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Summary

This thesis investigates the index tracking problem through a novel approach
based on the principles of dynamic programming, with a focus on modern deep-
reinforcement learning techniques. Given the increasing popularity of passively
managed funds like exchange-traded funds, finding innovative ways to replicate a
selected financial index efficiently is a significant challenge in today’s computational
finance. This approach comes with its own set of difficulties, primarily related to
data requirements, as the method’s great flexibility comes at the cost of significant
computational time and the large volume of data necessary for training. Never-
theless, building such a model allows for the use of a highly realistic transaction
cost model that is even capable to incorporate taxation: this makes the model
also suitable for private investors, who are usually the most affected by the model
simplifications typically found in the literature.

The work begins by laying out the mathematical formulation of the problem and
transitioning to the dynamic programming approach, where the fixed-point Banach
theorem is used to calculate the correct value of the transition costs. Subsequently,
the reinforcement learning framework is explored, studying the proximal policy
optimization method as a training strategy to enable the actor to learn the correct
policy. Finally, the computational experiments are carried out in both a controlled
synthetic environment, where it is possible to inspect in detail if the actor is learning
the intended policy correctly, and with real-world data.
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Chapter 1

Introduction

The fundamental problem of portfolio management has always been a cornerstone
of quantitative finance. Optimizing a portfolio by balancing expected return against
risk has been a central topic of mathematical interest since the field’s inception in
finance and economics.

Within portfolio management, two distinct philosophical approaches prevail:
active management and passive management. Active management aims to outper-
form a market benchmark by strategically selecting assets. This approach relies
on the manager’s skill in analyzing market information to identify and exploit
perceived inefficiencies or asymmetric information, thereby gaining an “edge” over
the market.

Conversely, passive management does not seek to outperform the market. Instead,
its objective is to replicate the performance of a specific benchmark as closely as
possible. This strategy is theoretically grounded in the Efficient Market Hypothesis,
which states that asset prices already reflect all available information, implying that
consistently achieving excess returns through skill is statistically unlikely. Index
funds are the primary instruments that fall into this latter category.

Index funds have gained a considerable amount of attention and popularity in
recent years. Their primary objective is to replicate the performance of a benchmark
index while minimizing the discrepancy between the fund’s return and that of
the index, a metric commonly known as tracking error. These funds are mainly
structured as mutual funds or Exchange-Traded Funds (ETFs) and to achieve their
goal, two main replication strategies are employed:

o Full Replication: this strategy consists in holding every asset in the bench-
mark index, matching the exact weights of the index composition. It is highly
effective and widely used for indices composed of liquid securities, such as
the S&P 500, and is adopted by major funds like the iShares Core S&P 500
UCITS ETF. The main advantage of this strategy is precision, but it can
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Introduction

become impractical or costly when dealing with less liquid assets or when
frequent rebalancing leads to significant transaction costs.

» Representative Sampling: to mitigate the disadvantages of full replication,
this approach involves holding a carefully selected subset of the assets from
the index that is designed to mimic its overall characteristics (e.g., sector
allocation, risk profile). While this method reduces transaction costs and
simplifies portfolio management, it inherently carries a higher potential for
tracking error. Nevertheless, it is the preferred strategy for very broad or
less liquid indices and is used by some of the largest funds by AUM, such as
the Vanguard Total Stock Market Index Fund (with AUM of more than $1.9
trillion) (Peng et al. 2024).

Due to the dynamic nature of financial markets and periodic changes in the
index composition itself, the portfolio of an index fund cannot remain static. Fund
managers must periodically rebalance the portfolio weights to minimize the tracking
error. While rebalancing could theoretically occur at a high frequency, in practice,
its periodicity is limited by transaction costs, which have a direct negative impact
on returns.

1.1 Literature review

Despite this intrinsically dynamic process, a significant and large portion of the
literature on the Index Tracking Problem, with some notable exceptions such as Yao
et al. (2006), approaches it from a static perspective. This simplification, however,
presents its own set of challenges. Static formulations cannot take into account the
long-term trade-off between transaction costs and the tracking error and moreover,
the vast majority of the literature does not include non-proportional transaction
costs as is often the case in reality or completely ignores transaction costs all
together. The static model inability to directly incorporate complex transaction
costs, combined with the fact that, in a static setting, it is not possible to include
a multi-period analysis, leads to the necessity of artificial cardinality constraints
that restrict or penalize the number of assets in the portfolio beyond a set limit.
Unfortunately this kind of constraints have a significant problem: there is no clear
theoretical reason for imposing them (e.g., a realistic model would not require any
cardinality constraint if the transaction costs are low enough) and they are not
suitable in a multi-period context where a specific subset of assets could be optimal
for a period but not for the next one.
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Introduction

1.2 Problem Description

In this thesis we consider the model introduced by Peng et al. 2024 as it aims to
solve most of the problems that emerge from the static formulation. The objective
of this formulation is to minimize the tracking error of the managed portfolio over
multiple periods of time and, at the same time, include in the model the most
realistic transaction cost possible. By using the dynamic programming paradigm,
it is possible to reformulate the problem: the model is discrete-time with an infinite
horizon, i.e., the index fund is treated as if it must continue existing and performing
indefinitely.

The dynamic formulation of this kind of financial problems is very difficult
to implement especially due to the high dimensionality of the state and decision
variables that, in this case are also continuous-valued. For this reasons the solving
method proposed is Deep Reinforcement Learning (DRL), an extension of rein-
forcement learning that uses neural networks to learn and model the value function
and/or the policy distribution. In our setting the RL agent dynamically controls
the weight of each asset in the portfolio according to the state variable observed.
The RL method is particularly well-suited for adapting to major structural shifts
in financial markets, such as the COVID-19 crisis. In fact, the framework enables
the agent to adapt its policy in response to market changes, utilizing all relevant
information, including trading volumes and treasury bill rates, which can be fully
exploited thanks to this approach.

A key challenge of this approach is tied to the financial setting in which we find
ourselves: usually RL problems are used in situations where a very large amount
of data is available to train the algorithm. Since this is not the case, the thesis
adopts the novel approach proposed by Peng et al. (2024), which relies on a rolling
window to increase the apparent size of the available data for training and that
incorporates the value function at the terminal state of each training episode to
implement the infinite horizon.

The conceptual framework presented in this section establishes the key parts of
the dynamic index tracking problem, including the handling of transaction costs and
the management of portfolio weights via a DRL agent. In the following chapters,
these ideas will be formalized using rigorous mathematical notation, defining the
state variables, decision rules, portfolio dynamics, and objective function. This
formalization lays the foundation for the implementation of the reinforcement
learning methodology described later in the thesis.

13



Chapter 2
Index Tracking Problem

The primary objective of this section is to provide a comprehensive and rigorous
mathematical description of the index tracking problem as it is approached in
this thesis. We will systematically define all the key components of the model,
including the state variables, the agent’s available actions, the dynamics of the
market environment, and the objective function to be optimized. A clear and
unambiguous formulation is essential, as it lays the foundation for the dynamic
programming and reinforcement learning methodologies developed in the following
chapters.

To ensure clarity and maintain consistency with the relevant literature, a
deliberate choice has been made regarding the notation. This thesis will adopt the
notation conventions in the work of Peng et al. 2024. This approach facilitates a
direct comparison of our contributions with this foundational study.

2.1 Mathematical notation

In this section is discussed the mathematical notation used to describe the index
tracking problem. The fund manager wants to track the performance of a given
index using N assets. At the start of the period ¢ he will choose the new value
for the weights w; to maintain during a period of length M days so that he can
dynamically adapt to the market conditions. During the M days of that period ¢
the manager can choose with which frequency to rebalance the portfolio in order to
maintain the actual portfolio weights w; as close as possible to the decision taken
at the start of the period ¢. In order to keep the notation less complicated the
following formulation will assume that the rebalancing will happen every day in
order to correct the discrepancies due to the asset’s price movements. Each trading
day inside a time period [¢,t 4 1] is indexed as ¢ + ﬁ, k=0,..,M —1. For every
asset ¢ = 1, ..., N, the price of the stock is denoted by Pigy k-
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To leave no ambiguity, the minus sign — after the time index is used to indicate
whether the value of what is indexed is before or after the rebalancing has happened.
Indeed two different value can happen in the same day: for example w; (,y_ is the
portfolio weight of the asset ¢ at time ¢ before the new weight is chosen, and w;; in
the weight of the asset 7 at time ¢ after the new weight is chosen. Likewise, using
the same notation, we will refer to V(t bEy and V(t L kyas the value of the whole
portfolio before and after the rebalancing happens and the variable z; & will
represent the number of share of asset ¢ at a specific time.

Finally the rZrP . and 7!, are the return of the tracking portfolio and the Index

) g t+ar
respectively and they are as

V k+1 I k+1
TP 5 R)- I s 91
T, k+1 — T, k+1 — —/———. ( . )
[, Vi oy 57 I, &
(t++7)— +3r

This definition follows the formulation in Chiam et al. 2013 and it is important
to note that the value of the tracking portfolio return at time ¢ + k—]\t[l is only
influenced by the transaction cost observed at time t + % because it includes the
value of the portfolio before the rebalancing takes place; this is very important in
shaping in the correct way the reward for the RL agent.

2.2 Return Tracking Error Formulation

This thesis adopts the Return Tracking Error (RTE) as its performance metric.
This metric measures the average daily difference between the returns of the tracking
portfolio and those of the index and is defined as

Q=

1 M TP I 1
q —
RTE(tl,tz) - m kz_:l rﬁ1+ﬁ — rt1+ﬁ (22)

where t1,t, € {t + % :t=0,1,2,...,k =0,1,.... M — 1} and t; < ty and the
parameter ¢ is usually 1 or 2.

No single metric is perfect for every situation: as noted in Boyde 2021, the
usefulness of this particular metric heavily depends on the investors’ investment
horizon (e.g. a value based metric is more suitable for an investor with a very long
horizon while an short investment horizon prefers that the fund movements follows
as close as possible the daily oscillations). While this thesis focuses on the return
tracking error, the proposed methodologies are flexible and can be easily adapted
for other metrics with little to any modification.

Chosen the selected metric, the found manager problem formulation is the
following:
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{wtefrtriltiilo,l, [Z ’thTeq i+l ] (2.3)
st w >0,0=1, ...,N,Zwu =1,t=0,1,.., (2.4)
Vr(tJrﬁ)i—CI%% :‘/;+k ,t—O,l,...,k’ZO,...,M—l, (25)
TipykDipr kb = Zt+};&‘/;+]\[ =1,.,.N,t=01,...k=0,..,.M—1, (2.6)
Wiy ke = wi,i=1,.,N,t=0,1,...k=0,...,M — 1, (2.7)

where in the Equation 2.3 the objective function is the expected value of the
Return Tracking Error.
To precisely analyze the model, the role of every constrain is analyzed:

o constraints 2.4 ensure that all weights w; are non-negative (meaning no short
positions are allowed) and that their sum equals 1 at every time period (i.e.
the portfolio is fully invested at all times with no cash position);

o constraints 2.6 links the number of shares held for each asset and their
respective prices to the total value of the portfolio at each point in time;

e constraints 2.7 implements the manager’s decision on the target weights made
at the start of each period t. In this base formulation, the target allocation is
reapplied daily to compensate for price fluctuations. However, the model in
this thesis introduces flexibility, allowing the manager to choose the desired
rebalancing frequency within each period [ts, t541] allowing for a more precise
analysis of the impact of transaction costs;

o constraints 2.5 formalizes the impact of transaction costs, connecting the
portfolio’s value before and after the rebalancing procedure. The quantity
ok quantifies the total cost incurred during this operation. In practice,
transaction costs are typically non-linear functions that depend on multiple
factors, including traded volumes, and their precise structure varies according
to the financial intermediary. Given this complexity, this thesis implements
and analyzes two distinct models for the cost function:

1. Linear Model: this includes a fixed cost and a component proportional
to the traded value. Such a formulation is widely adopted in the academic
literature due to its simplicity and analytical tractability; in this thesis
this model will often be used just as a time saving measure being that
the computational power available was limited;
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2. Realistic Non-Linear Model: this function is designed to provide a
more faithful representation of the costs an investor actually incurs. This
model incorporates key features such as minimum commission fees and
capital gains taxation. It is particularly relevant when evaluating the
strategy’s effectiveness from the perspective of a private investor that
cannot bear the risk of disregarding a precise transaction cost.

The complete details on how the transaction costs are computed will be
explained in Section 3.1 using the Banach Fixed Point theorem to solve the
constraint efficiently.

17



Chapter 3

Dynamic Formulation:
Reinforcement Learning

In this chapter, the thesis follows the approach used in Peng et al. 2024 applying
reinforcement learning to solve the dynamic formulation of the Problem 2.3.
Firstly, we analyze the conditions under which it is possible to solve the transaction
cost equations; secondly, we focus on using the dynamic programming paradigm to
create a suitable environment on which to train the RL agent.

3.1 Transaction costs: Fixed Point Iteration

In this section, we analyze the two transaction cost functions used in this work.
After describing both, we focus on how to apply Banach’s theorem to solve the
equations. The precise description of the algorithm is done in Appendix A.

3.1.1 Linear cost function

The simple linear cost function used is

N
Ct+% :a—i-;ﬁz |aji,(t+ﬁ)f _mi,t+%|> (31)

where « is a fixed cost for every transaction that occurs, and f3; is the proportional
cost linked to the number of shares of asset ¢ that are bought or sold during the
transaction. For simplicity, we assume 3; = [ for every asset.

It is easy to show that the number of shares can be rewritten sing Equation 2.6
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as

Vit &
xm_‘_% :w’i,t-i-% ]VI, (32)

Pipy ko

Vi sk
7(t+ﬁ)_
Ti(t+Ly)— = Wipy ko : (3.3)
k) k) pZ’t_‘_ﬁ
Replacing them into Equation 3.1, we obtain
Cet ko —@+5Z Vidtr by = Wipp ke Vigy k| (3.4)
i=1 Pi t—i—M

At time ¢ + £, when rebalancing occurs, Vi Ey o Dy and w, , Lk oare all

known variables 1eav1ng Vi k as the only unknown Therefore we can rewrite
the constraint 2.5 as:

Viep ey =i (Vg ) = Ve (3.5)

M

As shown in Peng et al. 2024, the previous rebalancing equation, thanks to
the contraction property, has a unique solution V,, & Lk . This allows us to apply the
Banach Fixed Point Iteration algorithm to exactly determine the next portfolio
value and then calculate the exact number of shares held in the portfolio after
rebalancing.

3.1.2 Realistic non-linear cost function

To fully exploit the approach of this thesis, a more sophisticated transaction cost
function it is included. The base point of this new cost function formulation is
widely adopted in most existing studies such as Canakgoz and Beasley 2009, Strub
and Baumann 2018, Benidis et al. 2018, and Peng et al. 2024. The transaction
cost at time ¢ + % is specified as:

N

c?isz = E min {maX {511 x
M )
1

‘}a§2i Vi

ky ™ ‘/i,t—&-%

b (3.6)

i) T Tigr k|

In words, the cost per share of asset i is &;;, with a minimum fee of &3; and a
maximum expense limited to &; of the traded value in that asset. In this work, we
set &1; = 0.005 USD, &; = 0.5%, and &;; = 1.00 USD. This values are intrinsic of

the broker chosen buy the fund manager and we chose to adopt this values as they
are used by one of the largest brokerage firms in the US.
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To further enhance the accuracy of our representation of transaction costs, we
include the FINRA and SEC fees, which apply only to sold stocks during the
transaction:

N
SECH% =N Zmax {Vi,(wﬁ)f - V;L,t+ﬁ7 0} ) (3.7)
=1
N
FINRA,, & = vy Y max {z, ;) — 2,50}, (3.8)

=1

with 14 =2.29-107% and v, = 1.30 - 10~

However, for a private investor, this is still not enough, since each time the
portfolio is rebalanced, the state tax on capital gains must also be computed and
taken into account and in this thesis, we include this computation. For reference, we
adopt the Italian capital gains taxation, which is fixed at 26%, with the additional
feature that capital losses (CapL) can be carried forward for four years to offset
future capital gains, providing a tax break on significant losses. To compute the
value of the capital gain (Cap(G), it is necessary to store information about the price
at which the asset was purchased. Being one of the most popular methods used by
the Italian banking system, we chose to adopt the average buying price (AvgP;)
method instead of the alternative queue-based method. Implementing a FIFO
system would have introduced additional computational overhead, unnecessarily
slowing down the learning process. The taxation is calculated as follows:

N
CapGyy 5 = 0.26 - max {Z (:Ei7(t+%)7 — xiH%)J“ : (E‘,H% — AvgP,)* — CapL, O} :

i=0

(3.9)

where (-)* denotes the positive part, and CapL represents the available capital

losses that the portfolio has accumulated. The amount of capital losses used to
provide a tax break is then removed from memory.

In the same way we did with the simpler version in Section 3.1.1 we can see that
the complete transaction fee formula:

Crot = C?f% +SEC, & +FINRA,, . + CapGy, 1 (3.10)
can all be written as a function of V, E and re-conducted to the 3.5 were it is
possible to solve it using the algorithm 1.

The importance of using such a realistic function is that the model can fully
understand the implications of having a large number of asset to manage and can
consciously chose if the best policy is to reduce to a minimum the number of assets,
adopt a full replication strategy or something in between.
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Unfortunately, given the limited amount of computational power at our disposal,
during testing we are not able to always deploy this version of the transaction
cost function in favor of the simpler linear one. Nevertheless the capability of this
method to sustain such a complex function should not be underestimated.

3.2 Dynamic Formulation and PPO

In this section we transform the formulation 2.3 to adapt it to the Reinforcement
Learning approach using the dynamic programming paradigm. The goal is to
rewrite the problem as a series of smaller recursive subproblems that are easier
to solve. The DP principle is not a universal one, but it can be applied when the
structure of the problem is Markovian: this is exactly the case in our problem,
where the manager uses the state variable, representing the system current state,
to determine the action to be taken. Since this is a discrete-time infinite-horizon
formulation, Bellman’s Equation allows us to write

V(s;) = max {—B -RTE[t,t + 1) + E [y - V(st+1)]} , (3.11)
at€A: st+1~P(-|s¢,at)

where V(s;) is the value function of the state s;; A; is the set of all possible
actions that the agent can take at time ¢.

The value 3 - RTE[t,t 4+ 1)? is the reward given to the agent as a consequence
of choosing the action a;, and f is just a rescaling factor: this means that the
only transaction cost impact is due to the action taken at time ¢, not ¢t + 1, and
this is fundamental in creating the correct reward landscape for the agent to learn
properly. This factor can be shown as a function of the current state, the current
action and the future state as such:

re = R8¢, ag, St11) = — - RTE?t,tH) (3.12)

where the minus sign is necessary to use this metric inside a maximization
formulation.

Unfortunately, this problem cannot be solved using conventional techniques
in RL such as Q-Learning because of two major difficulties: the index tracking
problem has a high-dimensional continuous state space and also a high-dimensional
and continuous action space so for this reason it is not feasible to discretize them.

In the RL context, the agent observes at time ¢ the state of the environment
s; and then chooses an action a; that follows a policy distribution my(-, s;), where
with # we indicate all the parameters of the said distribution.

The approach that will be used to solve this problem is the same proposed in
Peng et al. 2024, which is the Proximal Policy Optimization algorithm (PPO)
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proposed by Schulman, Wolski, et al. 2017. This method is an extension of the Trust
Region Policy Optimization algorithm (TRPO) proposed by Schulman, Levine,
et al. 2015. PPO solves a variant of the problem addressed by TRPO by introducing
a constraint on the probability ratio between the probability distribution of the old
policy and the new one. This means in practice that when the algorithm updates
the parameters of the policy 6,4, it solves the following optimization problem:

max L (9) = (3.13)
E lmin {MM‘S)AG (s,a),clip (ﬂW!S), 1—¢1+ e) Ay ld(s,a)H
S™NPOGq ATO01q T0,14 (a‘ 3) ° TO01a (a ’ S) ’

This equation looks complex but it has the simple goal of updating the agent
policy parameter 6 in a stable way; the overall objective is to find the new parameter
f that maximizes the objective function, which is an approximation of the RL
objective function.

Ay, (s,a) is the Advantage Function that estimates how much better it is
to take action a in state s rather than following the average action proposed by
mp: this is formally expressed by Ag(s,a) = Qo(s,a) — Vy(s), where Qy(s,a) is
the state-action function that evaluates the state s with action a and after that
continues with policy 7y, while Vy(s) is the value function of policy mg. For this
reason a positive advantage means that action a is an improvement over what the
policy would have chosen.

The ratio between my(a|s) and 7y, (a|s) measures how likely action a is in the
new policy distribution 7y compared to the old one 7y ; this means that if the
ratio is > 1, the new policy is more likely to choose that action over the old one.

The real innovation of the PPO algorithm is the presence of the minimum
and the clip(-, min, mazx) function. The clip function clamps all the ratio values
between a min and a max: this makes it very difficult to choose a new 6 that
drastically changes the policy, because the ratio will remain stable for every change
over a certain threshold, making the improvement step during the update much
more conservative; this happens also in the case of counterproductive actions where
the advantage is negative, preventing an over-correction in the opposite direction.

We define ¢ as the set of parameters that define the value function, and its
update is managed by the problem:

mdin Vioss(9) 1= _ E - [Vy(s) = Vi, (5)] (3.14)

S™P061q

where V,_,(s) is estimated from the sample path of rewards. Being the policy
stochastic, it is very important to include in the objective a component related to

22



Dynamic Formulation: Reinforcement Learning

the level of exploration in the distribution; for this reason, before the update, the
entropy loss is computed as:

U@B) =~ _E [Entropy(m(-,s)) (3.15)
S™P0o1a
In conclusion, the PPO algorithm updates the value of the parameters 6, ¢ using
multiple steps of stochastic gradient descent of the following problem:

min £(0, ¢) := =L (0) 4 e1 - Vioss(0) + €2 - U(0) (3.16)

)

where e; and ey are positive coefficients.

3.3 State Description

One of the most important advantages of using such a flexible model-free approach
is that we can fully utilize the market information that are much more rich then
asset prices and returns alone. For this reason, in this work, in addition to all the
prices information at time ¢ for each asset and the value of the index, the agent
receives as state variables also the VIX (Ticker symbol for the popular index that
measures the expectation of volatility based on S&P 500 index options), T-Bill
rates (interest rates of US treasury bills) and the trading volumes for each asset
(some data example in Figure 3.1).

400 500 600 700 800 o 100 200 300 400 500
Days

Trading Volumes TBill Rates
25

E | ‘ 3
]| ‘ \ ‘l \ ‘ | B .
: Mh«m,&hm.w é" mw;x

Figure 3.1: State variable information
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To enable the model to learn about the cross-sectional correlations, in the state
variable all of this data is given in a time window of length n, days. This means
that at time ¢, since the time period [¢,t + 1] has M trading days, in the state
variable the information from [t — %§%,¢] is included.

Differently from what was done in Peng et al. 2024, in this thesis the state
variable includes the current weights of the portfolio for each asset before the
rebalancing happens. Indeed, we want the agent to choose what is the best policy
also given the current condition of the portfolio: there is no clear theoretical reason
why the best policy would not depend on the current status. For example, if two
distinct assets are very similar in their ability to track the index, with the first
one being the best and the second still very good but objectively slightly worse, to
decide the best course of action the agent should consider whether the second asset
is already present in the portfolio before advising to shift everything to the first
one. Transaction costs should have a very significant impact on this decision, and
not considering the current portfolio allocation could potentially ruin the desired
tracking performance.

3.4 Policy and Value function: Network Design

As already discussed, the state space and the action space state are both continuous
and high-dimensional, and for this reason are implemented by 2 different Neural
Networks. Both network designs are a slight modification of the ones used in Peng
et al. 2024 and are discussed in the following section.

3.4.1 Policy Distributions

The first stochastic policy used in this thesis is modeled by a truncated diagonal
Gaussian distribution (later in Chapter 4 we will discuss some modification
that were tried in order to improve the algorithm performance). The truncated
diagonal Gaussian distribution is created by firstly combining a diagonal Gaussian
distribution with pg(s;) as the mean vector and oy(s;) as the standard deviation
vector; after sampling the vector z; ~ Normal(ug(s;), og(s;)), the sample is clipped
obtaining:

a; = clip(z, —b,b) with b>0 (3.17)

where the clip function is the same used in Equation 3.13. The clipping is
necessary to help the numerical stability of the learning process.

Both functions, ps(s;) and oy(s;), are N-dimensional and are modeled by two
separate Neural Networks (NNs) with the same architecture. The networks receive
as input the state vector s;, which has been flattened to one dimension, and it
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passes through a Batch Normalization layer that helps the network amplify the
differences between different states. Numerous tests without the Normalization
layer consistently showed that the agent learned a stationary policy, meaning
that each input to the network was treated as it was the same exact input. After
normalization, the network design consists of a Linear layer, five hidden layers which
contain 128 nodes and tanh activation function, and a Linear output layer with
N nodes for the mean NN, while the standard deviation NN uses an exponential
activation function with N nodes. To improve the stability of the efficiency of the
algorithm during training, the Batch Normalization layer is only active while the
agent is learning and locked afterwards.

Still, the RL agent cannot directly use a sample from this distribution to act on
the environment. The action a; has N dimension but its sum is not 1 and it could
have negative components so it is impossible to use them as portfolio weights. To
transform a; in w; we use the softmax function ¢ : R — R:

et EON,t
wy = glay) = ( & o ) (3.18)

Zj:l et ! Z;V::l et

so that w; now satisfies constraints 2.4 in the return tracking problem 2.3

3.4.2 Value Function

Similarly to the policy, the value function V4(s;) is modeled by a NN which consists
in a Batch Normalization layer, Linear input layer, four hidden layers with 128
nodes and tanh activation function and a Linear output layer with one node.

3.5 Training Scheme

This thesis adopts the training methodology proposed in Peng et al. 2024, which
addresses the problem of a limited dataset, that is arguably one of the most
challenging issues to overcome in the application of RL to the financial domain.
Typically, RL is well suited to settings in which a virtually infinite amount of data or
experiments is available for training the agent: common examples include simulated
environments and games. In the financial context, however, this assumption does
not hold: the task is complicated by the fact that the agent has access to only a
single sample path from the prices distribution, and the overall quantity of available
data is severely restricted. For this reason, a novel technique is required to enable
effective learning.

The core idea underlying this new procedure is to artificially make the dataset
bigger by treating each day as a potential starting point. For instance, if the
algorithm is trained on weekly time periods, instead of restricting the intervals
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to Monday—Friday, a random day of the week is selected as the starting point of
the first period in each training episode: in this way, the amount of data available
becomes virtually five times greater (even bigger for larger time periods).

Firstly the dataset is spit into two parts: a Training Set and a Test Set. This
two sets are kept completely separated so that no data leakage is possible during
training.

To train the agent using the PPO algorithm, in each epoch, episodes are collected
using the current version of the parameters 6, ¢ to sample trajectories using the
policy my. During the episode of training each step is saved inside a buffer:

{(St, Qy, St+1,ﬂgold(8t’at), 0901d<8t>)’t = to,to + 1, } (319)

After each episode, at every element of the buffer is added the computation of
A, and 7 that are the advantage estimator and the cumulative discounted reward
respectively. This values are computed using the procedure described in Peng et al.
2024 that uses the General Advantage Estimator (GAE) (Schulman, Moritz, et al.
2015). To correctly calculate the discounted rewards it is important to note that,
being an infinite horizon problem, the value of the terminal state s;, of the episode
(n in the length of the episode) is not fixed as it happens in most RL applications;
instead the current approximation of the value function 7, = V,_,(s,) is used.
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Chapter 4
Performance Optimization

This thesis proposes also three different refinements to better improve the algorithm
efficiency and compare them to the base model most similar to the one used in
Peng et al. 2024

4.1 Benchmark Deviation Approach

The idea behind this modification is that, in some way, the portfolio manager
always has a rough estimate of what the portfolio weights will be. In this case, it
is plausible that the portfolio weights will be similar to those used in computing
the S&P 500 index. Instead of relying on the PyTorch implementation of the
initialization procedure of the NN, we use the information available at the start of
training, namely the market capitalization MarketCap, of each asset, to determine
a starting point wP**hmark from which the agent can begin learning:

pbenchmark _ MarketCapi (4.1)

‘ ., MarketCap;,

To apply this baseline to the decision policy, the role of the policy NN is modified.
To obtain wy, the action a; is sampled as before, and then added to the logit of the
benchmark before applying the softmax function. Specifically:

w, = softmax(logit (wP ™M™k 1 g,). (4.2)

During testing, this method will be evaluated to determine whether it offers a
tangible advantage in terms of performance and efficiency. Furthermore this is not
the only possible benchmark; this approach easily adapts for any preferred method
the manager wants to implement depending on the index that the portfolio aims
to track.
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4.2 Tanh-squashed (Gaussian

The truncated Gaussian approach is very simple to implement but it comes with
its complications. To correctly compute the value of the objective function 3.13
we need to be able to calculate exactly the value of my(ay, s¢). It is not possible to
directly use the probability density of the Gaussian distribution N (ug(s:), oa(st))
because the clipping function concentrates all the probability density of the tails
at the boundaries —b, b. For this reason, each time a new action is sampled, the
probability calculation needs to be adjusted, thereby making the computation more
expensive. Moreover, this makes the probability distribution not continuous and,
at the boundaries, can cause problem with the gradient computation during the
update phase.

For this reason, we tested a new approach. Instead of clipping z;, we use the
tanh function to restrict its value to the interval between -1 and 1. Formally this
translates to:

a™" = p . tanh(z) with 2t ~ N(po(st), 00(st)), (4.3)

where in this case b is a rescaling factor to amplify the network decision. The
main advantage of this approach is that the tanh(-) function is bijective between
R — (—1,1), differentiable, and its Jacobian never vanishes inside (—1,1): for this
reason tanh satisfies the strong conditions of the Change of Variables Theorem
and the transformed random variable distribution remains absolutely continuous.

Using this transformation instead of the truncated diagonal Gaussian distribu-
tion, offers two main advantages: the computation needed to correct the probability
density calculation is much faster to compute and, being continuous and differ-
entiable, the gradients are much more likely to be stable and not collapse to
Zero.

4.3 PCA for covariance directions

The other issue we propose to tackle is a limit of the diagonal Gaussian distribution:
every component is completely independent of the others. The main reason for
using this simplification is that, in this way, the agent only needs to learn to predict
N standard deviations, one for each asset. Making the NN learn the complete
covariance matrix would dramatically increase the number of parameters to predict
and would also make the whole network design larger: for this reason, this is not a
feasible approach.

Even though this approach is not possible, it is simple to imagine many situations
in which making the agent explore the action space where all the assets are treated
as independent is not optimal for training performance, wasting time experimenting
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with assets that have historically very similar price movements. For this reason, in
this thesis we test a new procedure:

1. the sample variance-covariance matrix S is precomputed before the training
using all the historical returns of each asset available in the training data.

2. the eigenvector decomposition is computed to find all the covariance directions,
as in PCA:
Y = QAQT (4.4)

where () is a N x N orthogonal matrix that contains all the principal component
directions that we will use to construct the covariance matrix ¥y (s;) for the
Gaussian distribution. The diagonal matrix A contains all the eigenvalues
that represent how much variance is explained by the corresponding direction.

3. the standard deviation FNN is repurposed from predicting the value of oy(s;)
to predict the best N eigenvalues to use, diag(A)g(s;).

4. when the action needs to be sampled from the policy distribution, we now use
the Gaussian distribution as follows:

a™™™ = b . tanh(z,) with ze ~ N(pg(se), Xo(sy)), (4.5)
where Yg(s;) = QAg(s;)QT.

This new method allows the agent to explore the action space in a more
sophisticated way, fully exploiting the historical knowledge of the correlation
between assets without making the task more computationally difficult: in fact in
both methods the NN has to predict N parameters for the distribution shape.

Using this approach is only possible if, after sampling from the distribution,
the tanh-squashed Gaussian transformation is used (Section 4.2) instead of the
truncated distribution discussed in Section 3.4.1: this is because it is not possible
to analytically compute the necessary probability correction for the distribution if
the starting Gaussian is not diagonal. If instead we use the tanh transformation,
the probability correction computation done by the Jacobian remains the same.
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Chapter 5

Results

In this chapter we analyze the algorithm performance in two different sections:
firstly, to verify if the RL agent is capable of adapting and learn in simple scenarios,
we test the algorithm with a synthetic dataset where it’s possible to understand if
the learned policy is effectively the optimal one. Secondly, once the performance
has been validated, the RL agent is trained on a real market dataset.

The in-sample and out-of-sample performance are presented using a figure each
containing four graphs. All of them record the agent decision and the resulting
outcomes after the training. For the Normalized Value, Rolling Return Tracking
Error and the Transaction Costs graphs the gray lines show the agent’s progression
during training. To correctly read the Normalized Value graph (i.e., the graph in
the top left) it is important to remember that, being the performance metric the
Return Tracking Error (RTE), for the tracking to be good, the most important
thing that the portfolio has to replicate is the shape of the index trend and not
how closely the portfolio value and the index value stay together.

During testing, every setting is evaluated using four different the versions of the
algorithm:

« V1: is the base version of the algorithm (i.e., the most similar to the one
proposed by Peng et al. 2024), the action is sampled using the truncated
diagonal Gaussian described in Section 3.4.1;

e V2: this version implements the benchmark explained in Section 4.1 as the
only modification to V1.

e V3: in this version, the policy distribution is changed as explained in Section
4.2 using a tanh-squashed Gaussian distribution;

o V4: extension of V3 that implements the PCA direction as described in
Section 4.3.
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During the training phase, the agent relies on the stochastic policy to sufficiently
explore the action space and avoid getting stuck in local minima. This exploration
is crucial for learning; however, when evaluating the policy, exploration is not
required and may even lead to better or worse performance purely by chance. For
this reason, to compute the RTE we employ the deterministic version of the policy.
This is done by taking the distribution’s mean as the sample and then using it as
before. For example, for version V1 this means that the action taken at time ¢ is

wy = softmax (clip(ug(st), —b, b)), (5.1)

where the output of the policy NN is pug(s;),that is the mean function used
for the Gaussian distribution of Equation 3.17. All the experiments presented in
this chapter were executed on a personal laptop (with 24 GB of RAM, 10 CPU
cores and running macOs 15). For this reason, it was not possible to run more
computationally demanding simulations.

5.1 Synthetic Dataset

In this section we discuss the algorithm results trained using a synthetically
produced dataset. This type of testing environment is fundamental when discussing
such complex learning algorithms: before deploying this method to real-world data,
is critical to validate it under controlled conditions. Using an artificial dataset is a
very easy way to verify if, for example, the RL agent is able to learn a policy that
we can determine beforehand.

5.1.1 Data Generation

The data used to validate the algorithm has been procedurally generated. Each
asset price p;; is derived from the following stochastic process

Pijpypbtd = Digq ke T4 bl (5.2)

where 7, S} is the daily return of the asset calculated as

Tigqktl = XD ((u +€)-0t+0-Vot- zﬂ%) : (5.3)

)

where:

e ¢; is an intrinsic deviation of asset ¢ form the general market percentage drift
K
o 0t = ﬁ is the time step (252 are the usual trading days in a year);
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o o is the market volatility;

o 7.

iipktl 1S a random variable that comes form a standard normal distribution.
? M

This model is the classic Geometric Brownian Motion stochastic process.

One important characteristic of this choice is that there is no correlation between
asset prices and returns, and the each asset has constant drift during the entirety of
the dataset. Critically, the intrinsic drift is the only information that the agent can
infer from the synthetic data. All the other information used in the state variable
described in Section 3.3 is randomly generated without any financial model and is
not correlated with the asset prices. This is done to keep things simple and observe
if and how well the RL agent is able to understand that much of the information is
not relevant for the solution.

To create a dataset in which the best policy is known, the index values are
created using the already generated asset prices. A vector of composing weights
Wrndez 15 chosen and then the index value is calculated as

_ T
Ii,t—i—ﬁ = Windex * Py k- (5‘4)

In this way, using a very simple set of weights, we expect that the agent policy
will coincide as much as possible with wr,4., after training.

5.1.2 Testing

To test the algorithm, using the same synthetic dataset of 2520 simulated days,
three different testing settings T1, T2, and T3 are built using different types of
environment’s parameters that are explicated in the following table:

Parameter T1 T2 T3

N 10 10 50
Windex [170707 ] [%7 %7 %707 ] [17 0707 }

M ) ) 21

N 15 21 126

Table 5.1: Synthetic testing experiments

These experiments aim to test the algorithm in three different aspects. T1
mainly tests the agent’s ability to isolate the first asset from the other one since
the index is entirely composed of it. The agent operates in periods of 5 days,
corresponding to a trading week, using three weeks of previous data as the state
variable. T2 setting tests if the agent is able to choose multiple assets in its
assessment of the policy. Differently than before, the state variable includes more
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information using a month of data: this tests how well the agents can recognize a
pattern in price movements. The T3 setting is a stress-test of the various algorithm
when the dimensionality of the problem is increased: both the number of assets
and the look-back windows are significantly larger.

These three settings are tested using all the different versions of the proposed
methods, to validate the effectiveness of each one. To see if the benchmark has any
effect in version V2, the benchmark weights are set equal to the wanted policy (this
is obviously “cheating” but can be useful to verify that the modification has the
intended effect), so it is important to keep this in mind while reading V2 results.

Params Value Description

Vo 1.0e10 Initial portfolio value
W 0— % Starting portfolio weights
q 2 Power in Equation 2.2

P-Ir 1.0e—4 Learning Rate of the policy NN
V-1r 1.0e—4 Learning Rate of the value function NN
H-dim 64 Dimension of each hidden layer in every NN

b 5 Parameter of Equations 3.17 and 4.3

€ 0.2 Parameter of Equation 3.13

6] 500 Parameter of Equation 3.12

e1 0.5 Coeflicient of the value loss in Equation 3.16
€s 0.05  Coefficient of the entropy loss in Equation 3.16
H 320 Number of training epochs

N 32 Mini-batch size in RL training

le 20 Episode maximum length

Ne 4 Number of episodes per epoch

k 4 Number of CPU cores for parallel computing

Table 5.2: RL parameters for synthetic dataset

Each one of the versions is tested using the same training parameters listed in
Table 5.2, so that every comparison is as fair as possible. The used learning rates
are set voluntarily very high in order to speed up the validation phase, given the
fact that the synthetic data is much more simpler to process in comparison with
Real Market data.

The results shown in Table 5.3 are produced, by testing the performance of each
agent after training, by sampling 10 successive periods t of M trading days from
the training dataset for the in-sample RTE and from the testing dataset for the
out-of-sample RTE.

The proposed approach behaves as intended and capable of achieving a very

33



Results

In-Sample RTE

Scenario Vi V2 V3 V4
T1 4.3010e—8 | 4.3010e—8 | 4.3010e—8 | 4.3010e—8
T2 3.2496e—6 | 3.2458¢—6 | 3.2496e—6 | 3.2599¢—6
T3 6.8409e—4 | 4.1103e—8 | 8.7087e—3 | 8.6914e—3

Out-of-Sample RTE

Vi1 V2 V3 V4
T1 3.6232e—8 | 3.6232e—8 | 3.6232¢—8 | 3.6232¢—8
T2 6.3221e—5 | 6.3189e¢—5 | 6.3221e—5 | 6.3248¢—5
T3 2.9649e—5 | 3.9835e—8 | 9.0628¢—3 | 8.1822¢—3

Table 5.3: Synthetic experiments training results

good performance in the majority of the conducted tests. For T1 and T2 every
version of the algorithms that we tested took approximately 3 minutes to complete
the training and testing; T3 was a lot more computationally heavy and took an
average of 7 minutes to complete, with version V1 being the quickest at 6 minutes
and 28 seconds.

Performance Portfolio vs Index Top Portfoglio Composition(10 + others)

=y
o

—e— Index
—— Last Iteration

/J

0 10 20 30 40 50
Time

1.0075 4
. Asset 3

| ==. Asset 4
. Asset 5

o
®

1.0050 1
. Asset 6

1.0025 4 | - Asset7

o
o

1.0000 1

Normalized Value
o
IS

Fraction of Portfolio

0.9975 1

0.9950 -

o
N

0.9925 -

Time Steps

Rolling Return Tracking Error Transaction Costs

107!

—— Final Iteration —— Final Iteration

10724 106 4

10-34 10°1

102 4
1074 4
100 4
1075 4
1072 4
1076 4
10—4 4
1077 4
107°
s ]
10 10-8

1070 4— T T v T T T L gl T L1 T o,
0 10 20 30 40 50 0 10 20 30 40 50

Figure 5.1: Out-of-Sample performance in T1 using V1

As expected, V2 holds a little advantage over the other versions, having the
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Figure 5.2: Training performance in T1 using V1

benchmark weights set equal to the optimal policy: this means that the proposed
modification works as intended, speeding up the agent’s learning.

Specifically, in T1 all the versions behaved in the exact same way, meaning that,
in such a simple setting, all the approaches can find the optimal policy. Figure
5.1 shows the out-of-sample performance of the V1 version: the four graphs are
very clear in showing that the agent correctly found that the optimal policy is
investing the totality of the portfolio in Asset 1, which is the only one composing the
artificial Index. The rolling RTE graph shows us that the resulting portfolio follows
extremely closely the behavior of the index, except at time t = 0, where there is
a tracking problem but, in reality, the spike in the error is perfectly reasonable:
in fact, the agent starts with a uniformly distributed portfolio, leading to high
transaction costs in the first rebalancing to deploy the optimal policy.

In Figure 5.2 we can observe that the algorithm converges to the solution without
any difficulties, steadily lowering the policy loss and with it the total loss.

In the T3 setting, versions V3 and V4, both employing the tanh-squashed
Gaussian, did not achieve performance on par with the other versions. This is
because the optimal policy is highly concentrated and, together with the large
number of assets, the tanh transformation of the Gaussian makes it harder for
the agent to drive the policy toward selecting a single asset over the others within
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Figure 5.3: Out-of-Sample performance in T3 using V3

the limited number of training epochs. In Figure 5.3 we can see that the agent is
learning that Asset 1 is the most important, but it is not yet able to completely
invest in it. Figure 5.4 shows that something similar happens with version V1:
with the clip function, the Policy NN does not have to push the components’ means
as far apart to create a dramatic policy, so it converges more quickly, but we can
see that the policy is not yet complete because at the start of 3 periods it does
not choose the optimal policy. In this case, we only tested R1 and R2 using all
the algorithm’s versions, and R3 was only tested using version V3 because it

performed better in the similar setting.
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Figure 5.4: In-Sample performance in T3 using V1

5.2 Real Data

In this section, the discussed approaches are tested on real financial datasets
retrieved using the Python API of Yahoo Finance. The dataset is composed of all
the prices and trading volumes of the 500 assets composing the S&P 500 Index,
the Index itself, the VIX Index, and the T-Bill rates. As before, we created two
different testing settings that are described in Table 5.4. Unfortunately, given
the computational power at our disposal, it was not possible to test the full-scale
problem using all the 500 assets in the S&P 500 Index.

All of these settings test the algorithm using a period of a month and only two
months of history as the state variable. This is done for two main reasons: the
first is that using a smaller state variable considerably reduces the NN size, thus
reducing computational time. Secondly, this tests how flexible the algorithm can
really be. The real difference between them is the time partitioning. This choice
was made is such a way because: R1 now in his training portion does not include
the COVID-19 crisis, which only appears in the out-of-sample testing segment;
conversely, in R2 and R3 the shock is included in the training portion, whereas
during the out of sample portion the market is mostly stable. The R3, given the
dimensionality increase compared to the other two, will only be tested using the
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Parameter R1 R2 R3

N 50 20 200
Start Training 2015-01-01 2020-01-01  2020-01-01
Start Testing 2019-10-20 2023-08-30 2023-08-30
End Testing  2020-12-31 2024-07-30 2024-07-30

M 20 20 20

N 40 60 60

Table 5.4: Real Market testing experiments

best-performing version.
For settings R1 and R2 we used the training parameters in Table 5.5.

Params Value Description

Vo 2.0e10 Initial portfolio value
Wy 0— % Starting portfolio weights
q 2 Power in Equation 2.2

P-Ir 2.5e—5 Learning Rate of the policy NN
V-Ir 2.5e—5 Learning Rate of the value function NN
H-dim 128 Dimension of each hidden layer in every NN

b 5 Parameter of Equations 3.17 and 4.3

€ 0.2 Parameter of Equation 3.13

6] 1000  Parameter of Equation 3.12

e1 0.5 Coefficient of the value loss in Equation 3.16
€9 0.05  Coefficient of the entropy loss in Equation 3.16
H 2000  Number of training epochs

n 64 Mini-batch size in RL training

le 12 Episode maximum length

Ne 50 Number of episodes per epoch

k 8 Number of CPU cores for parallel computing

Table 5.5: RL parameters for R1 and R2

The learning rates are much smaller than in the synthetic case to better help
with convergence in these more complex conditions. Also, the NNs are bigger with
128 nodes in each hidden layer, making them suited to this new data. Another
important change is the number of episodes in a mini-batch, which is double the
size of the synthetic case: this is because the real data is noisier and the agent
needs more data points so that the GAE estimators have less bias. Moreover,
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to further increase the number of sample paths evaluated, using all the available
computational power at our disposal, the number of CPU cores is increased to 8.

The experimental results are displayed in Table 5.6. Each of the experiments
shown took an average of 55 minutes to complete (laptop performance was remark-

ably weakened due to thermal throttling).

As with the artificial dataset, the results are calculated as the RTE over 4
successive periods of length M = 20 days: this equates to successive 80 trading

In-Sample RTE

Scenario V1 V2 V3 V4
R1 2.7957e—3 | 2.1987¢—3 | 2.1706e—3 | 4.1336¢—3
R2 3.1472—3 | 3.3063e—3 | 2.4299¢—3 | 7.1215¢—3

Out-of-Sample RTE

V1 V2 V3 V4
R1 2.5224e—3 | 3.0037e—3 | 1.9920e—3 | 4.2534e—3
R2 1.9688¢—3 | 2.5443e—3 | 1.6125e—3 | 1.5884e—3

Table 5.6: Real Dataset training results
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days that are sampled from the training set for the in-sample analysis, and from
the test set for the out-of-sample analysis.

For setting R1 the proposed V3 version outperforms all the other ones with
slightly better performances across the in-sample and out-of-sample RTEs. All of
the results are in line with the performance observed in the large scale experiments
conducted in Peng et al. 2024 though conducted with the full set of assets, with a
larger NN design and more training time.

In Figures 5.6 and 5.5 we can observe how the agent chooses an almost perfect
stationary policy even if the chosen portfolio weights are different: this is a direct
effect of including transaction costs in the model. It is possible to observe the agent
reducing transaction costs while learning, as shown by the gray spikes at the start
of each period of 20 days.

In contrast, Figures 5.7 and 5.8 show that these versions were not able to
stabilize in time, meaning that the transaction cost spikes at the start of the period
take a noticeable toll on the tracking error performance (especially visible for
version V4).
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Concerning the training process, all the versions behave practically in the same
way. In Figures 5.9 and 5.10, we show the learning progression, and it is clear
that the learning rate to allow for better convergence should still be lowered,
ensuring that both the actor and the critic do not experience a dramatic “jumps”
in their estimations. Nonetheless this choice of learning rates was necessary to
keep the computational time contained to one hour while still showing some sign
of convergence.
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Figure 5.9: Training performance in R1 using V1

A similar story happens in setting R2 where version V3 outperforms all the
other versions by a similar margin, as we can see in Figure 5.11. V1 is still second
best considering both in and out of sample RTE (Figure 5.12) but, this time, V4,
even if the in-sample performance is lacking compared with the others, it improves
the out-of-sample performance of even over the V3 version, as can be seen in
Figure 5.14. What probably caused a worse in-sample performance is the presence
of the economic shock in the training part of the dataset: this may indicate that
the way the PCA directions are implemented in the algorithm leaves it less capable
of abruptly adaption to market changes (in-sample performance of V3 can be seen
in Figure 5.14) and makes the convergence to the optimal policy a lot slower than
the other methods.
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Once again the training performance of all the versions is very similar, and, for

the sake of brevity, we show in Figure 5.15 the performance of V3.

The R3 setting it is tested only using version V3 because it showed the most
promising and robust results, and the agent was trained using the parameters
displayed in Table 5.7. Most of the parameters remain the same used in the
previous settings but some modifications were made to obtain results at an earlier
training epoch. In this way we managed to get results in under 90 minutes of

computational time.

Params Value Description

Vo— 2.0e10 Initial portfolio value

W 0— % Starting portfolio weights
q 2 Power in Equation 2.2

P-1r 5e—5 Learning Rate of the policy NN

V-Ir 5e—b5  Learning Rate of the value function NN

H-dim 128  Dimension of each hidden layer in every NN

b 5 Parameter of Equations 3.17 and 4.3
€ 0.2 Parameter of Equation 3.13
153 1000  Parameter of Equation 3.12
e 0.5 Coefficient of the value loss in Equation 3.16
€2 0.05  Coefficient of the entropy loss in Equation 3.16
H 750  Number of training epochs
n 64 Mini-batch size in RL training
e 12 Episode maximum length

Ne 50 Number of episodes per epoch
k 6 Number of CPU cores for parallel computing

Table 5.7: RL parameters for R3
V3
Scenario || In-Sample RTE  Out-of-Sample RTE
R3 2.0892—3 1.4310e—3

The agent performances, after training, which are calculated in the exact same
way as before, are shown in Table 5.8 and we can clearly see that it is able to
improve on the best result obtained in setting R2. The two results are directly
comparable because they are tested on the same period length and on the same

dataset.

Table 5.8: R3 training results
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In Figures 5.16 and 5.17 it is possible to observe how well the agent’s policy
is at replicating the shape of the index, achieving the best RTE. Unfortunately
the graphs illustrating the portfolio composition become much more difficult to
read due to the amount of assets, but as before we can see that it adopts an
almost stationary approach to reduce transaction costs. Figure 5.18 describes the
learning process as very stable, meaning that with more assets to choose from, the
action policy can transition more smoothly between each update, improving the
convergence.
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Chapter 6
Conclusions

In this thesis we explored the Financial Index Problem through the paradigm of
dynamic programming, exploiting the structure to implement the Reinforcement
Learning method to solve the problem. This innovative framework has enabled us
to tackle the problem in a new way, enabling the use of very realistic transaction
cost function that are not limited to theoretical results but can accurately predict
the policy behavior in the real world.

Thanks to the comprehensive testing and validation on the synthetic dataset
and on the real-market dataset, we established how all the proposed versions of the
algorithm work as intended in both controlled conditions, even reaching satisfactory
performance in the presence of economic shocks, such as during the COVID-19
pandemic.

The benchmark method has shown to be very capable of reducing the amount of
computational time needed to reach convergence on the optimal policy, especially
in a high-dimensionality setting. This is subject to the quality of the benchmark,
but it could still be a useful resource in the hands of the fund manager to introduce
prior knowledge in the model.

The tanh-squashed Gaussian model proved to be the best performing among
the tested versions, outperforming the base version (the most similar to the one
proposed in Peng et al. 2024). This proves the importance of having a proper
action engineering combined with smooth gradients in an high-dimensional setting.

Even if it is an extension of the tanh-squashed Gaussian model, the covariance
directions version proved to be more challenging to work with in the limited
amount of computational time at our disposal. Nonetheless the results are still
very promising.

Overall, this thesis demonstrates that reinforcement learning provides a promis-
ing and already viable framework for dynamic financial index tracking.
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Appendix A

Fixed Point Iteration
algorithm

After collapsing the chosen cost function into a form only dependent by V, & the

algorithm used to solve Equation 3.5 is the Banach fixed point iteration algorithm

that is described below:

Algorithm 1 Banach Fixed Point algorithm used to solve Equation 3.5

1: €+ 1071 > Setting the tolerance to stop the iterations
2: Vt‘idk — V(t k) > Initialize to the portfolio value to improve convergence
b M
. new o old cle 1s . .
3: VI View ) CH_%(‘/H_%) > Initialize the iteration
. s old __ Y/new
4: while Vt+% i > e do
5: yold o ymew > Update the estimate
t+ﬁ t+ﬁ
. new _ ) old
6: A Vet~ G (Vi)
7: end while
. new
8: return s
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Appendix B

Python code structure

In this chapter, the structure of the python code used in this thesis is explained.
This explanation is mean to be a broad overview of the code logic and underlying
structure so that reading the python code would be more understandable.

B.1 main.py and main_ synthetic.py

This are the python file to execute experiments from using the real market data or
the artificial dataset respectively. This file imports the configuration file config.json
or config_synthetic.json. This fils have the following structure:

Listing B.1: config_synthetic.json for T3 V3

o1

{
"genConfig
{
"NUM_DAYS": 2520, "NUM_ASSETS": 50
I

"scenConfig
{
"index weights": [[0, 1]], "test perc" : 0.20

}s

"indexConfig"

n

o '"M":21, "window":126, "rebalance period":1, "initial portfolio_ value'

:2el0, "obs_ state portfolio" : true, "transaction_ cost"' : "simple"
, "epsl" : 2.5e—3, "eps2" : 1.0, "nul" : 2.29e—5, "nu2" : 1.6e—4,
"tax" : 26.0e—2

}s

"agentConfig"

o1




NN

NN W
ot

Python code structure

n

i| "policy _Ir'":1le—4, "value Ir":1le—4, "eps_clip":0.2,

truncated_gaussian":true, "limit_func' : "tanh", '"B": 5, '
log__prob_correction" : true, "advantages_ normalization": false , "
benchmark": false , "benchmark type":"marketcap","var—cov":false "'
device":"cpu", "hidden_ dim":64

’

"trainConfig"

"DEBUG" : false, "num_epochs": 320, "sample_ learnig" : 16, "

batch_size":32,"episode_len": 50, "num_ episodes"': 12, "
entropy_coeff": 0.1, "value_coeff": 0.5,"beta" : 5e2, "gamma'
0.99, "lam" : 0.95, "num_cores'" : 4, "mode" : "parallel spawn'

I

"evalConfig"

{

"episode_ len_eval" : 10

}

}

In this way, every parameter of each experiment can be changed from this file
without the need to edit the code.

After loading the configuration, the main loads the chosen dataset and feeds
the data to two objects of the IndexTrackingEnv class: the first instance is used
during training and the second one is used in testing to prevent any data leakage.
Successively the PPOAgent and the Trainer object are created using the user
settings.

After selecting the appropriate training function, the agent is trained ad all the
training logs are saved. Training logs also include the agent parameters at different
moments during the training phase, so that it is possible to show the agent leaning
progression in the performance graphs. After testing, all the figures are saved ad a
PDF report is saved with all of the relevant information of the experiment.

B.2 IndexTrackingEnv class

This class is the responsible for simulating the market environment and the track-
ing portfolio. The RL agent only interacts with it through the step() method
and the _ get_state() method that will be used by the Trainer class. The
IndexTrackingEnv object stores all the relevant market information for the simu-
lation to behaves like the market keeping track of all the agent decisions and its
implication.

A TrackingPortfolio object is created during initialization. This object is used
by the IndexTrackingEnv to manage the tracking portfolio after an action as
been taken by the agent. The step() makes the TrackingPortfolio interact with
the action taken by the PPOAgent by computing transaction cost using the
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fixed_ point__banach() function and then, it simulates each M days in the period.
The function returns the reward to the agent ad all the relevant logging information
contained in a dictionary.

B.3 Trainer class

This is the class responsible for training the PPOAgent and making it interact
with the selected IndexTrackingEnv. It has been implemented to support multi-
processing in order to take full advantage of a modern CPU. For this reason the
train() and collect__rollouts() functions have also the multiprocessing equivalent
with the same underlying functioning.

The train() function is the main training loop in which the agent is trained. At
the start of each training epoch a new RolloutBuffer object is created: this object
will collect all the relevant information for each step in the episode using the class
method collect__rollouts(). At the end of each episode, the RolloutBuffer method
compute_returns_and_advantages() computes the correct advantage estimators
for each new entry on the buffer and adds it to the collected information. The
training cycle ends with the call of the update() method of the class PPOAgent
that returns the update logs. At a specified frequency, during the training loop, the
program saves the state of each parameter inside the value NN and policy NN so
that, at the end of training, the agent performance can be tested at various stages
of the learning process.

B.4 PPOAgent and EvaluationAgent classes

This classes contain all the information structure of the RL agent, including the
NNs for the policy and value functions. They are inherit from the same BaseAgent
class that define the base structure. The two classes are used to keep separate
the training from evaluation process in order to avoid data leaks and improve
performance during the evaluation phase or the collection of episodes. The policy
network is a GaussianPolicy object while the value function is a ValueNetwork
object; both class inherit from the nn.Module of the torch python library. This
classes contain the NN design as described in section 3.4.1 and all the methods
necessaries to sample from the distribution an admissible action on the portfolio or
calculate the probability density. The most important method of the PPOAgent
class in the update() one: this method, after randomly shuffling the entries of the
buffer, it updates, using a single step of the stochastic gradient descent, the NNs’
parameters using batches of a chosen dimension.
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