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Abstract

In recent years, with the advent of Artificial Intelligence, the field of optimization has
deeply attracted the attention of the scientific community. In this context, Particle Swarm
Optimization technique has been developed for the training of neural networks. Recently,
Particle Swarm Optimization algorithm has been used also in biology, where the cell has
the role of the agent of the swarm. A promising variant of the algorithm makes use of the
bioinspired concept of neighbohrood, where a cell can interact only with a small number
of cells around her.





Introduction

Particle Swarm Optimization (PSO) is an optimization algorithm belonging to the family
of meta-heuristic. Due to his simplicity and relatively low computational cost, it has been
used in various engineering fields and applications, spanning from weight training of neural
networks, combinatorial optimization problem and travel sales problem.

It has been firstly introduced by Eberhart and Kennedy in 1995 [1]. and the basic idea
is to introduce a set of agents, called particles or swarm. The particles moves in the
mathematical domain (or search space), sharing information each other, looking for the
optimum of the optimization problem.

In classical PSO, every particle is influenced by his personal best position and the best
position of the swarm. In this way, the dynamic of the swarm evolves via communication
and interaction in more promising regions of the search space, trying to avoid regions
characterized by local minima.

Despite the use of PSO algorithm in classical engineering fields, PSO applications in
biology is a recent and promising line of research. In the last years, with the born of
the so called quantitative biology, classical and advanced mathematical instruments have
been used to predict complex and highly non linear phenomena, such as reconstruction of
metabolic networks, structure protein prediction and genetic sequences. In this context,
PSO algorithm has shown great ability to find approximate solutions, with a reasonable
balance between exploration of the search space and exploitation of acquired information.

Moreover, PSO algorithm could be easily hybridized with other classical stochastic opti-
mization techniques, such as genetic algorithms, simulated annealing or clustering, giving
the possibility to adopt a specific procedure for a specific problem. This could be relevant
especially in biological context, where complexity of data and models require flexibility
between accuracy of results and computational constraints.

This work is organized as follow. The first chapter introduce a comprensive description
of the mathematical formulation of the model and of the optimization algorithm. The
second chapter describe an alternative formulation of the problem, based on the concept
of neighbohrood. The third chapter shows simulations of the proposed model, both for
unimodal and multimodal test function, and a critical analysis of the results.
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Chapter 1

The Standard Particle Swarm
Optimization Model

Particle Swarm Optimization (PSO) is an algorithm designed to solve optimization
problems by simulating the collective behavior of a group of simple agents, referred to as
particles. These agents explore a defined search space in pursuit of the optimal solution
to a given objective function. Each particle evaluates its current position and adjusts its
movement based on both its own experience and the collective knowledge of the group.

1.1 Optimization Framework

Let F (x) be a real-valued objective function defined over a d-dimensional domain:

F (x) : X ⊆ Rd → R

The goal is to identify x∗ ∈ X that minimizes F (x), i.e.,

x∗ ∈ arg min
x∈X

F (x) ⊆ Rd.

the domain X represents the search space, and each candidate x ∈ X corresponds to a
possible solution. In other words, a solution x∗ belongs to X∗ if and only if it minimizes
the objective function F (x). For simplicity, we hereafter suppose that the search space X,
which also represents the domain of F (x), is a parallelepiped (box) in the d-dimensional
real space, i.e., X ⊆ Rd, with d ∈ {1, 2, 3}.

1.2 Canonical Version of the PSO

In the canonical version of the PSO, the exploratory swarm is set to be formed by N
point particles. Each agent i = 1, . . . , N is characterized by a given state si(t), being
t ∈ T ⊂ N+ ∪ {0} the discretized time variable (i.e., the number of iterations of the
algorithm): it essentially contains its present position in the search space xi(t) ∈ X, its
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speed vi(t) ∈ Rd, and a memory vector pi(t) ∈ X, that stores the best (i.e., in terms of
optimization/minimization of the objective function) domain location so-far visited by the
particle of interest:

si(t) = (xi(t), vi(t), pi(t)) ∈ X × Rd × X.

The sequence of states acquired over time by the i-th agent gives its history and the
sequence of positions gives its trajectory.

At each iteration of the algorithm, the vector pi(t) is updated with the following rule:

pi(t + 1) =


pi(t), if F (xi(t + 1)) > F (pi(t));

xi(t + 1), if F (xi(t + 1)) ≤ F (pi(t)),
(1.1)

with initial value pi(0) = xi(0), for any particle i = 1, . . . , N . In other words, the actual
best position of a given agent has to be intended as the point(s) of its own trajectory
corresponding to the so-far found minimal value of the cost function, i.e., without any
influence of its groupmate performance/dynamics. In this respect, we have the following
chain of relations:

F (pi(0)) ≥ F (pi(1)) ≥ F (pi(2)) ≥ . . . ≥ F (pi(t)),

for any time step t ∈ T . The above rule (1.1) enforces the exploratory potential of the
population, as the memory vector is updated even if there is not an effective improvement
of the minimization solution.

In classical PSOs, the position update of any given particle is set to depend on (i) its past
movement (inertia/persistence), (ii) its entire history (the cognitive component), (iii) the
information transmitted by other groupmates (the social component), with biases given
by random contributions. In particular, the dynamics of the representative i-th agent are
defined by the following rules, i.e., for any t ∈ T :

xi(t + 1) = xi(t) + vi(t + 1); (1.2a)
vi(t + 1) = mvi(t)ü ûú ý

vin
i (t+1): inertia

+ c1R1(t + 1)(pi(t) − xi(t))ü ûú ý
vcogn

i (t+1): cognitive component

+ c2R2(t + 1)(pg(t) − xi(t))ü ûú ý
vsoc

i (t+1): social component

, (1.2b)

and

xi(t + 1) =


xi(t + 1), if xi(t + 1) ∈ X;

∂X(xi(t + 1)), otherwise,
(1.3)
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where ∂X(xi(t + 1)) is a boundary operator that maps xi(t + 1) /∈ X to a given point
in X. For instance, it may project xi(t + 1) to the nearest point on the border of X or
implement absorbing/reflecting walls. Invisible walls, that allow particles to fly out from
the search space and be no longer considered may be also set to replace (1.3).

The vector pg stores the global best location, in terms of minimization of the objective
function, found so-far by the entire swarm, that is derived by comparison of the best
solutions actually obtained by the component agents, i.e., for any t ∈ T

pg(t) = arg min
i=1,...,N

{F (pi(t))}, (1.4)

starting form
pg(0) = arg min

i=1,...,N
{F (pi(0))} = arg min

i=1,...,N
{F (xi(0))}. (1.5)

Random diagonal matrices R1(t) and R2(t) ∈ Rd×d contain independent entries uniformly
sampled from [0, 1], generated for any agent and iteration:

(R1,i)jj = (R2,i)jj ∼ U([0, 1]), ∀j = 1, . . . , d, t ∈ T, i = 1, . . . , N.

Some remarks:

• In the context of Newtonian mechanics, if we define:

fi(t + 1) := vcogn
i (t + 1) + vsoc

i (t + 1), for any t ∈ T and i = 1, . . . , N,

We can think at fi as the resulting external force acting on the i-th particle, while
the actual change of i-th particle velocity can be written as:

∆vi(t + 1) = vi(t + 1) − vi(t) = fi(t + 1) − (1 − m)vi(t).

In this fashion, the evolution of the system can be seen as a dynamic equilibrium
between forces. The coefficient m can be interpreted as an inertia weight, whose
inclusion has been shown greatly improve the algorithm performance. The quantity
(1 − m) can also be seen as a friction coefficient, where high values of m correspond
to particle moves in a very low viscosity medium. On the other hand, lower values
of m imply a more dissipative system, with an high probability for the system to
stagnate into a local optima. Some authors have also proposed a decrease in the
value of m, both linear [2] and non linear trend [3].

• The parameters c1 and c2 can be interpreted as acceleration coefficients that establish
how much the exploring particles are affected by the cognitive attractor and the
social attractor, respectively. In general, these two coefficients, often referred to as
cognitive and social learning factors, respectively, are set to be equal, constant in
time, and shared between all agents. Also in this case, various alternative have been
introduced: Carlisle and Dozier [4] have proposed to differentiate both values, in
particular setting c1 = 2.8 and c2 = 1.3. The good performance of this choices has
been further confirmed by Schutte and Groenwold [5]. Also time-varying learning
factors have been introduced, For instance, in Ratnaweera et al. [6] they have been
both set to decrease in time, whereas in Yin et al. [7] the authors have proposed to
decrease c1 and simultaneously increase c2.
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• in classical PSO, for what concern the social component, there is a transmission of
information across the entire swam, as each particle knows the best position so-far
found by all its groupmates. Such a version of the method, usually referred to as
global PSO, has been shown to have high converge speed but also a large probability
to stagnate into sub-optimal solutions.
To overcome this issue, local variants of the algorithms have been proposed, i.e.,
characterized by the fact that any particle is set to communicate with only a subset
of groupmates. In this respect, any agent i = 1, . . . , N has its own best solution
vector, that depends on the information it receives by the particles it is actually
communicating with, i.e.,

pg,i(t) = arg min
j∈Ni(t)

{F (pj(t))}, (1.6)

where Ni(t) is the set of agents that at any time t ∈ T share knowledge with i. The
vector pg,i(t) has then to replace its global counterpart pg(t) in the velocity update
rule of the representative agent i, being also to be included in its state, i.e.,

si(t) = (xi(t), vi(t), pi(t), pg,i(t)) ∈ X × Rd × X × X.

In local PSOs, the swarm is indeed not entirely attracted towards the single point
pg: rather, multiple social attractors can emerge thereby increasing differentiation
within the population (and therefore its exploratory potential). As a consequence,
the convergence speed is reduced but the chance of finding global optima is increased.
The neighborhood of the i-th agent, regardless its metric or topological nature, is
defined open when it excludes the particle i itself and closed when i itself is included:
in this second case, we have that

F (pg,i(0)) ≥ F (pg,i(1)) ≥ F (pg,i(2)) ≥ . . . ≥ F (pg,i(t)),

for any i = 1, . . . , N and time step t ∈ T . Social networks topology can be classified
into two main families: static and dynamic ones. In the former, the groups of
communicating particles do not change over time, i.e., Ni(t) = Ni for any agent i
and time t. They are then denoted as symmetric if the relationship between a pair
of particles is same for each one. To give some examples, Eberhart and Kennedy [1]
have used the simple and static ring communication structure, where each individual
is connected to two adjacent members, with a toroidal wrapping. In the latter,
an adaptive time-varying topology connectivity can be performed [8] or it can be
changed over time the number of agents with which any given particle can share
information [9].
On the other hand, the global PSO can be conceptualized as a local PSO where all
agents have a closed neighborhood which includes, at any time, the entire swarm.
In this respect, in [10] it has been suggested that the use of local neighborhoods
seems better for early exploration of the search space whereas a global point of view
helps to increase convergence in the later phases of the optimization process. In this
respect, these authors have proposed to increase over time the number of agents
with which a particle can communicate, until having a fully connected swarm.
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1.3 Motivation of the work

• In classical PSO, the whole population share information with all other particles:
this is not realistic for biological cells, where information is only shared with an
appropriate neighborhood and instantaneous information is forbidden.

This work tries to give an answer to this point with some numerical experiments.
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Chapter 2

A Modified PSO for Biological
Systems

To align PSO with biological principles, we introduce a new formulation suitable for
two-dimensional domains. This model separates the computation of movement direction
from speed, neglect inertia weight and introduces stochastic motion as a distinct influence.

2.1 Reformulated Dynamics

Let F (x) : X ⊆ R2 → R represent the objective function. For each particle, we define the
new velocity as follows:

vi(t + 1) = vi ŵi(t + 1) (2.1)

where vi is a scalar coefficient representing motility (accounting possible physiological
limitations) and ŵi(t+1) is a unit vector. In the following, vectors with ˆ has to be intended
as unit vectors, i.e. âa = a

|a|
, where a ∈ R2. The two quantities have different biophysical

meanings. For instance, cell speed is related to the concept of cell motility, established by
the frequency of retraction/expansion cycles of plasmamembrane (PM) motility structures,
such as filopodia and pseudopodia, which is in turn highly controlled by intracellular
cascades involving specific ions and molecules (e.g., calcium, Rac1, Rho). The direction
of movement of a cell is instead dictated by the spatial organization of its cytoskeletal
filaments. They can either randomly arrange or align in response to external inputs (due,
e.g., to the presence of other individuals or to specific environmental conditions), thereby
establishing a preferred orientation of the individual body and movement.

Moreover, wi(t + 1) is computed as:

wi(t + 1) = α
1
pi(t) − xi(t)

2
+ β

1
pg,i(t) − xi(t)

2
+ γ r̂i(t + 1). (2.2)

The effective velocity of the exploratory agents is fact a trade-off between personal and
global information, with a bias given by random effects, which are now decoupled from
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the other migratory traits. Here:

• pi(t) is the particle’s best-known position defined as before.

• pg,i(t) is the global best position defined for every particle i = 1, . . . , N with respect
to his neighborhood, i.e.:

pg,i(t) = arg min
j∈Ni(t)∪{i}

{ F (xj(t)) }, (2.3)

being Ni(t) the neighborhood of a particle, defined as:

Ni(t) = {i} ∪ { j = 1, . . . , N, j ̸= i : ∥xi(t) − xj(t)∥ ≤ 2dadh }, (2.4)

and dadh being the maximal extension that can be reached by the plasma-membrane
adhesive structure of each of the two interacting cells.

• r̂i(t + 1) represents stochastic term of the velocity defined as:

r̂i(t + 1) =
cos

1
ηi(t + 1)

2
sin

1
ηi(t + 1)

2 (2.5)

where ηi(t+1) is a stochastic variable uniformly distributed over the interval [0, 2π).It
is a noise term that takes into account that biological elements (not only cells but also
bacteria and other organisms) crawl in a random fashion to explore the surrounding
environment. A wide range of sophisticated or application-related laws may be used:
however, we implement simple Brownian (diffusive) movements.

• α, β, γ are non-negative coefficients satisfying α+β+γ = 1. The term with coefficient
α models mesenchymal behavior (individual, self-driven migration). The second term
models epithelial migration, relying on collective behavior and long-range signaling.
The random term captures intrinsic cellular noise.
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Chapter 3

Numerical Settings

To test our numerical implementation, two objective functions will be used: in particular,
the first one is an unimodal function, i.e., a function with only a global minimum (Fig.
3.1):

F1 = x2 + y2

Figure 3.1: Test Function F1

while the second one is a multimodal function, i.e., a function with one global minimum
and several local minima. Among many possible choices, we choose the so called Rastrigin
Function (Fig. 3.2):
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F2 = 20 + x2 + y2 − 10
1

cos(2πx) + cos(2πy)
2
.

Figure 3.2: Test Function F2

Test Function F2 has been plotted in the [−10, 10] × [−10, 10] domain to appreciate local
minima.

Unimodal functions are problems that any optimization technique should be able to solve
with a good degree of resolution: they are typically used to identify good local optimizers
and the best parameter setting of the tested algorithm. On the other hand, multimodal
functions represent challenging issues for optimization algorithm: they may both be unable
to distinguish among the promising regions and settle on a single optimum or be trapped
into one or more optimal solution.

Both of them will be evaluated in the closed domain

X = ([−1000, 1000] × [−1000, 1000]) µm2,

corresponding to a square of 1 mm2, having both global minimum in (0, 0).

3.1 Parameters

Cell population size N is set equal to 100 for any simulation, a good compromise between
the computational cost and the exploratory potential of the population.

We set dadh = 60 µm for the radius of interaction between cells, as observed in many
experimental work. This parameter plays a crucial role since it establish the interactions
between cells and the consequent formation of the neighbohrood.

Moreover, individual speed vi is set equal to 1 µm/sec.
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Boundary conditions are chosen of the Mirror Walls type [11]: every time a particle is
at the boundary of the domain, the sign of the velocity is inverted. In other words, the
particle is reflected in the domain.

Final observation time tf is set equal to 5000 iterations, a value sufficiently high to establish
the algorithm behaviour, i.e., a sufficiently high value to permit to every cell to explore
the whole domain.

Initialization of the position of the particles is established according to the uniform
distribution, while initial velocity of particles is set to zero. Moreover, cells move according
to laws (1.2a), (1.3), (2.1), (2.2).

Coefficients α, β, γ are the same values for every particle, constant in time and chosen s.t.
α + β + γ = 1.

3.2 Results

We choose 15 different combinations of parameters for both the test functions. For any
combination, we perform R = 25 runs, i.e., 25 simulations resulting different because of
the stochastic nature of the algorithm (initial positions of the particle randomly chosen at
every run and a stochastic noise term on the velocity of the particle).

Two quantities are chosen to classify the output, both of them in percentage:

• Success Rate (SR). It measures the fraction of runs (among a total amount of R)
in which the cell population finds the optimal solution of the problem at least with
one of its members:

SR = 1
R

RØ
k=1

Sk,

where Sk is defined as:

Sk = 1
3

min
i=1,...,N

∥pi(tf ) − x∗∥2 < δ2
succ

4
and 1(z) is the indicator function (1 if z is true; 0 if z is false), tf is the final time
and δsucc = 10−3. SR can be seen as a measure of the ability of the algorithm to
achieve the solution with a fixed error.

• Collective Convergence Rate to the exact solution (CCR):

CCR = 1
R

RØ
k=1

CCk,

where CCk is defined as:

CCk = 1
3

max
i=1,...,N

∥pi(tf ) − x∗∥2 < δ2
succ

4
,

i.e., a quantity which establishes if the optimal solution of the problem is found by
the entire group of particles.
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In this respect, four possible scenario can be distinguished:

• S1, when SR = CCR = 0. It is the worst situation, since it implies that the
algorithm has no success in every run and no agent is able to find the solution.

• S2, when 0 < SR ≤ 50%, regardless the value of CCR. In this case, in the SR − %
of the runs, at least one particle has been able to solve the optimization problem.

• S3, when 50% < SR ≤ 100%, regardless the value of CCR. Also in this case, in the
SR − % of the runs, at least one particle has been able to solve the optimization
problem.

• S4, when SR = CCR = 100%. It is the best situation, as the algorithm is able to
reach the minimum point in every run with all the agents.

3.3 Varying model coefficients

In this section, we analyze how coefficients variations influence the behaviour of the
algorithm in terms of solving the optimization problem. We use the simplex graph
for visualization of results, a tetrahedron with every edge equal to one, typical tool in
multidimensional data analysis. Two graphs are shown, one in the 3D space and one in
the γ = 0 plane.

In the following, red points are used for Scenario S1, yellow points for S2, blue points for
S3 and finally green points for S4.
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Test Function

F1 = x2 + y2

Figure 3.3: Simplex of results in the γ = 0 plane

Figure 3.4: 3-D Simplex results
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For all chosen combinations of parameters, scenario S4 is never obtained in any simulation.
Furthermore, high values of γ (i.e. γ ∈ [0.3, 1]) always result in scenario S1, i.e., never
solving the minimization problem.

On the other hand, low values of γ (i.e. γ ∈ [0, 0.2]) and therefore intermediate and high
values of α and β, always let the algorithm solve the optimization problem (Fig. 3.3 and
3.4).

Very good results (i.e. scenario S3) are obtained for values of β ∈ [0.4, 0.8].

In the following, time-lapse sequence of particle dynamics at iteration t = 0, t = 2500 and
t = 5000 respectively are shown, for every possible Scenario (S2 and S3 lead us to very
similar time-lapse for a fixed set of parameters).
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Scenario S1 (α = 1
3, β = 1

3, γ = 1
3)

Figure 3.5: Scenario S1, N = 0

Figure 3.6: Scenario S1, N = 2500

Figure 3.7: Scenario S1, N = 5000
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Scenario S3 (α = 0.4, β = 0.4, γ = 0.2)

Figure 3.8: Scenario S3, N = 0

Figure 3.9: Scenario S3, N = 2500

Figure 3.10: Scenario S3, N = 5000
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Test Function

F2 = 20 + x2 + y2 − 10
1

cos(2πx) + cos(2πy)
2
).

Figure 3.11: 3-D Simplex results

Figure 3.12: Simplex of results in the γ = 0 plane
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As for function F1, scenario S4 is never obtained in any simulation. Furthermore, high
values of γ (i.e. γ ∈ [0.3, 1]) always result in scenario S1, as for function F1.

On the other hand, low values of γ (i.e. γ ∈ [0.1, 0.3]) and therefore intermediate and high
values of α and β, always let the algorithm solve the optimization problem, i.e. Scenario
S2 and S3.

No specific values of α and β are needed to achieve a good result, i.e. SR ≥ 88%.

As for function F1, time-lapse sequence of particle dynamics at iteration t = 0, t = 2500
and t = 5000 respectively are shown, for every possible scenario.
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Scenario S1 (α = 1
3, β = 1

3, γ = 1
3)

Figure 3.13: Scenario S3, N = 0

Figure 3.14: Scenario S3, N = 2500

Figure 3.15: Scenario S3, N = 5000
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Scenario S3 (α = 0.7, β = 0.2, γ = 0.1)

Figure 3.16: Scenario S3, N = 0

Figure 3.17: Scenario S3, N = 2500

Figure 3.18: Scenario S3, N = 5000
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Comparison

For both unimodal and multimodal function and for every combination of the parameters,
the whole population is never able to reach the minimum point at tf (i.e. Scenario S4).

This is probably due to the chosen parameter for the radius of interaction between cells:
60 µm could be a very small value with respect to size of the domain. From a biological
perspective, this means that every cell is not able to create an appropriate neighbohrood
s.t. the information, i.e. the exploration of the whole domain, could be easily shared
between cells. In other words, in this way, our model become too much “local”.

Furthermore, (except for the tern α = 0.4, β = 0.3, γ = 0.3 for F2 Test Function) values
of γ > 0.3 never lead us to Scenario S2 or S3, cause probably the particle “lose herself” in
the domain due to the random noise. This is also probably due to the size of the domain
with respect to the radius of interaction. In fact, if the particle at t = 0 is far away from
the minimum, high weight for the stochastic term of the velocity never let the particle
find an appropriate descent direction.

On the other hand, the quality of the solution relies on the values of α and β. Scenario S3
comes out with a lower percentage for function F2 with respect to function F1. This is
due to the smoothness of function F1 with respect to function F2.

There’s no evident distinction in terms of quality of the solution for the social component
with respect to the cognitive component (Fig 3.4, 3.12): we have good results both for
α ∈ [0.1, 0.8] and for β ∈ [0.1, 0.8].

In confirmation of this, the tern α = 0.4, β = 0.4, γ = 0.2 lead us to SR = 100% and
SR = 88% for functions F1 and F2, respectively.
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3.4 Discussion

As highlighted in [12] and [13], converge property of PSO is always a weak equilibrium
between parameters values, i.e. between exploration and exploitation.

In fact, high values of γ with respect to α and β, could result in a dynamic of Brownian
confined crawling, which often do not lead to convergence. This is well known in biology,
where population of cells show collective phenomena (chemotaxis) only when the determin-
istic part of the signal is higher than the random one. In fact, even if a low value of γ could
be useful for exploration, collective phenomena comes out only when the deterministic
part of the signal is higher than the random noise. Moreover, also in cell migration and
animal flocking has been shown [14] [15] that if social forces are lower than random noise,
this could lead to disordered dynamics.

These considerations confirm the obtained results (scenario S1 and S2) when high values
of γ are chosen.

On the other hand, the deterministic part of the parameters, α and β, help reaching
the minimum, guiding cells in an appropriate descent direction. Our results are also in
agreement with respect to the “self-looping” and “swarm collapse” phenomena [16] : the
former comes out with high values of α, where the particle is inclined to explore alone the
whole domain, while the latter comes out with high values of β, where a set of particle
is inclined to reach a sub-optimal region of the domain. In particular, this is true for
F2 test function. These considerations suggests that a good balance between alpha and
beta values could lead to better results. This is true for our simulations, where the tern
α = 0.4, β = 0.4, γ = 0.2 lead to scenario S3 for F1 test function.

3.5 Future works

Future directions of this modeling approach could include:

• Introduce a persistence term in cell movement instead of the random term: this
could help the cell in following a promising descent direction.

• Introduce differentiation in the population, i.e. splitting population into two families,
leader and follower: the former move only according to their personal best while
the latter follow the leader within an appropriate neighborhood. This correspond to
a biological scenario where leader cells release a chemical factor and follower cells
move by chemotaxis.
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