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Abstract

Rare diseases represent a significant challenge for biomedical research due to limited data
availability and complex molecular interactions. Multi-omics integration emerges as a
promising strategy to overcome individual omics limitations and provide comprehensive
biological insights. This work presents a comparative analysis of multi-omics integration
approaches applied to Ehlers-Danlos Syndrome (EDS), a group of hereditary rare diseases
characterized by collagen production defects. The research operates on three analytical
levels: first, single omics analysis, performed on transcriptomics and proteomic data, fol-
lowed by multiomics integration through statistical techniques. All the levels of analysis
are performed on bulk (2D) and spheroid cell (3D) cultures, to capture shared information
and compare possible differences. Data were collected from fibroblast cultures of 14 pa-
tients (10 patients with disease and 4 healthy controls) under both 2D and 3D conditions.
Transcriptomics analysis was mainly focused on the use of DESeq2 framework, based on
negative binomial generalized linear models, while proteomics analysis compared three
statistical approaches: classical ANOVA, linear models for micro-array data (limma) and
non-parametric Wilcoxon test. After this, multi-omics integration was performed, by using
three complementary methodologies: Multi-Omics Factor Analysis (MOFA), for identify-
ing shared latent factors across the omics layers; iClusterPlus, that aims to integrate and
cluster samples through Bayesian latent variables; and finally Similarity Network Fusion
(SNF), for patient similarity network fusion. Each approach was evaluated for its ability
to merge multiple omics layers together by using different approaches and for identifying
biologically relevant genes. Results show the potential of integration techniques to cap-
ture molecular patterns, providing biological insights regarding the most significant genes.
The analysis demonstrates how multi-omics integration can reveal further biological in-
sights, by obtaining improved clustering and differentiation along the fused components.
While transcriptomic and proteomic analyses alone resulted in partial and inconsistent
clustering, patient and control groups are well separated across the latent fused space after
applying the integration techniques (especially with SNF). In particular, they produced
a clear distinction between patients and controls, with all controls grouped together and
the number of misclassified patients reduced to only 3. Moreover, the fused similarity
space highlights two main components of separation, driven by a restricted set of genes,
which represent promising candidates for investigating Ehlers-Danlos syndrome mecha-
nisms. The comparative and systematic evaluation performed on the different methods
emphasizes both the strengths and limitations of each integrative approach, contributing
to a deeper understanding of their applicability when applied to rare diseases.
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Chapter 1

Introduction

Rare diseases represent a challenge for biomedical research due to the limited availability
of data and the complexity of the molecular interactions involved. These two aspects re-
quire methodologies and tools to extract the most of the limited amount of data available,
but at the same time to simplify the overview of these complex diseases. Omics data
integration represents a promising strategy in this sense, since it combines different types
of data from omics disciplines (e.g. genomics, transcriptomics and proteomics) to obtain
a wider and more complete view of biological processes involved.
This integration helps to overcome the limitations of each individual technology, by merg-
ing together the different information extracted from each omics layer and obtaining more
meaningful results about the disease.
Focusing on rare disease, integrative approaches open the opportunity to uncover hid-
den patterns across molecular and biological dimensions, supporting the identification of
biomarkers and possible therapeutic targets.

1.1 Aim of the work

The aim of this thesis is to apply and evaluate different integration strategies to study
multi-omics data. In particular, starting from a individual analysis conducted separately
on transcriptomics and proteomics data, we moved to the study of integrative approaches
based on different principles. In this way, the comparison was performed across single
omics and multi omics methods, with the ultimate goal of identifying key molecular fea-
tures, such as genes, proteins or pathways involved in the disease.
In particular, transcriptomics and proteomics focus on two different expressions of the
same sample: the first corresponding to the gene expressions in the mRNA, while the
latter representing the proteins abundances [11]. Thus, the two data offer complementary
insights into the genes expression in a patient, providing a wider understanding.

This study focuses on the Ehlers-Danlos syndrome (EDS), a group of hereditary rare
diseases characterized by a defect in the production of collagen, an essential component
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of connective tissue [12]. The spectrum of clinical manifestations ranges from joint hyper-
mobility and skin fragility, to abnormal wound healing, due to the collagen function of
connect, protect and support the body’s tissues [12].
Data are obtained from fibroblast cultures in both bulk (2 dimensional) and spheroid (3
dimensional) conditions, extracting them on the same samples but using different tech-
niques.
By applying statistical and computational tools, it was possible to assess differential ex-
pressions, clustering patients and genes behaviors and pathway insights.

The goal is to perform the analysis at three different levels:

• Investigate the common points and differences between transcriptomics and pro-
teomics data, by performing a single omics analysis on each;

• Explore potential patterns or significant signatures between 2D and 3D cell culture
conditions, within and across the omics layers;

• Analyze the data as unified framework using the integration techniques, in order to
have a comprehensive comparison among all the samples and expressions, identifying
possible shared features across conditions and data types.

1.2 State of the art
In the last decades, the raising and development of new technologies has allowed a better
understanding and study of rare genetic diseases, that require special care due to their
limited availability of patient data and phenotypic heterogeneity.
Among these technologies, transcriptomics and proteomics represent good tools for inves-
tigating gene and protein expressions. Omics technologies have a high range of applica-
tions and have been used to capture several factors and insights, such as static genomic
alterations, proteomics dynamics and temporal perturbations [11].
In the context of rare diseases, experimental data are often scarce, since the number of
patients and available samples is relatively low, but the use of advanced omics methods
can help find correlations and patterns through statistical and mathematical analysis [9].

1.2.1 Transcriptomics analysis
So far, transcriptomics has stood out as the best tool to describe and quantify the differ-
ence between physiological and pathological condition or between before and after treat-
ment [10]. The innovation introduced by this technique is the unified analysis of all the
RNA molecules, taking into account the whole pool of cell RNA.
We can say that the transcriptome, i.e. the set of all RNA transcripts, constitutes a pe-
culiarity of the individual cell at a given time or condition. The expression of transcripts,
in fact, changes depending on the conditions of the extra and intracellular environment.
The goal and power of transcriptomics analysis is not only to investigate the cellular tran-
scriptome, but also its variations from cell to cell or tissue to tissue, as a result of changes
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in the cellular or tissue conditions [10].

Transcriptome is studied through two main technologies: microarray, developed in 1995,
and RNA Sequencing, invented in the 2000s and that has revolutionized transcriptomics
by offering higher resolution and unbiased identification of genes [7]. Microarray allowed
the assay of thousands of transcripts simultaneously at a greatly reduced cost per gene
[26]. These arrays consist of a solid substrate onto which DNA probes are attached, which
encode a gene and assess its expression. The biggest limitations of this tool are the in-
ability to detect de novo transcripts and the necessity of large sample size [11], even if it
still maintains a wide use in the scientific community, thanks to its maturity and relative
low cost.

On the other hand, RNA Sequencing has improved the transcriptome analysis, allow-
ing for unbiased and high-throughput identification and quantification of genes, including
novel ones [7]. It utilizes Next-Generation Sequencing (NGS) technologies to analyze the
cellular transcriptome by sequencing RNA molecules. The method is based on a quanti-
tative nature: starting from the sequences of bases, they are then mapped to a reference
genome or transcriptome to identify expressed genes. These reads are used to count the
genes in the transcript and serve as a measure of gene’s expression [10].
After extracting the genes counts, it is essential to proceed with computational, statisti-
cal and machine learning techniques to analyze the huge amount of data obtained. These
methods are used for tasks such as differential gene expression analysis or for identifying
targets for treatments or further studies [7].
Deep learning methods may also be used for their ability to integrate heterogeneous
datasets and uncover complex relationships within transcriptomic data [5].

After the raw data is obtained as integer number, representing the genes counts, some
computational steps are required to prepare the data for following analysis.
The preprocessing pipeline usually includes prefiltering cut, normalization (i.e. using rlog
function) and balancing distributions among the genes expressions. Through heat maps
and PCA plot it is possible to assess the overall similarity and dissimilarity among the
samples and see the main genes that are able to separate the data.
At this point, the most common downstream application is the differential gene expres-
sion analysis, which aims to find the genes with expression levels that differ significantly
between two or more conditions. Statistical tools such as DESeq2, edgeR and Limma are
among the most widely adopted, relying on negative binomial or linear models adapted
for RNA-Seq data [2]. These methods produce a list of differentially expressed genes,
typically ranked by adjusted p-values and fold changes.
Finally, to find a bond between the statistical output and the biological context, func-
tional enrichment analysis is usually performed. This part helps identify and assess if
some specific pathways, molecular functions or biological processes need extra attention
and further analysis. These identified genes are over or under expressed in the samples,
compared to a reference condition or control group.
The main tools used for this step are ClusterProfiler and Enrichr to perform both Gene
Ontology or pathway enrichment analyses. [2].
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1.2.2 Proteomics analysis

From the translated mRNA, we obtain proteins, which represent the final step of the
dogma on the omics scale. The study of all the expressed proteins in a cell or tissue is
called proteomics, involving at the same time the study of their functions and structures.
Cellular proteins can have either a structural or a functional role. It is these last that
are of particular interest for all the analysis, since they are mainly responsible for the
activities of the cell. Some examples of this case are intra and inter cellular messengers,
receptors and enzymes [9].
Proteomics investigates the functional relevance of all expressed proteins in a cell or tissue
by interrogating the information flow through protein signaling. The study of proteome
serves as a reliable tool to measure cellular alterations during cellular state transitions,
as for example in the context of carcinogenesis, since most biological functionalities are
activated and controlled by proteins. The fact that a protein is expressed only by a certain
cell type or only under certain pathological conditions allows it to be used as a target for
therapies, along with the benefit of reducing side effects [9].
In contrast to genomics and transcriptomics, where the plan and directions for cellular
processes are being investigated, proteomics examines the actual molecular machinery
that carries out these processes. The power of this field lies in its ability to image the
dynamic patterns of protein expression, modification and interaction that reflect the true
functional cellular and tissue state. The proteome, being the complete set of proteins ex-
pressed from a genome at a given time, is the most direct expression of cellular phenotype
and function. Protein expression levels, post-translational modifications, and protein-
protein interactions vary vastly among different cell types, developmental stages, disease
states and environmental conditions [6].

Proteomics technologies have evolved through several generations, but mass spectrometry
has remained the primary analytical platform since the 1990s. Traditional approaches like
two-dimensional gel electrophoresis, pioneered in the 1970s, provided resolution and visu-
alization of hundreds of proteins in parallel but were limited in their dynamic range and
reproducibility [39]. Nowadays, proteomics analysis relies strongly on mass spectrometry,
that enables detailed characterization of protein sequences and post-translational modifi-
cations.

Mass spectrometry is a analytical technique used to measure the mass-to-charge ratio
(m/z) of ions, providing information about the composition and isotopic signature of a
sample. In proteomics, MS is primarily used to identify and quantify proteins and their
constituent peptides. The general process involves ionizing the sample, separating these
ions based on their m/z and detecting them [43].
In particular, proteomics data represents the area under the intensity curve of the mass
spectrometry for each peptide. Each value reflects the signal intensity based on the peptide
ion counts and abundance. Recent advances have introduced data-independent acquisi-
tion methods, which offer greater reproducibility and quantitative accuracy [6]. These
methods have enhanced protein quantification reliability and made possible more robust
comparative analyses under different biological conditions.
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The main advantages of this technique are:
• High Sensitivity and Specificity, being able to identify substances at very low con-

centrations;

• Versatility, for analyzing a wide range of molecules, from small chemicals to large
proteins;

• Identification of changes, since it is good at identifying post-translational modifi-
cations on proteins, which are a crucial point to understand proteins function and
regulation;

• Quantitative analysis, that is provided with different labeling strategies or label-free
approaches.

The most relevant limitations of the Mass spectrometry method are related to the com-
plexity of the data analysis required after generating the data, using sophisticated com-
putational tools, and the high cost and accessibility that the instruments need [43].

Following data collection, proteomics datasets are subjected to computational processing
to go from raw spectral information to biological insights. The preprocessing pipeline
typically includes shrinkage of the values range by applying a function transformation,
imputation of missing values and filtering in order to correct for technical variability.
After performing the preprocessing steps, statistical and machine learning techniques are
essential for analyzing the data generated by proteomics. Machine learning algorithms
are employed for tasks such as predicting protein-protein interactions, identifying disease
markers and classifying protein functions [1].
Several machine learning methods play a crucial role in different phases of the data analy-
sis, such as handling missing values by performing data imputation and clustering the data
to uncover hidden relationships. Some examples are the use of Random Forest or Bayesian
Principal Component Analysis for missing values imputation, or K-nearest neighbors to
cluster proteins and samples.
The most significant downstream application in proteomics is differential protein expres-
sion analysis, which identifies proteins whose abundance levels between experimental con-
ditions differ significantly. Advanced statistical methods, often taken from transcriptomics
but adapted to suit the characteristics of proteomics data, are used to normalize for miss-
ing values, technical noise and batch effects [43]. An example is the Limma package, that
allows to fit a linear model for each protein, while shrinking the variances using empirical
Bayes approach and performing multiple test correction with Benjamini-Hochberg. After
preprocessing on cleaning proteomics data, statistical approaches are still the most used:
this includes the application of ANOVA tests, t-tests, linear regression and non parametric
tests, as the Wilcoxon Test. Depending on the type of data and the type of analysis one
wants to perform, the best tool may vary.

1.2.3 Multi-omics integration
Integrative multi-omics approaches have emerged as a powerful strategy to combine het-
erogeneous biological data into one analytical framework. These methods aim to capture
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the complexity that is present between different molecular layers and biological processes.
This innovative approach has arisen because of the complexity, high dimensionality and
heterogeneity of multi-omics data. It is a challenge for researchers to extract valuable
information from this data [1].
This approach allows for a more global analysis of the data than any individual form of
omics technology, since it allows the investigation of data in a complete way, taking into
consideration the different steps involving the genes (DNA - mRNA - proteins) [11]. The
overall assumption that forms the foundation of multi-omics integration is that the cell
systems operate following complex network behaviors, in which the genes information is
shared among genomics, transcriptomics and proteomics levels. By combining different
layers of data, researchers are able to analyze a greater amount of data extracted from
different sites of the cell, enabling multi-dimensional insights that would not be accessible
through single omics approaches alone.
Transcriptomics and proteomics are most frequently used in combination, followed by the
combination of transcriptomics with epigenomics and proteomics with metabolomics [5].
In fact, putting together the data from mRNA and proteins, it is possible to document
both the regulatory instructions hidden in mRNA expression patterns and their functional
consequences in protein abundance and activity.

There are two potential approaches for multi-omics data analysis [33]. The first approach
focuses on various analysis across the different omics layers in the context of pathways
and mechanisms. The key point is that it might use information from different databases
to put together the different components of the same disease. The objectives are mainly
to gain disease insights and identify significant molecular players involved in the disease.
A second and more demanding approach is the integration of multi-omics datasets col-
lected from the same set of patient samples. in this case, the analysis looks for correlations
to discover patterns in the features in order to understand the mechanisms of the disease
and of that sample set [5].

Strategies for multi-omics integration can be classified broadly into three approaches:
early integration, late integration, and intermediate integration [49]. In early integration,
the different omics datasets are combined into one table or a single matrix which is then
used as input to apply analytical methods. In late integration, models are applied to each
dataset independently, and after that a second model combines their predictions. Thus,
the results are combined on the interpretation level afterwards, for instance, combining
differently expressed genes and proteins into pathway analysis. Lastly, in intermediate
integration, a model learns a joint representation of the datasets, performing integration
as part of the analytical process itself. These methods are the most sophisticated ones
and they typically work by dimensionality reduction or network-based methods [5].

Among all the types of integration techniques, the following ones stand out for their
distinctive methodological principles:

• Matrix factorization techniques: very popular in multi-omics integration due to their
ability to reveal underlying factors to characterize shared patterns across different
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molecular layers [4]. Among the most widely used techniques we have the Non-
negative Matrix Factorization (NMF), which breaks down the integrated omics data
matrix into two low-dimension matrices, both with the property of no negative el-
ements. This non-negativity makes the resulting matrices easier to inspect and
remains coherent to the data being considered (since it always represents counts
or areas). For example, when applied to transcriptomic and proteomic information
from cancer tissue, NMF can identify molecular subtypes with coordinated changes
in protein and mRNA expression, that reveal subtypes that could be overlooked if
each omics layer is considered individually.
Another example is the Multi-omics Factor Analysis (MOFA), which is a more so-
phisticated variant that was specifically designed for multi-omics data. The main
idea of this approach is to identify the factors that explain variation within and be-
tween different omics layers. MOFA has been largely used for integration of omics
data, especially for its ability to handle bulk data and samples scarcity. [4].

• Principal Component Analysis (PCA) and its variants like sparse PCA and kernel
PCA are some of the other dimension reduction methods available for multi-omics
integration. PCA is primarily used for the exploration and identification of the
largest sources of variation within omics datasets. The aim of the method is to
reduce the dimensionality of the input data, while at the same time retaining as much
variance (hence information) as possible [28]. The procedure consists of constructing
axes along which the data is projected. These new axes are the combinations of the
original features and are selected based on their explained variance. So, the first
ax will always capture the majority of variance from the original data, with each
subsequent Principal Component capturing less than the one before it.
Variation of the PCA method, such as Sparse and Kernel PCA, are still based on the
idea of projecting high-dimensional data onto lower-dimensional spaces with maximal
variance preservation, but using more sophisticated approach to handle the data and
its projection. The main advantage of PCA-based methods is its ability to visualize
and discover the major sources of variation between samples or genes [17].

• Network-based integration strategies exploit the inherent networked character of bi-
ological systems by constructing and analyzing integrated networks from multiple
omics layers [30]. The strategies rely on the concept that proteins and genes do not
function in isolation but rather in complex interactions and regulatory networks. One
popular strategy is to construct heterogeneous networks with the nodes representing
different molecular entities (transcripts, proteins, genes) and the edges representing
different types of relations (protein-protein interactions, co-expression, regulation)
[14]. These networks can map central hub proteins that serve as key nodes connect-
ing transcriptional and proteomics perturbations, providing insight into potential
therapeutic targets.
An example is the Similarity Network Fusion (SNF), a network-based strategy that
constructs patient similarity networks for each omics layer separately, before per-
forming their integration. Then, the method iterate by fusing together the layers
into an integrated patient similarity network [30]. These types of approach works
well when the data is incomplete or the dataset quality is not uniform. Moreover,
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networks can be built in complex ways, taking into account additional, annotated
information, allowing the creation of a global unified knowledge.

The selection of suitable integration methods depends on many factors, including the
biological questions being addressed, the composition and type of the datasets, and the
level of interpretability needed. Each method has its own advantages and limitations, and
it is the researcher’s duty to understand which type could work better for the specific
task. For instance, matrix factorization methods are well suited for identifying global
patterns and molecular subtypes, but network methods are well suited to identify crucial
regulatory nodes. Unfortunately, finding the perfect tool for the analysis may be difficult,
especially for complex data or small samples. This happens frequently when handling
omics data related to rare genetic diseases: for this reason it is often reasonable to apply
different techniques on the data and compare them and their results.
Throughout this work, many techniques are applied to perform a specific task and then
they are compared to find the one that works better and extracts more information. In
the next section a resume by chapters of the work is provided.

1.3 Resume by chapters
The aim of this thesis is to provide a deep analysis of transcriptomics and proteomics
data, followed by the application of multi-omics data integration approaches taken on
Ehlers-Danlos syndrome samples. The study goes from first principles and theoretical ex-
planation, through methods’ application and then to empirical results and interpretation.

Chapter 2: Materials and Methods. In this section, the theoretical and practical
framework of the research is presented. The Mathematical Background section provides
the statistical concepts required for understanding the analytical approaches, focusing on
the explanation of the mathematical and statistical knowledge required for the analysis.
Following this preliminary section, the core of the work is presented in the Advanced
Methods part. Statistical concepts of differential expression analysis are presented, re-
ferring to the transcriptomics study, including negative binomial models used in DESeq2
for RNA-seq data, while for proteomics techniques we present analysis as linear models
through limma,one-way ANOVA and non-parametric alternatives such as Wilcoxon tests.
Multiple testing correction methods, missing value imputation techniques (BPCA, PPCA,
SVD, KNN) and filtering approaches are explained alongside data preprocessing.
Chapter 3: Results. The empirical results are organized in three levels of analysis.
First, we start with intensive examination of transcriptomics findings, both for the 2D
data and for the 3D data. These results comprehend graphical visualizations, like PCA
plots and Heatmaps, but also numerical outcomes from the analysis performed.
The Proteomics section has the same structure, with the only difference of the applica-
tion of tools designed for the proteome data. In this case, statistical analysis includes
normality (Shapiro-Wilk test) and homoscedasticity (Levene’s test) testing, followed by
differential protein expression using three approaches: ANOVA, limma linear model and
non-parametric Wilcoxon tests. By comparing the results obtained with the transcrip-
tomics and proteomics analysis, it is interesting to notice possible common points or key
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genes more involved in the disease.
The integration part constitutes the core contribution of this work, evaluating and com-
paring different multi-omics integration methods. MOFA (Multi-Omics Factor Analysis)
is used for the identification of hidden factors that capture coordinated transcriptome and
proteome variations, illustrated with factor plots. iClusterPlus performs simultaneous
clustering across omics layers using Gaussian models of different numbers of latent vari-
ables and provides visualizations in latent space and cluster ellipses. Similarity Network
Fusion (SNF) builds patient similarity networks for each omics layer, merges them into a
large network and applies spectral clustering with feature ranking by Normalized Mutual
Information (NMI) scores. Each integration strategy is evaluated based on the strength of
its ability to stratify patient groups and identify biologically relevant molecular signatures.

Chapter 4: Conclusions. The last section presents the key findings and their impli-
cations of the research carried out over multi-omics data. First, it summarizes the results
obtained with a single omics analysis, performed separately on transcriptomics and pro-
teomics data. Some recurrent patterns are highlighted, such as the presence of a outlier
sample (RR) and the higher significance in the 3D culture analysis, that can preserve
more biologically relevant pattern than the 2D data. The section continues with the pre-
sentation of the main findings obtained with the multi-omics integration techniques and
a comparison of these results. In particular, the SNF method is the one that performed
a more reliable and efficient methodology, especially for the case of rare genetic diseases,
in which the sample sizes are limited.
Moreover, the section presents the main limitations of this work and suggests further
studies that might be followed to improve the quality of the analysis.
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Chapter 2

Mathematical background

In order to investigate the mechanisms and patterns of Ehlers-Danlos Syndrome through
multi-omics data, a series of mathematical and biological methods were applied. The
following sections describe in detail the tools and techniques used throughout the study.
The aim is to describe the mathematical, biological and computational approaches used
during all the phases of the study, trying to present them in a multidisciplinary way, but
putting more emphasis on the statistical and machine learning tools used.
We start by introducing and describing the methods utilized to preprocess, visualize, im-
pute, check statistical assumptions and perform statistical analysis.

2.1 Data description and notation
This section describes the data nature of the omics datasets analyzed in this study, es-
tablishing the mathematical notation used throughout the following section.
Both the transcriptomics and proteomics datasets consist of measurements from 14 pa-
tients, including 10 patients with the pathological condition and 4 healthy controls.
The transcriptomic matrix T contains RNA sequencing data, that are expressed as integer
raw counts, represented as a matrix of dimension GT × N , with:

• GT corresponding to the number of genes detected in the transcriptomic analysis;

• N = 14 being the total number of samples;

• Each element Tij ∈ N represents the raw count for gene i in sample j.

In this way, the rows correspond to the genes, identified by the unique gene symbols
(Ensembl annotation), while the columns correspond to the samples ID code: j = 1, . . . , 10
for patients (EXP) and j = 11, . . . , 14 for controls (CTR).
The transcriptomic values are discrete integer values, since they represent the direct mea-
surements of the number of sequencing reads mapped to each gene. No normalization
or transformation is performed before the preprocessing, that is then explained in the
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Section 2.2.

The proteomics dataset P is organized as a matrix of dimension GP × N and positive real
values, with:

• GP corresponding to the number of proteins quantified in the laboratory;

• N = 14 being the total number of samples (as for transcriptomic data);

• Each element Pij ∈ R≥0 representing the measure quantity (called abundance) for
protein i in sample j.

As said for the transcriptomics matrix, also for P the rows correspond to proteins and
the columns to the patients sample.
The measurements indicate the protein abundance with continuous values, obtained through
the mass spectrometry method and label-free quantification. Specifically, proteomics val-
ues can be expressed as Quantity or iBAQ (intensity-based absolute quantification). The
first metric reflects the total signal intensity for each protein, maintaining raw and un-
processed the data collected from the laboratory. The iBAQ values account instead for
protein-specific theoretical peptide numbers, making it more suitable for absolute and
complex comparisons across different types of proteins.
In this study, the Quantity metric is preferred rather than the iBAQ , since the analysis
performed does not required additional changes and we wanted to preserve the original
data as much as possible.

Due to the different sensitivities and detection capabilities of RNA sequencing tool and
mass spectrometry technology, the gene sets collected in the transcriptomic matrix T and
proteomics matrix P differ. In addition, within the same omics layer, the number of genes
in 2D and 3D data are different. This means that GT,2D /= GT,3D /= GP,2D /= GP,3D,
thus when merging the datasets together for the multiomics integration analysis, only the
genes present in both datasets are retained.

Specifically, the datasets analyzed in this work contain the following number of genes:

2D 3D
Transcriptomics 12 046 12 578

Proteomics 5 544 5 369

Table 2.1. Number of genes detected in each omics layer (2D and 3D).

After merging the samples from the two different cultures, the transcriptomics layer con-
tains 11 418 genes, whereas the proteomics data is composed of 5 050 genes.
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2.2 Preprocessing for transcriptomics data
In the data analysis process, the first step is always characterized by data cleaning and
filtering, since it is common to have noise, outliers, redundancy and any type of obstacle
that make raw data difficult to manage. It is then essential to first detect the issues present
in the data and then to solve them by performing accurate and specific approaches.
In this work, the most important techniques of preprocessing applied are filtering, nor-
malization and log transformation.

For transcriptomics data, the genic expression is represented as an integer number, cor-
responding to the count for each gene. The main features of mRNA counts are:

• a long right-skewed tail in the distribution, due to few highly expressed genes;

• a wide dynamic range, that covers several orders of magnitude;

• a high concentration of values near or at 0, reflecting low or undetected expression
for many genes;

• heteroschedasticity, with the variance greater than the mean, a phenomenon called
over-dispersion.

These characteristics motivate specific preprocessing strategies, such as filtering low-count
genes, normalization and transformation, to improve the reliability and interpretability of
the analyses.

2.2.1 Low expression filtering
Raw RNA expression data are represented by an integer, that corresponds to the expres-
sion count of that specific gene in the sample. These counts range in a wide interval, with
low number of counts associated with large proportion of genes, joint with a lack of upper
limit for expression. These factors allow for a long right tail to grow, that is very notice-
able when visualizing the data in a density plot. To avoid this behavior, that does not
allow to approximate the data with known distribution, we performed a low expression
cut.
The idea is that if a gene is low expressed in all the samples analyzed, including both con-
trol and treatment, then its significancy for the study is very likely to be inconsistent. In
fact, when studying mRNA data, differential expression is the common tool to be applied,
meaning that we look for changes in the gene expression between two or more groups,
such as comparing case vs control or treatment1 vs treatment2. More in general, the goal
is to identify the source of variation such that we can separate the interesting from the
uninteresting part. So, if the variation of a gene expression has very low level (close to
0), then that gene is not relevant for the study performed.

The low expression filtering, also known as independent or gene-level filtering, erases the
rows with very low counts, since these genes are not likely to see significant difference due
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to high dispersion. This step is performed during the preprocessing part, so the genes
that are cut out from the dataset are no longer involved in any type of further analysis,
and neither they are tested through the statistical method after. This reflects a reduce in
the number of genes that are considered for multiple testing in the differential analysis,
and thus in a increase of the fraction of significant genes.
To sum up, this tool has the goal of cutting out those tests referred to genes that have no
or little chance of showing significant evidence, without even looking at their statistic.

There are different types of gene-levels filtering:

1. Cut the genes that have all counts equal to 0. In this case, if these genes were tested,
they would obtain basemean = 0, p − value = NA, p.adj = NA.

2. Cut the genes that have extreme count outliers, using the method of Cook’s distance
[36]. In this case, the tests would result in p − value = NA, p.adj = NA.

3. Cut the genes with low mean normalized count, that would obtain a p.adj = NA.

This last type is the one used in this work.
The filtering criterion was established as:

NØ
j=1

Tij ≥ θ

where Tij represents the raw count for gene i in sample j, N is the total number of samples
(N = 14), and θ = 50 is the minimum sum threshold. The value of the thresold θ is set
empirically, starting from low value and increasing it until the filtering shows a good cut
in the density and box plots. This approach eliminates genes with consistently low counts
that contribute primarily to noise rather than to biological signal.

2.2.2 Regularized log transformation
Following filtering, the count data were analyzed with the DESeq2 framework. Here,
the analysis is performed on the raw data counts through the use of GLM, that are ex-
plained in the Section 3.2. To enable sample visualization and clustering, transcriptomic
counts were subsequently transformed using the regularized logarithm (rlog) transforma-
tion. This transformation is crucial to stabilize variance across the range of expression
values and to provide a more reliable representation for downstream analyses.

For transcriptomics data, the regularized log transformation allows the count data to pass
to the log2 scale in a way which minimizes differences between samples for rows with small
counts and which normalizes with respect to library size [24].
The rlog transformation employs the same negative binomial generalized linear model used
in the differential analysis in DESeq2 (see Section 3.2), but with a modified design matrix
where each sample is treated as an independent factor. Specifically, the transformation
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is built upon the negative binomial generalized linear model, where for each gene i and
sample j, the raw counts Tij are modeled as:

Tij ∼ NegBin(µij , αi).

µij represents the mean parameter and αi the gene-specific dispersion parameter (more
details in Sec. 3.2).
In this context, qij represents the fitted values from this GLM, corresponding to the ex-
pected counts for gene i in sample j after accounting for size factors and applying empirical
Bayes shrinkage to sample-specific coefficients.

The rlog transformation addresses the mean-variance relationship inherent in count data
through:

rlog(Tij) = log2(qij).

This transformation stabilizes variance across the dynamic range of expression values,
making the data suitable for downstream analysis that assume homoschedastic errors. As
nearby count values for low counts genes are almost as likely as the observed count, the
rlog shrinkage is greater for low counts. For high counts, the rlog shrinkage has a much
weaker effect.
To sum up the concept, the transformed values, are equal to

rlog(Tij) = log2(qij) = βi0 + βij ,

with βi0 being the baseline expression level for gene i and βij representing the sample-
specific coefficient for gene i in sample j, with prior distributions applied for regularization
[24].
This means the transformation applies shrinkage to the sample-specific effects βij , partic-
ularly for genes with low counts, which is what provides the variance stabilization. This
regularization is what makes rlog transformation particularly effective for variance stabi-
lization compared to a simple log transformation.

2.3 Preprocessing for proteomics data
Regarding proteomics data, the registrations represent the area under the intensity curve
of the mass spectrometry for each peptide. Each value reflects the signal intensity based
on the peptide ion counts and abundance. The main issues that need to be solved are the
huge values range of the proteome expressions and the high number of missing values. To
cope with them, it is usual to apply log transformation to shrink the values range and
to use imputation of missing values techniques to fill or erase the features with no value
available.
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Log transformation

For proteomics data, the logarithm transformation is applied as first step of the prepro-
cessing phase. This is essential to pass from the raw data to normalized values that are
easier to study and deal with, especially for the shrinkage of the values range. The appli-
cation of this transformation allows to separate and erase the relation between mean and
variance and to enhance the high variances in respect to the low variances.

As opposed to the transformation applied on transcriptome data, it is not required to
perform a rlog tranformation for the proteomics values, but it is sufficient to apply a
standard log transformation in basis 2 to shrink the values range. The initial raw data
are characterized by a minimum equal to 0 and maximum greater than 3 million.

2.4 Visualizations and plots
Another important step to include in the data analysis is to visualize it through differ-
ent representations. Hidden patterns, relevant information and important features of the
values are often noticeable by looking at the plots and extracting them just by observing
the whole context. In this study, the most used methods for plotting data are boxplot,
pca plot, density plot and heatmap representation. All of them are useful for explorative
data analysis and for highlighting variability, detecting potential outliers and assessing
data distribution.

2.4.1 Boxplot and density plot
Starting from the most simple, the boxplot is a method for demonstrating graphically the
locality, spread and skewness groups of numerical data through their quartiles. Its power
lays on the capacity of detecting outliers and also on the fact that it is non-parametric: it
displays variation in samples of a statistical population without making any assumptions
of the underlying statistical distribution.
The boxplot tool is a way of representing the dataset based on five values summary: the
minimum, the maximum, the sample median, the first and third quartiles. Specifically:

• The minimum is the lowest data point in the data set excluding any outliers;

• The maximum is the highest data point in the data set excluding any outliers;

• The median is the middle value in the data set;

• First quartile is the value under which 25 % of data points are found when they are
in increasing order.

• Third quartile is the value under which 75 % of data points are found when they are
in increasing order [45].
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Boxplot’s advantages are the detection of outlier and the visualization of possible simme-
tries. On the other side, this tool is not relevant for detailed analysis of the data as it
deals with a summary of the data distribution.

Density plot has some similarities with the boxplot tool, but instead of focusing only
on the five numbers summary, it deals with the whole distribution of the data. In fact,
density plots use kernel density estimation to create a smoothed, continuous curve that
approximates the underlying distribution, over a continuous interval or time period. In
this way it is possible not only to provide a general idea of the range of values of the data,
but also to visualize the empirical distribution extracted from it. Density curves can have
all shapes and sizes and they allow us to gain a fast visual understanding of the trend of
values in the dataset. In particular, this tool is common used for its ability to visualize:

• Skewness of the distribution, since it is fast to notice if the curve is left skewed, right
skewed or has no skew.

• The number of peaks, that can tell us if the distribution is unimodal or multimodal,
meaning that has two or more peaks.

• Similarity with known distributions, to understand whether is better to use specific
statistical methods or others.

• Important characteristics of data, that need to be handle before proceeding with
further analysis [20].

2.4.2 PCA plot
Principal Component Analysis is a technique widely used to reduce the dimensionality of
input data while retaining the most significant variations. It involves the following steps:

1. Calculate the mean of the feature vector: x̄ = 1
n

qn
i=1 xi;

2. Compute the covariance matrix as

Cov(xi, xj) = 1
n

nØ
i=1

(xi − x̄)(xj − x̄)

where x̄ is the mean of the feature vector;

3. Calculate the eigenvalues and eigenvectors of the Covariance matrix. The eigenvec-
tors are then sorted in descending order based on their corresponding eigenvalues,
which represent the variance explained by each principal component;

4. By fixing the percentage of explained variation that we want to retain or the number
of dimensions that we want to keep, the directions (principal components) that
capture the most variance in the data are maintain accordingly [19].
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PCA is not only strictly used for dimensionality reduction, but also for visualizing the
data distribution along the first two or three principal components, i.e. the directions that
explain the majority of the variation in the data. It helps to visualize high-dimensional
data by projecting it into a lower-dimensional space, such as a 2D or 3D plot. This simpli-
fies data interpretation and exploration. The power of this type of plot lays in the ability
of expressing how the samples are positioned according to the features that originate most
variance. Applying PCA can help to preprocess or extract the most informative features
from datasets with many variables, while preserving relevant information.

A PCA plot is a scatter plot created by using the first two principal components as axes.
The plot shows the relationships between observations and the new variables (the princi-
pal components). The position of each point shows the values of PC1 and PC2 for that
observation. The direction and length of the plot arrows indicate the loadings of the vari-
ables, that is, how each variable contributes to the principal components. If a variable has
a high loading for a particular component, it is strongly correlated with that component
[18]. This can highlight which variables have a significant impact on data variations.

An example is shown in Figure 2.1, that illustrates the geometric interpretation of Princi-
pal Component Analysis. The data points (in yellow) are distributed in a three-dimensional
space defined by the first three features X1, X2, X3. PCA identifies a new coordinate sys-
tem (represented by the dotted line) such that the variance of the projected data points
along this new axis is maximized. This axis corresponds to the first principal component,
which captures the direction of maximum variability in the dataset.

Figure 2.1. Geometric interpretation of PCA [41].

The projection of the original points onto this axis reduces the dimensionality of the data
while preserving the most informative structure. At the same time, PCA minimizes the
residual variance, meaning the distance between the original data points and their projec-
tions, using a least squares minimization. This dual goal, of maximizing variance and at
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the same time minimizing reconstruction error, makes PCA a powerful method for both
dimensionality reduction and visualization.

2.4.3 Heatmap plot
Heatmap is a visualization tool widely used in genomics and bioinformatics to display
high-throughput gene expression data in a compact and understandable form. The method
represents numerical values of gene expressions as a color-encoded matrix whose cell color
intensity corresponds to the degree of gene expression. In this way the tool enables a
rapid identification of expression patterns in genes and samples [32].
The heatmap plot is obtained from the mathematical representation of gene expression
data as a matrix T ∈ RGT ×N for the transcriptomics data, as presented in the Section
2.1. To improve pattern recognition and comparability between genes whose expressions
range differently, it is commonly used to apply a standardization first. An example of
standardization is the z-score normalization that takes the original expression value, sub-
tracts to it the mean expression of gene i across all samples, and divides the result by the
standard deviation.

To find the most informative features, genes g1, ..., gGT
are ranked in descending order of

their variance within samples according to the following formula:

V ar(gi) = 1
N − 1

Ø
j

(Tij − µi)2,

with µi = 1
N

q
j Tij .

The top 50 most variable genes are selected because they typically capture the most bio-
logically informative features that induce sample differentiation and explain the primary
sources of variation in the dataset.

In addition, the plot contains hierarchical clustering to reveal the underlying data struc-
ture, even if often it is noticeable by just looking at the heatmap. The distances are
computed pairwise by the clustering algorithm through Euclidean distance and are used
to construct the dendrogram through complete linkage criteria, which are also displayed
along with the heatmap for marking sample and gene relationships [37].
The key advantages of this tool are:

• Easy pattern recognition, thanks to the color-coding system that facilitates fast
visual identification of gene clusters and sample groupings, making it simpler to
identify biological modules and pathways.

• Dimensionality reduction, reducing high-dimensional data to understandable two-
dimensional representations with significant information. The focus is concentrated
on the 50 most variant genes and the application of clustering performed with the
top genes information.
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• Scalability, since it is capable of displaying a huge number of genes and samples
within a single figure, making them ideal for exploratory data analysis and result
presentation.

2.5 Statistical assumptions check for proteomics data
Before performing differential expression analysis using Analysis of Variance (ANOVA),
it is required to ensure that the data satisfies the fundamental assumptions of this sta-
tistical test. ANOVA is a parametric test and relies on some distributional and variance
assumptions in order to have valid results and to maintain proper Type I and Type II
error rates.
There are two main assumptions that must be ensured, which are:

1. Normality: Residuals (or equivalently, the observations within each group) should
be normally distributed;

2. Homoscedasticity: The variance of observations should be the same for all the groups
in an experiment (homogeneity of variances).

Violations of such assumptions can create inflated Type I error rates, reduced statistical
power and incorrect conclusions about differential protein expressions. Therefore, specific
statistical tests are employed to investigate the validity of such assumptions before apply-
ing ANOVA-based methods.

2.5.1 Shapiro-Wilk test
The Shapiro-Wilk test is widely used to check the normality assumption, particularly for
small to moderate sample sizes (N < 50). This test evaluates the null hypothesis that the
data comes from a normal distribution [27].

Given the gene i, the Shapiro-Wilk test statistic is defined as:

W =

1qN
j=1 aj · T̃ij

22

qN
j=1(T̃ij − T̄i)2

where:
• T̃ij are the ordered sample values of the statistics, meaning that are the jth-smallest

number in the sample, in respect to the gene i;

• T̄i is the sample mean of the values of gene i;

• aj are coefficients derived from the expected values of the order statistics of indepen-
dent and identically distributed random variables sampled from the standard normal
distribution, and the covariance matrix of those normal order statistics. The coeffi-
cients aj are calculated such that the numerator represents the best linear unbiased
estimator of the standard deviation under the assumption of normality.

22



2.5 – Statistical assumptions check for proteomics data

The test statistic W ranges from 0 to 1, with values closer to 1 indicating greater evidence
for normality. There is no name for the distribution of W . The cutoff values for the
statistics are calculated through Monte Carlo simulations.

The null hypothesis of normality is rejected when W is significantly small, corresponding
to a p-value less than the chosen significance level (typically α = 0.05). In this case there
is sufficient evidence that the data tested are not normally distributed. If W reaches small
values, it means that the linear combination of order statistics deviates substantially from
what would be expected under normality.

2.5.2 Levene’s test
Levene’s test is a robust technique for testing equality of variances across groups, i.e.
homoscedasticity of the data, and it is less sensitive to non-normality samples in respect
to other tests. Therefore, even if data does not apply with the normality assumption, this
test is still valid for testing the variances. For this reason, the Levene’s approach is a good
choice for proteomics data that could be fairly non-normal.

Levene’s test is based on the ANOVA of the absolute deviations from group medians (or
means). Given the gene i, we denote with Pkj the observation for the gene i, group k and
sample j. The test statistic is:

L = (N − K)
(K − 1) ·

qK
k=1 nk(Z̄k· − Z̄··)2qK

k=1
qnk

j=1(Zkj − Z̄k·)2
(2.1)

where:

• K is the number of groups (K = 2);

• nk is the number of observations in group k, thus n1 = 10 for the patients and n2 = 4
for the controls;

• N =
qK

k=1 nk is the total sample size, N = 14;

• Zkj = |Pkj − P̃k·| where P̃k· is the median of group k

• Z̄k· = 1
nk

qnk
j=1 Zkj is the mean of Zkj for group k

• Z̄·· = 1
N

qK
k=1

qnk
j=1 Zkj is the overall mean of Zkj

Under the null hypothesis of equal variances, the statistic L follows an F-distribution with
(K − 1, N − K) degrees of freedom [31].

The null hypothesis H0 : σ2
1 = σ2

2 = · · · = σ2
k is rejected when L exceeds the critical value

from the F-distribution at the chosen significance level. Large values of L indicate substan-
tial differences in the spread of observations across groups, suggesting heteroscedasticity.
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2.6 Statistical methods for proteomics
The statistical analysis of proteomic data requires robust methods capable of handling
high-dimensional datasets while controlling for multiple testing and addressing the spe-
cific challenges inherent to mass spectrometry-based quantitative proteomics. Three com-
plementary approaches were implemented: classical ANOVA for parametric testing under
normality assumptions, limma for improved statistical power through empirical Bayes
moderation, and Wilcoxon rank-sum test for non-parametric analysis when distributional
assumptions are violated.

2.6.1 Analysis of variance (ANOVA)
The one-way ANOVA model follows the linear regression model, in which qualitative
variables Xi, such as the presence or absence of a disease or the use of a treatment,
function as predictive independent variables related to the dependent variable Yi. In
proteomics data this is widely use since it is often interesting and useful to study the
relation between protein with high abundance or differential expression and the presence
of specific biological conditions, such as disease states, treatment responses, or other
phenotypic traits. In this case, given the gene i, the ANOVA model is written as:

Pkj = µ + αk + ϵkj (2.2)

where:

• Pkj represents the log-transformed intensity of gene i in group k and sample j;

• µ is the overall mean intensity for gene i;

• αk is the effect of group k, as for example the effect of the treatment applied to the
samples in that group;

• ϵkj ∼ N (0, σ2) are the independent error terms, that represent the noise in the data.

The null hypothesis tests the equality among the group means:

H0 : µ1 = µ2 = . . . = µk

H1 : at least one µi /= µj

The statistic is computed as shown previously in the Equation 2.1.
Under the null hypothesis, the statistic follows a F-distribution with degrees of freedom
of F ∼ Fk−1,N−k.

The ANOVA method is able to work properly when the following assumptions hold true:

1. Normality: the protein intensities must follow normal distributions. This property
can be checked with the Shapiro-Wilk test;
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2. Homoscedasticity: variances across groups must be equal: σ2
1 = σ2

2 = . . . = σ2
k. This

is tested using Levene test;

3. Independence: All the observations are independent within and between groups.
This technique stands out for its wide use across different field and application. Its
strengths lay in the well-established statistical theory under assumptions, the computa-
tional efficiency for large datasets and the optimal power when assumptions are met.
On the other hand, the approach remains very sensitive to violations of normality and
homoscedasticity assumptions, susceptible to outliers affecting variance estimations and
limited power with small sample sizes. In addition, proteomics data is characterized by
high number of proteins recorded, while rare diseases are scarce in samples, leading to
dataset with few patients and lots of protein intensities. The ANOVA model does not
take this into account, and so does not consider the information shared across proteins,
but instead look only at each protein separately.

2.6.2 Linear models for microarray data (limma)
The limma approach extends classical linear modeling through empirical Bayes modera-
tion of variance estimates for proteomics data analysis. The package enables the consistent
application of linear models to normally distributed omics data in general, with a specific
focus on microarray data. The power of this tool is that includes in the linear model an
empirical Bayes method that borrows information across features to estimate the standard
error and calculate the t-statistics according to it. This approach is demonstrably more
powerful than a standard t-tests or ANOVA approach when the number of samples is low
[13].

For gene i, the linear model is:
pi = Xβi + ϵi, (2.3)

where pi is the intensity vector, X is the design matrix, βi contains the coefficients and
the error is ϵi ∼ N (0, σ2

i I).

The key innovation of this tool is the empirical Bayes moderation integrated in it, with
the estimation of gene-specific variance moderated. The linear model for gene i has
residual variance σ2

i with sample value s2
i and degrees of freedom di [44]. The empirical

Bayes method assumes a scaled chisquare prior distribution for 1/σ2
i with mean 1/s2

0 and
degrees of freedom d0:

1
σ2

g

∼ 1
s2

0
·

χ2
d0

d0
. (2.4)

The moderated variance combines gene-specific and pooled variance estimates, obtaining
the posterior values for the residual variances as:

s̃2
i = d0s2

0 + dis
2
i

d0 + di
(2.5)
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where:

• s2
0 is the pooled variance estimate across all proteins;

• d0 and di are the prior and residual degrees of freedom for each gene i.

Finally, for testing H0 : βik = 0 the moderated t-statistic that takes into account the
posterior variances is:

tik = β̂ik

s̃i
√

ckk
(2.6)

where ckk is the k-th diagonal element of (XT X)−1.
Under the null hypothesis, tik follows a t-distribution with d0 +di degrees of freedom [44].
Hyperparameters are estimated using method of moments.

Among the main advantages of this approach we find the higher statistical power, since
borrowing information across proteins reduces variance estimates, that is beneficial for
small sample sizes; and the improved stability, preventing inflation of significance for pro-
teins with artificially low sample variances. With proteomics data, the limma tool is more
appropriate because of its ability to handle good high-dimensional data and small sample
size, since it has been designed specifically for omics datasets with thousands of features.
In fact, the empirical Bayes framework is particularly advantageous in proteomic studies
where sample sizes are often limited due to cost constraints, while the number of measured
proteins is large.

However, the method still presents some limitations: it requires normality assumption for
protein intensities, it may be overly conservative when true variances vary substantially
across proteins, and the computational complexity increases with dataset size.

2.6.3 Wilcoxon Rank-Sum test
The Wilcoxon rank-sum test provides a non parametric alternative, meaning that it does
not require strong assumptions on data distribution or characteristics. In particular, this
test is used when normality assumptions are violated.
The Wilcoxon method tests if two populations distributions are identical or not, therefore
the hypothesis is:

H0 : identical distributions
H0 : distributions differ in location (median).

Given the gene i, for two independent samples X1, . . . , Xn1 being the first group and
Y1, . . . , Yn2 being the second, the test statistic is based on ranks rather than raw inten-
sities. Specifically, it takes the joint ranking of the observation from the two samples,
considering them as extracted from the same group and ordered.
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Let Rj denote the rank of observation j in the combined sample of size N = n1 + n2. The
Wilcoxon statistic is:

U =
n1Ø

j=1
Rj (2.7)

For large samples, i.e. when nk > 5, the test statistic follows:

Z = U − µU

σU
∼ N (0,1) (2.8)

where:

• µU = n1n2
2 ;

• σ2
U = n1n2(n1+n2+1)

12 .

For large samples, the distribution of the Wilcoxon statistic U can be justified through the
asymptotic theory of U-statistics. In this context, the classical Central Limit Theorem
cannot be directly applied, since the ranks Rj are not independent. Instead, one relies
on the framework of U-statistics. The Wilcoxon statistic can in fact be expressed as a
U-statistic of degree two, as it is based on pairwise comparisons between elements of two
independent samples.
More precisely, given two independent samples of sizes n1 and n2, the Wilcoxon statistic
U can be written in the form

U =
n1Ø

i=1

n2Ø
j=1

h(Xi, Yj), (2.9)

with kernel h(x, y) = 1{x < y}. This representation shows that U is a U-statistic of
degree two, as it coincides with its definition.
A fundamental result, shown in [46], proves that, if the kernel has finite second moments,
any U-statistic is asymptotically normal:

√
n (U − θ) d−→ N (0, σ2), (2.10)

where θ = E[h(X1, . . . , Xr)] and σ2. This result does not rely on independence of the
ranks themselves, but rather on the structure of U-statistics and the projection method
used in their asymptotic analysis.
This justifies the use of the standardized normal approximation in the large-sample case.

In general, the test evaluates:

H0 : P(X > Y ) = 0.5
H1 : P(X > Y ) /= 0.5

This is equivalent to testing the equality of population medians under symmetric distri-
butions, that means testing if the distributions are identical in location or not.
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The main advantages of this technique lay in the absence of assumptions about under-
lying data distribution and in the robustness to outliers, since rank-based statistics are
less sensitive to extreme values. Another important characteristic of this approach is its
power even for small sample size data, maintaining exact p-values available also when
the samples are scarce. This is a factor that allows more robustness in the analysis of
proteomics data, especially with rare diseases, due to the low availability of patients.

However, the Wilcoxon Rank-Sum test is limited by the absence of interpretable measures
of biological significance and by a lower statistical power, especially when normality holds
it is less powerful than the parametric techniques.

The three approaches provide complementary perspectives on differential protein expres-
sion and for this reason they have been all implemented in this study. By comparing the
results, it is then possible to notice common points or divergences between the methods
outputs.
To sum up:

• ANOVA: Optimal under normality with equal variances, provides interpretable F-
statistics and detailed effect size estimation. Best suited for well-controlled experi-
mental conditions with adequate sample sizes.

• limma: Superior power than ANOVA for small sample sizes through variance moder-
ation and robust to moderate variations from normality while maintaining paramet-
ric efficiency. Ideal for typical proteomic studies with limited biological replicates.

• Wilcoxon Rank-Sum test: the only non parametric, effective for detecting median
differences regardless of distributional assumptions. Essential when data transfor-
mation fails to achieve normality or when robust inference is prioritized.

This multi-method approach provides comprehensive coverage of potential differential
expression patterns, ensuring the identification of biologically relevant proteins using dif-
ferent techniques.
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Chapter 3

Advanced methods

3.1 Imputation of missing values
Missing values represent one of the main issues that need to be addressed in proteomics
data. The absence of registrations recorded in the samples might reaches high level that
interferes with the mathematical analysis. These missing values, in fact, threaten the
integrity of subsequent statistical analyses by reduction of statistical power, introduction
of bias and failure to represent the true sample [23]. Over the years, several categories of
missing value imputation methods have been developed and adapted for proteomics data.
By using the mass spectrometry technique to identify proteins in a cell or tissue, thousands
of different proteins can be quantified in a single MS injection. The major issue is that the
power of statistical inference and downstream functional analysis is greatly impacted by
the presence of missing values in the protein abundance data. Multiple factors contribute
to the presence of missing data in proteome, including biological factors, such as non
existing proteins and protein abundances below the instrument detection limit, as well
as analytical factors, such as sample loss in preparation, mis-cleavage of peptides during
digestion and poor ionization efficiency [21].
Missing values might also come from other various factors such as scratches on the slide,
spotting problems, dusts, experimental errors and so on. In practice, every experiment
contains missing entries and in some extreme cases the level of genes affected by missing
values can be up to 90 % [48]. Moreover, most of the classic multivariate analysis methods
for proteomics data cannot be used when the data have missing values. Therefore, we
need to treat missing values appropriately.

In general, we can distinguish two categories of missing values for proteomics data:

• Missing at random, known as MAR missing values, mostly result from technical
limitations and stochastic fluctuations in an abundance-independent manner;

• Missing not at random, called MNAR missing values, are more abundance-dependent
that can be explained by the measurability of the corresponding peptides [21].

Missing values in proteomic data are a mixture of MAR and MNAR.

29



Advanced methods

First thing that we implemented in the preprocessing is the filtering for high level of
missing values. In fact, imputation methods for missing values are able to fill with good
accuracy the missing entries, in a efficient and precise way. However, this is not possible
when the registrations for a specific protein are missing in almost all the samples: the
methods can still be applied but the result obtained can not be considered satisfactory
and accurate. Therefore, before applying the imputation technique, it is essential to filter
those genes that have a percentage of missing entries greater than a threshold. Usually the
limit is set at 70 %, meaning that we erase all the rows with less than 70 % of observations
recorder, i.e different from NaN, for all groups.
This condition must be verified for at least one group. If, for example, the dataset is
composed of two groups, i.e. "control" and "treatment", we ask to each protein to reach
a threshold of at least 70 % of recorded observations for the control group or 70 % of
recorded observations for the treatment group. The only case in which that protein is
erased from the dataset is when for both groups the threshold is not reached.
Mathematically, for a given gene i, the following condition must hold for at least one
group k:

#NAk(i)
nk

< 1 − τ (3.1)

where:

• #NAk(i) is the number of missing values for gene i in group k,

• nk is the total number of samples in group k,

• τ is the required threshold, for example τ = 0.7 for 70% completeness.

Only the proteins that satisfy this filtering criterion proceed to the imputation phase to
ensure that the subsequent missing value prediction is performed on data with sufficient
information to provide valid results.

Following this filtering process, imputation of the missing values that are still present in
the dataset must be carried out with appropriate statistical procedures. The imputation
approach is critical as it can impact downstream analyses, such as differential expression
analysis, pathway enrichment and biomarker identification. Different imputation meth-
ods have been developed to address the different characteristics that can be found in
proteomics data.
Because of the mixed type of missing values in proteomics data (both MAR and MNAR),
we can not know a priori which will be the best method for the data imputation. Here,
we employed and compared different techniques to determine the best imputation for our
data, testing and evaluating them by performing a masking on the dataset. With the
use of the cross validation masking test, it was possible to ‘hide’ some values, perform
different methods and evaluate them with the RMSE. The applied technique consists of
random masking, which better reflects the behavior of randomly occurring missing values.
This approach was considered sufficient for the purposes of the study, although it does not
fully account for the presence of MNAR data. The one that reached the lowest squared
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error was then used to perform the actual imputation over the missing values.

The methods performed and tested are:

• Probabilistic PCA is a improved version of PCA that assumes that the observed
data are generated by a linear model with Gaussian noise and is based on maximum
likelihood estimation. PCA is one of the most reliable techniques for dimensionality
reduction as it minimizes the reconstruction loss on variance during the data com-
pression. This property can be utilized for imputing the missing data points by first
estimating the distribution of the compressed information based on the available
data and then reconstructing the missing data from the compressed information by
projecting data points [16].
Different versions of PCA algorithms to handle missing data are now present and
they mainly differ in the assumption on the relationship between the original data
points and the latent data points. In general, this kind of methods is powerful for
imputation of missing values in proteomics data since the basic idea on which they
are founded is that the observed variables (proteins) live in a space with low latent
dimensionality. This means that their variability can be explained by few principal
components, instead of needing high amount of features to explain it. What we can
do is to initially replace missing values with crude and simple estimates (for example
row or column mean) and thus obtain a fictitious “complete” matrix. At this point,
we apply PCA or any type of versions of it to this "complete" matrix, reducing the
dimensionality. Finally as last step we rebuild the matrix in the initial space, so the
values of the missing entries are overwritten with the rebuilt ones. The iterative pro-
cedure is repeated until convergence, i.e. until the imputed values no longer change
significantly.
Specifically, Probabilistic PCA is based on the union of two concepts: the dimension-
ality reduction performed by PCA and the estimation of the missing data through
the maximum likelihood technique [16].

• Random Forest method is applied to impute missing values particularly in the case
of mixed-type data. It can be used to impute continuous and/or categorical data
including complex interactions and nonlinear relations [38]. It uses a series of decision
trees to impute missing values. Each tree is trained on a subset of the data and
provides a prediction for the missing values. The final prediction is an average of the
predictions made by the individual trees. The main disadvantage of this technique
is that the training of the whole forest is very time consuming and with big amount
of data the algorithm easily becomes slow.

• Bayesian Principal Component Analysis, which is a improved version of PCA method
was developed especially for missing value estimation. Scores and loadings obtained
with Bayesian PCA slightly differ from those obtained with conventional PCA. The
algorithm does not force orthogonality between factor loadings, as a result factor
loadings are not necessarily orthogonal. However, it was found that including an
orthogonality criterion made the predictions worse. Bayesian PCA works iteratively
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and the complexity is growing with O(n3) because several matrix inversions are re-
quired [34]. The size of the matrices to invert depends on the number of components
used for re-estimation. The relatively high complexity of the method is a result of
several matrix inversions required in each step. Considering the case in which the
maximum number of iteration steps is needed, the approximate complexity is given
by the term

maxsteps · rowmissing · O(n3),

where rowmissing is the number of rows containing missing values and O(n3) is the
complexity for inverting a matrix of size n [34].
The model assumes that the observed data are generated by a linear model with
Gaussian noise using Bayesian statistics: a priori is performed on µ, σ and latent
variables. Posterior distributions of all parameters are calculated and the final esti-
mates are obtained as averages over these posteriors, often via Bayesian EM algo-
rithms or approximations [35]. This reduces overfitting, better handles uncertainty
and imputation when data are sparse or noisy.

• K-Nearest Neighbors, that for each missing value looks for the “k” nearest neighbours
and uses the mean (or median) of the values of these neighbours to impute the missing
entry. It works by finding the “nearest neighbors” (rows) that have similar patterns
to the row with missing data and then to calculate the missing values [22]. The main
steps are:

1. Each row is treated as a coordinate in a multi-dimensional space (each column
represents a dimension).

2. The algorithm calculates the distance between rows to identify the ones that
are the most similar.

3. The missing value is then estimated based on the values of the closest rows.

The distance between samples is generally measured using a Euclidean distance. The
metric used to compute the distances between samples highly affects the results: it
might happen that using different metrics leads to very different outputs, both when
the method is used for imputation and for clustering.

3.2 Differential analysis for transcriptomics
Differential expression analysis of RNA data presents unique statistical challenges, that are
not present in other types of omics data, such as the continuous intensity measurements
from proteomics. First of all, the RNA data are characterized by:

• Low number of counts associated with large portion of genes;

• Lack of upper limit for expression, that leads to long right tail;

• Large dynamic range.
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These features, together with the discrete nature of read counts make the data never
normally distributed. Also the Poisson distribution, that can look good to approximate
this kind of data, does not satisfy some features of trascriptomics, as for example the
presence of heteroschedasticity and the difference between mean and variance values.
Figure 3.1 shows the overdispersion observed in the transcriptomics dataset T .

Figure 3.1. Plot of Mean - Variance for transcriptomics data.

The most used method to analyze mRNA data is implemented in the "DESeq" package
and consists of a robust approach based on negative binomial generalized linear models
(GLMs) with empirical Bayes shrinkage for dispersion estimation, specifically designed to
handle the characteristics of RNA sequencing count data.

The main steps of the analysis can be summarized as:

1. Modeling the raw counts, using normalization size factors sj ;

2. Estimating gene-wise dispersion and then shrinking them using the empirical Bayes
technique;

3. Fitting the Negative Binomial GLM for each gene, shrink the log fold changes and
perform hypothesis testing using Wald test or Likelihood ratio test;

4. Applying the rlog transformation (see Sec. 2.2.2) to visualize and cluster the samples.

These steps are summarized in the following map (Fig. 3.2).
The raw count data Tij for gene i in sample j shows overdispersion, therefore using a
negative binomial distribution we can express this phenomenon:

Tij ∼ NB(µij , αi), (3.2)

where µij is the expected count, computed as the fitted values from the GLM qij multiplied
by a size factor sj : µij = sj · qij , and αi is the gene-specific dispersion parameter [15].
The negative binomial distribution accounts for overdispersion through the relationship:

Var(Tij) = µij + αiµ
2
ij (3.3)
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Figure 3.2. DESeq2 workflow map.

This formulation captures the relationship that was seen empirically in transcriptomics
data, where variance typically exceeds the mean due to biological and technical variability.

For a comparison between only two conditions, the expected count is modeled through a
log-link GLM. The generalized linear model for each gene i can be written as:

log(µij) = βi0 + βi1xj , (3.4)

where xj is the condition indicator for sample j, βi0 the intercept and βi1 represents the
log2 fold change estimate between conditions.

Initial gene-wise dispersion estimates α̂i are obtained through maximum likelihood estima-
tion. However, these estimates are unreliable for genes with low counts or few replicates,
leading to either false positives (underestimated dispersion) or reduced power (overesti-
mated dispersion).

To cope with this issue, the approach uses a complex shrinkage approach to improve
the dispersion estimation. This empirical Bayes shrinkage is performed by applying the
following formula:

αshrunk
i = αprior

i · wprior
i + α̂i · wobs

i

wprior
i + wobs

i

, (3.5)

where:

• α̂i is the raw gene-wise estimate from maximum likelihood,

• αprior
i is the value predicted by the fitted dispersion curve, that follows Eq. 3.6;

• wprior
i and wobs

i are precision weights, respectively assigned to the prior and observed
from the data.
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Specifically, the prior dispersion αprior
i follows a parametric relationship, meaning that is

estimated by fitting a parametric curve to the scatterplot of α̂i versus the mean expression
µi. This curve typically follows the form:

αprior
i = a1

µi
+ a0, (3.6)

where a0 and a1 are fitted coefficients that capture the global mean-dispersion trend across
all genes.

In this way, it captures the empirical observation that dispersion decreases with increasing
mean expression, with an asymptotic minimum value given by the parametric curve of
αprior

i [15].Genes with large counts will rely more on α̂i, while low-information genes are
pulled towards the prior curve. This balances variance and bias in dispersion estimation.

For testing differential expression, the hypothesis is based on the concept of Log Fold
Change (LFC), that represents the logarithmic ratio of expression levels between condi-
tions. Given a gene i, the Log fold change between two group conditions is:

LFCi = log2

A
µi,group 1

µi,group 2

B
= log2(µi,group 1) − log2(µi,group 2), (3.7)

where µi,group 1 and µi,group 2 are the mean counts for gene i in the two groups.
After defining the LFC, the hypothesis is expressed as:

H0 : LFC = 0 =⇒ no differential expression across the groups
H1 : LFC /= 0.

The approach utilizes as test:
• Wald Test, applied when the data has two group conditions and is based on the

asymptotic normality of maximum likelihood estimators. The Wald test statistic is
computed as:

Wi = β̂i1

SE(β̂i1)
, (3.8)

where β̂i1 is the estimated LFC and SE(β̂i1) its standard error, derived from the
covariance matrix of the maximum likelihood estimates.
Then, the statistic is compared to a normal distribution computing the corresponding
p-value. Under H0, Wi follows asymptotically a standard normal distribution:

Wi ∼ N (0,1). (3.9)

This test allows to assess whether the observed log fold change is significantly dif-
ferent from zero, accounting for the estimated variability in the model.

• Likelihood Ratio Test, when the data has more than two groups, that is a comparison
between the fit of two different models [25]. The test is expressed as:

LR = −2 log
3

Lmodel1

Lmodel2

4
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To address the inflation of log fold change estimates for low-count genes, DESeq2 imple-
ments adaptive shrinkage:

βshrunk
i = β̂i

β̂2
i /s2

i + 1/τ 2
(3.10)

where τ 2 is estimated adaptively based on the distribution of effect sizes across genes.

3.2.1 Multiple test correction
Given the high-dimensional nature of omics data, multiple testing correction is essential
for both transcriptomics and proteomics in this study. Since each p-value, associated to
each gene, is the result of a single test, the more genes we test, the more we inflate the
False Positive Rate.
The Benjamini-Hochberg procedure controls the False Positive Rate at level α.
For m hypothesis tests with p-values p(1) ≤ p(2) ≤ . . . ≤ p(m):

1. Find the largest k such that p(k) ≤ k
mα

2. Reject hypotheses H(1), . . . , H(k)

The adjusted p-values are computed as:

padj,(i) = min
3

1, min
j≥i

m · p(j)

j

4
(3.11)

3.2.2 Analysis results
After performing the analysis with DeSeq, we obtain the Log fold change, the p-values
and the p-adjusted with the multiple test correction for each gene.
Usually, for further investigation, two sequential filters are applied to filter out the genes
that do not show difference in the expressions across groups:

1. Significance filter: padj ≤ α, where α can be regulated based on the experiment and
the genes involved. It is commonly set equal to 0.05 or 0.1.

2. Effect size filter: | log2(FC)| ≥ 1, that ensures that identified genes exhibit:
µtreatment

µcontrol
≥ 2 or µtreatment

µcontrol
≤ 0.5 (3.12)

This dual filtering approach balances statistical significance with biological relevance.
In particular, this filter corresponds to ask to the means within groups to be "suffi-
ciently different", by explicitly asking to be one the double of the other [25].

Among the strengths of this technique, the choice of the Negative binomial distribution,
that handles well overdispersion, and the use of shrinkage for gene-wise dispersion, that
prevents unreliable estimates from low-count genes, stand out for their power to manage
trascriptomics data. In addition, the GLM framework and the multiple test corrections
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accommodate complex designs with multiple factors, ensuring a higher performance and
power.

However, the biggest issues show up for small sample sizes and low count genes. In the
first case, the Wald test performance may be low when n < 3 per group, while in the
second case the power of the method may be limited due to the conservative approach,
that may miss true positives in low expressed genes.

To summarize, the statistical assumptions and validation are:

• Negative binomial distribution, for the count data;

• Independence of samples;

• Homogeneity of dispersion parameters, that need to be consistent within gene across
conditions;

• Logarithm of expected counts is linear in model parameters.

The approach addresses some relevant challenges in the mRNA data analysis, such as the
discrete count values, the quadratic mean-variance relationship and the gene-wise testing
that requires extra care to be handled with the multiple test correction.
The integration of robust statistical methodology and specific considerations for the ge-
nomic data characteristics makes this approach particularly suited for differential expres-
sion studies.

3.3 Multi-omics integration: MOFA
Multi-Omics Factor Analysis (MOFA) represents an unsupervised statistical method de-
signed for the integrative analysis of multi-omics datasets. MOFA can be viewed as a
versatile but also rigorous generalization of the principal component analysis (PCA) con-
cept, in order to use it for multi-omics data and their factorial integration.
The framework faces the challenges of integrating two layers of omics data together: ex-
tracting biologically meaningful signals from the datasets while accounting for the different
properties and noise characteristics of each omics type. Given several data matrices with
measurements of multiple omics data types on the same or on overlapping sets of samples,
MOFA infers an interpretable low-dimensional representation in terms of a few latent fac-
tors that aims to capture relevant signals in the input data.
Practically, MOFA disentangles the sources of variation in the data, identifying the factors
that are shared across multiple data modalities from the factors that drive variability in
a single data modality [3].

Mathematically, MOFA starts from M = 2 data matrices (one transcriptomics matrix T
and one proteomics matrix P) of dimension N × GT and N × GP respectively. In respect
to the notation introduced in the Section 2.1, MOFA needs the two matrices transpose. As
mentioned before, N is the number of samples, while GT and GP the number of genes for
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the transcriptomics and proteomics data. MOFA implements a multi-view probabilistic
factor model where each omics dataset is modeled as:

T = Z · W(1)T + ϵ(1) (3.13)
P = Z · W(2)T + ϵ(2) (3.14)

where Z ∈ RN×K is the shared latent factor matrix with k = 1, ..., K factors, W(1) ∈
RGT ×K and W(2) ∈ RGP ×K contain the view-specific factor loadings and ϵ(m) represents
the noise terms for each omics layer m (m = 1 for transcriptomics and m = 2 for pro-
teomics). In addition, we denote as g = 1, ..., GT for transcriptomics and g = 1, ..., GP for
proteomics the genes in the matrices.
In Figure 3.3, a graphical overview of the MOFA methodology is presented.

Figure 3.3. Graphical overview of the MOFA methodology.

The model uses a Bayesian approach, where we place prior distributions on all the un-
known variables of the model, applying the following prior functions.

• For the factors: Z ∼ N (0, 1)

• For the loadings, the weights are parameterized as a product of a Bernoulli dis-
tributed random variable and a normally distributed random variable: W = S · Ŵ,
where ŵ

(m)
gk ∼ N (0, 1/α

(m)
k ) and sm

gk ∼ Ber(θm
k )

• For the parameter α
(m)
k , which controls the strength of factor k in view m, a unin-

formative conjugate prior is defined as, α
(m)
k ∼ Gamma(a0, b0)

• For the parameter θm
k , which determines the feature-wise sparsity level of factor k in

view m, a uninformative conjugate prior is applied as well, as θm
k ∼ Beta(aθ

0, bθ
0) [4].
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This hierarchical structure the model to automatically determine factor relevance and
induce sparsity in the loading matrices.

One of the main issues that need to be faced when dealing with multiomics integration
is the presence of heterogeneous data across the layers. In the case of trascriptomics and
proteomics samples, the first type contains discrete and integer data, while the second
is composed of continuous data. MOFA accommodates different likelihood functions for
each data type.
Taking as example the transcriptomics matrix T for simplicity (the same holds true for
the matrix P), we have:

• For continuous data, a Gaussian likelihood is used:

Tng ∼ N (0, 1/τg),

where τg is defined as the precision parameter.

• For count data, a Poisson likelihood is more appropriate instead, and it is expressed
as

Tng ∼ Poisson(λ(Zn, wgkT )),

where µng =
qK

k=1 znkwgk, where λ denotes the function λ(x) = log(1 + ex).

The first step, after a model has been trained, is to disentangle the variation explained
by each factor in each view. The proportion of variance explained by factor k in view m
is computed as:

Transcriptomics matrix: R2
k,1 = Var(ZkW(1)T

k )
Var(T) (3.15)

Proteomics matrix: R2
k,2 = Var(ZkW(2)T

k )
Var(P) (3.16)

where Zk represents the k-th factor and W(m)
k the corresponding loadings for view m.

The total variance explained across all factors for view m is: R2
total,m =

qK
k=1 R2

k,m [4].

The general concept on which the MOFA approach is constructed is to identify the fac-
tors that are manifested in multiple modalities, by revealing the shared axes of variation
between the different omics layers. To give a biological interpretation to the prevalent
factors, we identify the features with high absolute loadings, investigate their biological
pathways through pathway enrichment and highlight sample associations to correlate fac-
tor values with sample metadata.

The main advantages of MOFA method include its unsupervised nature, which identifies
shared patterns without requiring prior knowledge of sample relationships, and its flexibil-
ity in handling different data types through appropriate likelihood functions. The method
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is able to manage the presence of missing values through its probabilistic formulation and
works well with large datasets. The variance decomposition and loading analysis allows
to achieve biological interpretation thanks to the factor interpretability and the analysis
of the genes and proteins that retain the majority of variance.
However, MOFA has several limitations. The method assumes linear relationships be-
tween factors and observed variables and assumes that factors follow a normal distribu-
tions. Moreover, the variational optimization may converge to local rather than global
minimum, while the performance may be sensitive to the choices of the hyperparameters.
Lastly, the iterative nature of the optimization can be computationally intensive for very
large datasets.

Summing up the key statistical assumptions:

• Observed variables are linear combinations of latent factors;

• Latent factors are assumed to be uncorrelated;

• Observations are conditionally independent given the factors.

The MOFA method tries to address the critical challenges in multi-omics integration
through the use of dimensionality reduction of the high-dimensional multi-omics, different
likelihood and techniques to handle heterogeneous data and Bayesian inference to maintain
the statistical robustness.
In the next section, the iClusterPlus method for integrating multiomics data is presented
as an alternative to matrix factorization approaches.

3.4 Multi-omics integration: IClusterPlus
iClusterPlus (extension of ICluster method) represents a joint latent variable model de-
signed for integrative clustering of multiomics data, measured on the same set of samples.
The method is based on a Bayesian approach, applied to the latent variable model. This
model is composed of latent variables that are capable of spanning a low dimensional
subspace without losing too much information: the subspace can still capture the general
structure of multi-omics data and thus can be used for clustering the samples and genes.
An ideal integrative clustering approach would allow joint inference from the multiomics
data and generate a single integrated cluster through simultaneously capturing patterns
of genetic alterations that are:

• consistent across multiple data types;

• specific to individual data types;

• weak to individual data type but consistent across datasets, that would emerge only
as a result of combining levels of evidence [42].

Therefore, the goal of the ICluster approach is to develop such an integrative framework,
by facing the two main challenges of this structure: first, to capture both concordant and
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unique alterations across data types, second, to highlight covariance between data types
but also the variance and covariance within data types.
While traditional dimension reduction techniques such as Principal Component Analysis
(PCA) and Non-negative Matrix Factorization (NMF) work well for single data types,
when it comes to dimension reduction of multiple correlated datasets they fail. Instead,
iCluster addresses this limitation connecting the PCA approach with latent variable mod-
els, where the principal components can be computed using maximum-likelihood estima-
tion under a Gaussian latent variable framework [29].
The mathematical implementation of iCluster follows these key steps:

• Joint Latent Variable Modeling: samples are modeled as unobserved latent variables,
estimated in a substantially lower dimensional space.

• Distributions: The model assumes a Gaussian latent variable structure where resid-
ual variance is captured by an additional error term. With the extension of ICluster-
Plus, it is allowed for omics types to arise from other distributions than the Gaussian,
such as multinomial, multivariate Gaussian and Poisson.

• Bayesian inference algorithm: Parameter optimization is performed through the
Expectation-Maximization algorithm (EM) for ICluster, maximizing a penalized log-
likelihood function and, through Markov Chain Monte Carlo (MCMC) for ICluster-
Plus, creating a sequence of simulations that converges to a stationary distribution.

• Lasso Regularization: A sparse solution is obtained with the Lasso regularization
(L1 penalty), that shrinks to zero the coefficients corresponding to non-informative
features. A sparse result is preferred since the variance is reduced and the clustering
performance improved.

• Statistical inference: at this point, the model can be simultaneous inferred on the
different omics datasets [42].

Mathematically, the iCluster model assumes that M omics data matrices X(m) for m =
1, . . . , M are related to a set of K latent variables Z = (z1, . . . , zK)M , each of dimension
N . Each data matrix X(m) has dimensions Gm × N , where Gm represents the number of
features in the m-th omics layer and N is the number of samples. The decomposition of
data matrix X(m) into the product of omics-specific weight matrix W(m) and the shared
factor matrix can be written as:

X(m) = W(m)Z + E(m), (3.17)
where W(m) is the Gm × K weight matrix for the m-th data type, Z is the K × N matrix
of latent variables common across all data types and E(m) represents the random error
matrix of dimension Gm × N [8].
The latent variables Z represent the underlying biological processes that produce coor-
dinated patterns of variation across multiple omics layers. The weight matrices W(m)

represent instead the contribution of each latent factor to the observed features in each
omics dataset.
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The method can integrate four different data types including continuous, count, binary
and multi-categorical data. Considering M omics datasets to be merged, we denote xijt

an omics variable for the jth (j = 1, 2, . . . , Gm) omics feature of the ith (i = 1, 2, . . . , N)
sample in the mth (m = 1, 2, . . . , M) dataset.
For the distributional assumptions, given the sample i, the latent variables corresponding
are modeled as multivariate normal:

zi ∼ NK(µz, Σz). (3.18)

The error terms are assumed to follow:

e(m)
ij ∼ N (0, σ2

jt), (3.19)

where e(m)
ij is the error for feature j in data type m for sample i.

When xijt is a continuous variable, xijt and zi are related through a standard linear
regression:

xijt = αjt + βjtzi + εijt, εijt ∼ N (0, σ2
jt),

where αjt is the intercept and βjt = (β1jt, . . . , βkjt) are the slope coefficients. When the
data is not continuous, the relationship between xijt and zi changes according to the cor-
responding regression (for example, with count data the regression is Poisson).

The model incorporates regularization to ensure sparsity in the weight matrices, using the
Lasso penalty function, with the following form:

P (W(m)) = λm

GmØ
j=1

KØ
k=1

|w(m)
jk | (3.20)

where λm is the regularization parameter for data type m and w
(m)
jk represents the (j, k)-th

element of the weight matrix W(m) [8].

After the parameter estimation phase, performed with the MCMC algorithm, the cluster-
ing assignment for each sample is determined based on the posterior mean of the latent
variables. The sample clusters are determined by using K-means clustering technique,
which separates the N samples into k +1 clusters. In order to achieve an optimal solution
for the iClusterPlus model, a small number of k are usually tested, starting from k = 1
and reaching usually k = 3 or k = 4.

To summarize the method’s idea, in Figure 3.4 the general workflow of the iCluster method
is illustrated.
The key advantage of the IClusterPlus method is its combination of different tools that
enables a strong and good handle of multiomics data and their integration. The dimen-
sionality reduction facilitates interpretation, while the Bayesian approach ensures com-
putational efficiency and biological and clinical interpretability is enhanced thanks to the
sample clustering the identification of biologically meaningful genes.
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Figure 3.4. Graphical overview of the iCluster methodology.

On the other hand, the method presents several limitations that must be considered. The
method shows sensitivity to scaling, as different omics data types may range in different
scales and distributions, but also to missing values in any omics layer. For these reasons,
a good preprocessing that imputes the missing data and aligns the value intervals of the
different omics is essential to be implemented. Regularization parameter selection can be
challenging, since the choice of λt values has a strong impact on the results. Finally, the
complexity grows as the number of latent factors increases, making biological interpreta-
tion more difficult for higher-dimensional latent spaces [42].

In the next section, the last integration approach performed in this study is described.

3.5 Multi-omics integration: SNF
Similarity Network Fusion (SNF) represents a network-based computational framework
designed for integrating multiomics data by constructing and merging similarity networks.
SNF solves the multiomics integration problem by building networks of samples for each
data type (transcriptomics and proteomics in this case) and then fusing these into one
network that represents the full totality of data. The method addresses two challenges
simultaneously: leveraging complementarity across different omics layers while preserving
the unique information of each data.
The construction of patient similarity networks starts from the nodes, representing the
samples analyzed, and then passes to the creation of the edges, which encode similari-
ties between patient profiles. A patient similarity network is thus represented as a graph
G = (V, E). The vertices V correspond to the patients {x1, x2, . . . , xN } and the edges E
are weighted by how similar the patients are. Edge weights are represented by an N × N
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similarity matrix W with W (i, j) indicating the similarity between patients xi and xj .The
key step of SNF is to iteratively and simultaneously update the global patient similarity
matrix of each layer using a local K-nearest neighbors (KNN) method, combined with the
global similarity matrices of the other layers [30]. This iterative fusion process enables
the method to capture both the information within each omics layer and the information
across all data.

Mathematically, the SNF algorithm operates on M = 2 data matrices T ∈ RN×GT and
P ∈ RN×GP , where N represents the number of samples, GT and GP the number of genes
respectively.
We denote ρ(xi, xj) as the distance between patients xi and xj , that corresponds to the
Euclidean metric when the data is continuous. The similarity matrix W ∈ RN×N is then
determined with a scaled exponential similarity kernel as:

W (i, j) = exp
A

−ρ(xi, xj)2

µ ϵi,j

B
, (3.21)

where µ is a hyperparameter that can be empirically set and ϵi,j is used to eliminate the
scaling problem [47].
The scaling factor ϵi,j is defined as:

ϵi,j = mean(ρ(xi, Ni)) + mean(ρ(xj , Nj))
2 , (3.22)

where mean(ρ(xi, Ni)) represents the average distance between sample xi and its K near-
est neighbors Ni. This local scaling ensures that the similarity measure adapts to the
local density of data points in the feature space.

At this point, the following step is to merge together the information from the multiple
similarity matrices of the omics layers. To compute the fused matrix, we define a full
and sparse kernel on the vertex set V . The full kernel is a normalized weight matrix
P ∈ RN×N defined as P = D−1W, where D is the diagonal matrix whose entries are
D(i, i) =

q
j W (i, j), so that

q
j P (i, j) = 1. However, this normalization may suffer from

numerical instability since it involves self-similarities on the diagonal entries of W. One
way to perform a better normalization is as follows:

P (i, j) =


W (i,j)

2
q

k /=i
W (i,k) , if j /= i

1/2 otherwise
(3.23)

This normalization will be free of the scale of self-similarity in the diagonal entries andq
j P (i, j) = 1 still holds.

The core SNF fusion process starts, updating each similarity matrix by incorporating
information from the others. To do so, the algorithm of the K nearest neighbors (KNN)
is applied to retain only the information and influence from the closest neighbors for each
node (i.e., each patient). Given the graph of a omics layer G, let ni represent the set of
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neighbors of xi (including xi) in G. We use then the KNN technique to measure local
affinity as:

S(i, j) =
I

2 · P (i, j), if xj ∈ Ni,

0, otherwise.
(3.24)

This operation sets the similarities between non-neighboring points to zero [47]. The
sparse matrix S ∈ RN×N preserves only the K strongest connections for each sample,
enforcing the assumption that local similarities are more reliable than remote ones.
Note that P carries the full information about the similarity of each patient to all others,
whereas S only encodes the similarity to the K most similar patients for each patient.

Considering the case with two omics layers, i.e. m = 2, we calculate the similarity ma-
trices W(1) ∈ RN×N and W(2) ∈ RN×N as in Equation 3.21. Then the kernel matrices
S(1) ∈ RN×N and S(2) ∈ RN×N are obtained as in Equation 3.24.

Let P(1)
0 ∈ RN×N and P(2)

0 ∈ RN×N represent the initial two status matrices at t = 0.
The key step of SNF is to iteratively update the similarity matrix corresponding to each
of the data types as follows:

P(1)
t+1 = S(1) · P(2)

t ·
1
S(1)

2T
, (3.25)

P(2)
t+1 = S(2) · P(1)

t ·
1
S(2)

2T
, (3.26)

where P(1)
t refers to the first data type after t iterations and P(2)

t to the second data type.
The algorithm alternates between updating the status matrices and maintaining the affin-
ity matrices until convergence. This procedure updates the matrices at each step, gener-
ating two parallel diffusion processes that fuse together progressively [40].

The convergence criterion is typically defined as:

max
1
∥P(1)

t+1 − P(1)
t ∥F , ∥P(2)

t+1 − P(2)
t ∥F

2
< τ, (3.27)

where ∥·∥F denotes the Frobenius norm and τ is a predefined tolerance threshold (typically
τ = 10−6).
After t steps, the final fused network is obtained by averaging the converged status ma-
trices as:

Pfused = 1
2
1
P(1)

t + P(2)
t

2
, (3.28)

where Pfused ∈ RN×N represents the integrated similarity matrix containing information
from both omics layers.

The following illustration (Fig. 3.5) gives a general overview on SNF methodology.
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Figure 3.5. Graphical overview of the SNF methodology.

Sample clustering

Following fusion, clustering is usually performed to highlight affinities among samples, us-
ing spectral clustering on Pfused. In multivariate statistics, spectral clustering techniques
make use of the eigenvalues of the similarity matrix of the data to perform dimensionality
reduction before clustering in fewer dimensions.
This algorithm decomposes the fused matrix using its eigenvalues. As first step, the
normalized Laplacian matrix is constructed as:

L = D−1/2
fusedPfusedD−1/2

fused, (3.29)

where Dfused is the degree matrix with entries Dfused(i, i) =
q

j Pfused(i, j).

The second step involves computing the first k eigenvectors corresponding to the largest
eigenvalues of L, forming the matrix U ∈ RN×k, that has each eigenvector as column.
Each row of U represents a sample in the spectral embedding space. K-means clustering
is then applied to the rows of U to identify k clusters of samples.

Feature importance and selection

To identify the most informative molecular signatures that contribute to the integrated
sample structure, feature importance is assessed using the Normalized Mutual Information
(NMI) metric. For each gene g in the original omics datasets, the NMI score is computed
as:

NMI(g, C) = 2 · I(g, C)
H(g) + H(C) , (3.30)

where g represents the gene values across all samples, C represents the cluster assignments
obtained from spectral clustering, I(g, C) is the mutual information between feature g and
cluster labels C, and H(·) denotes entropy.
The mutual information I(g, C) quantifies the amount of information shared between gene
g and cluster structure C:

I(g, C) =
Ø
g∈G

Ø
c∈C

p(g, c) log p(g, c)
p(g)p(c) , (3.31)
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where G and C represent the discrete sets of gene values and cluster labels, respectively,
and p(·) denotes probability distributions estimated from the data.
The entropy terms are defined as:

H(f) = −
Ø
g∈G

p(g) log p(g), H(C) = −
Ø
c∈C

p(c) log p(c). (3.32)

For continuous features, discretization is performed using equal-frequency binning or k-
means clustering to compute the NMI scores.
NMI ranges from 0 to 1, where values close to 0 indicate little relationship between the
gene and cluster structure, while values close to 1 suggest high correlation. Features are
ranked according to their NMI scores in descending order, in order to select the top-k
most informative features (for example, k = 20 for the top 20 genes).
The feature selection process operates as follows:

1. For each gene gi in the transcriptomics data matrix T (where i = 1, . . . , GT ), com-
pute NMI(gi, C).

2. For each feature gi in the proteomics data matrix P (where i = 1, . . . , GP ), compute
NMI(gi, C).

3. Combine all NMI scores into a single ranking list and select the top-k genes with
highest NMI values.

4. The selected genes are the ones most strongly associated with the clustering structure
of the fused sample.

To summarize the procedure of this method, the main steps are:

1. Pairwise distance matrices are computed for each omics layer, using a metric appro-
priate to the nature of the data (continuous, discrete, or boolean).

2. Similarity matrices W are constructed from the distance matrices using a Gaus-
sian kernel. The matrix captures local similarity relationships, with higher values
indicating greater similarity between samples.

3. Normalized weight matrices P are obtained from the similarity ones by applying the
normalization step.

4. The core SNF fusion process iteratively updates each affinity matrix by incorporating
information from all other modalities until convergence.

5. The final fused similarity matrix Pfused ∈ RN×N is obtained by averaging the con-
verged status matrices.

6. Spectral clustering is applied to identify sample clusters, and feature importance is
computed using NMI scores to select the most informative molecular signatures.
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The choice of hyperparameters significantly impacts SNF performance. The number of
nearest neighbors K controls the connectivity of the similarity networks, with small val-
ues leading to fragmented networks and large values causing loss of local structure. The
scaling parameter µ in Equation 3.21 controls the emphasis on distance differences be-
tween samples, with higher values creating more aggressive contrast between similar and
dissimilar samples.

SNF offers several advantages for multi-omics integration. Network-based representa-
tion naturally captures complex, non-linear relationships between samples that may not
be apparent in individual omics analyses. In addition, the iterative fusion process en-
ables a better communication between different omics layers, potentially revealing hidden
relationships that emerge only through integration. The computational efficiency is main-
tained through the use of sparse matrices and convergent iterative algorithms [47].

However, SNF has several limitations that must be considered. Parameter sensitivity
requires careful tuning of K and µ parameters, that potentially may need extensive cross-
validation. At the same time, the choice of initialization parameters may interfere with
the convergence, since the iterative algorithm can converge to local optima instead to the
global one. Moreover, the computational scalability becomes problematic for very large
datasets, due to the quadratic complexity of similarity matrices (O(N2) space complexity
and O(N3) time complexity per iteration).
The method’s strength lies in its ability to create a unified similarity structure, providing
a more comprehensive view of sample relationships than single-omics approaches. The
network-based nature of the approach captures complex and non-linear biological rela-
tionships, while keeping computational costs manageable for datasets of moderate size.
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Chapter 4

Results

4.1 Transcriptomics
Boxplots

Boxplots of the raw data, both for 2D and 3D datasets, show a distribution strongly
compressed near zero: the boxes are almost flattened at the lower part of the axis, in-
dicating the presence of a large fraction of features with very low or null counts (Figure
4.1). After applying low-filtering, the boxplots show a more standard distribution, with
visible medians and interquartile ranges and comparable trends across samples. For both
2D and 3D samples no major differences emerge between patients and controls, except for
one control sample (labeled C3 ) in the 2D case, which shows a lower-shifted distribution
both before and after filtering. The presence of a limited number of genes with very high
counts is noticeable across all samples, as indicated by the upper outliers in the boxplots
(Figure 4.2). These outliers correspond to highly expressed genes, which are typical in
RNA-seq datasets and generally represent a small subset of genes with strong biological
activity.

Figure 4.1. Boxplots of read counts per sample for 2D data.

We can notice that the spheroid data (3D) displays the same overall behavior as the bulk
data (2D), maintaining similar behavior.
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Figure 4.2. Boxplots of read counts per sample for 3D data.

Density plots

Looking at the density plots (Figure 4.3 and 4.4), the raw data exhibit a characteristic
initial dip: a high density of values close to zero, followed by a decrease and then the
typical right-skewed profile. Right tails (highly expressed genes) are consistent across
samples and reflect what shown in the boxplots: few genes with high counts are present
across all samples. After low-filtering, this initial bump almost disappears, confirming
that most low-expressed features were removed. However, a residual anomaly remains
noticeable in sample C3 (Figure 4.3), which already displayed deviations in the boxplots.
Overall, filtering reduces apparent sparsity and improves cross-sample comparability.

Figure 4.3. Density plots of read counts per sample for 2D data.

Heatmap

The heatmap highlights groups of genes with coherent expression patterns, showing blocks
of over-expressed and under-expressed genes across subsets of samples.
Observing the hierarchical clustering of the 2D data (Figure 4.5), three control samples
cluster distinctly apart from the patient group, while one control (RR, not C3 ) fails to
group with the other controls. In the second half of the matrix, controls generally display
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Figure 4.4. Density plots of read counts per sample for 3D data.

lower expression values (blue), while patients show higher expression levels (yellow to or-
ange), highlighting a clear differential expression pattern. However, the separated control
sample (RR) exhibits the opposite trend, showing a profile more similar to the patients
ones than those of the other controls.
This indicates that while biological signals distinguish patients from controls, variability
across samples remains. Such variability may reflect biological heterogeneity or technical
factors, such as the presence of batch effect.

Similarly, the heatmap of the 3D data (Figure 4.6) also reveals blocks of coherently ex-
pressed genes, with distinct patterns emerging between patients and controls. As in the
2D condition, three controls cluster together, separating from most of the patients. How-
ever, they are not completely separated from all the patients, but on the contrary they
are clustered with three patients. Once again the RR sample does not follow this trend
and groups apart, confirming its divergent behavior across both culture systems.
Moreover, while patients generally show higher expression levels (yellow to orange) com-
pared to controls (blue), the distinction appears less sharp than in the 2D data, suggesting
that spheroid cultures (3D) may introduce additional variability or reduce the strength of
the separation. This result highlights a possible outlier sample (RR) and a softer contrast
between conditions compared to the bulk data (2D).
The presence of clusters of differentially expressed genes supports the potential for down-
stream differential expression analysis.

PCA

The Principal Component Analysis reveals patterns in the transcriptomic data structure,
with some differences between 2D and 3D culture conditions. For the 2D data (Figure
4.7), the PCA plot of PC1 vs PC2 shows a moderate separation between patients (blue
points) and controls (red points). The first two principal components capture the major
sources of variation, with patients generally clustering toward the right side of PC1 and
controls showing more scattered distribution. Notably, one control sample appears as
an outlier in the upper region of the plot (RR sample). The PC3 vs PC4 plot reveals
additional structure, with samples distributed across multiple quadrants, capturing high
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Figure 4.5. Heatmap of the top 50 most variable genes for 2D data.

Figure 4.6. Heatmap of the top 50 most variable genes for 3D data.

variance of two of the controls with the rest of the samples (the one in the right side
correspond to the sample RR).
The 3D spheroid data (Figure 4.8) exhibits markedly different clustering patterns. The
PC1 vs PC2 plot shows a more evident separation between conditions, with most patient
samples forming a distinct cluster in the upper portion of the plot and control samples
positioned in the lower region. Still, the major proportion of variance is retained in the
outlier control sample (RR), positioned in the down left side. The PC3 vs PC4 analysis
shows more dispersed clustering, indicating that spheroid culture may introduce additional
biological variability across all samples.
Overall, the first two components tend to better distinguish the two clusters between
patients and controls, even if the highest portion of variance is retained in the outlier
control (RR).
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Figure 4.7. PCA Plots - PC1 vs PC2 and PC3 vs PC4 for 2D data.

Figure 4.8. PCA Plots - PC1 vs PC2 and PC3 vs PC4 for 3D data.

Differential expression analysis

The differential expression analysis yielded substantially different results between culture
conditions, as shown in Table 4.1. The number of significant genes identified in the
spheroid culture is consistently higher. Among the significant genes with log-fold change
values above the threshold, the 2D data displays a balanced proportion of up- and down-
regulated genes, whereas in the 3D condition the majority of genes is up-regulated.

Condition 2D data 3D data
Total genes analyzed 12047 12578
Genes with p.adj < 0.1 26 296
Genes with p.adj < 0.1 and |log2FC| ≥ 1 23 218
→ Down-regulated 13 72
→ Up-regulated 10 146

Table 4.1. Summary of differential expression analysis results

The volcano plots provide complementary visualization of the differential expression re-
sults (Figure 4.9). The 2D volcano plot reveals a limited number of significantly differ-
entially expressed genes, with only 23 genes meeting both statistical significance (p.adj
< 0.1) and biological relevance (| log2FC| > 1) criteria, marked with red colour. As
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summed up in the Table 4.1, the distribution shows a relatively balanced pattern of up-
and down-regulation. Most genes cluster around a fold change close to zero, indicating
low transcriptional differences between patients and controls under 2D culture conditions.
Oppositely, the 3D volcano plot demonstrates a different scenario with 218 genes meeting
significance criteria. The plot reveals also an asymmetry, with the majority of genes being
up-regulated, suggesting that Ehlers-Danlos syndrome mainly involves activation rather
than repression of transcriptional genes.

Figure 4.9. Volcano Plots for 2D and 3D data.

Considerations

The difference between 2D and 3D results suggests some considerations, as well as the
presence of :

• Enhanced biological relevance: Spheroid culture may better represent the real cel-
lular environment, allowing biological mechanism to manifest more clearly than in
traditional culture.

• Amplified signal detection: The 3D environment appears to amplify transcriptional
differences that remain below detection thresholds in 2D culture. This reflects in a
higher number of significant genes.
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• Disease insights: The predominance of up-regulated genes in 3D conditions (67 % of
significant genes) suggests that Ehlers-Danlos syndrome may involve up-regulation
of cellular pathways.

• The consistency of the outlier sample RR across multiple analytical approaches,
from heatmaps to PCA plots, reinforces the robustness of these observations. This
suggests the presence of biological or technical factors that have influenced the sample
in consideration.

4.2 Proteomics
Missing value imputation

Before starting the statistical analysis, missing values in the proteomic datasets need to
be imputed. A evaluation of different imputation methods was conducted using a masking
approach, where known values were artificially hidden and then predicted to assess method
performance. The parameter used to compared them is the RMSE. In Table 4.2, the result
is shown for each method applied: Bayesian PCA, K-Nearest Neighbors, Probabilistic
PCA and Singular Value Decomposition.

Method bPCA KNN pPCA SVD
RMSE 0.45 0.76 0.47 0.58

Table 4.2. Comparison of missing value imputation methods.

Bayesian PCA performs as best method, achieving the lowest RMSE of 0.45, followed
closely by Probabilistic PCA (0.47). These error values highlight the effectiveness of
matrix factorization approaches over distance-based methods (as KNN) for proteomic
data imputation. For this reason, bPCA was selected for imputing missing values in the
final dataset.

Boxplots and density plots

The boxplots reveal consistent protein abundance distributions across samples after log
transformation (Figures 4.10 and 4.11). Both 2D and 3D datasets exhibit similar median
values with comparable interquartile ranges, indicating successful normalization. The
presence of outliers in both conditions reflects the heterogeneity of protein expression lev-
els, with some proteins showing extremely high or low abundances. In addition, 3D data
shows slightly more variability in the lower quartiles, suggesting that spheroid culture
may introduce additional biological complexity in protein expressions.

The density plots (Figures 4.12 and 4.13) demonstrate approximately normal distribu-
tions for most samples after log transformation, validating the preprocessing approach.
Both 2D and 3D datasets show similar distribution shapes with peaks centered around
the same values. Nevertheless, the distributions tend to exhibit long right tails, indicating
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Figure 4.10. Boxplots of protein abundances for 2D data.

Figure 4.11. Boxplots of protein abundances for 3D data.

the presence of a small number of genes with relatively high values even after log trans-
formation. In addition, the RR sample (last in the first row) appears slightly different
from the others, displaying a pronounced left tail.

Statistical assumptions validation

Shapiro-Wilk tests were performed to evaluate the normality assumption required for
parametric statistical analyses. In Table 4.2 the results are shown.

Data Total Proteins Non-normal Proteins Percentage
2D 6024 610 11 %
3D 5666 638 12 %

Table 4.3. Shapiro-Wilk test results for normality check.

The values indicate that around 89 % of proteins in both datasets follows normal dis-
tributions, supporting the use of parametric statistical methods for the majority of the
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Figure 4.12. Density plots of protein abundances for 2D data.

Figure 4.13. Density plots of protein abundances for 3D data.

dataset. The similar proportions of non-normal proteins between 2D (11 %) and 3D (12
%) conditions suggest that culture dimensionality does not affect distributional properties.

Levene’s tests evaluate variance homogeneity across experimental groups. The results
obtained through the tests are shown in Table 4.2.

Data Total Proteins Heteroscedastic Proteins Percentage
2D 6024 285 5 %
3D 5666 385 7 %

Table 4.4. Levene’s test results for homoscedasticity check.

The homoscedasticity assumption is satisfied for 95 % of proteins in 2D culture and 93%
in 3D culture, indicating that ANOVA and limma approaches are appropriate for the
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vast majority of proteins. The slightly higher proportion of heteroscedastic proteins in
3D conditions (7 % vs 5 %) may reflect increased biological variability introduced by the
more complex spheroid environment.

PCA plots

The PCA analysis of proteomic data reveals distinct clustering patterns between culture
conditions (Figures 4.14 and 4.15).

Figure 4.14. PCA plot of 2D proteomic samples.

Figure 4.15. PCA plot of 3D proteomic samples.

In the 2D proteomic data, the first two components PC1 and PC2 capture 36.34 % of
total variance, with moderate separation between patients and controls. The control sam-
ples show more clustered behavior, while patient samples display greater dispersion across
both principal components.
Regarding the 3D data, PCA presents strong separation along the first component PC1,
dividing quite good the patients on the left side and controls on the right part. The total
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variance retained by the first two components PC1 and PC2 is similar to the 2D case,
with 33.29 % of variance captured. The separation between patients and controls is more
pronounced than in 2D culture, with controls forming a more distinct cluster in the right
portion of the plot and patients predominantly occupying the left region.
Additionally, the RR sample, which behaves as an outlier in the transcriptomics analysis,
does not display the same trend here.
The enhanced separation in 3D proteomic data is consistent with the transcriptomic re-
sults, reinforcing the hypothesis that spheroid culture amplifies disease biological mecha-
nism at both transcriptional and proteomic levels.

Statistical results

The results of the statistical analyses performed with ANOVA, LIMMA and Wilcoxon
tests are summarized respectively in Tables 4.2, 4.2 and 4.2. Overall, the number of
significant genes identified is quite limited, particularly in the 2D dataset, where with
most thresholds on the adjusted p-value obtains very few or no significant features. The
adjusted p-value levels appear largely clustered, providing limited discriminatory power
for the current analysis.

Dataset p. adj < 0.1 padj < 0.25
2D 0 15
3D 193 901

Table 4.5. Number of significant genes identified with ANOVA.

Dataset p. adj < 0.1 padj < 0.25
2D 0 90
3D 219 935

Table 4.6. Number of significant genes identified with LIMMA.

Dataset p. adj < 0.1 padj < 0.25
2D 0 0
3D 0 287

Table 4.7. Number of significant genes identified with Wilcoxon test.

This lack of strong significance is likely due to the small and unbalanced sample size (10
patients vs. 4 controls), which strongly reduces the robustness of classical statistical tests
such as the ones applied. Consequently, these results alone are insufficient to draw reliable
biological conclusions.
What is interesting to notice instead is that the 3D dataset consistently shows a larger
number of significant genes across all three statistical tests. This suggests that the 3D
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culture may capture more detailed gene expression patterns and relevant biological mech-
anisms than the bulk data.
Given the limited significance observed in the single-omics proteome analyses, further in-
vestigation using multi-omics integration approaches is necessary to uncover more robust
and biologically meaningful results.

4.3 Multi-omics integration
Following the preprocessing and individual analysis of transcriptomics and proteomics
datasets, multi-omics integration was performed to identify coordinated molecular pat-
terns across both data layers. The integrated dataset comprised 28 samples (14 samples
× 2 culture conditions) with matched transcriptomics and proteomics measurements for
each sample. Principal Component Analysis was applied on the merged datasets, as first
step of the initial exploration. Through PCA, the combined dataset revealed distinct
patterns across both omics layers and culture conditions.

The transcriptomic PCA (Figure 4.16) does not show clear clustering patterns by condition
nor by group. The 3D samples (triangles) are characterized by more dispersed distribution
compared to 2D samples (circles), suggesting that spheroid culture introduces additional
transcriptional variability.

Figure 4.16. PCA of combined transcriptomic data (2D and 3D).

On the contrary, the proteomic PCA (Figure 4.17) reveals more pronounced separation
patterns. Control samples cluster predominantly in the lower-left quadrant for both cul-
ture conditions, while patient samples distribute more broadly across the upper part of
the plot space.

4.3.1 MOFA results
Multi-Omics Factor Analysis (MOFA) was employed as first integration approach to iden-
tify latent factors that capture coordinated patterns of variation across transcriptomic and
proteomic datasets. The integration was performed for 2D and 3D culture conditions, each
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Figure 4.17. PCA of combined proteomic data (2D and 3D).

comprising 14 samples with transcriptomic data (11 418 features) and proteomic data (5
050 features) (Figure 4.18).

Figure 4.18. MOFA integration layout.

MOFA identified four latent factors for both culture conditions, with distinct patterns of
variance explained across the two omics layers (Figure 4.19). In the 2D culture system,
Factor 3 emerged as the most informative, explaining approximately 20% of the variance in
the proteomic data, while the transcriptomic layer showed more distributed variance across
factors. Notably, the 3D culture condition demonstrated superior information retention,
particularly in the transcriptomic layer, where Factor 1 captured approximately 20% of
the total variance. This observation aligns with the increased biological complexity of
three-dimensional culture systems, which may preserve more natural cellular states and
gene expressions compared to traditional cultures.
The percentage of variance retained in each factor by the omics layers can be visualized
through Table 4.3.1, giving the precise values of what we noticed in the previous plot
(Figure 4.19).
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Figure 4.19. Total variance retained per view and per factor.

Factor Transcriptomic 2D Proteomic 2D Transcriptomic 3D Proteomic 3D
1 4.68 % 0.42 % 23.10 % 1.45 %
2 2.26 % 6.53 % 6.64 % 11.27 %
3 0.41 % 13.33 % 0.25 % 8.22 %
4 0.70 % 0.03 % 16.69 % 0.39 %

Table 4.8. Variance explained by each factor in transcriptomic and proteomic data.

This finding supports the hypothesis that 3D culture systems better explain in vivo con-
ditions and preserve more biologically relevant molecular patterns.

The distribution of individual factors across experimental conditions revealed distinct
clustering patterns between control and patient groups (Figure 4.20). Factor 1 showed the
outlier sample (RR) to retain the majority of variance along its axis, with the other control
samples and patients generally exhibiting similar factor values. Factor 2 demonstrated
moderate discriminatory power, with all the controls showing higher values than patients.
Instead, Factors 3 and 4 showed more overlapping distributions between conditions.

Figure 4.20. Single factors plot.

Going on with the analysis, we represent the pairwise scatter plot matrix of all four factors,
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which revealed the multidimensional structure of the data and the relationships between
different latent components (Figure 4.21). In most cases, the visualization demonstrated
overlapping clustering patterns, even though in some plots the clusters are more clear,
with patient and control samples forming distinct groups in the factor space. This is
noticeable, for example, when combining Factor 2 and 1 or Factor 2 and 3, showing a
stronger separation along the first axis and the diagonal. In general, Factor 2 provides the
best differentiation among the groups, as shown also in the corresponding density plot, in
which the patients and controls distribution are quite well separated.

Figure 4.21. Combined factors plot.

To understand the molecular basis of the identified latent factors, we examined the top
20 contributing genes for each omics layer across the most informative factors.
First of all, we noticed that transcriptomic data primarily contributed to Factor 1 and
Factor 4, whereas proteomic features dominated Factors 2 and 3. Factor 1 was strongly
influenced by transcriptomic features, particularly genes involved in diverse biological
processes, suggesting that it captures metabolic and stress-response signatures. In con-
trast, Factor 4 appeared to be mainly associated with cellular maintenance and regulatory
processes.
At the protein level, the contribution of proteomic features was generally weaker com-
pared to transcriptomic data. Nevertheless, the concordance between transcriptomic and
proteomic loadings for certain factors validates the biological relevance of the identified
latent components and demonstrates successful integration of the two omics layers.

4.3.2 iClusterPlus results
The iClusterPlus method was applied with varying numbers of latent variables (k = 1, 2,
and 3) to identify optimal clustering structures in the integrated multi-omics space.

The simplest clustering solution with k = 1 partitions the 28 samples (14 samples repeated
with bulk and spheroid data) into two clusters (Figure 4.22).
The two-cluster solution shows highly unbalanced clustering, with Cluster 2 containing
the majority of samples (22/28). This asymmetric distribution suggests that a smaller
subset (Cluster 1) exhibits distinct molecular characteristics. However, this cluster does
not contain only controls patients, but it is composed of different patients and only one
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Figure 4.22. Clustering with k = 1.

Cluster Sample Count % of controls
1 6 16 %
2 22 32 %

Table 4.9. Clustering with k = 1 (two clusters).

control (specifically, RR sample). This clustering does not show relevant distinction, nei-
ther by group nor by condition. In the Table 4.3.2 the number of samples grouped in each
cluster is reported, with the additional information about their condition.

Going on with the analysis, we increased the number of latent variable to k = 2, that
yields to three clusters.
The three-cluster solution provides a somewhat more balanced partitioning compared
to fewer clusters. As reported in Table 4.3.2, Cluster 2 contains 6 out of the 8 control
samples, effectively grouping most controls together, but it also includes 5 patient samples,
indicating that some mixing between conditions remains. In general, the division is not
effective for well separating controls from patient samples.

Cluster Sample Count % of controls
1 13 7 %
2 11 55 %
3 4 25 %

Table 4.10. Clustering with k = 2 (three clusters).

The most complex solution with k = 3 generates four clusters, that can be visualized in
three-dimensional latent space, as in Figure 4.24, or in multiple two-dimensional projec-
tions, as in Figure 4.25, showing the position of each sample in respect to two components

64



4.3 – Multi-omics integration

Figure 4.23. Clustering with k = 2.

per plot: Latent 1 vs 2, Latent 1 vs 3 and Latent 2 vs 3.

Figure 4.24. Clustering with k = 3 in 3-dimensional latent space.

The four-clusters solution highlights complex multi-dimensional relationships among the
samples. First thing we can notice is the RR outlier: in the 3-dimensional plot it is
completely separated, positioned in the upper-right region, while in the 2-dimensional
projections it consistently remains distant from the rest along the first latent variable.
Consequently, Cluster 4 (purple) corresponds to a singleton containing only this outlier.
The remaining clusters show variable sizes and spatial distributions across the three latent
dimensions. Cluster 1 (red) appears relatively dense and compact across all components,
whereas Cluster 2 (green) is clearly separated from the others along the third latent vari-
able.
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Figure 4.25. iClusterPlus k = 3: Latent variables 1 vs 2 projection.

In the Table 4.11, the clustering results are reported, highlighting the strong isolation of
Cluster 4 as a singleton (100 % control, corresponding to the RR outlier) and the uneven
distribution of controls across the remaining clusters, with Cluster 3 grouping the largest
fraction of them (45 %, corresponding 5 out of the 8 controls).

Table 4.11. Clustering with k = 3 (four clusters).

Cluster Sample Count % of controls
1 10 10 %
2 6 16 %
3 11 45 %
4 1 100 %

4.3.3 SNF results
SNF was implemented to create fused similarity networks to integrate transcriptomic and
proteomic data layers. The analysis generated both global fusion results and modality-
specific similarity matrices W(1) and W(2).

Starting with the similarity matrices heatmaps, it is possible to visualize complementary
views of sample relationships, in order to notice possible affinity within controls group or
patients group (Figure 4.26).
The transcriptomic affinity matrix shows high relation for the first samples (right upper
part, with dark red) and moderate similarity patterns with gradual transitions between
sample groups (orange to yellow). In contrast, the proteomic affinity matrix demonstrates
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Figure 4.26. Heatmaps of affinity matrices: transcriptomics W (1) and proteomics W (2).

sharper boundaries and more pronounced block structures, indicating that protein-level
similarities are more robust to differentiate groups.
Similarly, we visualize the heatmap of the fused matrix P in Figure 4.27.

Figure 4.27. Heatmap of fused similarity matrix P .

The fused similarity heatmap reveals block-diagonal structures that suggest natural sam-
ple groupings. In addition, a clear affinity among the control samples can be observed in
the lower-left region, highlighted by the orange and red colours.

After constructing the fused matrix, the SNF network reveals coherent sample clustering
patterns when projected into a two-dimensional space (Figure 4.28).
The fused space visualization reveals improved separation between patients and controls
compared both to single-omics analyses and to alternative integration approaches such as
MOFA and iClusterPlus. Patient samples (blue) cluster predominantly in the upper and
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Figure 4.28. Samples in the fused similarity space.

right regions, while control samples (red) occupy the lower-left quadrant. Although cul-
ture condition (2D vs. 3D) introduces additional variability, the two culture types remain
intermixed, confirming that the dominant source of separation comes from the disease
condition. This positive result strongly supports the robustness of the SNF method, es-
pecially for the rare disesase case where samples are limited.

According to these results, further analyses will focus on identifying the genes that most
strongly drive the two main axes of separation, as well as the biological mechanisms they
regulate, since these are important for guiding the improved clustering observed here.

Before moving to the biological insights of these genes, we will show the SNF clustering
performed with k = 2 and k = 3, with k being the number of clusters, in the Table 4.3.3
and 4.3.3.

Cluster Sample Count % of controls
1 16 50 %
2 14 0 %

Table 4.12. Clustering with k = 2 (second clusters).

The solution with two clusters obtains balanced division, with all the controls grouped in
Cluster 1. This suggests a good grouping of control samples, however, this cluster also
includes 8 patient samples, indicating only partial discrimination.
When increasing to k = 3, the separation improves: all controls remain grouped in Cluster
1, but the number of patients misclassified within this cluster decreases from 8 to 3. This
reflects a stronger affinity among control samples and a clearer boundary between disease
and control conditions.
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Cluster Sample Count % of controls
1 11 73 %
2 7 0 %
3 10 0 %

Table 4.13. Clustering with k = 3 (three clusters).

In conclusion, the three approaches provide similar insights into the integrated data.
However, SNF stands out for its ability to discriminate between the two conditions and
to capture more coherent sample groupings. By leveraging network-based similarity rela-
tionships, it highlights the underlying structure of the data more effectively, making it a
particularly powerful method for biological interpretation in the Ehlers-Danlos syndrome
context.
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Chapter 5

Conclusions

This study demonstrates the strength of multi-omics integration approaches to inves-
tigate rare genetic diseases, specifically Ehlers-Danlos syndrome, through comparative
transcriptomics and proteomics analysis under different culture conditions. Single-omics
and multi-omics analysis reveals a series of important findings regarding the disease’s
molecular mechanism.

The transcriptomic analysis revealed differences between 2D and 3D culture conditions,
with spheroid cultures generating more differentially expressed genes (218 vs. 23 signif-
icant genes). This observation suggests that three-dimensional culture systems better
represent the in vivo cellular environment, allowing disease-specific signatures to manifest
more clearly. Most of significant genes were up-regulated genes under 3D conditions (67
% of significant genes), indicating that EDS could be caused predominantly by activation,
and not inhibition, of transcriptional processes.
The proteomic comparison was more challenging due to the small sample sizes for research
in rare disease work. The limited number of proteins that were statistically significant,
particularly in 2D cultures, are a reflection of the statistical power limitation when working
with 10 patients and 4 controls. However, the overall tendency toward increased signifi-
cance in 3D conditions with all three statistic methods (ANOVA, limma, and Wilcoxon)
supports the hypothesis that spheroid cultures preserve more biologically relevant pat-
terns at the molecular level.
The presence of the RR outlier sample in many analyses (transcriptomics heatmaps, PCA
plots and then integration techniques) demonstrates the robustness of our analysis pipeline
for capturing potential batch effects or biological variation. For this analysis, we preferred
to keep all samples in the data because of the already small number of available controls.
However, further study may consider removing this outlier to gain a less biased overview
of the datasets.

The comparative evaluation of three integration strategies highlights distinctive strengths
and limitations of each method. MOFA exhibited better variance decomposition capacity,
particularly in the detection of factors explaining coordinated variation between omics
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layers. The ability to handle different data types by employing correct likelihood func-
tions was advantageous for merging discrete count data (transcriptomics) and continuous
abundance measures (proteomics).
iClusterPlus provided insights into latent variable structures and sample clustering, though
the results were more sensitive to the number of latent variables chosen. Solutions to
clustering were less distinguishing by patient versus control populations with significant
mixing between conditions.
SNF proved to be the top-performing method in sample discrimination, with clear dis-
crimination of controls from patients, with only 3 misclassified patients in the optimal
clustering solution. The network-based method effectively used complementary knowl-
edge across omics levels without losing the uniqueness of each type of data. The ability
of the method to construct patient similarity networks and update these iteratively ac-
cording to cross-omics information was particularly effective in rare disease cases where
sample relationships are complex and sample size are limited.

Several limitations need to be mentioned in deriving these conclusions. The sample size is
limited (n=14), therefore statistical power and generalizability of findings decrease. Even
though this limitation is inherent to studies of rare conditions, it particularly affects the
robustness of statistical tests and the stability of clustering algorithms. Larger datasets
in future studies would be appreciated, even if this is complicated with the rare diseases,
such as EDS. Absence of external validation limits confidence in molecular signatures
identified. Cross-validation strategies within this dataset provide qualitative assessment
of method stability, yet independent validation cohorts would add biological relevance of
findings.
Technical limitations include the different feature sets captured by transcriptomic and
proteomic platforms, which necessitated working with the intersection of detected genes.
This restriction may have excluded biologically relevant molecules that are detectable by
only one technology.

There are several paths for expanding this research that are worthy to be investigated.
The application of other multi-omics integration methods, such as Multi-Omics Network
Analysis (MONA), Joint and Individual Variation Explained (JIVE), or more recent deep
learning platforms like autoencoders, would provide complementary insights into the struc-
ture of the data.
Validating the identified molecular signatures on independent groups of EDS patients
would confirm the general applicability of the findings and support their translation into
clinical practice. Functional validation through pathway analysis and gene ontology en-
richment of key genes would add biological results behind the patterns found. Moreover,
incorporation of additional omics levels, such as epigenomics or metabolomics, could pro-
vide a more integrated systems-level view of EDS, by integrating more layers of omics
data.
Applying these analytical frameworks to other rare genetic diseases would establish their
general applicability and identify trends for this type of data. These comparative analyses
would allow for the development of standardized approaches to rare disease multi-omics
analysis.
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Even though this study is an initial analytical investigation, the identified molecular sig-
natures might have some clinical implications. The proteins and genes contributing most
to sample discrimination may be potential biomarkers for EDS quantification or diagnosis.
Their utility would require rigorous validation and regulatory approval before application
in the clinic.
The observation that 3D culture conditions reveal more significant disease signatures sug-
gests that spheroid-based assays have the potential to improve diagnostic accuracy for
EDS and for rare diseases studies.
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