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CHAPTER O - INTRODUCTION

Context and Motivation

The accelerating development of Artificial Intelligence (Al) over the past decade
has profoundly reshaped technological, economic, and social landscapes. From
language and vision models to autonomous agents and adaptive systems, Al has
transitioned from a primarily research-driven domain to a strategic enabler of
industrial innovation. Within this transformation, the manufacturing sector
represents one of the most promising and complex frontiers. As companies
increasingly integrate digital technologies, sensors, cloud infrastructures, and
data analytics, Al becomes the cohesive layer connecting these elements into
intelligent, self-adaptive ecosystems.

The motivation behind this thesis stems from the growing need to understand
how Al, and particularly the emerging paradigm of agentic Al, can be effectively
leveraged within the manufacturing context. Traditional automation approaches
are no longer sufficient to address the volatility, customization demands, and
sustainability challenges that characterize contemporary industrial systems.
Instead, intelligent, data-driven, and autonomous solutions are required to
optimize processes, enhance decision-making, and extend value creation across
the entire product lifecycle.

Objectives

The main objective of this research is to provide a comprehensive analysis of
Artificial Intelligence and its specific application to the manufacturing domain,
with a particular focus on Al agents as a transformative technological paradigm.
The thesis aims to:

1) Review the current state of Al technologies, models, and market dynamics,
identifying their implications for organizations and Small and Medium-
sized Enterprises (SMEs).

2) Examine the technical and conceptual foundations of Al agents,
highlighting their architecture, capabilities, and advantages over
traditional static models.

3) Investigate the integration of Al and agentic systems throughout the
manufacturing product lifecycle, from design and production to usage and
end-of-life, emphasizing both benefits and limitations.

4) Derive a synthesized framework illustrating how Al can drive a more
intelligent, sustainable, and adaptive manufacturing ecosystem.

Methodology



The methodology adopted combines an extensive literature review with a
structured analytical approach. The research draws from academic publications,
industrial reports, and institutional sources to capture both the theoretical
underpinnings and real-world applications of Al and agentic systems. Each
chapter builds upon the previous one, forming a progressive exploration: from
the general technological landscape of Al to the emergence of autonomous
agents, to their concrete deployment in manufacturing. The selection of case
studies follows thematic relevance, prioritizing evidence of practical
implementation, scalability, and alignment with Industry 4.0 and sustainability
objectives. Figures, tables, and conceptual models are employed to summarize
complex findings and to facilitate cross-phase comparison.

Structure of the Thesis

The thesis is organized into three main chapters, followed by a concluding
synthesis.

¢ Chapter 1 introduces the current Al landscape, tracing its evolution, key
technologies, and major stakeholders, while addressing the ethical, legal,
and societal challenges of adoption.

¢ Chapter 2 focuses on Al agents, outlining their defining characteristics,
architectures, use cases, and advantages for companies, as well as the
associated risks and limitations.

¢ Chapter 3 applies the analysis to the manufacturing context, exploring the
role of Al across all stages of the product lifecycle, from design and
operations to end-of-life, culminating in a synthesis that highlights the
transition towards an Al-driven, sustainable industrial ecosystem.

This structure ensures both conceptual coherence and practical relevance,
offering a comprehensive understanding of how Al and agentic systems are
reshaping the manufacturing domain.

CHAPTER T - ARTIFICIAL INTELLIGENCE
TODAY

1.1 A brief history and key definitions

Artificial Intelligence formally emerged in 1956 at the Dartmouth Summer
Research Project on Artificial Intelligence, where the term “artificial intelligence”
was coined by John McCarthy and his colleagues, including Marvin Minsky,
Nathaniel Rochester,and Claude Shannon [1]. However, foundational work began



earlier: in 1943, Warren McCulloch and Walter Pitts introduced the first
mathematical model of an artificial neuron, demonstrating the logic-based
computation abilities of simple neuron networks [2]. In 1950, Alan Turing
published the seminal paper “Computing Machinery and Intelligence”,
proposing the famous Turing Test as an operational measure of machine
intelligence and reframing the question “Can machines think?" into a more
practical framework [3].

During the symbolic Al era from the late 1950s through the mid-1990s, research
focused on expert systems and rule-based knowledge representation, including
logic programs such as the Logic Theorist and General Problem Solver, and
knowledge-based systems driven by inference engines [4]. Despite early
successes, limitations in scalability and adaptability led to two major “Al winters,”
where progress slowed and funding diminished [4].

Beginning around 2012, a paradigm shift occurred with the rise of machine
learning and deep learning, thanks to increased computational power, large
datasets, and new architectures like convolutional neural networks and large
language models (LLMs). These approaches enabled major breakthroughs in
computer vision, speech recognition, and natural language generation [5].

A widely accepted modern definition of Al characterizes it as “a system'’s ability
to correctly interpret external data, to learn from such data, and to use those
learnings to achieve specific goals through flexible adaptation” [6]. Another
commonly cited definition describes Al as systems capable of tasks such as
learning, reasoning, decision-making, creativity, and autonomy-functions
traditionally associated with human intelligence [7].

1.2 Current Al technologies and models

Artificial Intelligence encompasses several advanced technologies, each
enabling distinct capabilities and applications within industry and research.

First, Natural Language Processing (NLP) has made remarkable strides,
especially with the rise of transformer-based architectures such as BERT and
GPT. These models now support tasks like machine translation, text
summarization, question answering, and more, exhibiting human-like fluency
and performance in language understanding and generation [8] [9].

In computer vision (CV), breakthroughs such as convolutional neural networks
(CNNs) and, more recently, Vision Transformers (ViTs) have significantly improved
performance in image classification, object detection, segmentation and video
analysis. Transformers in vision also enable modeling long-range dependencies



with fewer inductive biases compared to CNNs and support multi-mnodal tasks
that combine visual and textual input [10].

A central pillar of today's developments is Large Language Models (LLMs),
massive neural networks trained on billions or even trillions of parameters. These
models, such as GPT-40, LLaMA, Claude 3 or Gemini, function as foundation
models for a multiplicity of downstream tasks, combining both generative and
understanding capabilities at scale [11].

Further, multi-modal LLMs (sometimes called VLMs or MM-LLMs) have emerged
as models capable of processing and generating across modalities (text, image,
audio, video). These models open doors to applications like immage captioning,
video generation, and speech-to-text/generation all within one unified
architecture [8] [12].

Finally, Al agents are autonomous systems built upon LLMs and enhanced
machine learning, are increasingly targeting decision-making, task execution,
and multi-step workflows without human prompting. These agentic Al systems
extend far beyond static models, enabling proactive planning, tool usage, and
real-time adaptation in complex environments [13].

1.3 Main market players

The Al landscape today is dominated by three primary categories of players: Big
Tech corporations, innovative startups, and the open-source communities.

1.3.1 Big Tech incumbents

Major technology firms, often referred to as “Big Tech”, play a dominant role
across all layers of today's Al landscape. NVIDIA leads the data-center GPU
market with roughly a 92% global market share, supplying the backbone
infrastructure for contemporary Al workloads. Its CUDA software ecosystem
further strengthens its position as the de facto platform for Al development [14].
Hyperscalers like Microsoft, Amazon (AWS), and Google control most of the
foundation-model and model-management platform market: Microsoft holds
about a 39 % share, AWS 19%, and Google 15% in 2024. Microsoft's strategic
alliance with OpenAl and its enterprise Al offerings (e.g. Copilot, Azure Al)
reinforce its leadership position [15] [16]. AWS couples its cloud dominance with
proprietary chips (e.g. Trainium, Inferentia) and investments such as a
multi-billion-dollar partnership with Anthropic. Google continues to invest
heavily (circa US $20-25 billion in 2025 capital expenditures, with a significant
portion allocated to Al) and builds its Al capabilities via Vertex Al and internal
models (Gemini series) [15].



Other tech giants like Meta also shape the Al market via open-weight initiatives
such as the Llama models and large infrastructure investments (e.g. over $35
billion in Al-related capital spending in 2024-2025) [17]. Meta CTO claims that
such openness helps spawn innovation in startups and ecosystems that
challenge legacy leadership [18].

1.3.2 Fast-growing startups

A wave of Al startups now rivals Big Tech in innovation and influence. OpenAl,
though not a public company, is nearing a valuation of $150-300 billion, thanks
to its GPT family and ChatGPT platform [15] [19]. Despite speculation, OpenAl has
not released open-weight models; its strategy remains largely closed-source, in
contrast to open-source challengers like China's DeepSeek.

Anthropic, also growing rapidly, focuses on safety-centered LLMs and has formed
major infrastructure alliances, including with AWS [15]. China-based DeepSeek
garnered attention by open-releasing its DeepSeek LLM and DeepSeek-Coder
models, prompting significant global downloads and putting pressure on
proprietary giants [20].

European startup Mistral Al, based in Paris, has raised over €600 million and
offers open-weight, performant LLMs, becoming one of the top global model
creators outside the Bay Area [15].

Other notable startups include Hugging Face, which hosts open-source models
like BLOOM and a vibrant ecosystem, valued at several billion USD [15], as well as
Cohere (Canadian NLP startup offering enterprise-grade LLMs & APIs) and
MindsDB (automated machine-learning from business data, with open-source
roots). Specialized hardware startups such as Cerebras Systems, Astera Labs,
Grog and others are innovating at the chip and data-infrastructure level to
compete with NVIDIA and AMD.

1.3.3 Open-source communities and ecosystems

Beyond companies, community-driven open-source ecosystems are central to
democratizing Al. Entities such as Hugging Face and Mistral focus on
open-weight or open-source model releases, fostering transparency and broader
access [15]. U.S. and international initiatives are emerging to support open Al
development, including federal funding for open models and compute access
[17].

Hardware players like AMD and NVIDIA support open-source standards and
tooling, for example, AMD’'s ROCm platform and NVIDIA’s support of PyTorch and
Linux Kernel improvements. Initiatives such as interoperability frameworks (e.g.,
fromm MLCommons or the Open Model Initiative) aim to improve model
portability and safety, though no widely recognized "Model Context Protocol"
currently exists [17]. The broader result is an ecosystem where startups and



smaller groups can build, modify, and deploy powerful Al models outside closed
corporate systems [16].

1.4 Available services and applications

Artificial Intelligence has evolved from a predominantly research-driven field into
a broad ecosystem of services accessible to enterprises, institutions, and
individual users. These solutions are typically delivered as cloud-based APIs,
enterprise platforms, or consumer-facing applications, lowering the barriers to
entry and enabling even small and medium-sized enterprises (SMEs) to benefit
from advanced capabilities without developing models internally [6]. The main
categories of Al services available today include chatbots and conversational
agents, intelligent productivity tools, automation and robotic process
automation (RPA), predictive analytics, and emerging multimodal generative Al
applications.

1.4.1 Chatbots and Conversational Agents

Chatbots and virtual assistants represent one of the most visible applications of
Natural Language Processing. Systems such as ChatGPT by OpenAl, Claude by
Anthropic, or Gemini by Google, allow users to interact via natural language,
providing answers, recommendations, or task execution support [8] [9].
¢ Strengths: they enable intuitive and human-like interaction, reduce
workload in customer service and enterprise support functions, and can
continuously improve through model fine-tuning.
¢ Weaknesses: risks include hallucinations (generation of inaccurate or
fabricated content), challenges regarding data privacy and regulatory
compliance, and a high dependency on the quality and coverage of
training data [11].

1.4.2 Intelligent Assistants and Productivity Tools

Another rapidly growing area is the integration of Al into productivity
ecosystems. Examples include Microsoft Copilot for Microsoft 365, Gemini for
Workspace by Google, Notion Al, and specialized research assistants such as
NotebooklLM. These tools act as “co-pilots”, supporting tasks such as
summarization, drafting, scheduling, or document creation as summarized in
Table 1[15].
¢ Strengths: seamless integration with widely adopted enterprise platforms,
measurable time savings in routine activities, and adaptability to
organizational knowledge bases.



¢ Weaknesses: their adoption is often limited by subscription costs, potential
gaps in domain-specific expertise, and risks of over-reliance, which may
reduce users’ critical engagement with content [16].

Table 1 - Comparative overwiev

citations and
summaries of
documents

on reliable sources
and citations

Assistant Provider Main functions Strengths Weaknesses
. . Seamless -
Integration with inteqration with Subscription cost;
Office 365 (Word, Micrisoﬁ limited to
Excel, PowerPoint, ecosvatem: Microsoft
Microsoft Copilot Microsoft Outlook, Teams); Y ! ecosystem;
. enterprise-ready .
text generation; . . occasional lack of
o security; high . o
summarization; o . domain-specific
. adoption in business
data insights depth
contexts
Integration with Still less mature
Google Workspace | Strong synergy with | than Copilotin
- (Docs, Sheets, Google cloud tools; enterprise; tiered
Gemini for . . . o
Google Slides, Gmail, accessible Ul; access within
Workspace .
Meet); smart collaboration- Google
writing; meeting friendly Workspace; data
summarization privacy concerns
Document . Narrower
. Integrated into a .
drafting; content . enterprise
o popular productivity .
. . summarization; adoption; not as
Notion Al Notion Labs . . platform; affordable;
brainstorming; task good for powerful for
management . complex analytics
9 individuals/SMEs P Y
support or workflows
Research support; . Limited
. p“p Strong in research L .
personalized “Al availability (still
notebook” with and knowledge experimental); not
NotebooklM Google Research management; focus P '

optimized for
enterprise
workflows

1.4.3 Automation and Robotic Process Automation (RPA)

Al-driven automation extends traditional RPA platforms (e.g., UiPath, BluePrism,
Automation Anywhere) by enabling the processing of unstructured data such as
emails, forms, and invoices [14]. This technology is particularly suited for
industries with repetitive, high-volume back-office tasks, such as banking,
insurance, and logistics.
¢ Strengths: significant efficiency gains, cost reduction, and scalability across
operations.
¢ Weaknesses: implementation often requires substantial upfront
investment and complex integration; furthermore, RPA solutions show
limited adaptability when workflows or processes change frequently [15].



1.4.4 Predictive Analytics and Decision Support Systems

Predictive systems, built on machine learning and deep learning models, are now
widely available through cloud Al platforms (e.g., AWS SageMaker, Google Vertex
Al, Microsoft Azure Al). They support applications ranging from demand
forecasting and fraud detection to predictive maintenance in manufacturing [5]

).

¢ Strengths: these solutions enhance decision-making by providing data-
driven insights, offering measurable return on investment when effectively

deployed.

¢ Weaknesses: their reliability depends on the availability of large volumes of
high-quality data; biases in datasets may lead to distorted outputs, and

their deployment and monitoring often require specialized expertise [6].

Examples of predictive analytics applications across different industries are
summarized in Table 2.

Table 2 - Predictive analytics applications across industries

Industry

Use case

Example tool

Main benefit

Manufacturing

Predictive maintenance
of machinery

Azure |oT Central; PTC
ThingWorx; Siemens
MindSphere

Reduced downtime;
optimized asset
utilization

Patient risk prediction;

Google Cloud
Healthcare API;

Improved diagnosis

analysis

Forecast

Healthcare ) . . accuracy,; proactive
diagnostic support Tempus Al; Medica's Al Yi P
. . treatment
diagnostics
. . . Reduced financial
. Fraud detection; credit FICO; SAS Analytics; .
Finance . losses; enhanced risk
scoring Azure Al
management
Demand forecasting; SAP Predictive Better inventory
Retail customer behavior Analytics; Amazon management;

personalized offers

1.4.5 Emerging Multi-modal and Generative Al Services
The latest frontier is represented by multi-modal Al
processing and generating across different modalities (text, image, audio, video).
Examples include GPT-40 by OpenAl, Gemini 15 by Google, or image/video
generation tools such as Stable Diffusion and Runway ML [12].
¢ Strengths: they open new opportunities in creative industries, education,
and marketing by enabling cross-media generation and multimodal

interaction.

models, capable

of

¢ Weaknesses: however, they raise significant ethical challenges (deepfakes,
misinformation), demand very high computational resources, and pose
unresolved questions around intellectual property and copyright [13].



In summary, the availability of Al services reflects a democratization of access to
advanced technologies, accelerating adoption across industries. Their strengths
lie in efficiency, scalability, and innovation potential, while their weaknesses
highlight challenges of accuracy, ethics, and dependency on external providers.
The effective adoption of these tools depends not only on their technical maturity
but also on the strategic capacity of organizations to integrate them responsibly
within their processes.

1.5 Potential impact on work, business processes, and
SMEs

The rapid evolution of Artificial Intelligence (Al) is producing significant
implications for the labor market, organizational processes, and SMEs. The
diffusion of cloud-based services and foundation models has reduced barriers to
adoption, enabling even smaller organizations to leverage advanced
technologies that were previously reserved for large corporations [6] [7]. This
democratization is reshaping competitive dynamics, requiring both firms and
individuals to adapt strategically.

1.5.1 Impact on work and workforce skKills.

Al technologies automate repetitive and rule-based tasks, such as back-office
operations, routine data analysis, and document management, thus reducing
the demand for low-skill labor in these areas [14] [15]. At the same time, they
increase the need for high-skill profiles capable of managing, supervising, and
co-developing Al systems. Studies highlight the emergence of new professional
roles in Al system supervision, Al auditing, data governance, and human-Al
workflow design [7] [11]. For many workers, this transformation requires reskilling
and upskilling programs to remain competitive, while organizations must ensure
ethical and inclusive transitions. Figure 1 illustrates the categories of tasks with
the highest potential for automation or augmentation through Al, highlighting
routine work that can be fully automated versus strategic tasks that are more
likely to benefit from human-Al collaboration.



Jobs of Tomorrow: Large Language Models and Jobs WORLD

. . . ECONOMIC
Jobs with the highest potential FORUM

for automation

Jobs with the highest amount of work time that can potentially be performed by LLMs

Credit Authorizers, 81% 7% 12%
Checkers and Clerks
Management Analysts 70% 7% 24%
Telemarketers 68% 18% 13%
Statistical Assistants 61% 13% 26%
Tellers 60% /o
Forensic Science 58% @ 4%
Technicians
Receptionists and 58% 1% 3%
Information Clerks
Brokerage Clerks 58% 16% 17% 10%
Production, Planning 57% 15% 189% 10%
and Expediting Clerks
File Clerks 56% 7% 11% 26%
Word Processors 55% 5% 40%
and Typists
Bookkeeping, Accounting 55% 23% 22%
and Auditing Clerks .
Legal Secretaries and 549 23% 12% 11%
Administrative Assistants
Loan Interviewers 54% 27% 13% 7%
and Clerks
Bill and Account 53% 9% 21% 17%
Collectors :

(6] 10 20 30 40 50 60 70 80 90 100

Automation . Augmentation . Lower potential . Non-language tasks

Figura 1 - Categories of tasks most affected by Al: automation versus augmentation

1.5.2 Impact on business processes.

Within organizations, Al acts as a driver of efficiency and innovation across the
value chain. Intelligent automation and Robotic Process Automation (RPA)
extend beyond traditional workflows, allowing the processing of unstructured
data such as invoices, contracts, or emails [14]. Predictive analytics tools support
decision-making in areas such as demand forecasting, fraud detection, or
predictive maintenance [5] [11]. Furthermore, generative Al and intelligent
assistants enable knowledge management, rapid prototyping, and content
creation [8] [15]. However, these benefits are balanced by risks: dependency on
external providers, data security concerns, and potential over-reliance on
algorithmic outputs [6].



Table 3 - Benefits and risks of Al adoption in business processes

Functional area

Benefits

Risks / Challenges

Operations &
Automation

Higher efficiency through automation of
repetitive tasks; cost reduction; scalability

High implementation costs: limited
adaptability when workflows change
frequently

Decision-making &
Analytics

Enhanced forecasting accuracy; better risk
management; data-driven insights

Biased or low-quality data may distort
outputs; need for specialized
expertise

Customer
Interaction

24/7 support via chatbots; personalized
recommendations; improved engagement

Risk of hallucinations; data privacy
and compliance concerns

Knowledge
Management &

Accelerated content creation; support in
research and documentation; innovation in

Over-reliance on Al outputs;
intellectual property and copyright

issues related to training data and

Creativit roduct design
Y P g output use
Access to advanced tools without Cost sensitivity (especially for
SMEs Adoption proprietary infrastructure; competitive premium features); lack of internal

differentiation; reduced entry barriers expertise and customizations

1.5.3 Impact on SMEs.

SMEs represent a particularly interesting field of application. Historically, limited
resources and lack of specialized personnel hindered their ability to adopt
emerging technologies. With the advent of Al-as-a-Service, even small firms can
now access advanced tools without developing proprietary infrastructures [6] [7].
For example, cloud-based platforms allow SMEs to deploy chatbots for customer
support, predictive systems for inventory management, or generative tools for
marketing content [11] [12]. These applications contribute to cost reduction,
improved customer engagement, and competitive differentiation. Nevertheless,
challenges persist: subscription costs, lack of internal expertise, and the risk of
adopting generic solutions not aligned with specific business needs [15] [16]. As
shown in Figure 2, large enterprises exhibit significantly higher Al adoption rates
compared to SMEs, underscoring the structural advantage in resources and
implementation capacity.
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1.6 Ethical, legal, and societal challenges

The rapid evolution of Artificial Intelligence (Al) not only brings opportunities for
innovation and efficiency but also raises a series of ethical, legal, and societal
challenges that must be critically addressed. These challenges span from issues
of transparency and accountability to broader questions of social equity, labor
dynamics, and human rights. Managing them responsibly is essential to ensure
trust, sustainable adoption, and alignment with human values.

1.6.1 Ethical challenges

One of the most debated issues is algorithmic bias: Al systems trained on large
datasets often inherit and amplify social, cultural, or gender biases present in the
data [6] [11]. This can result in discriminatory outcomes in areas such as
recruitment, financial services, or predictive policing. Closely related is the
qguestion of explainability. While deep learning and large language models
provide impressive performance, their decision-making processes are often
opaque (“black-box problem”), limiting users’ ability to understand or contest
outcomes [5] [12].

Another central theme is responsibility for harm: when an Al system causes
damage, through incorrect predictions, flawed recommendations, or
autonomous actions, defining liability between developers, providers, and users
becomes legally and ethically complex [7].



Tabella 4 - Ethical principles and technical measures in Al

Ethical principle Description Technical / organizational measures

Avoid biased or discriminator, . . N
Y Bias detection and mitigation tools; balanced

Fairness & non- outputs based on gender, . . .
.. . . . datasets; fairness-aware algorithms; continuous
discrimination ethnicity, age, or other protected L .
. monitoring and audits.
attributes.

Explainable Al (XAl) models; interpretable ML
techniques (LIME, SHAP); transparent
documentation of data training and model
design.

Ensure that decisions made by Al
systems can be understood and
traced by stakeholders.

Transparency &
explainability

Clearly define who is responsible
in case of errors, harms, or misuse
of Al

Accountability &
responsibility

Governance frameworks; Al ethics boards; impact
assessments; traceability logs.

Privacy-preserving techniques (federated learning,

Protect users' personal and . . . . .
differential privacy, homomorphic encryption);

Privacy & data . . .
sensitive data during collection,

protection rocessing. and storage compliance with GDPR and alignment with the
P 9 ge EU Al Act.

Safety & Guarantee that Al systems Stress-testing and adversarial testing; red-

robus{ness behave reliably under diverse and|[teaming; robust training; ongoing monitoring of
unexpected conditions. deployed systems.

Designs ensuring meaningful human oversight,
including “human-in-the-loop” or “human-on-the-
loop” mechanisms; override capabilities; training
for oversight personnel.

Ensure that final decision-making
Human oversight |[remains under meaningful
human control.

1.6.2 Legal challenges

The deployment of Al also confronts significant legal uncertainties. First, data
protection and privacy remain critical concerns. Regulations such as the EU’s
General Data Protection Regulation (GDPR) impose strict obligations on how
personal data is collected, processed, and stored, raising compliance challenges
for Al models trained on large-scale datasets [6].

Second, intellectual property (IP) is an unresolved frontier. Generative Al systems
produce original content (texts, images, designs) that may draw from
copyrighted training data. This creates disputes over authorship, ownership, and
potential infringement [12].

Additionally, emerging legislation like the EU Al Act, entered into force in June
2024 and will be fully applicable by 2026, introduces a risk-based framework,
categorizing Al systems from minimal to unacceptable risk and imposing
requirements on high-risk applications (e.g., biometric identification, healthcare



diagnostics, employment screening). These regulations could significantly
influence the design and deployment strategies of companies and SMEs [11].
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Figure 3 - Keeping up with Global Regulations Around Al: A Complicated Map (august 2024)

1.6.3 Societal challenges

On the societal level, Al raises questions about labor markets, inclusion, and trust.
As discussed in Section 15, automation displaces routine jobs but creates
demand for high-skill roles in Al supervision and governance [14] [15]. However,
this transition risks exacerbating inequalities if reskilling programs are
insufficient or unevenly distributed.

Al also impacts democratic processes and information ecosystems. The rise of
generative models capable of producing deepfakes and synthetic media raises
concerns over misinformation, manipulation, and erosion of public trust in
information sources [13]. This has led to calls for watermarking, content
provenance systems, and stricter digital governance [17].

Finally, societal acceptance is crucial: surveys show that users’ trust in Al is fragile,
heavily influenced by perceptions of safety, fairness, and transparency [6].
Without public confidence, even technically advanced solutions may encounter
resistance to adoption.



1.6.4 Towards responsible Al

Addressing these ethical, legal, and societal issues requires a multi-stakeholder
approach, involving policymakers, companies, academia, and civil society.
International organizations, such as UNESCO and the OECD, have proposed
global principles of trustworthy Al, stressing human oversight, robustness,
fairness, and transparency [6].

From a corporate perspective, leading firms are beginning to adopt Al
governance frameworks, including bias audits, ethics boards, and standardized
reporting on Al models [15]. However, implementation remains uneven, and
SMEs often lack the resources to establish such structures independently.

In conclusion, ensuring that Al is developed and deployed responsibly is as critical
as advancing its technical capabilities. Only by integrating ethical reflection, legal
compliance, and societal dialogue can Al deliver sustainable benefits without
undermining fundamental rights and social cohesion.



CHAPTER 2 - FOCUS: Al AGENTS

2.1 Definition of Al agent

The concept of Al agents represents one of the most relevant recent evolutions
in the field of Artificial Intelligence. While traditional models, often referred to as
static models, are designed to perform specific tasks when prompted by human
users, Al agents go beyond this paradigm by introducing autonomy, proactivity,
and interaction with external environments [11].

A static model is typically characterized by a fixed set of capabilities: it receives
an input, processes it according to its trained parameters, and produces an
output. Large Language Models (LLMs), for example, can generate text or answer
guestions with high accuracy, but they remain reactive tools: without human
prompting, they do not initiate actions or adapt to dynamic tasks [9] [11].

In contrast, an Al agent is an autonomous system built upon advanced models,
often foundation models such as LLMs, combined with additional layers that
enable reasoning, memory, planning, and interaction with tools or environments
[13]. This shift allows agents not only to respond but also to act: they can break
down complex goals into sub-tasks, decide which tools to use (e.g., search
engines, APls, robotic systems), and adapt their strategies according to feedback
from the environment [11] [13].

One of the most cited definitions describes an Al agent as “a system situated in
and interacting with an environment, capable of perceiving it through sensors
and acting upon it through effectors, with the goal of achieving specific
objectives” [7]. This definition underscores the agent's continuous interaction
loop, which distinguishes it from the one-shot functioning of static models.

2.1.1 Comparative dimensions

The main differences between static models and Al agents can be synthesized
along several dimensions: autonomy, adaptability, goal orientation, and tool use.
While static models are limited to executing predefined tasks, agents possess the
capacity for self-directed operation and multi-step workflows [13].

Table 5 below provides a structured comparison between the two paradigmes.

Tabella 5 - Comparison between static Al models and Al agents

‘ Dimension H Static Al Models H Al Agents |

‘Input/Output HSingle input -» single output HContinuous perception-action loop |

Primarily reactive; requires explicit
Autonomy prompts or external orchestration for||Proactive and autonomous in initiating tasks
complex tasks




Dimension H Static Al Models H Al Agents

- . ) . D ic, ble of | ing fi i tal
Adaptability ||Limited, fixed behavior ynamic, capable of learning from environmenta

feedback
Goal S Oriented towards objectives defined by human or
. . No intrinsic goals, task-bound
orientation context

None or limited (e.g., APlIs if

Tool use Can select, combine, and execute external tools

connected)

. Equipped with long-term and working memor,
Memory Typically, absent or very short-term 9 p|.o. ) 9 9 Y
capabilities
. LangChain-based research assistants, robotic

GPT for text generation, ResNet for 9 .

Examples systems, autonomous software agents (e.g., using

image classification .
9 LangGraph or Microsoft Autogen

2.1.2 Towards agentic Al

This transition reflects a broader move from passive Al systems to agentic Al. The
latter encompasses decision-making, multi-step reasoning, and adaptive
behavior in real-world contexts [13]. By integrating perception, memory, and tool-
use, agents embody a form of operational intelligence closer to human-like
problem-solving than static models ever could.

To visually reinforce this distinction, Figure 4 illustrates the evolution from static
models to agent-based architectures, showing how added layers (memory,
planning, autonomy) transform a reactive tool into an active, context-aware
system.

Al Agent Architecture
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Figure 4 - Evolution from static Al models to agent-based architecture. Original elaboration by the author, based on [7], [9], [11],

[13]

2.2 How they work: architecture and basic principles

The functioning of Al agents is based on an architectural framework that extends
the paradigm of large models into a dynamic, interactive system capable of
perceiving, reasoning, and acting in complex environments. Unlike static Al



models, which operate in a single input-output cycle, agents are designed as
continuous loops of perception, decision, and action, mediated by four
foundational principles: planning and reasoning, memory, tool use, and
autonomy [11] [13].

2.2.1 Prompting and reasoning mechanisms

Prompting represents the primary interface between the agent and its
environment or human users. While in static models prompts serve only as
queries for one-shot responses, in agentic systems prompting becomes iterative
and context aware. Agents are capable of decomposing high level goals into sub-
prompts, generating reasoning chains, and reformulating queries to external
tools when needed [9] [13]. This mechanism introduces a form of meta-reasoning,
whereby the agent can evaluate intermediate outputs, refine them, and redirect
its course of action.

2.2.2 Memory: short-term, long-term, and episodic

Another core distinction is the presence of memory layers. Static LLMs are
constrained by short context windows, limiting their ability to “remember”
beyond a few thousand tokens [11]. Agents, by contrast, integrate:

¢ Short-term (working) memory, used to store the immediate conversational
or task state.

¢ Long-term memory, supported by external databases, vector stores, or
knowledge graphs, allowing the agent to retrieve past interactions and
contextual information [13].

¢ Episodic memory, enabling the system to recall sequences of experiences
and adjust its strategy over time.

The integration of memory fosters continuity and adaptation, qualities essential
when deploying agents in business workflows or manufacturing contexts, as
anticipated in Chapter 1.5 and further developed in Chapter 3.

2.2.3 Tool use and environment interaction

A defining characteristic of Al agents is their capacity to use tools. These may
range from software APIs and search engines to robotic actuators in physical
environments. Through frameworks like LangChain, LangGraph, or Microsoft
Autogen, agents can dynamically select and orchestrate tools according to the
problem at hand [13]. This capability transforms them from closed systems into
open, modular ecosystems, where knowledge is extended beyond the model’s
internal parameters. Table 6 provides an overview of the main categories of tools
that agents can integrate, emphasizing their role in extending the agent's
capabilities beyond the core model.



Tabella 6 - Categories of tools in Al agents

Category Examples Role in agent workflows

APIs, vector databases, knowledge||Access to external knowledge; long-term

Data retrieval
graphs memory support

Python execution, ML models, Bl ||Data processing, predictive modeling, decision

Analytics
vt tools support

Email, messaging APIs, speech

Communication .
synthesis

Interaction with humans or other systems

Physical actuators (|Robotic arms, |oT devices, drones ||[Execution of tasks in real-world environments

Information Search engines, web scraping Access to up-to-date, real-time information from
retrieval tools the internet

2.2.4 Autonomy and self-directed behavior

Perhaps the most distinctive feature of agents lies in their autonomy. By
combining prompting, memory, and tool use, they can plan multi-step tasks,
monitor their execution, and adjust strategies in response to feedback from the
environment [7] [13]. Autonomy does not mean independence from human
oversight: as highlighted in Chapter 1.6 on ethical and societal challenges,
meaningful human control remains central. Instead, autonomy refers to the
ability to operate proactively, reduce human micromanagement, and act as co-
pilots in decision making and operational contexts. This anticipates their role in
intelligent automation and task execution for enterprises (Chapter 2.4) and their
transformative potential in manufacturing processes (Chapter 3.4).

2.2.5 Towards an integrated architecture

Synthesizing these elements, the architecture of an Al agent can be visualized as
a layered system:

¢ Core model (often an LLM or multimodal foundation model) providing
baseline reasoning and generative capabilities [11].

¢ Control layer managing prompting strategies, goal decomposition, and
reasoning chains.
Memory layer ensuring context continuity and adaptive learning.
Tool interface enabling external actions, both digital and physical.
Orchestration layer integrating planning, memory, and tools to enable
autonomous, goal-driven behavior (autonomy is an emergent property).



In summary, the architecture of Al agents rests on four foundational elements:
prompting, memory, tool use, and autonomy. Which, when combined, transform
static models into adaptive and continuous operating systems. These principles
should not be seen as isolated blocks but as interconnected components that
shape the agent's functionality and overall level of sophistication. Understanding
these mechanisms provides the groundwork for the following sections, where
real-world applications, business advantages, and current limitations will be
explored.

2.3 Real-world and experimental use cases

The growing interest in Al agents has led to a rapid proliferation of both
experimental prototypes in research laboratories and commercially available
solutions on the market. These systems embody the architectural principles
described in Section 2.2, reasoning, memory, tool use, and autonomy, while
translating them into practical applications that extend beyond static large
models. In this sense, real-world deployments of agents represent a natural
evolution of the applications introduced in Chapter 1.4, where chatbots,
intelligent assistants, and predictive systems were still bounded by reactive
paradigms [8] [11].

A first category of use cases concerns research-oriented experimental agents.
Academic institutions and industrial research labs have been at the forefront of
testing agentic architectures in controlled environments. For instance, initiatives
based on LangChain or LangGraph provide frameworks where agents can
autonomously query databases, generate structured research reports, or design
experiments by orchestrating multiple tools [13]. Projects such as AutoGPT and
BabyAGI served as early proof-of-concepts for autonomous workflows and
inspired further development in agentic Al, despite their limitations in reliability
and scalability. While still limited by reliability and cost, these experiments have
highlighted the potential of agents in domains such as scientific discovery and
autonomous coding [9] [13].

In the commercial sphere, enterprise-oriented co-pilot agents are among the
most visible applications. Building upon the productivity assistants discussed in
Section 1.4.2, companies are now releasing enhanced versions with agentic
capabilities. Microsoft Copilot and Gemini for Workspace, for example, have
introduced features that go beyond one-shot text generation, enabling task
orchestration across applications, proactive workflow management, and
integration with enterprise knowledge bases [15]. These systems illustrate how
the architectural principles of memory and tool use (see Section 2.2.2 and 2.2.3)
can be concretely leveraged to create digital co-workers rather than simple
assistants.




A further line of development involves autonomous agents in customer-facing
contexts. Companies in e-commerce and finance are experimenting with agents
capable of not only answering queries but also executing transactions, adjusting
offers dynamically, and escalating issues based on contextual awareness.
Compared to traditional chatbots (Section 1.4.1), these agents demonstrate
higher levels of autonomy and adaptive reasoning, bridging the gap between
conversational interfaces and operational decision-making [11] [13].

Another promising domain is Al-driven robotics and |oT integration. Here, agents
are connected to physical actuators, enabling real-time perception-action loops
in dynamic environments. In manufacturing and logistics, for example,
prototypes of robotic agents can coordinate fleets of autonomous vehicles,
adjust production lines, or carry out predictive maintenance by accessing sensor
data. These use cases anticipate the applications that will be analyzed in Chapter
3, where manufacturing contexts provide fertile ground for embedding agentic
intelligence [11] [13]. A graphical synthesis of these categories of use cases is
provided in Figure 5, which situates agents along a continuum from
experimental prototypes to enterprise-ready solutions.

In addition, multi-agent simulation _environments are emerging as valuable
experimental grounds. Researchers have developed digital societies of agents
capable of exhibiting emergent behaviors, cooperation, and competition,
offering insights into collective intelligence and organizational dynamics [13].
Such simulations not only advance theoretical understanding but also provide
testbeds for evaluating risks, such as coordination failures or bias propagation,
which are critical for real-world deployment (further discussed in Section 2.5).

Finally, specialized industry use cases demonstrate how agents can generate
tangible value in high-stakes domains. In healthcare, experimental diagnostic
agents assist doctors by autonomously retrieving medical literature, proposing
differential diagnoses, and scheduling follow-ups, all while integrating memory
of prior cases [11]. In finance, agents are being tested for autonomous trading
strategies and real-time fraud detection, although strict regulatory oversight
remains necessary [14]. These examples connect back to the broader applications
of predictive analytics and decision support systems (Section 1.4.4), showing how
agents transform them into continuous, adaptive, and autonomous processes.

In summary, the landscape of agentic Al applications is highly heterogeneous,
ranging from open-source experimental prototypes to enterprise-ready copilots
and robotics integrations. What unites these initiatives is the progressive
realization of the principles discussed in Section 2.2 and their convergence
toward the needs of companies, as will be explored in Section 2.4. To reinforce
this, Table 7 provides a comparative overview of selected real-world and



experimental use cases, highlighting the transition from research prototypes to
market-ready solutions.

Tabella 7 - Selected real-world and experimental use cases of Al agents

Connection with

purchasing

Domain Example Key Features . .
agent principles
Research AUtoGPT, BabyAGI (research Autonomous reasoning Prompting, memory,
prototypes prototypes) chains, task decomposition |jautonomy
Enterprise Microsoft Copilot, Gemini for Task orchestration, Tool use, memory,
copilots Workspace integration with apps autonomy
Experimental e-commerce . .
Customer . Execute transactions, Reasoning,
. . agents for personalized .
interaction adaptive offers autonomy

Robotics & loT

Autonomous warehouse robots

Sensor data integration, fleet
coordination

Perception—action
loop, tool use

. . . Multi-agent
Simulation . _ Emergent collaboration, .
. Multi-agent societies o reasoning,
environments coordination
autonomy

Specialized
industries

Healthcare diagnostic agents,
financial trading bots

Case memory, decision
support

Long-term memory,
reasoning

2.4 Specific advantages for companies

The introduction of Al agents into corporate contexts offers tangible advantages
that go beyond the incremental improvements provided by traditional Al
systems. While static Al models already enabled significant progress in areas
such as chatbots, predictive analytics, and productivity tools (see Chapter 1.4), the
agentic paradigm extends these capabilities by adding autonomy, memory, and
adaptive reasoning (as discussed in Chapter 2.2). For companies, this evolution
translates into a set of strategic benefits that impact efficiency, decision-making,
and innovation across the value chain.

2.4.1 Intelligent Automation

One of the clearest advantages of Al agents for enterprises lies in intelligent
automation. Building upon the foundations of RPA (see Section 1.4.3), agents
enhance automation by incorporating the ability to process unstructured data,
adapt workflows in real time, and interact with heterogeneous systems. For
example, whereas traditional RPA could extract structured data from invoices, an



Al agent can autonomously classify non-standard documents, query external
databases for missing information, and escalate ambiguous cases to human
supervisors [11] [13].

This level of adaptability reduces the brittleness of conventional automation
solutions and ensures scalability across dynamic environments.

Moreover, intelligent automation driven by agents allows companies to achieve
not only cost reduction but also resilience. By continuously monitoring execution
and adapting to changes (e.g., regulation updates, fluctuating supply chains),
agents align with the broader need for organizational agility emphasized in
Chapter 1.5.2. In this sense, they act as dynamic enablers of process innovation
rather than as rigid substitutes for human effort.

2.4.2 Co-pilot Agents and Augmented Decision-Making

A second area of corporate advantage comes from the deployment of co-pilot
agents. These extend the concept of intelligent assistants introduced in Section
1.4.2 by embedding proactive orchestration and memory. In practice, co-pilot
agents operate as digital colleagues: they manage multi-step tasks, integrate
enterprise knowledge bases, and provide contextual suggestions to human
workers [15].

For instance, in project management, a co-pilot agent can autonomously track
progress across multiple documents, flag inconsistencies, suggest resource
reallocations, and even simulate alternative scenarios through predictive models
[5] [1]. In knowledge-intensive industries such as consulting or engineering,
agents become repositories of organizational memory, capable of retrieving past
projects and adapting them to new contexts, thus reducing redundancy and
accelerating time-to-solution.

This augmentation resonates with the discussion in Chapter 1.5.1 about the
transformation of workforce skills: rather than replacing human professionals, co-
pilot agents amplify their cognitive capacity, enabling more strategic focus and
reducing cognitive overload.

2.4.3 Task Execution and Operational Autonomy

Beyond automation and assistance, Al agents offer companies the possibility of
delegating entire tasks with minimal supervision. This capability builds on the
autonomy principle outlined in Section 2.2.4 and is already visible in real-world
deployments (see Chapter 2.3). Agents can, for example:

¢ Execute end-to-end procurement tasks, from supplier identification to
preliminary contract drafting.



¢ Manage customer interactions not only by answering questions but also
by completing transactions, offering personalized recommendations, and
adjusting policies in real time [13] [14].

¢ Coordinate loT devices and robotic systems in logistics or manufacturing,
dynamically reallocating resources according to operational data streams
[1].

Such task execution potential connects directly to the manufacturing scenarios
that will be analyzed in Chapter 3. Here, the integration of agents with industrial
loT and predictive maintenance systems can close the loop between perception,
reasoning, and action, unlocking a new generation of adaptive production
processes.

Importantly, operational autonomy does not imply a lack of oversight. As
emphasized in Chapter 1.6, meaningful human control remains essential for
safety, accountability, and trust. In corporate settings, this translates into hybrid
workflows where agents handle execution while humans retain responsibility for
supervision and high-stakes decisions.

2.4.4 Strategic Implications for Enterprises

From a strategic perspective, the adoption of Al agents brings advantages at
multiple levels:

¢ Efficiency gains: through the reduction of repetitive workload and
minimization of human errors in structured and unstructured processes.

¢ Innovation and agility: by enabling proactive, adaptive solutions that can
adjust to dynamic environments, supporting resilience in uncertain
markets.

¢ Workforce transformation: by freeing human capital for higher-value
activities, fostering human-Al collaboration, and encouraging reskilling
initiatives.

¢ Integration across the lifecycle: anticipating the role of Al agents in
manufacturing (Chapter 3), where their capacity for memory and
continuous adaptation aligns with the requirements of Industry 4.0
ecosystems.

2.5 Current risks and limitations

Despite the remarkable progress described in Sections 2.2-2.4, the deployment
of Al agents is still constrained by a set of risks and limitations that companies,
researchers, and policymakers must carefully consider. These challenges echo
with broader issues already highlighted in Chapter 1.6 on ethical, legal, and



societal aspects, but acquire new nuances due to the autonomous and adaptive
nature of agents.

A first limitation concerns reliability and hallucinations. While large models have
already shown a tendency to generate incorrect or fabricated outputs [11] [13], the
problem is amplified in agentic contexts. An agent that relies on erroneous
information may autonomously trigger incorrect actions or escalate flawed
decisions. Unlike static chatbots, agents operate within multi-step workflows
(see Section 2.2.1), where a single hallucination can propagate through an entire
task chain. This increases operational risks in high-stakes environments such as
finance, healthcare, or industrial manufacturing.

Closely related is the issue of control and oversight. As noted in Section 2.2.4,
autonomy is a defining feature of agents; however, this autonomy challenges
traditional paradigms of accountability. Without robust “human-in-the-loop”
mechanisms [6] [7], agents risk executing actions beyond their intended scope,
raising questions of liability in case of errors. This is particularly critical when
agents interact with |oT devices or robotic systems (see Section 2.3), where
decisions are directly translated into physical operations.

Another limitation is scalability and cost-efficiency. Although agents promise
resilience and adaptability (see Section 2.4.1), they require continuous
orchestration of memory layers, external tools, and reasoning loops [13]. This leads
to significant computational overhead compared to static Al services. For SMEs,
which already face resource constraints (Chapter 1.5.3), the adoption of agentic
architectures may be hindered by infrastructure costs, integration complexity,
and subscription models of third-party platforms [15].

Security vulnerabilities also represent a crucial risk. By design, agents rely on
external APls, databases, or connected devices (Table 6). Each interface becomes
a potential attack vector, exposing the system to adversarial manipulation, data
leakage, or malicious tool injection. Research in adversarial Al has shown how
even small perturbations can mislead models [5], and in agentic workflows these
vulnerabilities can be compounded by the agent’s ability to act autonomously in
digital or physical environments.

From a societal perspective, bias and ethical concerns remain unresolved. As
emphasized in Chapter 1.6.1, models often inherit biases from training data [6] [11].
When embedded in agents, such biases do not remain confined to single
outputs but may drive entire decision-making sequences, potentially reinforcing
discriminatory practices in hiring, credit scoring, or customer service. Moreover,
the opacity of reasoning chains in agents makes explainability even more
challenging than in static models [12].




Another risk is coordination in multi-agent systems. As discussed in Section 2.3,
experimental environments with multiple agents show promising emergent
behaviors, but also highlight risks of misalignment, cooperation breakdown, and
the amplification of systemic errors [13]. These scenarios anticipate challenges in
organizational contexts, where multiple agents may need to collaborate across
departments or supply chains.

Finally, regulatory uncertainty complicates adoption. The EU Al Act, which
introduces obligations for high-risk Al systems [11], does not yet fully account for
the distinct dynamics of agentic Al, leaving open questions about compliance,
responsibility, and certification. This regulatory gap increases legal risks for
companies experimenting with advanced agentic solutions, especially in
sensitive sectors. To synthesize these aspects, Table 8 provides an overview of the
main risks and limitations of Al agents, structured along technical, organizational,
and societal dimensions.

Tabella 8 - Main risks and limitations of Al agents

Dimension Limitation Example / Implication

Incorrect outputs in multi-step workflows, leading to flawed

Technical Hallucinations and error propagation .
decisions
. . High computational overhead due to memory and tool
Technical Computational cost and resource demands .
orchestration
Organizational ||Coordination failures Emergent misalignment or systemic errors in collective behaviors

. Insecure APl integrations and external tool . . L . .
Security . Risk of adversarial attacks or malicious API/tool manipulation
dependencies

Organizational ||Oversight and accountability Ambiguity in human—agent control and liability assignment

Societal Bias and discrimination Agents reinforcing existing data biases in automated decisions

Difficulty in tracing multi-step reasoning and ensuring

Technical Explainability gap

transparency

The EU Al Act provides a framework for high-risk Al, including
Legal Regulatory uncertainty agents, but implementation, enforcement, and global alignment

remain challenging

In conclusion, while the advantages of agents for companies are undeniable (see
Section 2.4), their limitations highlight the need for cautious adoption and robust
governance frameworks. Addressing risks such as hallucinations, security
vulnerabilities, or ethical concerns is not only a technical requirement but also a



strategic imperative. These limitations also serve as a bridge to Chapter 3, where
the application of Al agents in manufacturing contexts will be explored. In that
domain, ensuring safety, reliability, and compliance becomes even more critical,
as digital decisions increasingly interact with physical processes and complex
industrial ecosystems.



CHAPTER 3 - ARTIFICIAL
INTELLIGENCE IN THE
MANUFACTURING CONTEXT

3.1 Al 'in the Product Lifecycle: an integrated view

The industrial landscape is undergoing a profound transformation driven by the
integration of Artificial Intelligence (Al) and Industrial Digital Technologies (IDTs),
necessitating a holistic, integrated perspective on the product lifecycle. This
integration is critical for addressing the inherent complexity and enhancing
efficiency, quality, and sustainability across all phases, from initial design through
to eventual end-of-life (EOL). Understanding the comprehensive application of
Al requires mapping specific techniques to the unique challenges presented at
each stage of the product's existence, ensuring that data generated in one phase
provides actionable insights for subsequent phases [21].

The role of Al begins in the Design Phase (Section 3.2), where it extends
capabilities beyond traditional Computer-Aided Design (CAD). Here, Al
techniques are crucial for facilitating inspiration, supporting concept generation,
streamlining shape synthesis, and executing complex Topology Optimization
(TO) tasks. Deep generative models and Generative Adversarial Networks (GAN)
are prominent in this domain, providing a flexible framework to explore
unconventional and complex design spaces. Such approaches enable engineers
to consider multiple conflicting objectives, leading to more efficient, functional,
and sustainable product designs from the outset [21].

Moving into the Manufacturing Context (Section 3.3), Al becomes indispensable
for process control, optimization, and quality assurance. Whether optimizing
process parameters in Additive Manufacturing (AM) or conventional machining
operations (such as turning and milling), Al/Machine Learning (ML) techniques
are employed to predict machinery parameters like cutting forces or surface
roughness, and to monitor tool condition. Techniques frequently utilized include
Artificial Neural Networks (ANNSs), Support Vector Regression (SVR), and various
evolutionary algorithms (EAs) (e.g., Genetic Algorithms (GA) and Particle Swarm
Optimization (PSO). Moreover, complexity in the supply chain requires intelligent
solutions for tasks such as inventory management, where Al heuristic
approaches like Monte Carlo Tree Search (MCTS), fuzzy logic, and Reinforcement
Learning (RL) help minimize overall inventory costs by managing stochastic
factors. The diverse application of Al within this phase is evidenced by the wide
array of techniques utilized, spanning image and pattern recognition (CNN, KNN,



Multi-Layer Perceptron (MLP)) for quality control, to optimization (GA, PSO,
Gaussian Process (GP)) [21].

The Usage Phase (Section 3.4) centers on ensuring continuous operation and
equipment reliability through intelligent maintenance strategies. The paradigm
shift toward Predictive Maintenance (PdM) is enabled by the availability of vast
amounts of data collected throughout the equipment’s lifecycle and the
integration of advanced diagnostic and prognostic algorithms. PdM utilizes data-
driven approaches, relying on Al models trained on historical data to anticipate
and diagnose faults in complex components like engines, gearboxes, and
turbines. Techniques such as Support Vector Machine (SVM), Artificial Neural
Networks (ANN), and Long Short-Term Memory (LSTM) models are essential for
fault diagnosis and prognosis (e.g., Remaining Useful Life estimation)
respectively, leveraging their strength in classification and sequential data
analysis. This phase relies heavily on foundational concepts, such as the Digital
Twin (DT), which acts as a crucial system-of-systems by providing a real-time, bi-
directional link to the physical asset, enabling adaptive operations and real-time
anomaly detection [21] [22].

Finally, the End-of-Life (EOL) Phase (Section 3.5) links back to the overarching
goal of sustainability and the circular economy. The successful implementation
of reuse, recycling, and remanufacturing strategies depends on Al for generating
optimal disassembly sequences (Disassembly Sequence Planning - DSP) and
estimating the quality and residual value of components. The challenges posed
by complex product geometries and the need for non-destructive disassembly
are often tackled using meta-heuristic algorithms like GA and Ant Colony
Optimization (ACQO), or sophisticated robotic Task and Motion Planning (TAMP).
This integrated view confirms that Al methodologies and techniques underpin
every stage of the Industrial Equipment Lifecycle [23] [24].

For the development of this chapter, a structured literature analysis was
conducted to ensure comprehensive coverage of each stage of the
manufacturing process described above. Initially, ten sources were selected from
the Scopus database for each phase of the product lifecycle. Subsequently, the
focus was refined by prioritizing the most relevant publications, those in which
the key topics of interest were most comprehensively addressed. Some figures
from these sources were reproduced or adapted to visually communicate the
main concepts discussed in this thesis, enhancing clarity and cohesion. Sources
that were ultimately deemed less relevant were excluded from the final
reference list to maintain conciseness and thematic consistency.



3.2 Design and Development Phase

The design and development phase of the product lifecycle is arguably where
the most significant value is created, as decisions made here profoundly impact
everything from manufacturing complexity and cost to in-field performance and
end-of-life sustainability [21]. Traditionally a human-centric domain driven by
creativity and engineering expertise, this phase is now undergoing a profound
transformation powered by Artificial Intelligence. Building on the concepts of
agentic Al discussed in Chapter 2, intelligent systems are no longer just passive
tools but are becoming active partners in innovation, capable of augmenting
human creativity, automating complex optimization tasks, and integrating data
from the entire product lifecycle to inform better design choices [25].

This section explores the application of Al techniques across the key stages of
product design and development. We will examine how Al is being leveraged for
concept generation and innovation, detailed design synthesis, and holistic
process optimization, ultimately enabling the creation of more efficient,
sustainable, and competitive industrial equipment.

3.2.1 Al for Conceptual Design and Innovation

The initial stage of design, often referred to as the "fuzzy front end," is
characterized by ambiguity and a high degree of creativity [26]. It is here that Al
demonstrates significant potential to augment human ingenuity, primarily by
analyzing vast datasets to uncover insights and by generating novel concepts
that might elude human designers.

One of the primary challenges in conceptual design is design fixation, a cognitive
barrier that limits designers to familiar solutions and hinders innovation. Al
algorithms, particularly Machine Learning (ML) and Deep Learning (DL), help
overcome this by systematically exploring a vast design space. For instance,
Genetic Algorithms (GA) can explore thousands of configurations for a complex
system, such as a powertrain, often outperforming human experts in identifying
optimal arrangements. Similarly, Artificial Neural Networks (ANN) have been
used for product configuration, determining ideal design features based on
customer preferences extracted from market data [21].

Furthermore, Al-driven tools can analyze extensive datasets, such as market
analyses, customer feedback, patent databases, and academic journals, to
provide valuable guidance for creating user-centric and innovative products.
Natural Language Processing (NLP) techniques, as referenced in Chapter 1, can
be employed to systematically search and analyze textual and visual sources like
customer reviews and complaints to extract and categorize explicit and hidden
customer needs [21]. For example, a combination of supervised algorithms like



fastText and unsupervised algorithms like VADER have been successfully used to
identify and classify customer needs from large volumes of unstructured text [2]1].

More advanced generative models, such as Generative Adversarial Networks
(GANs) and Variational Autoencoders (VAEs), are revolutionizing concept
generation by creating novel product options from visual or parametric data [21].
By training on existing designs, these models can generate a wide range of new
design alternatives for mechanical structures, such as wheels or airfoils, even with
limited data input. This generative capability, which will be detailed further in the
next sub-section, allows designers to move beyond incremental improvements
and explore truly innovative forms and functionalities.

3.2.2 Al in Detailed Desigh and Optimization

Following the conceptual phase, Al provides powerful tools for detailed design,
where specifications are finalized, and performance is optimized. This includes
shape synthesis, topology optimization, and the integration of physical
properties into digital models.

Shape Synthesis and Generative Design Generative design leverages Al
algorithms to autonomously produce a multitude of design options that meet
specified constraints [26]. Techniques like Autoencoders (AE/VAE), Deep
Convolutional Networks (DCN), and various GAN architectures play a critical role
in shape synthesis, offering diverse avenues for generating innovative and
functional forms. These models are not just creating aesthetically pleasing
shapes; they are optimizing for performance criteria such as weight, material
usage, and structural integrity. For example, by integrating human-in-the-loop
frameworks, researchers have used electroencephalography (EEG) signals to
capture a designer's preferences, which then guide a GAN to generate product
concept images that align with unspoken design requirements [21].

Topology Optimization (TO) is a computational method that optimizes material
layout within a given design space for a given set of loads and boundary
conditions. Al has significantly enhanced this field. Deep Generative Models
(DGMs), especially modified GAN variants like Wasserstein GAN (WCGAN) and
Conditional GAN (CCAN), have become a major focus of research. These models
can be trained on datasets generated through traditional TO to learn how to
produce designs that are both technically sound and aesthetically superior
without direct human intervention. For instance, researchers have used a WGAN
to automatically generate automobile wheel designs that possess significant
technical value. Other approaches combine VAEs with techniques like style
transfer to enhance the quality of generated designs or use Variational Deep
Embedding (VaDE) to identify and fill unexplored regions in the design space,
thereby expanding the range of feasible solutions [21].



A key advancement is the integration of physical properties into the generative
process. Some models use spatial fields of physical parameters, such as von Mises
stress, displacement, and strain energy density, as inputs to a CGAN, training the
network to generate topologies that are inherently compliant with physical laws.
This results in more realistic and manufacturable designs.
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Figure 5 - Al techniques used at product design phase

The chart illustrates the relative frequency of Al techniques applied in product
design. The larger pie (79%) groups the most widely adopted methods (e.g., VAE,
GAN, Autoencoders, DCNs), while the smaller segment (21%) highlights modified
GAN architectures with enhanced loss functions, representing emerging
approaches [21].

3.2.3 Integrating Data and Models for a Holistic Design Process

The true power of Al in the design phase is realized when it is integrated into a
broader data ecosystem, creating a continuous feedback loop throughout the
product lifecycle. Concepts like the Internet of Production (loP) and Digital
Shadows are central to this vision. The |oP proposes a globally interconnected
system where data from all phases of the product cycle, development,
production, and usage, is shared to fuel innovation [27].

A Digital Shadow is a purpose-driven, aggregated dataset that includes not only
raw data but also models and metadata providing context about the product or
process [19]. In the design phase, Al agents, as discussed in Chapter 2, can
leverage Digital Shadows to make data-driven decisions. For example, data
collected from sensors on in-field equipment (loT) can be fed back to the design
stage, allowing Al models to identify performance bottlenecks or commmon failure
modes. This information can then be used to inform redesigns or create the next
generation of products [28].



This approach enables what is known as model-integrated Al, where data-driven
Al methods are combined with domain-specific engineering models (e.g., CAD,
Finite Element Analysis) [27]. Al can analyze simulation results or real-world
performance data to automatically refine design parameters, test new material
compositions, or optimize for sustainability criteria such as recyclability and
energy consumption [29] [28]. This creates an Al-driven design loop where
products are continuously improved based on real-world evidence, moving
beyond static, one-off design processes [27].
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Figure 6 - Al techniques and their prevalence in different design stages

The diagram compares Al techniques across different stages of product design,
from conceptual exploration to detailed optimization. It highlights, for example,
the dominance of GANs in generative concept design and the growing role of
Digital Shadows and model-integrated Al in holistic optimization.

3.2.4 Case Studies and Best Practices

The application of Al in the design and development phase is not merely
theoretical, numerous case studies demonstrate its practical value across various
industries.

In the automotive sector, generative Al is used for component design
optimization. As mentioned, Wasserstein GANs (WGANSs) have been successfully
used to automatically generate aesthetically superior and technically valuable
wheel designs without human intervention. Other projects use Conditional GANs
(CGANs) combined with human input to interactively explore and refine
structural designs, merging the designer's expertise with the generative power
of Al. These approaches lead to lighter, stronger, and more efficient components
[21].

In the aerospace industry Al models like GANs and Conditional Variational
Autoencoders (cVAEs) have been employed to generate a wide array of design
options for complex mechanical structures such as airfoils, even with limited



initial design data [1]. This accelerates the exploration of novel aerodynamic
profiles, which is critical for improving aircraft performance and fuel efficiency.
In manufacturing, Al contributes to the ‘Design for X' paradigm, where X may
represent manufacturability, assembly, or disassembly. For example, Al
algorithms like Genetic Algorithms (GA) and Ant Colony Optimization (ACO) are
used to generate optimal disassembly sequences for End-of-Life (EoL) products
[23]. This information is crucial during the design phase to create products that
are easier to repair, remanufacture, or recycle, aligning with circular-economy
principles [28]. The Internet of Production (loP) framework enables a "Worldwide
Lab" where a company can retrieve machine parameters from a different
production site to adapt its design in response to material variations,
demonstrating a best practice in cross-domain collaboration [27].

While outside traditional manufacturing, the pharmaceutical industry provides
a powerful analogy. Here, Al models, including Graph Neural Networks (GNNs),
are used for new drug designs by modeling molecular structures and predicting
their properties [30]. This parallels how Al is used in manufacturing to design
novel materials or components with specific functional characteristics.

From these cases, several best practices emerge for integrating Al into the design
and development phase:

¢ Integrate Human-in-the-Loop: combine Al's computational power with
human expertise and intuition. Interactive frameworks where designers
guide or refine Al-generated outputs lead to more practical and preferred
solutions [21].

¢ Create a Data Feedback Loop: establish systems (like Digital Shadows) to
collect and feed data from the entire product lifecycle back into the design
process. This ensures that designs are continuously improved based on
real-world performance and usage patterns [21].

¢ Design for the Full Lifecycle: employ Al to optimize not just for performance
but also for sustainability, manufacturability, and end-of-life
considerations. Al-driven "Design for Disassembly" is a key enabler of the
circular economy [23] [28].

¢ Adopt Model-Integrated Al: instead of treating Al as a "black box," integrate
it with established engineering models (CAD, FEA). This ensures that Al-
generated designs are grounded in physical principles and are more
reliable and trustworthy [21] [27].

By adopting these practices, manufacturing companies can harness the full
potential of Al to create superior products more efficiently and sustainably,
paving the way for an Al-driven product lifecycle.



3.3 Production and Operations Phase

Building upon the digitally conceived and optimized product designs from the
previous phase, the Production and Operations phase is where the product is
physically realized, and the supporting ecosystem is managed. The integration of
Artificial Intelligence in this stage marks a pivotal shift from traditional, rigid
production lines to smart, adaptive, and data-driven manufacturing
environments, a concept at the core of Industry 4.0. This transformation is not
merely about automation but involves creating a deeply interconnected system
where data flows seamlessly from machines, processes, and supply chains to
inform real-time decision-making. This vision aligns perfectly with the Internet of
Production (loP) framework introduced in section 3.2, where Digital Shadows of
production processes provide the data necessary for Al agents to optimize
operations dynamically [21] [27].

Al technologies are applied across a spectrum of activities within this phase,
including core manufacturing processes, quality control, predictive
maintenance, and the orchestration of the broader supply chain.

3.3.1 Al in Core Manufacturing Processes

The manufacturing environment is characterized by a variety of processes and
tasks, including production planning, procurement, and the core production
operations such as machining and assembly. The integration of Al has brought
about a transformative shift, particularly by enabling the intelligent integration
of subtractive manufacturing (SM) and additive manufacturing (AM) processes.
Al algorithms analyze design constraints, material properties, and production
requirements to determine the optimal combination of these heterogeneous
processes, leading to improved product quality and increased speed [24].

In Additive Manufacturing (AM), commonly known as 3D printing, Al/ML
methodologies are fundamentally reshaping optimization techniques. Given the
advantages AM offers, such as creating components with intricate geometries
and minimizing material waste, the focus of Al application is centered on
controlling the variability inherent in the layer-by-layer process. Al techniques are
primarily utilized for process and parameter optimization, which involves
regulating variables like laser power and scanning speed to achieve precise
geometric specifications, such as a particular melt pool geometry or bead
dimensions. In fact, among the various manufacturing stages, Process
Parameter Optimization commands the most significant share of Al technique
utilization, standing at 28%. This distribution, emphasizing the importance of
fine-tuning operational inputs, is adeptly visualized in a pie of the pie-chart
illustrating the distribution of Al techniques among manufacturing stages, which
highlights the prominent reliance on Al techniques for optimizing critical



manufacturing parameters. Techniques like Artificial Neural Networks (ANN) are
applied in processes such as Directed Energy Deposition (DED) to accurately
identify the necessary process parameters to achieve desired outcomes [21].

Conversely, traditional Subtractive Manufacturing (SM) processes, which
historically faced issues related to process control and inefficiency, are being
revolutionized by Al to achieve smart machining. This involves the capability to
autonomously adapt machining parameters during operation to achieve optimal
results. While MLR provides useful statistical baselines, Al-driven methods such
as SVR extend predictive power for machining optimization in conventional
processes like turning. For more intricate operations such as boring, Support
Vector Machines (SVM) analyze vibration signals extracted via discrete wavelet
transforms, classifying the operational state (stable, transition, or chatter) to
mitigate chatter-related issues and ensure superior surface finish quality [21].

3.3.2 In-Process Monitoring and Quality Control

Ensuring product quality is a continuous process that Al enhances through real-
time monitoring and post-production inspection.

In-Process Monitoring: during manufacturing, especially in AM, Al models
analyze data from various sensors (e.g., infrared cameras, acoustic sensors) to
detect anomalies in real-time. For instance, unsupervised machine learning
techniques can be used on plume images from an infrared camera to
automatically detect unstable melt pools during the SLM process. Similarly,
models like Deep Belief Networks (DBN) and Convolutional Neural Networks
(CNN) can classify different melting states based on acoustic signals, identifying
defects such as balling or cracking as they occur. This real-time feedback loop, a
practical implementation of the loP's Digital Shadow, allows for immediate
corrective actions, reducing waste and improving yield [21].

Post-Production Inspection and Defect Detection: after production, Al-powered
computer vision systems automate the inspection process. CNN-based systems
are particularly effective for the visual inspection of defects in products like solar
panels or nanoscale transistors. These systems can analyze electroluminescence
(EL) images or post-build Computed Tomography (CT) scans to detect flaws with
remarkable accuracy, even with limited training data. This automated approach
not only accelerates quality control but also enhances its reliability compared to
manual inspection [21].

3.3.3 Predictive Maintenance (PdM)

A critical component of the operations phase is ensuring the reliability and
uptime of manufacturing equipment. Predictive Maintenance (PdM) leverages
Al to shift from a reactive or scheduled maintenance model to a proactive,



predictive one. The core objective of PAM is to forecast the Remaining Useful Life
(RUL) of a component or machine, allowing maintenance to be scheduled
precisely when needed, thus minimizing downtime and costs.

Data-driven techniques, including various machine learning models, are
employed to analyze historical data, sensor readings (e.g., vibration, temperature,
acoustic emissions), and operating conditions to predict the RUL of critical
components. For example, Long Short-Term Memory (LSTM) networks, a type of
RNN, are highly effective for handling time-series data from sensors to predict
failures in complex systems like airplane turbofan engines. Other commonly
used techniques include ANNs, SVMs, Random Forests (RF), and Deep Belief
Networks (DBN), which have been applied to diagnose faults and predict the RUL
of components in engines, bearings, gears, and EV batteries. Hybrid physics-
informed ML models are emerging as best practices in predictive maintenance,
complementing purely data-driven approaches [2]1].

A key advancement in this area is the integration of eXplainable Al (XAl), which
addresses the "black box" nature of many complex models. By providing human-
intelligible narratives and justifications for its predictions, XAl empowers
maintenance technicians to understand why a certain component is predicted
to fail, thereby increasing trust and enabling more effective human-in-the-loop
decision-making. This fosters a more sustainable and collaborative maintenance
environment where human expertise is augmented, not replaced, by Al [21].
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Figure 7 - Incorporation of Al for fault diagnosis and prognosis in mechanical and EE sector

Figure 7 provides a comprehensive overview of how different Al techniques are
incorporated for fault diagnosis and prognosis across both mechanical and
electrical/electronic (EE) sectors, illustrating the breadth of PdM applications [21].



3.3.4 Supply Chain and Logistics Optimization

The production phase is intrinsically linked to the broader supply chain. Al
optimizes these interconnected processes by enhancing decision-making,
inventory control, and logistics. Reinforcement Learning (RL), a concept related
to the agentic behaviors discussed in Chapter 2, is particularly effective for
dynamic optimization problems. For instance, RL models are used to minimize
overall inventory costs by learning optimal ordering policies in complex supply
chain systems [31] [32].

In logistics, Al techniques contribute to solving complex planning problems.
Decision Support Systems (DSS) and heuristics are used to optimize container
assignment and loading problems, while Al combined with technologies like
Radio Frequency Identification (RFID) enhances the responsiveness and
traceability of the logistics workflow [21].
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Figure 8 - Popularity of different Al techniques in manufacturing phase

The prevalence and importance of various Al techniques in revolutionizing the
manufacturing landscape are visually summarized in the bar chart in Figure 8,
which showcases the distribution of 29 distinct Al techniques across numerous
publications. Noteworthy is the widespread use of traditional models like ANNs
and SVMs, which appear in 15 and 18 publications respectively within the
reviewed literature.



By integrating Al into these core operational areas, manufacturing companies
can move towards the adaptive, resilient, and efficient production systems
envisioned by Industry 4.0. This data-driven ecosystem sets the stage for the next
phase of the product lifecycle, where data collection continues and provides
further opportunities for Al-driven services and insights.

3.3.5 Case Studies and Best Practices

The application of Al in the production and operations phase extends across a
wide range of industries, where it consistently demonstrates best practices in
enhancing efficiency, quality, and sustainability.

In the automotive industry, Al plays a dual role in production optimization and
quality control. Support Vector Machine (SVM) and Naive Bayes (NB) classifiers
have been successfully employed to analyze acoustic data from automobile
gearboxes, enabling accurate defect diagnosis. Predictive maintenance is
equally relevant: Random Forest classifiers have been applied to vehicle
maintenance records and operational data, allowing early detection of failures
such as air compressor malfunctions in trucks and buses. This proactive
approach has improved both scheduling efficiency and fleet reliability [21].

The aerospace sector provides high-stakes examples of Al in predictive
maintenance. A well-established best practice is the use of Long Short-Term
Memory (LSTM) networks to estimate the Remaining Useful Life (RUL) of aircraft
turbofan engines. By leveraging multi-sensor time-series data, including the
NASA C-MAPSS dataset, LSTM models can accurately anticipate engine
degradation and optimize maintenance schedules, thereby ensuring operational
safety and continuity.

In the electronics and semiconductor industry, Al has become a cornerstone of
defect detection and quality assurance. Convolutional Neural Networks (CNNs),
for example, are employed to inspect solar panels by analyzing
Electroluminescence (EL) images, effectively identifying micro-cracks and other
flaws that would escape manual inspection. Similarly, in the semiconductor
industry, machine learning models accelerate failure analysis of nanoscale
transistors, reducing downtime and improving throughput in production lines.

The pharmaceutical and healthcare sector applies Al to optimize both
production processes and final product performance. Artificial Neural Networks
(ANNs) combined with Monte Carlo simulations are used to refine drug
formulations and predict release kinetics, ensuring that dosage forms meet strict
performance criteria. On the manufacturing side, Al-driven predictive
maintenance systems, such as deep transformer models, are deployed to



minimize downtime in production lines, reinforcing consistency and cost
efficiency.

Finally, the agriculture sector (Agriculture 4.0) provides a particularly innovative
field of application. Unmanned Aerial Vehicles (UAVs), equipped with
multispectral or hyperspectral cameras, generate high-resolution imagery of
crops. Computer vision algorithms analyze this data to detect pests, diseases, and
nutrient deficiencies. The outcome is precision agriculture: resources such as
water, fertilizers, and pesticides are applied only where necessary, improving
sustainability and boosting yields. As illustrated in Figure 9, UAV-based Al
research spans diverse agronomic practices, with significant attention devoted
to yield estimation, crop mapping, and targeted agrochemical application.

Across these industries, a unifying theme emerges: the most successful
implementations of Al are those that integrate domain-specific expertise with
advanced data-driven models. Rather than serving merely as automation tools,
Al systems enhance human decision-making, optimize resource allocation, and
build more resilient and sustainable operational ecosystems.
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Figure 9 - Number of UAV research and publications in sugarcane crops conducted for different agronomic practices

As illustrated in Figure 9, the application of UAVs and Al in agriculture is diverse,
with a significant portion of research focused on yield estimation, crop line
mapping, and agrochemical application, showcasing the technology's versatility
in optimizing farm operations.

These case studies illustrate a common theme: the successful application of Al in
production and operations relies on the integration of domain-specific
knowledge with data-driven models. The best practices consistently involve
using Al not just to automate tasks, but to augment human decision-making,
improve resource efficiency, and create more resilient and sustainable
operational systems.



3.4 Usage Phase: In-field Operations and Customer
Experience

The transition from the Production and Operations Phase (3.3), where the
physical asset is manufactured and initially tested, to the Usage Phase marks a
critical shift from internal optimization to continuous in-field validation and
customer interaction. The operational reliability and efficiency achieved through
predictive maintenance models during production must be sustained and
evaluated in real-world scenarios, leveraging technologies that monitor and
adapt the product or service throughout its lifespan [22]. This necessitates the
sophisticated handling and classification of generated usage data and
integrating complex human factors into the technological framework.

3.4.1 Data Characteristics and Classification for In-Field Analytics

A successful usage phase hinges on deriving high-quality insights from field data
to support ongoing product planning. Unlike the manufacturing environment,
usage data is highly heterogeneous and context-dependent [29] [33]. The
research identifies five key categories of use phase data from a product planning
view: usage data (describing how the product is used), user behavior data
(summarizing user interaction), service data (dealing with problems and quality),
product behavior data (showing performance during operation), and status data
(describing product "health").

The complexity and variety of this data require specialized classification, moving
beyond simply grouping data sources towards analytically relevant
characteristics. Data may present as real-time time series (such as sensor data,
control signals, hardware states) or as text data (including warnings, complaints,
ratings, and login information). The effectiveness of subsequent analytics
techniques relies heavily on this smart classification, which informs
preprocessing and algorithm selection. These methodologies define data based
on factors such as volume, velocity, complexity, dimensionality, and distribution,
allowing industrial stakeholders to match usage data to generalized analytics
workflows [33].

To illustrate the necessary structure and rigor applied to managing this vast array
of field data, it is informative to review the formal process for establishing data
classification artifacts. Figure 10 provides a visual representation of how empirical
and conceptual approaches are iteratively combined to define data
characteristics and dimensions that are analytically relevant for subsequent
processing [33].
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3.4.2 Leveraging Digital Twins for Adaptive Operations

The Digital Twin (DT) paradigm acts as a foundational system for the Usage
Phase, extending the connectivity established during the Production Phase (3.3)
into continuous operation. The DT is conceptualized as a system of systems, built
by melding several enabling technologies to create an intelligent virtual
representation of a physical entity. Unlike Digital Shadows, which aggregate
historical data, Digital Twins enable real-time synchronization with the physical
asset. The DT framework is characterized by three core functional blocks: the
physical asset, its virtual counterpart, and the two-way communication medium
that binds them together in a symbiotic relationship. This connection is typically
enabled by the Industrial Internet of Things (lloT), facilitating the real-time
exchange of the heterogeneous usage data described previously [22].

DTs are crucial because they support various services and applications
dependent on the specific use case, ranging from intelligent prognostics for
predicting remaining useful life to continuous lifetime monitoring. Given that the
DT facilitates the continuous flow of data to and from the real asset, rigorous data
security measures (including privacy, authentication, integrity, and traceability)
are paramount [8]. The architectural models, such as Tao's 5D model, emphasize
how DT implementation details must be highly dependent on the use-case
requirements. Tao's 5D model encompasses physical entities, virtual models,
services, connections, and data, which together define the full structure of a
Digital Twin system.



3.4.3 Enhancing Customer Experience and Human-Machine
Interaction

In the Usage Phase, the focus shifts from the reliability of the industrial
equipment to the seamless interaction between the user and the smart product,
aligning with the principles established in the product's initial design (section
3.2). User Experience (UX) is defined by the feelings and perceptions users derive
from interacting with a system, aiming to maximize usability, usefulness, and
desirability [34]. Al-enabled systems introduce adaptability, which requires clear
communication to the user to ensure transparency and trust, especially in
complex domains like autonomous vehicles (AVs) [29].

In vehicles, Al is employed in interactive explanation concepts for adaptive
systems, such as navigation, driving modes, and well-being features. These
systems propose adaptations based on learned user preferences and the current
context. As automation levels increase, the traditional definition of the human
component broadens from just the driver to include passengers, pedestrians,
and cyclists, necessitating a holistic approach to UX evaluation and HMI design.
UX evaluation systems are crucial for measuring quality in a systematic way,
considering factors such as the user's internal state (e.g., mood, motivation),
system characteristics (e.g., complexity), and the environmental context.
Ultimately, the goal is to develop predictive models, informed by continuous field
data, that can anticipate user attributes, behavior, and demands, forming a basis
for personalized product functions and service recommendations [29].

3.4.5 Case Studies and Best Practices

The integration of Al, loT, and DTs in the Usage Phase demonstrates best
practices in achieving operational longevity, efficiency, and superior customer
satisfaction, representing the practical culmination of processes defined in
preceding chapters (3.1, 3.2, 3.3).

One significant area is smart retrofitting, which extends the life of industrial
equipment, complementing the sustainability goals addressed in later phases
(3.5ANn Industry 4.0-oriented approach uses machine-learning models, such as a
two-layer neural network (NN), to estimate thermal characteristics of injection
molding machines, enabling adaptive control and improved energy efficiency. A
comparison of various Al techniques employed in this domain shows that
Artificial Neural Networks (ANN) have the highest adoption rate, featuring in four
relevant publications, confirming ANN's effectiveness in leveraging operational
data for targeted system upgrades [21].

In the transportation sector, the implementation of Big Data Analytics (BDA) and
Al in ridesharing platforms reveals the necessity of balancing technological
efficiency with user perception. The resulting research model uses the concepts



of perceived benefits (utility/usefulness) and perceived risks (uncertainty and
invasion of privacy) to explain passenger participation in ridesharing. This
emphasizes that successful in-field operations must move beyond technical
efficacy to address the cognitive and social dimensions of technology
acceptance [35].

A further best practice involves the shift towards service-centric business models,
such as Component-as-a-Service (CaaS) for Electrical and Electronic EQuipment
(EEE). This model inherently improves product circularity and sustainability.
Future research recommendations highlight that integrating data management
strategies, including |oT, digital twins, and data analytics, directly into the design
guidelines (3.2) is necessary to guide industry stakeholders in implementing
Caas effectively [36].

In complex manufacturing scenarios, such as the tea industry, a case study
demonstrates the use of Digital Twins in monitoring semi-automated systems
that involve both machines and human operators. This DT tracks several
sequential steps from blending to packaging, providing crucial oversight of
activities in the conveyor belt. Observing the snapshots of different activities in
the tea manufacturing conveyor belt process, such as adding tea and herbs,
dosage, blending, and packaging, reveals the intricate details necessary for
operational oversight.
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Figure 11 - Snapshot of the different activities in the conveyor belt of the tea manufacturing company

Figure 11 schematically represents the Digital Twin architecture, highlighting the
continuous bidirectional data flow between the physical asset and its virtual
counterpart through an lloT communication layer [22].

3.5 End-of-Life and Sustainability

The End-of-Life (EoL) phase represents the culmination of the product lifecycle
within the manufacturing ecosystem, focusing on essential circular strategies
such as reuse, recycling, remanufacturing, and smart retrofitting. The successful
implementation of these strategies is critically dependent upon the effective
utilization of Al and Industrial Digital Technologies (IDTs) to achieve both



resource efficiency and alignment with circular economy (CE) principles [36]. This
strategic shift requires linking information and capabilities generated during the
design (3.1), manufacturing (3.3), and usage (3.4) phases to inform efficient EoL
decision-making. Specifically, the extensive collection and classification of Usage
Phase data (as detailed in Section 3.4) becomes invaluable for accurately
diagnosing the status and viability of components for recovery processes [33] [37].

Contemporary literature highlights IDTs as crucial enablers for managing the
inherent complexity of Sustainable Supply Chain Management (SSCM) within a
circular economy framework. These technologies enhance both the physical and
cyber capabilities of the supply chain, facilitating closed-loop lifecycle
management and ensuring that operations adhere to sustainable requirements.
Comprehensive theoretical models, such as the CAB2IN framework, integrate
key emerging technologies like Cloud Service (CS), Al, Big Data Analytics (BDA),
Blockchain Technology (BT), and the Internet of Things (IoT) to ensure supply
chain information is efficiently transformed into actionable knowledge. The
holistic nature of such frameworks allows stakeholders to enhance their
capability to resist risks and sustain long-term profitability while verifying that
the entire chain operates without environmental or societal damage through
precise and traceable decision-making [28].

3.5.1 Al for Complex Component Management and Diagnostics

The challenges faced during the EolL phase are particularly pronounced for
complex or high-value components, such as Lithium-lon Batteries (LIBs) used in
Electric Vehicles (EVs). The core processes for battery recovery, including
remanufacturing, necessitate accurate diagnostic and screening procedures to
assess component viability. This aligns conceptually with the predictive
modeling introduced in Section 3.4, extending the focus from operational
prediction to EoL evaluation [37].

The literature identifies key research streams concerning the sustainable
management of EV battery remanufacturing, specifically mentioning
disassembly procedures, diagnostics and screening, data sharing, and supply
chain design. The advancement of these procedures is inherently linked to
technological and digitalization progress. For example, Al/Machine Learning (ML)
techniques are essential for diagnostics and screening, determining the current
state and recovery potential of the asset. Concurrently, data sharing and
transparency are critical components of a circular strategy, although they
introduce security concerns and technological limitations that remain active
areas of research. The rigorous review protocol used in these highly specialized
studies highlights the meticulous approach needed to consolidate knowledge in
this emerging domain [37]. To ensure a rigorous and evidence-based discussion
on Al applications in end-of-life battery management, a structured literature



review methodology was adopted. Figure 12 illustrates the article selection
process. Starting from an initial pool of identified studies, successive screening
phases based on titles, abstracts, and full texts were applied to select only those
works directly relevant to Al-driven diagnostics, disassembly, and
remanufacturing of Lithium-lon Batteries (LIBs). This transparent selection
process ensures the quality and focus of the sources underpinning the analysis
in this section.
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Figure 12 - Selection of articles

3.5.2 Smart Retrofitting and Predictive Integration

The concept of smart retrofitting directly addresses the extension of product life,
bridging the Usage Phase (3.4) with EoL considerations. This practice involves
incorporating Al and ML assistance, often within Digital Twin (DT) frameworks, to
enhance monitoring and anomaly detection for predictive maintenance, thereby
transforming older assets into connected systems [21].

While detailed information on specific AI/ML techniques used in general
retrofitting frameworks can sometimes be lacking in the literature, certain
applications clearly mention the deployment of Convolutional Neural Networks
(CNN), Artificial Neural Networks (ANN), and their variants. These techniques are
often employed in applications that are tightly coupled with the DT (as
introduced in 3.472) or even the more advanced Digital Triplet systems.



Furthermore, ML techniques, specifically two-layer neural networks, have been
used in thermal design methodologies within smart retrofitting applications to
predict heat transfer parameters and support lumped parameter simulations for
embedded components. In industrial settings, frameworks focusing on Industry
4.0 paradigms for retrofitting old process plants have been proposed, utilizing
supervised machine learning algorithms for anomaly detection to improve safety
and maintainability [21].

The effective execution of both diagnostics and retrofitting procedures relies on
a holistic view of the component’s characteristics and the evolution of research
priorities across the lifecycle. The maturation of EoL topics often follows the initial
breakthroughs in design and core technical development.

3.5.3 Optimization and Environmental Sustainability

The goal of sustainability extends beyond prolonging asset life to actively
mitigate the negative environmental impact associated with industrial
operations and the computational demands of Al itself, a concept often termed
Green Al. Large Al models, particularly in Machine Learning (ML), are known for
their high energy demand during both training and inference, leading to
proportional carbon dioxide emissions [36] [38].

In response to this challenge, strategies focused on reducing the computational
footprint are gaining traction. A key tactic is the use of lightweight Al models,
often achieved through techniques like model distillation. These models facilitate
the shift toward sustainable energy by remaining consistent with circular
economy principles. This approach seeks to define a holistic understanding of ML
sustainability, balancing trade-offs related to energy efficiency, particularly
between computational accuracy, model complexity, and energy consumption
[36] [39].

Furthermore, the environmental pillar of sustainability can be formally assessed
using advanced analytical methods such as Retrospective Life Cycle Assessment
(LCA). LCA processes, which calculate the potential environmental impacts of a
product across its lifespan, are becoming integrated with Al techniques,
particularly in complex material domains like composite manufacturing.
Although the primary focus of this assessment is often environmental, it exerts
indirect influence on the economic and social pillars of sustainability. Achieving
widespread success in deploying resource-conscious Al solutions is often
contingent on the establishment of appropriate managerial and policy
frameworks that incentivize carbon footprint reductions in digital operations [39]
[40].



3.5.4 Case Studies and Best Practices

The application of Al and IDTs in the EoL phase demonstrates several best
practices, particularly regarding complex logistical and automated tasks.

Robotic Disassembly and Automation A crucial aspect of materials recovery and
component remanufacturing is the efficient disassembly of EoL products, which
is increasingly managed through advanced robotics and Al. Disassembly
processes, classified as stream in specialized literature, are fundamentally
determined by the initial product design and evolve alongside digitalization. This
highly technical area focuses on methodological and application advancements
in robotic disassembly technology, distinct from purely economic or non-
technical evaluations [24] [37].

Intelligent Maintenance and Circular Systems Best practices in circular systems
often involve the creation of intelligent support tools for maintenance
technicians, integrating human-centric Industry 5.0 concepts. For instance,
frameworks exist that combine Discrete Event Simulation (DES), text mining, and
Al to integrate disparate loT-generated data sources and information systems.
The Auto-Circular Simulator concept exemplifies this approach by providing
semantic descriptions to identify and highlight linkages between data and
knowledge for the worker, enabling sustainable treatment of automotive
components. Context awareness is vital for the continued development of
explainable Al (XAl) in this domain, providing a structure for communicating
requisite narratives that support the technician. As shown in Figure 13, the
simulator exemplifies how explainable and context-aware Al supports
maintenance technicians in interpreting system outputs and making informed,
sustainable operational choices [41].
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3.6 Benefits and Challenges for Manufacturing
Companies

The progressive integration of Artificial Intelligence (Al) across all stages of the
product lifecycle, from design to end-of-life, has transformed the manufacturing
sector into a data-driven, adaptive, and highly interconnected ecosystem. While
these technological advances offer unprecedented opportunities for efficiency,
innovation, and sustainability, they also introduce new layers of complexity in
data management, human-machine collaboration, and organizational
governance. This section outlines the main benefits and challenges that
manufacturing companies face in adopting and scaling Al-driven solutions.

Benefits

Al significantly enhances operational efficiency by automating repetitive tasks,
optimizing production parameters, and reducing waste. Advanced control
systems based on machine learning, such as Artificial Neural Networks (ANNSs) in
Additive Manufacturing or Support Vector Machines (SVMs) for chatter detection
in machining, adjust process conditions in real time, ensuring higher throughput
and consistent product quality. Predictive analytics enable proactive decision-
making, while intelligent scheduling and robotics improve resource allocation
and reduce unplanned downtime, collectively contributing to leaner operations
and lower manufacturing costs.

Furthermore, Al enables a shift from reactive or scheduled maintenance to
condition-based and predictive maintenance (PdM). By leveraging sensor data
and models such as Long Short-Term Memory (LSTM) networks or Random
Forests, companies can accurately forecast the Remaining Useful Life (RUL) of
critical components, thereby minimizing unexpected failures, extending
equipment lifespan, and optimizing maintenance budgets. This approach not
only improves operational reliability but also enhances worker safety in high-risk
environments.

Al also fosters an evidence-based approach to manufacturing. Through the
integration of Digital Twins and the Internet of Production (loP), data from
design, production, and usage phases converge into a unified decision space.
This enables real-time monitoring, enhanced traceability, faster root-cause
analysis, and improved demand forecasting and strategic planning. Moreover, Al
drives product innovation by combining generative design, simulation, and
multi-objective optimization. Techniques such as Generative Adversarial
Networks (GANSs), Variational Autoencoders (VAESs), and reinforcement learning
allow engineers to explore novel design spaces that balance performance,
manufacturability, and sustainability. Al-driven personalization further enables



manufacturers to deliver tailored products and services, enhancing customer
satisfaction and competitive differentiation.

Finally, Al supports sustainability and circular economy practices. From early-
stage design for disassembly (DfD) to end-of-life diagnostics and smart
retrofitting, intelligent systems optimize energy consumption, minimize waste,
and facilitate reuse, remanufacturing, and recycling, aligning industrial
operations with environmental regulations and corporate social responsibility
goals.

Challenges

Despite these benefits, manufacturing companies face significant challenges in
implementing Al at scale. One primary obstacle is managing the vast and
heterogeneous data generated across production environments. Integrating
information from legacy systems, 0T sensors, and cloud platforms requires
standardized taxonomies and interoperable data architectures; inconsistent or
poor-quality data can severely compromise model performance and decision
reliability.

Additionally, industrial Al applications demand substantial computational
resources and low-latency processing. Real-time inference in robotics or additive
manufacturing often necessitates high-performance edge computing and
secure connectivity, entailing high costs for infrastructure, software, and model
deployment, particularly burdensome for SMEs already facing resource
constraints (see Chapter 1.5.3). This computational burden is further amplified in
agentic Al systems, where continuous orchestration of reasoning, memory, and
tool use increases overhead (see Section 2.5).

Human and organizational factors also pose significant barriers. Transitioning to
Al-enabled manufacturing requires new competencies in data engineering, Al
supervision, and digital ethics. Workforce resistance, insufficient training, and
organizational inertia may hinder adoption, while effective human-Al
collaboration demands clear role definitions and robust oversight mechanisms,
such as “human-in-the-loop” (HITL), to ensure Al augments rather than replaces
human expertise.

Trust, explainability, and safety remain critical concerns, especially in high-risk
industrial settings. The opacity of complex Al models challenges accountability
and decision validation. While emerging approaches like Explainable Al (XAl) aim
to provide interpretable justifications for predictions (see Section 3.3.3), their
integration remains limited to pilot applications. Cybersecurity vulnerabilities,
including adversarial attacks and data manipulation, can propagate rapidly



through interconnected production networks, threatening both operational
integrity and worker safety.

Finally, economic and regulatory uncertainty presents additional hurdles.
Although Al promises long-term gains, initial investments are substantial and
short-term ROI is often difficult to quantify. Evolving legal frameworks, such as
the EU Al Act, impose obligations on high-risk Al systems but do not yet fully
address the unique dynamics of autonomous agents interacting with physical
environments, a gap that increases compliance risks for companies operating in
sensitive sectors (see Sections 1.6.2 and 2.5).

Synthesis

In conclusion, Al offers manufacturing companies transformative benefits,
including increased efficiency, predictive capabilities, sustainable innovation,
and enhanced competitiveness. However, these advantages are
counterbalanced by persistent challenges in data governance, technical
scalability, workforce adaptation, cybersecurity, and regulatory compliance. The
successful adoption of Al in manufacturing therefore requires a carefully
balanced strategy that integrates technological readiness, organizational
maturity, workforce development, and ethical responsibility. These
considerations form the foundation for the following section, which synthesizes
the overall implications of an Al-driven product lifecycle.

4. Conclusions

The preceding chapters have mapped, at different levels of granularity, how
Artificial Intelligence and related Industrial Digital Technologies can be
progressively embedded across the entire product lifecycle, from conceptual
design to end-of-life, and how agentic paradigms, digital shadows and digital
twins enable a continuous, data-driven feedback loop between phases. This
synthesis draws together those threads and articulates a coherent view of the
opportunities, the tensions and the pragmatic levers that emerge from the
analysis presented in Chapters 1-3.

At the core of an Al-driven lifecycle lies an integrated data and modelling
ecosystem. Design decisions can no longer be treated as isolated artifacts: Digital
Shadows, aggregated datasets enriched with context from the Internet of
Production (loP), enable the transformation of in-field signals, production traces,
and simulation outputs into reusable knowledge that informs successive design
iterations, process parameter tuning and maintenance strategies. Model-
integrated Al, i.e. the coupling of data-driven methods with domain engineering
models (CAD, FEA), is therefore a necessary enabler for solutions that are both



technically sound and operationally deployable. Likewise, Digital Twins provide
the real-time, bidirectional interface that closes the loop between physical assets
and their virtual counterparts.

Agentic Al and co-pilot paradigms amplify the lifecycle value proposition by
turning passive analytics into active orchestration. Agents endowed with
memory, tool-use and planning capabilities can sequence multi-step workflows
(for example: diagnose, propose repair, schedule intervention), coordinate
heterogeneous tools (analytics engines, scheduling systems, robotic actuators)
and maintain contextual continuity across phases. Used within well-defined
human-in-the-loop schemes, such agents raise the productivity and resilience of
manufacturing operations while preserving meaningful human oversight.

The benefits that flow from this integrated vision are multiple and mutually
reinforcing: improved design quality and faster innovation through generative
and model-integrated design; higher operational efficiency and reduced
downtime via predictive maintenance and real-time process control; enhanced
product-service personalization and evidence-based decision-making through
converged data; stronger sustainability outcomes when Design-for-X and end-
of-life diagnostics are embedded into the same information architecture. These
gains, extensively documented across the chapter case studies, underpin the
strategic rationale for Al investment in manufacturing.

At the same time, the analysis highlights persistent and interdependent
challenges that temper immediate, indiscriminate adoption. Chief among these
are data governance and interoperability (heterogeneous, legacy systems and
inconsistent taxonomies), the computational and integration costs of
advanced/agentic architectures (a barrier for many SMEs), human and
organizational readiness (skills, trust, role redefinition), explainability and safety
(the need for XAl and robust HITL practices), cybersecurity and adversarial
exposure, and regulatory uncertainty (notably in the treatment of high-risk
autonomous systems). The synthesis in section 3.6 captures these trade-offs and
stresses that technological potential must be matched with governance and
capability building.

From these premises follow a set of pragmatic, internally consistent
recommendations for firms and practitioners seeking to deploy an Al-driven
lifecycle:

¢ Design the information backbone first. Prioritize interoperable data
schemas, Digital Shadows and agreed taxonomies so that insights
generated in one phase are actionable in others.



¢ Adopt a model-integrated approach. Combine physics-based engineering
models with data-driven learners to ensure outputs are physically credible
and manufacturable.

¢ Start with modular pilots that embed human-in-the-loop controls. Validate
reliability, XAl narratives and human oversight mechanisms at small scale
before scaling to mission-critical operations.

¢ Invest in workforce transition and governance. Reskilling, clear
accountability frameworks, and ethics/audit capabilities are as important
as technical components.

¢ Factor sustainability and computational footprint into architectural
choices. Lightweight models, model distillation and Green-Al
considerations should be part of design and deployment decisions.

In closing, the thesis demonstrates that an Al-driven product lifecycle is not a
single technology project but an organizational transformation: it requires
aligning data architecture, modelling paradigms, operational processes and
human capabilities around a continuous learning loop. When implemented with
measured pilots, rigorous governance, and a clear focus on interoperability and
explainability, the integrated approach outlined in this work can deliver
substantial gains in efficiency, innovation and sustainability. Yet, as highlighted
throughout the analysis, realizing this promise demands conscious trade-offs
and institutional commitment: Al must be embedded responsibly, with human
agency, safety and legal compliance always preserved as foundational
constraints.
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