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It isn’t obvious that the world
had to work this way.

But somehow the universe
smiles on encryption.

[JULIAN ASSANGE, Cypherpunks: Freedom
and the Future of the Internet (2012)]
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Introduction

Bitcoin, as the first and most widely adopted blockchain system, relies on strong cryptographic
foundations to guarantee security, integrity, and decentralization. Among these, digital signatures
play a central role: they provide spending authorization, ensure transaction authenticity, and
underpin the trustless nature of the protocol. From its inception, Bitcoin employed the Ellip-
tic Curve Digital Signature Algorithm (ECDSA), but the Taproot upgrade introduced a more
advanced scheme: Schnorr signatures.

Schnorr signatures, originally introduced by Claus P. Schnorr, are celebrated for their math-
ematical elegance and efficiency. Compared to ECDSA, they yield shorter signatures, faster
verification, and a simpler security proof. More importantly, their distinctive linearity property
allows multiple signatures and public keys to be aggregated into a single compact signature. This
aggregation significantly enhances both scalability and privacy in Bitcoin: complex multi-party
transactions can be indistinguishable from simple single-signer transactions on-chain.

However, this very property also reveals a fundamental vulnerability. The so-called ROS
attack, first discussed by Schnorr and later formalized by David Wagner, exploits linearity to
break the security of naive multi-signature constructions. Understanding this attack is therefore
crucial: without proper safeguards, signature aggregation protocols would be rendered insecure
and unusable in practice. This challenge has motivated the design of robust multi-signature
schemes such as MuSig and its improved variant MuSig2, which neutralize the ROS attack while
preserving efficiency.

The research frontier has recently advanced even further with the introduction of Cross-Input
Signature Aggregation (CISA), a long-sought improvement for Bitcoin. While traditional signa-
ture aggregation is limited to inputs within the same script, CISA enables the aggregation of
signatures across multiple transaction inputs, or even across multiple transactions in a block.
This not only reduces blockchain footprint and verification costs, but also strengthens privacy
by making collaborative protocols like CoinJoin more efficient and indistinguishable from regular
transactions.

A milestone in this direction is the DahLIAS (Discrete Logarithm-Based Interactive Aggre-
gate Signatures) protocol. DahLIAS represents the first concrete, provably secure, and Bitcoin-
compatible construction enabling CISA. It combines the strengths of Schnorr signatures with
interactive preprocessing and innovative aggregation techniques, producing constant-size signa-
tures and offering faster verification compared to existing approaches. As such, DahLIAS is widely
regarded as a promising candidate for future integration into Bitcoin, potentially reshaping its
scalability and privacy landscape.

This thesis investigates these developments in depth. Starting from the theoretical underpin-
nings of Bitcoin’s cryptography, it explores the transition from ECDSA to Schnorr, the challenges
posed by the ROS attack, the design of secure aggregation protocols such as MuSig2, and finally
the emergence of CISA and DahLIAS. The goal is to provide a comprehensive analysis that con-
nects fundamental principles, real-world challenges, and cutting-edge cryptographic solutions in
the context of Bitcoin ecosystem.



Introduction

Structure

1. Chapter 1 introduces the Bitcoin protocol, starting with the previous technologies on which
it is based and then analyzing the main features that make it secure and efficient. It explores
the fundamental components, including hash functions and digital signatures, and delves
into the advanced cryptographic protocols that have been integrated to enhance privacy,
efficiency, and scalability. It also reviews enhancements such as Taproot that extend Bitcoin’s
functionality.

2. Chapter 2 presents Schnorr-based protocols, with a focus on multi-signature schemes like
MuSig and MuSig2. These protocols exploit key and signature aggregation to enable efficient
multi-party transactions in Bitcoin.

3. Chapter 3 analyzes the ROS attack in detail, illustrating how it compromises naive Schnorr-
based protocols, effectively compromising their security. Many attack variants have been
proposed over the years, forcing researchers to develop schemes that are resistant to this
type of attack.

4. Chapter 4 explores Cross-Input Signature Aggregation (CISA) as a proposed improvement
to Bitcoin, culminating in the study of DahLIAS, which allows the aggregation of signatures
associated with different inputs within the transaction or block. The protocol is examined as
the first practical and secure scheme to realize CISA, offering constant-size signatures, effi-
cient verification, and strong privacy guarantees, allowing a single signature to verify public
keys associated with different messages and thus positioning itself as the main candidate for
possible adoption.



Chapter 1

The Bitcoin protocol

Bitcoin is a peer-to-peer electronic cash system introduced in 2008 by Satoshi Nakamoto in the
whitepaper [Nak08|. The goal was to enable electronic payments between two parties without the
need for a trusted intermediary, thereby eliminating the risk of censorship and double spending.
However, the emergence of Bitcoin did not occur in isolation. Rather, it was the culmination of
several decades of research in cryptography, distributed systems, and digital money. Understand-
ing the intellectual and technical roots of Bitcoin helps to contextualize both its design choices
and its disruptive nature.

1.1 Early visions of digital cash

Before Bitcoin, several attempts were made to design digital cash systems. The earliest conceptual
foundations trace back to the 1980s, when David Chaum introduced the idea of e-cash [Cha83].
Chaum’s protocols leveraged blind signatures, a cryptographic primitive that allows a bank to sign
messages (in this case digital coins) without learning their content. In this construction, a user
first “blinds” a digital coin by randomizing it with a blinding factor, obtains the bank’s signature
on the blinded value, and then “unblinds” it to recover a valid signature on the original coin.
This mechanism allowed strong user privacy, but Chaum’s design remained centralized: a trusted
party (the bank) was required to issue and redeem tokens, and the system could not prevent
double-spending without relying on this authority.

In 1997, Adam Back proposed Hashcash [Bac02], introducing the concept of Proof-of-Work
(PoW). The idea was that users must solve computationally costly puzzles in order to gain access
to a resource, thereby deterring abuse such as email spam. Although not conceived as a cur-
rency, PoW later became essential to prevent double spending and secure decentralized consensus
mechanisms.

The cypherpunk movement of the 1990s extended these ideas, envisioning digital currencies
independent of state or institutional control. Wei Dai’s b-money (1998) [Dai98] outlined a system
where participants would broadcast and verify transactions using cryptographic commitments, de-
scribing a collectively maintained ledger that anticipated blockchain-like structures. Nick Szabo’s
Bit Gold (2005) [Sza05] introduced the idea of linking proof-of-work puzzles into a chain, ensuring
scarcity and chronological ordering without central authority: this was essentially a time-stamped
sequence of costly-to-generate values, making each unit of currency provably scarce. Hal Finney’s
Reusable Proof-of-Work (RPoW, 2004) [Fin04] extended this notion by allowing PoW tokens to
be transferred and reused, though it still relied on trusted hardware, limiting full decentralization.

In late 2008, under the pseudonym Satoshi Nakamoto, an unknown author released the whitepa-
per Bitcoin: A Peer-to-Peer Electronic Cash System [Nak08], introducing the first protocol to
achieve a decentralized, censorship-resistant, and trustless digital currency. Bitcoin’s novelty lies
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The Bitcoin protocol

in combining established cryptographic primitives (i.e. hash functions, digital signatures, and
Merkle trees) with PoW-based consensus to eliminate the need for trusted intermediaries.
Satoshi’s breakthrough was the synthesis of prior ideas into a working system that solved the
“double-spending problem” without trusted intermediaries. Transactions were digitally signed
and broadcast to a peer-to-peer network. Blocks of transactions were chained using SHA-256
hashes, while proof-of-work regulated the creation of new blocks and aligned incentives among
participants. The “longest chain rule” ensured consensus: the valid chain is the one with the most
accumulated proof-of-work, making it computationally infeasible for attackers to rewrite history
without controlling the majority of the network’s hash power.

The Bitcoin network was launched in January 2009, marking the beginning of a new era in
digital finance and decentralized trust systems.

1.2 Cryptographic Primitives

At its core, Bitcoin’s security and functionality rely on fundamental cryptographic primitives,
such as hash functions, public-key cryptography and digital signatures. These components work
in concert to ensure the integrity of the transaction ledger, the authenticity of transactions, and
the ownership of bitcoin.

1.2.1 Hash Functions

Bitcoin extensively uses cryptographic hash functions, which are mathematical algorithms map-
ping an arbitrary-length input to fixed-size output, called digest or hash. These functions are
deterministic (the same input will always yield the same output) and are designed to be compu-
tationally one-way, meaning it is infeasible to recover the input from its hash.

From a cryptographic standpoint, a secure hash function H : {0,1}* — {0,1}" must satisfy:

« Preimage resistance: given y, it is infeasible to find any x such that H(z) = y.

» Second-preimage resistance: given z, it is infeasible to find 2’ # x such that H(2') =

H(x).

« Collision resistance: it is infeasible to find any pair (z1,z) with 1 # x9 such that
H(xl) = H(l’g)

e Avalanche effect: a single-bit change in the input should change roughly half the output
bits in an unpredictable way.

The two primary hash functions employed in Bitcoin are:

o SHA-256 (Secure Hash Algorithm, 256-bit output): A member of the SHA-2 family stan-
dardized by NIST, designed for high security and efficiency.

« RIPEMD-160 (RACE Integrity Primitives Evaluation Message Digest, 160-bit output):
Developed in the academic community, used in Bitcoin to shorten public key hashes while
maintaining strong collision resistance.

These hash functions are central to both consensus and security mechanisms:

1. Proof-of-Work: SHA-256 is applied twice (HASH256) to block headers: miners search for a
nonce that makes the hash output numerically less than the network’s current target.

2. Transaction integrity: transaction data is hashed to create transaction IDs and to commit
Merkle roots into block headers, ensuring immutability of past data.

8



1.2 — Cryptographic Primitives

3. Address generation: public keys are first hashed with SHA-256, then with RIPEMD-
160, producing a compact 160-bit identifier. This reduces storage requirements, shortens
addresses, and hides the full public key until spend time, limiting attack exposure.

In Bitcoin, SHA-256 is used extensively:
e Block and transaction identifiers are computed as double SHA-256 hashes.
o Mining requires computing SHA-256 on block headers to satisfy PoW.

o Addresses and scripts use hashing for compactness and integrity.

1.2.2 Public-Key Cryptography and the secp256kl Elliptic Curve

Public key cryptography (or asymmetric cryptography) allows the self-custody in Bitcoin: in such
system, each participant possesses a key pair: a private key sk and a public key pk. The private
key is a secret integer used to generate signatures to authorize transactions and prove ownership
of funds, while the public key is deterministically derived from the private key and can be shared
with the network without compromising security.

In particular, the Bitcoin protocol uses elliptic curve cryptography (ECC), which is based on
the arithmetic of points on elliptic curves defined over finite fields.
ECC offers high security with shorter key lengths compared to other schemes (like RSA or DSA),
thanks to the absence of known sub-exponential algorithms for solving the elliptic curve discrete
logarithm problem (ECDLP) over general prime fields.
The specific elliptic curve used in Bitcoin is secp256kl, defined by the equation:

EC: y*=2+7 (mod p) (1.1)

where
p= 2% - 2% — 977

is a 256-bit prime number, thus defining the finite field F, = 7Z,,.

The parameters (a = 0,b = 7) and the base point G are chosen to enable efficient implementations,
including scalar multiplication techniques using endomorphisms.

The generator point G € EC(Z,) has prime order

g = 115792089237316195423570985008687907852837564279074904382605163141518161494337

and cofactor h = 1, which implies that the cyclic subgroup G = (G) coincides with the entire
group of points on the curve EC(Z,).

A user’s private key is a uniformly random integer sk € Z; = F, \ {0}. The corresponding
public key is computed via scalar multiplication on the curve:

pk =sk -G

This operation is efficient in the forward direction (given sk and G, computes pk), but is believed
to be computationally infeasible to recover the secret key sk from the public one pk due to the
hardness of the ECDLP:

Definition 1.2.1 (Elliptic Curve Discrete Logarithm Problem). Given G and X with X =z -G
Jor some unknown x € Z;, determine x.

The best known classical algorithms for the ECDLP on curves of prime order are Pollard’s Rho
and Baby-step Giant-step, both having complexity O(,/q). For secp256k1, \/q ~ 2128 "4 value far
beyond the reach of current and foreseeable classical computing power. This corresponds to an
estimated classical security level of about 128 bits.

9



The Bitcoin protocol

From a cryptographic perspective, this ensures that Bitcoin addresses derived from the public

key pk = X € EC(Z,) are secure against key recovery attacks, provided correct implementation
and secure key generation.
The security is not absolute: a large-scale fault-tolerant quantum computer running Shor’s algo-
rithm could solve the ECDLP in polynomial time. While such technology remains purely theo-
retical today, the Bitcoin community is already exploring quantum-resistant approaches. These
include signature schemes based on hash functions and address formats designed to minimize or
delay public key exposure. In practice, Bitcoin is only susceptible to a quantum attack if the
public key is revealed on-chain before the transaction is confirmed.

1.2.3 Digital Signatures

In order to spend bitcoin, a user must prove the ownership of the private key associated with the
funds: this is accomplished through a digital signature.

The process of spending funds links addresses, public keys, and digital signatures in a single
cryptographic workflow. Suppose Alice wishes to pay Bob. Bob’s wallet generates a private-public
key pair (sk, pk) = (z, X) € Z; x G on the secp256k1 curve and computes the HASH160 of the
public key, producing an address. Alice uses this address in a transaction that locks funds to
Bob’s key hash. When Bob later spends these funds, he must provide both the original public
key pk and a digital signature by signing the transaction data with the right private key sk. The
signature is then included in the transaction and broadcast to the network. Nodes on the network
can then use the public key to verify the signature without needing to know the private key.
Formally a digital signature scheme is defined as follows.

Definition 1.2.2 (Digital Signature). A digital signature is a triple (KGen, Sign, Vf) of proba-
bilistic polynomial-time (PPT) algorithms such that:

o the key-generation algorithm KGen takes as input 1%, where X\ is the security parameter,
and outputs a public/private key-pair (pk,sk).

« the signing algorithm Sign takes as input a secret key sk and a message m € M (the message
space), and outputs a signature o € S (the signature space).
This operation is denoted as o < Signg (m).

o the verification algorithm Vf, which is deterministic, takes as input a public key pk, a
message m and a signature o, and outputs a bit b € {0,1}.
This operation is denoted as b < Vfy(m, o).

Moreover, if (pk,sk) < KGen(1*) then
Vfoi(m,Signg (m)) =1 Vme M
except with negligible probability over the randomness of KGen.

Definition 1.2.3 (The forging experiment). Let II = (KGen, Sign, Vf) be a digital signature.
For an adversary A, the signature forging experiment is defined in Figure 1.1.

The theorem formalises the notion of security: a digital signature is secure if every PPT adversary
cannot generate a valid signature for a message m, even if A can choose the message and can
obtain valid signatures for arbitrary messages m’ # m.

10



1.2 — Cryptographic Primitives

SigForgeﬁGen,Sign,Vf ()‘)

1: generate a key-pair (pk, sk) «+ KGen(1*)

2: give A the public key pk and access to the oracle Signg(+)
3: the adversary A outputs a message-signature pair (m, o)

4: return 1 if Vfy(m,o) =1 and A never queried m to the oracle, otherwise return 0

Figure 1.1. Signature Forging Experiment

Theorem 1.2.1 (Secure Digital Signature). A digital signature 11 is existentially unforge-
able under an adaptive chosen-message attack, or secure, if for every PPT adversary A
there exists a negligible function negl such that

Pr [SigForgeﬁ‘()\) = 1} < negl(A),

where the probability is over the randomness of A and of the experiment SigForgeﬂ‘()\),

Actually, it wasn’t necessary for Satoshi Nakamoto to know the details of how digital signature
systems work to be able to create Bitcoin. All they needed to know was that it does work, and
that they could use it as the mechanism for sending and receiving money in the system they were
building. In fact, the first version of Bitcoin actually used the OpenSSL library to provide the
functionality for creating and verifying digital signatures, so it’s not something they coded by
hand themselves.

1.2.4 ECDSA: the first digital signature

The first digital signature algorithm employed in the Bitcoin protocol is the FElliptic Curve Dig-
ital Signature Algorithm (ECDSA), instantiated over the secp256k1 elliptic curve. Conceptually,
ECDSA is the elliptic curve analogue of the classical Digital Signature Algorithm (DSA), providing
equivalent security with significantly shorter key lengths.

In Bitcoin, ECDSA binds the transaction authorization process to elliptic curve arithmetic:
the private key sk is never revealed, yet its possession is cryptographically proven through the
ability to generate a signature (R, s) satisfying the verification equation. Combined with address
hashing, this mechanism ensures that ownership of funds can be demonstrated without exposing
long-term secrets prior to the moment of spending.

Operationally, when a transaction is created, the wallet computes a cryptographic digest of
the serialized transaction data. In Bitcoin, this digest is obtained via a double application of
SHA-256 (i.e. HASH256), denoted as

h = H(m) = SHA256(SHA256(m)),

where m is the transaction message. The signature is then generated over h using sk, and the
resulting pair (R, s) is included in the transaction. Any network node can subsequently verify
the signature using the public key pk, thereby confirming that the transaction was authorized by
the legitimate key holder.

The protocol is formally described as follows. Let G be the cyclic subgroup of the elliptic curve
of prime order ¢, generated by a base point G. Recall that a key pair is defined as (sk, pk) =
(x,xG), where x € Zy is the private key and pk = X € G is the corresponding public key.

The algorithm is shown in figure (1.2).

11



The Bitcoin protocol

KGen() Signg, (m) Vfok(m, o)
r+$Z,, X=2G r=sk, k<s$Z, (r,s)=o0
sk=x; pk=X R = kG = (zg,yr) mod q assert (r,s) # (0,0)
return (sk, pk) assert r =xp #0 X =pk, h=H(m)
h =H(m) w=s5""mod ¢
s =k~ (h+ zr) mod q (u1,uz) = (hw,rw) mod ¢
assert s # 0 P =u1G+uX = (zp,yp) mod ¢q
return o := (r, s) if xp = r then return 1
else return 0

Figure 1.2. Elliptic Curve Digital Signature Algorithm (ECDSA)

The use of assert enforces these non-zero conditions, preventing degenerate signatures that would
be invalid or risk leaking information about the secret key z. If an assertion fails, the signing
procedure restarts with a fresh nonce k.

The security of the scheme relies on the intractability of the Elliptic Curve Discrete Logarithm
Problem (ECDLP) in G and on the unpredictability of the nonce k. Any leakage or reuse of k
allows immediate recovery of the private key x.

Correctness. From s = k™' (h + rz), we have ks = h + r.
Multiplying by G yields s(kG) = hG + r(zG), i.e., SR = hG +1X.
Multiplying by w = s~ gives R = u1G + us X = P, hence zp = x5 = 7.

Why only z-component? ECDSA uses only the z-coordinate to keep signatures compact: on
secp256k1 each coordinate is 32 bytes, so including yr would increase the signature size from 64
bytes to 96 bytes without adding any information needed for verification.

The secp256k1 curve (and Koblitz curves in general) has vertical symmetry: if (x,y) is a point
on the curve, so is (z, —y mod ¢). Thus, knowing only x g yields two possible points:

R = (zg,yr) and — R=(zr,q—Yr)

Both share the same x but have opposite signs in y. In ECDSA verification, the equation:

?
r= x(U1G+uzX) mOd q

depends only on x, so storing yr in the signature is unnecessary.
This choice reduces storage requirements and improves efficiency.

Consequences: s Malleability and the “Low-s” Rule This symmetry introduces a side
effect: if (r, s) is a valid signature, so is (r,q — s). This happens because flipping the sign of yp is
equivalent to inverting the nonce k, which yields a complementary s.

In Bitcoin, this is a form of malleability: someone can take a valid signature and produce a
different but still valid one. To prevent this, Bitcoin enforces the “low-s rule”:

s<g

—_— 2 .
If s is greater, it is replaced with ¢ — s and the signature is recomputed, producing a canonical

form.
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1.2 — Cryptographic Primitives

The update was introduced in 2015 thanks to Bitcoin Improvement Proposal (BIP62/BIP66), i.e.
an open-design document for introducing new standards and features to the protocol.

Schnorr signatures (adopted in Bitcoin with Taproot) also uses the “z-only” property, but
with a different approach: it employs z-only public keys and fixes the y sign to a canonical value,
eliminating the double-representation issue entirely. With ECDSA, the low-s rule was necessary
as a corrective measure.

13
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1.3 Protocol Design

Block Structure
A block consists of:

o Header: version, previous block hash, Merkle root, timestamp, difficulty bits, nonce.

e Body: list of transactions.
The block header is hashed twice with SHA-256:

H = SHA256(SHA256(header)).
Each block header commits to:
header = (version, H(prev_header), MerkleRoot, time, nBits, nonce),

and must satisfy the PoW condition H(header) < T'. Because each header includes H(prev__header),
the chain is tamper-evident: altering a past block would require redoing the PoW for that block
and all of its successors. Nodes consider the valid chain with the greatest cumulative work to be
the ledger state.

Block Block
Prev Hash | | Nonce ‘ Prev Hash | ‘ Nonce|
R Lo o [

Figure 1.3. Previous header Hash [Nak0§]

Transactions and UTXO Model

A bitcoin transaction is just a bunch of data that unlocks and locks up batches of bitcoins. To be
more precise, a transaction:

« selects existing batches of bitcoins (inputs) and unlocks them;

o creates new batches of bitcoins (outputs) and puts new locks on them.

A single transaction can thus have multiple inputs and outputs and can be seen as a set T =
{(inq,...,iny), (outy, ... outy)}.
So a transaction can be seen as part of a chain of outputs; one transaction creates an output, and
then a future transaction selects that output (as an input) and unlocks it to create new outputs.
In particular, Bitcoin follows the Unspent Transaction Output (UTXO) model. A trans-
action consumes previous UTXOs as inputs and creates new outputs. Each node has the updated
UTXO set and can easily verify if each input in;, i = 1,...,n, is part of it. This means checking
that the user who created the transaction does not try to spend bitcoins that have already been
included in another transaction as input and therefore spent.

Scripts. Scripts are used to lock and unlock UTXOs:

» Locking script (scriptPubKey): specifies spending conditions (e.g., requiring a signature
for a public key).

« Unlocking script (scriptSig): provides the data to satisfy the locking script.
14



1.3 — Protocol Design

—

e

— >

Transaction
In Out
In

Figure 1.4. Transaction model [Nak08]

Merkle Trees

Transactions in a block are arranged into a binary Merkle tree. Each non-leaf node is computed

as:

hpa?“ent = H(hleftHhm'ght)-

The Merkle root is then included in the block header.

Block

Block Header (Block Hash)

‘ Prev Hash H Nonce |

Root Hash

Hash0 Hash1] |Hash2{ iHash3,
0| || | ™| | ™3]

Figure 1.5.

Merkle trees enable:

« Efficient proofs: Merkle paths allow verification of single transactions.

« Lightweight clients: Simplified Payment Verification (SPV) nodes need only block headers

and proofs.

Transactions Hashed in a Merkle Tree [NakO§]

15
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1.3.1 Bitcoin Address

A Bitcoin address is a human-readable encoding of information that allows the network to identify
a destination for transferring value. Technically, an address represents data used to construct the
locking script (scriptPubKey) that will control the spending conditions for the associated funds.
From a cryptographic standpoint, addresses are derived from elliptic curve public keys through
successive applications of hash functions, not only to compress and format the data for practical
use, but also to hide the underlying key until it must be revealed.
This key-hiding property is very important: when a user receives funds, the public key is not
directly exposed on the timechain. Instead, only its hash, e.g. the output of a HASH160 oper-
ation (SHA-256 followed by RIPEMD-160), is made public. The actual public key is disclosed
only when spending from that address, thereby narrowing the time window in which an adversary
could attempt a cryptanalytic or quantum-based attack.

Esample: Pay-to-PubKey-Hash (P2PKH) A common example is the generation of a Pay-
to-PubKey-Hash (P2PKH) address:

1. starts with a public key pk = X € EC(Z,);
2. hash the pk obtaining a 160-bit digest h = RIPEMD160(SHA256(X));
3. prepends a network version byte (e.g., 0 for mainnet);

4. appends the checksum derived from a double SHA-256 of the data (for typographical error
detection);

5. everything is encoded using Base58Check to yield a human-readable string.
Over the years, Bitcoin has evolved beyond P2PKH:
« P2SH (Pay-to-Script-Hash): starting with “3”, supports multisig and complex scripts.

« SegWit Bech32 (P2WPKH, P2WSH): starting with “bcl”, improves efficiency and
error detection.

o Taproot (P2TR): Bech32 addresses leveraging Schnorr signatures and merkleized script
trees.

In the context of quantum resistance, only address types that expose the raw public key (e.g.
legacy P2PK) are immediately vulnerable. Modern formats keep keys hidden until spend time,
mitigating exposure.
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1.3.2 Proof-of-Work (PoW)

Consensus in Bitcoin is based on the Proof-of-Work mechanism, which makes certain actions
computationally expensive but easy to verify. Each node (actually, the miner) competes to find
a value (nonce) such that, once included in the block header, produces a hash below a difficulty
threshold defined by the protocol.

The idea of proof-of-work was first formalized by Dwork and Naor in 1993 [DN93], and later
popularized by Adam Back’s Hashcash [Bac02]. Originally proposed as a defense against email
spam and denial-of-service attacks, PoW became central to Bitcoin’s consensus mechanism, en-
suring that rewriting history or flooding the network carries a significant economic cost.

In Bitcoin, miners compete in the Proof-of-Work (PoW) process to add the next block to the
timechain. The first miner to solve the cryptographic puzzle earns the right to append its block
and is rewarded with newly minted bitcoins (the block subsidy) plus the transaction fees contained
in that block. This economic incentive aligns the interest of miners with the honest operation of
the protocol.

Beyond rewards, PoW also secures the network. It prevents Sybil attacks because creating
many pseudonyms confers no advantage without controlling proportional computational power.
It guarantees immutability, since altering a past block would require redoing the PoW for that
block and all subsequent ones, overtaking the cumulative work of the honest chain. Finally, it
serves as a decentralized leader election mechanism: the probability of mining the next block is
proportional to a miner’s share of the total hash rate.

To ensure stability, Bitcoin automatically adjusts the difficulty of PoW every 2016 blocks
so that, on average, a new block is produced roughly every 10 minutes. This combination of
economic incentives and cryptographic security allows Bitcoin to operate without any central
authority, relying solely on open competition and mathematical guarantees.

Technical details. In a Hashcash-style puzzle, PoW requires finding a nonce such that
H(x || nonce) < T,

where H is a cryptographic hash function (in Bitcoin, double SHA-256) and 7" is the current
difficulty target.

The success probability per independent hash trial is p = 7'/2°°°, so the expected number of trials
is 1/p. With aggregate network hash rate H (hash/s), block arrivals follow a Poisson process
with rate A & H - p, yielding an expected inter-block time of 1/A. Bitcoin adjusts T" every 2016
blocks to maintain /~ 10 minutes per block by multiplying the old target by the ratio of actual to
expected elapsed time, clamping changes to a factor of 4 for each re-target.

2256

Reusable proof-of-work (RPoW). Hal Finney’s Reusable Proofs of Work (RPoW) [Fin04]
extended Hashcash by making PoW tokens transferable. Instead of being single-use, tokens could
be submitted to an RPoW server, which—inside a tamper-resistant module—verified their validity
and one-time use, then issued a fresh signed token. Security relied on trusted hardware and public
audit logs, but the design was still not fully decentralized, as it assumed trust in a single server or a
federation. RPoW demonstrated that PoW could underpin transferable digital value, anticipating
Bitcoin’s model. While RPoW showed how to reuse work, Bitcoin removed the central chokepoint
by distributing validation across all miners and nodes: uniqueness and ordering are enforced
collectively by the most-work chain, enabling decentralization at Internet scale.
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1.3.3 Satoshi’s solution to consensus and double spending

A central challenge for digital money is the double-spending problem: ensuring that the same
coin cannot be spent twice without relying on a trusted authority. Satoshi’s whitepaper [Nak08]
models ownership as a chain of digital signatures, where each transaction authorizes the next
owner:

tx; : 0; = Signg (H(txi—1) || pkiyq )-

This authenticates transfers, but does not by itself prevent double spending. The breakthrough
was to embed all transactions into a public, append-only timechain (commonly called blockchain),
where blocks are linked by SHA-256 hashes and secured by Proof-of-Work (PoW).

Consensus without trust. Classical Byzantine fault-tolerant protocols achieve consensus with
known participants but do not scale to open, permissionless networks. Bitcoin combined (i)
a public PoW-secured timestamp server with (ii) economic incentives. Nodes accept as valid
the chain with the greatest cumulative work—the so-called longest chain rule. This guarantees
eventual consistency: all honest nodes converge on the same ledger, and rewriting history
requires redoing the PoW of the block and all successors, i.e. outpacing the entire honest network.

Security and confirmations. If an attacker controls a fraction ¢ of global hash power (honest
miners have p = 1 — ¢), the probability that the attacker ever catches up from z blocks behind is
the gambler’s-ruin probability (q/p)* for ¢ < p.
The whitepaper refines this with a Poisson model of block arrivals. Let A = z-¢/p be the expected
number of attacker blocks mined while the honest network finds z blocks. The probability that
an attacker catches up after z confirmations is

(%)Zﬁk7 k< z,

1, k> z,

00 )\ke—)\
Pr[catch up] = ZT Qzfy Oz =
k=0

which decays rapidly with z when ¢ < p. In practice, a small number (to date, 6) of confirmations
suffices to make successful double spending economically implausible.

Putting it together. Bitcoin’s synthesis can be summarized as:
1. Ownership/authentication: a chain of digital signatures (UTXO model) authorizes spends.

2. Global ordering: PoW-secured blocks linked in a hash chain; Merkle trees for efficient
inclusion proofs.

3. Open consensus: the longest-chain rule acts as a permissionless leader-election and finality
heuristic; difficulty adjustment keeps average block interval stable.

4. Economic security: miners are rewarded for extending the valid chain, and the cost of
rewriting increases with depth, making double spending infeasible without majority hash
power.
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1.4 SegWit and the Block Size debate

Segregated Witness (SegWit) is a protocol consensus upgrade activated on the Bitcoin network in
August 2017, designed to fix transaction malleability and improve block capacity without directly
increasing the legacy 1 MB block size limit.

The core change is that the signature data (the “witness”) is separated from the transaction’s
main data structure, allowing it to be stored in a new data field outside the traditional block size
accounting and enabling more efficient transaction formats.

Historical Context Between 2015 and 2017, the Bitcoin community engaged in a prolonged
and heated debate over scaling the network. One faction advocated for larger blocks (increasing
the 1 MB limit) to allow more transactions per block, while the other one warned that larger
blocks would harm decentralization by raising the cost of running a full node. This ideological
and technical dispute became known as the Block Size War.

SegWit was proposed in BIP141 as a compromise: instead of changing the block size limit
directly, it redefined block capacity using a new metric called block weight. A block can have a
maximum weight of 4.000.000 units, where witness data is discounted by a factor of four compared
to other transaction data.

This effectively increases the throughput while keeping the traditional 1 MB limit for non-witness
data and simultaneously fixed malleability (a prerequisite for advanced features like the Lightning
Network) without a consensus hard fork.

UASF However, activation of SegWit required widespread miner signaling (from BIP9). By
mid-2017, miner adoption had stalled due to political and economic disagreements, with large
mining pools withheld support. In response, the community proposed a User Activated Soft Fork
(UASF), formalized in the BIP148. This grassroots initiative set a clear deadline: starting on
August 1, 2017, nodes running BIP148 would reject any block not signaling SegWit readiness.
The threat of a chain split and the growing number of UASF-supporting nodes pressured miners
to adopt SegWit signaling before the deadline.

Under this pressure, miners began signaling for SegWit in late July 2017, and the upgrade
locked in shortly before the UASF activation date, avoiding a disruptive fork. SegWit became
active at block height 481.824 on August 24.

The resolution of the Block Size War left a lasting cultural and political imprint in Bitcoin,
strengthening the precedent that consensus changes can be initiated and enforced by the broader
user base, not solely by miners or developers.

Technical Overview In the pre-SegWit format, a Bitcoin transaction is serialized as:

[version | inputs | outputs | locktime]

where each input contains its scriptSig with unlocking data (typically signatures and public keys).
This unlocking data was part of the transaction ID computation, meaning that modifying a
signature would change the tzid: the so-called transaction malleability problem.

SegWit modifies the structure:

[marker | flag | inputs | outputs | witness | locktime]

where the witness contains the unlocking data for each input, but is excluded from the tzid
calculation (it is included only in a separate witxid hash). Because the txid no longer depends on
signatures, altering them does not change the txid, eliminating malleability for SegWit spends.
Block capacity is measured using block weight:

weight = base size x 3 + total size
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where base size is the transaction size without witness data. Witness bytes are thus discounted
by 75% for block size accounting, effectively increasing throughput.

1.5 The Taproot Soft Fork

The Taproot upgrade, activated in November 2021, represents one of the most significant mile-
stones in Bitcoin’s evolution since SegWit. Its goal is to improve efficiency, privacy, and flexibility
of transactions by introducing new cryptographic primitives and spending structures.

At its core lies the adoption of Schnorr signatures, a digital signature scheme invented by Claus-
Peter Schnorr. Although technically elegant and more efficient than ECDSA, Schnorr signatures
were covered by patents until 2008. This explains why Satoshi Nakamoto, when designing Bitcoin
in 2008-2009, opted for ECDSA instead: it was widely used, well supported in cryptographic
libraries, and free of legal restrictions. Once the Schnorr patent expired, the Bitcoin community
could explore its integration, a process that culminated in the Taproot soft fork.

Schnorr Signatures (BIP 340)

The history of Schnorr signatures on Bitcoin is worth noting. The algorithm was patented by its
creator, Claus Schnorr, in 1990, and the patent did not expire until 2008. This legal encumbrance
meant that Schnorr’s scheme was not widely adopted by standards bodies, including the U.S.
National Institute of Standards and Technology (NIST), and was unavailable for use in Bitcoin’s
initial design.

Schnorr signatures overcome several limitations of ECDSA and provide unique properties:

 linearity: this is the most significant feature of Schnorr signatures. It allows multiple signers
to jointly produce a single signature, making multi-signature transactions indistinguishable
from single-signer transactions.

o provable security: the security of Schnorr signatures can be formally proven under standard
cryptographic assumptions.

o non-malleability: Schnorr signatures are not susceptible to the same forms of signature

malleability that can affect ECDSA.
The mathematical construction of a Schnorr signature is as follows:
o Choose a random nonce k and compute R =k - G.
» Generate a challenge ¢ = H(R, pk,m).
« Compute the signature scalar s = k 4 ¢ - sk (mod q).

The signature is the pair (R, s), which can be verified by checking:
s-G=R+c-P.

In reality, for practical applications, it is common to use only the z-coordinate for point R, since
it uniquely identifies the point once it has been agreed to use only points with even y-coordinates.

BIP 341: Taproot and Pay-to-Taproot (P2TR)

Taproot builds upon the introduction of Schnorr signatures to create a new, more private and
efficient way to structure Bitcoin transactions.

It introduces a new output structure called Pay-to-Taproot (P2TR), which can be spent in two
different ways:
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o Key Path Spending: the default and most efficient method, requiring only a single Schnorr
signature from the owner of the public key. This ensures that single-signature and complex
multi-signature transactions appear identical on-chain, greatly improving privacy.

o Script Path Spending: an alternative mechanism for more complex spending conditions,
defined in a Tapscript. These conditions are encoded in a Merkle tree (Merkleized Abstract
Syntax Tree, MAST) and only the specific script branch used for spending is revealed on
the timechain.

Tapscript (BIP 342)

Tapscript is an updated version of Bitcoin’s scripting language that is used in conjunction with
Taproot. It includes some changes to opcodes and signature verification to work with Schnorr
signatures and the P2TR structure.

Key improvements include:

e replacement of OP_CHECKSIG and OP_CHECKMULTISIG with OP_CHECKSIGADD, which is more
efficient for batch verification of Schnorr signatures;

o greater flexibility for future extensions without requiring disruptive consensus changes.

MuSig2: Enhancing Multi-Signature Transactions

Schnorr signatures also enable advanced multi-signature protocols. The most notable is MuSig,
which allows multiple participants to collaboratively create a single aggregated public key and
so a single signature. This is a significant improvement over traditional multi-signature schemes
in Bitcoin, which require multiple public keys and signatures to be included in the transaction,
consuming more block space and revealing the multi-signature nature of the transaction.

The latest iteration, MuSig2, is a two-round protocol that simplifies interaction while retaining
strong security guarantees. It is more practical than earlier versions and provides an efficient
foundation for multi-party signing.

Other Emerging Protocols

Taproot is only the beginning: Schnorr signatures open the door to a new generation of crypto-
graphic protocols, which will be analyzed in more depth in the next chapters. Some of the most
promising include:

o FROST (Flexible Round-Optimized Schnorr Threshold signatures): an efficient threshold
signature scheme designed for distributed environments.

o Adaptor Signatures: “conditional” signatures that link the validity of a transaction to the
revelation of a secret, enabling atomic swaps and advanced payment channels.

o Cross-Input Signature Aggregation (CISA): a proposed technique to aggregate Schnorr sig-
natures across multiple inputs within the same transaction, reducing data overhead even
further.

These protocols, made possible by the Taproot upgrade, mark the beginning of a cryptographic
evolution for Bitcoin toward greater scalability, stronger privacy, and richer functionality.
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Chapter 2

Schnorr-based protocols

This chapter provides a comprehensive technical treatment of Schnorr digital signatures, their
core cryptographic properties, and the evolution to multi-signature schemes, which have become
fundamental to Bitcoin and modern cryptographic protocols.

The exposition proceeds from some mathematical preliminaries to Schnorr scheme, then rogue-key
attacks, formal multi-signature construction, and finally MuSig2.

2.1 Notation and Assumptions

Let (G, +) be a cyclic group of prime order g with generator G and let A be the security parameter,
ie. A = log,q. Elements of G are thus written in additive form; for x € Z,, the notation G
denotes scalar multiplication. In this group, the DLog problem is assumed to be intractable: given
X € G, find the discrete logarithm x € Z, such that X =z - G.

Definition 2.1.1 (Discrete Logarithm Problem). For a group G = (G) of prime order q, the
advantage of an adversary A in solving the discrete logarithm problem is

Advo8(A) = Pr[X = 2G : X +5 G,z + A(X)]

where the probability is taken over the random choices of A and the random selection of X.
An adversary A is said to (7,€)-break DLog if it runs in time at most T and Advgl‘c’g(A) > €.
Discrete log problem is (7, €)-hard if no such adversary ezists.

A stronger assumption underlying Schnorr-type protocols is the One-More Discrete Logarithm

problem (OMDL) [BNPS03].

Definition 2.1.2 (n-One-More Discrete Logarithm Problem). Let G = (G) be a cyclic
group of prime order q, and let O be an oracle for DLog in G. An adversary A is given oracle
access and may query at most n elements X1, ..., X, € G, obtaining the discrete logarithm x; € Z,
The n-OMDL game is solved if A outputs an additional pair (X*,x*) with X* = z*G and
X*¢{Xy,...,X,}. The advantage of A in solving n-OMDL is defined as

AdvOMPL(A) = Pr[X* = 2*G : 2%+ AX"), X" <8 G, X" ¢ {X1,..., X,}].
The problem is (7, €)-hard if no adversary running in time at most T achieves AdngDL(.A) > €.

In other words, the goal is to solve one additional instance of the discrete logarithm problem
beyond those already solved by the oracle, leveraging the information obtained from previous
queries.
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2.1.1 Hash Functions and the Random Oracle Model

The security of the Schnorr signature scheme is tipically proven in the Random Oracle Model
(ROM), an idealized construct where the hash function H is treated as a random function that an
entity can query to get random responses, but which is consistent for identical queries. Although
it is an idealized model, the ROM is a standard tool for the initial analysis of many cryptographic
schemes.

The Random Oracle Model (ROM). Let G = (G) be a cyclic group of prime order ¢
with generator G and let Z, denote the finite field of integers modulo ¢. Let H be an ideal
hash function with range Z, modeled as a random oracle: an idealized function that assigns
independent, uniformly random outputs to new queries and is consistent across repeated queries.
Formally, H is a random function H : {0,1}* — Z, chosen at random over all maps of that type
with uniform probability distribution.

Tagged Hashes. When the same hash primitive is used in different logical roles, domain sepa-
ration must be enforced to prevent cross-protocol collisions. Following BIP340, given a tag string
tag, the tagged hash Hy,g is defined as

Hiag(m) = H(H(tag) || H(tag) || m).

This construction ensures that for different tags tag, the corresponding H;,g behave as independent
random oracles in the ROM.

In Schnorr-based multi-signature schemes, the following tagged hashes are typically instanti-
ated:

Hagg : for key aggregation coefficients,
Hhonce : for nonce binding,

Hsig : for signature challenge computation.

2.2 The Schnorr Protocol

The Schnorr signature scheme [Sch91] is known for its elegance and simplicity, and it was one
of the first schemes whose security was formally proven assuming the difficulty of the discrete
logarithm problem.

2.2.1 Schnorr Identification as a >-protocol

For a public key X = zG, the Schnorr identification scheme is a 3-move Y-protocol with honest-
verifier zero-knowledge, special soundness, and knowledge soundness.

Special Soundness. From two valid transcripts with the same R and distinct ¢ # ¢/, responses

s, s’ reveal
!
s—s
r = - (mod q).
c—c

This extraction underpins knowledge soundness.

HVZK Simulation. Honest-verifier zero-knowledge follows from the ability to simulate (R, ¢, s)
by sampling ¢, s <$ Z,; and computing R = sG — cX.
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Schnorr Identification Scheme

Prover Verifier
T 482,
R=rG
R
¢ 8 Zyg
c

s=r+cx (mod q)

return sG ~ R+ cX

Figure 2.1.  Schnorr Identification Scheme

2.2.2 Schnorr Signatures via Fiat—Shamir

The Schnorr digital signature is obtained by applying the Fiat—-Shamir transform to the iden-
tification scheme with a hash function modeled as a random oracle H : {0,1}* — Z,.
Let the secret key be x € Z, and the public key X = 2G.

Key Generation (KGen) Each signer chooses a private key x <$ Z, randomly. The corre-
sponding public key X is given by X = z - G, where the operation - is scalar multiplication in the
group G.

Signing (Sign) To sign a message m, the signer performs the following steps:

1. choose a random nonce r <$ Z,. The value r must be secret and used only once, in fact if
a nonce is reused for two different messages, the private key can be recovered;

2. calculate the public nonce point R =k - G;
3. calculate the challenge ¢ = H(R || X || m), where || denotes concatenation;
4. calculate the signature scalar s =7 +c- .
The final signature is the pair o := (R, s).
Verification (Vf) To verify a signature o = (R, s) on a message m with the public key X, the
verifier recalculates the challenge ¢ = H(R || X || m) and checks if
s-G =R+ X

The correctness of this equation is demonstrated by its linear structure.

Correctness. If 0 = (R, s) is computed honestly, then
s:G=(r+c-z)-G=r-G+c-(z-G)=R+c-X.

If the signed message matches the verified message, the equation solves correctly, confirming the
signature’s validity.
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KGen(1%) Signg (m) Vo (m, o)
r4$2Zy; X =2G r4$7Z, (R,s) =0
sk=z; pk=X R=rG ¢+ H(X,R,m)
return (sk, pk) ¢+ H(X,R,m) € Z, return sG = R+ cX
s+ r+cx (mod q)
return o := (R, s)

Figure 2.2. Schnorr Digital Signature Scheme

2.2.3 Security and Core Properties

EUF-CMA security. In the random-oracle model (ROM), Schnorr signatures are existentially
unforgeable under chosen-message attacks (EUF-CMA), assuming the hardness of DLog. The
reduction relies on programming the oracle H and applying special soundness on two forgeries
with the same commitment R but distinct challenges, thereby extracting x. Tightness depends
on the number of oracle queries.

Uniqueness and malleability. Given (R, s) and the verification equation, s is uniquely de-
termined by (R, X, m) once H is fixed. However, if a curve encoding admits both R and —R as
distinct points, signatures (R, s) and (—R, —s) satisfy different challenges H(R,-) and H(—R, -).
Implementations such as BIP340 enforce a canonical encoding (e.g., even-y for R) to ensure
uniqueness of valid encodings and eliminate trivial malleability at the representation level.

Nonce issues. Nonce r must be uniform and secret; deterministic generation with auxiliary
randomness is recommended to avoid RNG failures and side channels (domain-separated hashing
of (x, X, m,aux)). Nonce reuse across messages breaks security: if (R, s1) and (R, s3) are signatures
on my, ms, then

S1 — S2

= d
T p— (mod q),

with ¢; = H(R, X, m;). Even partial nonce leakage or bias can enable key recovery.

Linearity. Schnorr enjoys linear relations:
(7‘1 + T’Q)G = Rl + RQ, (81 + SQ)G = (R1 + Rg) + C(X1 + XQ),

which enables multi-/threshold signing with a single compact signature when the challenge ¢
binds all relevant inputs. Linearity is a feature but also a source of pitfalls (rogue keys, nonce-
cancelation), addressed below.

Batch verification. For signatures (R;, s;) on messages m; under X;, pick independent «; <
Zy and check

Random coefficients prevent trivial linear-algebra attacks that can forge a passing batch without
forging any individual signature.
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Key tweaks. Public keys are tweakable linearly: for ¢ € Z,, define X’ = X +¢G and 2/ =z +1
(mod q), preserving correctness since

sG = R+cX < sG = R+c(X' + (-t)Q).

This property underlies Taproot key-path spending, script commitments, and adaptor signatures.
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2.3 Multi-Signatures Schemes

Multi-signature schemes extend standard digital signatures by allowing n parties, each with a
secret key x; € Z, and public key X; = ;G € G, to jointly produce a single compact signature o
on a common message m.

Syntax A multi-signature scheme MS for n parties is defined as a tuple of PPT algorithms
MS = (KGen, AggKey, Sign, AggSig, Vf)
with the following specifications:

« KGen(1*) — (z;, X;): on input the security parameter A\ = |log, q|, each signer i outputs a
secret key x; <$ Z, and the corresponding public key X; = z;G.

o AggKey(X1,...,X,) = Xag: given public keys of all signers, the algorithm outputs an
aggregate public key X,g that will be shared by all the n party.

o Sign(z;, L,m) — o;: each signer, using the secret key x;, produces a partial signature o; for
the message m € {0,1}*.

» AggSig(o1,...,0,) — o: the partial signatures are aggregated into a single signature o.
« Vfx,,(m,0) € {0,1}: on input the aggregate key, the message, and the (multi-)signature,

the verification algorithm accepts iff the signature is valid.

Correctness. A multi-signature scheme is correct if for all key pairs (z;, X;) € Z,xG generated
honestly, and any message m € {0,1}*,

Vfx,, (m, AggSig(oy, ..., 0n)) =1

whenever o; < Sign, (m) are valid partial signatures.

Additional Properties. Beyond correctness and EUF-CMA security, practical multi-signature
schemes must satisfy the following properties:

o Compactness: the size of the final signature is the same as a Schnorr signature for a single
user, regardless of n, i.e. |o| = O(1).

« Rogue-Key Resistance: naive key aggregation, where the aggregate key is defined by
simple addition, is insecure, since it enables the classical rogue-key attack (see 2.3.2).

» Round Efficiency: the protocol must minimize communication rounds (MuSig2 achieves
two rounds).

« Transparency: multi-signatures should be indistinguishable from ordinary signatures (ideal
for applications like Bitcoin scriptless scripts).

o Accountability: every honest signer can verify that its contribution was included, ensuring
no party can produce a valid signature without active participation of the required subset.

Nonce pitfalls. Beyond keys, nonces can also be abused (e.g., nonce-cancelation or ROS attack)
if aggregated without binding. For example, if two signers publish nonce points Ry, Rs such that
Ry = — Ry, the aggregate R = R; + Rs vanishes, leading to undefined challenges ¢ = H(R, ).
Modern schemes derive nonce coefficients from all nonces, the aggregate key, and the message,
and use commit-reveal rounds to eliminate adaptivity.
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Threshold Signatures. It is useful to contrast multi-signatures with threshold signatures. In
multi-signatures, the set of participants is known, and all n must cooperate to sign. In threshold
schemes, any subset of size ¢ out of n can produce a valid signature. Security definitions are
similar, but threshold schemes additionally require robustness against signer dropout.

2.3.1 Security Model

The standard security notion is existential unforgeability under chosen-message attacks
(EUF-CMA), adapted to the multi-signer setting. An adversary A interacts with to two oracles:

* a signing oracle that on input a subset of signers L C {1,...,n} and a message m, the oracle
runs the signing protocol and outputs a valid signature o.

e a corruption oracle, where the adversary can corrupt some signers to obtain their secret keys

ZTi.

The unforgeability states that no PPT adversary .4 can produce o on m under X,4 unless at
least one corrupted party controls its secret key.

Definition 2.3.1 (MS — EUF — CMA). A multi-signature scheme MSig is EUF — CMA secure if
for any PPT adversary A with access to the signing and corruption oracles, the probability that
A outputs a forgery

(m", 0", Xigg)

such that:

1. Vfx, (m*,0%) =1,

*

2. at least one uncorrupted signer i is included in X,

3. (m*, X:gg) was never queried to the signing oracle with the same set of participants,

1s megligible in the security parameter \.

2.3.2 Rogue-Key Attack

A direct and intuitive extension of the Schnorr signature scheme to the multi-signature context
is the linear sum of keys and nonces. The rogue-key attack exploits the intrinsic linearity of the
aggregation protocol to allow an attacker to forge a joint signature without the cooperation of all
participants. If public keys are aggregated naively as

Xagg = zn:Xl = (zn:xl)G,
i=1

i=1

then a malicious party can bias the resulting public key towards a value for which it knows the
corresponding secret key (i.e. the discrete logarithm), thus compromising the security of the
scheme enabling unilateral signing.

The Naive Construction. The naive multi-signature protocol construction unfolds as follows:
o KGen(1*) — (24, X;) € Zy x G
o AggKey(X1,....X,) = Xagg = 2in1 X
« Sign, (m) = o0; := (R;, s;), where the common challenge is ¢ = H(Ragg, Xagg, M)
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 AggSig(o1,...,0n) = 0 = (Ragg, Sagg) = (2oim1 L 2251 i)
° VfXagg(mv U) =1 <= Sagg * G = Ragg +c- Xagg

This seemingly harmless construction proves to be severely insecure because of a malicious inter-
action among participants.

Attack Description. Consider a scenario with n = 2 signers. The honest party has key
pair (x1, X7) with X; = 21G. The adversary A, instead of generating its key honestly, chooses
X9 = X" — X, for some arbitrary target key X* € G of which the adversary knows the discrete
logarithm x*. When the public keys are naively aggregated as

Xagg = X7+ Xy = )(*7

the resulting aggregate key is the one corresponding to the adversary’s known secret z*, allowing
A to produce valid signatures under any desired X* without knowledge of the honest secret key
xXq.
The attack can be trivially generalized to the case with n > 2 users, where the malicious signer
chooses X; = X* — 5 ;.. X;.

X;=X"-> X;

i#j

This attack shows that naive key aggregation leads to complete forgery: one party can unilaterally
control the aggregate key and sign on behalf of the group without detection. Therefore, any secure
multisignature scheme must incorporate a mechanism to prevent rogue-key attacks.

Knowledge of Secret Key (KOSK). The traditional defense against the rogue-key attack
is to require a “Proof of Knowledge of Secret Key” (KOSK), where each signer must prove the
knowledge of the private key corresponding to their public key before participating in the protocol,
usually through a zero-knowledge proof. However, implementing KOSK is often complex and
inapplicable in many contexts, where there is no trusted entity to provide such proof to. Therefore,
the rogue-key attack is not a minor flaw but an intrinsic and catastrophic defect of any naive
aggregation scheme, making the PPK model a fundamental design condition for any practical
multi-signature protocol. Subsequent research has focused on solving this problem within the
PPK model, without resorting to unrealistic assumptions about key knowledge.

Proof of Possession (POP). This approach is more pragmatic. A POP attests that a party
has access to the private key associated with its public key, in general via a simple signature on the
certificate request. Intuition suggests that POPs should be sufficient to stop rogue-key attacks,
but initial analyses showed this was not the case for some schemes, which remained vulnerable
despite the use of POPs. This observation underscores the need for formal security proofs rather
than empirical or intuitive reliance. The evolution of these schemes required the use of modified
POPs with separate hash functions, which provided the first formal guarantees that POP-based
protocols could be used securely in practice.

Coefficient binding. The standard defense is to introduce key-prefizing or coefficient binding:
instead of computing a simple sum of public keys, each public key is weighted by a coefficient
that depends on all participants’ public keys. Given a list of public keys L = {X3,..., X,,}, the
aggregated key is

n
Xagg = > _a:Xi,  where a; = Hugg(L, X;).
=1
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The aggregate private scalar (if all participants are honest and reveal no secrets) would be

n
Tagg = g a;x; mod q,
i=1

since X,ge = (3, @;x;)G. In this way, each coefficient a; is linked to the entire set L of public
keys. In particular, the coefficient a; for the adversary’s key depends on the same X; chosen by
the adversary, and so do the coefficients for the honest parties. Therefore, the adversary cannot
algebraically cancel out the honest contributions by choosing X, since changing X; modifies the
coefficients in a cryptographically unpredictable way.

Security. Suppose a malicious party chooses X; after seeing honest {X;},.;. Without coeffi-
cients, naive Xpgg = 3>; X; allows setting X; := X* — 3", X;, yielding X,g; = X™ for a public
key X* whose discrete log is known to the adversary. With coefficients,

Xagg = ilale = (iaﬁl‘»G

An adversary who wants the aggregate to equal X* = 2*G would need to choose z; and thus X
such that

Zaimi =z" mod q. (2.1)
i=1

However all a; are functions of the full list L, so a; is a function of X, which in turn is determined
by ;. Thus the equation to solve turns into a nonlinear equation in the unknown ;. Given
the hash used to produce the a;’s, solving this equation by algebraic manipulation is infeasible.
In practice, the adversary would have to either invert the hash (computationally infeasible) or
perform enormous brute force.

Summary. Without coefficients, aggregation is linear and an attacker who chooses a public key
after seeing honest keys can set her key so that the aggregated key equals any target she knows
the discrete log for. This is the rogue-key attack. Coeflicient binding ties every participant’s
contribution to the entire key list L. Coeflicients are computed by a cryptographic hash over L
and each individual public key: changing one public key changes the coefficients unpredictably.
As a result, the simple algebraic cancellation used in the rogue-key attack becomes a nonlinear
problem that requires inverting or breaking the hash, that is computationally infeasible with
secure hash functions and secp256kl-sized parameters. In a real implementation (for example
MuSig2 or similar schemes), the coefficients are computed from the encoded EC points (not only
scalars), and all encodings, ordering rules and hash domain separation must be carefully specified
to avoid subtle attacks.
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2.3.3 The Bellare-Neven Scheme

The work of Bellare and Neven [BNO6] introduced one of the first rigorous treatments in the
plain public-key model, where no trusted setup, certification authority, or PKI assumptions are
made beyond each user publishing a public key. This stands in contrast to earlier schemes that
either relied on a common reference string or stronger trust assumptions. Their scheme, MS — BN,
demonstrated that it is possible to build a secure protocol that prevents rogue key attacks without
requiring complex proofs of key knowledge, laying the groundwork for all future developments in
this field.

The Plain Public-Key (PPK) Model. The protocol operates in the Plain Public-Key (PPK)
model, where it’s assumed that a signer only has a public key, without having to prove they possess
the corresponding private key. This is a realistic and desirable model for decentralized systems,
where there is no central authority for key registration or identity validation.

MS-BN. The core of Bellare and Neven’s solution to the rogue-key attack lies in modifying
how the challenge is calculated. Instead of using a single common challenge ¢ = H(R, L, m), the
MS — BN protocol requires each signer i to calculate a distinct challenge that uniquely incorporates
their own public key. One implementation of this principle is described in the scheme, where each
signer calculates their partial signature on a challenge ¢; that depends on their own key, i.e.
¢i = H(X;, R, L,m).

» KGen: generate random z <$ Z, and X = z2G.
 Sign(z;, L,m): each signer i € [n], performs these signing rounds:

1. choose 1; < Z4, compute R; = r;G and send the nonce commitment t; := Hponce(R;)
to other signers;

2. receive tj, j # 4, and reveal the nonce point R;;

3. once received Rj, if t; = Hnonce(R;), for all j # 4, then abort the protocol; otherwise,
compute R = >, R;, ¢; := H(X;, R, L,m) and send partial signature s; = r; + ¢;z;
(mod ¢);

4. finally, compute s = 3", s; mod ¢ and output the signature o = (R, s).

o Vf(L,m,o): compute ¢; = H(X;, R, L,m) for all i € [n] and accept the signature if sG =
R+ 5 aX;

This modification has a crucial impact: it prevents the attacker from pre-calculating a rogue key
to nullify the contribution of an honest signer. Since each signer’s coeflicient is tied to their own
public key, the attacker cannot manipulate their own key to influence another signer’s coefficient.
The simple and vulnerable linearity of the naive protocol is effectively broken.

Limitations. Despite its importance, the MS — BN has a significant limitation: it does not
support key and signature aggregation. For verification, a verifier must have access to all the
individual public keys of the signers. Consequently, the size of the final signature and the com-
putational complexity of the verification process O(n) scale linearly with the number of signers.

The Bellare and Neven solution solved the security problem but introduced a new trade-off:
inefficiency. By tying each partial signature to a distinct public key, they prevented the rogue-key
attack vulnerability, but they also eliminated the possibility of benefiting from the linearity that
allows for aggregation. This trade-off between security and efficiency created the need for a new
wave of research, which led directly to the development of MuSig, with the goal of regaining the
lost efficiency. The evolution of these protocols is a continuous quest to find the optimal point
between security, compactness, and efficiency.
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2.3.4 MuSig

While the MS — BN scheme provided the first secure construction of multi-signatures in the plain
public-key model, it remained primarily of theoretical interest due to its inefficiency in practice:
it required multiple rounds of communication and was not optimized for deployment in systems
like Bitcoin.

The MuSig protocol [MPSW19] was one of the first practical and provably secure solutions
for the multi-signature problem with key aggregation, directly addressing the rogue-key attack
in an aggregation context. Its security relies on a three-round interactive process, which makes
it relatively cumbersome for real-world applications, especially in environments with network
latency or high communication costs. This trade-off between security and practicality prompted
researchers to seek more efficient solutions.

The scheme The MuSig protocol is a 3-rounds Schnorr-based multi-signature scheme, which
can be seen as a variant of the MS — BN allowing key aggregation in the plain public-key model.
Since it is strictly based on the Bellare and Neven’s work, they changed the way the challenges c¢;
are computed from ¢; = H(L, X;, R, m) to

G = Hagg(Lin) ’ Hsig<Xagg’ R’m)

where X, is the so-called aggregated public key corresponding to the multiset of public keys
L={Xy,...,X,}, defined as

n
Xagg = § a; X;
=1

where a; := H,gg (L, X;) only depends on the public keys of the signers. This way, the verification
equation of a signature o = (R, s) on message m for public keys L = {X1,..., X,,} becomes

n
sG = R+Zai-c-Xi = R+ c- Xagg,

i=1
where ¢ := Hgjg(Xagg, R, m).
In other words, we have recovered the key aggregation property enjoyed by the naive scheme,
albeit with respect to a more complex aggregated key X,gs = > ;" a;X;. Note that using the
old ¢ = Hgg(L, R,m) yields a secure scheme as well, but does not allow key aggregation since
verification is impossible knowing all the individual signer keys.

The Key Aggregation Function

MusSig solves the rogue-key attack while maintaining linearity. Instead of simply summing the
public keys, the protocol aggregates them in a "weighted" manner. The aggregated public key X4
is defined as a sum of individual keys, each multiplied by a random and unpredictable coefficient
that depends on all the participants’ keys.

Let L = (Xy,...,X,) denote an ordered list of public keys. Each key is bound to a coefficient
that incorporates both L and the individual key X;:

a; = Hagg(L; Xz),

where H,gg is a cryptographic hash function modeled as a random oracle. The aggregate key is

n
Xagg = Z a,Xl
i=1

This ensure rogue-key resistance 2.3.2.
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The signing protocol

The MuSig signing process is a 3-round interactive protocol.

Nonce Commitment. Each signer ¢ € [n] samples a random nonce r; € Z,, computes the
corresponding point R; = r;GG, and broadcasts the commitment ¢; := H(R;). This prevents nonce
manipulation attacks, but actually require an extra round.

Nonce Revelation. Each signer ¢ receives commitments t;, j # ¢, and sends back the nonce
point R;.

Partial Signatures. Once received the points R;, j # i, he can check their validity by hashing
and then comparing them with the commitments ¢;. If there exists j* € [n] such that ¢;- # H(R;-)
then abort the protocol; otherwise, compute the aggregate nonce

R=> R
The challenge is then defined as
¢ = Hsig(Xagg, R, m).
Finally, signer ¢« computes and broadcasts its partial signature
si=ri+c-a;x; (mod q).
The final signature is

o=(R,s), S=Zsi (mod q).
i=1

Verification. Verification is identical to the basic Schnorr:

sG . R+ cXyge.

Security and Application

MusSig was designed with explicit attention to the requirements of real-world applications, partic-
ularly blockchain systems: compact signatures indistinguishable from Schnorr signatures, minimal
rounds of communication, and tight rogue-key security. The scheme builds directly on the Bellare—
Neven approach of coefficient binding, but adapts it into a practical protocol.

The advantages of key aggregation for blockchain ecosystems are numerous:

o Data Reduction: A single public key and a single signature, instead of many, significantly
reduce the data needed for each transaction, improving network throughput and efficiency.

o Improved Privacy: Since the aggregated key is the only one visible on the blockchain, the
identities of the individual signers are masked, enhancing participant privacy.

» Efficient Verification: The final signature can be verified by an external entity using
only the aggregated key, in a manner identical to a normal Schnorr verification, making the
process faster and more scalable.

MusSig also achieves strong EUF — CMA security in the ROM, assuming hardness of DLog. The
commitment phase thwarts nonce manipulation attacks, where a malicious signer could bias R to
control the final challenge c.

However, MuSig requires three rounds: this overhead makes it less attractive for latency-
sensitive protocols such as Bitcoin scriptless scripts or Lightning Network updates.
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2.4 MuSig2: Two-Round Schnorr Multisignatures

The MuSig protocol, while innovative and secure, required three communication rounds, a re-
quirement that could be impractical in environments with high latency or where communication
is expensive. MuSig2 was introduced in [NRS21] as a further refinement, with the primary goal
of reducing the communication rounds from three to two, making it significantly more practical
and efficient for real-world use. This optimization was achieved while maintaining security even
in the presence of concurrent signing sessions, a known vulnerability in other two-round schemes.

Technical details

MuSig2 is a multi-signature scheme specifically designed for practical deployment in Bitcoin (Tap-
root upgrade), providing compact 2-round protocol with provable EUF-CMA security under the
secure OMDL assumption in the random-oracle model.

The scheme is a simple two-round variant of the MuSig scheme In particular, it removed
the preliminary commitment phase, so that signers start right away by sending nonces. How-
ever, to obtain a scheme secure under concurrent sessions, each signer ¢ sends a list of v > 2
nonces R;1,...,R;, (instead of a single nonce R;), and effectively uses a linear combination
R = Z;’:l b _1Ri,j of these v nonces, where b is a scalar derived using a hash function.

Key Generation (KGen). Each signer i € [n] generates a random secret key x; <$ Z, and
returns the corresponding public key X; = z;G.

Key Aggregation (KeyAgg). Let L = {Xi,...,X,} be a multiset of public keys. The key ag-
gregation coefficient for L and a public key X € L is defined as KeyAggCoef (L, X') := Hage (L, X).
Then the aggregate key corresponding to L is X := Y " ; a;X;, where a; := KeyAggCoef (L, X;).

First Signing Round. Each signer can perform the Sign step before the cosigners and the
message to sign have been determined.

Sign: foreach j € {1,..., v}, each signer generates random 1 ; <= Z,, computes the corresponding
R, j = r1 ;G and then sends the v public nonce points (Ri1, ..., Ri,).

SignAgg: the aggregator receives (R;1,...,R;,) from each signer i € [n], aggregates them by
computing R; = >1" | R;; for each j € [v] and outputs (R1,...,R,).

Second Signing Round. Sign”: the signer i uses the key aggregation algorithm to compute
X and stores its own key aggregation coefficient a; = KeyAggCoef(L, X;). Upon reception of
the aggregate first-round output (R, ..., R,), the signer computes b := Hpon (X, (Ry,..., R,), m).
Then it computes

y v
R = Z bjiley C = Hsig(X7 R7 m)7 §j 1= C-a;T; + Z bjilri’j
=1 =

and outputs s;.
SignAgg’: the aggregator receives (s1,. .., s,) and output the aggregated s =Y, s; (mod q).
Then, each signer compute the signature o := (R, s).

Verification (Vf). Given an aggregated public key X , a message m and a signature o = (R, s),
the verifier accepts the signature if sG = R + cX.
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KGen() Sign’(st;, out, x;,m, L)
<82y, X =2G (ria, .. Tiy) = st;
return (z, X) a; = KeyAggCoef(L, X;)

X := KeyAgg(L)
(Ry,...,Ry)) :== out
b:= Hnon(jzv ((R17 ) RV))’ m)

KeyAggCoef (L, X;)
return H,g (L, X;)

KeyAgg(L) R:=Y b1 R,

(X1,..., X} =1L =

a; = KeyAggCoef(L, X;),i € [n] c:= Hgg(X, R,m)

return X := ZaiXi 8; 1= ca;r; + Zm,jbj_l mod ¢
i=1 Jj=1

return (st;,out}) := (R, s;)

Sign() // signer i

Ti <8 Zq,j S [V] SlgnAgg/(OUtlla s 7OUt{rz)
R;; =ri ;G (81,--.,8n) := (outy,...,out)
out; = (Ri1,...,Riy) n
Sti = (”,17 . ,7‘7;’,/) 5= Zl 5i mod q
return (out;, st;) return out’ :— s
SignAgg(outy, ..., outy,) Sign”(st!, out')
(Ria, ..., Riy) = outy,i € [n] R := st} s := out’

n
R; = ZRij’j e [v] return o := (R, s)

i=1 ~
return out := (Ry,...,R)) VE(X,m, o)

(R,s) =0

c:= Hsig(f(,R, m)
return SG;R—FC-)}

Figure 2.3. The MuSig2 protocol

Nonce Handling. FEach signer 7 generates two secret nonces r; 1,752 <$ Z, and the correspond-
ing public nonce points R; 1, R; 2. Each signer sends these nonce points to the others. This step
can be performed in advance, even before the message to be signed is available. Once all signers
have received the public nonces from the others, the first communication round is complete.
Instead of a commitment scheme, security relies on requiring each signer to deterministically de-
rive nonces from a secret seed and the message. This prevents adaptive nonce biasing and re-use
vulnerabilities.

The aggregate nonce is computed as R = Ry + b+ Ry, where b = Hyon(Ry, Xagg) m) ensures the
binding of the second component to the message, preventing cancellation attacks.

The extra nonce and coefficient b eliminate attacks where a malicious signer adapts its nonce to
bias R or to cancel honest nonces, while keeping the protocol two-round and non-interactive with
respect to the message once commitments are fixed.
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Security Analysis

MuSig2 is proven secure using only v = 2 nonces in the random oracle model (ROM) using a
weaker assumption of the One-More Discrete Logarithm (OMDL), which strengthens the DLog
problem to capture settings where an adversary has access to an oracle but must solve one more
instance than queries made. This models the availability of multiple public keys and partial
signatures in a multi-signer setting.

In the algebraic OMDL (AOMDL) variant, whenever A queries to the DLog oracle a group
element X, it is required to include an algebraic representation («, (3;)ic[) such that

C
X = oG+ BiXi,
i=1
where ¢ is the number of challenge group elements it has received thus far.
The scheme ensures robustness against rogue-keys, nonce cancellation, and adaptive biasing at-
tacks, while maintaining only two rounds of interaction, a significant efficiency improvement over
prior multi-round protocols:

o Two-Round Efficiency: MuSig2 eliminates the commitment phase, requiring only two
rounds (nonce exchange, partial signatures). This reduction significantly improves deploya-
bility in interactive protocols.

» Rogue-key resistance: coefficient binding a; = H(L, X;) ties each contribution to the full
set {Xj}je[n}~

« Robust nonce soundness: the new two-component nonce structure with binding factor b
prevents both replay and biasing attacks without requiring interactive commitments.

o Tweak-compatibility: linearity preserves correctness under Taproot tweaks X' = X +tG.

Implementation notes.

Nonces must be single-use per message and session; deterministic generation with auxiliary ran-
domness is recommended, but precomputation of nonces must include a binding to future session
identifiers to avoid cross-session reuse. Batch verification applies as in the simple Schnorr scheme
with the aggregate key.

Deterministic Nonces A variant of MuSig2, known as MuSig-DN [NRSW20], focuses on the
use of deterministic nonces to mitigate the risk of nonce reuse, a vulnerability that can lead to
catastrophic private key loss.

Standardization and Adoption. MuSig2 is standardized in Taproot-enabled Bitcoin scripts,
enabling efficient collaborative custody, payment channels, and multi-party scripts. It has been
formally deployed in the proposal BIP327 and its implementation has been integrated into the
“libsecp256k1” library. Ome of the biggest advantages of this adoption has been for off-chain
protocols: two-round multisignatures reduce latency in payment networks such as the Lightning
Network, where interactive signing is frequent and must remain lightweight, or Ark which allows
the UTXO sharing using key aggregation.

The evolution from MuSig to MuSig2 is an example of cryptographic engineering. MuSig, while
secure, had a three-round interaction that made it susceptible to network delays and failures.
The reduction to two rounds in MuSig2 is not a simple incremental improvement but a critical
optimization that made it robust and suitable for production environments. Its focus on issues
like concurrent sessions, pre-processing, and standardization demonstrates a clear evolution from
theoretical proof to practical readiness for the real world.
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2.5 Further Constructions and Pitfalls

While MuSig2 represents a major step forward in practical multisignature design, the line of re-
search did not stop there. Subsequent works focused on addressing two main directions: improv-
ing efficiency through signature aggregation and adaptor signatures, while maintaining security
against ROS-type attacks.

The ROS Problem The ROS problem arises when an adversary manipulates concurrent sign-
ing sessions to bias the final challenge value or to reuse nonces across different contexts. Even with
deterministic nonce generation, improper binding between nonces, messages, and participant keys
may lead to leakage or forgery opportunities. Recent refinements of MuSig2 and its successors
introduced stricter session separation and domain separation mechanisms, ensuring that nonces
cannot be correlated across distinct executions. This line of defense was crucial in deploying
multisignatures securely in adversarial environments such as the Bitcoin protocol.

Signature Aggregation Another major improvement concerns signature aggregation, which
extends the concept of multisignatures to collections of independent signatures on distinct mes-
sages. Unlike multisignatures, where all participants sign the same message, aggregation schemes
allow multiple signers to compress their signatures into a single short proof, significantly reduc-
ing storage and verification costs. This is particularly relevant for the Bitcoin system, where
transaction throughput and block space are scarce resources.

Adaptor Signatures Adaptor signatures enable conditional transfer of knowledge using Schnorr’s
linearity. Given a point 7' = tG (an adaptor) and a pre-signature (R',s’) with R = R' + T, the
final signature is

o= (R, s +1).

Anyone knowing o and (R, s’) learns t = s — §; conversely, without ¢, (R, s) cannot be produced.
This mechanism realizes atomic swaps and Lightning HTLCs without on-chain scripts, relying on
DLog hardness and standard Schnorr verification.
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Chapter 3

The ROS problem

A well-known problem in modern cryptography is the ROS problem ( Random Inhomogeneities
in a Overdetermined Solvable system of linear equations). First introduced by Schnorr [Sch01]
in the study of blind signature schemes, a key component of anonymous digital cash, the ROS
problem has since attracted considerable attention. The relevance of the ROS problem lies in
its direct relationship with “one-more signature forgery” attacks, in which an adversary interacts
¢ times with a legitimate signer and manages to produce ¢ + 1 valid signatures. Unlike tradi-
tional attacks that attempt to solve public key-related problems such as the discrete logarithm
(DLog)), the ROS attack is generic in nature and does not depend on the signer’s public key. This
makes the ROS attack an intrinsic threat that cannot be countered by traditional countermea-
sures based on key indistinguishability. The problem is not simply solving a linear system, but
rather finding a solvable subsystem among a multitude of instances, where the known terms (the
"inhomogeneities") are generated by a random oracle.

The security of several interactive signature schemes, including threshold, multi-signature, and
blind signature schemes, has been shown to be closely tied to the hardness of the ROS problem.

3.1 Formal description

Given a polynomial p = po + p121 + ... + pexe € Zglx1, ..., x4 of total degree 1, let p € Zf; be
the vector having at the i-th position the coefficient of x;, i.e. p = (p1,...,pe). Observe that the
constant term is not included.

The ¢-dimension ROS problem is stated as follows:

Definition 3.1.1 (ROS problem). Given a prime number q and access to a random oracle
Hros Zg — Zgq, the (-dimensional ROS problem asks to find (¢ + 1) vectors p; € Zg for
i € [(+1], and a vector ¢ = (c1,...,ce) such that

Hros(p;) = (p;,c) Vie[(+1]. (3.1)

In matriz form, the problem is

Hros(p1) [ S S W) c1

Hros(P2) P21 - P2 o
R I . , (3.2)

Hros (P¢11) Pes1l - Pryle c

It is always possible to find ¢ (out of £ 4 1) “partial solutions” to the ROS problem. Consider
i € [{] and define the polynomials p,;(z) = x; € Zg[x1,...,x¢]; observe that the elements p; are
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the rows of the identity matrix of size ¢, i.e.

Hros(P1) ! 0 .
) 0 1 ... 0
Hros(p2) | | : “ (3.3)
- 0 0 .. 1 '
Hros (Py11) Plll  -oe oo Pryl “

Define ¢; := Hros(p;), such that, for all ¢ € [¢], it holds that

(Pis (c1,...,ce)) = Hros(p;)

In general, any list of £ polynomials of the form p; = p;;z; for p;; € Z;,i € [(], is a valid partial
solution, as long as ¢; := p;ﬂ»lHRos(ﬁi).

The supposedly computationally hard problem is to find the last partial solution, that is, a non-
trivial linear combination p,; of these values ¢;, that matches the hash image Hros(p1)-

Evolution of the attacks

One of the first cryptanalytic approaches to this problem was given by Wagner in [Wag02], in-
troducing a solution with sub-exponential time complexity to the ROS problem. ROS solutions
consist of finding a coefficient vector ¢ that satisfies a system of linear equations. This can be
reformulated as a k-sum problem over an additive group, where each element in each list is a term
of the equation and the goal is to find a combination that sums to zero (or to a constant).

Fix p,., = (1,...,1) and build ¢ lists L1, ..., Ly such that the i-th list is populated with polyno-
mials of the form p; = p; ;z; for random p;; € Z;.

For every element in the list L;, consider its respective coefficient ¢; = p; THros(P;).

Build an efficient algorithm that finds ¢; ’s satisfying

(Pey1,¢) = aa+...+cr = Hros(Pri1),

i.e. solving the ¢-list birthday problem (see Appendix A). Wagner showed that the above problem
can be solved in time O(¢ - 2M°g4a1/(1+og£])) “improving the attack by using multiples of (1,...,1)
as py.1, which now reduces ROS to the (¢+1)-list birthday problem yielding a subexponential
complexity, whenever ¢ > log A signatures are issued concurrently. At the time, it had major
consequences to cryptanalysis, especially to schemes using the hardness of the ROS problem as
part of their security assumptions.

However, the ROS problem itself allows for much more flexibility for the attacker: for example,
the attacker can consider a subset of ¢; ’s (by setting some entries of p,,; to zero), in which case
we end up with a subset-sum problem that is, in general, NP-hard.

Wagner’s solution shows that, although the problem had not been studied in general before, his
algorithmic techniques can be applied with devastating effects to ROS and other cryptographic
schemes, revealing an underlying vulnerability that was not previously considered.

Almost twenty years later, Benhemouda et al. [BLL'22] expanded Wagner’s approach pro-
viding a polynomial solution to the ROS problem that runs in polynomial time for dimension
¢ > logy ¢ and a combination of this with Wagner’s algorithm to make the attack effective even
for smaller dimensions, thus proving the insecurity of many Schnorr-based blind signature schemes.
Unlike Wagner’s attack, which searches for a probabilistic solution, the polynomial attack con-
structs one. This method leverages the high number of available parallel interactions (¢ > A\ =
[log q], where A is the bit length of the modulus ¢) to transform the ROS problem into a subset
sum of powers of two, which is trivial to solve.

One of their main results is stated as follows:

40



3.2 — The polynomial attack

Theorem 3.1.1 ([BLL*22]). Let Pgen(1*) be a parameter generation algorithm that, given as
input the security parameter \ in unary, outputs an odd prime of (bit) length X = [logaq]|. If
£ > A, then there exists an adversary that runs in polynomial time and solves the ROS problem
relative to Pgen with dimension £.

The idea of the proof is to build an attacker capable of constructing a polynomial whose coefficients
depend on the information extracted from ¢ opened sessions. Then, it leverages the recursive
nature of the ROS problem to obtain the target values ¢ and p,,; from (3.1), since the index i is
in the interval [( + 1] = {1,...,¢+ 1}. The crucial premise is that the number of dimensions ¢ is
sufficient to accommodate the full binary decomposition of the target value.

The polynomial attack proposed in [BLL 22| was recently revisited in [JLS25]. This yields the
first polynomial-time solution to the ROS problem for ¢ 2 0.725-1og, p, together with an improved
version of the generalized ROS attack: combined with Wagner’s algorithm, the approach further
reduces complexity for dimensions below 0.725-log, p. An implementation also demonstrates that
the attack breaks the one-more unforgeability of blind Schnorr signatures over 256-bit elliptic
curves in a few seconds with 192 concurrent sessions.

3.2 The polynomial attack

The goal is to construct an adversry A for a game ROSpgen 4.¢()\), where ¢ > log g, that outputs
(Pi)icje+1) and ¢ = (c1, ..., c¢) such that

Hros(B;) = (Bne)  fori=1,....0+1.

The game is formally described in Figure 3.1.

Game ROSpgen, 4,0(\)

q + Pgen(1?)

((B)icier).e) A5 (q)

return (W Fiell+1: p#Fp; N (po) = HROS(@:))

Figure 3.1. ROS Game

Polynomial Construction. The adversary A can always define ¢ partial solutions by choosing
two sets of ¢ polynomials,

pgo) =, pgl) = 2z, fori=1,...,¢
(®)

The coefficients ¢; ’ are derived from the random oracle Hros as

o = 27" Hros(p")  for b e {0,1}.

(2

If there exists i* € [¢] such that cl(?) = cl(1 ) then A stops immediately and returns the ROS

solution (p\”, ..., [)go), p) and (V.. ,cﬁo)).

Otherwise, if CEO) + cgl) for all ¢ € ¢, define the linear polynomial
= —— (3.4)

such that fi(cgb)) = b, for b € {0,1}.
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Decomposition. The adversary A constructs the multivariate polynomial of total degree 1

¢
Prir (@1, w) = Y 27Mi(w) = peyro+ peria® -+ por e,
i=1
and defines
Y = pey1,0 + Hros(Per1) = pevr0 + Hros((pes1,1, - - -5 pes1e))- (3.5)

Since ¢ > A, i.e. 2¢ > g, it is possible to write ¥ in binary form as
E .
y = ZT‘lbi mod g,
i=1

this implicitly defines the b; € {0,1} coefficients.

Final Forgery. The adversary A outputs the ROS solution

A(b A(be) A b b
(pgl),...7p§"),pf+1) and c::(cgl),...,cée)). (3.6)

In fact, for ¢ € ¢,
(B ) = 2" = Hros(p™),

7

while for i =¢+1

¢ ¢
(Pri1:€) = pria(€) —perio = 27 Mi(cl) — poro = Y270 — priro = Hros(Bpyr)-
i-1 i=1
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3.3 Blind signatures protocol

For simplicity, as in [Sch01, BLL'22], it is better to explain the attack on the Schnorr blind
signatures, i.e. schemes where a signer, who controls the secret signature key, can append his
signature to a message without knowing its content, an operation fundamental to privacy.

For example, a user might want a server to sign a message that he does not want to reveal. By
slightly altering the message (e.g. adding a random value) and then sending it to the signer, the
signature the server returns on that altered message can be later used by the user to recover the
original signature.

3.3.1 The blind scheme

As in the previous sections, assume the existence of a group generator algorithm Pgen(1*) that,
given as input the security parameter in unary form outputs a cyclic group (G, +) of prime order
q generated by G. Assume that the prime g is of length A, so it holds A = log, ¢. In Schnorr blind
signatures, a signing key is a scalar sampled uniformly at random z <$ Z,, and its respective
verification key X = xG in the group G.

A signature for a message m € {0,1}* is a pair (R,s) € G x Z, such that sG — cX = R, where
¢ := H(R, m), thus requiring the same verification process as the classic Schnorr scheme.

As described in [CP92], the signature protocol is called blind if it generates a signature (R, s) that
is statistically independent of the interaction that provides the view of the signer. Later on, blind
signatures cannot be identified and related to the signer interaction.

The protocol is shown in 3.2.

Schnorr Blind Signature
User(X,m) Signer(z)

jno]]

o, B <% Zg
R:= R+ oG+ BX
c¢:=H(R,m)
ci=c+p

check sG Lex +R

s =5+«

return o := (R, s)

Figure 3.2. Schnorr Blind Signature signing protocol
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In order to generate a blind signature (R,s) the user picks random numbers a, f < Z, and
responses to the commitment 7G by sending the challenge ¢ = ¢ + 3, where ¢ := H((r + a)G +
X, m) € Zy. After receiving s = + cx € Z, it is possible to compute s = 5+ o and ¢ = ¢ — .
Here o randomizes the response s, while 5 hides the challenge ¢, making the final signature
unlinkable to the original interaction. The generated signature (R, s) is uniformly distributed
over all signatures on message m due to the random «, 8 <$ Z, and is produced for a unique pair
(o, B) such that « = s —sand f =¢—c.

Validity. Given the output of the interaction (R, ¢,5) = (R,c+ 3,5 — a), it holds
sG—cX = (r+cx+a)G—(c—pP)X = (r+a)G+ X = R.

Hence, H(sG —cX,m) = ¢— [ = ¢ and thus (R, s) is a valid signature. Intuitively, the verification
succeeds because the blinding factors «, 5 only shift the relation without altering its validity, thus
“hiding” the original interaction.

3.3.2 Building the attack

Thanks to [BLL22], it is possible to construct a probabilistic polynomial-time adversary A that
is able to produce (with overwhelming probability) ¢+ 1 signatures after opening ¢ > X\ = [log, ¢]
parallel sessions. When applying the ROS attack to cryptographic schemes, it is mandatory to
accept a negligible failure probability and use the additional flexibility in the random oracle input
to use polynomials p, = x; (instead of either z; or 2z;, for ¢ € [¢]). This simplifies descriptions
and makes attacks easier to read. The attack proceeds as follows.

The adversary A selects arbitrary messages my,...,myr; € {0,1}* for which it will output a
signature. It opens ¢ sessions, obtaining the first message from the signer and receiving R =
(Rl, .. ,Rl) € G~

For i € [{], A samples uniformly at random three blinding factors (o o, i1, 5i) <5 ZZ’, and defines

Rip = R+ ;3G + ;X forbe {0,1}. (3.7)

Let ¢ := H(R;p,m;) for i € [¢(] and b € {0,1}. Assume ¢ # ¢} and fail otherwise (actually the
failure probability is negligible).
Define the polynomial p € Z,[x1,. .., z¢]:

L
i=1

(==}

Ty — C;

~

l
p(z1,...,x0) = 22171 .
i=1

=)

1

S

Observe that the above polynomial is such that, for any (by,...,b,) € {0,1}¢ it holds

p(ch, ... ) = > 27 (3.9)

Let Reyq == (p,R) = Y'_, piR; (the constant term py is not included).
Define cp11 := H(Ry41,me11) and consider the binary decomposition

L 4
cer1 =) pifitpo = Y 27 b (3.10)
i=1

i=1

Let ¢ = (& + 51, ..., Cz‘f + ) and complete the ¢ opened sessions by replying to the i-th session
with ¢, for ¢ € [/].
The adversary thus obtains ¢ responses § := (81,...,8) € Zf;, and defines s,y == (p,8) =
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Zf:1 PiSi-
Finally, A proceeds unblinding the ¢ honest signatures by computing s := (51 -+, ..., Se+oup,)
and outputs the ¢+ 1 forgeries (m;, (R;, 5:))icje+1), defined as:

Ri+ai 1G+ iX,EiJraii for ’L-Zl,...,f,
(Riasi)_{ ( bii + P 5) (3.11)

(2521 pil;, Zle piEi) for 1=4¢+1.

Validity. By perfect correctness, the first ¢ signatures are valid, in fact for i € [¢]:
R = Ri+a;p,G + B;X = 5,G — & X + aip,G + B X = 5,G — ' X,

where 3, satisfies 5,G — & X = R; and cﬁ’ = H(Rip,, m;) = H(R;, m;) since R;p, = R;.
For the forgery case (mg41, (Ret1, Se+1)) it holds

¢ ¢
Ryy1 = ZPZ‘R@' = Zpi(giG — ¢ X) =5011G — ce11 X,
=1 =1

where ¢p11 = H(Rg41, mey1). The second equality comes from the fact that 5,G — ¢; X = R;.
The last equality comes from:

14

¢ ¢ ¢ ¢ ¢
Yot = D> picti Y piBi = p( )+ piBi—po = D27 b+ pilli—po = coa.
i—1 i=1 i=1

i=1 i=1 i=1

3.4 Attack on multi-signatures

This section presents the ROS parallel attack on a multi-signature scheme that allows key aggre-
gation [NRS21]. Suppose n = 2 for simplicity.

3.4.1 Building the attack

The attack requires an adversary A to open ¢ concurrent signing sessions, in which it plays the
role of the signer with public key X5 = x2G, and receives ¢ nonces Rgl), e ,Rg) from the honest
signer with public key X; = 21G. Let

X = a1X1+a2X2

be the corresponding aggregate public key. Given a forgery target message m*, A computes
R = Zle R&” and uses Wagner’s algorithm to find nonces Rg) to reply with such that

14
= Zc(i), (3.12)
i=1

where () = H()N(,Rgi),Rg),m(i)) and ¢ := H(X, R*, m*).

Having received Rgi), the honest signer will reply with partial signatures s )

?) = r%" + @) ai121.-

Let r* = le TY) = log(R*). The adversary is able to obtain

¢ ¢ ¢
s] = ngl) = Zr?) + (ZJ”) caqry = 4 agr
i=1 i=1 i=1

and then compute the value
s = si+c" agry = 4 (e + agxa),
thus leading to a valid forgery (R*, s*) for the message m* with signature hash ¢* = Hsig()? , R*,m™*).
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3.4.2 MuSig?2 solution

The attack relies on the ability to control the signature hash by controlling the aggregate nonce
R(Z) + R(Z) in the first round of each of the concurrent signing sessions. Since all signers must know
the aggregate nonce at the end of the first round, it seems hard to prevent the adversary from
being able to control the aggregate nonce on the LHS without adding a preliminary commitment
round. Our high-level idea to solve this problem and to foil the attacks is to accept that the
adversary can control the LHS of the equation but prevent it from controlling the RHS instead.
Each signer ¢ € [n] sends a list v > 2 nonces R;1,..., R;, and uses a random linear combi-

nantion of those nonces .

Ei = ij_lRm‘,
j=1

where b is a scalar derived via a hash function as
b : non Zth-"vZRi,v)vm
i

Since the values R; ; end up as input to a hash function, one may wonder why it’s used the sum
> ieq R; ; instead of simply concatenating all nonces. This trivial solution will also tields a secure
scheme, but the aggregate > ;' | R; ; anyway need to be computed when computing

B=S S W R, =S 0 (ZRJ).

As a result, whenever the adversary A tries different values for Ry, the coefficient b changes, and
so does the honest signer’s effective nonce Ity = 377, V1R, ;. This ensures that the sum of the

honest signer’s effective nonces taken over all open sessions, i.e. R* = Zk 1 R , is no longer a
constant value.

Single Nonce.  One might think of falling back on a single nonce (v = 1) but in fact relying
just on the coefficient b such that Ry = b- R;. However, then the adversary can eliminate b by

redifining R* = Zk 1 Ry, which is independent of all b(k) and considering the equation
¢ % (k) (k) k
Haig (X, 0% - (R} + Ry”), m®)) S e s
Z : b(lk) : = Haig (X, R",m")
k=1

instead of (3.12) to perform the attack.
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3.5 Dimensional eROSion

One of the most recent results obtained in the field of ROS research is due to the work of Joux,
Loss, and Santato [JLS25], which builds on existing cryptanalysis and presents several significant
contributions:

« a polynomial-time attack that extends the range of dimensions for which a polynomial solu-
tion is known, reaching a new bound of £ > 0.725 - log, ¢;

» an improved version of the generalized ROS attack, which combines Wagner’s algorithm
with the new polynomial attack, outperforming the complexity of the previous version for
an additional range of cases with dimensions smaller than 0.725 - log, ¢;

o the practical demonstration of the polynomial attack, which breaks the one-more unforge-
ability of Schnorr blind signatures over 256-bit elliptic curves in a few seconds, using 192
concurrent sessions.

3.5.1 The Multi-Base Decomposition Attack

The previous polynomial attack described in [BLL"22] used a binary decomposition to solve the
ROS problem. An adversary A would select two sets of polynomials, each providing a valid partial
solution for a vector ¢. For each element i, A would construct a linear polynomial f; that satisfied

fi(c)=0 and fi(c;)=2""1.

This setup allowed any number up to ¢ to be expressed as a linear combination of the ¢; values,
with coefficients determined by the binary digits of the number.
This new method starts from the intuition that using a larger decomposition base, such as ternary,
can require fewer digits and therefore a smaller number of dimensions ¢ needed for the attack,
since logs ¢ < log, q.

A naive approach to replicate this property in a ternary decomposition would require finding
a linear polynomial f; that satisfies three conditions:

f,(c) =0, fi(c))=3""1 and fi(c?)=2-3"1

However, this approach fails because an exact solution would lead to a quadratic polynomial,
violating the linearity requirement of the ROS problem.

To overcome this issue, the authors introduce an innovative technique that leverages lattice
theory to find an approximate solution to the system of linear equations that defines the conditions
for the polynomial. By solving a closest vector problem (CVP) in a two-dimensional lattice, the
adversary can find an approximate constant yu; for each f;. This approximation introduces a small
error term, d;p, of magnitude approximately g2

The ternary decomposition attack then proceeds in two phases to address the problem of
these errors. First, the higher-order digits of a number z are decomposed using the approximate
ternary polynomials f;(x;), which introduces a cumulative error. The residual value, which is
approximately of size ¢*/? and includes the accumulated errors, is then handled in a second,
final, and exact phase, using the original binary decomposition attack. The combination of an
approximate ternary decomposition for the higher digits and an exact binary decomposition for the
remainder results in a solution that requires approximately 1/2logs ¢ + 1/2log, ¢ =~ 0.815 - logs g
dimensions, a significant improvement over the previous bound of ¢ > log, q.
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The Generalized Attack

The authors further extend this concept to support decompositions in any base B > 2. Using a
larger base B allows for more dimensions to be saved to represent a number, but introduces a
larger approximation error. The solution to this trade-off is a multi-stage process that balances
these effects.

The process begins by using a larger base to approximate the higher-order digits, gradually
reducing the base as the introduced error becomes comparable to the powers being approximated.
This process continues until base 2 is reached, at which point the decomposition can be concluded
with an exact final step. This sophisticated multi-base decomposition approach demonstrates
a deep understanding of the causal relationship between base size, dimensionality, and error
magnitude. A naive choice of an arbitrarily large base to minimize dimensions would lead to
an unmanageable error. The multi-stage, decreasing-base strategy systematically manages these
competing forces, ensuring that the accumulated error remains small enough for the final step.

The final result of this generalized technique is an attack that requires a number of dimensions
approximately equal to 0.725 - log, g. The paper notes that this bound is nearly reached even for
relatively small values of B (e.g., for B = 6, ¢ =~ 0.746 - log, q; for B = 8, { ~ 0.737 - log, q).
This suggests that for practical purposes, the theoretical asymptotic bound is not far from the
performance achievable with a small number of bases, indicating that a real attacker does not
need to implement a complex high base algorithm to achieve most of the benefits.

3.5.2 Trade-offs and Fine-Tuning

The practical implementation reveals trade-offs not always evident in the theoretical proof. The
proof relies on worst-case bounds to ensure asymptotic performance, but an attacker can leverage
probabilistic effects and intelligent heuristics to achieve better performance than theoretically
guaranteed.

o Approximate CVP solutions: The proof assumes exact solutions to the CVP problem.
However, in practice, approximation algorithms like LLL and Babai can be used to reduce
the runtime of the setup phase at the expense of a slight reduction in the decomposition
success probability.

o Digit-by-digit vs. base-by-base decomposition: The paper compares two decomposi-
tion methods. The digit-by-digit decomposition can be more robust, as it handles approxi-
mation errors partially at each step, unlike the base-by-base method.

» Reordering lattices: A sophisticated technique involves estimating the "quality" of a lat-
tice, which can be estimated from its Gram-Schmidt orthogonalization. Low-quality lattices
(those that produce larger errors) can be reordered to higher positions where their impact
on the final result is less critical, allowing for a more aggressive choice of dimensions.

The existence of a successful but less reliable aggressive attack shows that the work of the crypt-
analyst does not end with the formal proof; the implementation phase offers crucial avenues for
optimization and a deeper understanding of the practical limitations of the attack.
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3.6 Conclusions

The evolution of attacks on the ROS problem has deeply influenced the security assumptions of
Schnorr signatures and related protocols. Initially, security was believed to hold for any non-
polylogarithmic number of parallel sessions. However, the polynomial-time attack of Joux et al.
[JLS25] showed that security breaks already for ¢ > 0.725 - log g, extending and surpassing the
previous log ¢ bound [BLL*22]. For a 256-bit elliptic curve, this reduces the threshold to about
192 parallel sessions—negligible compared to the millions of concurrent sessions routinely handled
by modern servers.

The practical results confirm this vulnerability: the Joux et al. attack, requiring ¢ = 192
sessions (instead of the classic polynomial attack that requires ¢ > 256), can be executed in just
a few seconds on standard hardware, thus breaking the one-more unforgeability of blind Schnorr
signatures over 256-bit curves. These findings highlight that the “critical dimension” for security
has been reached and even surpassed, transforming ROS-based weaknesses from a theoretical
concern into a concrete and scalable threat.

This “dimensional race” has progressively shifted the security threshold from ¢ > logq to
£ > 0.725 - log g, now within the range of practical large-scale attacks. Moreover, the com-
bined approach of Joux et al., which integrates Wagner’s subexponential method with the new
polynomial technique, further improves the trade-off between complexity and dimension, offering
significant efficiency gains compared to earlier approaches. A comparative summary of the main
methodologies is shown in Table 3.1.

Attack Type Complexity Dimension (/)
Wagner sub-exp O(Z . 21°gq/(1+1°g€)> (=2v—1
BLL+21 poly O(poly(q)) ¢ > log, q
BLL+21 (combined) | sub-exp O(2Y+ L) >2Y -1+ A= (w+1)L]
Joux et al. poly O(poly(q)) ¢>0.725log, q

Table 3.1. Comparison of the main ROS attack methodologies.

Despite these advances, several open questions remain. Wagner’s analysis [Wag02] relies on the
conjecture that his algorithm succeeds with constant probability, but a formal proof is still lack-
ing. Furthermore, the new polynomial-time attacks do not currently apply to variants of the
ROS problem, such as mROS (Modified ROS) or WFROS (Weighted Fractional ROS), which
could potentially offer greater resistance. Future work may therefore focus both on reinforcing
cryptographic schemes with countermeasures, e.g. introducing non-linearities to prevent linear
decompositions, and on testing the applicability of these attacks to more general ROS variants.
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Chapter 4

Cross-Input Signature
Aggregation with DahLIAS

In the world of distributed systems, verifying a large number of individual signatures represents
a significant computational and storage cost. To mitigate this problem, multi-party signature
schemes have been developed. The research document distinguishes between multi-signatures,
threshold signatures, and aggregate signatures. Multi-signatures, such as MuSig2, are designed
for a group of parties signing a single common message to produce a single compact signature.
In contrast, aggregate signatures are designed for a different application: they allow multiple
signers, each with their own key and distinct message, to produce a single, short signature that
simultaneously attests to the validity of all the individual signatures. This functional distinction
makes aggregate signatures particularly suitable for use cases like Bitcoin transactions, where
multiple users sign for their own separate inputs.

Despite their potential for saving space and accelerating verification, the design of modern
aggregate signature schemes based on the discrete logarithm (DLog) problem in pairing-free groups
has received less attention. Existing solutions, such as BLS signatures, rely on pairing-based
groups that are not compatible with the elliptic curve secp256k1 used in Bitcoin. This highlights
a long-standing open problem: the existence of an interactive aggregate signature scheme with
constant-size signatures directly derived from pairing-free groups.

4.1 CISA: cross-input signature aggregation

The Bitcoin protocol, despite its robustness and decentralized nature, faces inherent challenges
related to its on-chain transaction throughput and privacy model. The network’s design, con-
strained by an average block creation time of 10 minutes and an original block size limit of 1 MB,
imposes a maximum transaction processing capacity that is estimated to be between 3.3 and 7
transactions per second. This technical bottleneck has significant economic consequences. When
network activity is high, the limited block space leads to increased competition, resulting in higher
transaction fees and processing delays for users.

Simultaneously, the privacy of transactions on the Bitcoin blockchain remains a persistent
concern. While Bitcoin operates on a pseudonymous basis, with transactions linked to addresses
rather than personal identities, the public and transparent nature of the blockchain makes all
spending histories globally visible. For individuals and businesses seeking to maintain finan-
cial confidentiality, this transparency can be problematic. The issue is exacerbated for complex
transactions, particularly those involving multiple inputs, which can reveal more about a user’s
spending habits and wallet structure. Such patterns are readily identifiable by sophisticated chain
analysis and can, in certain contexts, pose a genuine security risk to users, including human rights
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activists operating in hostile regimes.

The economic and privacy challenges are intrinsically linked. Privacy-enhancing protocols, such
as CoinJoin, often involve transactions with a larger data footprint due to their multiple inputs
and corresponding signatures. This greater size results in higher fees, which can deter users from
adopting these privacy measures. The act of paying a premium for a more complex, private
transaction can itself function as a signal to observers that the user is attempting to conceal
something, thereby creating a new vulnerability. This dynamic transforms a simple economic
barrier into a potential social and political risk, further limiting the normalization of private
transactions.

4.1.1 The CISA Proposal

Cross-Input Signature Aggregation (CISA) is a proposal to address these interconnected
issues by fundamentally altering how signatures are handled within Bitcoin transactions.

CISA aims to reduce the data footprint of multi-input transactions by combining multiple signa-
tures into a single, smaller signature. The core objective is to make transactions with numerous
inputs, which are essential for collaborative privacy tools like CoinJoin, significantly cheaper and
more efficient. By providing a modest reduction in transaction size, CISA could increase the total
number of transactions that can be included in a block, thereby improving on-chain scalability and
reducing fees for users. CISA is a complex proposal that requires a soft fork to change Bitcoin’s
consensus rules and is currently the subject of ongoing cryptographic research and developer dis-
cussion within the Bitcoin community.

The state of art is very well described in the Fabian Jahr’s research [Jah25], supported by the
Human Rights Foundation.

Key Aggregation vs. Cross-Input Aggregation

The Taproot upgrade introduced a form of key aggregation that allows multiple participants in
a single transaction to aggregate their individual public keys into a single group key, which is
then indistinguishable from a standard public key on the timechain. For this scheme to work, all
participants must cooperate to produce a single signature that validates the aggregate key. The
key detail is that this process is handled on the client side and does not require a change to the
Bitcoin protocol’s consensus rules.

CISA, by contrast, is a more ambitious proposal. It allows for the aggregation of signatures
from multiple, distinct inputs within a single transaction, even if those inputs are controlled by
different participants with different keys. This form of aggregation requires a fundamental change
to Bitcoin’s consensus rules, which necessitates a soft fork.

The deliberate decision by the Bitcoin developer community to activate Schnorr signatures and
key aggregation with Taproot while explicitly postponing CISA reveals a core principle of Bitcoin
development: a cautious, stepwise approach that prioritizes security and stability. The rationale
for the exclusion of CISA was that its interaction with other protocol features, and that solutions
to these interactions were "still in flux" at the time of Taproot’s development. This exemplifies
the community’s commitment to thorough research and the resolution of all technical challenges
before a consensus-level change is proposed and implemented.

4.1.2 A Technical Deep Dive

The fundamental principle of CISA is to condense the signature data of a transaction. Instead of
a one-to-one relationship between each transaction input and its corresponding signature, CISA
allows a single signature to validate multiple inputs. The process is a direct application of the
linearity property of Schnorr signatures, which permits a single aggregate signature to be mathe-
matically derived from a set of individual signatures. A node can then verify this single aggregate
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signature in a single operation, a process that is far more efficient than validating each signature
independently. This not only saves on-chain space but also reduces the computational load on
nodes, improving the overall scalability of the network.

Technical Transaction Walkthrough: Alice’s UTXOs To illustrate the mechanism, con-
sider a user who wishes to spend two Unspent Transaction Outputs (UTXOs) that he controls.
Both UTXOs are of the P2TR (Pay-to-Taproot) type. Under the current Bitcoin protocol, if he
creates a transaction to spend both UTXOs via a keypath spend, she must include one 16-vbyte
Schnorr signature for each input. The total signature data in this transaction would therefore be
32 vbytes, in addition to other transaction data such as the 36-vbyte outpoint for each UTXO.

With CISA, the process would be streamlined. Ideally, any network node, or even the user
herself, could aggregate the signatures from her two UTXOs. Alice would then be able to produce
a single 16-vbyte MuSig-style aggregate signature that corresponds to the single public keys. This
single signature would cryptographically prove that Alice controls the private keys for both of
the original public keys. The resulting transaction would still require the inclusion of other data,
but its signature footprint would be reduced from 32 vbytes to 16 vbytes. While described as
a "modest reduction" in overall transaction size, this optimization is particularly impactful for
transactions with a high number of inputs, such as CoinJoins, where signature data can represent
a substantial portion of the total transaction size.

4.1.3 Variants of Aggregation

The CISA proposal is not a singular concept but rather a family of potential implementations with
different trade-offs. The two most prominent variants are full aggregation and half aggregation.

Full Aggregation Full aggregation is an interactive protocol where all participants must ac-
tively collaborate to produce a single, compact signature. The size of the resulting signature is
constant (64 bytes), regardless of the number of inputs or signers involved. This method offers
the maximum possible space savings on-chain, as multiple signatures are collapsed into a single,
standard-sized signature. It also offers the greatest potential for validation efficiency by drasti-
cally reducing the number of cryptographic operations required to verify a block. However, the
interactive nature of this approach presents a significant practical and engineering challenge, as
all participants must be online and in communication during the signing process.

Half Aggregation Half aggregation presents a more pragmatic, non-interactive solution. In
this approach, each signer produces a standard Schnorr signature, but only the s-values of these
signatures are aggregated, while the R-values (nonce commitments) remain separate. The ag-
gregation can be performed non-interactively by a third party, such as a broadcasting node or
a miner, which is a major advantage over the full aggregation model. The resulting aggregate
signature is not a single 64-byte signature but has a size of 32 - n + 32 bytes, where n is the
number of inputs. While the space savings are less than with full aggregation, the simplicity
and non-interactive nature of half aggregation make it a more viable candidate for immediate
implementation. A draft BIP for half-aggregation of BIP 340 signatures has been written, and
a formal specification has been developed using hacspec, a language designed for computer-aided
formal proofs.

4.1.4 Consensus Challenges

Beyond the cryptographic security model, CISA faces significant implementation and consensus
challenges. As a change to the fundamental rules of the Bitcoin protocol, CISA would require a
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soft fork. Activating a soft fork necessitates overwhelming support from the network, typically
requiring over 95% of miners to signal their readiness for the change.

One of the most complex engineering challenges relates to mempool management, particularly
for block-wide half-aggregation. In a naive implementation, if a block with an aggregated signature
is reorged out of the best chain, the individual transactions within that block are no longer
recoverable, as they are not explicitly stored in the aggregated signature. This breaks the current
mempool behavior, which assumes that transactions can be recovered from a reorged block and
rebroadcast to the network. A solution would require new mechanisms, such as a reorg-pool, to
temporarily retain transactions until a block is considered sufficiently secure.

Additionally, the interaction between CISA and other protocol features, such as adaptor sig-
natures used in Layer 2 protocols like the Lightning Network, must be carefully considered. Naive
implementation of block-wide half-aggregation could render adaptor signatures unusable, which
would break certain Layer 2 functionality. The development community must resolve these com-
plex interdependencies before a CISA soft, fork can be proposed.

The development of CISA is a prime example of the decentralized, consensus-driven Bitcoin
Improvement Proposal (BIP) process. Anyone can propose a BIP, and ideas are subject to years
of discussion and debate on mailing lists and forums to achieve "rough consensus" before they can
be formalized. The draft BIP for half-aggregation is a major topic of ongoing discussion among
developers, who are actively exploring its trade-offs and open questions, while recent research on
interactive schemes is about to take full aggregation a step forward.

4.1.5 Impact on the Bitcoin Ecosystem

On-Chain Scalability The most direct and tangible benefit of CISA would be an increase
in Bitcoin’s on-chain economic efficiency. By reducing the data required for transaction signa-
tures, CISA would lower the cost of multi-input transactions. The half-aggregation proposal, for
example, is estimated to offer a 20.6% reduction in transaction bytes for a historically average
transaction. For transactions with a high number of inputs, such as Coinjoins or Payjoins, this
would make the per-participant transaction fees moderately cheaper. This fee reduction directly
translates to a more efficient use of block space, allowing more transactions to be included in each
block and thus providing a modest increase in the network’s on-chain throughput.

The implications of this efficiency gain extend beyond simple numbers. The small reduction in
transaction size serves as a strategic economic catalyst. By making privacy-enhancing transactions
less expensive, CISA lowers the barrier to entry for users who prioritize confidentiality. This
reduction in cost incentivizes and normalizes the use of collaborative transactions like CoinJoin,
which in turn strengthens the privacy of all network participants. A seemingly minor technical
optimization thus has the potential to trigger a significant behavioral shift, fostering a more
privacy-conscious ecosystem and reinforcing Bitcoin’s core properties in the long term.

Privacy Contrary to what one might think, CISA by itself is not a magic bullet for privacy.
In fact, CISA provides no direct on-chain anonymity improvement, it only seeks to compress
signatures for efficiency. Any privacy gains would be indirect, for example, cheaper CoinJoins
thanks to lower fees, which is outside the protocol change itself.

Focusing on the potential downsides, CISA could complicate privacy in several ways as well:
by reducing the number of signatures visible in a transaction, CISA might initially confuse certain
heuristics used by blockchain analysts. However, analysts will quickly adapt by developing new
heuristics for aggregated signatures. In fact, in particular the common-input heuristic might
become even stronger in the beginning of full-agg adoption: because full-agg requires coordination,
a transaction that successfully used an aggregated signature is likely to have been crafted by a
single entity controlling all inputs. Chain surveillance companies already assume all inputs are
one owner unless there are obvious CoinJoin patterns; with CISA, an aggregated signature could
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reinforce that assumption, as it suggests the inputs were signed in one go by cooperating keys. To
prevent this it is paramount to have a robust signature scheme ready which allows collaborative
transactions, such as PayJoin and CoinJoin, to adopt CISA quickly after deployment. Only when
this is the case multi-user full-agg can spread quickly which can then prevent chain analysis from
flagging full-agg multi-input transactions as definitely single-user.

The drive for CISA is not solely a technical endeavor. The importance of transaction privacy
is particularly pronounced for individuals living under authoritarian regimes, where financial data
can be used for surveillance and suppression. The Human Rights Foundation’s involvement in
promoting research on CISA in [Jah25] underscores the proposal’s significance in the broader
context of digital freedom and human rights. The technical development of CISA is thus interwo-
ven with political and legal considerations, as the Bitcoin community works to preserve financial
sovereignty and innovation in an environment of increasing regulatory scrutiny and legal threats
to open-source developers. CISA is a microcosm of the ongoing struggle to build a more private
and decentralized financial system.

4.1.6 Future Outlook

While CISA offers only a modest increase in on-chain transaction throughput, its indirect effects
on user behavior and network dynamics could be profound. By reducing the economic penalty
for privacy, CISA has the potential to normalize the use of collaborative transactions, leading to
a more private and fungible Bitcoin network.

The successful implementation of CISA hinges on resolving several open technical questions,
including the complex interaction with adaptor signatures and the development of robust mempool
management, solutions for block-wide aggregation. Ultimately, the activation of CISA will depend
on achieving broad consensus within the developer community and obtaining the necessary support
from miners and nodes to activate a soft fork.

In summary, CISA holds the potential to be one of the most impactful protocol upgrades since
Taproot. Its ability to enhance user privacy, strengthen fungibility, and reduce transaction fees
could fundamentally improve the user experience and solidify Bitcoin’s core properties in the long
term.
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4.2 DahLIAS: a secure scheme for full-agg

In this context, the DahLIAS (Discrete Logarithm-Based Interactive Aggregate Signature) proto-
col, introduced in [NRS25], is positioned as the first solution to the full aggregation open problem.
It is the first interactive aggregate signature (IAS) scheme with constant-size signatures that uses
the discrete logarithm mathematics already present in Schnorr based protocols.

The scheme achieves the following key properties:

o Constant-size signatures: a DahLIAS signature has the same form as a standard Schnorr
signature, a pair (R, s), regardless of the number of signers n.

o« Two-round protocol: the interactive signing process requires only two communication
rounds, the first of which can be pre-processed without the need to know the messages to
be signed, making it efficient.

» Efficient verification: the verification time for a signature created by n signers is domi-
nated by a single multi-scalar multiplication of size n + 1. This process is asymptotically
twice as fast as batch verification of n individual Schnorr signatures.

« Key tweaking compatibility: The protocol is designed to be compatible with key tweak-
mng.

4.2.1 Interactive Aggregate Signature

This part explores the relation between interactive multi-signature (IMS) schemes (where all
signers sign the same message m) and IAS schemes. A two-round multi-signature scheme IMS
consists of the following algorithms.

o The key generation algorithm KeyGen takes no input and returns a secret/public key pair
(z, X).

 The interactive signature algorithm (Sign, Coord, Sign’, Coord’) consists of two algorithms
Sign and Sign’ run by signers and two algorithms Coord and Coord’ run by the coordinator:

— Sign takes no input and returns a first-round signer output out; and a signer state st;.

— Coord takes a list of signer first-round outputs (out;);e|,) and returns a session context
ctx and a coordinator state st.

— Sign’ takes a secret key x;, a signer state st;, a list of all signers’ public keys L, a
message m to sign, and a session context ctx and returns a second-round signer output
out},.

— Coord’ takes a coordinator state st and a list of second-round signer outputs
(outl, ..., out]) and returns a signature o.

o The verification algorithm Ver takes a list of public keys L = (X;);c[n], a message m, and a
signature ¢ and returns true if the signature is valid and false otherwise.

Bellare and Neven informally suggested to turn an IMS scheme into an TAS by setting the message
in the IMS scheme to the tuple of all public key/message pairs ((X;, m;);cpn)) of the signers of the
TAS scheme [BNO6]. Importantly, a safeguarding condition is needed in the second round signing
algorithm, which checks that the input list L contains the signer’s public key X; ezxactly once
together with the correct input message m;. If the check is omitted then the resulting scheme
is not even EUF-CMA-secure. This is necessary for the resulting IAS scheme to be secure even
if the scheme is not unrestricted: it cannot produce a signature for a list L containing duplicate
public keys.
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The ROS attack here actually exploits the fact that, without this verification, the output does
not depend on input message m;. The adversary, on input the honest party’s public key X, selects
two distinct messages m; and mgy and can perfectly emulate the behavior of the honest signer in a
“phantom” session, with different message by simply copying the outputs out; and out]. Indeed,
by copying the output out; of Sign, the adversary implicitly defines the state sto of the honest
signer in the “phantom” session as the state st; in the real session. Since the output of algorithm
Sign’ does not depend on the input message, out, = out} is the correct answer oracle Sign’
would return on input (mg, ctz). Hence, o is a valid signature for L. Since the adversary actually
never queried Sign’ for message my, this is a valid forgery breaking EUF-CMA security of IAS.

For this reason, the DahLIAS scheme implements a check in the second round of the signing
phase.

4.2.2 The aggregation scheme

The DahLIAS signing protocol is a two-round interactive process involving n signers and an un-
trusted coordinator. An interactive aggregate signature (IAS) scheme allows n signers, each with
their own key pair (sk;, pk;) and message m;, to jointly produce a single short signature that
proves m; was signed under pk; for every i € {1,...,n}.

Setup and KGen. Let ((G,+), ¢, G) be the group description and H,,,, and Hg;, hash functions.
Each user i € {1,...,n} has key pair (z,2G) € Z,; x G.

First Round

Signer. Each signer i € [n] generates two secret nonces, 1 ;, 72, and computes the correspond-
ing public nonces Ry, := r1,;G and R, := r2,G; then stores its state st; := (r1,,72,, R2;) and
sends its first-round output out; := (R, R2;) to the coordinator.

Coordinator. After collecting the triples (X;, m;, out;) from all signers, the coordinator aggre-
gates the public nonces, computing Ry := ;" Ri; and Ry := Y ;" Ro;. It defines the session
context ctx as the ordered list

ctr = (R1>R2’((XjamjaRQJ))jE[n])v (41)

computes the aggregate challenge coefficient b := H,,,, (ctz) and keeps the actual aggregate nonce
R := R; 4+ b- Ry. Finally sends the session context ctz to all signers.

Round 2

Validation check. Upon receiving the context ctz = (Ri, R, ((X;, m;, Ra5))jen)), each signer
performs a series of critical validation checks before proceeding: it verifies that its own second-
round public nonce Ry ; appears ezactly once in the list of second-round nonces within ctz. Then
verifies that the public key/message pair associated with its nonce Rs; in ctx matches its own
public key X; and message m;. If the checks fail, the signer aborts the protocol and returns
an error. Otherwise if the checks succeed, the signer extracts the list of key/message pairs L :=
((Xj,mj)jeln)) from the session context. The signer computes the aggregated nonce R = Ry +bRs,
the challenge ¢; := Hsig(L, R, X;, m;) and its partial signature s; := ry; + bro; + ¢;z;. Then sends
its partial signature s; to the coordinator.

Signature Aggregation. The coordinator receives all partial signatures (s1,...,sy,) and re-
turns the final aggregate signature o := (R, s), where s :== > 1" | s;.
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KGen() Sign(x;, st;, m;, ctx)
T <487, assert lu € [n] :
X =z2G R2,u = Tg’iG A\ (Xu,mu) = (Xi,mi)
return (z, X) ri =711+ brag,
b := Hpon(ctx)

R:= R; +bRs

¢ :=Hsg(L, R, X;,m)
L:= ((Xj’mj))je[n]
S; i=1; +cx;

Sign() // signer i

T1,i,72,; <38 Zq

R1,i = Tl,iG7 R2,i = Tz,iG
out; := (Ry;, Ra)

sty = (r1,4,72,, Ra,i)

return out, := s;

return out;, st;
Coord(st, (out), ..., out))

Coord (((X;, ms, out;))ie(n)) R:= st

(81,-+.,8n) := (outy,...,out))

(R1,i, Rayi) := outy,i € [n]

n
n n s = E S;
Ri=) RiiRy=> Ry, Pt
=1 =1

return o := (R, s)
ctx := (Ry, Ra, ((Xj7mj7R2’j))j€[n})

b := Hyon(ctx)

R:=Ri +0b-Ry VE(L, o)

st:=R ((Xi,mi))iem) == L

return (ctz, st) assert 1g ¢ {Xi}icp
(R.s) =0

¢; = Heg(L, R, X;,m;)

return sG — R+ Zci - X;
i=1

Figure 4.1. The DahLIAS scheme

Correctness. Consider an execution of the protocol with n honest signers and an honest coordi-
nator where each signer ¢ has public key X; = x;G, message m;, and nonces (R ;, R2;), the session
context ctx, and partial signature s;. Assume that no signer aborts. The signature returned by
the coordinator is (R, s) where R =7 | R1;+bRs,; and s = >_1" | s;. Each signer computed its
partial signature as s; = ry; + bro; + c¢;x; where ¢; := Hgig(L, R, X;,m;). Hence, one has

n

sG = Z s;-G = Z(TL,‘ + b?”g,i + ciazi) -G = Z RLi + bRQ’i +¢X; = R+ Z ¢ X;.
i=1

i=1 i=1 =1

Since the coordinator is honest, no signer aborts unless some collision happens among Ry ; values.
The probability of this event is at most n?/2q < n?/2*. Hence, if at most N signers participate
in any protocol execution, DahLIAS is N2/2*-correct.
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4.2.3 Security and Performance Analysis

DahLIAS is not merely a brilliant piece of engineering; it is built on robust cryptographic guar-
antees and formal security proofs. The protocol resists the rogue-key attack and, importantly,
has been proven compatible with “key tweaking”, a vulnerability that plagued other informal
aggregate constructions derived from MuSig2. This highlights the difference between a provably
secure construction and one that only works intuitively in a specific context.

From a performance standpoint, DahLIAS offers significant advantages:

o Communication Rounds: for signing, it requires two interactive rounds, similar to MuSig2.
However, the first round can be completed before the messages to be signed are known, which
improves flexibility and efficiency.

« Verification Speed: the verification of DahLIAS signatures is asymptotically twice as fast
as schemes like partial Schnorr aggregation or the batch verification of individual signatures.
Lower verification costs make it cheaper for full node operators to process transactions, which
supports the decentralization of the network.

» Signature Size: the final signature is a constant 64 bytes in size. This drastically reduces
the data overhead on complex transactions.

The research paper does not rely on ad-hoc analysis but introduces and applies rigorous formal
security models.

« co-EUF-CMA: The cosigners-aware EUF-CMA (co — EUF — CMA) model is a stronger
security notion for interactive protocols. In this model, a signer can validate the entire list
of co-signers, ensuring an “all-or-nothing” property. The adversary wins only if the aggregate
signature is valid for a list L containing a pair (X, m) for which the full tuple (L, m) has
never been queried to the signing oracle. DahLIAS natively achieves this stronger security
notion.

o EUF-CMA-TK: The EUF — CMA — TK, unforgeability under chosen message attacks with
key tweaking, model extends the EUF-CMA model by allowing an adversary to request
signatures on tweaked keys and to produce forgeries for tweaked keys. Unlike other schemes
that fail in this model, DahLIAS is proven to be secure in co — EUF — CMA — TK; a feature
that significantly distinguishes it.

Underlying Cryptographic Assumptions The security of DahLIAS is proven under the as-
sumption of the Algebraic One-More Discrete Logarithm (AOMDL) in the random oracle model
(ROM). AOMDL is a weaker variant of the well-studied OMDL assumption, which means that
DahLIAS is more robust against potential attacks. Furthermore, the security proof of DahLIAS only
requires the hash function H,., to be collision-resistant, a weaker and more common assumption
than being a random oracle.
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4.2.4 The ROS attack in DahLIAS schemes

This section presents the ROS attack applied on the DahLIAS schemes that allows signature
aggregation [NRS25]. Actually, the attack can be applied to any variant of DahLIAS with the
following properties:

1. Give

n key pairs (7, 2G) € Zq x G, a signature (R, s) € G x Zg is valid for L = ((Xi,m))ic[n]

if sG=R+ Z?:l Xz : Hsig(L> Ra X’Lvml>

2. The

two-round protocol for computing the signature proceeds as follows:

first signing round: the i-th signer runs (out;, st;) < Sign(), sends output out; to the
coordinator, and keeps state st;;

first coordinator round: on input ((X;,my,out;))icp, algorithm Coord simply sends
ctr = (X, my, OUti))ie[n] to all signers;

second signing round: given the secret key z;, the signer’s state st;, the message m;,
and the session context ctz = ((Xj, 7, oatj))je[n], the i-th signer computes its partial
signature s; as s; := 1; + ¢;z;, where ¢; := Heig(L, R, X;,m;), L == ((Xj,mj))je[n}, and
nonces

F(Xj, mj, Oittj, Ctl’),
1

n
ri = f(x;, my, st;, ctx), R:=
Jj=
where f and F' are two functions such that
F(X;, m;,out;, ctx) = f(x;, my, st;, ctx) - G (4.2)

One can think of r; = f(x;, my, st;, ctx) as the “effective” secret nonce of the i-th signer
and of F(X;, m;,out;, ctz) as its “effective” public nonce.

second coordinator round: the final signature is (R, s) with s = > 1" ; s;.

3. Fix a signer key pair (z;, X;) and first-round output/state pair (out;, st;). Given z; and out;

it is possible to find two distinct pairs of message and session context (mgb), ctx(b)), be{0,1},

such

where ¢;

Hence, pr
ways such

that

F(Xi,mz(»o)7 out;, cta") = F(Xi,ml(l), out;, ctx(l)) and cl(.o) + c(»l), (4.3)

()

®) is the challenge computed by the signer.

operty (3) says that an adversary can close a signing session with a signer in two
that the signer computes the same effective secret/public nonce pair but two different

challenges.

Note that Equation (4.2) ensures correctness of the IAS scheme: a signature computed follow-
ing the protocol is valid since

sG =

I
NERG

<.

n

ZSlG i (ri + ciz;)G = Zf x;, My, st;, ctx GJrZHS,g (L,R, X;,m;) - X; =
1 i=1 i=1

A

F(X;,my, out;, ctx) + Z Heg(L, R, X;,m;) - X; = R+ Z X; - Hsig(L, R, Xi,m;).

i=1 =1

Il
—_
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Single nonce. These properties encompass the case of the single-nonce scheme where each
signer simply draws 7; <% Z, and sets st; := r; and out; := ;G = R; with functions f and F'
defined simply as

fzi,mi i, cte) :=r; and F(X;,m;, R;, ctx) := R;.

Property (3) is satisfied. Assume that the signer has index i = 1: given out; = Ry = G, fix an
arbitrary public key X5, arbitrary messages m; and mo, and distinct value Réo) + Rgl), and for
be {0,1} let

ctz® = (X1, mq, Ry), (XQ,mQ,Rgb))).
Then F(X1,my,outy, ctz(®) = F(Xl,ml, outy, ctx(l)) = R; and cgb) = Hgig(L, R® X, m;) where
R® = R, + Ré ), hence c§°) + c (except with negligible probability).

Naive two nonce. It also covers the case of the naive two-nonce scheme, where each signer
draws 11,72 <8 Zy and sets st; == (r;1,7;2) and out; = (R;1, Ri2) = (ri1G,ri2G). Functions
f and F are given by

fxi,my, (rig,rig), cte) ==ri1 +bria,  F(Xi,mg, (R, Ri2), ctx) := R;1 + bR, 2,

with b := H(ctz). Property (3) is satisfied as follows: given out; = (Ry 1, Ri2), fix different
(0)

messages m; = and mgl) and let
ctr = ((Xl,mg ),outl), (Xl,m§1)70ut1)).
Then (mg ), ctr) and (mg ), ctz) are two distinct pairs such that
F(Xy, mgo), outy, ctr) = F(Xq, mgl), outy, ctx)

but the challenges are Hgg(L, R, X1, m m{ )) which are different (except with negligible probability).

Building the attack

The attack requires an adversary A to open £ > X\ concurrent signing sessions with an honest
signer which has key pair (z1,X;) € Z; x G.
1. Adversary requests for £ first round messages and the signer responds out; j and keeps state
Sth, ke [6]
2. For each session k € [¢], the adversary find tho distinct pairs ((mg ,)g, ctx ) b € {0,1}, such
that the effective nonce of the signer is

R(b) = F(Xy, m(lb,)c, outy i, ctmg)))

and challenges cgi satisfies Rgolz = Rglk and c 7& c(l).

For convenience, let Ry, := Rﬁo,l = Rgll)c

3. The adversary A construct the multivariate polynomial
(0)

k-1 k-1 kT Gk
p(xl,..., 22 fk xk 22 m
1k~ Ck

Recall that for each k and b € {0,1}, fk(cgb,l) = b, and consider the coefficients p; such that

14

p(r1,...,me) = po + Zpkxk-
k=1
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4. Let m* be the forgery message. The adversary sets
L' = ((X1,m")), R = ZkaLk, c* = Hge(L*, R*, Xq,m").

Next, for each k € [¢], let by be the k-th bit in the binary representation of ¢* + pg, so that

&+ py = Z£:1 2k=1py.. For each k, set c1 . := cg Z) By construction of the polynomial p, it
holds

¢
k—1
Z prcie = plcia, ... cie) 22 bk —po = .

(br)

5. The adversary then closes each session k € [¢] with session context ctx; " and obtains partial
signatures sy, satisfying s;G = Ry +c1X1. Then, A computes s* = Zk:l prsk and returns
L* and o* := (R*, s%).

The attack can be adapted to forge signatures for lists L* also containing other public key /message
pairs for which the adversary knows the corresponding secret key.

Validity. The adversary outputs a signature o* = (R*,s*) valid for L* = ((X;,m*)). For
k € [€], let 1 ; be the DLog of Ry, hence s1 = 71 % + ¢1521. Then

l l

¢
= > meskG = Y pe(rip+coer1)G = D ppRig+c* X1 = R*+Hgg(L*, R* 21, m") X,
k=1 k=1

Countermeasures

The DahLIAS protocol elegantly defends against this attack through the validation checks in its
Sign’ algorithm. The attack described above fails because the honest signer simply aborts the
protocol and returns an error before producing any partial signature, in particular:

1. assert #U = 1: this check ensures that the honest signer’s second-round nonce Rs; appears
exactly once in the list provided by the coordinator. In the ROS attack, the nonce Ry is
duplicated. When the signer receives the request, this check fails immediately, causing the
protocol to abort.

2. assert (Xy,mMy) = (X;,m;): this check guarantees that the unique index ‘u‘ that corre-
sponds to the second-round nonce Ry, is associated with the correct public key/message
pair. Even if an adversary could somehow bypass the first check, this second check ensures
the signer is only signing for the message it expects.

These checks prevent the adversary from manipulating the session context to force the reuse of the
effective nonce. For every signing session, the honest signer demands that its second-round nonce
is uniquely identifiable within the session context and that it is correctly bound to its key and
message. This syntactic constraint removes the ambiguity that the ROS attack exploits, making
the protocol immune to this class of attacks.
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4.3 Implementation and Future Directions

The Path to Implementation in Bitcoin

While DahLIAS provides a robust cryptographic solution to a long-standing problem, its adoption
in Bitcoin is not immediate. The protocol is incompatible with Bitcoin’s current consensus rules,
and its integration would require a fundamental protocol change with a soft fork.

To initiate this process, the protocol’s authors or community members would need to draft
a Bitcoin Improvement Proposal (BIP). This document, which specifies the scheme in detail
and considers its implications for implementation and consensus, requires community support
to be adopted. The path from academic paper to real-world implementation is a collaborative,
consensus-driven process that takes time and discussion.

Conclusions and Broader Implications

The detailed analysis presented in this treatise showcases the evolution of cryptographic thought,
from the recognition of fundamental vulnerabilities (Rogue-key and ROS Attacks) to its resolution
through increasingly efficient interactive protocols. The linearity of Schnorr signatures, while a
source of potential vulnerability, is also the principle that has unlocked new solutions for scalability.

The emergence of MuSig and MuSig2 provided secure solutions for multi-signatures, but it
was the DahLIAS protocol that took aggregation to the next level. DahLIAS solves a long-standing
cryptographic challenge: full signature aggregation for multi-input transactions with constant
size in pairing-free groups, solving an open problem and providing significant savings in space and
verification speed. Its two-round protocol is meticulously designed to be efficient and resilient to
attacks. The analysis of the ROS attack revealed its insidious nature and demonstrated how a
naive design can be compromised by nonce. It is showed that the internal validation checks in the
Sign’ method of DahLIAS scheme are a simple yet effective defense that guarantees the security
against this and other classes of forgery attacks. The protocol’s robustness is further reinforced
by its proven security in the co — EUF — CMA — TK model, a fundamental guarantee for practical
applications that utilize key tweaking.

By reducing the cost of complex transactions and making them indistinguishable from single-
signature transactions, DahLIAS changes the economic incentive for users, encouraging them to
adopt practices that enhance Bitcoin’s privacy and fungibility. This example eloquently demon-
strates how a mathematical abstraction, when rigorously applied, can have a tangible and mean-
ingful impact on network behavior and value.
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Appendix A

Wagner’s birthday problem

Recall that the classic birthday problem states that given two lists, Ly and Lo, of A-bit values
chosen uniformly and independently at random, find a pair of values, 1 € L1 and x5 € Lo, such
that 1 + 22 = 0 (mod ¢). This problem is shown to be equivalent to finding a matching pair,
Tr1 = 9.

The problem is famously well-understood, with a known optimal complexity of O (2>‘/ 2) time and
space, assuming the lists are of a favorable size. This “square-root time” algorithm has numerous
applications, most notably in finding collisions for cryptographic hash functions. For an A-bit
hash output, an adversary is expected to require roughly 2*/2 operations to find a collision.

The k-list birthday problem

This foundational understanding of the birthday problem has led researchers to explore a general-
ized form, introduced in the Wagner’s work [Wag02] as the k-sum problem. This generalization
extends the classic problem from two lists to an arbitrary number & of lists.

Given k lists, Lq,..., Lg, of elements drawn uniformly and independently at random from
{0,1}*, the objective is to find a set of values, 2y € Ly, ..., x} € Ly, such that their XOR sum is
zero: 1 + 22+ ...+, = 0 (mod ¢). The paper notes that a solution to this problem is highly
probable provided that the product of the list sizes satisfies |Li| x --- x |Lg| > 2, which is a
natural extension of the birthday paradox. However, the true challenge lies not in the existence
of a solution, but in explicitly and efficiently finding one.

The k-sum problem is a generalization of the classical one, stated as follows.

Definition A.0.1 (Generalized Birthday Paradox). Given k lists Ly,..., Ly of elements
drawn uniformly and independently at random from {0,1}*, find 1 € Ly,...,x € Ly, such that
r1+ 22+ ...+ 2, =0 (mod gq).

The problem is most tractable when one can “freely” extend the size of the lists, a common
scenario in cryptanalysis where the lists are populated by outputs from a random oracle, i.e. a
hash function. The problem’s inherent difficulty lies in its multi-dimensional nature, a feature
that makes naive approaches prohibitively expensive.

Theoretic Lower Bounds

An information-theoretic lower bound for the k-sum problem can be established by considering
the expected number of solutions. A solution to the k-sum problem exists with high probability
if the product of the list sizes, |L;| x - -+ x | Ly, is on the order of 2*. Assuming equal list sizes,
this implies that the size of each list must be approximately 2*/%. Therefore, the computational
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complexity of the problem cannot be less than the size of the lists themselves, leading to a weak
lower bound of (’)(2”’“).

However, the most obvious algorithmic approaches for k£ > 2 do not come close to this theo-
retical lower bound. A straightforward method involves generating pairs of sums from subsets of

the lists, which still results in a complexity of (9(2’\/ 2). This creates a substantial gap between

the theoretical lower bound and the known algorithmic upper bound.
The discovery of a more efficient attack directly lowers the security benchmark, forcing design-
ers to re-evaluate their parameters and assumptions.

The 4-List Algorithm

To provide a clear explanation, Wagner introduces the case k = 4, which can be easily generalized
using the binary tree structure. Wagner uses XOR @ properties to show the algorithm, but the
approach can be easily extended by changing the join operator [Wag02]. The goal is thus to find
values x1,...,x4 from lists Ly, ..., Ly such that 1 ® zo ® x3 P x4 = 0.

The core idea is to break the problem into two subproblems: finding values that sums to zero
in their least significant bits, and then finding a match between these intermediate results. The
process unfolds as follows:

{{x1, @2, 23, 24) :
T L@ Dwg =0}

P
/\

Ll Dy L2 L;; Xy L4

T ¢
TN T S

Ly Lo Ls Ly

Figure A.1. Representation of the algorithm for the 4-sum problem. [Wag02]

List Extension: All four initial lists, Lq,..., L4, are extended to a size of approximately 2¢,
where £ is a parameter to be determined later.

Intermediate List Generation: Two intermediate lists, Lo and Ls4, are generated.

o Ly is created by taking pairs (x1,29) from Ly X Ly and computing ;1 @ x2. Only those
pairs are kept for which the least significant ¢ bits are zero, i.e., lowy(z1 @ x2) = 0. This is
accomplished using a generalized join operator x.

o Similarly, Ls4 is generated from L3 x L4 by finding pairs (z3,x4) where lowy(z3 @ x4) = 0.
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Final Join and Solution: The algorithm then searches for a match between the values in Lo
and L34. A standard join operation is used to find a pair of values, one from each list, that
are equal. Due to the properties of XOR, if 1 @ xo = x3 @ x4, then it necessarily follows that
x1 B 19 B x3 B x4 = 0, which yields a solution to the 4-sum problem.

Complexity. For random values, the probability that low,(zy @ x5) = 0 is 1/2¢. The expected
size of the intermediate lists, L1 and Lsy, is given by

E[|L1a]] = |Li| x |La|/2° = 2%¢/2¢ = 2,

where the initial list sizes are |Li| = |Ly| = 2. The final step is finding a match between L;5 and
L3y, which occurs with probability 2¢/2* and thus the expected number of elements in common

|L1a| x |Laq| /22"

is at least 1 if £ > A\/3. So setting £ = A/3, a solution to the problem is expected with non-trivial
probability. By setting ¢ = \/3, the size of all lists and the number of operations are bounded by

2M3 which yields to a time and space complexity (’)(2’\/ 3), a significant improvement over the

naive (’)(2)‘/ 2) approach.
This tree-based approach can be generalized for larger values of k (specifically, powers of two),
leading to an algorithm with a sub-exponential time complexity of O(k - oM (1l kJ)) [Wag02].

Reduction to Subset-Sum

It is interesting to note that if the adversary were allowed to select an arbitrary subset of coef-
ficients ¢; (i.e., by setting an arbitrary subset of the components of p,,; to zero), the decision
task would be reduced to the classic problem of the sum of subsets. Specifically, identify each
¢; with an integer a; and consider a target value T' corresponding to the required sum (or linear
combination) that makes the attack succeed; asking whether there exists a choice of indices for
which the sum of the selected ¢; equals T is precisely an instance of subset-sum.

The subset-sum decision problem is well-known to be NP-complete (and NP-hard in the opti-
mization variants), hence the unstructured version of the adversary’s selection problem is compu-
tationally intractable in the worst case.

Recall the standard decision formulation:

Definition A.0.2 (Subset-Sum Problem). Given a finite set of integers S = {a1,...,an} and a
target integer T', decide whether there exists a subset I C {1,...,n} such that

Z a; = T.

i€l
Theorem A.0.1. If the adversary is allowed to freely set entries of p,,, to zero, the resulting
decision problem reduces to Subset-Sum.

Proof. Let (S,T) be an arbitrary instance of Subset-Sum, with S = {as,...,a,}. Construct an
instance of the adversary’s problem by setting ¢; = a; for 1 < i < n. The adversary succeeds if
it can choose a subset of the ¢; whose sum equals 7. This choice corresponds exactly to defining
indicator variables p; € {0,1}, where p; = 1 if ¢; is included and p; = 0 otherwise. Thus, the

condition
n
Z pici =T
i=1

is satisfied if and only if the original Subset-Sum instance admits a solution. This mapping
is computable in polynomial time, and hence establishes a reduction from Subset-Sum to the
adversary’s selection problem. O
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Since Subset-Sum is NP-complete, it follows that the unrestricted version of the adversary’s
problem is NP-hard. This reduction clarifies that the hardness arises precisely from the ability
to select arbitrary subsets of coefficients. By contrast, Wagner’s formulation deliberately restricts
this freedom: the adversary must pick exactly one element from each of k disjoint lists. The
resulting k-sum problem is strictly more structured, and this structure is what enables Wagner’s
k-tree algorithm to achieve sub-exponential complexity. Thus, the NP-hardness of the general
subset-selection task underscores the importance of Wagner’s insight in reformulating the problem
into a tractable variant.

Application to the ROS Attack

Wagner demonstrates how to formulate the ROS attack for £k = 4 as an instance of the 4-sum
problem over the additive group of Z,.

1. The attacker constructs a specific 4 x 4 matrix M, where its entries depend on four variables
T1,T2,T3,T4.

2. The condition for this matrix to be singular (which is necessary for the attack to succeed)
translates into the following equation:

H($1,0,0) + H(O7x270) + H(anaxfi) H($4,$4,x4)
T T2 €3 Ty

=0 (mod q)

where F' is a cryptographic hash function.
3. This is precisely an instance of the 4-sum problem, where the lists are constructed as follows:

» L; contains values of the form H(z1,0,0)/x; for various choices of x;.
e Lo contains values of the form H(0, x2,0)/z5 for various choices of 5.
» L3 contains values of the form H(0,0, z3)/x3 for various choices of x3.
o L, contains values of the form —H(z4, x4, x4)/x4 for various choices of xy.

By applying the 4-list k-tree algorithm, Wagner reduces the complexity of the ROS attack from
the expected O(¢'/?) of a birthday attack to O(¢/?).
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