static AI services. For SMEs, 
which already face resource constraints (Chapter 1.5.3), the adoption of agentic 
architectures may be hindered by infrastructure costs, integration complexity, 
and subscription models of third-party platforms [15]. 

Security vulnerabilities also represent a crucial risk. By design, agents rely on 
external APIs, databases, or connected devices (Table 6). Each interface becomes 
a potential attack vector, exposing the system to adversarial manipulation, data 
leakage, or malicious tool injection. Research in adversarial AI has shown how 
even small perturbations can mislead models [5], and in agentic workflows these 
vulnerabilities can be compounded by the agent’s ability to act autonomously in 
digital or physical environments. 

From a societal perspective, bias and ethical concerns remain unresolved. As 
emphasized in Chapter 1.6.1, models often inherit biases from training data [6] [11]. 
When embedded in agents, such biases do not remain confined to single 
outputs but may drive entire decision-making sequences, potentially reinforcing 
discriminatory practices in hiring, credit scoring, or customer service. Moreover, 
the opacity of reasoning chains in agents makes explainability even more 
challenging than in static models [12]. 



Another risk is coordination in multi-agent systems. As discussed in Section 2.3, 
experimental environments with multiple agents show promising emergent 
behaviors, but also highlight risks of misalignment, cooperation breakdown, and 
the amplification of systemic errors [13]. These scenarios anticipate challenges in 
organizational contexts, where multiple agents may need to collaborate across 
departments or supply chains. 

Finally, regulatory uncertainty complicates adoption. The EU AI Act, which 
introduces obligations for high-risk AI systems [11], does not yet fully account for 
the distinct dynamics of agentic AI, leaving open questions about compliance, 
responsibility, and certification. This regulatory gap increases legal risks for 
companies experimenting with advanced agentic solutions, especially in 
sensitive sectors. To synthesize these aspects, Table 8 provides an overview of the 
main risks and limitations of AI agents, structured along technical, organizational, 
and societal dimensions. 

Tabella 8 - Main risks and limitations of AI agents 

Dimension Limitation Example / Implication 

Technical Hallucinations and error propagation 
Incorrect outputs in multi-step workflows, leading to flawed 

decisions 

Technical Computational cost and resource demands 
High computational overhead due to memory and tool 

orchestration 

Organizational Coordination failures Emergent misalignment or systemic errors in collective behaviors 

Security 
Insecure API integrations and external tool 

dependencies 
Risk of adversarial attacks or malicious API/tool manipulation 

Organizational Oversight and accountability Ambiguity in human–agent control and liability assignment 

Societal Bias and discrimination Agents reinforcing existing data biases in automated decisions 

Technical Explainability gap 
Difficulty in tracing multi-step reasoning and ensuring 

transparency 

Legal Regulatory uncertainty 

The EU AI Act provides a framework for high-risk AI, including 

agents, but implementation, enforcement, and global alignment 

remain challenging 

 

In conclusion, while the advantages of agents for companies are undeniable (see 
Section 2.4), their limitations highlight the need for cautious adoption and robust 
governance frameworks. Addressing risks such as hallucinations, security 
vulnerabilities, or ethical concerns is not only a technical requirement but also a 



strategic imperative. These limitations also serve as a bridge to Chapter 3, where 
the application of AI agents in manufacturing contexts will be explored. In that 
domain, ensuring safety, reliability, and compliance becomes even more critical, 
as digital decisions increasingly interact with physical processes and complex 
industrial ecosystems.  



CHAPTER 3 – ARTIFICIAL 
INTELLIGENCE IN THE 
MANUFACTURING CONTEXT 

3.1 AI in the Product Lifecycle: an integrated view 
The industrial landscape is undergoing a profound transformation driven by the 
integration of Artificial Intelligence (AI) and Industrial Digital Technologies (IDTs), 
necessitating a holistic, integrated perspective on the product lifecycle. This 
integration is critical for addressing the inherent complexity and enhancing 
efficiency, quality, and sustainability across all phases, from initial design through 
to eventual end-of-life (EOL). Understanding the comprehensive application of 
AI requires mapping specific techniques to the unique challenges presented at 
each stage of the product's existence, ensuring that data generated in one phase 
provides actionable insights for subsequent phases [21]. 

The role of AI begins in the Design Phase (Section 3.2), where it extends 
capabilities beyond traditional Computer-Aided Design (CAD). Here, AI 
techniques are crucial for facilitating inspiration, supporting concept generation, 
streamlining shape synthesis, and executing complex Topology Optimization 
(TO) tasks. Deep generative models and Generative Adversarial Networks (GAN) 
are prominent in this domain, providing a flexible framework to explore 
unconventional and complex design spaces. Such approaches enable engineers 
to consider multiple conflicting objectives, leading to more efficient, functional, 
and sustainable product designs from the outset [21]. 

Moving into the Manufacturing Context (Section 3.3), AI becomes indispensable 
for process control, optimization, and quality assurance. Whether optimizing 
process parameters in Additive Manufacturing (AM) or conventional machining 
operations (such as turning and milling), AI/Machine Learning (ML) techniques 
are employed to predict machinery parameters like cutting forces or surface 
roughness, and to monitor tool condition. Techniques frequently utilized include 
Artificial Neural Networks (ANNs), Support Vector Regression (SVR), and various 
evolutionary algorithms (EAs) (e.g., Genetic Algorithms (GA) and Particle Swarm 
Optimization (PSO). Moreover, complexity in the supply chain requires intelligent 
solutions for tasks such as inventory management, where AI heuristic 
approaches like Monte Carlo Tree Search (MCTS), fuzzy logic, and Reinforcement 
Learning (RL) help minimize overall inventory costs by managing stochastic 
factors. The diverse application of AI within this phase is evidenced by the wide 
array of techniques utilized, spanning image and pattern recognition (CNN, KNN, 



Multi-Layer Perceptron (MLP)) for quality control, to optimization (GA, PSO, 
Gaussian Process (GP)) [21]. 

The Usage Phase (Section 3.4) centers on ensuring continuous operation and 
equipment reliability through intelligent maintenance strategies. The paradigm 
shift toward Predictive Maintenance (PdM) is enabled by the availability of vast 
amounts of data collected throughout the equipment’s lifecycle and the 
integration of advanced diagnostic and prognostic algorithms. PdM utilizes data-
driven approaches, relying on AI models trained on historical data to anticipate 
and diagnose faults in complex components like engines, gearboxes, and 
turbines. Techniques such as Support Vector Machine (SVM), Artificial Neural 
Networks (ANN), and Long Short-Term Memory (LSTM) models are essential for 
fault diagnosis and prognosis (e.g., Remaining Useful Life estimation) 
respectively, leveraging their strength in classification and sequential data 
analysis. This phase relies heavily on foundational concepts, such as the Digital 
Twin (DT), which acts as a crucial system-of-systems by providing a real-time, bi-
directional link to the physical asset, enabling adaptive operations and real-time 
anomaly detection [21] [22]. 

Finally, the End-of-Life (EOL) Phase (Section 3.5) links back to the overarching 
goal of sustainability and the circular economy. The successful implementation 
of reuse, recycling, and remanufacturing strategies depends on AI for generating 
optimal disassembly sequences (Disassembly Sequence Planning - DSP) and 
estimating the quality and residual value of components. The challenges posed 
by complex product geometries and the need for non-destructive disassembly 
are often tackled using meta-heuristic algorithms like GA and Ant Colony 
Optimization (ACO), or sophisticated robotic Task and Motion Planning (TAMP). 
This integrated view confirms that AI methodologies and techniques underpin 
every stage of the Industrial Equipment Lifecycle [23] [24]. 

For the development of this chapter, a structured literature analysis was 
conducted to ensure comprehensive coverage of each stage of the 
manufacturing process described above. Initially, ten sources were selected from 
the Scopus database for each phase of the product lifecycle. Subsequently, the 
focus was refined by prioritizing the most relevant publications, those in which 
the key topics of interest were most comprehensively addressed. Some figures 
from these sources were reproduced or adapted to visually communicate the 
main concepts discussed in this thesis, enhancing clarity and cohesion. Sources 
that were ultimately deemed less relevant were excluded from the final 
reference list to maintain conciseness and thematic consistency. 



3.2 Design and Development Phase 
The design and development phase of the product lifecycle is arguably where 
the most significant value is created, as decisions made here profoundly impact 
everything from manufacturing complexity and cost to in-field performance and 
end-of-life sustainability [21]. Traditionally a human-centric domain driven by 
creativity and engineering expertise, this phase is now undergoing a profound 
transformation powered by Artificial Intelligence. Building on the concepts of 
agentic AI discussed in Chapter 2, intelligent systems are no longer just passive 
tools but are becoming active partners in innovation, capable of augmenting 
human creativity, automating complex optimization tasks, and integrating data 
from the entire product lifecycle to inform better design choices [25]. 

This section explores the application of AI techniques across the key stages of 
product design and development. We will examine how AI is being leveraged for 
concept generation and innovation, detailed design synthesis, and holistic 
process optimization, ultimately enabling the creation of more efficient, 
sustainable, and competitive industrial equipment. 

3.2.1 AI for Conceptual Design and Innovation 
The initial stage of design, often referred to as the "fuzzy front end," is 
characterized by ambiguity and a high degree of creativity [26]. It is here that AI 
demonstrates significant potential to augment human ingenuity, primarily by 
analyzing vast datasets to uncover insights and by generating novel concepts 
that might elude human designers. 

One of the primary challenges in conceptual design is design fixation, a cognitive 
barrier that limits designers to familiar solutions and hinders innovation. AI 
algorithms, particularly Machine Learning (ML) and Deep Learning (DL), help 
overcome this by systematically exploring a vast design space. For instance, 
Genetic Algorithms (GA) can explore thousands of configurations for a complex 
system, such as a powertrain, often outperforming human experts in identifying 
optimal arrangements. Similarly, Artificial Neural Networks (ANN) have been 
used for product configuration, determining ideal design features based on 
customer preferences extracted from market data [21]. 

Furthermore, AI-driven tools can analyze extensive datasets, such as market 
analyses, customer feedback, patent databases, and academic journals, to 
provide valuable guidance for creating user-centric and innovative products. 
Natural Language Processing (NLP) techniques, as referenced in Chapter 1, can 
be employed to systematically search and analyze textual and visual sources like 
customer reviews and complaints to extract and categorize explicit and hidden 
customer needs [21]. For example, a combination of supervised algorithms like 



fastText and unsupervised algorithms like VADER have been successfully used to 
identify and classify customer needs from large volumes of unstructured text [21]. 

More advanced generative models, such as Generative Adversarial Networks 
(GANs) and Variational Autoencoders (VAEs), are revolutionizing concept 
generation by creating novel product options from visual or parametric data [21]. 
By training on existing designs, these models can generate a wide range of new 
design alternatives for mechanical structures, such as wheels or airfoils, even with 
limited data input. This generative capability, which will be detailed further in the 
next sub-section, allows designers to move beyond incremental improvements 
and explore truly innovative forms and functionalities. 

3.2.2 AI in Detailed Design and Optimization 
Following the conceptual phase, AI provides powerful tools for detailed design, 
where specifications are finalized, and performance is optimized. This includes 
shape synthesis, topology optimization, and the integration of physical 
properties into digital models. 

Shape Synthesis and Generative Design Generative design leverages AI 
algorithms to autonomously produce a multitude of design options that meet 
specified constraints [26]. Techniques like Autoencoders (AE/VAE), Deep 
Convolutional Networks (DCN), and various GAN architectures play a critical role 
in shape synthesis, offering diverse avenues for generating innovative and 
functional forms. These models are not just creating aesthetically pleasing 
shapes; they are optimizing for performance criteria such as weight, material 
usage, and structural integrity. For example, by integrating human-in-the-loop 
frameworks, researchers have used electroencephalography (EEG) signals to 
capture a designer's preferences, which then guide a GAN to generate product 
concept images that align with unspoken design requirements [21]. 

Topology Optimization (TO) is a computational method that optimizes material 
layout within a given design space for a given set of loads and boundary 
conditions. AI has significantly enhanced this field. Deep Generative Models 
(DGMs), especially modified GAN variants like Wasserstein GAN (WGAN) and 
Conditional GAN (CGAN), have become a major focus of research. These models 
can be trained on datasets generated through traditional TO to learn how to 
produce designs that are both technically sound and aesthetically superior 
without direct human intervention. For instance, researchers have used a WGAN 
to automatically generate automobile wheel designs that possess significant 
technical value. Other approaches combine VAEs with techniques like style 
transfer to enhance the quality of generated designs or use Variational Deep 
Embedding (VaDE) to identify and fill unexplored regions in the design space, 
thereby expanding the range of feasible solutions [21]. 



A key advancement is the integration of physical properties into the generative 
process. Some models use spatial fields of physical parameters, such as von Mises 
stress, displacement, and strain energy density, as inputs to a CGAN, training the 
network to generate topologies that are inherently compliant with physical laws. 
This results in more realistic and manufacturable designs. 

 

Figure 5 - AI techniques used at product design phase 

The chart illustrates the relative frequency of AI techniques applied in product 
design. The larger pie (79%) groups the most widely adopted methods (e.g., VAE, 
GAN, Autoencoders, DCNs), while the smaller segment (21%) highlights modified 
GAN architectures with enhanced loss functions, representing emerging 
approaches [21]. 

3.2.3 Integrating Data and Models for a Holistic Design Process 
The true power of AI in the design phase is realized when it is integrated into a 
broader data ecosystem, creating a continuous feedback loop throughout the 
product lifecycle. Concepts like the Internet of Production (IoP) and Digital 
Shadows are central to this vision. The IoP proposes a globally interconnected 
system where data from all phases of the product cycle, development, 
production, and usage, is shared to fuel innovation [27]. 

A Digital Shadow is a purpose-driven, aggregated dataset that includes not only 
raw data but also models and metadata providing context about the product or 
process [19]. In the design phase, AI agents, as discussed in Chapter 2, can 
leverage Digital Shadows to make data-driven decisions. For example, data 
collected from sensors on in-field equipment (IoT) can be fed back to the design 
stage, allowing AI models to identify performance bottlenecks or common failure 
modes. This information can then be used to inform redesigns or create the next 
generation of products [28]. 



This approach enables what is known as model-integrated AI, where data-driven 
AI methods are combined with domain-specific engineering models (e.g., CAD, 
Finite Element Analysis) [27]. AI can analyze simulation results or real-world 
performance data to automatically refine design parameters, test new material 
compositions, or optimize for sustainability criteria such as recyclability and 
energy consumption [29] [28]. This creates an AI-driven design loop where 
products are continuously improved based on real-world evidence, moving 
beyond static, one-off design processes [27]. 

 

Figure 6 - AI techniques and their prevalence in different design stages 

The diagram compares AI techniques across different stages of product design, 
from conceptual exploration to detailed optimization. It highlights, for example, 
the dominance of GANs in generative concept design and the growing role of 
Digital Shadows and model-integrated AI in holistic optimization. 

3.2.4 Case Studies and Best Practices 
The application of AI in the design and development phase is not merely 
theoretical; numerous case studies demonstrate its practical value across various 
industries. 
In the automotive sector, generative AI is used for component design 
optimization. As mentioned, Wasserstein GANs (WGANs) have been successfully 
used to automatically generate aesthetically superior and technically valuable 
wheel designs without human intervention. Other projects use Conditional GANs 
(CGANs) combined with human input to interactively explore and refine 
structural designs, merging the designer's expertise with the generative power 
of AI. These approaches lead to lighter, stronger, and more efficient components 
[21]. 
In the aerospace industry AI models like GANs and Conditional Variational 
Autoencoders (cVAEs) have been employed to generate a wide array of design 
options for complex mechanical structures such as airfoils, even with limited 



initial design data [1]. This accelerates the exploration of novel aerodynamic 
profiles, which is critical for improving aircraft performance and fuel efficiency. 
In manufacturing, AI contributes to the ‘Design for X’ paradigm, where X may 
represent manufacturability, assembly, or disassembly. For example, AI 
algorithms like Genetic Algorithms (GA) and Ant Colony Optimization (ACO) are 
used to generate optimal disassembly sequences for End-of-Life (EoL) products 
[23]. This information is crucial during the design phase to create products that 
are easier to repair, remanufacture, or recycle, aligning with circular-economy 
principles [28]. The Internet of Production (IoP) framework enables a "Worldwide 
Lab" where a company can retrieve machine parameters from a different 
production site to adapt its design in response to material variations, 
demonstrating a best practice in cross-domain collaboration [27]. 
While outside traditional manufacturing, the pharmaceutical industry provides 
a powerful analogy. Here, AI models, including Graph Neural Networks (GNNs), 
are used for new drug designs by modeling molecular structures and predicting 
their properties [30]. This parallels how AI is used in manufacturing to design 
novel materials or components with specific functional characteristics. 

From these cases, several best practices emerge for integrating AI into the design 
and development phase: 

 Integrate Human-in-the-Loop: combine AI's computational power with 
human expertise and intuition. Interactive frameworks where designers 
guide or refine AI-generated outputs lead to more practical and preferred 
solutions [21]. 

 Create a Data Feedback Loop: establish systems (like Digital Shadows) to 
collect and feed data from the entire product lifecycle back into the design 
process. This ensures that designs are continuously improved based on 
real-world performance and usage patterns [21]. 

 Design for the Full Lifecycle: employ AI to optimize not just for performance 
but also for sustainability, manufacturability, and end-of-life 
considerations. AI-driven "Design for Disassembly" is a key enabler of the 
circular economy [23] [28]. 

 Adopt Model-Integrated AI: instead of treating AI as a "black box," integrate 
it with established engineering models (CAD, FEA). This ensures that AI-
generated designs are grounded in physical principles and are more 
reliable and trustworthy [21] [27]. 

By adopting these practices, manufacturing companies can harness the full 
potential of AI to create superior products more efficiently and sustainably, 
paving the way for an AI-driven product lifecycle. 



3.3 Production and Operations Phase 
Building upon the digitally conceived and optimized product designs from the 
previous phase, the Production and Operations phase is where the product is 
physically realized, and the supporting ecosystem is managed. The integration of 
Artificial Intelligence in this stage marks a pivotal shift from traditional, rigid 
production lines to smart, adaptive, and data-driven manufacturing 
environments, a concept at the core of Industry 4.0. This transformation is not 
merely about automation but involves creating a deeply interconnected system 
where data flows seamlessly from machines, processes, and supply chains to 
inform real-time decision-making. This vision aligns perfectly with the Internet of 
Production (IoP) framework introduced in section 3.2, where Digital Shadows of 
production processes provide the data necessary for AI agents to optimize 
operations dynamically [21] [27]. 

AI technologies are applied across a spectrum of activities within this phase, 
including core manufacturing processes, quality control, predictive 
maintenance, and the orchestration of the broader supply chain. 

3.3.1 AI in Core Manufacturing Processes 
The manufacturing environment is characterized by a variety of processes and 
tasks, including production planning, procurement, and the core production 
operations such as machining and assembly. The integration of AI has brought 
about a transformative shift, particularly by enabling the intelligent integration 
of subtractive manufacturing (SM) and additive manufacturing (AM) processes. 
AI algorithms analyze design constraints, material properties, and production 
requirements to determine the optimal combination of these heterogeneous 
processes, leading to improved product quality and increased speed [24]. 

In Additive Manufacturing (AM), commonly known as 3D printing, AI/ML 
methodologies are fundamentally reshaping optimization techniques. Given the 
advantages AM offers, such as creating components with intricate geometries 
and minimizing material waste, the focus of AI application is centered on 
controlling the variability inherent in the layer-by-layer process. AI techniques are 
primarily utilized for process and parameter optimization, which involves 
regulating variables like laser power and scanning speed to achieve precise 
geometric specifications, such as a particular melt pool geometry or bead 
dimensions. In fact, among the various manufacturing stages, Process 
Parameter Optimization commands the most significant share of AI technique 
utilization, standing at 28%. This distribution, emphasizing the importance of 
fine-tuning operational inputs, is adeptly visualized in a pie of the pie-chart 
illustrating the distribution of AI techniques among manufacturing stages, which 
highlights the prominent reliance on AI techniques for optimizing critical 



manufacturing parameters. Techniques like Artificial Neural Networks (ANN) are 
applied in processes such as Directed Energy Deposition (DED) to accurately 
identify the necessary process parameters to achieve desired outcomes [21]. 

Conversely, traditional Subtractive Manufacturing (SM) processes, which 
historically faced issues related to process control and inefficiency, are being 
revolutionized by AI to achieve smart machining. This involves the capability to 
autonomously adapt machining parameters during operation to achieve optimal 
results. While MLR provides useful statistical baselines, AI-driven methods such 
as SVR extend predictive power for machining optimization in conventional 
processes like turning. For more intricate operations such as boring, Support 
Vector Machines (SVM) analyze vibration signals extracted via discrete wavelet 
transforms, classifying the operational state (stable, transition, or chatter) to 
mitigate chatter-related issues and ensure superior surface finish quality [21]. 

3.3.2 In-Process Monitoring and Quality Control 
Ensuring product quality is a continuous process that AI enhances through real-
time monitoring and post-production inspection. 

In-Process Monitoring: during manufacturing, especially in AM, AI models 
analyze data from various sensors (e.g., infrared cameras, acoustic sensors) to 
detect anomalies in real-time. For instance, unsupervised machine learning 
techniques can be used on plume images from an infrared camera to 
automatically detect unstable melt pools during the SLM process. Similarly, 
models like Deep Belief Networks (DBN) and Convolutional Neural Networks 
(CNN) can classify different melting states based on acoustic signals, identifying 
defects such as balling or cracking as they occur. This real-time feedback loop, a 
practical implementation of the IoP's Digital Shadow, allows for immediate 
corrective actions, reducing waste and improving yield [21]. 

Post-Production Inspection and Defect Detection: after production, AI-powered 
computer vision systems automate the inspection process. CNN-based systems 
are particularly effective for the visual inspection of defects in products like solar 
panels or nanoscale transistors. These systems can analyze electroluminescence 
(EL) images or post-build Computed Tomography (CT) scans to detect flaws with 
remarkable accuracy, even with limited training data. This automated approach 
not only accelerates quality control but also enhances its reliability compared to 
manual inspection [21]. 

3.3.3 Predictive Maintenance (PdM) 
A critical component of the operations phase is ensuring the reliability and 
uptime of manufacturing equipment. Predictive Maintenance (PdM) leverages 
AI to shift from a reactive or scheduled maintenance model to a proactive, 



predictive one. The core objective of PdM is to forecast the Remaining Useful Life 
(RUL) of a component or machine, allowing maintenance to be scheduled 
precisely when needed, thus minimizing downtime and costs. 

Data-driven techniques, including various machine learning models, are 
employed to analyze historical data, sensor readings (e.g., vibration, temperature, 
acoustic emissions), and operating conditions to predict the RUL of critical 
components. For example, Long Short-Term Memory (LSTM) networks, a type of 
RNN, are highly effective for handling time-series data from sensors to predict 
failures in complex systems like airplane turbofan engines. Other commonly 
used techniques include ANNs, SVMs, Random Forests (RF), and Deep Belief 
Networks (DBN), which have been applied to diagnose faults and predict the RUL 
of components in engines, bearings, gears, and EV batteries. Hybrid physics-
informed ML models are emerging as best practices in predictive maintenance, 
complementing purely data-driven approaches [21]. 

A key advancement in this area is the integration of eXplainable AI (XAI), which 
addresses the "black box" nature of many complex models. By providing human-
intelligible narratives and justifications for its predictions, XAI empowers 
maintenance technicians to understand why a certain component is predicted 
to fail, thereby increasing trust and enabling more effective human-in-the-loop 
decision-making. This fosters a more sustainable and collaborative maintenance 
environment where human expertise is augmented, not replaced, by AI [21]. 

 

Figure 7 - Incorporation of AI for fault diagnosis and prognosis in mechanical and EE sector 

Figure 7 provides a comprehensive overview of how different AI techniques are 
incorporated for fault diagnosis and prognosis across both mechanical and 
electrical/electronic (EE) sectors, illustrating the breadth of PdM applications [21]. 



3.3.4 Supply Chain and Logistics Optimization 
The production phase is intrinsically linked to the broader supply chain. AI 
optimizes these interconnected processes by enhancing decision-making, 
inventory control, and logistics. Reinforcement Learning (RL), a concept related 
to the agentic behaviors discussed in Chapter 2, is particularly effective for 
dynamic optimization problems. For instance, RL models are used to minimize 
overall inventory costs by learning optimal ordering policies in complex supply 
chain systems [31] [32]. 

In logistics, AI techniques contribute to solving complex planning problems. 
Decision Support Systems (DSS) and heuristics are used to optimize container 
assignment and loading problems, while AI combined with technologies like 
Radio Frequency Identification (RFID) enhances the responsiveness and 
traceability of the logistics workflow [21]. 

 

Figure 8 - Popularity of different AI techniques in manufacturing phase 

The prevalence and importance of various AI techniques in revolutionizing the 
manufacturing landscape are visually summarized in the bar chart in Figure 8, 
which showcases the distribution of 29 distinct AI techniques across numerous 
publications. Noteworthy is the widespread use of traditional models like ANNs 
and SVMs, which appear in 15 and 18 publications respectively within the 
reviewed literature. 



By integrating AI into these core operational areas, manufacturing companies 
can move towards the adaptive, resilient, and efficient production systems 
envisioned by Industry 4.0. This data-driven ecosystem sets the stage for the next 
phase of the product lifecycle, where data collection continues and provides 
further opportunities for AI-driven services and insights. 

3.3.5 Case Studies and Best Practices 
The application of AI in the production and operations phase extends across a 
wide range of industries, where it consistently demonstrates best practices in 
enhancing efficiency, quality, and sustainability. 

In the automotive industry, AI plays a dual role in production optimization and 
quality control. Support Vector Machine (SVM) and Naive Bayes (NB) classifiers 
have been successfully employed to analyze acoustic data from automobile 
gearboxes, enabling accurate defect diagnosis. Predictive maintenance is 
equally relevant: Random Forest classifiers have been applied to vehicle 
maintenance records and operational data, allowing early detection of failures 
such as air compressor malfunctions in trucks and buses. This proactive 
approach has improved both scheduling efficiency and fleet reliability [21]. 

The aerospace sector provides high-stakes examples of AI in predictive 
maintenance. A well-established best practice is the use of Long Short-Term 
Memory (LSTM) networks to estimate the Remaining Useful Life (RUL) of aircraft 
turbofan engines. By leveraging multi-sensor time-series data, including the 
NASA C-MAPSS dataset, LSTM models can accurately anticipate engine 
degradation and optimize maintenance schedules, thereby ensuring operational 
safety and continuity. 

In the electronics and semiconductor industry, AI has become a cornerstone of 
defect detection and quality assurance. Convolutional Neural Networks (CNNs), 
for example, are employed to inspect solar panels by analyzing 
Electroluminescence (EL) images, effectively identifying micro-cracks and other 
flaws that would escape manual inspection. Similarly, in the semiconductor 
industry, machine learning models accelerate failure analysis of nanoscale 
transistors, reducing downtime and improving throughput in production lines. 

The pharmaceutical and healthcare sector applies AI to optimize both 
production processes and final product performance. Artificial Neural Networks 
(ANNs) combined with Monte Carlo simulations are used to refine drug 
formulations and predict release kinetics, ensuring that dosage forms meet strict 
performance criteria. On the manufacturing side, AI-driven predictive 
maintenance systems, such as deep transformer models, are deployed to 



minimize downtime in production lines, reinforcing consistency and cost 
efficiency. 

Finally, the agriculture sector (Agriculture 4.0) provides a particularly innovative 
field of application. Unmanned Aerial Vehicles (UAVs), equipped with 
multispectral or hyperspectral cameras, generate high-resolution imagery of 
crops. Computer vision algorithms analyze this data to detect pests, diseases, and 
nutrient deficiencies. The outcome is precision agriculture: resources such as 
water, fertilizers, and pesticides are applied only where necessary, improving 
sustainability and boosting yields. As illustrated in Figure 9, UAV-based AI 
research spans diverse agronomic practices, with significant attention devoted 
to yield estimation, crop mapping, and targeted agrochemical application. 

Across these industries, a unifying theme emerges: the most successful 
implementations of AI are those that integrate domain-specific expertise with 
advanced data-driven models. Rather than serving merely as automation tools, 
AI systems enhance human decision-making, optimize resource allocation, and 
build more resilient and sustainable operational ecosystems. 

 

Figure 9 - Number of UAV research and publications in sugarcane crops conducted for different agronomic practices 

As illustrated in Figure 9, the application of UAVs and AI in agriculture is diverse, 
with a significant portion of research focused on yield estimation, crop line 
mapping, and agrochemical application, showcasing the technology's versatility 
in optimizing farm operations. 

These case studies illustrate a common theme: the successful application of AI in 
production and operations relies on the integration of domain-specific 
knowledge with data-driven models. The best practices consistently involve 
using AI not just to automate tasks, but to augment human decision-making, 
improve resource efficiency, and create more resilient and sustainable 
operational systems. 



3.4 Usage Phase: In-field Operations and Customer 
Experience 
The transition from the Production and Operations Phase (3.3), where the 
physical asset is manufactured and initially tested, to the Usage Phase marks a 
critical shift from internal optimization to continuous in-field validation and 
customer interaction. The operational reliability and efficiency achieved through 
predictive maintenance models during production must be sustained and 
evaluated in real-world scenarios, leveraging technologies that monitor and 
adapt the product or service throughout its lifespan [22]. This necessitates the 
sophisticated handling and classification of generated usage data and 
integrating complex human factors into the technological framework. 

3.4.1 Data Characteristics and Classification for In-Field Analytics 
A successful usage phase hinges on deriving high-quality insights from field data 
to support ongoing product planning. Unlike the manufacturing environment, 
usage data is highly heterogeneous and context-dependent [29] [33]. The 
research identifies five key categories of use phase data from a product planning 
view: usage data (describing how the product is used), user behavior data 
(summarizing user interaction), service data (dealing with problems and quality), 
product behavior data (showing performance during operation), and status data 
(describing product "health"). 

The complexity and variety of this data require specialized classification, moving 
beyond simply grouping data sources towards analytically relevant 
characteristics. Data may present as real-time time series (such as sensor data, 
control signals, hardware states) or as text data (including warnings, complaints, 
ratings, and login information). The effectiveness of subsequent analytics 
techniques relies heavily on this smart classification, which informs 
preprocessing and algorithm selection. These methodologies define data based 
on factors such as volume, velocity, complexity, dimensionality, and distribution, 
allowing industrial stakeholders to match usage data to generalized analytics 
workflows [33]. 

To illustrate the necessary structure and rigor applied to managing this vast array 
of field data, it is informative to review the formal process for establishing data 
classification artifacts. Figure 10 provides a visual representation of how empirical 
and conceptual approaches are iteratively combined to define data 
characteristics and dimensions that are analytically relevant for subsequent 
processing [33]. 



 

Figure 10 - the Taxonomy development method according to Nickerson et al. (2013) 

3.4.2 Leveraging Digital Twins for Adaptive Operations 
The Digital Twin (DT) paradigm acts as a foundational system for the Usage 
Phase, extending the connectivity established during the Production Phase (3.3) 
into continuous operation. The DT is conceptualized as a system of systems, built 
by melding several enabling technologies to create an intelligent virtual 
representation of a physical entity. Unlike Digital Shadows, which aggregate 
historical data, Digital Twins enable real-time synchronization with the physical 
asset. The DT framework is characterized by three core functional blocks: the 
physical asset, its virtual counterpart, and the two-way communication medium 
that binds them together in a symbiotic relationship. This connection is typically 
enabled by the Industrial Internet of Things (IIoT), facilitating the real-time 
exchange of the heterogeneous usage data described previously [22]. 

DTs are crucial because they support various services and applications 
dependent on the specific use case, ranging from intelligent prognostics for 
predicting remaining useful life to continuous lifetime monitoring. Given that the 
DT facilitates the continuous flow of data to and from the real asset, rigorous data 
security measures (including privacy, authentication, integrity, and traceability) 
are paramount [8]. The architectural models, such as Tao’s 5D model, emphasize 
how DT implementation details must be highly dependent on the use-case 
requirements. Tao’s 5D model encompasses physical entities, virtual models, 
services, connections, and data, which together define the full structure of a 
Digital Twin system.  



3.4.3 Enhancing Customer Experience and Human-Machine 
Interaction 
In the Usage Phase, the focus shifts from the reliability of the industrial 
equipment to the seamless interaction between the user and the smart product, 
aligning with the principles established in the product's initial design (section 
3.2). User Experience (UX) is defined by the feelings and perceptions users derive 
from interacting with a system, aiming to maximize usability, usefulness, and 
desirability [34]. AI-enabled systems introduce adaptability, which requires clear 
communication to the user to ensure transparency and trust, especially in 
complex domains like autonomous vehicles (AVs) [29]. 

In vehicles, AI is employed in interactive explanation concepts for adaptive 
systems, such as navigation, driving modes, and well-being features. These 
systems propose adaptations based on learned user preferences and the current 
context. As automation levels increase, the traditional definition of the human 
component broadens from just the driver to include passengers, pedestrians, 
and cyclists, necessitating a holistic approach to UX evaluation and HMI design. 
UX evaluation systems are crucial for measuring quality in a systematic way, 
considering factors such as the user's internal state (e.g., mood, motivation), 
system characteristics (e.g., complexity), and the environmental context. 
Ultimately, the goal is to develop predictive models, informed by continuous field 
data, that can anticipate user attributes, behavior, and demands, forming a basis 
for personalized product functions and service recommendations [29]. 

3.4.5 Case Studies and Best Practices 
The integration of AI, IoT, and DTs in the Usage Phase demonstrates best 
practices in achieving operational longevity, efficiency, and superior customer 
satisfaction, representing the practical culmination of processes defined in 
preceding chapters (3.1, 3.2, 3.3). 

One significant area is smart retrofitting, which extends the life of industrial 
equipment, complementing the sustainability goals addressed in later phases 
(3.5An Industry 4.0-oriented approach uses machine-learning models, such as a 
two-layer neural network (NN), to estimate thermal characteristics of injection 
molding machines, enabling adaptive control and improved energy efficiency. A 
comparison of various AI techniques employed in this domain shows that 
Artificial Neural Networks (ANN) have the highest adoption rate, featuring in four 
relevant publications, confirming ANN's effectiveness in leveraging operational 
data for targeted system upgrades [21]. 

In the transportation sector, the implementation of Big Data Analytics (BDA) and 
AI in ridesharing platforms reveals the necessity of balancing technological 
efficiency with user perception. The resulting research model uses the concepts 



of perceived benefits (utility/usefulness) and perceived risks (uncertainty and 
invasion of privacy) to explain passenger participation in ridesharing. This 
emphasizes that successful in-field operations must move beyond technical 
efficacy to address the cognitive and social dimensions of technology 
acceptance [35]. 

A further best practice involves the shift towards service-centric business models, 
such as Component-as-a-Service (CaaS) for Electrical and Electronic Equipment 
(EEE). This model inherently improves product circularity and sustainability. 
Future research recommendations highlight that integrating data management 
strategies, including IoT, digital twins, and data analytics, directly into the design 
guidelines (3.2) is necessary to guide industry stakeholders in implementing 
CaaS effectively [36]. 

In complex manufacturing scenarios, such as the tea industry, a case study 
demonstrates the use of Digital Twins in monitoring semi-automated systems 
that involve both machines and human operators. This DT tracks several 
sequential steps from blending to packaging, providing crucial oversight of 
activities in the conveyor belt. Observing the snapshots of different activities in 
the tea manufacturing conveyor belt process, such as adding tea and herbs, 
dosage, blending, and packaging, reveals the intricate details necessary for 
operational oversight.  

 

Figure 11 - Snapshot of the different activities in the conveyor belt of the tea manufacturing company 

Figure 11 schematically represents the Digital Twin architecture, highlighting the 
continuous bidirectional data flow between the physical asset and its virtual 
counterpart through an IIoT communication layer [22]. 

3.5 End-of-Life and Sustainability 
The End-of-Life (EoL) phase represents the culmination of the product lifecycle 
within the manufacturing ecosystem, focusing on essential circular strategies 
such as reuse, recycling, remanufacturing, and smart retrofitting. The successful 
implementation of these strategies is critically dependent upon the effective 
utilization of AI and Industrial Digital Technologies (IDTs) to achieve both 



resource efficiency and alignment with circular economy (CE) principles [36]. This 
strategic shift requires linking information and capabilities generated during the 
design (3.1), manufacturing (3.3), and usage (3.4) phases to inform efficient EoL 
decision-making. Specifically, the extensive collection and classification of Usage 
Phase data (as detailed in Section 3.4) becomes invaluable for accurately 
diagnosing the status and viability of components for recovery processes [33] [37]. 

Contemporary literature highlights IDTs as crucial enablers for managing the 
inherent complexity of Sustainable Supply Chain Management (SSCM) within a 
circular economy framework. These technologies enhance both the physical and 
cyber capabilities of the supply chain, facilitating closed-loop lifecycle 
management and ensuring that operations adhere to sustainable requirements. 
Comprehensive theoretical models, such as the CAB2IN framework, integrate 
key emerging technologies like Cloud Service (CS), AI, Big Data Analytics (BDA), 
Blockchain Technology (BT), and the Internet of Things (IoT) to ensure supply 
chain information is efficiently transformed into actionable knowledge. The 
holistic nature of such frameworks allows stakeholders to enhance their 
capability to resist risks and sustain long-term profitability while verifying that 
the entire chain operates without environmental or societal damage through 
precise and traceable decision-making [28]. 

3.5.1 AI for Complex Component Management and Diagnostics 
The challenges faced during the EoL phase are particularly pronounced for 
complex or high-value components, such as Lithium-Ion Batteries (LIBs) used in 
Electric Vehicles (EVs). The core processes for battery recovery, including 
remanufacturing, necessitate accurate diagnostic and screening procedures to 
assess component viability. This aligns conceptually with the predictive 
modeling introduced in Section 3.4, extending the focus from operational 
prediction to EoL evaluation [37]. 

The literature identifies key research streams concerning the sustainable 
management of EV battery remanufacturing, specifically mentioning 
disassembly procedures, diagnostics and screening, data sharing, and supply 
chain design. The advancement of these procedures is inherently linked to 
technological and digitalization progress. For example, AI/Machine Learning (ML) 
techniques are essential for diagnostics and screening, determining the current 
state and recovery potential of the asset. Concurrently, data sharing and 
transparency are critical components of a circular strategy, although they 
introduce security concerns and technological limitations that remain active 
areas of research. The rigorous review protocol used in these highly specialized 
studies highlights the meticulous approach needed to consolidate knowledge in 
this emerging domain [37]. To ensure a rigorous and evidence-based discussion 
on AI applications in end-of-life battery management, a structured literature 



review methodology was adopted. Figure 12 illustrates the article selection 
process. Starting from an initial pool of identified studies, successive screening 
phases based on titles, abstracts, and full texts were applied to select only those 
works directly relevant to AI-driven diagnostics, disassembly, and 
remanufacturing of Lithium-Ion Batteries (LIBs). This transparent selection 
process ensures the quality and focus of the sources underpinning the analysis 
in this section. 

 

Figure 12 - Selection of articles 

3.5.2 Smart Retrofitting and Predictive Integration 
The concept of smart retrofitting directly addresses the extension of product life, 
bridging the Usage Phase (3.4) with EoL considerations. This practice involves 
incorporating AI and ML assistance, often within Digital Twin (DT) frameworks, to 
enhance monitoring and anomaly detection for predictive maintenance, thereby 
transforming older assets into connected systems [21]. 

While detailed information on specific AI/ML techniques used in general 
retrofitting frameworks can sometimes be lacking in the literature, certain 
applications clearly mention the deployment of Convolutional Neural Networks 
(CNN), Artificial Neural Networks (ANN), and their variants. These techniques are 
often employed in applications that are tightly coupled with the DT (as 
introduced in 3.4.2) or even the more advanced Digital Triplet systems. 



Furthermore, ML techniques, specifically two-layer neural networks, have been 
used in thermal design methodologies within smart retrofitting applications to 
predict heat transfer parameters and support lumped parameter simulations for 
embedded components. In industrial settings, frameworks focusing on Industry 
4.0 paradigms for retrofitting old process plants have been proposed, utilizing 
supervised machine learning algorithms for anomaly detection to improve safety 
and maintainability [21]. 

The effective execution of both diagnostics and retrofitting procedures relies on 
a holistic view of the component’s characteristics and the evolution of research 
priorities across the lifecycle. The maturation of EoL topics often follows the initial 
breakthroughs in design and core technical development. 

3.5.3 Optimization and Environmental Sustainability 
The goal of sustainability extends beyond prolonging asset life to actively 
mitigate the negative environmental impact associated with industrial 
operations and the computational demands of AI itself, a concept often termed 
Green AI. Large AI models, particularly in Machine Learning (ML), are known for 
their high energy demand during both training and inference, leading to 
proportional carbon dioxide emissions [36] [38]. 

In response to this challenge, strategies focused on reducing the computational 
footprint are gaining traction. A key tactic is the use of lightweight AI models, 
often achieved through techniques like model distillation. These models facilitate 
the shift toward sustainable energy by remaining consistent with circular 
economy principles. This approach seeks to define a holistic understanding of ML 
sustainability, balancing trade-offs related to energy efficiency, particularly 
between computational accuracy, model complexity, and energy consumption 
[36] [39]. 

Furthermore, the environmental pillar of sustainability can be formally assessed 
using advanced analytical methods such as Retrospective Life Cycle Assessment 
(LCA). LCA processes, which calculate the potential environmental impacts of a 
product across its lifespan, are becoming integrated with AI techniques, 
particularly in complex material domains like composite manufacturing. 
Although the primary focus of this assessment is often environmental, it exerts 
indirect influence on the economic and social pillars of sustainability. Achieving 
widespread success in deploying resource-conscious AI solutions is often 
contingent on the establishment of appropriate managerial and policy 
frameworks that incentivize carbon footprint reductions in digital operations [39] 
[40]. 



3.5.4 Case Studies and Best Practices 
The application of AI and IDTs in the EoL phase demonstrates several best 
practices, particularly regarding complex logistical and automated tasks. 

Robotic Disassembly and Automation A crucial aspect of materials recovery and 
component remanufacturing is the efficient disassembly of EoL products, which 
is increasingly managed through advanced robotics and AI. Disassembly 
processes, classified as stream in specialized literature, are fundamentally 
determined by the initial product design and evolve alongside digitalization. This 
highly technical area focuses on methodological and application advancements 
in robotic disassembly technology, distinct from purely economic or non-
technical evaluations [24] [37]. 

Intelligent Maintenance and Circular Systems Best practices in circular systems 
often involve the creation of intelligent support tools for maintenance 
technicians, integrating human-centric Industry 5.0 concepts. For instance, 
frameworks exist that combine Discrete Event Simulation (DES), text mining, and 
AI to integrate disparate IoT-generated data sources and information systems. 
The Auto-Circular Simulator concept exemplifies this approach by providing 
semantic descriptions to identify and highlight linkages between data and 
knowledge for the worker, enabling sustainable treatment of automotive 
components. Context awareness is vital for the continued development of 
explainable AI (XAI) in this domain, providing a structure for communicating 
requisite narratives that support the technician. As shown in Figure 13, the 
simulator exemplifies how explainable and context-aware AI supports 
maintenance technicians in interpreting system outputs and making informed, 
sustainable operational choices [41]. 

 

Figure 13 - Auto Circular Simulator Utilization of XAI: Adapted from Turner et al. (2022) 



3.6 Benefits and Challenges for Manufacturing 
Companies 
The progressive integration of Artificial Intelligence (AI) across all stages of the 
product lifecycle, from design to end-of-life, has transformed the manufacturing 
sector into a data-driven, adaptive, and highly interconnected ecosystem. While 
these technological advances offer unprecedented opportunities for efficiency, 
innovation, and sustainability, they also introduce new layers of complexity in 
data management, human–machine collaboration, and organizational 
governance. This section outlines the main benefits and challenges that 
manufacturing companies face in adopting and scaling AI-driven solutions. 

Benefits 

AI significantly enhances operational efficiency by automating repetitive tasks, 
optimizing production parameters, and reducing waste. Advanced control 
systems based on machine learning, such as Artificial Neural Networks (ANNs) in 
Additive Manufacturing or Support Vector Machines (SVMs) for chatter detection 
in machining, adjust process conditions in real time, ensuring higher throughput 
and consistent product quality. Predictive analytics enable proactive decision-
making, while intelligent scheduling and robotics improve resource allocation 
and reduce unplanned downtime, collectively contributing to leaner operations 
and lower manufacturing costs. 

Furthermore, AI enables a shift from reactive or scheduled maintenance to 
condition-based and predictive maintenance (PdM). By leveraging sensor data 
and models such as Long Short-Term Memory (LSTM) networks or Random 
Forests, companies can accurately forecast the Remaining Useful Life (RUL) of 
critical components, thereby minimizing unexpected failures, extending 
equipment lifespan, and optimizing maintenance budgets. This approach not 
only improves operational reliability but also enhances worker safety in high-risk 
environments. 

AI also fosters an evidence-based approach to manufacturing. Through the 
integration of Digital Twins and the Internet of Production (IoP), data from 
design, production, and usage phases converge into a unified decision space. 
This enables real-time monitoring, enhanced traceability, faster root-cause 
analysis, and improved demand forecasting and strategic planning. Moreover, AI 
drives product innovation by combining generative design, simulation, and 
multi-objective optimization. Techniques such as Generative Adversarial 
Networks (GANs), Variational Autoencoders (VAEs), and reinforcement learning 
allow engineers to explore novel design spaces that balance performance, 
manufacturability, and sustainability. AI-driven personalization further enables 



manufacturers to deliver tailored products and services, enhancing customer 
satisfaction and competitive differentiation. 

Finally, AI supports sustainability and circular economy practices. From early-
stage design for disassembly (DfD) to end-of-life diagnostics and smart 
retrofitting, intelligent systems optimize energy consumption, minimize waste, 
and facilitate reuse, remanufacturing, and recycling, aligning industrial 
operations with environmental regulations and corporate social responsibility 
goals. 

Challenges 

Despite these benefits, manufacturing companies face significant challenges in 
implementing AI at scale. One primary obstacle is managing the vast and 
heterogeneous data generated across production environments. Integrating 
information from legacy systems, IoT sensors, and cloud platforms requires 
standardized taxonomies and interoperable data architectures; inconsistent or 
poor-quality data can severely compromise model performance and decision 
reliability. 

Additionally, industrial AI applications demand substantial computational 
resources and low-latency processing. Real-time inference in robotics or additive 
manufacturing often necessitates high-performance edge computing and 
secure connectivity, entailing high costs for infrastructure, software, and model 
deployment, particularly burdensome for SMEs already facing resource 
constraints (see Chapter 1.5.3). This computational burden is further amplified in 
agentic AI systems, where continuous orchestration of reasoning, memory, and 
tool use increases overhead (see Section 2.5). 

Human and organizational factors also pose significant barriers. Transitioning to 
AI-enabled manufacturing requires new competencies in data engineering, AI 
supervision, and digital ethics. Workforce resistance, insufficient training, and 
organizational inertia may hinder adoption, while effective human–AI 
collaboration demands clear role definitions and robust oversight mechanisms, 
such as “human-in-the-loop” (HITL), to ensure AI augments rather than replaces 
human expertise. 

Trust, explainability, and safety remain critical concerns, especially in high-risk 
industrial settings. The opacity of complex AI models challenges accountability 
and decision validation. While emerging approaches like Explainable AI (XAI) aim 
to provide interpretable justifications for predictions (see Section 3.3.3), their 
integration remains limited to pilot applications. Cybersecurity vulnerabilities, 
including adversarial attacks and data manipulation, can propagate rapidly 



through interconnected production networks, threatening both operational 
integrity and worker safety. 

Finally, economic and regulatory uncertainty presents additional hurdles. 
Although AI promises long-term gains, initial investments are substantial and 
short-term ROI is often difficult to quantify. Evolving legal frameworks, such as 
the EU AI Act, impose obligations on high-risk AI systems but do not yet fully 
address the unique dynamics of autonomous agents interacting with physical 
environments, a gap that increases compliance risks for companies operating in 
sensitive sectors (see Sections 1.6.2 and 2.5). 

Synthesis 

In conclusion, AI offers manufacturing companies transformative benefits, 
including increased efficiency, predictive capabilities, sustainable innovation, 
and enhanced competitiveness. However, these advantages are 
counterbalanced by persistent challenges in data governance, technical 
scalability, workforce adaptation, cybersecurity, and regulatory compliance. The 
successful adoption of AI in manufacturing therefore requires a carefully 
balanced strategy that integrates technological readiness, organizational 
maturity, workforce development, and ethical responsibility. These 
considerations form the foundation for the following section, which synthesizes 
the overall implications of an AI-driven product lifecycle. 

4. Conclusions 
The preceding chapters have mapped, at different levels of granularity, how 
Artificial Intelligence and related Industrial Digital Technologies can be 
progressively embedded across the entire product lifecycle, from conceptual 
design to end-of-life, and how agentic paradigms, digital shadows and digital 
twins enable a continuous, data-driven feedback loop between phases. This 
synthesis draws together those threads and articulates a coherent view of the 
opportunities, the tensions and the pragmatic levers that emerge from the 
analysis presented in Chapters 1–3. 

At the core of an AI-driven lifecycle lies an integrated data and modelling 
ecosystem. Design decisions can no longer be treated as isolated artifacts: Digital 
Shadows, aggregated datasets enriched with context from the Internet of 
Production (IoP), enable the transformation of in-field signals, production traces, 
and simulation outputs into reusable knowledge that informs successive design 
iterations, process parameter tuning and maintenance strategies. Model-
integrated AI, i.e. the coupling of data-driven methods with domain engineering 
models (CAD, FEA), is therefore a necessary enabler for solutions that are both 



technically sound and operationally deployable. Likewise, Digital Twins provide 
the real-time, bidirectional interface that closes the loop between physical assets 
and their virtual counterparts. 

Agentic AI and co-pilot paradigms amplify the lifecycle value proposition by 
turning passive analytics into active orchestration. Agents endowed with 
memory, tool-use and planning capabilities can sequence multi-step workflows 
(for example: diagnose, propose repair, schedule intervention), coordinate 
heterogeneous tools (analytics engines, scheduling systems, robotic actuators) 
and maintain contextual continuity across phases. Used within well-defined 
human-in-the-loop schemes, such agents raise the productivity and resilience of 
manufacturing operations while preserving meaningful human oversight. 

The benefits that flow from this integrated vision are multiple and mutually 
reinforcing: improved design quality and faster innovation through generative 
and model-integrated design; higher operational efficiency and reduced 
downtime via predictive maintenance and real-time process control; enhanced 
product-service personalization and evidence-based decision-making through 
converged data; stronger sustainability outcomes when Design-for-X and end-
of-life diagnostics are embedded into the same information architecture. These 
gains, extensively documented across the chapter case studies, underpin the 
strategic rationale for AI investment in manufacturing. 

At the same time, the analysis highlights persistent and interdependent 
challenges that temper immediate, indiscriminate adoption. Chief among these 
are data governance and interoperability (heterogeneous, legacy systems and 
inconsistent taxonomies), the computational and integration costs of 
advanced/agentic architectures (a barrier for many SMEs), human and 
organizational readiness (skills, trust, role redefinition), explainability and safety 
(the need for XAI and robust HITL practices), cybersecurity and adversarial 
exposure, and regulatory uncertainty (notably in the treatment of high-risk 
autonomous systems). The synthesis in section 3.6 captures these trade-offs and 
stresses that technological potential must be matched with governance and 
capability building. 

From these premises follow a set of pragmatic, internally consistent 
recommendations for firms and practitioners seeking to deploy an AI-driven 
lifecycle: 

 Design the information backbone first. Prioritize interoperable data 
schemas, Digital Shadows and agreed taxonomies so that insights 
generated in one phase are actionable in others. 



 Adopt a model-integrated approach. Combine physics-based engineering 
models with data-driven learners to ensure outputs are physically credible 
and manufacturable. 

 Start with modular pilots that embed human-in-the-loop controls. Validate 
reliability, XAI narratives and human oversight mechanisms at small scale 
before scaling to mission-critical operations. 

 Invest in workforce transition and governance. Reskilling, clear 
accountability frameworks, and ethics/audit capabilities are as important 
as technical components. 

 Factor sustainability and computational footprint into architectural 
choices. Lightweight models, model distillation and Green-AI 
considerations should be part of design and deployment decisions. 

In closing, the thesis demonstrates that an AI-driven product lifecycle is not a 
single technology project but an organizational transformation: it requires 
aligning data architecture, modelling paradigms, operational processes and 
human capabilities around a continuous learning loop. When implemented with 
measured pilots, rigorous governance, and a clear focus on interoperability and 
explainability, the integrated approach outlined in this work can deliver 
substantial gains in efficiency, innovation and sustainability. Yet, as highlighted 
throughout the analysis, realizing this promise demands conscious trade-offs 
and institutional commitment: AI must be embedded responsibly, with human 
agency, safety and legal compliance always preserved as foundational 
constraints.  
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