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INTRODUCTION 
The purpose of this thesis is to identify and study the uses of Artificial Intelligence (AI) in the 

supply chain, in order to gain a better understanding of how this modern technology has 

impacted the industrial context. Specifically, it will be explained how the concept of "artificial 

intelligence" was born and what meaning modern society attaches to this technology; at the 

same time, a brief history of its use in the supply chain context will be drawn up, highlighting 

which systems were used during the technological development between the 1950s and today. 

The basic layout of the supply chain will be outlined next, followed by the technologies used 

and the difficulties that now jeopardize its efficiency. Following that, an examination of the 

various AIs employed in the supply chain sectors will be conducted, followed by practical 

examples of how this technology can be successfully applied in industrial contexts. 
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CHAPTER 1 – What is Artificial Intelligence 

1.1 Definition of AI 

1.1.1 The Roots of the Definition 

In the last few decades, artificial intelligence (AI) has gone from being a theoretical idea to a 

real technology that can have a big effect on everyday life, the economy, and the generation of 

knowledge. Before looking at its uses, effects, or future possibilities, though, it is important to 

answer a very important question: “What is artificial intelligence?” 

John McCarthy, Marvin Minsky, Nathaniel Rochester, and Claude Shannon came up with the 

term "artificial intelligence" in 1956 during the famed Dartmouth Summer Research Project1. 

The first idea was both grandiose and vague: looking into the prospect of robots acting in ways 

that could be seen as intelligent. This method has led to a very vast field that has changed over 

time based on different theoretical ideas, new technologies, and research goals. 

In 1995, Stuart Russell and Peter Norvig published their groundbreaking book, "Artificial 

Intelligence: A Modern Approach"2. These two authors have worked hard to make the phrase 

"Artificial Intelligence" clearer. They have changed their definition many times, up to the 

book's fourth edition in 2020. For a complete understanding of this concept, it is beneficial to 

utilize the classification suggested by these computer experts, which defines AI along two axes: 

• What it does (think or do) 

• What it looks like (human vs. rational) 

From this taxonomy, four further definitions of Artificial Intelligence arise3: 

The first definition talks about systems that can think like people. This group contains systems 

that can learn and solve issues like a person. For example, models that mimic human memory 

or analogical reasoning are examples of this type of system. The interest here is not just in the 

end result, but also in how it was reached. 

A second description talks about systems that act like people. Here, the focus is on whether the 

machine acts like a person, not if it "thinks like a person." The Turing Test is one example. It 

says that a machine is smart if it can trick a person into thinking it is smart like a human during 

a conversation. 

The third definition is about systems that think logically. A system is smart if it uses formal 

logic or optimum rationality to make decisions. These kinds of systems can come to the right 

conclusions based on the right premises, which makes them act like completely rational 

cognition. 

The last description is for systems that act rationally, which means they make the best choices 

to reach their goals based on the information they have. 

Today, most computer scientists are working on making systems that fit this last definition: 

"Rational Agents" that can see their surroundings and the outside world and then do things that 

will help them reach the goal for which they were made. 

1.1.2 Artificial Intelligence Today: An Open Definition 

Today, artificial intelligence is an enabling technology. It works at scale across many fields, 

from medicine to finance, robotics, and data analysis. Still, its rise hasn’t led to a clear or fixed 

definition. In fact, the more AI blends into daily life, the harder it is to pin down what it actually 
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is. This lack of clarity isn’t a flaw. It reflects the changing nature of the field itself. AI is always 

shifting. Each new step forward changes what we call “intelligent.” 

This view helps explain the so-called “AI effect.” The term appears often in academic writing. 

It points to a trend: once an AI-related tool becomes useful, common, and trusted, people stop 

seeing it as AI. It gets treated as regular or even outdated technology4.  

In short, artificial intelligence shows our need to build tools that resemble us, help us, or go 

beyond us. It’s not an answer but it’s a question. And with each new breakthrough, we ask it 

again. This thesis will trace the shape of that question by looking at how AI is defined, applied, 

and governed today, with a focus on the Supply Chain. 

1.2 History of AI 

1.2.1 The Birth of AI (1950s) 

Long before computers, people were working on artificial intelligence. Aristotle in the 4th 

century BCE inquired if logic might be used to formalize human thought. But these notions 

didn't really catch on until the 20th century. Alan Turing's 1950 work "Computing Machinery 

and Intelligence"5, was an important turning point. He asked a brave question in it: "Can 

machines think?" He also came up with the Turing Test as a means to see how smart a machine 

is. 

The 1956 Dartmouth Conference, which was directed by John McCarthy, Marvin Minsky, 

Nathaniel Rochester, and Claude Shannon6, is commonly seen as the beginning of the field. At 

that time, the term "artificial intelligence" was first used, and the goal was to make machines 

that could think like people. In the years that followed, early programs were made to answer 

logic issues or prove arithmetic theorems. One example is Logic Theorist (1956) by Allen 

Newell and Herbert Simon7.  

1.2.2 The Years of Expectations and Limits (1960s–1970s) 

The AI of the 1960s and 1970s was very excited by symbolic models that were built on clear 

rules and formal logic. The main notion was that logical structures could be used to show how 

people think and know things, and that a computer system could work with these structures. In 

this situation, "expert systems" were created by the scientists. These are system that try to make 

the same decisions as an expert person in a small number of specific situations: for example, 

figuring out what is wrong with a patient or setting up an industrial plant. These systems used 

a knowledge base (a set of "if-then" rules) and an inference engine that could use those rules 

to look at data and come to conclusions. MYCIN8 is one of the most well-known computer 

programs. It was built at Stanford University to help doctors figure out if someone has a 

bacterial infection. Even though these systems did well in certain areas, they had huge problems 

when it came to handling new, unclear, or incomplete scenarios. This caused a crisis of trust 

that led to the first "AI winter"9. 

1.2.3 The Revival through Machine Learning (1980s–1990s) 

Since the 1980s, artificial intelligence has gone through a time of new ideas and methods. After 

being disappointed by the symbolic method, scientists have progressively started to look at 

ways that can learn from facts. The machine learning paradigm has emerged in this context, 

poised to transform the development of AI fundamentally. Machine Learning10 is a type of 

artificial intelligence that makes algorithms that can detect patterns in data and get better at 

their jobs over time without having to be trained for each task. Machine learning enables 
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systems to "learn" directly from experience, adapting to novel or unforeseen information. This 

is not the same as symbolic AI, which was based on rules set by experts.  

At the time the most used algorithms were: 

• Support vector machines (SVM) were the most frequent method at the time. Vapnik and 

Cortes came up with them in the 1990s. They work well for regression and classification 

in hard-to-understand domains11; 

• Decision trees are easy to understand and can help you sort things into groups. 

• K-nearest neighbours (k-NN) is a method for finding patterns that doesn't utilize 

parameters. 

• Bayesian methods for modelling probability. 

Artificial intelligence is starting to employ the scientific method more as machine learning 

becomes more popular. This means looking at things, making models, and checking them. It 

doesn't rely as much on symbolic reasoning. This turning point is an important step that sets 

the foundation for the significant advances in AI that are happening now, starting with the 

advent of deep learning in the next ten years. 

1.2.4 The Era of Deep Learning (2010s–Present) 

The early 2010s were a turning point in the growth of AI, to the extent where they are now seen 

as the start of the contemporary era of AI. This change happened because three important things 

came together at the right time: 

1. The exponential growth of computational capacity, made possible in particular by the 

use of GPUs (Graphics Processing Units), originally meant for graphics processing in 

video games but which have proven to be highly successful in the parallel training of 

neural networks. 

2. The presence of a large quantity of data from diverse sources (for example social 

networks, sensors, e-commerce, etc.) that is essential for supplying models that require 

substantial information consumption. 

3. Algorithmic innovation, especially the rediscovery and growth of deep neural networks, 

which are the core of what is known as deep learning. 

To comprehend the importance of this pivotal moment, it must be examined the implications 

of the latest and most important AI development, Deep Learning. It is a type of machine 

learning that uses artificial neural networks with several layers (This is where the use of the 

word "deep" comes from). Each layer can get more abstract representations from the data that 

is fed into it. A network that has been trained to detect photos, for instance, has layers that find 

lines and edges, other layers that scan for forms and textures, and other one for full things like 

faces or animals. 

The best thing about deep learning is that it can learn important features from raw data on its 

own, without the need for a person to do it. This method has been very useful for hard and 

high-dimensional issues, like speech recognition, computer vision, and natural language 

processing12. 

Since the first steps, deep learning-based models have been used in a lot of different fields: 

• Computer vision (detecting objects, recognizing faces, and making diagnostic images). 

• Machine translation (Google Translate based on neural models). 

• Speech synthesis and recognition (voice assistants like Alexa or Siri).  
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• Generation and understanding of natural language through large linguistic models 

(LLM), like GPT, BERT, and their offshoots. 

In the years that followed, generative language models have gotten more and more attention, 

leading to tools like ChatGPT. These systems can write logical documents, answer complex 

questions, perform creative tasks, and simulate real conversations. One of the most advanced, 

and contested, areas of modern AI is how they work: they rely on billions of parameters trained 

on vast collections of text. 

This approach is not well seen because no one fully understands how these models produce 

certain outputs, and their training data often includes content that is biased, misleading, or base 

on fake news. As a result, the systems can generate answers that sound plausible but if checked 

they result to be wrong or based on stereotypes. Since users can’t trace the source or reasoning 

behind a response, it becomes difficult to assess its accuracy or intent. These concerns raise 

questions not just about performance, but about trust, responsibility, and how such tools should 

be used. 

1.3 Key Technologies Today 

1.3.0 Introduction 

Nowadays Artificial intelligence is a discipline that is articulated through numerous 

technologies, each of which contributes to the development of artificial cognitive capabilities. 

The main technologies that today constitute the heart of modern AI are machine learning, deep 

learning, natural language processing, computer vision and autonomous robotics. 

1.3.1 Machine Learning 

Machine learning is the most crucial technology that has revolutionized the way we think about 

AI since the 1980s. When computer scientists develop an algorithm in traditional 

programming, they write down every step the system takes. Machine learning algorithms 

instead learn from labelled or raw data and develop their own models to make their predictions. 

There are three main ways to teach how to act to the system: 

• Supervised learning: the algorithm learns from data sets given by computer scientists 

with already labels on them. The goal is to find a function that find the proper output 

when given known inputs. Sorting emails into spam and not spam, or recognizing 

pictures, is a popular example. 

• Unsupervised learning: the data isn't labelled, so the machine has to find patterns or 

structures on its own. Marketing teams often use function this to group clients by how 

they act, which is an example of clustering. 

• Reinforcement learning: the systems learn by interacting with the environment and 

gaining rewards or punishments (decided by their developer) for what they do. It helps 

with things like smart gaming systems and robots that can do things on their own13. 

1.3.2 Deep Learning 

Deep learning is now seen as one of the most important parts of modern AI. It is not only a 

mechanism to learn with machines but it's a new paradigm that lets artificial systems get, store, 

and use information in a very hierarchical and scalable way. 

Deep artificial neural networks, which are made up of several layers of artificial neurons, are 

what deep learning is all about. Each layer gives the output created to the next layer that receive 

it as an input, processes it, and then improves the representation of the data: this is done layer 
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by layer, some times in a way that is not understandable even for programmers of the system. 

This multilevel approach lets the system go from simple traits to more complicated ideas, which 

lets it find deep structures even in input that have outliners, are noisy or not are not structured14. 

There are different deep learning network topologies based on the kind of data and the goal: 

• Convolutional Neural Networks (CNNs): These are great for analysing images because 

they use unique layers to find spatial patterns like edges, textures, and forms. They are 

what makes computer vision programs work. 

• Recurrent Neural Networks (RNNs): made to handle sequences of data, such texts or 

time series. They have an internal memory that lets them handle the relationship 

between consecutive pieces of the sequence. 

Until now it was highlighted only the winning side of using deep learning, but as every 

technologies at the beginning of its lifecycle, it has several problems. The most important 

problems are: 

• High data needs: To work well, deep models need a lot of labelled data. 

• High computational cost: it takes a lot of energy to train a new model based on deep 

learning. For istance the energy used to train OpenAI’s gpt-4 model could have powered 

50 American homes for a century. According to The Economist, to train the next 

generation of AI Chatbot it will take more or less 1 billion dollar15. 

• Functioning hardly understandable: Deep learning models are like "black boxes," which 

makes it hard to understand how a decision is reached. This problem is not negligible 

in fields like justice or healthcare. 

• Vulnerability to adversarial attacks: Even very strong models can be fooled by small, 

imperceptible changes in the input data, which raises problems about security and 

reliability. 

Even if these limitations still exist, deep learning is still one of the most powerful tools available 

to research and industry today, pushing the boundaries of automation, artificial perception and 

symbolic intelligence. Its ability to generalize from complex data and learn abstract 

representations makes it a central technology for all future evolutions of artificial intelligence16. 

1.3.3 Natural Language Processing (NLP) 

Natural Language Processing (NLP) is a field of AI that studies how computers and human 

language interact. Thanks to this technology computer can perceive, interpret, change, and 

create voice and text. NLP has had a complicated history. It started with systems that used 

grammatical and syntactic principles, and now it uses neural models that learn directly from 

language data. 

Today, NLP apps are everywhere. Siri and Alexa are examples of virtual assistants, Google 

Translate is an example of an automatic translator, chatbots are examples of customer service 

tools, semantic search engines are examples of search engines that look for meaning, automatic 

summarization systems are examples of systems that summarize information, and content 

generators are examples of systems that create content. 

Modern NLP is going beyond just understanding text to include multimodal comprehension 

(language + pictures) and creative generating (storytelling, code creation, and music). There 

are still problems to solve, like data bias, understanding abstract ideas deeply, and dealing with 

false information that is automatically generated17. 
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1.3.4 Computer Vision 

Computer vision is the branch of AI that lets systems get, interpret, and understand visual input 

like pictures or in the case of automated robots real time images. The end goal is to make it 

possible for computers to see and understand the world in a way that is alike to how people do. 

In the past, computer vision relied on manual methods for finding things like edges, corners, 

and textures. But deep learning, especially convolutional neural networks (CNNs), has 

transformed the way things work: now, models can automatically learn important properties 

from raw data18. 

Computer vision is used for a lot of things, such as: 

• Recognizing faces (like unlocking your phone); 

• Finding objects in moving surroundings (like self-driving cars);  

• Medical imaging (like finding malignancies early); 

• Automated quality control in manufacturing. 

1.3.5 Autonomous Robotics 

Autonomous robotics is a field that integrates skills from artificial intelligence, mechanics, 

advanced sensors and control theory, with the aim of designing robots capable of perceiving, 

planning and acting autonomously within complex and dynamic environments. An autonomous 

robot is able to perceive the surrounding environment through sensors such as cameras, lidars 

and sonars, build an internal map to locate itself and move effectively in space (through SLAM 

techniques - Simultaneous Localization and Mapping), plan optimal paths avoiding obstacles, 

and perform complex tasks without the need for direct human intervention. 

The fundamental technologies that support autonomous robotics include motion planning, 

dynamic control, computer vision for interpreting the environment and reinforcement learning, 

which allows robots to continuously improve their operational strategies based on the 

experience acquired19. 

1.4 Evolution of AI in the Industrial Context 

1.4.1 Early Applications of AI in Industry (1980s–1990s) 

Expert Systems were the most common use of artificial intelligence in industry environment in 

the 1980s and 1990s. These systems were made to help people make decisions about 

manufacturing by using logical rules that had already been set up. The most common uses were 

for setting up complicated items and organizing production tasks. In some circumstances, they 

helped figure out the best technological combinations to make a particular product when there 

were a lot of variables to think about and they all depended on each other. In other 

circumstances, they helped with the automatic planning of operational stages in factories by 

assigning resources, schedules, and orders based on certain principles. These systems were a 

real step in making industrial design and planning smarter by using "if-then" logic and cases 

that were already recognized. 

1.4.2 Introduction of Machine Learning and Big Data (2000s–2010s) 

Starting in the 2000s, the increasing capabilities in industrial data collection, thanks to the 

spread of IoT sensors, advanced ERP systems, and low-cost storage capacity, paved the way 

for the introduction of machine learning. Bi using Big Data and by having access to more 

computational power, AI models finally became capable of learning directly from experience, 
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overcoming the limitations of rigid rule-based systems. During that period the main application 

used in the industrial sector where predictive maintenance and automated quality control. The 

first one gave the ability to firms to anticipate failures by analysing weak signals in machine 

operation data. The second was able to detect products that do not comply with quality 

standards, thanks to the ability to find specific pattern in outgoing products. These innovations 

brought greater flexibility and responsiveness to industrial operations, reducing downtime, 

improving quality, and optimizing the use of production resources. 

1.4.3 The birth of Smart Factories (2020s–Present) 

The most recent chapter of AI application in the supply chain are Smart Factories. As already 

seen, many of the technologies that make Smart Factories "smart", such IoT, computer vision 

and collaborative robots ecc., were already deployed singularly in the industrial environment. 

The major change happened when artificial intelligence was added to integrate all these 

technologies together. Every technologies collect data that can be used not only from the 

original gatherer, but from every single autonomous system in the firm. These technologies 

also use deep learning and predictive analytics to turn the collected data it into real-time 

decisions that are autonomous, active, and based on the context. By combining data from 

sensors, ERP and supply chains, smart factories are now equipped with self-tuning and 

resilience capabilities. AI solutions automatically respond to variations in demand, logistics 

disruptions or production errors, making the production system more flexible and 

competitive20. This evolution marks a turning point in the history of supply chain management, 

where AI no longer serves as a supportive tool but becomes a central orchestrator of operations. 

Smart Factories exemplify how AI can unify disparate technologies into an intelligent, 

adaptive, and interconnected ecosystem. As we look to the future, the integration of AI across 

the supply chain is set to deepen, enabling end-to-end visibility, real-time responsiveness, and 

sustainable optimization—paving the way for a truly autonomous supply network. 
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CHAPTER 2 – Supply Chain: Structure and Challenges 

2.1 Introduction to Supply Chain 

2.1.1 Definition 

The supply chain represents the set of processes, resources and activities that are involved in 

the creation and distribution of a product or a service, from the initial supplier to the final 

customer. More precisely, it can be defined as an integrated network of organizations that 

collaborate to provide goods and services to markets. By doing so, this network has to manage 

simultaneously three flows: the physical flows of materials, information flows and financial 

flows. 

Traditionally, the concept of supply chain has evolved from classic logistics, which was about 

the transportation and movement of goods. However, with the growing complexity of 

globalized markets, simple logistics management was no longer sufficient to guarantee 

competitiveness and efficiency. The need for a more systemic vision, capable of coordinating 

and integrating all the business functions involved in the creation of value, has therefore 

emerged. 

To better understand what the Supply Chain is, we can analyse the discipline that manages it, 

namely Supply Chain Management. According to the definition proposed by the Council of 

Supply Chain Management Professionals (CSCMP), one of the main academic authorities on 

the subject, supply chain management includes "the planning and management of all activities 

involved in sourcing, procurement and conversion as well as all logistics management 

activities. It also includes coordination and collaboration with upstream and downstream 

partners in the chain, which may be suppliers, intermediaries, third-party service providers and 

customers."21
 

This definition highlights the importance of integration and inter-company collaboration as key 

elements for the success of the modern supply chain. In an increasingly dynamic market, the 

ability to act as part of a coordinated network becomes a critical element to address the 

challenges related to the volatility of demand, globalization, the pressure for greater 

sustainability but above all the political instability that emerged from the second decade of the 

2000s. 

2.1.2 Historical Evolution: From Traditional Logistics to the Modern Supply 

Chain 

Until the 1980s, the work of logistics management was mainly focused on the operational 

efficiency of individual functions, such as transportation, storage and inventory management, 

often optimized in watertight compartments. Ballou described this functional approach in his 

academic manual "Business logistics/supply chain management"22: the highlighted that the 

approach generated suboptimalities due to poor information sharing, high security costs and 

long transit times. Each department goal was to reach its own cost objective: however, by doing 

so they were reducing overall visibility and reactivity of the network. 

With the maturation of the concept of Supply Chain Management, starting from the 1990s, the 

system moved to an “end-to-end” model that directly managed these inefficiencies. The most 

important innovation was the introduction of ERP systems and traceability platforms that made 

possible to integrate physical, information and financial flows in real time, reducing lead times 

and safety stocks thanks to shared visibility23. Furthermore, the adoption of Sales & Operations 

Planning (S&OP) processes and simultaneous multi-level planning techniques has fostered a 
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strategic alignment between demand and production capacity, improving the agility in 

responding to demand peaks and resilience to disruption. 

2.2 Supply Chain structure: stakeholders and main processes 

2.2.1 Main Stakeholder  

Within a well-structured supply chain, five main categories of actors can be distinguished, each 

with specific functions and responsibilities along the supply flow24: 

Suppliers 

They are the first actors involved in the supply chain: they provide components or services to 

make the production process start. They can supply raw material (first level of suppliers), semi 

finished products (second level) or primary logistic services. To ensure quality, competitive 

cost and continuity of supply firms have to perform an effective supplier management, based 

on long-term relationships, performance assessments and collaborative practices. 

Manufacturers 

Then raw material are transformed into finished products through operational processes that 

include production planning, quality control, and plant maintenance, all done by manufacturers. 

Their main goals are to maximize plant efficiency and reduce setup times, integrate lean 

practices and digital technologies to respond quickly to changes in mix and volume. 

Distributors 

They act as intermediaries between manufacturers and retailers/end users. They manage 

warehouses that can be (centralized or regional), organize national and international transport 

and alos offers value-added services like cross-docking, goods consolidation, co-loading. A 

good logistic network helps distributors to reduce transportation cost and lead time. 

Retailer 

They are the first point of contact with the consumer: they manage assortments, organize 

promotions and offers customer service. Inventory control at the point of sale and the ability to 

collect real-time sales data are essential to feed the replenishment and demand planning 

processes upstream. 

End customers 

They are the final destination of the products or services; their demand drives the entire chain. 

Feedback, purchasing behaviour and required service levels influence production, inventory 

and logistics decisions at all levels. 

2.2.2 Main processes 

Procurement and supply management 

is the selection and purchase of raw materials, components and services from suppliers: the 

goal is to ensure continuity and quality at the best total cost. The main activities of this phase 

include supplier qualification, definition of sourcing strategies (i.e. deciding whether to source 

from one or more suppliers for the same purchasing category), contract negotiation and 

payment cycle: these choices are supported by the levels that suppliers can guarantee for 

various KPIs (key performance indicators) such as the procurement lead time and the Order 

Fill Rate (OFR, i.e. the percentage of satisfied orders. 
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Production and Operations Management 

Manufacturing transforms purchased materials into finished goods by doing strategic planning 

and operational control. Key activities in this process include Material Requirements Planning 

(MRP) to calculate supply needs and times, production batch scheduling, preventive and 

predictive maintenance of plants, and monitoring Overall Equipment Effectiveness (OEE) to 

maximize resource utilization. 

Logistics and distribution 

This process coordinates inbound logistics and outbound logistics: the first activity deal with 

receiving and storing raw materials, instead the second deal with preparing and shipping 

finished products. When a company has to build its logistic network, it has to decide the optimal 

location of warehouses and distribution centres and it has to choose transportation methods 

(road, rail, sea, air) basing the decision on costs, times, and environmental constraints: at the 

end it has to apply Vehicle Routing Problem (VRP) models to optimize delivery routes. In some 

cases also reverse logistics has to be included in the building process of the network: it ensures 

the efficient collection of returns, reconditioning, and disposal, closing the product cycle. 

Customer Service and After-Sales Management 

Customer service ensures the connection between supply and demand by managing orders, 

deliveries and assistance requests. To monitor and evaluate customer satisfaction firms use the 

integrated Customer Relationship Management (CRM) systems: by using this technology 

companies can have access to costumers based indicators like Order Fill Rate (OFR), response 

time and Net Promoter Score (NPS).Instead, in the post-sales area, warranty, technical support, 

contractual maintenance and complaint management activities are essential for loyalty and 

corporate reputation. In the end, reverse logistics processes for returns and reconditioning, can 

transform a potential cost into an opportunity for upselling and continuous product 

improvement. 

2.3 System for Supply Chain Management 

2.3.1 Physical flow systems 

The physical flow in the supply chain includes all the activities of movement, storage and 

shipping of materials, from receipt at the warehouse to delivery to the customer and collection 

of returns. To manage it efficiently, companies rely on a set of software systems and automation 

platforms, each dedicated to a specific phase of the journey of the goods. 

Warehouse Management System (WMS) 

The goal of a Warehouse Management System (WMS) is to manage heterogeneous warehouse 

activities by coordinating them through information on incoming goods flows, outgoing flows, 

and quantities in stock, thus providing the ability to monitor logistics processes in real time. A 

good WMS connects to technologies such as barcode scanning, RFID, mobile devices, 

robotics, and augmented reality, and integrates with external systems such as ERP, TMS, and 

logistics software. These integrations improve accuracy, operational efficiency, and reduce 

errors, meeting the need for speed and control in the modern supply chain context25. 

Transportation Management System (TMS) 

It deals with the planning and monitoring of both inbound and outbound transportation. The 

TMS solves the Vehicle Routing Problem, selects the most cost-effective carriers, manages 

delivery windows and provides dashboards for real-time tracking of shipments, ensuring that 

products leave the warehouse according to the established times and costs26. 
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Package Sizing and Optimization Systems 

They are used in the packaging phase: by analysing volumetric weight, ideal pallet 

configuration and optimal number of packages, the system maximizes space, reduce 

transportation costs and helps achieve the goal of "transporting as little air as possible". Thanks 

to 3D scanners and pallet optimization software, they automatically update shipping parameters 

and feed the WMS with up-to-date data on volumes and dimensions. 

2.3.2 Information flow systems 

The information flow aims to ensure proper sharing of information that typically arises from 

separate processes within the supply chain. This ensures that all operational decisions, from 

demand forecasting to shipment tracking, are based on up-to-the-minute data. To orchestrate 

this data along the supply chain, companies adopt various specialized systems.  

Enterprise Resource Planning (ERP) 

ERP is the platform where information on past sales data, inventory, production plans and 

future market demand converge. SAP is one of the most widely used systems today, ensuring 

that multinationals have the right consistency of information across departments and 

automatically synchronizing processes. An example of a user of the system is the Italian 

multinational Barilla G. e R. Fratelli S.p.A and in particular the Production department. 

Through the ERP, planners can know in real time the stock status in the various warehouses of 

the network and in particular in those of the production plants. By associating this information 

with the future demand data developed by the Demand Planning office, employees can develop 

a Production Schedule for each Plant in the network, specifying which item to produce and the 

period within which it should be available. Then this information is shared at the Plant itself, 

where a “Process Follower” sees the scheduling in the ERP and prepares a raw material and 

operator allocation plan for each line affected by the production schedule. 

Electronic Data Interchange (EDI) e Application Programming Interface (API) 

Application Electronic Data Interchange (EDI) and Application Programming Interface (API) 

are two approaches used to exchange information between companies along the supply chain. 

EDI is a historic and widely used technology that allows business documents such as orders, 

invoices or shipping notices to be transmitted in a standard, structured format. It typically 

works in “batch” mode, that is, collecting and sending groups of documents at regular intervals, 

ensuring consistency, traceability and compliance with business partner requirements. 

APIs, on the other hand, are modern interfaces that enable communication between systems in 

real time. With APIs, information can flow instantaneously between suppliers, customers and 

management systems (ERP, TMS or WMS), facilitating visibility and responsiveness along the 

supply chain. However, they require more coordination in developing and managing 

connections. In many companies, EDI and APIs do not compete, but are used together: EDI for 

massive, standardized exchange of official documents, APIs for fast updates and flexible 

integrations that improve collaboration and operational efficiency27. 

Business Intelligence e Dashboarding 

The definition of business intelligence includes all those processes and tools that are used to 

collect, analyse and transform business data, and then use them to make operational or strategic 

data-driven decisions. Business intelligence allows for Dashboarding, i.e., creating interactive 

dashboards that allow for immediate visualization and, more importantly, understanding of raw 

business data, as well as Key Performance Indicators, i.e., performance measures against 

business objectives. BI dashboards enable the aggregation of data from various databases, their 

real-time updating, and the creation of customizable views based on the interests of 
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stakeholders. Dashboards, as opposed to traditional reports, are made to promote interactive 

and exploratory analysis through drill-downs, dynamic charts, and filters. This method 

promotes ongoing performance monitoring, enhances comprehension of operational and 

strategic trends, and helps the organization make better decisions28. 

2.3.3 Financial flow systems 

Financial flow coordinates payments, invoicing, credit management, and working capital 

optimization among all supply chain stakeholders. To support this, companies adopt dedicated 

platforms: 

Electronic Invoice Presentment & Payment (EIPP) 

One of the most used solution to mange the invoice cycle is the Electronic Invoice Presentment 

and Payment (EIPP): this a digital solution automates the entire invoicing cycle-from the 

creation and electronic submission of invoices to online payment by the customer. These 

systems allow firm's software to send autonomously invoices via web or email portals: by doing 

so, customers are enabled to view and settle documents securely and quickly. Through 

integration with ERP software, EIPP automatically generates invoices, applies validity checks, 

and facilitates matching of payment and document. Benefits include paper reduction, 

accelerated payment times, fewer data entry errors, improved cash flow management, and 

increased customer satisfaction29. 

Treasury Management System (TMS) 

Treasury management involves managing a company's cash flows and financial decisions, 

providing governance over liquidity, credit line maintenance, investment optimization, and 

fund use. A Treasury Management System (TMS) automates the treasury management process, 

providing better visibility into cash and liquidity, increased control over bank accounts, 

compliance standards, and better financial transaction management. TMS also offer real-time 

financial information, simplifying reporting and cash forecasting. They can automate 

payments, especially for large transaction volumes, and streamline reconciliation processes. 

Modern Treasury's Payments product offers custom payment controls for secure payments. A 

good TMS can streamline reconciliation by matching payments with transactions in bank 

statements, reducing manual work and errors30. 

2.4 Current challenges 

2.4.1 Demand volatility 

A major source of complexity in supply chain management is demand volatility: it’s mostly 

caused by customer purchasing decisions that are often unpredictable variables for business 

systems. This instability is amplified along the supply chain through the phenomenon known 

as the bullwhip effect, where little changes in demand downstream (at the end consumer) cause 

disproportionate fluctuations in orders placed by upstream actors (wholesalers, manufacturers, 

suppliers)31. Under conditions of high volatility, traditional planning systems based on 

historical data become less effective, forcing firms to have high buffers of inventory, extra 

production capacity or conservative sourcing strategies: all of these methods prevent out of 

stock but have negative consequences on costs and operational efficiency. Volatility can be 

caused by cyclical factors (such as seasonality and consumer trends) or by sudden exogenous 

events (natural disasters, regulatory changes, geopolitical crises), which make demand 

behaviour not only unstable but also difficult to predict with conventional forecasting methods. 

In recent years, demand volatility has taken on even more difficult characteristics for 

companies to manage. The paradigm began to shift with the pandemic from COVID-19: travel 
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disruption caused demand spikes in some sectors (e-commerce being one example) and 

paralysis in others (such as automotive) highlighting the fragility of global supply chains.  

Before the pandemic, globalization has made national supply chains even more interconnected, 

increasing the phenomenon of labour outsourcing, especially in Southeast Asian regions. A 

single event in one region can now generate ripple effects on the entire global supply network, 

amplifying fluctuations in supply and demand.  

One of the latest game-changers, have been social networks: platforms such as Instagram and 

Tik-Tok can generate unpredictable viral trends that can quickly influence consumer 

preferences, especially among young people. This phenomenon has been observed in various 

sectors, from fashion to food, where so-called “microtrends” can emerge and spread very 

quickly, testing the responsiveness of supply chains. It should be noted that these platforms are 

increasingly becoming showcases, where companies can show their products, often running 

the risk of overselling. Tik-Tok itself states that 70% of its users find new brands on its 

platform. Additionally, 75% of users are likely to make a purchase while using TikTok. 

Ultimately, 83% of users report that TikTok influences their purchasing decisions32. 

To address all these new challenges, companies are adopting demand sensing tools and 

predictive techniques based on Big Data and Machine Learning, which integrate real-time sales 

data, social media signals, weather data, and economic information to continuously update 

forecasts and make the supply chain more agile and responsive. 

2.4.2 Environmental and social sustainability 

The concept of a sustainable supply chain stems from the desire of companies to combine their 

economic goals with environmental and social goals. In order to design, manage and optimize 

a supply chain with sustainability, it is necessary to persevere in each of these steps the goal of 

reducing environmental impact through practices such as energy efficiency, recycling and 

waste minimization: in addition, respect for human rights must not be overlooked on any 

continent the supply chain operates, ensuring decent working conditions for its employees and 

monitoring the respect its partners have for them33. This transition to a sustainable supply chain 

has been necessitated by a combination of factors. The first is the growing expectation that 

investors, but especially consumers, have in taking advantage of products that reflect a lifestyle 

increasingly focused on respect for the environment and disadvantaged populations. Second, 

institutions have also begun to move under pressure of consumers, increasing regulatory 

pressure on companies. One example is the European Union's decision to ban the production 

of carbon dioxide-emitting cars from 203534. This decision has severely challenged the 

automotive industry, prompting companies to rethink their long-term strategies: the result has 

been a radical overhaul of corporate product portfolios and the adoption of more ambientally 

focused communication. 

The main challenges that emerge in building a sustainable supply chain are: 

• Material traceability: it is essential to be able to trace the path of materials throughout 

the chain-from raw material to finished product-to ensure environmental and social 

compliance. If companies don't monitor the origin of raw material used, the probability 

of involvement in unethical practices like deforestation , child exploitation or use of 

uncertified materials, increases. 

• Responsible supplier management: because a supply chain may involve hundreds or 

thousands of suppliers at different levels, it is critical to establish clear selection and 

evaluation criteria based on ethical and environmental standards. This requires regular 
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audits, supply contracts with ESG (Environmental, Social and Governance) clauses, 

and training programs for at-risk partners. 

• Reducing carbon footprint: a significant share if global gas emission is caused by 

manufacturing, transportation and logistics processes: by optimizing delivery routes, 

adopting electric vehicles in the companies fleet and improving the energy efficiency 

of facilities, are key actions to reduce overall environmental impact. 

• Circular economy: is essential to remove the old paradigms of “take-make-dispose”. 

Firms has to redesigning products and processes to encourage reuse, recycling and 

recovery of materials at the end of life. By doing so it will be generated a new circular 

economy that will reduce dependence on virgin resources and limits waste 

accumulation, contributing also to global sustainability goals. 

At the end, it should be emphasized that the recent improvements that companies have 

made in the matter of sustainability and respect for rights, are due primarily to the efforts 

of consumers. Without a public aware to these issues and able to exert pressure demanding 

constant improvement, none of this would be possible; instead, companies would have no 

real incentive to review harmful practices and invest in more ethical and responsible 

solutions.  

2.4.3 Risk management and resilience 

Risk management in the supply chain is finding, evaluating, and reducing the chances of events 

that could disrupt the movement of goods, information, and money along the supply chain. A 

supply chain that is strong can not only handle shocks, but it can also change swiftly and get 

back to normal quickly. 

Because of worsening global geopolitical balances, managing risk in the supply chain has 

become even more important in 2024 and 2025. Recent events have shown how easily political, 

economic, and logistical shocks can affect worldwide supply chains. 

War in Ukraine and the European energy crisis 

The continuation of the war in Ukraine has had a systemic impact on global supply networks, 

especially those for energy and food. Because Russia's natural gas and oil supplies have been 

cut off, Europe has had to quickly change the way it gets its energy. It is now getting more 

LNG from the US and Qatar and investing more quickly in renewable energy. From the point 

of view of the industrial supply chain, a lack of raw materials like steel, fertilizer, and wheat 

has slowed down output and raised prices in important industries like chemicals, automotive, 

and agro. Also, the closing of numerous land and rail routes has made it harder for sea and air 

freight to get things done, which has made international deliveries take longer on average. The 

scenario has made European corporations look for more suppliers, which means they are less 

dependent on unstable areas and are putting money into making their most important products 

more regional35. 

U.S.-China Trade Conflict 

In the 2024-2025 biennium, the economic competition between the US and China has quickly 

gotten worse. The US has put export limits on the sale of advanced technologies to China: this 

ban include semiconductors, microchips and artificial intelligence. This decision affects not 

only Chinese suppliers but also worldwide production chains that depend on these parts and 

perform part of their operation in the Est. As a result, also China has put limits on the export of 

important resources like gallium, germanium, and rare earths. These elements are necessary for 

the technology, telecommunications, and green energy industries: also they are mainly mined 

in the Asian country, thus becoming a scarce resource36. This has put a lot of stress on the high-
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tech industries, which has slowed down the making of electric vehicles, electronic devices, and 

photovoltaic systems. Because trade cooperation is getting worse, many corporations are 

changing how they source goods. They are prioritizing friendshoring (putting production in 

countries that are politically aligned) and speeding up technology reshoring initiatives, 

especially in the US, Europe, and Japan37.  

Logistics crisis in the Red Sea and Taiwan Strait. 

Shipping in the Red Sea and Taiwan Strait has experienced a phase of high instability.  

Attacks on merchant ships by armed groups in the Red Sea region (linked to tensions in Yemen 

and the Horn of Africa) have forced many shipping companies to divert routes by 

circumnavigating Africa via the Cape of Good Hope, resulting in increased delivery times 

between Asia and Europe38. 

At the same time, the Taiwan Strait, has been the scene of military manoeuvres and diplomatic 

tensions between China, Taiwan and the United States. The threat of a naval blockade or 

sanctions has led many logistics operators to seek safer, albeit more expensive, alternatives, 

negatively affecting the fluidity of routes between Asia and North America39. The impact on 

global supply chains was immediate: increased container freight rates, delivery delays, 

shortages of critical components (especially electronics), and the need to renegotiate logistics 

and insurance contracts on more onerous terms. 

2.5 Summary and outlook  
This chapter showed that the modern supply chain is a dynamic system: it is made up of a 

network of connected players who coordinate the flow of goods, information, and money. The 

shift from traditional logistics to an end-to-end approach has turned the supply chain into a real 

competitive advantage for companies. Over the last few decades, innovations like ERP systems 

for process integration, WMS and TMS for logistics automation, and Business Intelligence 

platforms for data visualization and analysis have improved visibility and lowered costs, 

making supply chain management more flexible and customer-oriented.  

Even with all these improvements, the global context is still complex and full of uncertainty. 

Things like demand volatility, made worse by the bullwhip effect, geopolitical tensions, and 

increasing regulations on environmental and social sustainability mean that supply chain 

models need to keep evolving. Building resilience, meaning the ability to absorb shocks and 

get things back on track quickly, has become a key priority. This calls for strategies like 

diversifying suppliers, using friendshoring or reshoring, improving raw material traceability, 

and adopting circular economy practices. 

Looking ahead, technology will play a big role in dealing with these tough and hard challenges. 

Tools based on Artificial Intelligence and Machine Learning, like real-time demand sensing, 

network design optimization, predictive models for maintenance, and anomaly detection for 

risk management, will be essential to make forecasting and decision-making much better. 

Using digital twins and advanced simulations will also let companies try out different what-if 

scenarios, which helps them plan smarter and react faster when things don’t go as expected. 

Looking ahead, the main challenge will be finding the right balance between efficiency, 

flexibility, and sustainability. A supply chain will need to be not only high-performing, but also 

ethical, transparent, and resilient. Companies that manage to use new technologies to build 

smarter, more collaborative, and more sustainable supply chains will be the ones able to gain a 

lasting competitive advantage in a constantly changing market. 
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CHAPTER 3 – AI’s applications in Supply Chain 

3.1 Introduction 

3.1.1 Chapter goals 

In recent years, supply chains have faced an increasingly unpredictable environment, 

characterized by unforeseen events (pandemics, geopolitical tensions, energy crises) and 

growing management complexity due to globalization, the personalization of demand, and 

pressure on sustainability. Faced with these challenges, it has become clear that traditional 

management models based on historical data, rigid planning, and slow reactions are no longer 

sufficient. 

In this scenario, artificial intelligence (AI) emerges as a strategic lever for the digital 

transformation of value chains. Thanks to techniques such as machine learning, natural 

language processing, and predictive analytics, AI is able to process large volumes of 

heterogeneous data, detect subtle patterns, and support automated or semi-autonomous 

decisions across all levels of the supply chain. The practical applications of these technologies 

are now widespread and documented in numerous industrial cases, with measurable effects in 

terms of cost reduction, increased agility, and improved service levels. To provide a numerical 

representation of these benefits, in early 2024, the Georgetown Journal of International Affairs, 

selecting a sample of "AI early adopters," demonstrated how this technology can reduce 

logistics costs by 15%, improve inventory levels by 35%, and enhance service levels by 65%40. 

Having understood the potential challenges and benefits of AI in the supply chain, this chapter 

aims to illustrate its main applications, dividing them into 4 thematic areas: 

• Demand forecasting, 

• Inventory optimization, 

• Predictive logistics, 

• Quality control, 

The chapter can be seen as a pivot to move from the management challenges seen in chapter 2 

and the AI solution discussed in chapter 4 through real world case studies. 

3.1.2 Types of Artificial Intelligence in the Supply Chain 

Types of AI that can be used in Supply Chain are classified in three main categories: analytical, 

predictive, and prescriptive. The classification helps to understand what each sort of AI can 

perform to help the decision making process41. 

The first type is Analytical AI, which is used to analyse historical data to find trends, outliers, 

or origin of variation in performance indicators. This AI doesn't give an answers but instead, it 

helps to comprehend what happened and how it affected firm's operations.  

Predictive AI employs machine learning and statistical models to understand what might 

happen in the short or even medium-longer future of firms operation. Based on historical data, 

trends, and outside factors, it is commonly used for demand forecasting, predictive 

maintenance. It makes forecasts more accurate, lowers safety inventories, and makes the best 

use of manufacturing capacity in the supply chain. 

Prescriptive AI is the most advanced type since it directly tells companies what to do to reach 

a specific goal, like lowering expenses or raising service levels. This kind of AI combines 

predictive models with optimization algorithms to give clear advice or even start automatic 
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actions. It can be used in the supply chain to make flexible plans for manufacturing and 

distribution, assign transportation loads in real time, or move resources around, based on what 

the business needs in a specific moment. 

 These three types are not mutually exclusive, but rather complementary: a mature digital 

supply chain uses descriptive analytics to monitor, predictive analytics to anticipate, and 

prescriptive. 

3.2 Demand Forecasting 

3.2.1 Definition 

Demand forecasting is one of the most important processes within a manufacturing company, 

as it attempts to estimate in advance the quantity of products or services required by customers 

within a specific time frame. Accurate estimates will enable other business units to successfully 

manage their operations. Effective demand forecasting allows for effective planning of 

production and logistics flows, while reducing waste, delays, and unnecessary costs. 

Furthermore, as mentioned in the previous chapter, having flexible demand forecasting 

processes allows for adapting to customer purchasing behaviours, which are increasingly 

driven by unpredictability and decisions dictated by factors beyond the company's control. 

3.2.2 Predictive Models vs. Traditional Approaches 

Traditionally, companies have relied on classic statistical methods to estimate future demand 

behaviour: the most commons ones were linear regression, ARIMA model and Croston model. 

These models are relatively simple to implement, easy to interpret, and require a limited 

amount of historical data. 

Linear Regression 

Among the most common methods for demand forecasting, linear regression is one of the 

simplest and most historically used models. This approach aims to explain the behaviour of the 

dependent variable (for instance future demand) as a linear function of one or more independent 

variables, such as past sales, seasonal trends, prices, or macroeconomic indicators. In 

mathematical terms, linear regression is expressed by the formula in the following image. 

 

Where: 

• Y is the variable to estimate (for instance future demand), 

• X₁, X₂, ..., Xₙ are the explanatory variables (e.g. past sales, discounts, seasonality, etc.), 

• β₀ is the intercept: it’s the value of Y when all the Xs are equal zero. 

• β₁...βₙ are the coefficients that measure the effects of each X on the Y variable, 

• ε is the error term, which represents the component not explained by the model. 

The underlying principle of linear regression is quite simple: it starts from the idea that there 

is a stable and proportional relationship between each explanatory variable and demand. In 
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other words, if a variable X increases Y is also expected to increase or decrease accordingly to 

the estimated coefficient. 

But this paradigm does have some relevant problems. It assumes that each variable influences 

demand independently and with a constant impact over time. It is also very sensitive to 

multicollinearity, which is when two or more independent variables are correlated to each other. 

The model may not work right if the variables are multicollinear. This is a big difficulty when 

trying to put theory into practice. In the supply chain, demand does not always follow linear 

and orderly patterns: it can depend on the combined effects of multiple variables, unexpected 

events, or trends that change over time. These are dynamics that a linear model, by its nature, 

struggles to capture.  

For this reason, while useful in simple or very stable contexts, linear regression shows its 

limitations in complex scenarios such as those of modern supply chains, where uncertainty, 

volatility, and strong interconnections between factors reign. 

ARIMA Model 

One of the most widely used methods for demand forecasting is the Autoregressive Integrated 

Moving Average model. Using this method, a historical series such as market demand can be 

analysed and, after a series of processes, the new component of the series, the forecasted value, 

can be obtained. 

This model combines three main blocks: 

AR - Autoregressive: In this module, it is assumed that future demand is linked to demand 

already recorded over time. Linear relationships between the variables are therefore sought, 

just as in linear regression. 

I - Integrated: This component of the model aims to stationaries the time series, eliminating 

trends and seasonality that could compromise accurate forecasting. This is done by calculating 

the differences between consecutive observations (for example demand of the current month 

minus that of the previous month), thus analysing variations rather than absolute levels. 

MA - Moving Average: This takes into account the forecast error made in previous periods, 

assuming that the error is not random but has a systematic structure. In practice, the model 

corrects the current forecast based on deviations observed in the past. 

The ARIMA model is parameterized with three integer values (p, d, q), where: 

• p indicates the order of the AR component (how many past values to consider), 

• d indicates the number of differencing needed to make the series stationary, 

• q indicates the order of the MA component (how many past errors to include). 

The three components are then combined in the following equation: 
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In short, ARIMA tries to guess the next value in a time series by looking at prior values, 

historical forecast mistakes, and any trends that show up in the data. It gives each one a weight 

based on how important it is. The model uses the historical series, makes some changes, such 

differencing to get rid of patterns, and then predicts the next point based on what has happened 

previously and how wrong the last forecasts were. 

It's a sensible way to do things, and it usually works well when the data is stable and follows 

a pattern that can be seen. 

That being said, ARIMA doesn't always work well when things are more complicated. It can 

be hard when the data is very volatile or affected by outside forces, like demand in modern 

supply chains. It doesn't fully fail, but it does become less reliable when things get too crazy 

or out of control42. 

Croston Model 

In supply chain management, one of the most persistent challenges is forecasting intermittent 

demand, demand marked by long stretches with no orders, interrupted by sudden and irregular 

requests. Situations of this kind often arise in areas such as spare parts, seasonal goods, or slow-

moving products. Standard techniques like linear regression or ARIMA are usually unsuited to 

the task, since they treat the sequence of zeros and positive values as though it followed a linear 

pattern, which in practice leads to systematic over- or underestimation. To confront this 

problem, J.D. Croston introduced in 1972 a method tailored to such cases: the Croston model, 

which has since become a cornerstone in many inventory management systems. Its key 

contribution is the idea of disentangling the estimation of demand size from that of demand 

frequency, thereby overcoming the weaknesses of traditional approaches43. 

The Croston model can be expressed in a compact way as in figure: 

 

Where: 

• 𝑑𝑡 is the observed demand at time t, 

• 𝑎𝑡 is the updated estimate of the average quantity of demand (i.e., how much is ordered 

on average each time a demand occurs), 

• 𝑝𝑡 is the periodicity, i.e., the average interval between two positive demands, 

• 𝑓𝑡 is the demand forecast for each period, 

• α ∈ (0,1) is the smoothing factor, 

• q is the number of periods since the last non-zero demand. 

This formulation makes explicit the conditional behaviour of the model: when a positive 

demand is observed, the averages are updated with the new value and the forecast is 

recalculated; when demand is zero, no parameter is updated and the forecast remains 

unchanged44. Still, the model has some important shortcomings. It tends to overestimate 

average demand, since the parameters remain fixed during periods without orders. It also 
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struggles to account for elements such as trend or seasonality, and it does not easily adjust when 

demand undergoes structural changes or is influenced by external shocks. 

 

In the end, although it is simple and often effective in dealing with intermittent demand and in 

describing relatively stable scenarios, Croston’s model shows structural limits that reduce its 

usefulness in more dynamic environments. 

3.2.3 Machine Learning models 

In recent years, the spread of artificial intelligence, especially machine learning and deep 

learning, has introduced new approaches capable of addressing many of these limitations. The 

following section will look at predictive models such as gradient boosting and artificial neural 

networks, which learn directly from the data without requiring the analyst to define in advance 

how the variables relate to one another. They can also adapt as new information becomes 

available and are able to work with very large datasets, including those that are only partially 

structured. Beyond that, AI makes it possible to uncover patterns that would be hard to detect 

with classical techniques, to react more quickly to shifts in the surrounding context, and to 

draw on a wide range of data sources, from weather records to social media activity, all the 

way to exchange rate movements.. At the same time, however, their use also depends on certain 

prerequisites, such as data quality, sufficient computational resources, and solid analytical 

expertise. In short, AI-based predictive models do not entirely replace traditional methods, but 

they extend and strengthen them, providing higher accuracy and flexibility in contexts marked 

by uncertainty. 

Gradient Boosting Machines (GBM)  

Gradient Boosting Machines (GBMs) are often regarded as a very effective approach for 

problems such as regression and classification, and in recent years they have become especially 

popular in industry for demand forecasting. The idea is fairly straightforward: instead of relying 

on a single model, a GBM combines many weak learners, usually decision trees, so that, 

together, they form a much stronger predictor.  

A decision tree itself can be pictured as a flow of questions and answers: each inner node tests 

a variable, the branches represent the possible conditions, and the leaves give the final output. 

On its own, however, a single tree that is not sufficiently deep has limited predictive power. 

This is where the idea of building collections of trees comes in. 

Random Forests offer one way of combining trees. Random Forests make use of a technique 

known as bagging. In practice, this means that many trees are built at the same time, each on a 

different random subset of the data, and the final prediction comes from combining their 

outputs, for example by averaging the results or taking the majority vote. This technique lowers 

variance and usually makes the model more stable, though it tends to produce predictions that 

are somewhat averaged out, without directly targeting the errors. 

Gradient Boosting takes a different path. Instead of growing trees at the same time, it builds 

them one after another, and each new tree is trained to improve on the shortcomings of the 

previous ones. In this way, the model directs more attention to the hardest observations to 

predict. This sequential refinement gives the final model a very high predictive capacity, though 

at the cost of greater computational complexity45. 

In the context of weekly demand forecasting for a retail product, GBM can be explained 

through a sequence of steps. The process begins with a very rough estimate of the target 

variable, for instance, the number of units sold in a given week. This first guess is usually taken 
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as the average observed in the training data and acts as a starting point that the model will refine 

step by step. 

From here, the model calculates the residuals, that is, the difference between the actual demand 

recorded in the data and the forecast produced up to that point. In practice, this step amounts 

to checking how far the predicted weekly sales are from the actual figures recorded in the data. 

A decision tree is then trained to look for recurring patterns in those differences, in order to 

explain the source of the error. For instance, the tree may point out that demand systematically 

increases during promotional periods or that unusual weather conditions tend to alter sales 

levels. The adjustments suggested in this way are introduced gradually, by means of the 

learning rate, a parameter that regulates the contribution of each new tree. This ensures that 

forecasts are corrected step by step, without producing abrupt or implausible jumps. 

This cycle, calculating residuals, fitting a new tree, and updating the prediction, is repeated 

several times. With each round, the model puts more weight on the observations that remain 

hardest to predict. Once the process has run for a fixed number of iterations, or when an early 

stopping condition is triggered, the outcome is a final model that brings together all the trees, 

each weighted according to its contribution. 

The advantages that GBM offers over traditional models are several. First of all, it performs 

very well in modelling non-linear relationships between variables, a crucial aspect in demand 

forecasting, since sales are often shaped by complex and interdependent factors such as 

seasonality, promotions, macroeconomic indicators, or external data sources like weather 

conditions, special events, and online trends. In contrast with more traditional linear models, 

GBM manages to capture these dynamics in a more flexible way, even when different features 

interact with each other. 

 

An additional important feature of GBM is that it can rank the importance of the input variables, 

showing which ones have the greatest effect on the forecast. This makes it easier for supply 

chain managers to understand the main factors driving demand and to plan targeted actions, for 

instance by increasing promotional efforts in periods of higher sensitivity. 

In applied settings, recent versions of GBM such as XGBoost, LightGBM, and CatBoost are 

often preferred because they scale well. These implementations can handle very large datasets 

while still producing accurate results within acceptable computation times. With such tools 

training can be completed on millions of observations in a short period, without sacrificing 

efficiency or predictive accuracy.  

Another advantage is that GBM can also manage missing values and categorical variables, 

which are common in real-world datasets, without requiring complicated preprocessing steps. 

This reduces the effort needed in the preparation stage and allows the model to be integrated 

into company information systems more smoothly. 

To sum up, Gradient Boosting Machines can be considered among the most effective tools for 

demand forecasting in supply chain management. Their strength lies in the ability to learn 

complex links between variables, to cope with heterogeneous datasets, and to provide forecasts 

with a high level of accuracy. What makes them appealing in a business setting is the balance 

they offer between accuracy, flexibility in use, and the possibility of interpreting the results. As 

a result, GBMs turn out to be especially useful in business practice, where accurate forecasts 

can support better decisions and contribute to smoother and more efficient logistics. 
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Support Vector Regression (SVR) 

Support Vector Regression (SVR) is a supervised learning technique derived from the Support 

Vector Machine (SVM) model, which was introduced by Vapnik and Cortes in the 1990s as a 

method for both linear and non-linear classification. Suppose we are given a labelled dataset 

divided into two classes. The goal of an SVM is to identify a hyperplane, expressed as a linear 

function 𝑓(𝑥) = 𝑤𝑡𝑥 + 𝑏, that separates the two classes in such a way that the margin, the 

distance between the hyperplane and the closest points from either class known as support 

vectors, is maximized. In practical terms, this means creating a rule that can assign new 

observations to one class or the other. Given a new point 𝑥, the model checks on which side of 

the hyperplane it lies and classifies it accordingly. Choosing the hyperplane that maximizes the 

margin makes the model more robust to noise and small changes in the data. In this way, the 

goal is not only to match the training set but also to achieve a solution that generalizes well46. 

This approach was later extended to regression problems, leading to what is known as Support 

Vector Regression (SVR). In this case, the aim is not to separate classes, but to identify a 

function that stays as close as possible to the observed data, within a tolerance level 𝜀. A 
distinctive feature of SVR is the introduction of an 𝜀-insensitive margin, where deviations 
smaller than ε are not considered as errors. The optimization task is therefore to find a 
function 𝑓(𝑥) that combines low structural complexity, meaning a wide margin, with 
respect for the error constraints. In demand forecasting, SVR is applied to capture the link 
between future demand (the target) and explanatory variables such as price, promotions, 
seasonal factors, weather conditions, and past sales patterns. Each observation in the 
dataset can be written as a vector 𝑥 = (𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑛), where every element 𝑥𝑖 represents an 

independent variable. The purpose of the model is to learn a function 𝑓(𝑥) that produces, for 

any given input vector, a prediction of demand 𝑦. What matters is that the prediction does 
not depend on a single factor, but on the joint effect of many variables considered together. 
When the model is trained, SVR does not impose any predetermined shape on the link 
between inputs and outputs. It infers this link directly from the data, learning how each 
variable 𝑥𝑖 influences the forecast. For example, if the dataset shows that promotions are 
usually followed by higher sales, the algorithm will capture this by giving more 
importance to that variable. Conversely, a higher price may emerge as a factor associated 
with lower demand47.48 

Thanks to its ability to generalize and to remain robust in the presence of noise, SVR can be 

considered a solid option in situations where the amount of data is not very large but variability 

is significant. 

3.2.4 Deep Learning models 

Artificial Neural Network (ANN) 

Many researchers describe these networks as a bridge between machine learning and deep 

learning. This is true if we look at theory, but also if we think about how they are applied in 

practice. The basic idea comes from the brain, although only in a very rough way. A network 

is formed by a lot of small units, artificial neurons, which are arranged into layers. Normally 

there is an input layer first, then one or more hidden layers in the middle, and at the end the 

output layer. A neuron just gets some information, does a quick operation on it, and hands it on 

to the next ones. Step after step, this simple routine allows the network to build up its final 

prediction. 

In methodological terms, ANNs are usually included among supervised learning methods, 

since they rely on labelled data to learn how to associate inputs with the correct outputs. What 

has changed the most in recent years is the growing depth of these networks. By adding more 
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hidden layers and by relying on much stronger computational resources, researchers have been 

able to extend the potential of ANNs, and this is basically how deep learning was born. In 

practice, deep learning makes use of very deep neural networks that can capture complex and 

abstract patterns in the data, often reaching results that are beyond what traditional statistical 

models or earlier learning methods could do49. 

The origins of artificial neural networks can be traced back to the 1940s, with the formal model 

introduced by McCulloch and Pitts (1943). In their work, a neuron was described as a logical 

unit that could activate depending on input thresholds. A first practical development came later 

with Frank Rosenblatt’s perceptron (1958), a single-layer neural network able to learn weights 

for classifying linearly separable data. However, the enthusiasm around neural networks 

slowed down considerably after the publication of Minsky and Papert’s book (1969), which 

highlighted their theoretical limits. In particular, they showed that the perceptron was unable 

to solve problems that were not linearly separable, such as the well-known case of the XOR 

logical operator50. 

Interest in artificial neural networks (ANNs) started to grow again during the 1980s, mainly 

because of the work of David Rumelhart, Geoffrey Hinton, and Ronald Williams. In 1986 they 

published a very influential paper where they introduced the backpropagation algorithm. With 

this method it finally became possible to train, in an effective way, neural networks made of 

several layers, which until then had remained more of a theoretical idea than a practical tool. 

The key challenge was that, even if researchers already knew how to update the parameters 

(the so-called weights) of very simple models like the perceptron, there was still no reliable 

way to modify the weights of the hidden layers inside more complex networks. These hidden 

layers do not produce a direct output, and for this reason it was unclear how to modify their 

behaviour according to the overall error of the network. 

The backpropagation algorithm solved this issue by creating a method to send the error signal 

“backwards” through the network. It begins from the difference between what the network 

predicts and the real value (that is, the error), and then it estimates how much every single 

neuron, in each layer, has contributed to that error. Based on this information, the weights are 

updated. The same procedure is repeated over and over, until the total error of the network goes 

down below a certain level. Thanks to this innovation, it became possible to actually build and 

train multilayer networks able to face more complex and non-linear problems. In other words, 

problems where the link between the input variables and the output is not direct or simple at 

all. This result, which was at the same time technical and also conceptual, opened the road for 

the creation of deeper networks and, more generally, for what we call today modern deep 

learning51. 

The word deep is used because of the presence of several hidden layers, which give the network 

the possibility to learn hierarchical and more and more abstract representations of the input 

data. In other words, an ANN with only one or two hidden layers can still be considered a 

“classical” machine learning model, while a deeper network, with many layers, more complex 

activation functions, together with normalization and regularization techniques, clearly belongs 

to the field of deep learning. 

From a structural point of view, an artificial neural network is made of elementary 

computational units called artificial neurons, which are loosely inspired by the functioning of 

biological neurons. The neurons are put together in layers: first the input layer, that receives 

the variables from the dataset; then one or more hidden layers, where the information is really 

worked out; and finally the output layer, which gives the prediction. 
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Each neuron receives as input a set of numerical values coming from the neurons in the 

previous layer, combines them linearly by means of synaptic weights (𝑤) and a bias (𝑏), and 

then applies a non-linear activation function (for instance ReLU, sigmoid or tanh) to obtain the 

neuron’s output: 

𝑎 =  𝜙(𝛴w𝑖x𝑖 + 𝑏) 

where ϕ is the activation function, xᵢ are the inputs, and wᵢ the corresponding weights. As 

explained before, the learning process is carried out by an iterative algorithm called 

backpropagation, usually in combination with numerical optimization methods such as 

gradient descent. During training, the model calculates the prediction error (for example, the 

squared difference between the observed and the predicted value) and updates the weights 

throughout the network by propagating the gradient of the error backwards, in the opposite 

direction of the data flow. This process goes on until the error reaches a minimum threshold, 

or until the maximum number of training epochs is completed. 

The presence of several hidden layers makes it possible for the network to learn progressively 

more abstract and hierarchical representations of the input data, giving ANNs the ability to 

model highly non-linear relations and to capture complex interactions among variables, things 

that usually escape traditional models. This particular feature of ANNs makes them a powerful 

and flexible solution for demand forecasting in the supply chain, especially as an answer to the 

structural limits of traditional models. Unlike those models, which often assume linear relations 

or rely on strong hypotheses about the data (such as stationarity in time series), ANNs are able 

to learn the underlying relationships directly from the data, without forcing a rigid structure in 

advance. ANNs are trained on the same historical datasets used by traditional approaches, with 

independent variables that usually include past sales, product prices, the presence or absence 

of promotions, seasonality indicators (such as month, day of the week, or holidays), external 

factors (weather conditions, local events, special openings), as well as stock levels and other 

logistical information. What comes out of the network is the predicted demand for the next 

period. Thanks to the fact that they have many layers and non-linear activation functions, ANNs 

can also capture complicated interactions among variables, like a promotion being useful only 

in certain months, or the effect of price changing with the sales channel. 

 

One of the main advantages of ANNs is their ability to generalize: once they are trained on a 

representative dataset, they can forecast demand even in scenarios that are not exactly the same 

as the ones observed, but similar in structure. This aspect is particularly useful in industries 

characterized by strong volatility, such as fast-moving consumer goods, fashion, or e-

commerce. Finally, ANNs can be integrated into automated forecasting pipelines, updating 

themselves regularly with new data. In many companies, they are already used as part of 

advanced demand sensing systems, which can quickly react to changes in consumer behavior, 

improving forecasting accuracy and optimizing inventory management as well as operational 

planning52. 

 

3.3 Inventory optimization with AI 

3.3.1 Definition and Challenges 

Optimizing inventory is often one of the hardest tasks when trying to keep a supply chain 

efficient. Well-planned stock levels can help cut operating costs while still allowing the 

company to meet customer demand. In practice, the goal is to set, for every product and at 
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every stage of the network, inventory levels that balance product availability with the overall 

cost of logistics. 

Inventory doesn’t serve a single purpose, and it’s not all the same. In practice, it can be thought 

of in a few main groups. One is cycle stock, basically the regular amount kept on hand to cover 

demand between two orders. There’s also safety stock, which acts as a cushion when demand 

jumps unexpectedly or when deliveries take longer than planned. In some situations, companies 

prepare seasonal stock, building it up ahead of predictable peaks like holidays or seasonal sales. 

We also have pipeline stock, which simply refers to goods that have already been ordered but 

are still on their way. And then there’s obsolete or idle stock, the leftover items that result from 

changes in demand or product updates, often a source of extra disposal costs. 

Managing inventory also means dealing with a range of expenses. Among the most common 

are: 

• Ordering or replenishment costs: administrative tasks, transportation, and setup costs 

linked to restocking. 

• Stockout costs: the losses that come from running out of stock, such as missed sales, 

contract penalties, and dissatisfied customers. 

The real challenge of inventory optimization is to cut the overall cost of holding and 

replenishing stock without sacrificing service levels. In complex and rapidly changing 

environments, though, relying solely on manual calculations or fixed models often proves 

inadequate and can even lead to poor results. This is where artificial intelligence becomes 

valuable, providing new tools to deal with demand volatility, product diversity, and the 

geographic dispersion of warehouses. 

3.3.2 Traditional Inventory Management Models53 

EOQ Model 

The EOQ (Economic Order Quantity) model is one of the most classic and well established 

tools in inventory management theory. First introduced by Ford W. Harris in 1913 and later 

refined by other scholars, it aims to determine the optimal order quantity each time stock is 

replenished, with the goal of minimizing the total cost of inventory management. 

In this framework, total inventory cost is made up of two main components. The first is the 

ordering (or setup) cost, which decreases as the order size increases. The second is the holding 

cost, which instead rises with larger order quantities. The exact point at which the two curves 

intersects, where their sum is at its lowest, represents the Economic Order Quantity. The basic 

EOQ formula can be expressed as follows: 

𝐸𝑂𝑄 =  √
2𝐷𝑆

𝐻
 

In the EOQ formula, D represents the annual demand, S the ordering cost for each order, and 

H the annual holding cost per unit. This formula makes it possible to calculate the quantity that, 

if ordered consistently, minimizes the total inventory cost in a system where demand is 

constant. 

The model is based on a set of quite strict assumptions. It works under the idea that demand is 

perfectly known in advance, constant, and evenly spread throughout the year. Lead time is 

considered fixed, so no delays or stockouts ever occur. Both ordering and holding costs are 

assumed to stay the same over time, and the price per unit does not change — meaning no bulk 
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discounts are taken into account. Lastly, the model assumes that items never become obsolete 

or deteriorate while in storage. 

Although the EOQ model is still a solid theoretical reference and remains useful for small and 

medium-sized businesses, its practical relevance can be limited in real-world settings where 

demand is variable, lead times are uncertain, and supply chains are more complex. 

(s, S) Model – Minimum Stock Policy with Replenishment to Maximum Level 

The (s, S) model is one of the main stochastic approaches to inventory management and is 

widely used in industrial practice. It defines a threshold-based replenishment policy: an order 

is placed only when the inventory level drops below a predefined threshold, called s or 

minimum stock level, and the quantity ordered is simply enough to bring the inventory back 

up to the maximum level, called S. 

Put simply, when the current inventory level is lower than s, the quantity ordered is equal to S 

minus the current inventory. If the inventory level is equal to or higher than s, no order is placed. 

In this framework, the current inventory is represented by I, the reorder point by s, and the 

maximum stock level by S, which is often referred to as the order-up-to level. 

Unlike the EOQ model, the (s, S) policy is built to handle situations where demand is not 

perfectly stable. Instead of following a fixed order quantity, it places an order only when stock 

drops below a certain point and adjusts the size of the order to restore the desired level. This 

approach gives managers more flexibility and tends to work better in real-life conditions, such 

as multi-product distribution, retail supply chains, or warehouses where demand can be 

irregular. 

Finding the right values for s and S is one of the trickiest parts when putting the (s, S) policy 

into practice. These two numbers aren’t fixed once and for all: they depend on many factors 

that influence each other, like how demand is distributed over time, the cost of placing an order, 

how long and how variable the lead time is, the cost of keeping items in stock, and even the 

expected cost of running out of stock or failing to meet service levels. 

In the traditional approach, estimating s and S usually means building a stochastic optimization 

model, often written as a dynamic programming problem. The problem is that as you add more 

products, longer planning horizons, and additional warehouse locations, the calculations 

quickly become harder to manage. This growing complexity is one of the main reasons why 

the method is not always practical on a large scale. 

A further difficulty is that the outcome depends a lot on the quality of the data used. When past 

data are incomplete or fluctuate too much, the values of s and S suggested by the model can be 

misleading, and the whole policy may end up performing poorly. In these cases, artificial 

intelligence can be very helpful. By using real-time information and predictive methods, it can 

constantly adjust these values and keep the inventory policy closer to the real behaviour of 

demand. 

3.3.3 Metaheuristic Optimization in Inventory Management 

When standard mathematical tools like linear programming or integer programming are not 

enough, optimization can became a problem: in this type of scenario metaheuristic can became 

a good alternative. They are algorithms designed to look for acceptable solutions without 

relying on an exact formula. Many of them are inspired by what happens in nature, such as the 

way species evolve, how animals act together, or how physical systems react to change. 
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Problems suited for metaheuristics, such as inventory control or logistics network planning, are 

usually very large and messy. There can be an enormous number of possible choices, variables 

of different kinds to account for, and a lot of constraints that influence one another. To make 

things worse, the function that measures how good a solution is is often irregular and non-

linear, which makes traditional analytical methods almost impossible to use. 

One of the main reasons metaheuristics work well is that they don’t settle too early for a 

solution that is just “good enough.” Instead, they keep exploring different areas of the problem 

while also improving the most promising results found so far. 

In supply chain management, these algorithms have been used successfully to deal with 

problems where the objective functions are non-linear, data are uncertain, and the network has 

several levels. In these cases, classical approaches are either not practical or too 

computationally expensive. Among the many metaheuristics that have been proposed, Genetic 

Algorithms are some of the most common54. 

Genetic Algorithms 

The principle of natural evolution impaired in 1970s John Holland in the creation Genetics 

Algorithms, used as a computational model to simulate the adaptive processes observed in 

living organisms.  

In a Genetic Algorithm, the search step takes place over a population of candidate solutions, 

called individuals: each individual corresponds to one possible way of configuring the problem, 

and its characteristics are expressed through a sequence of values known as a chromosome. 

The most common encoding scheme is binary, but in engineering and management applications 

it is common to use real-valued or hybrid (binary + real) representations, which allow for a 

more flexible handling of mixed variables and operational constraints. 

 

The genetic process unfolds across multiple generations, during which the individuals in the 

population are evaluated using an objective function that assigns them a fitness score 

essentially a measure of how well each solution satisfies the problem’s criteria. The fitter an 

individual is, the more likely it is to be chosen to produce the next generation of solutions. This 

happens through genetic operators that mimic natural evolutionary processes. In other words, 

selection reproduces the idea of survival of the fittest, while crossover takes fragments from 

two parent solutions and recombines them to create new offspring. Mutation, on the other hand, 

introduces small random changes, which helps maintain genetic diversity and prevents the 

search process from getting stuck too early in a suboptimal solution. 

When we look at the specific case of the (s, S) inventory policy, often called the “min–max” or 

“order-up-to” policy, each individual in the population can be represented by a chromosome 

with two real-valued genes: the value of s and the value of S, with the obvious constraint that 

s must be smaller than S. The aim is to minimize a cost function that typically accounts for 

several components at once. These include the cost of holding inventory over time, the cost of 

placing new orders, and the penalties associated with stockouts or missed sales. 

The fitness function essentially measures how effective a given pair (s, S) is at keeping total 

costs under control. In practice, every candidate solution receives a score based on the total 

simulated cost over a given time horizon, taking into consideration demand, which may 

fluctuate or be uncertain. Genetic algorithms then explore many different combinations of 

reorder thresholds and target stock levels, gradually homing in on those configurations that 

yield the lowest overall cost55. 
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Are Genetic Algorithms AI? 

Genetic algorithms are sometimes treated as a separate computational tool, yet today they are 

usually placed within the wider domain of artificial intelligence, particularly in the area of 

intelligent optimization. Russell and Norvig (2021), in what is probably one of the most 

influential AI textbooks, classify GAs as “machine learning methods without explicit training.” 

Put another way, they don’t use a fixed training dataset. Instead, they gradually improve 

candidate solutions through a kind of evolutionary trial-and-error, letting better ones survive 

and combining them to search for even better results. Instead, they keep refining potential 

solutions step by step, following an iterative process that takes inspiration from how species 

adapt and evolve over time. 

This way of looking at them makes clear why they fit so well in the AI world. Like other 

approaches in this field, they can explore very large and complex solution spaces on their own 

and adjust to changes as they go. This flexibility is particularly useful when the problem cannot 

be expressed through a precise mathematical model, or when such a model would be too rigid 

to capture the variability of a real system. 

3.3.4 Deep Reinforcement Learning 

One of the most recent artificial intelligence paradigms is Reinforcement Learning (RL): it is 

based on the principle of having an agent interact with a dynamic environment to determine 

how to arrive at an optimal solution. Unlike supervised learning, in this case the agent has no 

best practices to follow, but only basic rules which to adhere to: knowing the limits it must 

impose on itself, it interacts with the environment and, through a process of trial and error, 

receives feedback in the form of rewards or penalties, which guides it in its search for the 

optimal choice. This sequential decision-making process is formalized through Markov 

Decision Processes (MDP). An MDP is defined by five elements (S, A, P, R, γ), where: 

• S are all the possible states that the ambient can have. 

• A is the set of actions available to the agent. 

• P is the state transition function, which defines the probability P(s'|s,a) of transitioning 

from state s to state s' by performing action a. 

• R is the reward function, which assigns a numerical value R(s,a) to the state-action pair. 

• γ is the discount factor, with 0 ≤ γ ≤ 1, which determines the importance of future 

rewards relative to immediate ones. 

The agent's goal is to learn a policy π: S → A that maximizes the expected value of the 

discounted sum of future rewards, known as the “return”: 

𝐺𝑡 =  ∑ 𝛾𝐾𝑅(𝑠𝑡+𝑘,

∞

𝐾=0

𝑎𝑡+𝑘) 

Where 𝑠𝑡 and  𝑎𝑡 represent the state and the action during time t56. 

To solve an MDP, the most widely used algorithm is Q-learning: this model-free method allows 

the agent to learn the optimal policy even without knowing the actual dynamics occurring in 

the environment. This algorithm estimates the value of the function Q(s,a), which in turn 

represents the expected value of the cumulative reward obtainable by the agent performing 

action a in state s. The algorithm's limitation is that it iteratively updates the function, storing 

the Q values for each state-action pair in an explicit table: this makes the algorithm unsuitable 

for complex environments with very large or continuous state or action spaces. 
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Deep reinforcement learning 

The development of Deep Reinforcement Learning (DRL) can be understood as a response to 

the computational limitations inherent in tabular reinforcement learning techniques, achieved 

by combining advances in deep learning with established reinforcement learning paradigms. 

Although algorithms like Q-learning have long been regarded as robust solutions for 

environments with relatively compact state–action spaces, their scalability is severely 

challenged when the number of possible states increases combinatorially. The difficulty is 

particularly pronounced in environments that exhibit continuity, multimodality, or high 

dimensionality, conditions under which any attempt to enumerate the state space becomes not 

merely inefficient but computationally prohibitive. 

 

 

In such contexts, DRL appears to offer a compelling alternative by leveraging deep neural 

networks as function approximators. These architectures are able, at least in principle, to 

represent highly complex mappings and to process structured inputs without requiring the 

manual specification of salient state features. Rather than exhaustively enumerating every 

possible configuration, the network generalizes across similar states, allowing for more 

scalable estimation of value or policy functions. 

This capacity is not merely a technical convenience but has important implications for domains 

such as supply chain management. Decision-making within such systems is conditioned by a 

dense network of interdependent factors—ranging from demand volatility and inventory 

positioning to lead-time variability, logistics costs, seasonal effects, and capacity limitations 

dispersed across multiple nodes of the network. Deploying DRL in this context may be 

interpreted as part of a wider research trajectory aimed at modelling decision processes in 

complex adaptive systems. Traditional analytic approaches, while often elegant in their 

formalism, tend to falter when confronted with the nonlinear interactions and stochastic 

fluctuations characteristic of real-world supply chains, which makes the case for learning-

based, data-driven methods particularly compelling. 

When you look at these points together, it becomes clear that DRL isn’t just about faster 

computation. It seems to be changing how we even think about decision-making in supply 

chains. Instead of treating operations as a problem you solve once and then assume will stay 

the same, DRL keeps learning as the system changes, as markets swing up and down, as 

disruptions ripple through the network, as coordination between nodes shifts in unexpected 

ways. This kind of approach feels closer to a “living models” of supply chains: models that 

grow and adapt alongside the systems they represent. And that perspective challenges a lot of 

the old reliance on fixed parameters and static optimization, which have always struggled to 

keep pace with the real world57. 

3.4 Logistics 

3.4.1 Introduction  

Distribution logistics is the part of the supply chain that deals with moving goods along the 

distribution network. This can mean transporting raw materials to the manufacturer, sending 

semi-finished goods to other plants, or delivering finished products to distribution centers or 

directly to customers. It covers a range of activities such as transport management, route 

planning, delivery scheduling, and fleet coordination. The main priority is to guarantee the 

reliability of the distribution flow, and right after that its efficiency while keeping time, costs, 
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and environmental impact to a minimum, and staying within contractual limits and service 

expectations. 

In today’s fast-moving and interconnected global market, distribution logistics has become a 

strategic factor in business competitiveness. More and more companies are adopting advanced 

technologies to keep track of goods in real time, automate decision-making, and strengthen the 

resilience of their distribution networks. The way these systems perform has a clear effect on 

customer satisfaction, the sustainability of the entire supply chain, and on how quickly 

businesses can react when market conditions change. 

3.4.2 Vehicle Routing Problem (VRP) 

Introduction to VRP 

The Vehicle Routing Problem (VRP) is one of the central challenges in operations research 

applied to logistics. It consists of finding an optimal set of routes for a fleet of vehicles that 

must serve a group of customers starting from one or more depots. Each customer must be 

visited exactly once, every vehicle has a limited capacity, and the usual goal is to minimize the 

overall transportation cost, whether measured in terms of distance travelled, time spent, or the 

number of vehicles used. The problem was first formally introduced by Dantzig and Ramser in 

1959 to optimize fuel distribution, and since then it has become a reference model for a wide 

range of real-world applications: from urban freight distribution, to waste collection, to home 

healthcare services. 

When looking at it from a computational perspective, the VRP falls into the class of NP-hard 

problems. In simple terms, the time it takes to find an exact solution grows extremely fast as 

the number of customers increases, to the point that solving large instances with exact 

algorithms becomes practically impossible. This is why most of the research in the field has 

moved toward heuristic and metaheuristic approaches and, more recently, toward techniques 

that use artificial intelligence and machine learning. The aim is to find solutions that are good 

enough and fast enough to be applied in real operational settings. 

The VRP is important not only because of how often it appears in real-world logistics, but also 

because it has become a standard testbed for developing and evaluating new algorithms in 

combinatorial optimization58. 

The Two-Echelon Capacitated Vehicle Routing Problem: Definition 

To discuss the "Two Echelon Capacitated Vehicle Routing Problem (VRP)”, the chapter will 

refer to the teaching material written by Professor Gianpaolo Perboli, that is titled "Il problema 

di instradamento dei veicoli". This research was presented during course Decision Making and 

AI for Business Change at the Politecnico di Torino: it provides a clear and rigorous 

introduction to the problem and mirrors the approach used throughout the course.  

This choice makes it possible to present the topic in a way that is consistent with the educational 

path followed and with the methodological framework acquired during the program59. 

The Two-Echelon Capacitated Vehicle Routing Problem (2E-CVRP) is a major extension of 

the classic VRP model, designed to better capture the needs of modern urban distribution and 

multi-echelon logistics systems. In this setting, goods are not delivered directly from the central 

depot to the final customers but move through a two-tier network. This network includes 

satellites, or intermediate platforms, that act as transit and consolidation points. First-level 

vehicles transport loads from the depot to the satellites, and from there, smaller vehicles handle 

the last-leg deliveries to customers. By structuring the network this way, it becomes easier to 

manage the movement of goods in busy urban areas, ease traffic in city centres, make deliveries 
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more punctual, and get the most out of the available resources. The overall objective is to 

minimize the total cost of the distribution system, which includes not only the distance travelled 

and the number of vehicles used, but also any penalties for violating constraints such as vehicle 

capacity or synchronization requirements. 

The two echelons correspond to the two levels of the network: the first connects the main depot 

to the satellites, while the second links the satellites to the customers. It is assumed that all 

vehicles operating on the same level have identical transport capacity. However, the number of 

vehicles available at each satellite is not fixed in advance. Each customer has a fixed demand, 

denoted as dᵢ. It is also assumed that a customer’s demand is less than or equal to the capacity 

of a second-level vehicle, and that this demand cannot be split across two routes within the 

same level. 

The figure below shows an example of a 2E-CVRP network: each arc represents a possible 

route between two nodes, along with the corresponding notation. 

 

Figure 3.1 - 2E-CVRP network 

 

Base model for 2E-CVRP 

The goal of the model is to minimize the total cost of the distribution system. This includes the 

travel costs of first- and second-level vehicles and, optionally, the loading and unloading costs 

at the satellites. The decision variables cover several aspects of the problem: they include the 

route selection variables 𝑥𝑖𝑗 and 𝑦𝑖,𝑗
𝑘 , the customer-to-satellite assignment variables 𝑧𝑖𝑘, and the 

flow variables 𝑄𝑖𝑗, together with some auxiliary variables used to balance demand. The model 

also incorporates a comprehensive set of constraints. These ensure that vehicle and satellite 

capacities are respected, that each customer is assigned to exactly one satellite, and that the 

amount of goods delivered matches the total demand. They also guarantee the consistency of 

flows across incoming and outgoing arcs at intermediate nodes and eliminate subtours that do 

not include the depot or satellites. 

By adding what is called "Valid Inequalities" the model improve. These are extra constraints 

that don’t change which solutions are allowed but make the relaxed version of the model 

describe the problem more accurately. In practice, they make the model stronger and help 

branch-and-bound algorithms work faster. The authors divide these inequalities into two main 

types: edge cuts, which stop the creation of closed routes that aren’t connected to the depot or 
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satellites, and flow constraints, which reinforce the capacity limits already set in the basic 

model. Adding these constraints in a controlled way leads to tighter lower bounds in the linear 

relaxation, reduces the number of fractional solutions, and speeds up computation. 

This dual structure, a basic model complemented by valid cuts, is a well-established strategy 

in the combinatorial optimization literature and proves particularly effective for the 2E-CVRP, 

where the explosive complexity of real-world instances makes it essential to strike a balance 

between theoretical precision and computational tractability. 

Math-Based Heuristics for 2E-CVRP 

Perboli, Tadei, and Vigo then introduce two model-based heuristics for solving the Two-

Echelon Capacitated Vehicle Routing Problem (2E-CVRP). These heuristics are developed 

starting from the continuous relaxation of the mathematical model presented in the previous 

chapters. The main idea behind both approaches is to use the information obtained from the 

relaxed version of the problem, where binary variables are treated as continuous, to effectively 

guide the construction of feasible integer solutions. In particular, the proposed heuristics focus 

on the variables zik, which define the assignment of each customer i to a satellite k. Once this 

assignment is fixed, the problem breaks down into independent subproblems, each of which 

can be solved as a traditional CVRP for its corresponding level of the network. The two 

strategies described are as follows: 

1. Diving-Based Heuristic 

This technique follows an iterative process that starts from the solution of the relaxed model. 

At each step, it checks the variables zik: those with values close to 1, which means they are 

very likely to be part of the final solution, are fixed to 1, while those with values closer to 0 are 

set to 0 and left out. The approach takes inspiration from the idea of pseudocosts, which roughly 

estimate how much each variable affects the optimal value of the objective function. After each 

round of fixing variables, the model is solved again in the hope of finding a feasible solution. 

If the model turns out to be infeasible, the algorithm “restarts” by changing which variables are 

fixed and then tries again. This heuristic is quite effective at exploring the solution space and 

does so with a reasonable computational cost. 

2. Semicontinuous Heuristic 

The second heuristic uses a simplified model called the semicontinuous 2E-CVRP: in this 

model some of the binary variables, such as 𝑦𝑖,𝑗
𝑘 , are relaxed. The process works as follows. 

First, the continuous relaxation of the simplified model is solved, and the binary variables 𝑧𝑖𝑘 

are fixed to integer values. Then, a MIP solver60 is run on the model with a reduced subset of 

variables, within a preset time limit (for example, 60 seconds), saving the best solution found. 

For each candidate solution, the corresponding CVRP instances for the first and second levels 

are built and solved using a dedicated solver, again with a fixed time limit. Finally, the best 

solution from the entire process is selected. Although they do not guarantee optimality, the 

solutions produced by these two heuristics are competitive in both cost and computing time 

when compared to exact methods, making them especially suitable for real-world operational 

applications. 

Overall computational results 

In terms of solution quality, the tests carried out on instances with up to 50 customers and 4 

satellites showed that the heuristics were able to find solutions with an average gap of less than 

2% compared to the known optimum or the best available lower bound. In some cases, the gap 

dropped below 1%, which confirms that the approach works well even in more complex 

scenarios. As for computation times, both heuristics performed much faster than the exact 
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methods. The diving-based heuristic found good solutions in under 30 seconds in most cases: 

instead the semicontinuous heuristic took a bit longer but delivered more stable results in terms 

of average gap. Another important result is robustness: both heuristics gave consistent 

outcomes across multiple instances, with only small variations between different runs. Finally, 

when compared with exact methods, it becomes clear that solving the full model exactly 

quickly becomes computationally expensive, even for medium-sized instances. The heuristics, 

on the other hand, manage to deliver solutions of comparable quality in a fraction of the time, 

making them much more practical for real-world applications. 

Why include heuristics in AI? 

2E-CVRP and the related solution techniques fits perfectly in the broader field of artificial 

intelligence applications in for supply chain. Logistics flow optimization is, in fact, one of the 

main areas where AI is applied, and it covers not only machine learning methods but also 

advanced algorithmic approaches for automatically solving complex decision-making 

problems. The math-based heuristics analyzed in the context of the 2E-CVRP fall into this 

category. They are computational tools capable of exploring very large and diverse solution 

spaces, delivering effective solutions within reasonable computing times for real-world 

logistics problems, which are often full of constraints and discrete variables. 

Among artificial intelligence approaches, these techniques belong to the field of algorithmic 

operations research, which is widely recognized as a core element of modern intelligent 

decision-support systems. What makes them so valuable is their ability to automate distribution 

planning, handle limited resources efficiently, and adapt to complex urban and multi-level 

logistics scenarios. This is why they have become an essential part of AI-based solutions 

currently used in the industry. For this reason, focusing on the 2E-CVRP is both 

methodologically sound and fully aligned with the purpose of this thesis: to explore how 

artificial intelligence can be applied to make supply chains more efficient, flexible, and 

responsive. 

A concrete example of how the 2E-CVRP model can be advanced with AI techniques is 

provided by Yang (2024)61, who tackled the Two-Echelon Vehicle Routing Problem by 

combining Reinforcement Learning with heuristic methods. The model assumes a two-level 

network (main depot → satellites → customers) and introduces an agent that learns to make 

decisions for instance, which satellite to serve first or how to assign customers to local routes, 

based on a policy built through simulated experiences. The approach starts with an initial 

constructive procedure, then applies reinforcement learning to test and evaluate different 

assignment moves between customers and satellites. Step by step, the agent improves the 

solution, considering both travel costs and the efficiency of the overall logistics flow. The 

results show that this AI–heuristic integration can achieve better solutions than traditional 2E-

VRP methods in benchmark cases, particularly by lowering total costs and handling customer-

to-satellite assignments in a more dynamic way, while keeping computation times competitive. 

This development illustrates well how AI can push 2E-CVRP models beyond conventional 

heuristics: the agent is able to learn from examples, adapt to new scenarios, and improve its 

performance through experience. 

3.5 Computer Vision for Quality Control 

3.5.1 Introduction 

Product quality is one of those things that can really make or break a company’s 

competitiveness and it obviously matters a lot for customer satisfaction too. In many traditional 

production processes, quality control is still done manually or just by taking random samples. 
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This approach is slow, expensive, and, let’s be honest, pretty easy to mess up because of human 

error.  

Thanks to the growth of Artificial Intelligence and Computer Vision, the situation has really 

changed: today, it’s possible to use automated systems that inspect products in real time. This 

allows plants to check huge volumes quickly and with a level of accuracy that would be 

impossible for humans to match. These AI systems usually combine convolutional neural 

networks (CNNs) with the image processing algorithms: this combination allows to spot 

defects, anomalies, or anything that doesn’t meet the expected standards. What’s nice is that 

they don’t just detect problems more reliably than manual inspections but they also collect data 

that can be used to keep improving the process over time. This means plants can identify 

recurring issues and even trace back the root causes of defects instead of than just reacting 

when they show up. 

Integrating this kind of technology into the supply chain helps reduce waste, cut product recall 

costs, and makes the whole production process more resilient. Also, since everything happens 

in real time, plants can step in immediately when something goes wrong, stopping defects from 

spreading further down the line and keeping the quality level high. 

3.5.2 Machine Vision System’s components 

For this paragraph and for the whole section on AI and Computer Vision-based Quality Control 

(3.5) the discussion will be based entirely on the work of Ettalibi, Elouadi, and Mansour 

(2024)62: the text provides a comprehensive review of the main computer vision technologies 

and their industrial applications. 

A Machine Vision System (MVS) is a technological framework that makes possible to 

automate visual inspection into an industrial production. Its architecture usually consists of 

three key components: lighting, image acquisition, and image/signal processing. 

Lighting 

This step is essential to get some clear and high-quality images, without noise. The goal is to 

highlight the features of the object being inspected: at the same time it has to reduce shadows 

and reflections as much as possible. Different setups can be used, such as front-lighting (direct 

illumination on the object, ideal for analysing surface details) or back-lighting (illumination 

from behind, useful for emphasizing shapes and edges). Depending on the application, besides 

traditional light sources, lasers, infrared lights, fluorescent lamps, or even X-rays can be used 

to inspect complex materials or elements that are not visible to the human eye. 

Image Acquisition 

Images are captured using sensors and cameras: they are often based on a Charged Coupled 

Device (CCD) or on a CMOS technology, which convert light into digital signals. Modern 

digital cameras offer high resolution and low noise making it possible to inspect very small and 

detailed objects and with even complex form. Choosing the right optics is crucial to find the 

right balance between field of view and precision, and it can also include optical filters or 

polarizers to improve image quality in challenging production environments. 

Processing and Communication 

Once the images are captured they are immediately sent to a processor: there, are performed 

image processing tasks such as filtering, segmentation, and edge detection. In more advanced 

systems, AI and ML models are also used to recognize and classify defects. Thanks to edge 

computing techniques and hardware accelerators (like GPUs, FPGAs, or Intel Neural Compute 

Sticks), this analysis happens in real time: this allows the immediate detection of non-
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conformities and also allows to trigger automatic countermeasures directly on the production 

line. The results are then sent to supervision and traceability systems, enabling fast, integrated 

responses within the production flow. 

3.5.3 AI Techniques for Quality Control 

Artificial Intelligence techniques used in quality control aim to perform important tasks: in real 

time they have to automatically detect defects, anomalies, or non-conformities within 

production processes. In this context, AI is not just about classifying or predicting events, but 

it needs to work at high speed, with great accuracy, and under changing environmental 

conditions. 

A key role is played by Convolutional Neural Networks (CNNs), which are widely used for 

visual recognition of surface defects and microcracks. In quality control, these networks are 

trained on datasets made up of images: they contein both good and defective products, so they 

can learn visual patterns that allow them to tell the difference. This approach is especially 

effective in situations where the difference between a “good” product and a defective one is 

very subtle and hard to catch even for the human eye.  

Other supervised machine learning techniques are also used, besides CNN. Random Forests 

and Support Vector Machines (SVMs) are particularly suitable for classifying specific and 

recurring defects. A common example is the detection of colour defects, where images are pre-

processed to normalize brightness and colour features are extracted in RGB or HSV spaces. 

These algorithms are valued for their fast inference times and their relatively easy 

interpretability: these feature makes them ideal for high-speed production lines and for 

situations where decision traceability is required (for instance, in the food and pharmaceutical 

industries). While they may be less powerful than deep networks, they offer a good balance 

between accuracy, computational cost, and ease of implementation in industrial environments. 

Finally, combining AI with edge computing is a key step forward in quality control. Edge 

computing means processing data close to where it is generated: this is translated into 

processing data directly on the machine or at the network edge, instead of sending it to a central 

server or the cloud. This approach reduces the amount of data that needs to be transmitted, 

lowers processing latency and improves reliability: this is very important because the system 

can keep working even without a stable internet connection. This also means that AI algorithms 

can run directly on edge devices connected to the production line cameras. As a result, the 

system can make decisions in real time and react right away, for example by removing a 

defective part, notifying operators, or adjusting process settings. This makes quality control 

more reactive and adaptive, able to keep up with fast production rates and improve the overall 

stability of the line. 

3.5.4 Colour Recognition and Measurement 

Colour is one of the first quality indicators noticed by the consumer. A product that is too dark, 

too light, or with shades can be seen as defective, even if all its functional properties are 

perfectly fine. For this reason, color recognition and measurement play a key role in quality 

control across many industries, especially in food, cosmetics, plastics, and textiles. 

Traditionally, colour measurement was done through visual inspections by trained operators or 

with dedicated instruments like colorimeters and spectrometers. These methods still nowadays 

accurate but they are also slow, expensive, and hard to integrate into fast production lines. The 

introduction of computer vision systems has made it possible to measure colour automatically 

and in real time by analysing digital images captured along the production line.  
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Colour is usually encoded in the RGB (Red-Green-Blue) space: there each pixel is described 

by a combination of three numerical values representing the intensity of the primary 

components. To perform more advance applications they are used more robust colour spaces: 

HSV (Hue, Saturation, Value) or CIELAB. These separate the colour information from the 

illumination, allowing for more stable detection even when ambient lighting changes. After 

acquisition, images are calibrated using standard references (like a colour checker) to ensure 

that measurements are consistent and comparable over time. 

From an algorithmic point of view, the detection of colour defects usually follows three main 

steps. The first one is the pre processing phase: here brightness is normalized and white balance 

is adjusted. Then the image goes through the segmentation phase which isolates relevant areas 

like the surface of the product. The last phase is the classification phase:  there the colour values 

are compared with the acceptable ranges to spot any significant deviations. In this process is it 

possible to detect issues like discoloration, stains, contamination, or shade variations, while 

reducing false positives and ensuring that only truly defective items are discarded. 

3.5.5 The importance of AI in Quality Control 

In the context of Quality 4.0 automatic colour measurement helps in many different ways. It 

keeps the product standardized and it make sure that different batches and plants stay 

consistent. It also lowers scrap and rework costs by finding defects earlier during the process. 

On top of that, it improves traceability because color data can be saved and used later to make 

upstream processes better. Finally, it makes customers happier, since the product looks the same 

every time and matches what they expect. By combining visual recognition, AI, and 

colorimetry techniques, quality control becomes much more than a simple manual check. It 

turns into an integrated, automated, and even predictive system that can support the whole 

supply chain and make sure products meet the right standards from the very first step of 

production. 

3.6 Summary and Outlook 

This chapter gave an overall look at how artificial intelligence is being used in the supply chain: 

it has also shown why it has become so important for dealing with volatility, complexity, and 

strong competitive pressure. It started with demand forecasting, pointing out the limits of 

traditional statistical models and showing how machine learning and deep learning can add 

value by capturing non-linear patterns and adapting quickly when things change. For inventory 

management, it explained how metaheuristics and evolutionary algorithms, like Genetic 

Algorithms, can help optimize stock levels in complex networks with uncertain demand, 

offering a smarter alternative to classic deterministic formulas.  

The section on logistics showed how AI has become a key tool for solving complex 

combinatorial problems like the Vehicle Routing Problem and its multi-level variants. Using 

mathematical models enhanced with smart heuristics makes it possible to get high-quality 

solutions in a time frame that works for real operations, enabling dynamic resource allocation 

and significantly improving both costs and service levels. At the same time, the use of computer 

vision and deep learning for quality control highlighted a major shift from manual, reactive 

inspection systems to automatic, predictive, and adaptive monitoring systems. These new 

approaches help reduce waste and make production processes more reliable. 

Looking ahead, supply chains are expected to get smarter, more connected, and almost self-

managing. Technologies like digital twins will let companies build virtual versions of their 

entire logistics network. This way, they can run simulations and test “what-if” scenarios before 

making big decisions. Generative models and reinforcement learning will allow strategies that 
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can adapt in real time. This means the supply chain will be able to adjust on its own when there 

are problems like supply shortages, sudden demand changes, or new regulations. With edge AI 

and distributed systems, the “brain” of the supply chain will move closer to where decisions 

are needed. This makes it possible to react much faster without waiting for everything to be 

processed by a central system. But this future won’t be without challenges. It will be necessary 

to make sure the data used in these models is high-quality, reliable, and secure. There’s also the 

issue of transparency understanding how algorithmic decisions are made and the need to train 

people so they have the right analytical and digital skills. Ethical AI governance, privacy 

protection, and following regulations will be essential to make adoption sustainable. 

 

In the end, AI is a big chance to transform supply chains from reactive systems into predictive, 

adaptive, and resilient ecosystems. This can create value not only for the business but also for 

society and the environment over the long term. 
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CHAPTER 4 – Applied Case Studies: AI in Supply Chain 

Management 

4.1 Introduction 

In the previous chapters, the key ideas behind Artificial Intelligence and its main technologies 

were explored, along with the structure and challenges of today’s supply chains. This fourth 

chapter moves one step forward by looking at real examples of how AI has been used in large 

companies. The goal is to show the practical benefits it can bring but also the problems that 

emerged, and the strategies that were used to overcome them. 

By looking at selected case studies, it will be shown how AI has been integrated into 4 key 

areas: demand forecasting, inventory management, warehouse automation, and logistics 

optimization. These examples clearly show how technological innovation is changing the way 

companies manage their supply chains. 

The objective of the chapter is twofold: on the one hand, to highlight the transformative 

potential of AI, and on the other hand, to shed light on the challenges linked to its large-scale 

implementation. The case studies will be analyzed with a critical approach, considering both 

the achieved results and the limitations and obstacles encountered, in order to offer a realistic 

and comprehensive picture of the impact of Artificial Intelligence on supply chains. 

4.2 Walmart sales forecasting 

4.2.1 Case study introduction 

Today, predicting demand is very important to help companies work more efficiently and avoid 

wasting products. Walmart, one of the biggest retailers in the world, uses machine learning 

models to guess its future sales. This helps the company organize its inventory better and keep 

the right amount of stock. 

An article written by Cyril Neba, Shu F. B. Gerard, Gillian Nsuh, Philip Amouda, Adrian Neba, 

F. Webnda, Victory Ikpe, Adeyinka Orelaja and Nabintou Anissia Sylla in 2024, in the Asian 

Journal of Probability and Statistics63, examined the effectiveness of several machine learning 

algorithms applied to Walmart’s historical sales data: these were collected over more than two 

years from many stores across the United States. The dataset included variables such as weekly 

sales, temperature, fuel prices, the Consumer Price Index (CPI), unemployment rates, and 

holiday flags. While the study reports significant results in the field of sales forecasting through 

machine learning, some limitations should be considered. First, the dataset covers a relatively 

short time period (2010–2012), which may reduce the validity of the predictions when 

compared to current market dynamics, which have changed significantly after global events 

such as the COVID-19 pandemic. Another limit is that the data comes only from some areas of 

the United States, so it might not show how people buy in other regions. Also, there are no 

socio-demographic data, so it is not possible to see if the predictions are fair for different groups 

of people. The study only considers time-based factors, like holidays. 

Still, even with these limits, the study is a good base for creating more advanced prediction 

models for the retail sector. 

4.2.2 Data exploration 

Before starting the predictive modelling, I did an Exploratory Data Analysis (EDA) to see how 

the main variables were distributed and to check if there were any strange values. The analysis 
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focused on finding outliers in three important variables. This step is useful because unusual 

values can affect the accuracy of the models. 

In retail sales, extreme numbers can happen because of promotions, holidays, mistakes in the 

data, or special situations. If these outliers are not managed, they can change how the model 

learns and give results that do not work well in general. For this reason, finding and, if needed, 

fixing outliers is an important step to build models that can give reliable forecasts even when 

the data changes a lot.  

From the analysis of the dataset, it was found that weekly sales have an average of about 1.05 

million units, but with a high standard deviation, showing that demand is quite unstable. Other 

factors like fuel price, CPI and unemployment rate change a bit over time, and these changes 

still matter, especially when there are economic or seasonal events. The link between these 

variables and sales is not very strong if we just look at simple linear correlations. However, the 

analysis showed that holidays clearly affect how people buy. This suggests that simple 

prediction methods may not be enough to really understand the data, so using more advanced 

machine learning models can help to catch more complex patterns. For this reason, more 

advanced machine learning models are needed, as they can find non-linear patterns and 

interactions between variables. 

4.2.3 Modelling methodology 

To make reliable sales forecasts, the study followed a clear and careful process, starting with 

data preprocessing. After the exploratory analysis, winsorization was applied to reduce the 

effect of extreme values that could make the predictions less accurate.  

In simple terms, winsorization replaces the most extreme numbers with the nearest value inside 

a chosen limit, so the general shape of the data stays the same and no observations are removed. 

This step was done on the most important variables, like Weekly Sales, Holiday Flag, 

Temperature, Fuel Price, CPI, and Unemployment, to make the data more stable and easier to 

use for building predictive models.  

To make reliable sales forecasts, the study followed a clear and careful process, starting with 

data preprocessing. After the exploratory analysis, winsorization was applied to reduce the 

effect of extreme values that could make the predictions less accurate.  

In simple terms, winsorization replaces the most extreme numbers with the nearest value inside 

a chosen limit, so the general shape of the data stays the same and no observations are removed. 

This step was done on the most important variables, like Weekly Sales, Holiday Flag, 

Temperature, Fuel Price, CPI, and Unemployment, to make the data more stable and easier to 

use for building predictive models. 

For the modelling part, different machine learning algorithms were tried. The process started 

with simple methods like Linear Regression, Multiple Regression, and Generalized Linear 

Models, and then moved to more advanced ones. A Decision Tree was also tried, since it gives 

an easy-to-interpret model, as well as ensemble methods like Random Forest and Gradient 

Boosting Machine, which can capture more complex relationships between variables. 

Finally, optimized boosting methods like XGBoost and LightGBM were also tested. These 

models are fast, usually very accurate, and can deal with missing data while helping to avoid 

overfitting. All the models were trained with their default parameters, which made sense given 

that the dataset was not very big and it was important to keep a good balance between model 

complexity and generalization. 
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4.2.4 Models results 

To understand which model was better, the study used 3 indicators. The first one was Mean 

Absolute Error (MAE), that measures the average absolute difference between the predicted 

and the real values. The second one was Root Mean Squared Error (RMSE), which gives more 

weight to big errors and is more sensitive to extreme deviations. The last one was R² coefficient: 

it shows how much of the data variability is explained by the model; values close to 1 mean 

the model predicts very well. The results [Table 4.1] showed clearly that the more advanced 

machine learning models performed better than the traditional linear ones. Linear Regression, 

Multiple Regression, and GLM gave very similar results, with a MAE of 35,632.510 and an 

RMSE of 80,153.858. These values are too high to describe sales in a good way. The Decision 

Tree was the worst, with a MAE of 77,388.082 and an RMSE of 93,721.066: that showed that 

this type of model struggles to catch complex relationships. On the other hand, ensemble 

models like Random Forest and Gradient Boosting Machine were much more accurate. 

Random Forest reached a MAE of 12,238.782 and an RMSE of 19,814.965, while GBM 

achieved a MAE of 10,839.822 and an RMSE of 14,110.831. The best results came from the 

optimized boosting models. XGBoost had a very low MAE of 1,226.471, an RMSE of 

1,700.981, and an almost perfect R² (0.9999900). LightGBM also performed very well, with a 

MAE of 1,692.640 and an RMSE of 2,297.930.  

These results confirm that boosting models can find non-linear patterns in the data and reduce 

prediction error much better than simpler models. 

 

Table 4.1 – Results of predictive modeling 

The study also looked at bias [Table 4.2], meaning the systematic tendency of a model to predict 

values that are too high or too low compared to the real ones. The linear models showed a 

positive bias of about 1,211.869, while the Decision Tree had an even higher bias (1,691.079). 

Random Forest showed a negative bias: that means it constantly underestimated sales. GBM, 

XGBoost, and LightGBM instead had bias values very close to zero, with XGBoost showing 

the lowest value (–7.548432): it means its predictions were very well balanced. 

 

Table 4.2 – Model bias 
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Finally, a fairness analysis was done to check if the predictions were consistent across specific 

subgroups of the dataset, in this case holiday weeks and non-holiday weeks. The results showed 

[Table 4.3] that linear models gave comparable predictions in the two subgroups, while the 

Decision Tree was more accurate in non-holiday periods. The more advanced models were still 

the most accurate overall, but they had lower MAE values for non-holiday weeks compared to 

holiday weeks. This shows that the models struggled more to catch the changes that happen 

during holidays. In practice, it would be useful to improve them so they can predict demand 

peaks in those periods more accurately. 

 

Table 4.3 – Model Fairness 

4.2.5 Managerial implications, limitations and future prospects 

The results of this study are very useful for a retail company like Walmart. When sales forecasts 

are more accurate, it is easier to manage stock: this reduces the risk of empty shelves and also 

the problem of having too many products in the warehouse. This means to lower storage costs 

and make customers happier. Simple models like regressions and decision trees are helpful 

because managers can understand which factors affect demand and plan strategies for different 

products or times of the year. Ensemble methods like Random Forest and GBM make the 

predictions more accurate and show which variables are the most important, giving managers 

good information to make decisions. Instead, advanced models like XGBoost and LightGBM 

give very accurate results and tools like SHAP values can explain them. These models can help 

managers plan promotions and marketing campaigns, use resources at the right time, and take 

full advantage of the demand during holidays. 

However, this study has some limits. The dataset is small and only covers 2010 to 2012. 

Because of this problem, it doesn't reflect today’s market, which changed a lot after events like 

COVID-19. The data is also collected only from some parts of the United States and does not 

include information about people: so the study cannot check if the models work well for 

different groups. The data is not equally detailed for all stores, and this could make the results 

less accurate and a bit noisy. 

In the future, the dataset should include more recent data and more variables, so the models 

can follow how the market is changing. Another good idea could be to try deep learning 

methods, like recurrent neural networks, to better catch time trends and complex patterns. It is 

also important to keep checking bias and fairness, especially during holiday weeks, to be sure 

the models stay fair even when demand is very different from normal. Doing this can help 

retailers use predictive analytics in a smarter way and make faster, data-based decisions in a 

very competitive market. 
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4.3 Reinforcement Learning for inventory management 

4.3.1 Introduction 

In this chapter will be shown how Reinforcement Learning is used for inventory management, 

with two points of view: the first one is an academic from research and one more practical. The 

study by Sultana et al. (2020)64  shows how multi-agent reinforcement learning can be used to 

manage restocking in networks with many products and nodes. What is special about this study 

is that both the problem and the solution come from a real company case: the companies can't 

be named for privacy reason. This makes the work very close to real life and useful for getting 

ideas that can be applied in practice. The results show that it is possible to move from only 

predicting demand to using a decision system that reduces stockouts and waste and respects 

capacity limits.  

The article “Real-World Success Stories: How Top Companies Are Optimizing Inventory with 

AI in 2025”65  gives an overview of the most recent uses of AI in inventory management: it 

shows numbers and success stories from companies like Amazon, Walmart, Zara, and Toyota. 

Since companies rarely share the technical details of their AI systems, because of competition 

reasons or because the solutions are often very complex, combining an academic study based 

on a real case with an article that reports real results is a good approach. This way, it is possible 

to get a complete view that mixes theory and practice and gives a solid base to discuss the 

impact of AI on inventory optimization. 

4.3.2 Reinforcement Learning for Multi-Product and Multi-Node Inventory 

Management in Supply Chains 

Problem introduction  

Inventory management with multi products and several locations is a very complex problem. 

It needs coordination of reorder decisions between different levels of the network and at the 

same time must respect capacity limits, logistic costs, and deal with demand uncertainty. The 

study by Sultana, Gosavi and Das (2020) focuses on this problem and shows how reinforcement 

learning can be used in a system where one central warehouse supplies three stores. The 

problem and the solution were adapted from a real business case, which makes the study 

practical and close to real situations. 

In the proposed model, each store has a limited storage capacity, and the central warehouse 

also has a total capacity limit. The transport from the warehouse to the stores is restricted by 

volume. The demand for each product is random and changes over time, and the replenishment 

times are different for the various products. This creates a risk of both stockouts and having 

too much inventory. 

The problem becomes even harder because there are hundreds of products to manage at the 

same time, and it is necessary to coordinate decisions between the store level and the warehouse 

level. The main goal of the study is to find reorder policies that maximize the number of 

satisfied sales and reduce waste, especially for perishable products. At the same time, the 

solution must respect storage limits and keep a fair distribution of resources between the 

different product categories. This approach tries to reproduce the real challenges of distribution 

networks, where it is always necessary to find a balance between product availability, logistics 

efficiency, and cost reduction. 
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Modelling and formulation RL 

The system is modelled as a Markov decision process where, for each store j=1,…,S and 

product i=1,…,P, the inventory after reordering is given by 

𝑥𝑗(𝑡)+ =  𝑥𝑗(𝑡)− +  𝑢𝑗(𝑡), 

where 𝑥𝑗(𝑡) 𝜖 [0,1]𝑃 is the vector of normalized stocks and 𝑢𝑗(𝑡) 𝜖 [0,1]𝑃 The required warehouse 

replenishment quantities. The store-level constraints are: 

0 ≤  𝑥𝑗(𝑡)  ≤ 1  , 0 ≤  𝑢𝑗(𝑡)  ≤ 1  , 0 ≤ 𝑥𝑗(𝑡)− +  𝑢𝑗(𝑡)  ≤ 1  , 𝑣𝑇  𝑢𝑗(𝑡)  ≤  𝑣𝑚𝑎𝑥,𝑗 

𝑣 is the vector of unitary volumes per product and 𝑣𝑚𝑎𝑥,𝑗 to transport capacity to the store j. 

Sales achieved 𝑤𝑡  (𝑡 + 1) update the stock at the end of the period according to 

𝑥𝑗(𝑡 + 1)− = max {0, 𝑥𝑗(𝑡)+ − 𝑤𝑡  (𝑡 + 1)}, 

while a predictor provides the estimate 𝑤̂𝑗(𝑡 + 1) = 𝑓(𝑤𝑡  (0: 𝑡)). 

The store's local objective includes multi-objective components: out-of-stock penalties, waste 

(for perishables), and fairness between products. The cost for store j at time t is 

𝐶𝑗,𝑠𝑡(𝑡)  =  
𝑝𝑗,𝑒𝑚𝑝𝑡𝑦(𝑡)

𝑃
+

1

𝑃
∑ 𝑞𝑤𝑎𝑠𝑡𝑒,𝑖𝑗(𝑡) + ∆𝑖 𝑥𝑗(𝑡).95−.05, 

Where 𝑝𝑗,𝑒𝑚𝑝𝑡𝑦(𝑡) it is the number of products with zero stock, 𝑞𝑤𝑎𝑠𝑡𝑒,𝑖𝑗(𝑡) the amount wasted and 

∆𝑥𝑗(𝑡).95−.05 the percentile differential 95°–5° on stocks to measure the equity between 

references. At the warehouse level, the availability 𝜒(𝑡) 𝜖 [0,1]𝑃 imposes a budget constraint on 

shipments: 

∑ 𝑎𝑗𝑢𝑗
𝑆
𝑗=1 (𝑡)  ≤  𝜒(𝑡) , 

with 𝑎𝑗 normalization factors. The warehouse is replenished every n periods through action 

µ(nt) (one-day lead time), with dynamics 

𝜒(𝑛(𝑡 + 1))+ =  𝜒 (𝑛(𝑡 + 1))− +  µ(nt) 

And constraints 0 ≤ 𝜒 ≤ 1 ,   0 ≤ µ ≤ 1 , 0 ≤  𝜒− +  µ ≤ 1. 

A crucial element of the model is the reward function, which is the signal on which the learning 

algorithm is based. The global reward is constructed as a linear combination of warehouse costs 

and point-of-sale costs: 

𝐺𝑡 =  ∑ 𝛾𝑘[𝑔1𝐶𝑤ℎ(𝑡 + 𝑘) +  𝑔2𝐶𝑠𝑡(𝑡 + 𝑘)] 

∞

𝑘=0

, 𝐶𝑠𝑡 = ∑ 𝐶𝑗,𝑠𝑡

𝑆

𝑗=1

 

This objective, which the algorithm seeks to maximize, incentivizes policies that reduce costs 

related to waste, stockouts, and excessive capacity usage, while maintaining a sufficient level 

of inventory to meet demand. Policy convergence, observed in the training curves, corresponds 

to reaching an average reward value that no longer improves significantly, indicating that the 

agents have learned stable stationary behaviour. 

In this framework, the problem is solved with multi-agent reinforcement learning: store agents 

and the warehouse agent learn local policies (𝑥𝑗, 𝑤̂𝑗 , 𝜒 ) ↦ 𝑢𝑗 e (X, 𝜒, 𝜒̂ , 𝑊̂) ↦ 𝜇 respectively, 
where X collects the stocks by store−product and 𝜒̂, 𝑊̂ These are state forecasts and 
aggregate demand. 
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For the learning part, Advantage Actor-Critic (A2C) is adopted. At the store level, actions 
are quantized to ensure implementability and compliance with constraints: the actor 
selects from 14 discrete levels of normalized reordering. 

{0, 0.005, 0.01, 0.0125, 0.0175, 0.02, 0.03, 0.04, 0.08, 0.12, 0.2, 0.5, 1}, 

While at the warehouse level, the action is binary (order/not order each product). Choosing 

quantization reduces the complexity of the action space, improves training stability, and keeps 

decisions interpretable for the business user. 

Experimental setup and tested scenarios 

The authors tested their approach with a set of simulation experiments using the public Instacart 

Market Basket Analysis dataset, which has about 3 million orders and more than 49,000 

products. From this dataset, they selected the most frequent products and created three 

scenarios with increasing complexity: the first with 50 products, the second with 220, and the 

third with 1,000 products. All three scenarios have three stores supplied by one central 

warehouse. For each scenario, capacity limits were set for the warehouse and the stores, as well 

as transport limits and different replenishment times for each product. This was done to make 

the simulation as close as possible to a real system. 

For each scenario, the multi-agent reinforcement learning model was first trained and then 

tested on a separate set of data that was not used before. The main reason was to check if the 

earned policies could generalize to new data well. The training used the Advantage Actor-Critic 

(A2C) algorithm, with network weight sharing between agents. This made the model scalable 

for a large number of products and stores.  

The system performance was measured using several metrics: the number of stockouts per 

period, the amount of wasted product, the respect of capacity limits, and a fairness measure. 

This fairness was calculated as the percentile difference (95th–5th) of the stock levels, to make 

sure the inventory was distributed fairly between products. 

Finally, the results from reinforcement learning were compared with two reference strategies: 

the s-policy, a reorder rule based on fixed thresholds, and a clairvoyant policy, which is an ideal 

benchmark that assumes perfect knowledge of future demand. 

This comparison makes it possible to measure the improvement over traditional methods and 

to see how far the results are from a theoretically optimal solution. 

Results and implications 

The first key result is shown in Figure 4.1 and is about the training strategy. Training the store 

agents first, independently, and then training the warehouse agent leads to better global policies 

than training them all together or using shared rewards: this is shown by the line reaching a 

higher value of mean reward in an also shorter time. When the store agents are trained together 

with the warehouse, they tend to “ask for less” to adapt to the low stock in the warehouse. This 

reduces sales and makes the total reward worse. With sequential training, the stores can learn 

more aggressive policies that focus on meeting demand, and then the warehouse is trained to 

support this demand efficiently. This improves the whole system. This result is very important 

for real-world use: in a real deployment, it is better to train and validate the store reorder 

policies first, to make sure customer demand is satisfied, and only after that optimize the 

warehouse level to reduce costs without hurting product availability. 
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Figure 4.1 – Training strategy 

The test results, shown in Table 4.4, confirm that the model can generalize well. In all three 

scenarios (50, 220, and 1,000 products), the multi-agent RL (MARL) performs better than the 

constant s-policy, both in terms of total reward and in reducing stockouts and waste. In some 

cases, it even score a higher results than the clairvoyant policy, which has perfect knowledge 

of future demand. This is an important result because it shows that the algorithm not only deals 

with demand uncertainty but also uses the network dynamics to improve how stock is allocated. 

 

Table 4.4 – Results on testing data 

The component analysis, shown in Figures 4.2 and 4.3, gives a more detailed view of how the 

system behaves. For the stores [Figure 4.2] the reward linked to reducing stockouts increases 

during training and reach a level comparable to Clairvoyant policy. Instead the average 

inventory level  stabilizes at moderate values, very close from the Heuristic value. This helps 

avoid overstocking and waste in the store. For the warehouse, the reward for rejected orders 

[Figure 4.3] increase step by step, showing that the policy has learned to prevent saturation and 

keep a steady flow of replenishment. 

Overall, the system reaches a balance between three goals: reducing stockouts, limiting waste, 

and respecting capacity limits, while maximizing the total reward. 
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Figure 4.2 - Individual components of store replenishment rewards for Store 1 with 220 products 

 

Figure 4.3 - Individual components of warehouse rewards, for 220 products, 3 stores. 

From the point of view of adaptability, the transfer learning results (shown in Table 4.5) show 

that the learned policies can generalize and are not tied to the exact number of products or 

nodes used in training. In practice, a model trained on 50 products was applied directly to a 

scenario with 70 products, without any extra training, and reached almost the same 

performance as a model trained from scratch on the new scenario. This means that the agent 

learned a reorder strategy based on general state features (like stock level, expected demand, 

and remaining capacity) and not on fixed details of the product assortment. 

 

Table 4.5 - Transfer learning of warehouse and stores on additional products 

The same result was seen when a new store was added [Table 4.6]. The policy trained on three 

stores was able to handle a fourth store that was never seen during training, without changing 

or re-optimizing the neural network weights. The existing agents simply adjusted their 

decisions to the new demand distribution: it means that the multi-agent approach is both robust 

and modular. 
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Table 4.6 - Transfer learning of warehouse on an unseen Store 4, with 1.75x capacity of Store 1 

This feature is very important for real-world deployment. It helps cut the cost of model 

maintenance and retraining, which would normally be needed every time the product 

assortment or the network setup changes (for example new products, store openings or closings, 

changes in capacity). In dynamic environments like e-commerce and omnichannel retail, where 

these changes happen often, the ability to transfer already trained policies to new scenarios 

keeps operations running smoothly and reduces the risk of performance getting even worse. 

Implications 

From a theoretical point of view, this study gives an important contribution to the literature on 

hierarchical control and distributed optimization. It shows that an approach based on 

Advantage Actor-Critic with action quantization can scale to hundreds or even thousands of 

products while staying stable and converging. From a practical and managerial perspective, the 

results suggest that RL systems like this can be used in real situations to reduce waste, increase 

product availability, and respect capacity limits without constant manual work. The fact that 

the policies can be reused for new network configurations, together with the suggestion to train 

stores first and then the warehouse, makes this method cost-effective and easy to scale. This 

can give a competitive advantage to retail and logistics companies working in markets with 

changing demand. 

4.3.4 From Research to Practice: Real-World Evidence 

These results match what is happening in recent industrial experiences reported in the article 

“Real-World Success Stories: How Top Companies Are Optimizing Inventory with AI in 

2025”. According to the report, more than 80% of companies see inventory management as 

one of their main operational challenges. The adoption of AI-based systems has led to inventory 

cost reductions of 10–15% and supply chain efficiency gains of 20–25%. 

The case studies in the article show concrete examples. Amazon has implemented a predictive 

system based on machine learning that analyzes sales, supplier lead times, and market trends 

in real time. This led to 35% fewer stockouts, lower transport costs, and a 20–25% increase in 

customer satisfaction. Sales also went up by about 5–7%. 

Walmart uses autonomous robots to check shelves and update stock levels in real time. This 

cut counting errors, reduced stockouts by around 15% and overstocking by 20%, and brought 

a 3% increase in sales together with better customer loyalty. 

Zara has focused on an AI forecasting system for fast fashion, which uses data from social 

media, weather, and market trends. With this system, Zara was able to cut extra inventory by 

around 40% and reduce unsold items by 25%. This also made their process more sustainable. 

Toyota brought AI and IoT into its just-in-time system. Using predictive algorithms, it can now 

find supply problems earlier and keep stock levels under control. Because of this, inventory 

costs fell by 12%, production efficiency improved by 10%, and the average stock turnover time 

got 20% shorter. 
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Overall, these examples confirm that the reinforcement learning policies proposed by Sultana 

et al. can be used in real contexts, giving measurable results in lower costs, better product 

availability, and stronger supply chain resilience. 

4.4 AI-based AGV Applications in Inventory Management: The 

JD.com Case Study66 

4.4.1 Introduction to JD.com and the competitive environment 

JD.com, also known as Jingdong, is today one of the main players in e-commerce in China 

and at the global level. It was founded in 1998 as an electronics store in Beijing, and in 2004 

the company launched its online platform. This move anticipated the digitalization of 

consumption that, in the following years, would expand very quickly. Time over time, 

JD.com consolidated its own position and became the second online retailer in China in terms 

of revenue: now it has millions of active users and a very diversified product portfolio. What 

makes JD.com different from its competitors, especially Alibaba, is its business model: this 

model is based on the direct control of the supply chain. While a giant as Alibaba mainly acts 

as a marketplace where sellers and buyers are connected without managing logistics, instead 

JD.com has invested heavily in its own infrastructure. The company has its own distribution 

centres, warehouses and delivery fleets and it takes responsibility for the entire fulfilment 

process. Even if this strategy required a higher investments at the beginning of its journey, it 

allow now JD.com to keep a stronger control over operations and to offer a more efficient 

logistics service. 

Currently, the JD.com network includes more than 1,300 warehouses across China, with a 

total area of more than 30 million square meters. Thanks to this extensive coverage, the 

company is able to reach not only the biggest cities but also more peripheral and rural 

regions, offering fast deliveries even in areas that are usually difficult to serve. More than 

90% of orders made on JD.com are delivered the same day or within 24 hours, which has 

helped the company strengthen its reputation among Chinese consumers. These results are 

possible thanks to a constant focus on technological innovation. The Chinese e-commerce 

sector is extremely competitive, and events such as Singles’ Day (November 11) or the 618 

Shopping Festival (June 18) generate exceptional peaks of demand. During these moments, 

order volumes can increase up to ten times compared to a normal day, creating a strong 

pressure on warehouse capacity. To keep service standards high even in these situations, 

JD.com has adopted solutions based on artificial intelligence and robotics, especially the 

introduction of Automated Guided Vehicles (AGVs) for inventory management. 

The use of AGVs responds to very practical needs: reducing internal handling times, 

improving the accuracy of picking operations, and optimizing the use of space. Automation 

also reduces the dependence on manual labor, which is a critical factor in contexts where 

speed is essential. The AGVs are connected to advanced digital management systems, which 

monitor stock levels in real time and can also predict future demand, allowing a more 

efficient organization of products inside warehouses. This strategy is part of a broader vision 

that JD.com describes as “smart logistics.” The idea is not only to improve internal efficiency, 

but also to turn logistics into a real competitive advantage, making the company different 

from its rivals and building barriers to entry that are not easy to copy. The investment in 

automation and artificial intelligence should therefore be considered as a strategic choice: it is 

not only an answer to operational problems, but also a way to support future growth and 

consolidate the company’s leadership in the market.  
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In conclusion, JD.com can be seen as an important case of how artificial intelligence can be 

applied to large-scale inventory management. Its combination of physical infrastructure, 

robotics, and advanced digital systems shows how innovation in logistics can change 

traditional supply chain models by bringing benefits in terms of operational efficiency but 

also customer satisfaction. 

4.4.2 Technological architecture: AGVs and AI algorithms for inventory 

management 

The technological architecture introduced by JD.com for managing smart warehouses 

represents one of the most advanced implementations of logistics automation. It does not only 

rely on the use of Automated Guided Vehicles (AGVs), but also integrates artificial 

intelligence and operations research, with the aim of transforming internal handling and 

inventory management into adaptive and predictive processes.  

At the center of the model there are the AGVs, mobile robots that transport entire racks of 

products from storage areas to workstations. This design makes it possible to move from the 

traditional picker-to-parts paradigm to the parts-to-picker model, where the inventory moves 

towards the operator. Such a configuration drastically reduces travel times and increases staff 

productivity, since workers are no longer required to move around inside the warehouse. The 

real innovation, however, is not only in the physical automation guaranteed by AGVs, but 

especially in the algorithms that coordinate them. JD.com has formalized the warehouse 

management problem as a tripartite matching, where three entities must be matched at the 

same time: the racks to be moved, the AGVs in charge of transport, and the workstations 

where picking takes place. This problem, which is combinatorial in nature, increases in 

complexity with the size of the warehouse: hundreds of robots, thousands of racks and dozens 

of stations create a decision space that is almost impossible to explore with exhaustive 

methods. To address this challenge, JD.com has developed an intelligent dispatching system 

that applies hybrid approaches. The problem is divided into two subproblems: the rack–

workstation assignment and the AGV–rack assignment. The first is modelled as a maximum 

flow problem and solved through algorithms derived from the Hungarian method; the second 

is addressed with linear programming techniques enhanced by cutting planes. This 

decomposition makes it possible to respect a crucial constraint: each decision cycle must be 

completed in less than five seconds, otherwise the operational flow would slow down.  

The artificial intelligence component is evident in different aspects. First of all, the 

algorithms are not static: they apply intelligent heuristics and metaheuristics to explore the 

solution space efficiently, identifying near-optimal configurations quickly. Second, the system 

uses machine learning for parameter tuning: it adapt decision rules to observed conditions 

and historical data. Third, the Warehouse Management System (WMS) integrates predictive 

demand models that anticipate which SKUs will be requested, placing the most critical racks 

in more favourable positions. These predictive components mean that the system does not 

simply react, but prepares in advance for expected demand flows. 

The complexity of the architecture is further increased by practical constraints. Many racks 

are double-sided, but for technical reasons only one side can be accessed during each picking 

operation. Moreover, SKUs can be distributed across several racks, which creates non-trivial 

decisions: for example, whether it is better to pick from two nearby racks containing partial 

quantities, or from a single but more distant rack with the full amount. On top of this, the 

system must manage three different problems: route conflicts between AGVs, the availability 

of parking areas near the workstations, and the scheduling of battery recharging cycles. The 
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AI algorithms therefore need to solve allocation, routing, and scheduling problems 

simultaneously, within a dynamic and constrained environment. 

The system architecture is organized into four layers: 

1. Integrated management layer, which interacts with external systems (ERP, OMS). 

2. Warehouse management layer, which includes the modules for order, inventory, and 

location management. 

3. Intelligent dispatching layer, the core of the architecture, where AI algorithms and 

predictive models make operational decisions. 

4. Device control layer, which translates decisions into executable commands for the 

AGVs. 

This multi-level structure guarantees modularity and scalability: the company can update or 

replace the decision-making modules without modifying the entire system. In particular, the 

intelligent dispatching layer represents the “brain” of the warehouse, where real-time data on 

orders and vehicle status converge. At this level, AI makes it possible to combine the reactive 

component (immediate dispatching) with the predictive one (anticipation of demand and 

potential bottlenecks). 

The performance of the system has been validated through simulations and operational 

experiments. Table 4.7 reports the results of a stress test conducted in the Gu’an warehouse, 

where an automated facility based on AGVs was compared with a conventional facility. The 

data show that the automated warehouse, even operating with fewer workers (20 compared to 

72) and in a much smaller area (21,528 sq. ft. compared to 161,459 sq. ft.), is able to 

guarantee clearly higher levels of productivity. In particular, each automated workstation 

processed on average 149 orders per hour, compared to 52 in the conventional system, with a 

ratio of 2.9:1. The gap is even more significant in the number of items handled per hour and 

per workstation (435 compared to 75, ratio 5.8:1). Worker productivity also results much 

higher: 65 items per hour compared to 19, with a ratio of 3.4:1. Finally, space utilization 

efficiency shows an improvement of more than seven times (1.21 items per sq. ft. compared 

to 0.17). These results confirm that the integration between AGVs and intelligent algorithms 

allows not only to reduce the average order fulfilment time and increase throughput, but also 

to achieve benefits in terms of accuracy and operational sustainability. The use of a smaller 

area and fewer workers, while still reaching superior performance, demonstrates how AI-

driven automation contributes to raising overall productivity while at the same time reducing 

costs and inventory errors. 

 

Table 4.7 - Relevant Statistics Gathered During the Gu’an Stress Test 

In conclusion, JD.com’s technology shows that the efficiency of smart warehouses does not 

only depend on physical automation, but mainly on the ability to integrate artificial 
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intelligence and operations research. The use of AGVs is the visible part of a system that 

finds its strength in predictive models, learning techniques, and optimization algorithms. It is 

exactly this synergy between hardware and software that enables the Chinese company to 

transform inventory management into a sustainable competitive advantage. 

4.4.3 Implementation challenges and managerial solutions 

The introduction of large-scale systems with AGVs and artificial intelligence algorithms, like 

in the case of JD.com, has not been without problems. Turning traditional warehouses into 

fully automated centres created technical, organizational and also managerial challenges, 

which the company tried to solve with different approaches. 

One first challenge is about computational complexity. The tripartite matching problem 

between AGVs, racks and workstations is very hard to solve in short times. In JD’s 

warehouses, a single decision cycle can involve hundreds of vehicles and thousands of racks. 

The main issue is to produce good quality solutions in just a few seconds, so that the 

operations are not slowed down. To handle this, JD.com designed a multi-layer system that 

splits the big problem into smaller subproblems and applies approximate but efficient 

algorithms.  

Another difficulty is scalability. What works in pilot projects has to work also when the order 

volume becomes huge, for example during Singles’ Day or the 618 Shopping Festival. In 

those moments, the number of orders can multiply in a few hours, creating very high pressure 

on the logistics network. To avoid bottlenecks, JD.com used a modular design: the different 

layers (integrated management, warehouse management, intelligent dispatching and device 

control) can be scaled separately, depending on where the load is higher. 

The physical resources also created problems. AGVs move in shared spaces, so they need to 

avoid collisions and congestion. Racks are sometimes double-sided, and SKUs are distributed 

on more racks, which makes the decision more complicated: for example, it can be better to 

choose two close racks with partial quantities, or one rack further away but with the complete 

order. JD.com managed this by adding special constraints in the dispatching algorithms and 

by using monitoring systems that check in real time the position and status of each vehicle. 

From an organizational point of view, staff involvement was another important issue. The 

move to automated warehouses required new skills and specific training. JD.com had to find 

a balance: robots were introduced, but workers had to stay motivated and involved, without 

feeling they were completely replaced. Human operators still play a complementary role, 

since they supervise the system, manage exceptions and make sure that the service runs 

smoothly. 

Data management was also critical. The system depends on a constant flow of information 

coming from orders, the WMS and the AGV sensors. The quality of this data is essential for 

the AI algorithms to work correctly. For this reason, JD.com set up redundant collection and 

validation processes, together with analytics platforms that can detect anomalies quickly. 

Better data quality also improves inventory accuracy, reducing errors in picking or risks of 

stock-out. 

Finally, long-term strategic choices played a key role. JD.com never saw the adoption of 

AGVs as a single project, but as part of a wider vision of “smart logistics”, which also 

includes drones for deliveries, autonomous vehicles for urban distribution, and demand 

forecasting algorithms. This systemic view helped justify the big initial investments, and 

prepared the ground for a fully AI-driven logistics ecosystem.  
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In conclusion, the challenges faced by JD.com can be divided into three main levels: 

technical (algorithmic complexity and operational constraints), organizational (training and 

staff integration) and managerial (scalability, fast deployment, long-term vision). The 

company’s solutions show that adopting AGVs and AI for inventory management is not only 

about technology, but also about combining innovation, data governance and change 

management in a holistic way. 

4.4.4 Future prospects 

The experience of JD.com with AGVs and artificial intelligence gives some important ideas 

for the future of automated logistics. Using AI-driven solutions is not really an end point, but 

more the beginning of a longer process. The goal is to reach an even higher level of 

integration between digital technologies, robotics and daily warehouse management. 

One area of development is scalability. The current algorithms already showed that they can 

solve large-scale problems in times that are acceptable for daily work. But when the logistics 

network grows bigger and the number of AGVs increases, the system will need more 

advanced models. Here techniques like reinforcement learning or distributed optimization 

could help, because they allow the robots to learn movement strategies by themselves. In this 

way, the system can reduce calculation time and stay more resilient in changing situations. 

Another important direction is last-mile delivery. There is already interest in using 

autonomous vehicles and drones to cover the final part of the supply chain. The good results 

with AGVs inside the warehouse can be a base to expand AI also outside, with the idea of 

lowering delivery costs and reaching more areas, including rural regions that are usually more 

difficult to serve. 

Sustainability is also becoming central. Automated systems not only improve productivity, 

but they can also reduce energy consumption by using space and routes in a smarter way. In 

the future, optimization algorithms that focus on sustainability could make logistics a sector 

with less environmental impact, which is in line with global targets of emission reduction. 

Finally, data will play an even bigger role. AGVs, sensors and warehouse systems produce a 

very large amount of information every day. If this data is analysed with big data analytics 

and predictive models, it can give useful insights for strategic choices. The combination of AI 

and data-driven decisions will be key to building supply chains that can adapt and improve 

constantly. 

In short, the case of JD.com shows that the future of logistics will probably mean more 

automation and more distributed intelligence. AGVs are just the first step, and the direction is 

towards a fully AI-driven ecosystem. 

 

4.5 AI Applications in Last-Mile Delivery: The Canada Post Case 

Study 

4.5.1 Introduction and Problem Context 

Last-mile logistics is one of the most critical and expensive parts of the whole supply chain. In 

some cases, it makes up more than 50% of the total distribution cost. The efficiency of this step 

is key for customer satisfaction because it is the moment when the product reaches the final 

customer. With growing competition, driven by the rise of e-commerce and fast delivery 
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options like next-day or same-day shipping, companies now need to improve both the 

reliability and predictability of their deliveries. 

In paragraph 3.4, the Vehicle Routing Problem (VRP) was presented as the theoretical way to 

optimize delivery routes. Finding the best route is only part of the problem: indeed knowing 

the shortest path does not guarantee an accurate prediction of the delivery time. In practice, 

delivery times are affected by factors such as traffic, driver behaviour, unexpected events, and 

weather conditions, that are very difficult to include during the planning phase. For this reason, 

solving the VRP alone is not sufficient to ensure reliable delivery time estimates. It is necessary 

to combine route planning with a prediction system that learns from historical data and adapts 

to the conditions of real life scenario.  

In this difficult context, artificial intelligence techniques provide a very promising approach. 

In particular, machine learning makes it possible to use large amounts of historical data to 

identify recurring patterns and also estimate the expected delivery time: this is all done by 

taking into account route characteristics, time of day, and environmental conditions. The use 

of end-to-end models, which learn directly from observations without the need for manual 

feature design, reduces modelling complexity and leads to more robust predictions. 

The case study written by Arthur Cruz de Araujo and Ali Etemad in 202167 presented in this 

section focuses on the use of deep neural networks for last-mile delivery time prediction: these 

techniques are based on a large dataset provided by Canada Post, that is the main postal 

operator in Canada. The dataset contains millions of delivery records collected in the Greater 

Toronto Area (GTA) over six months: they also are attached to spatial information (origin and 

destination coordinates), temporal data (departure and delivery timestamps), and weather data 

(temperature, precipitation, and snow on the ground). The chosen formulation follows the 

Origin-Destination Travel Time Estimation (OD-TTE) approach, where the goal is to predict 

travel duration using only the origin and destination coordinates, without access to the actual 

routes taken.  

This approach offers two main advantages: the first one is that it allows the development of a 

generalizable model that can work well even without having access to high-resolution tracking 

data. It also reduces issues related to the uncertainty of planned routes, which may vary 

depending on driver decisions or unexpected events along the way. The ultimate goal is to 

improve the accuracy of delivery time estimates and to provide predictive tools that support 

both customer service improvement and internal resource planning. 

4.5.2 System Architecture and Data Preparation 

To design a last-mile delivery time prediction system it must be used a pipeline capable of 

reliably collecting, transmitting, and processing large volumes of data. The approach proposed 

in the Canada Post study is based on a complex cloud architecture organized according to the 

Internet of Things (IoT) paradigm: thanks to that the authors are allowed to integrate data 

sources from the field and then to perform an execution of advanced processing through 

artificial intelligence models. 

The reference architecture follows a three-layer model [Figure 4.4]: Perception Layer, Network 

Layer, and Application Layer.  

The Perception Layer includes data collection devices such as handheld scanners and 

smartphones used by drivers: they record parcel scans at departure from the depot and at 

delivery. Each event is associated with a timestamp and GPS coordinates. In addition to these 

operational data, contextual information such as temperature, precipitation, and snow depth is 

added: these datas come from weather stations located within the target area. 
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The Network Layer is responsible for transmitting data from field devices to the central system. 

This communication takes place through commercial mobile networks (4G/5G) that have to 

ensure near real-time transfer of delivery information. The use of cloud infrastructure makes it 

possible to scale processing capacity according to data volume and to maintain continuous 

synchronization across the different system nodes.  

Finally, the Application Layer handles data processing and predictive inference. This is the part 

where the machine learning engine is located and it use the collected data to estimate the 

expected delivery time. The model is periodically retrained to include new historical data, 

gradually improving its ability to generalize. The prediction results can be provided both to 

operational staff, to support resource planning and driver allocation, and to end customers 

through tracking applications capable of communicating more accurate arrival times. 

 

Figure 4.4 – IoT Architecture 

Regarding data preparation, the dataset provided by Canada Post includes more than 3.25 

million delivery records that were registered in the period January–June 2017 in the Greater 

Toronto Area. Each record contains the origin (depot) and destination (postal code) coordinates, 

the departure timestamp, the delivery timestamp, and the weather variables for that day. The 

geographic coordinates were quantized to a coarser resolution to reduce GPS noise and group 

nearby locations. In addition, the Haversine distance between origin and destination was 

calculated and then normalized with respect to the geographic area of the GTA. Several 

temporal features were extracted from the timestamps, for exaple the hour of the day, the day 

of the week and the week number. These features were included to capture the variability 

related to the different times of the day and the seasonal patterns. All numerical variables were 

normalized in the range [0,1]: this was made to ensure stable convergence during the training 

of the deep learning model. Together, these transformations produce a 12-dimensional input 

vector for each record, which forms the basis for the modeling phase. This preparation step is 

essential to ensure the quality of the predictive process. Data consistency, temporal alignment 

between variables, and correct normalization are key factors that allow the model to learn 

meaningful patterns without introducing bias or systematic errors. 

4.5.3 Deep Learning Models 

To address the problem of delivery time estimation, were teste several deep neural network 

architectures: the goal given tehm was of identifying the model that offers the best trade-off 
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between predictive accuracy and computational complexity. An end-to-end formulation was 

adopted: the model takes as input the 12-dimensional vector described in 4.3.2 and outputs the 

predicted delivery time, without requiring manual feature engineering or prior knowledge of 

the actual route taken. Three main categories of convolutional architectures were explored: 

VGG-based networks, ResNet-based networks, and versions of both enhanced with Squeeze-

and-Excitation (SE) blocks. 

VGG networks are characterized by a sequence of blocks made of two convolutional layers 

with a ReLU activation that is followed by a max-pooling layer. The goal was to assess whether 

increasing the depth of the model would improve its ability to capture complex patterns in the 

data. Some variants with increasing depth, from 3 to 10, were implemented [Table 4.8] The 

results showed an initial improvement as depth increased, but then was followed by a 

performance drop beyond seven blocks: it could be due to overfitting or vanishing gradient 

issues. The following Table summarizes the metrics, highlighting that the VGG-6 variant 

represents the best compromise, with a Mean Absolute Error (MAE) of 0.8867 hours and a 

MAPE of 39.36%. 

 

Table 4.8  – Effect of depth in VGG architectures  

To overcome the limitations of the deeper VGG architectures, it was tested a second category 

of models based on Residual Networks (ResNet). These networks introduce skip connections 

that is a technique that helps to facilitate gradient propagation during training and allow deeper 

models to be trained without performance degradation. Variants with an increasing number of 

residual blocks, from three to ten, were implemented. As reported in the following Table 4.8, 

increasing the depth produced an almost monotonic improvement in the metrics, with ResNet-

8 achieving the best results in terms of Mean Absolute Error (MAE = 0.8404 h) and 90% Error 

Window (EW90% = 1.768 h), making it the preferred choice for system deployment. 

 

Table 4.9 – Effect of squeeze and excitation augmentation  

Finally was evaluated the impact of Squeeze-and-Excitation (SE) blocks. These modules are 

designed to dynamically recalibrate the importance of feature channels. The hypothesis was 

that selective attention could further improve data representation and, consequently, predictive 

performance. However, as reported in the previous Table, the inclusion of SE blocks did not 

lead to significant improvements and, in some cases, slightly worsened performance. 
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Model training was carried out using the Adam optimizer, with the loss function defined as 

Mean Squared Error (MSE). An early stopping strategy was applied if no improvement was 

observed on the validation set for 25 consecutive epochs, and the initial learning rate was 

halved every 40 epochs. The models were implemented in Keras with a TensorFlow backend 

and trained on an Nvidia RTX 2080 Ti GPU, as indicated in the paper. 

In summary, after testing different neural network models, the ResNet ones (with skip 

connections) gave the best results for predicting delivery times. ResNet-8 was the most 

balanced model: it is deep enough to capture complex patterns but not too big to become slow 

or hard to train. Other models, like deeper VGG networks or those with Squeeze-and-Excitation 

blocks, did not bring clear improvements. Overall, ResNet-8 seems the best choice for a 

delivery time prediction system because it gives good accuracy while keeping the 

computational cost reasonable. This makes it practical to use in a real logistics environment. 

4.5.4 Results and Analysis 

The experimental analysis carried out on the Canada Post dataset made it possible to compare 

different deep learning architectures with a set of traditional baselines, in order to evaluate their 

effectiveness in last-mile delivery time prediction. The evaluation metrics included Mean 

Squared Error (MSE), Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), Mean 

Absolute Percentage Error (MAPE), Mean Absolute Relative Error (MARE), and the 90% 

Error Window (EW90%). This last metric is very important from an operational point of view, 

as it indicates the time interval in which 90% of the predicted deliveries fall. 

The results reported in Table 4.9 clearly show the superiority of deep learning models compared 

to traditional benchmarks. For example, the ResNet-8 model achieved a MAE of 0.84 hours: 

that is a 0.13h reduction compared to values above 0.97 hours for the best traditional method 

(SB-TTE). This means that the average prediction error for each delivery is reduced by about 

10 minutes. On a scale of millions of shipments, this means that there could be a significant 

reduction of complaints and customer service calls. The EW90% value was also reduced by 

about 36 minutes if it is compared to the baseline: this means that 90% of deliveries are now 

predicted with an error of less than two hours. For the final customer, this results in a narrower 

and more reliable delivery window, increasing the chance of being present when the delivery 

arrives. From an operational point of view, a smaller uncertainty interval allows the companies 

to planning better shift and resources: at the same time the can reduce idle times and failed 

deliveries. In terms of percentage error, the lowest MAPE was of ResNet-8 that recorded a 

value of 26.37%. By translating this data into real numbers, for a delivery that lasts an average 

of three hours, the average error is less than 50 minutes. This level of accuracy is difficult to 

achieve with purely statistical models, which cannot capture complex patterns such as seasonal 

variations or differences between depots. 

 

Table 4.10 – Results comparison 
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In addition to the aggregate metrics, a detailed analysis of the error distribution was carried out 

to identify possible recurring patterns. Figure 4.5 shows a geographic map of the Greater 

Toronto Area with the error distribution for each depot. It can be observed that peripheral areas 

tend to have lower errors, likely due to more regular traffic conditions and the more frequent 

use of highway segments. In contrast, depots located in downtown Toronto show higher error 

values, mainly because of heavier urban congestion and variability caused by traffic lights and 

high-density delivery zones. 

 

Figure 4.5 - Geographical distribution of MAPE across the 40 busiest depots 

The analysis by origin–destination distance shows that predictions are more accurate for 

distances greater than 7 km [Figure 4.6]. This may seem counterintuitive but can be explained 

by the fact that longer trips are usually completed on high-speed roads and are therefore more 

predictable, whereas shorter routes are more affected by local factors such as neighbourhood 

traffic and frequent stops. From a temporal perspective, Figure 4.7 shows that errors are 

generally lower for deliveries started early in the morning, when traffic is lighter and operating 

conditions are more stable. The day-of-week analysis [Figure 4.8] also shows a slight reduction 

in error on Saturdays and a significant improvement on Sundays, consistent with the lower 

traffic congestion during weekends. Another perspective is provided by the analysis by delivery 

duration [Figure 4.9] the models are particularly accurate for deliveries shorter than seven 

hours, while the error tends to increase as the duration grows. This result is partly related to the 

definition of MSE, which penalizes deviations more heavily when the target values are high. 

 

Figure 4.6 - Distribution of MAPE and MARE across the euclidean distance between the depot and the delivery destination 
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Figure 4.7 -  Distribution of MAPE and MARE across the out-for-delivery hour of day 

 

Figure 4.8 - Distribution of the MAPE and MARE across the 25 weeks (left) and 7 days of the week 

 

Figure 4.9 -  Distribution of the MAPE, MARE, and the MSE across binned hours for the prediction target (delivery duration) 

 

In summary, the experimental results show that the proposed approach not only outperforms 

traditional models but also provides stable and interpretable predictions across different 

geographic and temporal scenarios. These findings confirm the validity of the model as a 

decision-support tool for last-mile logistics management. 

4.5.5 Implications and Conclusions  

The results show that using deep learning models, especially ResNet architectures, can 

noticeably improve the accuracy of last-mile delivery time predictions. This has clear effects 

both for day-to-day operations and for long-term strategy in a logistics company. 

On the operational side, having a lower Mean Absolute Error (MAE) and a smaller 90% Error 

Window (EW90%) makes it easier to plan driver shifts and assign resources more precisely. 

More accurate forecasts mean narrower delivery windows, which help improve on-time 
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performance and the chance of succeeding on the first delivery attempt. Less variability in the 

estimates also cuts waiting time in depots, lowering parking costs and making better use of the 

fleet. 

From a strategic perspective, better prediction accuracy can become a real competitive 

advantage. The results show that ResNet-8 reduced the error window by about 36 minutes 

compared to traditional methods, making it possible to give customers more reliable delivery 

time information. This can improve customer satisfaction and lower the number of complaints 

and failed deliveries. For companies like Canada Post, which handle millions of shipments, 

even a 5–10% gain in accuracy can have a major economic impact. The analysis of error 

patterns also provides useful insights for further local optimization. Indeed, the fact that errors 

are higher in the urban depots and during the peak traffic hours, suggests the possibility of 

developing adaptive models: these models should be calibrated for specific geographic areas 

or certain times of the day. This would make it possible to maximize accuracy where variability 

is highest, such as in city centres, while keeping simpler models for peripheral areas where 

traffic is more predictable. 

From a technological perspective, the proposed model is light enough to be integrated into a 

scalable cloud system and used in near real time, allowing predictions to be updated 

dynamically as new data are collected. Looking ahead, combining the model with live traffic 

data or with information on the actual route would enable real-time updates for the customer, 

bringing the estimate even closer to the actual delivery time 

In conclusion, using deep neural networks to predict last-mile delivery times seems to be a 

practical and effective solution. The results from the Canada Post case study show that an end-

to-end approach, based only on historical and contextual data, can perform better than 

traditional models and bring real benefits for both the company and the customer. In the future, 

these systems could become more dynamic, combining different data sources and giving real-

time updates. This would help build supply chains that are more resilient and better focused on 

customer service. 

4.6 Practical Application of AI-based Computer Vision in Quality 

Control 

4.6.1 Case study introduction and goals 

Reducing food waste and improving quality control are now key challenges for the agri-food 

industry. A large part of the production is still lost or thrown away along the supply chain, with 

serious economic and environmental effects. For this reason, in the last few years several 

technological systems have been developed to make the selection and classification of fresh 

products faster, more consistent, and less dependent on the subjective judgment of workers. 

The case study in this section looks at an integrated system that uses computer vision and 

collaborative robotics to automate tomato sorting. The aim of the project is twofold: to detect 

and classify tomatoes by ripeness and quality, and to move them carefully so they can be 

separated by category without being damaged. The system was designed to be low cost, but 

also easy to add to the existing production lines and then to keep human intervention to a 

minimum (Filho et al., 2024)68. 

On the hardware side, the system uses a Raspberry Pi 5 with a PiCamera Module 3 to capture 

images and a UR3e collaborative robotic arm that has a soft gripper based on the Fin Ray 

Effect. This type of gripper can hold the tomatoes gently, so they are not damaged. The images 

are processed directly on the Raspberry Pi, which then sends commands to the robot over an 
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Ethernet connection. This setup is compact and modular, and it keeps the cost low, which makes 

it suitable even for small and medium farms or processing plants. 

For the classification task, two model setups were tested. In the first setup, tomatoes were 

divided into four classes: unripe, ripe, overripe, and rotten. This gives a very detailed picture 

of ripeness, but it can be hard to manage, especially when the difference between classes is 

very small. For this reason, a simpler setup was also tried, grouping tomatoes into just two 

classes: suitable (unripe and ripe) and unsuitable (overripe and rotten). This simpler approach 

is so much closer to what is needed in a real sorting plant: there the main goal is to separate 

tomatoes that can be sold from those that need to be discarded, rather than describing ripeness 

in detail. 

The experiments showed that the model was able to recognize most of the tomatoes correctly. 

The results were so much better when the images were clear and the fruit was easy to see from 

the camera. Using the simpler classification made the system more stable, forcing it to make 

fewer mistakes and more reliable performance for large-scale use. The tests with the robot also 

showed that the vision system and the robotic arm can work together well: they move and sort 

tomatoes safely and repeatably, without damaging them. Overall, this case study shows that it 

is possible to build an integrated and low-cost system for quality control of fresh products like 

fruits or vegetables. It reduces the variability given by a human inspection, makes the process 

faster, and helps cut waste along the supply chain. 

4.6.2. System Architecture and Experimental Setup 

The system architecture was designed to be reliable, easy to integrate, and low cost, so that it 

can be used even in small and medium production facilities. The solution has three main parts: 

the image acquisition and analysis subsystem, the robotic manipulation subsystem, and the 

communication link between them. 

Vision subsystem 

The recognition part of the system is based on a Raspberry Pi 5 with a PiCamera Module 3. It 

was chosen because it is compact, it has optimized libraries for image processing, and it uses 

only a little amount of power. The camera is positioned on a modular frame made of steel and 

3D-printed parts, placed vertically above the work area at a fixed distance of about 650 mm. 

This setup ensures a consistent field of view and an accurate conversion from pixel coordinates 

to metric coordinates: its very important to have a setup like this because it is necessary for the 

robot arm to move correctly. 

The lighting is provided by two 12V LED projectors, that are positioned to give uniform light 

and avoid shadows or reflections that could interfere with the segmentation algorithm. Having 

a good image quality is essential to reduce detection errors and make classification more 

reliable. 

Robotic subsystem 

For the manipulation part it was used a UR3e collaborative robot arm. It was chosen because 

it is flexible, can be connected to external controls, and is safe to use in places where people 

are working nearby. At the end of the arm there is a soft gripper based on the Fin Ray Effect, 

which copies the way fish fins bend. This kind of gripper adapts to the shape of whatever it has 

to grabs, so it can hold the tomatoes firmly without damaging them. The gripper was made with 

3D printing using flexible material, so it is strong but can still bend when needed. 

Communication and coordination 

The Raspberry Pi talks to the robot arm over an Ethernet cable. The commands are sent in 

URScript using Python’s socket library. This makes it possible to control the arm in real time, 
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matching the moment the tomato is detected with the movement of the robot. The algorithm 

finds the position of the tomato in the image, converts it into real-world coordinates, and sends 

them to the robot, which moves to that point. 

Work area 

The whole system is mounted on an aluminium frame, which gives stability and makes it easy 

to adjust when needed. The work area was defined so that the robot arm has enough space to 

move freely and the camera can see the entire surface, with as few blind spots as possible. After 

several tests, a “safe” working area of about 262 × 250 mm was identified. Inside this area, the 

robot can do pick-and-place operations repeatedly without risk of collision. 

This modular setup makes it possible to adapt the system to different production lines by only 

changing the camera height or the layout of the work area. This keeps the solution flexible and 

scalable, so it can be used both in small labs and in larger industrial facilities. 

4.6.3 Model Training Methodology 

Training the computer vision model was the main step in developing the system, since the 

ability to correctly identify and classify tomatoes depends on it. A dataset of 7,454 images was 

created for this purpose, with more than 55,000 manual annotations. The images came from 

public sources, mainly Kaggle and Roboflow Universe, and were resized to 320×320 pixels to 

keep the input consistent during training. The dataset was split into three parts: 70% for 

training, 25% for validation, and 5% for final testing. This split was used to get a reliable 

estimate of how well the model could work on new, unseen data. 

For the architecture, the Single Shot MultiBox Detector (SSD) with a MobileNet v2 backbone 

was selected. This model works very well with the devices with limited resources, such as the 

Raspberry Pi 5: it gives a good balance between accuracy and inference speed. The model was 

trained using the TensorFlow Object Detection API, which includes pre-trained weights that 

help reduce training time. During training, the model steadily improved, with both 

classification loss and localization loss decreasing over time. The first metric shows how well 

the model can tell the classes apart: instead, the second one shows how accurately it can find 

the tomatoes in the image. The total loss, which combines both, reached low values toward the 

end, meaning the model had learned a good balance between accuracy and generalization. 

After the training phase, the model was converted to TensorFlow Lite, a lighter and optimized 

version designed to run on embedded hardware. The tests with the converted model showed 

performance that was good enough for industrial use. The mean average precision (mAP) over 

the IoU range 0.5–0.95 was 67.54% for the four-class model and 64.66% for the binary model. 

The best results were seen with large, well-lit images, while accuracy dropped when tomatoes 

were partly hidden or the image quality was low. Even with these issues, the overall 

performance was considered good enough for use on an automated sorting line, where the main 

goal is to separate good tomatoes from the ones that must be discarded rather than classifying 

every ripeness stage perfectly. 

This approach made it possible to build a balanced system, fast enough for real-time processing 

and accurate enough to meet the needs of a real production environment. 

4.6.4 Results and Performance Evaluation 

The performance evaluation considered both the accuracy of the computer vision model and 

its integration with the robotic arm, in order to check whether the system could work properly 

in a real tomato-sorting scenario. 



Page | 67  

 

For the visual recognition phase, the training results showed a steady decrease in classification 

loss and localization loss, reaching low and stable values after about 10,000 iterations. In the 

paper, this trend is clearly shown in the training curves [Figures 4.10, 4.11, and 4.12]: they 

highlight how the model improves its accuracy as training goes on. Regularization loss also 

decreased over time, helping to avoid overfitting and showing that the model could generalize 

well to new data. 

 

Figure 4.10 -Loss of classification during training—tomato detection and classification model—four classes. 

 

Figure 4.11 - Loss of localization during training—tomato detection and classification model—four classes 

 

Figure 4.12 - Total loss during training—tomato detection and classification model—four classes 

The quantitative evaluation was done using mean Average Precision (mAP), the standard 

metric for object detection models. The four-class model reached an mAP of 67.54% in the IoU 

range between 0.5 and 0.95, with very good results on large images, where the average 

precision went over 77%. Performance dropped on small images, where accuracy was close to 
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zero, which is expected for models of this type. Table 4.10 in the paper summarizes these 

results, separating them by image size (small, medium, large) and IoU values. 

 

Table 4.11 - TensorFlow model results—tomato detection and classification model—four classes 

After converting the model to TensorFlow Lite, the performance stayed at a similar level. The 

mAP was 78.69% at an IoU of 0.5 and gradually dropped as the IoU threshold increased, 

reaching around 17% at 0.95. Table 4.11 in the paper lists the Average Precision (AP) for each 

of the four classes: overripe and rotten tomatoes had the best results, both with AP values above 

89%, while the unripe and ripe classes showed more variation. 

 

 

Table 4.12 - TensorFlow Lite model results—tomato detection and classification model—four classes 

The simpler two-class model also gave good results, with a slightly lower mAP but better 

robustness in terms of generalization. The training curves (Figures 4.13, 4.14, 4.15) follow a 

similar trend to the four-class model, with total loss stabilizing quickly and regularization loss 

steadily decreasing (Figure 4.16). This simpler setup reduced classification errors in ambiguous 

cases, making the system more suitable for real industrial use, where the main goal is simply 

to separate good tomatoes from bad ones. 

 

Figure 4.13 - Loss of classification during training—tomato detection and classification model—two classes 
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Figure 4.14 - Loss of localization during training—tomato detection and classification model—two classes 

 

Figure 4.15 - Total loss during training—tomato detection and classification model—two classes 

 

Figure 4.16 - Loss of regularization during training—tomato detection and classification model—two classes. 

Finally, 640 manipulation tests were carried out to check the integration between computer 

vision and the robot. These tests helped define a reliable work area of about 262 × 250 mm, 

where the robot arm can perform pick-and-place operations without collisions and with high 

repeatability [Figure 4.17]. The experiment also showed that the few failures were not caused 

by the vision algorithm but by mechanical limits of the robot near the edges of the work area. 
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Figure 4.17 - Configuration of the proposed work area - System test results 

Overall, the results show that the system can detect and can handle tomatoes with an accuracy 

level suitable for an automated sorting line. The integration of the vision and robotics proved 

to be stable and consistent, making possible to scale the system up and adapt it to other types 

of fruits or vegetables in the future. 

4.6.5 Implications for the Supply Chain and Conclusions 

This project does not just show that an automatic system based on computer vision can work 

but also has a bigger meaning for the agri-food supply chain. Being able to classify products in 

real time, directly on the production line, helps to react faster when quality standards are not 

met. Lots with a high number of bad products can be found immediately, so the next processing 

steps can be stopped, and time, energy, and resources are not wasted. 

Another important effect is that it makes the process more standard. Manual checks depend so 

much on the experience of the operators and they can be subjective: instead, an automatic 

system always applies the same rules. This gives more reliable data and can make it easier to 

agree on shared quality metrics along the supply chain. Having structured digital data also 

makes it possible to connect the system with traceability platforms or predictive tools: this 

feature can help to forecast demand and plan logistics better. 

Finally, the system can be adapted for other fruits or vegetables with little extra work. It is 

enough to collect a new dataset and train the model again with the new classes. This makes the 

investment more useful in the long term, because the same setup can be reused for different 

products. 

From an operational point of view, using computer vision systems together with collaborative 

robots does not just reduce the need for manual inspection staff. It also allows workers to be 

moved to other tasks with higher value, such as process supervision or predictive maintenance. 

This is important to make sure the technology is accepted in places where human work is still 

essential. 

Looking at the whole supply chain, adopting systems like this helps bring the “Industry 4.0” 

approach into the agri-food sector, which is usually more traditional. Moving from a reactive 

quality control to a proactive and digitally connected one creates the base for real quality 

maintenance strategies, not just defect detection. This change can help reduce waste in a 
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structural way, predict how much product will be rejected, and in the long run improve both 

the economic and environmental sustainability of the supply chain. 

In conclusion, this case study shows that an integrated system of computer vision and 

collaborative robotics is not only a promising technology to improve quality control, but also 

a tool that can drive digital transformation in the supply chain. Its ability to produce reliable 

data, standardize processes, reduce variability, and give real-time information opens the way 

to more connected, resilient, and sustainable supply chains. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Page | 72  

 

CHAPTER 5 - From Case Studies to Strategic Insights: 

The Future of AI in Supply Chain Management 

5.1 Integrating Lessons from Real-World Applications 
The four case studies in Chapter 4 send a clear message: Artificial Intelligence is no longer just 

an idea for the future but a real and measurable tool that is already changing supply chains. 

Each case, Walmart’s demand forecasting, reinforcement learning for inventory management, 

deep learning for last-mile delivery prediction, and computer vision for quality control, shows 

how AI can solve long-standing problems and also make new ways of working possible.  

A first common point is the value of data-driven decisions. The Walmart example showed that 

moving from basic regression models to more advanced boosting algorithms can make 

forecasts much more accurate, reducing errors and giving managers better information for 

planning. In the same way, in the inventory management case, multi-agent reinforcement 

learning helped coordinate decisions between warehouses and stores: it has found a good 

balance between having enough stock and avoiding waste that is something very hard to do 

with fixed rules. Together, these results show that predictive and prescriptive analytics can 

change supply chains from being reactive to proactive, so that problems can be anticipated 

instead of just fixed after they happen.  

At the same time, these cases show that using AI is not without problems. The Walmart dataset, 

for example, covered only a short period and a limited area: so, it is not sure if the models 

would work the same in the long run. Both the demand forecasting and the delivery time 

prediction systems worked a bit worse in special situations like holidays or peak hours. This 

shows that models need to be checked and retrained regularly.  

Another important lesson is about scalability and adaptability of the system based on AI. The 

reinforcement learning study showed that policies trained once could still work well in new 

scenarios, for example, when new products or stores are added, without having to retrain the 

whole system. This is a key concept for real companies, where the networks and the demand 

patterns change all the time. In the same way, the Canada Post case showed that deep learning 

models trained on rich historical data could generalize well to different locations and times, 

giving good results even in difficult situations like urban traffic. 

The computer vision case for tomato sorting also shows that AI is not only about numbers and 

optimization. By making quality control more consistent and turning it into structured data, 

these systems can improve traceability and open the way for more digitalization along the 

supply chain. 

Taken together, the four cases give a clear picture: AI gives the best results when it is part of 

the whole process, from forecasting demand, to managing inventory, to planning deliveries, 

and making sure quality standards are met. 

In the end, the results suggest that AI works best when it is not seen as a separate tool but as 

part of a bigger plan that combines technology, process changes, and human knowledge. For 

managers, the message is simple: to get real value from AI, it is important to link it to business 

goals, invest in good data, and prepare people to work together with intelligent systems. 

5.2 - Strategic and Managerial Implications 

The case studies are not only about technology; they also show some lessons that are important 

for managers who want to adopt AI in supply chains. A first clear point is that AI should be 
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introduced step by step. Starting with simple projects, like demand forecasting, helps 

companies gain confidence in data-driven decisions and allows employees to get used to new 

tools. After this first stage, it is possible to move to more complex systems, such as 

reinforcement learning, which can give suggestions or even automate reordering decisions. 

Another important aspect is the role of people and company culture. A common concern among 

employees is that AI will replace jobs. The cases show that this is not exactly true because AI 

usually changes jobs instead of eliminating them. For example at Walmart, better forecasts 

helped reduce stock problems, but anyways workers were still needed to check results, deal 

with exceptions, and manage suppliers. Instead in the tomato sorting case, computer vision did 

not remove manual work completely, but it changed tasks of the workers: they are moved 

towards supervision and maintenance. For this reason, managers need to support workers with 

training and clear communication, so that AI is seen as a tool to help, not as a threat. Change 

management, in this sense, is as important as the technology. 

Another important aspect concerns fairness, transparency, and data privacy. Companies need 

to act responsibly in the way they use data, especially in Europe where regulation is strict 

because of the General Data Protection Regulation (GDPR). Customers and suppliers are 

becoming more attentive to how their information is collected, stored, and used, and if there is 

little transparency this can reduce trust and damage long-term relationships. Beyond 

compliance, there is also a very important reputational factor: organizations that show a clear 

and ethical data governance are usually considered more reliable partners in the supply chain. 

On the contrary, weak protection or misuse of data can lead not only to legal penalties but also 

to financial losses, operational risks, and reputational damage. For these reasons, fairness and 

privacy should be seen not only as legal requirements but also as strategic elements that 

influence the competitiveness and resilience of supply chains in the digital era. 

More generally, adopting AI should be seen as a strategic change, not only as a technical 

project. It requires investments in infrastructure, skills, and data governance, but also changes 

in processes and leadership models. The biggest risk is not that the technology does not work, 

but that the organization is not ready to the transition. Companies that see AI as a simple plug-

and-play solution may be disappointed. Instead, firms that integrate AI into a broader vision, 

connect it with business goals, and involve people at all levels are more likely to gain long-

term benefits. 

5.3 - Challenges and Barriers to AI Adoption for SMEs 

One of the main points that came out from the study of Artificial Intelligence in supply chains 

is that not all companies can adopt these technologies in the same way. Big multinational firms 

can invest a lot of money in infrastructure, experts, and experiments, while small and medium-

sized enterprises (SMEs) face a very different situation. For this reason, the enthusiasm about 

AI should always be considered together with the real difficulties that many firms, especially 

SMEs, experience when they try to move from theory to practice. 

The first barrier is data. Many SMEs still work with fragmented systems, often based on 

spreadsheets in Excel or old ERP software with little or no integration. This makes data not 

only limited but also inconsistent, and therefore difficult to use for training reliable models. 

While large firms have years of detailed information, SMEs often lack both the volume and the 

variety of data. A second problem is infrastructure. Running AI systems requires environments 

where data can be processed, models can be trained, and results monitored. SMEs often use 

outdated servers or local systems that were never designed for this hard transition. Cloud 

solutions can help SMEs, but they also bring new costs: also they require a digital maturity that 

is not always present in a small or medium company. Skills are another issue. Experts such as 
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data scientists or AI engineers are very expensive and hard to find. For a medium-sized firm, 

hiring such profiles is usually not sustainable. Even when external consultants are used, there 

is the risk of becoming dependent on them without building internal knowledge. In many cases, 

the cultural gap is the most important problem, compared to the technical one: adopting AI 

means changing processes, decision-making, and sometimes the company culture itself. Costs 

also matter. AI is not only about the first investment but also about maintenance, updates, and 

retraining of models. For the SMEs, who have usually small margins as they don't reach 

economy of scale, this can be a real limitation. Finally, there are legal and ethical aspects. Data 

privacy and compliance with regulations are becoming more complex. Large corporations 

usually have teams that deal with these problems, while SMEs often do not. 

To summarize all, adopting AI in SMEs is possible, but not as easy as for a multinational 

company. It requires being aware of the barriers and taking a gradual and realistic approach. 

Otherwise, there is the risk of presenting AI as a universal solution, while in reality its 

accessibility is still uneven. 

5.4 - Roadmap for AI Implementation in Supply Chains 

One important lesson from both the literature and the case studies is that the use of AI in supply 

chains cannot just happen without preparation. Many times companies start with too much 

expectation, and sometimes they become sceptical after projects that do not work well. For this 

reason, a clear plan or roadmap is needed, with steps that go one after the other, trying to 

balance what is possible with what is ambitious. 

A roadmap for the adoption of Artificial Intelligence in supply chain management can usually 

be divided into three main stages. These stages correspond to different levels of maturity of 

companies. The division is not fixed, because every company must adapt it to its own situation, 

but it helps to understand how to move from first experiments to full integration. 

The first stage is the foundation. In this phase the most important aspect is data. If data is not 

reliable and well organized, even the most advanced model cannot give good results. For this 

reason, companies must improve the way they collect and store information and make sure that 

data can be used by different departments. For small and medium enterprises this step is already 

very difficult, because many still use old systems or separate tools. However, this step is 

necessary. Creating a culture where decisions are made on data and not only on intuition is the 

starting point for every use of AI. The second stage is the experimental phase. In this phase 

companies can start with simple applications, such as sales forecasting or demand analysis. The 

goal is not only to obtain first benefits but also to allow employees to see how the models work 

and to start trusting them. Pilot projects are useful to test the technology but also to help people 

learn. It is very important to involve all employees, show them the results and explain how the 

models work, so that resistance is reduced and acceptance is higher. The third stage is scaling 

and integration. In this phase AI is no longer an isolated project but it is part of the supply chain 

strategy. Applications are extended, and AI is integrated in decision-making at different levels. 

More advanced systems, such as reinforcement learning or digital twins, can be used to 

optimize inventory, simulate different scenarios, or even automate some activities. The 

objective is to move from simple support to partial automation, but always with human control 

to guarantee strategic alignment and ethical responsibility. 

Of course, this roadmap is not the same for all, indeed every company has to adapt it to its own 

resources, culture, and objectives. The important point is to move step by step, always 

connecting technology with business goals, and keeping a balance between innovation and 

sustainability. It is also necessary to manage expectations by workers, managers but also 
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shareholders or owners: AI can be very powerful, but it is not magic. Without a clear plan, it 

can easily be seen as only a temporary trend. 

In conclusion, a roadmap is not just about technology. It is also about organizational change. It 

means creating the right conditions of data, skills, culture, and strategy so that AI can really 

help supply chains to become stronger and more competitive. 

5.5 - Future Outlook and Research Directions 

The future of Artificial Intelligence in the supply chain management will probably move from 

single, isolated projects to a more integrated use of these technologies. What today looks like 

many separate applications will in the next years become more connected, with forecasting, 

optimization, and decision-making working together along the whole supply chain. 

A key step in this direction will be the use of digital twins69 together with the Internet of Things. 

Traditional systems usually give only a partial or static picture, while digital twins can create a 

virtual copy of the supply chain. With the real-time data coming from IoT sensors, these models 

can be updated constantly and used for many applications: for example, to test strategies, 

simulate possible problems, and see bottlenecks before they really happen. Beyond simulation, 

digital twins also make it possible to evaluate “what-if” scenarios in a controlled environment, 

reducing the risks of experimenting directly on operations. They allow managers to anticipate 

disruptions and compare alternative courses of action, integrating predictive and prescriptive 

analytics into daily decision-making. This makes the system more dynamic compared to the 

traditional planning methods and helps supply chains to become more flexible but also adaptive 

and resilient in the face of uncertainty.  

Another important development is the move from predictive models to prescriptive or even 

autonomous systems. Today AI is often used only to forecast demand or find inefficiencies. In 

the future, it will also suggest concrete actions, and in some cases take them automatically if 

certain conditions are met. Reinforcement learning, for instance, is already tested for reordering 

policies and could in the next years be used for semi-automatic procurement. This change does 

not mean that humans will disappear from the process. Instead, their role will change: managers 

will spend less time on routine operations and more time on supervising, validating results, and 

making sure that AI decisions are aligned with the company’s strategy. Human–AI 

collaboration will therefore be a key point, not only for technology but also for organization 

and governance. 

Another important issue that firms should be aware of in the future, is the robustness of the 

models that they will use. While such models generally provide satisfactory results under 

standard operating conditions, their performance tends to deteriorate in the presence of atypical 

scenarios such as sudden demand peaks, unexpected market shocks, or disruptions linked to 

geopolitical crises and extreme weather events. These contexts are more and more frequent and 

they highlight the need to develop approaches that do not only optimize average-case accuracy 

but are able to ensure stability and reliability in highly volatile environments. Several research 

directions appear promising in this respect. Adaptive algorithms represent a first option, as they 

are capable of recalibrating parameters continuously on the basis of new data streams, thereby 

maintaining prediction accuracy even when operating conditions change rapidly. Transfer 

learning constitutes another line of investigation, allowing models trained on large datasets in 

well-documented contexts to be reused and adapted in situations where historical data are 

scarce, with clear advantages in terms of generalization and cost reduction. A further possibility 

is the design of hybrid systems in which machine learning models are combined with rule-

based mechanisms, so as to exploit the capacity of statistical methods to detect complex 

patterns together with the reliability of predefined procedures in critical situations. The 
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integration of these approaches could lead to predictive systems that remain effective not only 

in stable conditions but also in the presence of external shocks, thereby increasing the resilience 

of supply chains and supporting continuity of operations. 

Another area that will change the future of AI is the sustainability behind this technology. 

Supply chains must, starting from today, balance efficiency with environmental and social 

goals. Going in this direction, AI will not be used only to cut costs or improve lead times but 

also to reduce emissions, optimize energy consumption, and support more ethical sourcing 

practices. But at the same time, the environmental impact that AI itself will have on the planet 

can't be ignored. For example, the energy used to train OpenAI’s GPT-470 has been estimated 

as enough to power 50 American homes for 100 years. This shows that very large models can 

become a sustainability problem on their own. To face this issue, researchers and tech 

companies are looking at alternative energy sources for data centres. One option that has been 

proposed is the use of small modular nuclear reactors (SMRs) to provide stable and low-carbon 

power for cloud infrastructures that run advanced AI systems. Even if this solution is 

technically possible, its real adoption will depend on costs, regulation, and public acceptance 

in the next years. 

The adoption of AI will not proceed in the same way for all companies. Small and medium-

sized enterprises (SMEs) generally face greater constraints, such as limited financial resources, 

smaller and less structured datasets, legacy IT systems, and difficulties in attracting or retaining 

specialized professionals. If these obstacles are not addressed, there is a concrete risk that AI 

will widen the gap between large corporations and smaller firms. This is not only an economic 

issue but also a social one, since the resilience of supply chains depends on the participation of 

a broad base of suppliers and not just on the largest actors. Nonetheless, SMEs are not excluded 

from this transition. Several strategies can support their gradual involvement. Cloud-based 

platforms and “software as a service” solutions reduce the need for significant infrastructure 

investments, while collaborations with technology providers, research centres, or universities 

can give access to skills that would otherwise be too costly to develop internally. Just as 

important is adopting a progressive approach: starting with limited and low-risk applications, 

such as demand forecasting or inventory monitoring, makes it possible to demonstrate concrete 

benefits and build confidence in the technology before moving on to more advanced systems. 

By doing this, even smaller firms can incorporate AI into their processes and maintain 

competitiveness, thereby contributing to the overall resilience of supply chains. 

In conclusion, the future of AI in supply chains will not depend only on technology. It will also 

depend on organization, rules, and society. AI must be robust, transparent, sustainable, and fair. 

Its development will not be a finished project but a continuous process, where data, models, 

and people work together. The companies that will benefit most will be those that see AI not as 

a single tool but as part of a bigger strategy, with technology, governance, and culture together. 
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