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Abstract

Modern economies are highly interconnected, as shocks in one sector can spill over across
the entire network, generating aggregate fluctuations and increasing the systemic risk.
In theory, such shocks would be less disruptive if industries could instantly adjust their
decisions, optimizing their profits and avoiding defaults. In practice, however, production
and investment choices cannot be costlessly or immediately adapted.

This thesis analyzes an economic equilibrium model in which firms make rigid, state-
independent decisions prior to the realization of shocks. In the considered model, firms
rely partly on debts financed by a bank and aim to maximize their expected profit. In this
context, a unique rigid Walrasian equilibrium can be proven to exist, whereby defaults
occur when equilibrium profit realizations are negative and loans remain partly unpaid.

The main contribution of this work is the use of the properties of the exponentially
tilted distribution, its density function and moments, to characterize the default condition
for a firm hit by a single node shock transmitted through one supplier. Sufficient moment
based conditions are derived to ensure the existence of at most one default interval. We
show that such an interval is always unique for exponential and Bernoulli shock distribu-
tions, while for gamma shock distributions the default interval is unique only for a range
of the parameters that we characterize. Extending the analysis to a single node shock
propagated through two suppliers, the results indicate that default intervals are still de-
termined by the tilted moments of the distribution and coincide with those of the single
supplier case.

Another key aspect is the implementation of numerical simulations on different network
structures to compute equilibrium quantities, default probabilities and profit variances.
Simulations show that shocks are more disruptive when they strike all nodes simultane-
ously, and may also affect firms not directly connected to the source. In simple structures,
as line or DAG, shocks propagate only to consumers, with effects decreasing along the
chain, while in cycles or real world networks they can also reach suppliers. Default prob-
abilities remain unaffected by the presence of the bank, since they are only influenced by
realized shocks. By contrast, profit variances depend on both firm centrality, determined
by the debt cost, itself driven by the choice of the bank interest rates, and shock realiza-
tions. Consequently, industries with the highest centrality do not necessarily exhibit the
largest profit variance.
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Chapter 1

Introduction

The aim of this thesis is to analyze the effects of productivity shocks on production
networks. We use an economic equilibrium model, in which firms make state-independent
decisions prior to the realization of shocks, relying partly on debts financed by a bank. In
this context, a generalized concept of the Walrasian equilibrium can be introduced and it
is proved to be unique.

The considered model examines how shocks impact individual nodes and incorporates
the possibility of default for them. The default for a given firm depends on the coefficients
of the Leontief matrix, which represent the distance of the shock from that firm. A firm
in the economy is in default if its equilibrium profit is negative, consequently its loans
remain partly unpaid.

Hence, our objective is to analyze the profit and to characterize the default condition
for a firm hit by a single node shock transmitted through one and two suppliers, depending
on the shock distribution.

1.1 Disruptions in interconnected economies
The study of production networks is crucial because modern economies are highly inter-
connected [1]. Indeed, industries rarely operate in isolation, they depend on suppliers,
consumers and financiers. This interdependence means that shocks affecting one firm or
sector can propagate throughout the entire network [2]. In fact, a collapse in produc-
tion not only affects the economic sector hit by the shock, but it also influences all the
industries which are directly and indirectly linked with the shock’s source.

An adverse event affecting a geographical area or an economic district directly disrupts
the business activity of a set of firms that become incapable to fulfill their orders. This
hits the productivity of firms downstream in the supply chain, but it might also affect
the suppliers of the damaged firms that face an abrupt perturbation of their sales. This
may trigger a domino effect [2] of canceled orders, delivery and payment delays affecting
larger and larger pieces of the real economy. Hence, production networks can become an
effective channel for propagating shocks that can hit firms far away from the disruption
place.
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In addition, the shock’s effects can cause an unavoidable spillover on banks and finan-
cial intermediaries [3], [4], who provide credit to the real economy and are exposed to
cascades of losses, since firms might be unable to repay debts to their financiers.

Globalization amplifies the systemic risk into production networks [5], which are threat-
ened by natural catastrophes, pandemics and economic crisis. Although these phenomenons
have always occurred, the undirected losses caused by worldwide rippling effects are par-
ticularly relevant and unexpected and show the inherent fragility of our interconnected
economy.

1.2 Related literature
In 1941, Wassily Leontief demonstrated the interconnected structure of modern production
systems with his input-output analysis, providing a framework to trace how shocks in one
sector can ripple through the entire economy. Later, in 1983, Long and Plosser [1] showed
how such shocks propagate along production chains in an interconnected economy.

After the 2008 crisis and its dramatic global implications, there was a significant re-
newed interest in the interconnected nature of economic and financial systems and on its
role in propagating and amplifying shocks.

In 2012, Acemoglu [2] proposed a theoretical framework for production networks to
analyze the effects of different exogenous shocks in interconnected economies. He studied
a perfectly-competitive Cobb-Douglas economy, in which firms choose production levels
contingent on the state of the world that occurs with probability one. Inputs of intermedi-
ate goods and labor depend on that state of the world, hence decisions are taken after the
shock’s realizations and are state-dependent, consequently there is no rigidity. The core
of his theory is the concept of input-output matrix, which describes the transactions of
goods and services among firms and leads to the concept of network. He also proved that
the Bonacich centrality has a key role in production networks, showing that the effect of
a productivity shock is proportional to its Bonacich centrality [6].

Acemoglu introduced the possibility that significant aggregate fluctuations may origi-
nate from idiosyncratic shocks due to the interconnections between different firms, leading
to a shock propagation mechanism in the economy, called ’cascade effects’. He used the
aggregate volatility, defined as the standard deviation of the log output, as a measure to
assess the propagation of idiosyncratic shocks throughout the entire network.

The creation of macroeconomic fluctuations depends on the network structure. In fact,
if the inter sectoral input-output linkages are symmetric, meaning that each sector relies
equally on the outputs of all the other sectors, aggregate fluctuations cannot be produced.
On the contrary, when the network is not symmetric, shocks to industries that are more
important suppliers propagate more widely and thus do not wash out with the rest of
the shocks upon aggregation. This happens for example when there are dominant sectors,
meaning that a small number of sectors plays a disproportionately important role as input
suppliers to others.

Furthermore, Acemoglu’s model does not incorporate debt financing.
The need for external financing, still without rigidity, was introduced by Bigio and La’o

(2020) [3], through a cash-in-advance mechanism. Inputs of intermediate goods and labor
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1.3 – Comparison between literature models and our approach

must be paid before revenues obtain, but after the occurrence of the shocks is revealed.
Firms get loans from consumers themselves. The amount of the loan is state-dependent, so
that there are never states of the world in which the cashed-in-advance outflow is greater
than the optimal one, and cannot be refunded.

The cash-in-advance mechanism was used also by Huremovic (2020) [4], who studied
the transmission of financial shocks to economic sectors.

Pellet and Tahbaz-Salehi (2023) [7] introduced the concepts of rigidity to capture the
fact that, in the real world, decisions are state-independent. They must be taken before
shocks are realized, when information about which shocks will occur is incomplete, and
production processes require advance planning that cannot be immediately adjusted as
the shock hits the economy.

Rigidity is different from the short versus long run adjustment to shocks embedded in
Elliott and Jackson (2023) [5]. In that paper, indeed, shocks come totally unpredicted,
hence firms do not readjust the input-output decisions, and their production is simply
constrained by the input shortages generated by the primitive shocks. As these shortages
are transmitted through the network, in the short run firms seek to minimize shock’s
effects by maximizing revenues.

1.3 Comparison between literature models and our
approach

The economic literature regarding production networks, in particular Acemoglu models
[2], [6] provides powerful insights, however it typically assumes ex-post adjustment. It
means that firms adjust to shocks ex-post, hence after the shock is realized, knowing
which state has occurred. Inputs of intermediate goods and labor depend on a specific
state of the world, hence there is no rigidity. The consequences of real shocks are less
disruptive, since producers can fully adapt their business decisions to shocks, reach zero
profits at the equilibrium and pay back their debts, avoiding the default.

However, in the real world, decisions must be taken before shock’s realizations and
the shock’s effect is not immediate, since production systems necessitate prior planning
and there are lags in delivery of inputs. Furthermore, the speed of contagion depends on
many variables, such as the nature of the original failures, the position of the defaulting
nodes in the network and the global current state of the system. Fragilities emerge in
specific critical patterns that depend on the topological structure of the network, on the
distribution of disturbances, on the exchange flows among firms and on possible exposure
against financial agents.

In order to capture these real world frictions, Pellet and Tahbaz-Salehi [7] assume ex-
ante adjustment. It implies that firms adjust to shocks ex ante, meaning that decisions
are taken before shock’s realizations, when the information on which state of the world
will occur is incomplete. In fact, industries are able to forecast which shocks may happen,
nevertheless they do not know their actual realizations among the many possible ones.
Then, they can revise their optimal input decisions accordingly, however rigidity prevents
them from making state-contingent orders. Hence, they take decisions based on imperfect
knowledge of possible shocks and they cannot change their investments and productions
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costlessly and instantaneously. They trade inputs at shock-consistent prices before the
actual shock becomes true and they reach an unique Walrasian equilibrium, with well-
defined quantities and prices, although this equilibrium is not attained instantaneously
when the shock occurs.

The concept of rigidity is adopted also in our model [8], defined in detail in Chapter 2.
However, while in Pellet and Tahbaz-Salehi [7] models there is no transmission of shocks
from the real to the financial sector, since outside funding is absent and no banks are
incorporated, in our model [8] it is present. In fact, our model includes a bank financing
a fraction of firms’ liabilities, who is paid back in full if profits are non-negative, and gets
a partial recovery in case profits are negative. Hence, the financing does not depend on a
cash-in-advance need, as in Bigio and La’o [3] and Huremovic [4].

In our model [8], when the shock actually hits, firms can end up with profits or losses.
Indeed, in this scenario, profits have null mean, however they are not identically zero
and can have any sign, hence the default might be realized. The default for a given
firm depends on the coefficients of the Leontief matrix, which represent the distance of
the shock from that firm. A firm in the economy is in default if its equilibrium profit
is negative. The occurrence of default just depends on real shocks and on the network
structure, while the magnitude of losses depends on the amplification provided by leverage,
since firms rely on debts provided by the bank.

Hence, our approach differs from Pellet and Tahbaz-Salehi [7] model, because it incor-
porates the possibility of default and it enables to analyze the shock’s effects on a single
firm rather than on the global system.

1.4 Different types of shocks
Shocks can originate from multiple sources. They can be driven by political decisions like
Brexit, terrorist acts like the 2001 September 11 suicide attacks in New York City, wars
like the current Russian invasion of Ukraine, or pandemics like the COVID-19.

Shocks are generally classified in two types: productivity and demand [2].
Productivity shocks propagate downstream much more powerfully than upstream,

meaning that downstream customers of directly hit industries are affected more strongly
than their upstream suppliers. These shocks lead to an increase in the price of the sec-
tor’s output hit by the shock, encouraging its customer industries to use this input less
intensively and thus reduce their own production.

On the contrary, demand shocks propagate upstream mainly, implying that upstream
suppliers are more heavily impacted than their downstream customers. These shocks have
much more minor effects on prices as affected industries adjust their production levels and
thus input demands.

The nature of propagation depends strongly on the structure of production functions. If
production functions and consumer preferences are Cobb-Douglas [2], [6], there is a single
factor of production and the assumption of constant return to scale, there is no upstream
effect from supply-side shocks and no downstream effect from demand-side shocks.

On the contrary, when the production function is modeled through an elastic structure
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1.5 – Network effects and shocks propagation

[9], a negative productivity shock to industry i may not remain confined to i’s down-
stream firms. Indeed, productivity shocks not only cause an increase in good i’s price,
which leads to a downstream propagation, but they may also result in reallocation of
resources across different industries depending on the elasticities of substitution across
various inputs. Hence, changes in industries’ demand for intermediate productions induce
also an upstream shock’s propagation.

1.5 Network effects and shocks propagation
In order to understand shocks propagation, a distinction between first and higher or-
der interconnections must be considered [6]. First-order effects capture the immediate
transmission of shocks to directly connected industries, while higher-order effects account
for propagation along longer chains of indirect connections. First order interconnections
provide only partial information about the structure of the input-output relationships be-
tween different sectors, hence at least second order interconnections must be considered
to evaluate the ’cascade effect’. These network effects are typically larger than the impact
of sector-specific productivity shocks alone [2].

In fact, a negative productivity shock to industry j reduces its production and increases
its price, adversely affecting all of the industries purchasing inputs from j. But this direct
impact is further augmented in the competitive equilibrium because these first-round-
affected industries change their production and prices, creating indirect negative effects
on other customer industries, captured by the Leontief matrix. It can be expressed as the
series of the power of A′, where A is the input-output matrix: L = (I−A′)−1 =

q+∞
h=0(A′)h

and it shows how a firm depends on the rest of the network. In fact, the output of a node
is affected not only by the exogenous shocks directly hitting it, but also by the exogenous
shocks impacting its in-neighbors (suppliers) weighted by the effectiveness coefficient Aij ,
as well as by those of the suppliers of its suppliers weighted by A2

ij , and so on. In addition,
the quantitative magnitude of shock’s propagation through input-output networks is larger
when different shocks are considered simultaneously.

1.6 Thesis structure
The rest of the thesis is structured as follows:

Chapter 2 presents the model, shows the existence of a unique Walrasian rigid equi-
librium and derives explicit expressions for the equilibrium variables, illustrated with a
simple example.

Chapter 3 defines the default event and analyzes the default condition for a firm af-
fected by a single node shock transmitted through one supplier, using the properties of
the exponentially tilted distribution. It contains sufficient moment-based conditions of
the shock distribution to ensure the existence of at most one default interval, with ex-
plicit computations for exponential, gamma, and Bernoulli distributions. The chapter
also extends the analysis to shocks propagated through two suppliers, focusing on simple
examples and illustrating the default intervals for the same distributions of the single
supplier case.
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Chapter 4 contains model simulations on various network structures, including a line, a
DAG, a cycle, and a real-world network. It focuses on the analysis of default probabilities,
which depend only on realized shocks and studies how the profit variances are influenced
by both shocks and firm centrality. It also examines how shocks affect both direct and
indirect suppliers and consumers depending on network topology, highlighting the most
critical nodes for large-scale propagation.

Chapter 5 summaries the main results of this thesis and proposes possible extensions
for future works.

Appendix A contains the explicit results of default probabilities, profit variances and
distorted Bonacich centralities for different network structures, while appendix B includes
the code implemented in python to perform numerical simulations.

8



Chapter 2

Production network model

In this chapter, we present the economic model used for our analysis on production net-
works. We consider an economy composed of: firms, each producing a single good, used
as input for the other firms and consumed by a representative household; a representative
household, which provides labor and consumes the good and a bank, which finances firms
through loans covering a fraction of their liabilities.

Our aim is to study the effects of productivity shocks on production networks in pres-
ence of debts, financed by a bank belonging to the economy [8]. The main assumption of
our model is that firms can predict the distribution of shocks, anticipating the frequency
and the severity of them, however they take decisions at time 0, before shock’s realizations,
independently from the scenario. The rigidity implies the inability to adapt ex ante to
different states. In fact, the production cannot be modified immediately after the shock
happens, because it requires advance planning and time to be realized and delivered; the
productivity is revealed only at time 1. Hence, there is the risk to obtain negative profits
at the equilibrium, leading to firms’ defaults, which have also consequences on financiers
because firms might not be able to repay the loans.

2.1 Model definition

We analyze a two-period economy with a set V := {1, ..., n} of n ≥ 1 firms, they can be
hit by production shocks and they produce a single homogeneous good, which is partially
used as an intermediate input for other sectors and partially consumed by a represen-
tative household, which provides one unit of labor. All firms have the same production
function and are substitutable. Industries borrow part of the capital they need to pay
for their employed labor and consumption of intermediate goods from financiers, who are
represented through a bank.

The production uncertainty is defined through a vector of non-positive random vari-
ables η ∈ (Ω,A,P), whose entries ηk ≤ 0 are the primitive log-productivity shocks on
different sectors k = 1, ..., n. If η is deterministic there is no uncertainty.

9



Production network model

2.1.1 Firms
The production of firm k is represented through a Cobb-Douglas function defined as:

yηk = eηkςkl
βk

k

Ù
j∈V

(zηjk)Ajk , k = 1, ...., n (2.1)

where yηk is the actual production output, lk is the employed labor of sector k, zηjk is actual
quantity produced by firm j and used in k’s production, βk is the labor share. Ajk is the
importance of the good made by firm j in the production of firm k and ς is a positive
normalization constant defined as ςk = β−βk

k

r
j∈V A

−Ajk

jk . Ajk > 0 if and only if there is
a direct link from node j to node k, meaning that the output of node j is used as input
in the production of node k.

The output yηk and the intermediate goods zηjk are random, in fact they depend on the
primitive shock η, while lk is not directly affected by the shock. When η = 0, yηk , z

η
jk

represent respectively the maximal output and the maximal intermediate quantity of good
j for sector k.

Let wk denote the unit cost of the employed labor and pk the unit costs of goods
produced by firm k. Therefore, the actual revenues and the actual liabilities, due to
intermediate goods and labor, are respectively defined as:

Ak(η) = pky
η
k = pke

ηkςkl
βk

k

Ù
j∈V

(zηjk)Ajk (2.2)

Lk(η) =
Ø
j∈V

pjz
η
jk + wlk (2.3)

Each industry borrows a fraction θk ∈ [0,1] of its liabilities Lk from the banks at
an interest rate rk ≥ 0. The portion θk is exogenously determined, while rk can be an
exogenous or endogenous parameter as shown in section 2.1.3.

Firstly, firms pay for labor and intermediate goods, then, they give to the bank the
minimum between the loan with its interests ((1 + rk)θkLk(η)) and what remains to firms
after the payment of labor and suppliers (Ak(η) − (1 − θk)Lk(η)).

The firm’s profit is the remainder of its assets once labor, other firms, and the bank
have been paid:

πk(η) = Ak(η) − (1 + rkθk)Lk(η) (2.4)

If assets are not enough to pay other firms, labor and its debt to the bank plus interest,
there is the default and the profit becomes negative.

Assuming risk neutrality, firms choose the maximal quantities of intermediate goods
(zjk)0

j∈V to order and the labor lk to employ in order to maximize their expected profit:

E[πk(η)] (2.5)

When a shock η hits the production, there is a proportional post-shock redistribution
such that:

zηjk
z0
jk

= yηk
y0
k

∀j, k = 1, ..., n s.t. z0
jk > 0 (2.6)
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2.1 – Model definition

The proportional mechanism in shock propagation implies that if the output of a good
decreases of a given percentage with respect to its maximal value y0

k, at time 1 the avail-
ability of that good for every firm j, that is a customer of sector k, is reduced of the same
percentage with respect to the maximal value z0

jk ordered at time 0. This proportional
mechanism depends on the homogeneity property of the model, meaning that the shock’s
effect is identical for every industry in the same sector k.

2.1.2 Representative household
The representative household consumes quantities cηk of the produced goods, its Cobb-
Douglas utility function is defined as:

U(cη) = χ
Ù
k∈V

(cηk)γk (2.7)

where γk ≥ 0 are the consumer preference weight for the good produced by firm k, with
the assumption that

q
k∈V γk = 1 and χ =

r
k γ

−γk

k is a positive normalization constant.
Consumers make decisions at time 0 on the maximal quantities c0

k of different goods
to order and solve an optimization problem, which consists in maximizing the expected
utility:

E[U(cη)] (2.8)

The actual consumptions are determined through a proportional rationing rule, simi-
larly to the one described in equation (2.6) for firms, such that:

cηk
c0
k

= yηk
y0
k

, ∀k = 1, ..., n s.t. c0
k > 0 (2.9)

The representative household receives wages as workers and gets profits as owners of
both the firms and the bank, hence its total gain is:

E(η) = w +
Ø
k∈V

πk(η) +
Ø
k∈V

rkθkLk(η) (2.10)

with the budget constraint: Ø
k∈V

cηkpk ≤ E(η) (2.11)

2.1.3 Banks
Banks are a continuum, they operate in perfect competition and they are randomly
matched with firms. We can consider a representative bank that finances firm k with
a loan covering a fraction θk ∈ [0,1] of its actual liabilities.

We analyze two cases:

• The interest rates rk and θk are fixed, since they are taken as exogenous parameters;
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Production network model

• the parameters θk are exogenous, while the interest rates rk are endogenous, meaning
that they are chosen by the banks, so that their expected profit from sector k is null.
In order to describe the profit of a bank, we have to consider that the bank credit
towards sector k is defined as (1+rk)θkLk(η), while at the end of time 1, the available
capital of firm k to pay back its debt to the bank is [Ak(η)− (1−θk)Lk(η)]+. Hence,
the amount of credit the bank is able to cover from sector k is:

min{[Ak(η) − (1 − θk)Lk(η)]+, (1 + rk)θkLk(η)} (2.12)

Consequently, the bank’s profit is defined as:

Ik(η) = min{[Ak(η) − (1 − θk)Lk(η)]+, (1 + rk)θkLk(η)} − θkLk(η)

= [Ak(η) − Lk(η)]rkθkLk(η)
−θkLk(η)

(2.13)

with the notation [a]cb = min{max{a, b}, c}.
Assuming risk neutrality, for computing the interest rates, the bank solves an opti-
mization problem, which consists in imposing that its expected profit from sector k
is null:

E[Ik(η)] = E[[Ak(η) − Lk(η)]rkθkLk(η)
−θkLk(η) ] = 0 (2.14)

2.2 Analysis of the model at equilibrium
In the Cobb-Douglas economy (A, β, γ) described above, the constant-return-to-scale as-
sumption implies that:

αk =
Ø
j∈V

Ajk, αk + βk = 1, ∀k = 1, ...n,
Ø
k∈V

γk = 1 (2.15)

Definition 1. A rigid Walrasian equilibrium in a constant-return-to-scale Cobb-Douglas
economy (A, β, γ), with a financed fraction vector θ and a primitive log-production shock
η, is a tuple (y0, z0, c0, l, r, p, w) such that:

• at time 0 every firm k chooses the employed labor lk and the maximal quantities of
intermediate goods (z0

jk)j in order to maximize its expected profit E[πk(η)];

• the consumption vector c0, chosen at time 0, maximizes the expected consumer utility
E[U(cη)] under the budget constraint (2.11),

• the banks financing sector k make zero expected profit E[Ik(η)] = 0, ∀k = 1, ..., n;

• the clearing assumption for goods is:

yηk =
Ø
j∈V

zηkj + cηk ∀k = 1, ..., n; (2.16)

• the clearing assumption for labor is: Ø
k∈V

lk = 1 (2.17)

12



2.2 – Analysis of the model at equilibrium

The constant returns-to-scale assumption (2.15) implies that the column sums of the
matrix A are less or equal to one. Hence, A is a column-substochastic matrix and its
spectral ray is strictly less than one. As a consequence, the Leontief inverse is well-
defined, it can be expressed as the series of powers of A′ and it has all non negative
entries:

L = (I − A′)−1 =
+∞Ø
h=0

(A′)h (2.18)

A primary role in shocks’ propagation in the economy is played by the random vector
of the total log-production shocks defined as:

ρk =
Ø
j∈V

Lkjηj (2.19)

Through the Leontief matrix L, it accounts for all indirect effects of the primary log-
production shocks in the industries upstream to sector k in the production network. Hence,
the total shock is made by the primitive shock η and by the network-induced shock
generated from the propagation of the primitive shock in the network.

Proposition 1. In a constant-returns-to-scale economy (A, β, γ) with ρ(A) < 1 and prim-
itive shock η, the actual productions, intermediate quantities and household consumptions
satisfy:

yηk = eρky0
k, zηjk = eρjz0

jk, cηk = eρkc0
k, ∀k, j = 1, ..., n (2.20)

The equation (2.20) is compatible with proportional rules (2.6) and (2.9) and it implies
that if equations for production (2.1), utility (2.7) and clearing condition for goods (2.16)
are satisfied by the maximal quantities y0

k, z
0
jk, c

0
k, then they are verified also by the actual

quantities yηk , z
η
jk, c

η
k for every realization of η.

We can introduce the sector normalized total shock, which is a random vector that
measures the transmission of the shock to a specific sector because of the whole network:

τk = eρk

E[eρk ] (2.21)

We can also define the normalized suppliers’ total shock weighted by its importance,
it measures how the neighbors nodes hit firm k:

εk =
Ø
j∈V

τjAjk + βk (2.22)

We have that:
E[τk] = 1, ∀k = 1, ..., n (2.23)

consequently, using (2.15), we obtain that:

E[εk] = 1, ∀k = 1, ..., n (2.24)

Moreover, when the interest rates rk are chosen exogenously, we can define the primitive
cost of debt on sector k as:

ζk = log(1 + rkθk) (2.25)

13
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It is a deterministic quantity, which depends on the values of θk, rk that are fixed.
On the contrary, when the interest rates are endogenous, the primitive cost of debt ζk

can be derived from the following proposition.

Proposition 2. For every sector k in V and leverage value θk in [0, 1], the equation:

E[[eζkτk]e
ζk ϵk

(1−θk)ϵk
] = E[max{eζk min{τk, ϵk}, (1 − θk)ϵk}] = 1 (2.26)

admits a unique nonnegative solution ζk = ζk(θk).
Moreover, such solution is non-decreasing as a function of θk, with:

ζk(0) = 0; ζk(1) = − logE[min{τk, ϵk}] (2.27)

Proposition 2 ensures that the cost of debt ζk for a sector k is well defined and it is
a monotone non-decreasing function of the leverage θk, ranging from a minimum value
ζk(0) = 0 when θk = 0, to a maximum value ζk(1) = − logE[min{τk, ϵk}] achieved when
θk = 1.

In order to compute the values of ζk from equation (2.26), we need to find the zeros of
the following function:

f(x, θk) = E[[xτk]xϵk

(1−θk)ϵk
] − 1 = E[max{xmin{τk, ϵk}, (1 − θk)ϵk}] − 1 (2.28)

with x = eζk . Then, ζk = log(x(θk)) satisfies f(eζk , θk) = 0.

The total network induced cost of debt measures the additional cost to firms caused
by the propagation of the leverage in the network and it represents the magnitude corre-
sponding to ρ = Lη. It is defined as:

ξk =
Ø
j∈V

Lkjζj , ∀k = 1, ..., n (2.29)

We can introduce the distorted Leontief matrix:

Lζ = (I − e−[ζ]A′)−1 (2.30)

where e−[ζ] is the diagonal matrix with the discount factor e−ζk for different sectors k =
1, ..., n on the main diagonal.

We consider also the normalized distorted centrality:

vζk = 1
ψ(ζ)

Ø
j∈V

Lζjkγj , ∀k = 1, ..., n (2.31)

where ψ(ζ) =
q
j∈V

q
k∈V γjL

ζ
jkβke

−ζk is the normalization factor. When ζ = 0, we obtain
the standard Leontief matrix and vζk reduces to the Bonacich centrality:

v0
k =

Ø
j∈V

Ljkγj (2.32)

The following theorem establishes the existence of an unique Walrasian equilibrium.

14
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Theorem 1. Consider a constant-return-to-scale Cobb-Douglas economy (A, β, γ), a fi-
nanced fraction vector θ and a primitive log-production shock η. Then, there exists a
unique rigid Walrasian equilibrium (y0, z0, c0, l, r, p, w).

Moreover, let τk, ζk, vζk be respectively the normalized total shock, the distortion and the
distorted centrality of each sector k = 1, ..., n defined respectively in (2.21), (2.25), (2.31).
Then, we obtain that the values of the following quantities at the equilibrium are:

• maximal productions:
y0
k = vζke

−ξk ; (2.33)

• maximal intermediate quantities:

z0
jk = vζkAjke

−ζk−ξj ; (2.34)

• employed labor:
lk = vζkβke

−ζk ; (2.35)

• maximal household’s consumption:

c0
k = γke

−ξk

ψ(ζ) ; (2.36)

• interest rates: if θk > 0, then

rk = eζk − 1
θk

; (2.37)

• prices over wage:
pk
w

= eξk

E[eρk ] (2.38)

Proof. the proof can be found in [8].

The term e−ξk represents the discount factor of sector k computed in correspondence
of the total cost of debt, while the term e−ζk = 1

1+rkθk
(obtained from equation (2.37)) is

the discount factor of sector k computed in correspondence of the primitive cost of debt.
We can observe that (2.37) is equivalent to (2.25), meaning that the discount factor on
sector k is equivalent to the primitive cost of debt.

Observation 1. Recall that the superscript 0 in the quantities y0
k, z

0
jk, c

0
k denotes the equi-

librium values corresponding to the case η = 0. In this benchmark scenario, production,
intermediate inputs, and consumption attain their maximal levels, since no shock is real-
ized. When a shock η occurs, these quantities are rescaled by the factor eρ and we denote
the resulting actual values by the superscript η. Hence, the notation distinguishes between
the maximal equilibrium quantities (η = 0) and the shock-dependent equilibrium quantities
(at realized η).

Theorem 1 and Proposition 1 together imply the following result for actual quantities:

15
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Corollary 1. Consider a constant-return-to-scale Cobb-Douglas economy (A, β, γ), a fi-
nanced fraction vector θ and a primitive log-production shock η. Then, at the rigid Wal-
rasian equilibrium, we have that:

• actual productions:
yηk = vζke

ρk−ξk ; (2.39)

• actual intermediate quantities:

zηjk = vζkAjke
ρj−ζk−ξj ; (2.40)

• actual employed labor:
lk = vζkβke

−ζk ; (2.41)

• actual household’s consumption:

cηk = γke
ρk−ξk

ψ(ζ) ; (2.42)

• actual welfare:

U(cη) = e
q

k
v0

k(ηk−ζk)

ψ(ζ) ; (2.43)

• actual profits:
πk(η) = wvζk(τk − εk) (2.44)

Proof. the proof can be found in [8].

Corollary 1 shows that ,when the shock η is realized, productions, intermediate quan-
tities and consumption are smaller than their maximal values because they are multiplied
by the factor eρ since they are affected by the shock; they are called actual quantities. On
the contrary, the labor is not influenced by shocks.

Corollary 1 contains the expression of equilibrium profits. It is important to notice
that, although the expected profits are 0 for equation (2.23), (2.24), the random variable
πk can assume both positive or negative values (default event). Moreover, it can be split
into two terms vζk and τk − ϵk.

The first one is always positive and it is the distorted Bonacich centrality, it depends
on the bank’s loans and it is not influenced by log-productions shocks. The presence of
the bank amplifies profits or losses if and only if the distorted centrality index without
debt is smaller than the same index with debts, meaning that v0

k < vζk.
On the contrary, the second term can have any sign and it is linked exclusively to total

shocks of the firm and its suppliers, in fact it does not depend on the interest rates and
on the extent of the loans with the bank.
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2.3 Example
We suppose to have the following network with independent exponential shocks η =
[η1, η2, η3, η4] on all nodes with parameters λ = [λ1, λ2, λ3, λ4] respectively:

1

2

3

4

The adjacency matrix is:

A =


0 a12 a13 0
0 0 a23 a24
0 0 0 a34
0 0 0 0


Consequently, the Leontief matrix L = (I − A′)−1 is:

L =


1 0 0 0
a12 1 0 0

a12a23 + a13 a23 1 0
a12(a23a34 + a24) + a13a34 a23a34 + a24 a34 1


For each node the total shock defined by (2.19) is obtained as:

ρ1 = L11η1 + L12η2 + L13η3 + L14η4 = η1

ρ2 = L21η1 + L22η2 + L23η3 + L24η4 = a12η1 + η2

ρ3 = L31η1 + L32η2 + L33η3 + L34η4 = (a12a23 + a13)η1 + a23η2 + η3

ρ4 = L41η1+L42η2+L43η3+L44η4 = (a12a23a34+a12a24+a13a34)η1+(a23a34+a24)η2+a34η3+η4

The normalized total shock defined in equation (2.21) is:

τ1 = eρ1

E[eρ1 ] = eη1

E[eη1 ] = eη1

λ1
λ1+1

τ2 = eρ2

E[eρ2 ] = ea12η1+η2

E[ea12η1+η2 ] = ea12η1+η2

E[ea12η1 ]E[eη2 ] = ea12η1+η2

λ1
λ1+a12

λ2
λ2+1

τ3 = eρ3

E[eρ3 ] = e(a12a23+a13)η1+a23η2+η3

E[e(a12a23+a13)η1+a23η2+η3 ] = e(a12a23+a13)η1+a23η2+η3

E[e(a12a23+a13)η1 ]E[ea23η2 ]E[eη3 ] =

17
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e(a12a23+a13)η1+a23η2+η3

λ1
λ1+a12a23+a13

λ2
λ2+a23

λ3
λ3+1

τ4 = eρ4

E[eρ4 ] = e(a12a23a34+a12a24+a13a34)η1+(a23a34+a24)η2+a34η3+η4

E[e(a12a23a34+a12a24+a13a34)η1+(a23a34+a24)η2+a34η3+η4 ] =

e(a12a23a34+a12a24+a13a34)η1+(a23a34+a24)η2+a34η3+η4

E[e(a12a23a34+a12a24+a13a34)η1 ]E[e(a23a34+a24)η2 ]E[ea34η3 ]E[eη4 ]

= e(a12a23a34+a12a24+a13a34)η1+(a23a34+a24)η2+a34η3+η4

λ1
λ1+a12a23a34+a12a24+a13a34

λ2
λ2+a23a34+a24

λ3
λ3+a34

λ4
λ4+1

The expected values in the denominator of τ vectors are computing exploiting the fact
that the exponential shocks on all nodes are independent and using the result coming from
Table 3.1 about the exponentially tilted density function of an exponential distribution.

The normalized suppliers shock defined in equation (2.22) is:

ϵ1 = τ1A11 + τ2A21 + τ3A31 + τ4A41 + β1 = 1

ϵ2 = τ1A12 + τ2A22 + τ3A32 + τ4A42 + β2 = 1 + a12(τ1 − 1)

ϵ3 = τ1A13 + τ2A23 + τ3A33 + τ4A43 + β3 = 1 + a13(τ1 − 1) + a23(τ2 − 1)

ϵ4 = τ1A14 + τ2A24 + τ3A34 + τ4A44 + β4 = 1 + a24(τ2 − 1) + a34(τ3 − 1)

In this example we consider exogenous interest rates, then the primitive debt cost is
deterministic for each node and it is expressed by equation (2.25):

ζ1 = log(1 + r1θ1)

ζ2 = log(1 + r2θ2)

ζ3 = log(1 + r3θ3)

ζ4 = log(1 + r4θ4)

As a consequence, the total debt cost defined in equation (2.29) is obtained as:

ξ1 = L11ζ1 + L12ζ2 + L13ζ3 + L14ζ4 = ζ1

ξ2 = L21ζ1 + L22ζ2 + L23ζ3 + L24ζ4 = a12ζ1 + ζ2

ξ3 = L31ζ1 + L32ζ2 + L33ζ3 + L34ζ4 = (a12a23 + a13)ζ1 + a23ζ2 + ζ3

ξ4 = L41ζ1+L42ζ2+L43ζ3+L44ζ4 = (a12a23a34+a12a24+a13a34)ζ1+(a23a34+a24)ζ2+a34ζ3+ζ4

Since the diagonal matrix e−ζ can be written as:

e−ζ =


e−ζ1 0 0 0

0 e−ζ2 0 0
0 0 e−ζ3 0
0 0 0 e−ζ4

 =


e− log(1+r1θ1) 0 0 0

0 e− log(1+r2θ2) 0 0
0 0 e− log(1+r3θ3) 0
0 0 0 e− log(1+r4θ4)

 =
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=


1

1+r1θ1
0 0 0

0 1
1+r2θ2

0 0
0 0 1

1+r3θ3
0

0 0 0 1
1+r4θ4


The distorted Leontief matrix Lζ = (I − e−ζA′)−1 obtained is:

Lζ =


1 0 0 0
a12

1+r2θ2
1 0 0

a12a23
(1+r2θ2)(1+r3θ3) + a13

1+r3θ3
a23

1+r3θ3
1 0

a12a23a34
(1+r2θ2)(1+r3θ3)(1+r4θ4) + a13a34

(1+r3θ3)(1+r4θ4) + a12a24
(1+r2θ2)(1+r4θ4)

a23a34
(1+r3θ3)(1+r4θ4) + a24

1+r4θ4
a34

1+r4θ4
1


The Bonacich centrality defined in equation (2.32) is:

v0
1 = L11γ1+L21γ2+L31γ3+L41γ4 = γ1+a12γ2+(a12a23+a13)γ3+(a12a23a34+a12a24+a13a34)γ4

v0
2 = L12γ1 + L22γ2 + L32γ3 + L42γ4 = γ2 + a23γ3 + (a23a34 + a24)γ4

v0
3 = L13γ1 + L23γ2 + L33γ3 + L43γ4 = γ3 + a34γ4

v0
4 = L14γ1 + L24γ2 + L34γ3 + L44γ4 = γ4

In order to find the distorted Bonacich centrality expressed by equation (2.31), we need
to compute the normalization factor ψ(ζ):

ψ(ζ) = γ1L
ζ
11β1e

−ζ1+γ2L
ζ
21β1e

−ζ1+γ3L
ζ
31β1e

−ζ1+γ4L
ζ
41β1e

−ζ1+γ1L
ζ
12β2e

−ζ2+γ2L
ζ
22β2e

−ζ2+

γ3L
ζ
32β2e

−ζ2 + γ4L
ζ
42β2e

−ζ2 + γ1L
ζ
13β3e

−ζ3 + γ2L
ζ
23β3e

−ζ3 + γ3L
ζ
33β3e

−ζ3+

γ4L
ζ
43β3e

−ζ3 + γ1L
ζ
14β4e

−ζ4 + γ2L
ζ
24β4e

−ζ4 + γ3L
ζ
34β4e

−ζ4 + γ4L
ζ
44β4e

−ζ4 =
1

1 + r1θ1
(γ1 + γ2L

ζ
21 + γ3L

ζ
31 + γ4L

ζ
41) + (1 − a12)

1 + r2θ2
(γ2 + γ3L

ζ
32 + γ4L

ζ
42)+

(1 − a13 − a23)
1 + r3θ3

(γ3 + γ4L
ζ
43) + (1 − a24 − a34)

1 + r4θ4
γ4

The distorted Bonacich centrality is:

vζ1 = 1
ψ

(Lζ11γ1 + Lζ21γ2 + Lζ31γ3 + Lζ41γ4) = 1
ψ

(γ1 + Lζ21γ2 + Lζ31γ3 + Lζ41γ4)

vζ2 = 1
ψ

(Lζ12γ1 + Lζ22γ2 + Lζ32γ3 + Lζ42γ4) = 1
ψ

(γ2 + Lζ32γ3 + Lζ42γ4)

vζ3 = 1
ψ

(Lζ13γ1 + Lζ23γ2 + Lζ33γ3 + Lζ43γ4) = 1
ψ

(γ3 + Lζ43γ4)

vζ4 = 1
ψ

(Lζ14γ1 + Lζ24γ2 + Lζ34γ3 + Lζ44γ4) = 1
ψ

(γ4)

We now want to compute the maximal quantities at the equilibrium:
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• the production vector expressed by equation (2.33) is:

y0
1 = vζ1e

−ξ1 = 1
ψ

(γ1 + Lζ21γ2 + Lζ31γ3 + Lζ41γ4)e−ζ1

y0
2 = vζ2e

−ξ2 = 1
ψ

(γ2 + Lζ32γ3 + Lζ42γ4)e−a12ζ1−ζ2

y0
3 = vζ3e

−ξ3 = 1
ψ

(γ3 + Lζ43γ4)e−(a12a23+a13)ζ1−a23ζ2−ζ3

y0
4 = vζ4e

−ξ4 = 1
ψ

(γ4)e−(a12a23a34+a12a24+a13a34)ζ1−(a23a34+a24)ζ2−a34ζ3−ζ4

• the intermediate quantities defined in equation (2.34) are expressed by the matrix:

z0
jk =


0 vζ2a12e

−ζ2−ξ1 vζ3a13e
−ζ3−ξ1 0

0 0 vζ3a23e
−ζ3−ξ2 vζ4a24e

−ζ4−ξ2

0 0 0 vζ4a34e
−ζ4−ξ3

0 0 0 0



=


0 1

ψ

(γ2+Lζ
32γ3+Lζ

42γ4)a12
1+r2θ2

e−ζ1 1
ψ

(γ3+Lζ
43γ4)a13

1+r3θ3
e−ζ1 0

0 0 1
ψ

(γ3+Lζ
43γ4)a23

1+r3θ3
e−a12ζ1−ζ2 1

ψ
γ4a24

1+r4θ4
e−a12ζ1−ζ2

0 0 0 1
ψ

γ4a34
1+r4θ4

e−(a12a23+a13)ζ1−a23ζ2−ζ3

0 0 0 0


• the labor expressed by equation (2.35) is:

l1 = vζ1β1e
−ζ1 = 1

ψ

(γ1 + Lζ21γ2 + Lζ31γ3 + Lζ41γ4)
1 + r1θ1

l2 = vζ2β2e
−ζ2 = 1

ψ

(γ2 + Lζ32γ3 + Lζ42γ4)(1 − a12)
1 + r2θ2

l3 = vζ3β3e
−ζ3 = 1

ψ

(γ3 + Lζ43γ4)(1 − a13 − a23)
1 + r3θ3

l4 = vζ4β4e
−ζ4 = 1

ψ

γ4(1 − a24 − a34)
1 + r4θ4

• the consumption vector defined in equation (2.36) is:

c0
1 = γ1e

−ξ1

ψ
= γ1e

−ζ1

ψ

c0
2 = γ2e

−ξ2

ψ
= γ2e

−a12ζ1−ζ2

ψ

c0
3 = γ3e

−ξ3

ψ
= γ3e

−(a12a23+a13)ζ1−a23ζ2−ζ3

ψ

c0
4 = γ4e

−ξ4

ψ
= γ4e

−(a12a23a34+a12a24+a13a34)ζ1−(a23a34+a24)ζ2−a34ζ3−ζ4

ψ
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• prices over wages expressed by equation (2.38) are defined as:

p1

w
= eξ1

E[eρ1 ] = eζ1

E[eη1 ]

p2

w
= eξ2

E[eρ2 ] = ea12ζ1+ζ2

E[ea12η1+η2 ]

p3

w
= eξ3

E[eρ3 ] = e(a12a23+a13)ζ1+a23ζ2+ζ3

E[e(a12a23+a13)η1+a23η2+η3 ]

p4

w
= eξ4

E[eρ4 ] = e(a12a23a34+a12a24+a13a34)ζ1+(a23a34+a24)ζ2+a34ζ3+ζ4

E[e(a12a23a34+a12a24+a13a34)η1+(a23a34+a24)η2+a34η3+η4 ]

The actual quantities at the equilibrium are found as:

• actual production:

yη1 = y0
1e
ρ1 ; yη2 = y0

2e
ρ2 ; yη3 = y0

3e
ρ3 ; yη4 = y0

4e
ρ4

• actual consumption:

cη1 = c0
1e
ρ1 ; cη2 = c0

2e
ρ2 ; cη3 = c0

3e
ρ3 ; cη4 = c0

4e
ρ4

• actual intermediate quantities:
zηjk = z0

jke
ρj

In our example, for each firm, the profit, defined in equation (2.44), becomes:

π1 = wvζ1(τ1 − ϵ1) = w

ψ
(γ1 + Lζ21γ2 + Lζ31γ3 + Lζ41γ4)(τ1 − 1)

π2 = wvζ2(τ2 − ϵ2) = w

ψ
(γ2 + Lζ32γ3 + Lζ42γ4)(τ2 − 1 − a12(τ1 − 1))

π3 = wvζ3(τ3 − ϵ3) = w

ψ
(γ3 + Lζ43γ4)(τ3 − 1 − a13(τ1 − 1) − a23(τ2 − 1))

π4 = wvζ4(τ4 − ϵ4) = w

ψ
γ4(τ4 − 1 − a24(τ2 − 1) − a34(τ3 − 1))

The results of this example are shown in section 4.1, where we perform a numerical
simulation to verify the computations.

21



22



Chapter 3

Default analysis

In this chapter, we define the default condition and we analyze in detail the mechanism
through which a firm k, that receives a negative production shock from a single node o,
separated from firm k through just one or two of its suppliers, can experience default.

The default of a given firm k depends on the coefficients of the Leontief matrix, which
capture the distance of the shock from that firm. The default interval for firm k is the
range of Leontief coefficient values for which its profit becomes negative.

First, we consider a generic distribution searching for sufficient conditions of its expo-
nentially tilted moments that guarantee the existence of an unique default interval. Then,
we focus on exponential, gamma and Bernoulli density functions, finding their default
intervals in the cases of a single and two suppliers.

3.1 Default
Given the model defined in Chapter 2, which admits a unique rigid Walrasian equilibrium,
we aim to explain the situations in which default occurs and the conditions under which
it can be identified.
Definition 2. A firm k ∈ V is in default if its equilibrium profit is negative:

πk(η) < 0 (3.1)

It depends on the network structure and on rigidity, it is not affected by the external
bank through θk and rk.
Proposition 3. A firm k is in default if and only if:

ϵk > τk (3.2)

Proof. The proof follows from equation (2.44) and from definition (3.1), since w and vζk
are positive quantities.

Equation (3.2) shows that the default happens when shocks hitting neighbor nodes
weighted by their importance (suppliers shocks) are greater than total shocks (both prim-
itive and network-induced).
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Default analysis

Example 1. In the example defined in section 2.3, the default condition becomes:
τ1 < ϵ1 is equivalent to eη1 < λ1

λ1+1

τ2 < ϵ2 is equivalent to ea12η1+η2
λ1

λ1+a12
λ2

λ2+1
< 1 + a12

3
eη1
λ1

λ1+1
− 1

4
τ3 < ϵ3 is equivalent to e(a12a23+a13)η1+a23η2+η3

λ1
λ1+a12a23+a13

λ2
λ2+a23

λ3
λ3+1

< 1+a13

3
eη1
λ1

λ1+1
− 1

4
+a23

3
ea12η1+η2

λ1
λ1+a12

λ2
λ2+1

− 1
4

τ4 < ϵ4 is equivalent to e(a12a23a34+a12a24+a13a34)η1+(a23a34+a24)η2+a34η3+η4
λ1

λ1+a12a23a34+a12a24+a13a34
λ2

λ2+a23a34+a24
λ3

λ3+a34
λ4

λ4+1
<

1 + a24

3
ea12η1+η2

λ1
λ1+a12

λ2
λ2+1

− 1
4

+ a34

3
e(a12a23+a13)η1+a23η2+η3

λ1
λ1+a12a23+a13

λ2
λ2+a23

λ3
λ3+1

− 1
4

In order to check if the condition is satisfied, we need to fix the samples and substitute
the values of adjacency matrix’s coefficients and λ parameters.

Remembering that the Leontief matrix is defined as L = (I −A′)−1, we can rewrite it
as L = I + A′L. Then, we can denote the k-th row lk of the matrix L as:

lk = δk +
Ø
j∈V

Ajkl
j (3.3)

From the equation (2.19) of the total shock ρ, we can write that:
ρk = (lk)′η (3.4)

We can introduce a function f : RV × RV → R

f(x, t) = et
′x

E[et′η] (3.5)

Exploiting the expressions (2.21), (2.22) of τk and ϵk and defining τk = f(η, lk), the default
condition τk < ϵk becomes:

f(η, lk) < βk +
Ø
j∈V

Ajkf(η, lj) (3.6)

Hence, the default occurs if and only if the density in correspondence of both primitive
and network induced shocks is smaller than the weighted average of the density of the
primitive and network-induced losses.

A special case is when firm k is hit only by a primitive shock, hence its suppliers are
not exposed to shocks. It means that ∀k /= j, Ljk > 0 implies that ηj = 0 ∀j suppliers
of k. In this situation, we obtain:

ρk = ηk, hence τk = eηk

E[eηk ] , (3.7)

then the default condition is simpler than (3.6) and it becomes:
f(η, lk) < 1 or eηk < E[eηk ] (3.8)

The function f(x, t) defined in (3.5) can represent the density of the random vector
η under an exponential tilting of parameter t. Then, the occurrence of default can be
evaluated under an exponentially tilted change of measure, for this reason it is useful to
review the main properties of exponentially tilted distributions.
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3.2 – Properties of exponentially t-tilted distributions

3.2 Properties of exponentially t-tilted distributions
Exponential tilting is a distribution shifting technique, it is known as the natural expo-
nential family of a random vector η.

Given a random vector η : (Ω,A,P) → (R,B(R)), taking values in Rn, with density
function p0 and cumulant generating function [10]:

kη(t) = logE[et′η] = log
Ú
Rn
et

′xp0(x)dx, ∀t ∈ Rn+, (3.9)

we can define the exponential t-tilted probability measure as [11]:

pt(η ∈ B) = E[et′η1B(η)]e−kη(t) =
Ú

B
et

′x−kη(t)p0(x)dx (3.10)

We obtain that the exponentially t-tilted density can be written as:

pt(x) = p0(x)et′x−kη(t) (3.11)

When t = 0, pt(x) coincides with the original density function p0.
In many cases, the tilted and the original distributions belong to the same parametric

family. This is particularly true when the original density is in the exponentially family,
as for example in the case of exponential, gamma and binomial distributions. In Table
3.1, we report the expressions of their exponentially t-tilted distributions in the scalar
case (n = 1).

Original distribution exponentially t-tilted distribution

Binomial(m, p) Binomial
1
m, pet

1−p+pet

2
Exponential(λ) Exponential(λ− t)

Gamma(α, β) Gamma(α, β − t)

Table 3.1: Exponentially t-tilted densities

The first, the second moment, the variance and the skewness of the exponentially tilted
distribution have the following expressions:

m1(t) = E[ηetη]
E[etη] ; m2(t) = E[η2etη]

E[etη] ; V ar(t) = m2(t)−m2
1(t); Sk(t) = E[(η −m1(t))3]

V ar(t) 3
2

(3.12)
Using k(i)(t) to represent the i-th cumulant of the tilted distribution, the expectation

and the variance of the exponentially t-tilted distribution correspond to the first and the
second cumulant respectively [10]:

m1(t) = d

dt
kη(t) = k(1)(t); V ar(t) = d2

dt2
kη(t) = k(2)(t) (3.13)
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We can make some general considerations regarding the exponentially t-tilted moments.
We can compute the derivative of the moments exploiting the following result:

d

dl
(E[elη]) = E[ηelη]; d

dl
(E[ηelη]) = E[η2elη] (3.14)

We obtain (3.14) using the definition of the expected value and of the density function
of the exponentially tilted distribution:
d

dl
(E[elη]) = d

dl

Ú +∞

0
P(elη ≥ x)dx =

Ú +∞

0

d

dl
P
3
η ≥ logx

l

4
dx =

Ú +∞

0
fη

3
logx

l

4
logx

l2
dx;

then imposing y = logx
l ; dy = dx

xl , we have that:

d

dl
(E[elη]) =

Ú +∞

0
fη(y)yelydy = E[ηeηl]

d

dl
(E[ηelη]) = d

dl

Ú +∞

0
ηelηfηdη =

Ú +∞

0

d

dl
ηelηfηdη =

Ú +∞

0
η2elηfηdη = E[η2elη]

Note that we can differentiate under the integral sign because the integrand satisfies the
conditions of Lebesgue theorem.

From (3.13), we obtain that [12]:

m′
1(t) = d

dt
m1(t) = d2

dt2
kη(t) = V ar(t) > 0, (3.15)

then m1(t) is an increasing function ∀t > 0.
Using (3.12), (3.14), we find that:

m′
2(t) = E[η2etη]′E[etη] − E[η2etη]E[etη]′

(E[etη])2 = E[η3etη]
E[etη] −E[η2etη]

E[etη]
E[ηetη]
E[etη] = m3(t)−m2(t)m1(t)

(3.16)
Moreover, we can observe thatm′′

1(t) is the third cumulant and is equal to the derivative
of the variance:

m′′
1(t) = d3

dt3
kη(t) = k(3)(t) = V ar′(t) = m′

2(t) − 2m1(t)m′
1(t)

= m3(t) −m2(t)m1(t) − 2m1(t)(m2(t) −m2
1(t)) =

m3(t) − 3m1(t)m2(t) + 2m3
1(t) = E[(η −m1(t))3] = Sk(t)V ar(t) 3

2

(3.17)

We obtain that m′′
1(t) is linked with the skewness of an exponentially tilted distribution.

3.3 Default condition with a single node shock trans-
mitted through one supplier using a generic dis-
tribution

We want to study the default condition of firm k in the case in which the following two
assumptions hold:
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3.3 – Default condition with a single node shock transmitted through one supplier using a generic distribution

1. The initial shock is concentrated only on a specific node (node o), meaning that:

η = δoηo, then ρk = Lkoηo (3.18)

2. there exists only one supplier j of firm k which separates it from node o. It implies
that all the paths from node o to node k pass through the supplier j, which is the
sole intermediary between firm k and the source of the shock. Consequently, the
total shock of firm k can be defined as:

ρk = AjkLjoηo (3.19)

with Lko = AjkLjo

We can introduce the function g(x, α, l) defined as:

g(x, α, l) = f(x, αl) − (1 − α) − αf(x, l), (3.20)

where f : R×R → R is the one dimensional version of the function f introduced in (3.5)
and it is defined as:

f(x, t) = etx

E[etη] (3.21)

where t is the exponential tilted parameter.
Substituting (3.21) in (3.20), we obtain that the function g(x, α, l) is:

g(x, α, l) = eαlx

E[eαlη] − (1 − α) − α
elx

E[elη] (3.22)

Under the hypothesis expressed by equations (3.18), (3.19), the default condition (3.6)
is equivalent to the condition g(η0, Ajk, Ljo) < 0.

Now we want to study the function g(x, α, l). We decide to fix x, which is the realization
of a single node shock and α < 1, that measures the importance of supplier j in the
production of firm k. Hence, we observe the behavior of g(x, α, l) with respect to variations
in l, which represents the strength of the network from the shock’s source to supplier j
and the effect on shock’s transmission.

In particular, we analyze the partial derivative of g(x, α, l) with respect to l. We obtain
that it can be expressed through function h(t), whose derivative depends on the moments
of the exponentially tilted distribution.

Lemma 1. The following expression holds:

∂g

∂l
= α(h(αl) − h(l)) (3.23)

where
h(t) = etx(xE[etη] − E[ηetη])

(E[etη])2 (3.24)
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Proof. Starting from (3.22) and using (3.14), we can compute ∂g
∂l :

∂g

∂l
= αxeαlxE[eαlη] − eαlxαE[ηeαlη]

(E[eαlη])2 − α
xelxE[elη] − elxE[ηelη]

(E[elη])2

∂g

∂l
= αeαlx(xE[eαlη] − E[ηeαlη])

(E[eαlη])2 − αelx(xE[elη] − E[ηelη]))
(E[elη])2

Using the definition (3.24) of h(t), we find (3.23).

Lemma 2. h′(t) can be written as a function of the moments of the exponentially tilted
distribution:

h′(t) = etx

E[etη] ((x−m1(t))2 − V ar(t)) (3.25)

Proof. Starting from (3.24) and using (3.14), we can compute h′(t) :

= [xetx(xE[etη] − E[ηetη]) + etx(xE[ηetη] − E[η2etη])](E[etη])2 − etx(xE[etη] − E[ηetη])2E[etη]E[ηetη]
(E[etη])4

= x2etx(E[etη])3 − xetx(E[etη])2E[ηetη] + xetx(E[etη])2E[ηetη]
(E[etη])4

−etx(E[etη])2E[η2etη] − 2etxx(E[etη])2E[ηetη] + 2etxE[etη](E[ηetη])2

(E[etη])4

= etxE[etη](x2(E[etη])2 − E[etη]E[η2etη] − 2xE[etη]E[ηetη] + 2(E[ηetη])2)
(E[etη])4

h′(t) = etx

(E[etη])3 (x2(E[etη])2 − E[etη]E[η2etη] − 2xE[etη]E[ηetη] + 2(E[ηetη])2)

Rewriting the term in brackets as (E[etη])2
3
x2 − E[η2etη ]

E[etη ] − 2xE[ηetη ]
E[etη ] + 2

1
E[ηetη ]
E[etη ]

22
4

and
using the definition of m1(t) and m2(t), the expression of h′(t) becomes:

h′(t) = etx

(E[etη])3 (E[etη])2(x2 −m2(t) − 2xm1(t) + 2m2
1(t)) = etx

E[etη] ((x−m1(t))2 −V ar(t))

Given a network whose shock η satisfies the assumption (3.18), the objective is to
determine the default condition as a function of the moments of the exponentially tilted
distribution for all firms that comply with assumption (3.19).

In this setting, the default intervals for such firms correspond to the range of l for
which the function g(x, α, l) < 0.

We find the following result:

Proposition 4. Given the realized shock x, the tilted first moment m1(t) and the tilted
variance V ar(t) defined in (3.12),
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3.3 – Default condition with a single node shock transmitted through one supplier using a generic distribution

• if (x−m1(t))2 > V ar(t) ∀t > 0, then g(x, α, l) < 0 ∀l > 0;

• if (x−m1(t))2 ≤ V ar(t) ∀t ≥ 0, then g(x, α, l) ≥ 0 ∀l ≥ 0

Proof.

• (x − m1(t))2 > V ar(t) ∀t > 0 implies h′(t) > 0 ∀t > 0, hence h(t) is an increasing
function ∀t > 0. Using (3.23) and the fact that α < 1, we obtain that ∂g

∂l < 0 ∀l > 0
and since g(x, α, 0) = 0, then g(x, α, l) < 0 ∀l > 0;

• (x−m1(t))2 ≤ V ar(t) ∀t ≥ 0 implies h′(t) ≤ 0 ∀t ≥ 0, hence h(t) is a non-increasing
function ∀t ≥ 0. Using (3.23) and the fact that α < 1, we obtain that ∂g

∂l ≥ 0 ∀l ≥ 0
and since g(x, α, 0) = 0, then g(x, α, l) ≥ 0 ∀l ≥ 0.

We obtain that if the realized shock x is far from its mean with respect to the variance
there is the default, while if x is near to its mean there is not the default. Hence, the
default condition depends on m1(t), m2(t), V ar(t) and on how the shock is far from the
mean.

The following two propositions provide sufficient conditions to obtain an unique default
interval, which are based on the properties of the exponentially tilted distribution.

In detail, proposition 5 establishes a condition on the sign of the derivative of function
h(t) in order to guarantee that function g(x, α, l) is negative over a single interval of l.

Proposition 6 directly employs the moments of the exponentially tilted distribution
together with Proposition 5 to derive the condition ensuring the existence of a unique
default interval, meaning that there is just one interval of l where g(x, α, l) is negative.

Proposition 5. Let h′(t) be the function defined in (3.25), if ∃a ≥ 0 such that h′(t) ≤
0 ∀t : 0 < t ≤ a and h′(t) > 0 ∀t > a, then g(x, α, l) is negative on at most one connected
interval of l.

Proof. We can distinguish two cases:

• if a = 0, h′(t) > 0 ∀t > 0 implies that h(t) is an increasing function, hence from
equation (3.23) and from the fact that α < 1, we obtain that ∂g

∂l < 0 ∀l > 0. Then,
since g(x, α, 0) = 0, then g(x, α, l) < 0 ∀l > 0, consequently there is one default
interval;

• if a > 0, h′(t) ≤ 0 in (0, a], then h(t) is a non-increasing function in (0, a], from
equation (3.23) and from the fact that α < 1, we obtain that ∂g

∂l ≥ 0. Hence, since
g(x, α, 0) = 0, g(x, α, l) ≥ 0 in (0, a]. On the contrary, h′(t) > 0 ∀t > a implies
that h(t) is an increasing function on (a,+∞), hence from equation (3.23) and from
the fact that α < 1, we obtain that ∂g

∂l < 0 in (a,+∞). Consequently, g(x, α, l) is a
decreasing function in (a,+∞), it can remain positive or become negative generating
a default interval, hence there is at most one interval where g(x, α, l) < 0.

In both cases there is at most one default interval.
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Proposition 6. Given a random variable η with support in (−∞, 0], if its tilted moments,
defined in (3.12), satisfy the condition:

2m1(t) ≥ Sk(t)V ar(t) 1
2 ∀t ≥ 0, (3.26)

then g(x, α, l) is negative on at most one connected interval of l.

Proof. In order to simplify the notation, we can introduce:

f(t) = (x−m1(t))2 − V ar(t)

Since V ar(t) ≥ 0 and using (3.12), (3.15), (3.17), condition (3.26) implies that

∀x ≤ 0, 0 ≤ 2(m1(t) − x)V ar(t) − Sk(t)V ar(t) 3
2 = 2(m1(t) − x)m′

1(t) − V ar(t)′

= d

dt
((x−m1(t))2 − V ar(t)) = f ′(t)

We obtain that f ′(t) ≥ 0, which implies that f(t) is a non decreasing function and
consequently, also h′(t) = etx

E[etη ]f(t) is a non decreasing function.
There are two cases:

• h′(t) < 0 ∀t > 0, then h(t) is a decreasing function, hence from equation (3.23) and
from the fact that α < 1, we obtain that ∂g

∂l > 0. Since g(x, α, 0) = 0, g(x, α, l) >
0 ∀l > 0, the default is never verified;

• ∃a ≥ 0 such that h′(t) ≤ 0 ∀t : 0 < t ≤ a and h′(t) > 0 ∀t > a. Using Proposition
5, we conclude that g(x, α, l) is negative in at most one interval of l.

Observation 2. Since η ∈ (−∞, 0], m1(t) is negative while V ar(t) is positive, hence
Proposition 6 suggests that the skewness of the distribution should be sufficiently negative
in order to verify (3.26).

3.3.1 Default condition with a single node exponential shock
transmitted through one supplier

We consider the case in which η follows an exponential distribution with density function
fx = λeλx, x ≤ 0.

In order to understand the default condition, we start computing the tilted moments
of the distribution.

Lemma 3. The first moment, the variance and the skewness for the t-tilted exponential
distribution are:

m1(t) = − 1
t+ λ

; V ar(t) = 1
(t+ λ)2 ; Sk(t) = −2 (3.27)

Proof.
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3.3 – Default condition with a single node shock transmitted through one supplier using a generic distribution

• direct computations:

E[etη] =
Ú 0

−∞
etsfsds =

Ú 0

−∞
etsλeλsds =

Ú 0

−∞
λes(t+λ)ds =

λ

(t+ λ)

Ú 0

−∞
(t+ λ)es(t+λ)ds = λ

t+ λ
[es(t+λ)]0−∞ = λ

t+ λ

E[ηetη] =
Ú 0

−∞
setsfsds =

Ú 0

−∞
setsλeλs = λ

Ú 0

−∞
ses(t+λ)ds =

−λ
Ú 0

−∞

1
t+ λ

es(t+λ)ds = − λ

(t+ λ)2 [es(t+λ)]0−∞ = − λ

(t+ λ)2

E[η2etη] = 2λ
(t+ λ)3 ; E[η3etη] = 6λ

(t+ λ)4 (found as previous formula)

Using (3.12) we obtain the result.

• From Table 3.1 we know that if the original distribution is a Exp(λ), the exponen-
tially t-tilted distribution is a Exp(λ− t), however, if the exponential is defined only
for negative values, the exponentially t-tilted distribution is a Exp(λ+ t).
Since the expected value, the variance and the skewness of an exponential distribu-
tion defined for x ≤ 0 with parameter λ are respectively − 1

λ , 1
λ2 and −2, substituting

λ with λ + t in these expressions, we obtain the tilted first moment, variance and
skewness.

Condition (3.26) of Proposition 6 is always verified as an equality in the exponential
case. In fact, using (3.27), we obtain that:

2
3

− 1
t+ λ

4
+ 2

3 1
(t+ λ)2

4 1
2

= 2m1(t) − Sk(t)V ar(t) 1
2 = 0

This result implies that, in the case of an exponential shock, there cannot be more than
one default interval.

In order to find it, we can derive the expression of h′(t) in the exponential case substi-
tuting (3.27) in the generic expression (3.25):

h′(t) = etx

E[etη] ((x−m1(t))2 − V ar(t))

h′(t) = etx

λ
t+λ

C3
x+ 1

t+ λ

42
− 1

(t+ λ)2

D

= etx(t+ λ)
λ

3
x2 + 2x

t+ λ
+ 1

(t+ λ)2 − 1
(t+ λ)2

4
= etx

λ

1
x2(t+ λ) + 2x

2
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We obtain the following expression of h′(t) for an exponential distribution:

h′(t) = etx

λ

1
x2(t+ λ) + 2x

2
(3.28)

We can observe that h′(t) has an unique zero (t = t∗):

h′(t) = 0 is equivalent to x2(t∗ + λ) + 2x = 0, then the unique zero is t∗ = − 2
x

− λ

The following proposition shows the default interval, expressed through function g(x, α, l),
when a generic firm k that verifies the hypothesis (3.19) is affected by an exponential shock
which satisfies the assumption (3.18).

In the case of an exponential shock, the function g(x, α, l), defined in (3.20), becomes:

g(x, α, l) = eαlx(αl + λ)
λ

− (1 − α) − α
elx(l + λ)

λ

Proposition 7. Given the realized shock x and the exponential parameter λ,

• if x < − 2
λ , g(x, α, l) < 0 ∀l > 0;

• if x ≥ − 2
λ , g(x, α, l) ≤ 0 ∀l ≥ l∗, where l∗ is the only positive solution of:

g(x, α, l∗) = eαl
∗x(αl∗ + λ)

λ
− (1 − α) − α

el
∗x(l∗ + λ)

λ
= 0

Proof.

• x < − 2
λ implies that t∗ < 0 then t > t∗ ∀t > 0 hence h′(t) > 0 ∀t > 0. Consequently

h(t) is an increasing function ∀t > 0; using (3.23) and the fact that α < 1, we have
that ∂g

∂l < 0 ∀l > 0 and since g(x, α, 0) = 0, we find that g(x, α, l) < 0 ∀l > 0;

• x ≥ − 2
λ implies that t∗ ≥ 0, then

h′(t) < 0 t < t∗

h′(t) = 0 t = t∗

h′(t) > 0 t > t∗

Since α < 1, αl < l ∀l > 0, we have three cases:

– if αl < l < t∗, since h(t) is a decreasing function in this interval, from (3.23) we
obtain that ∂g

∂l > 0 hence g(x, α, l) > 0 since g(x, α, 0) = 0;
– if t∗ < αl < l, since h(t) is a increasing function in this interval, from (3.23) we

obtain that ∂g
∂l < 0 hence g(x, α, l) is a decreasing function;

– if αl < t∗ < l, h(αl) is going to decrease until the minimum point while h(l)
is going to increase after the minimum. Then, for the continuity of h, exists a
point l̄ such that h(αl̄) = h(l̄) and ∀l > l̄, h(αl) is below h(l). From (3.23) we
obtain that ∂g

∂l < 0 ∀l > l̄, then g(x, α, l) is a decreasing function.
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3.3 – Default condition with a single node shock transmitted through one supplier using a generic distribution

The previous analysis is not conclusive for the last two cases because we cannot
deduce the sign of g(x, α, l). However, we can use the definition of g(x, α, l) to show
that for large values of l, g(x, α, l) becomes negative. In fact, computing the limit
of g(x, α, l), we obtain that:

lim
l→+∞

g(x, α, l) = lim
l→+∞

eαlx(αl + λ)
λ

− (1 − α) − α
elx(l + λ)

λ
= −1 + α < 0

Simulation with an exponential shock

Choice of parameters:

• α = 0.5;

• λ = 1

(a) g(x, α, l) with x = −3 (b) g(x, α, l) with x = −1

Figure 3.1: Plots of g(x, α, l) with a negative exponential shock

From Figure 3.1 we can see that when x < − 2
λ (case (a)), g(x, α, l) < 0 ∀l > 0, on the

contrary when x ≥ − 2
λ (case (b)), g(x, α, l) is positive for small values of l and then it

becomes negative. These results are coherent with Proposition 7.

3.3.2 Default condition with a single node gamma shock trans-
mitted through one supplier

Now we analyze the default condition in the case in which the shock comes from a gamma
distribution (Gamma(ᾱ, β)) with density function fx = 1

Γ(ᾱ)βᾱ (−x)ᾱ−1e
x
β , x ≤ 0.

Lemma 4. The first moment, the variance and the skewness for the t-tilted gamma dis-
tribution are:

m1(t) = − ᾱ

β + t
; V ar(t) = ᾱ

(β + t)2 ; Sk(t) = − 2√
ᾱ

(3.29)
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Proof. From Table 3.1 we know that if the original distribution is a Gamma(ᾱ, β), the
exponentially t-tilted distribution is a Gamma(ᾱ, β− t), however if the gamma is defined
only for negative values, the exponentially t-tilted distribution is a Gamma(ᾱ, β + t).

Since the expected value, the variance and the skewness of a gamma distribution
defined for x ≤ 0 with parameters ᾱ, β are respectively − ᾱ

β , ᾱ
β2 and − 2√

ᾱ
, substituting β

with β + t in these expressions, we obtain (3.29).

Differently from the exponential case, for a gamma distribution, condition (3.26) of
Proposition 6 is satisfied only for some choices of parameters. In fact, using equation
(3.29), we obtain that the condition:

2
3 −ᾱ
β + t

4
+ 2√

ᾱ

√
ᾱ

β + t
= 2m1(t) − Sk(t)V ar(t) 1

2 ≥ 0

is verified if and only if ᾱ ≤ 1; hence the default is at most in one interval of l only if
ᾱ ≤ 1.

Simulation with a gamma shock

In order to understand which is the default interval, we can perform numerical simulations.
We can find the expression of h′(t) substituting (3.29) in the generic expression (3.25):

h′(t) = etx1
β
β+t

2ᾱ
C3
x+ ᾱ

β + t

42
− ᾱ

(β + t)2

D

Using (3.22) and the expression of the moment generating function of a gamma dis-
tribution defined for negative values (E[etη] =

1
β
β+t

2ᾱ
), we obtain that, with a gamma

shock, the generic expression of g(x, α, l), defined in (3.20), becomes:

g(x, α, l) = eαlx1
β

β+αl

2ᾱ − (1 − α) − α
elx1
β
β+l

2ᾱ
Choice of parameters:

• x = −0.5;

• α = 0.5

From Figure 3.2, we can observe that when ᾱ ≤ 1 (case (a), (b) with ᾱ = 0.5, β = 1)
the default condition is an interval of l, in fact g(x, α, l) ≥ 0 for small values of l, then
it becomes and remains negative for the other values of l. This is coherent with the fact
that h′(t) has an unique zero (it changes sign just one time).

On the contrary, when ᾱ > 1 (case (c), (d) with ᾱ = 3, β = 1), h′(t) has two zeros, so
it changes sign twice. As a consequence, g(x, α, l) ≤ 0 for small values of l, g(x, α, l) > 0
for intermediate values and g(x, α, l) < 0 for large values of l.

Numerical simulations confirm the the default is at most one interval of l when ᾱ ≤ 1,
in agreement with condition (3.26).
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3.3 – Default condition with a single node shock transmitted through one supplier using a generic distribution

(a) h′(t) with ᾱ = 0.5, β = 1 (b) g(x, α, l) with ᾱ = 0.5, β = 1

(c) h′(t) with ᾱ = 3, β = 1 (d) g(x, α, l) with ᾱ = 3, β = 1

Figure 3.2: Plots of h′(t) and g(x, α, l) for a negative gamma shock

3.3.3 Default condition with a single node Bernoulli shock trans-
mitted through one supplier

Now we assume that η = −ϵX; where X ∼ Ber(p) and ϵ is a positive parameter rep-
resenting the shock amplitude. Then, the initial shock follows a Bernoulli distribution,
hence the shock realizations are x = 0 and x = −ϵ.

In order to understand the condition for which the default is realized, we can compute
the tilted moments in the case of a Bernoulli distribution.

Lemma 5. The first moment, the variance and the skewness for a t-tilted Bernoulli
distribution are:

m1(t) = −pϵe−tϵ

1 − p+ pe−tϵ ; V ar(t) = pϵ2e−tϵ(1 − p)
(1 − p+ pe−tϵ)2 ; Sk(t) = 1 − p− pe−tϵð

p(1 − p)e−tϵ (3.30)

Proof.

• direct computation:

E[etη] = et(0)P(X = 0) + et(−ϵ)P(X = −ϵ) = 1 − p+ pe−tϵ
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E[ηetη] = 0et(0)P(X = 0) + (−ϵ)et(−ϵ)P(X = −ϵ) = −pϵe−tϵ

E[η2etη] = 0et(0)P(X = 0) + (−ϵ)2et(−ϵ)P(X = −ϵ) = pϵ2e−tϵ

E[η3etη] = 0et(0)P(X = 0) + (−ϵ)3et(−ϵ)P(X = −ϵ) = −pϵ3e−tϵ

using (3.12) we obtain the results.

• From Table 3.1(considering m = 1 in the binomial case), we have that if the original
distribution is a Bern(p), the exponentially t-tilted distribution is a Bern

1
pet

1−p+pet

2
.

Since the expected value, the variance and the skewness of a Bernoulli distribution
with parameter p are respectively p, p(1−p) and 1−2p√

p(1−p)
, substituting p with pet

1−p+pet

and t = −ϵt in these expressions, we obtain the tilted first moment, variance and
skewness.

We can observe that condition (3.26) of Proposition 6 is never satisfied in the Bernoulli
case. In fact, using equation (3.30), we obtain that the condition:

2
A

− pϵe−tϵ

1 − p+ pe−tϵ

B
− 1 − p− pe−tϵð

p(1 − p)e−tϵ

ó
pϵ2e−tϵ(1 − p)

(1 − p+ pe−tϵ)2 = 2m1(t) − Sk(t)V ar(t) 1
2 ≥ 0

is satisfied if and only if −ϵ ≥ 0, that is not possible since ϵ is a positive parameter.
Given that the condition is sufficient but not necessary, the fact that it is never satisfied

does not preclude the possibility that there is at most one default interval. Indeed, in the
Bernoulli case, we can adopt an alternative approach to demonstrate that this is precisely
what occurs.

We start considering the scenario in which the shock is realized (x = −ϵ). Substituting
(3.30) in the generic expression (3.25), we obtain that:

h′(t) = etx

E[etη] ((x−m1(t))2 − V ar(t))

h′(t) = e−tϵ

1 − p+ pe−tϵ

A−ϵ+ pϵe−tϵ

1 − p+ pe−tϵ

B2

− pϵ2e−tϵ(1 − p)
(1 − p+ pe−tϵ)2


= e−tϵ

1 − p+ pe−tϵ

A
(−ϵ+ pϵ)2 − pϵ2e−tϵ(1 − p)

(1 − p+ pe−tϵ)2

B
= e−tϵ

(1 − p+ pe−tϵ)3 ((ϵ(1−p))2−pϵ2e−tϵ(1−p))

= ϵ2(1 − p)e−tϵ

(1 − p+ pe−tϵ)3 (1 − p− pe−tϵ)

Hence, the expression of h′(t) in the Bernoulli case, when the shock is realized, is:

h′(t) = ϵ2(1 − p)e−tϵ

(1 − p+ pe−tϵ)3 (1 − p− pe−tϵ) (3.31)

36



3.3 – Default condition with a single node shock transmitted through one supplier using a generic distribution

We can observe that h′(t) has an unique zero (t = t∗):

h′(t) = 0 is equivalent to 1 − p− pe−t∗ϵ = 0, then the unique zero is t∗ = 1
ϵ
log

3
p

1 − p

4
The following proposition shows the default interval, expressed through function g(x, α, l),

when a generic firm k that satisfies the condition (3.19) is hit by a Bernoulli shock which
verifies the assumption (3.18).

In the case of a realized Bernoulli shock, the function g(x, α, l), defined in (3.20),
becomes:

g(x, α, l) = e−lϵα

pe−lϵα + 1 − p
− (1 − α) − α

e−lϵ

pe−lϵ + 1 − p

Proposition 8. Assuming that the shock is realized (x = −ϵ) and given the Bernoulli
parameter p,

• if p < 1
2 , g(x, α, l) < 0 ∀l > 0,

• if p ≥ 1
2 , g(x, α, l) ≤ 0 ∀l ≥ l∗, where l∗ is the only positive solution of:

g(x, α, l∗) = e−l∗ϵα

pe−l∗ϵα + 1 − p
− (1 − α) − α

e−l∗ϵ

pe−l∗ϵ + 1 − p
= 0

Proof.

• p < 1
2 implies that t∗ < 0 then t > t∗ ∀t > 0, hence h′(t) > 0 ∀t > 0. Consequently

h(t) is an increasing function ∀t > 0, using (3.23) and the fact that α < 1, we obtain
that ∂g

∂l < 0 ∀l > 0 and since g(x, α, 0) = 0, then g(x, α, l) < 0 ∀l > 0

• p ≥ 1
2 , implies that t∗ > 0, then:

h′(t) < 0 t < t∗

h′(t) = 0 t = t∗

h′(t) > 0 t > t∗

Since α < 1, we know that αl < l ∀l > 0, we have three cases:

– if αl < l < t∗, since h(t) is a decreasing function in this interval, from (3.23) we
obtain that ∂g

∂l > 0 hence g(x, α, l) > 0 since g(x, α, 0) = 0;
– if t∗ < αl < l, since h(t) is a increasing function in this interval, from (3.23) we

obtain that ∂g
∂l < 0 hence g(x, α, l) is a decreasing function;

– if αl < t∗ < l, h(αl) is going to decrease until the minimum point while h(l)
is going to increase after the minimum. Then, for the continuity of h, exists a
point l̄ such that h(αl̄) = h(l̄) and ∀l > l̄, h(αl) is below h(l). From (3.23) we
obtain that ∂g

∂l < 0 ∀l > l̄, then g(x, α, l) is a decreasing function.
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As in the exponential case, the previous analysis is not conclusive for the last two
setting because we cannot deduce the sign of g(x, α, l). However, we can exploit the
definition of g(x, α, l) to show that for large values of l, g(x, α, l) becomes negative.
In fact, computing the limit of g(x, α, l), we obtain that:

lim
l→+∞

g(x, α, l) = lim
l→+∞

e−lϵα

pe−lϵα + 1 − p
− (1 − α) − α

e−lϵ

pe−lϵ + 1 − p
= −1 + α < 0

The same reasoning can be repeated considering the case in which the shock is not
realized (x = 0). However, since the profit mean is zero for each firm and the Bernoulli
distribution can have only two realizations (x = 0 and x = −ϵ), the case in which the
shock is not realized is symmetric to the one discussed above.

Simulation with a Bernoulli shock

Choice of parameters:

• α = 0.5;

• ϵ = 2

From Figure 3.3, we can observe that when the shock is realized (x = −ϵ), if p < 1
2

(case (a)), g(x, α, l) can assume only negative values, while if p ≥ 1
2 (case (b)), g(x, α, l) is

positive for small values of l and then it becomes negative, as expected from Proposition
8.

On the contrary, when the shock is not realized (x = 0), if p < 1
2 (case (c)), g(x, α, l)

can assume only positive values, while if p ≥ 1
2 (case (d)), g(x, α, l) is negative for small

values of l and then it becomes positive.
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3.4 – Default condition with a single node shock transmitted through two suppliers and a generic distribution

(a) g(x, α, l) with p = 0.3, x = −ϵ (b) g(x, α, l) with p = 0.8, x = −ϵ

(c) g(x, α, l) with p = 0.3, x = 0 (d) g(x, α, l) with p = 0.8, x = 0

Figure 3.3: Plots of g(x, α, l) with a Bernoulli shock

3.4 Default condition with a single node shock trans-
mitted through two suppliers and a generic dis-
tribution

We now consider the case in which a firm k receives the shock from node o through two
suppliers. Hence, the following analysis is based on two assumptions:

1. The initial shock is concentrated on a specific node (node o), meaning that equation
(3.18) is satisfied as in the case of one supplier,

2. there exist two suppliers j and h of firm k which separate it from node o. It implies
that all the paths from node o to node k pass through the two suppliers of firm k.
Consequently, the total shock of firm k can be defined as:

ρk = (AjkLjo + AhkLho)ηo (3.32)

with Lko = AjkLjo + AhkLho
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We can introduce g(x, α1, α2, l1, l2) defined as:

g(x, α1, α2, l1, l2) = f(x, α1l1 + α2l2) − (1 − α1 − α2) − α1f(x, l1) − α2f(x, l2) (3.33)

where f : R2 × R2 → R is the two dimensional version of the function f introduced in
(3.5). Substituting (3.5) in (3.33), we obtain that the function g(x, α1, α2, l1, l2) is:

g(x, α1, α2, l1, l2) = e(α1l1+α2l2)x

E[e(α1l1+α2l2)η] − (1 − α1 − α2) − α1e
l1x

E[el1η] − α2e
l2x

E[el2η] (3.34)

Under the hypothesis expressed by equations (3.18), (3.32), the default condition (3.6)
is equivalent to the condition g(η0, Ajk, Ahk, Ljo, Lho) < 0.

Now we want to study the function g(x, α1, α2, l1, l2). We decide to fix x, which is the
realization of a single node shock and α1, α2, that measure respectively the importance of
suppliers j and h in the production of firm k and satisfy α1 + α2 < 1. Hence, we observe
the behavior of g(x, α1, α2, l1, l2) with respect to variations in l1, l2, which represent the
strength of the network from the shock’s source to suppliers j and h respectively.

In particular, we analyze the partial derivatives of g(x, α1, α2, l1, l2) with respect to l1
and l2. We obtain that they can be expressed through function h(t), which depends on
the moments of the exponentially tilted distribution.

Lemma 6. The following equalities hold:

∂g

∂l1
= α1(h(α1l1 + α2l2) − h(l1)); ∂g

∂l2
= α2(h(α1l1 + α2l2) − h(l2)) (3.35)

where
h(t) = etx(xE[etη] − E[ηetη])

(E[etη])2

Proof. First, we need to find the partial derivatives with respect to l1, l2 of the expected
value of the exponentially tilted distribution, using its definition:

∂

∂l1
E[e(α1l1+α2l2)η] = ∂

∂l1

Ú +∞

0
e(α1l1+α2l2)ηfηdη =

Ú +∞

0

∂

∂l1
e(α1l1+α2l2)ηfηdη =

α1

Ú +∞

0
ηe(α1l1+α2l2)ηfηdη = α1E[ηe(α1l1+α2l2)η]

∂

∂l2
E[e(α1l1+α2l2)η] = α2E[ηe(α1l1+α2l2)η]

Then, we compute the partial derivatives of g(x, α1, α2, l1, l2) with respect to l1, l2
starting from (3.34). We obtain that:

∂g

∂l1
= α1xe

(α1l1+α2l2)xE[e(α1l1+α2l2)η] − e(α1l1+α2l2)xα1E[ηe(α1l1+α2l2)η]
(E[e(α1l1+α2l2)η])2 −α1xe

l1xE[el1η] − α1e
l1xE[ηel1η]

(E[el1η])2

∂g

∂l1
= α1

A
e(α1l1+α2l2)x(xE[e(α1l1+α2l2)η] − E[ηe(α1l1+α2l2)η])

(E[e(α1l1+α2l2)η])2 − el1x(xE[el1η] − E[ηel1η])
(E[el1η])2

B
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3.4 – Default condition with a single node shock transmitted through two suppliers and a generic distribution

∂g

∂l2
= α2xe

(α1l1+α2l2)xE[e(α1l1+α2l2)η] − e(α1l1+α2l2)xα2E[ηe(α1l1+α2l2)η]
(E[e(α1l1+α2l2)η])2 −α2xe

l2xE[el2η] − α2e
l2xE[ηel2η]

(E[el2η])2

∂g

∂l2
= α2

A
e(α1l1+α2l2)x(xE[e(α1l1+α2l2)η] − E[ηe(α1l1+α2l2)η])

(E[e(α1l1+α2l2)η])2 − el2x(xE[el2η] − E[ηel2η])
(E[el2η])2

B

We can observe that h(t) has the same expression of the one computed in the case of
one supplier (3.24), hence the expression of h′(t) is given by (3.25).

As a consequence, from Proposition 4, we already know the condition for which h(t)
is an increasing or a decreasing function. However, differently from the case with a
single supplier, the monotony of h(t) is not sufficient to determine the sign of the partial
derivatives of g(x, α1, α2, l1, l2), hence the behavior of g(x, α1, α2, l1, l2) cannot be directly
inferred, as it depends on the specific choice of the parameters α1, α2, l1, l2.

Despite that, we can try to analyze the behavior of g(x, α1, α2, l1, l2) in some simple
cases, using the fact that, given a network whose shock η satisfies the assumption (3.18),
the default intervals for all the firms satisfying (3.32) correspond with the intervals of l1, l2
where g(x, α1, α2, l1, l2) < 0.

• if l1 = l2, the strength of the network from the shock’s source to the two suppliers is
the same, then we can write:

∂g

∂l1
= α1(h((α1 + α2)l1) − h(l1)); ∂g

∂l2
= α2(h((α1 + α2)l1) − h(l1))

Since α1 + α2 < 1, then (α1 + α2)l1 < l1, we obtain that:

– if h(t) is an increasing function ∀t > 0 then ∂g
∂l1

< 0; ∂g∂l2 < 0 ∀l1, l2 > 0 then g(x, α1, α2, l1, l2) <
0 ∀l1, l2 > 0,

– if h(t) is an decreasing function ∀t > 0 then ∂g
∂l1

> 0; ∂g∂l2 > 0 ∀l1, l2 > 0 then g(x, α1, α2, l1, l2) >
0 ∀l1, l2 > 0;

• if l1 >> l2, the strength of the network from the shock’s source to the first supplier
is greater than the same quantity for the second supplier, hence α1l1 + α2l2 ∼ α1l1,
then

∂g

∂l1
∼ α1(h(α1l1) − h(l1)); ∂g

∂l2
∼ α2(h(α1l1) − h(l2))

we can suppose that the behavior of g depends only on ∂g
∂l1

, using the fact that
α1 + α2 < 1 and α1, α2 are positive quantities, consequently α1 < 1, then we obtain
that:

– if h(t) is increasing ∀t > 0, ∂g
∂l1

< 0 ∀l1 > 0 then g(x, α1, α2, l1, l2) < 0 ∀l1, l2 > 0,

– if h(t) is decreasing ∀t > 0, ∂g
∂l1

> 0 ∀l1 > 0 then g(x, α1, α2, l1, l2) > 0 ∀l1, l2 > 0;
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• if l2 >> l1, the strength of the network from the shock’s source to the second supplier
is greater than the same quantity for the first supplier, hence α1l1 + α2l2 ∼ α2l2,
then

∂g

∂l1
∼ α1(h(α2l2) − h(l1)); ∂g

∂l2
∼ α2(h(α2l2) − h(l2))

we can repeat the same reasoning done above substituting ∂g
∂l1

with ∂g
∂l2

and we obtain
the same result.

3.4.1 Example
This example shows that when a firm receives a single node shock through two suppliers
with the same importance and the network is symmetric, the default condition for that
industry is equivalent to the case in which the shock is transmitted through just one
supplier.

We consider the case in which the shock is only on node 1, node 2 and 3 receive the
shock from 1, while node 4 receives the shock from node 1 through both its suppliers 2
and 3.

1

2

3

4

We assume that the suppliers (node 2 and 3) of node 4 have the same importance in
its production process, then the elements of the adjacency matrix for this network are
defined as Aij = α

dj
, where α ∈ (0,1) and dj is the in-degree of node j.

In our example d1 = 0, d2 = 1, d3 = 1, d4 = 2, hence A12 = α, A13 = α, A24 =
α
2 , A34 = α

2

A =


0 α α 0
0 0 0 α

2
0 0 0 α

2
0 0 0 0



L = (I − A′)−1 =


1 0 0 0
α 1 0 0
α 0 1 0
α2 α

2
α
2 1


Since the primitive shock is only on node 1, meaning that η = [η1, η2, η3, η4] =

[η1, 0, 0, 0], then the total shock, defined in equation (2.19), becomes:

ρ1 =
4Ø
j=1

L1jηj = L11η1 = η1
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3.4 – Default condition with a single node shock transmitted through two suppliers and a generic distribution

ρ2 =
4Ø
j=1

L2jηj = L21η1 = αη1

ρ3 =
4Ø
j=1

L3jηj = L31η1 = αη1

ρ4 =
4Ø
j=1

L4jηj = L41η1 = α2η1

Using the definition of the normalized total shock and the suppliers’ total shock ex-
pressed by equations (2.21), (2.22) respectively, for our example we obtain that:

τ1 = eρ1

E[eρ1 ] = eη1

E[eη1 ] ; ϵ1 = 1

τ2 = eρ2

E[eρ2 ] = eαη1

E[eαη1 ] ; ϵ2 = 1 −
Ø
j

Aj2 +
Ø
j

Aj2τj = 1 − α + ατ1

τ3 = eρ3

E[eρ3 ] = eαη1

E[eαη1 ] ; ϵ3 = 1 −
Ø
j

Aj3 +
Ø
j

Aj3τj = 1 − α + ατ1

τ4 = eρ4

E[eρ4 ] = eα
2η1

E[eα2η1 ] ; ϵ4 = 1−
Ø
j

Aj4+
Ø
j

Aj4τj = 1−α

2 −α

2 +α

2 τ2+α

2 τ3 = 1−α+ατ2

From equation (3.2), we know that the default is realized when ϵk > τk, then in our
example we have that:

ϵ1 > τ1 is equivalent to eη1 < E[eη1 ] (3.36)

ϵ2 > τ2 and ϵ3 > τ3 is equivalent to eαη1

E[eαη1 ] − (1 − α) − α
eη1

E[eη1 ] < 0 (3.37)

ϵ4 > τ4 is equivalent to eα
2η1

E[eα2η1 ] − (1 − α) − α
eαη1

E[eαη1 ] < 0 (3.38)

For nodes 2, 3, the condition τk−ϵk < 0, expressed by (3.37), is equivalent to g(x, α, l) <
0, where g(x, α, l) is defined as in (3.22).

For node 4, the default condition, expressed by (3.38), is equivalent to g(x, α1, α2, l1, l2) <
0, which is defined as in (3.34), taking, as in our example, l1 = l2 and α1 + α2 = α.

It is worth to notice that it is the same condition we would have found if we had
considered 4 as the third node of a line with the shock on node 1, that is the case in
which there is only one supplier which separates node 4 from the shock’s source. Hence,
the default condition for node 4 that receives the single node shock through two suppliers
with the same importance is equivalent to the case in which the shock is transmitted
through just one supplier.
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3.4.2 Single node exponential shock transmitted through two
suppliers

We decide to use numerical simulations to show that the default condition, in the case in
which the single-node shock comes from an exponential distribution and it is transmitted
through two suppliers, is similar to one found when a single-node exponential shock is
propagated through just one supplier.

For an exponential distribution, the general expression of g(x, α1, α2, l1, l2), as given in
(3.34), takes the following form:

g(x, α1, α2, l1, l2) = (ex(α1l1+α2l2)((α1l1 + α2l2) + λ))
λ

−(1−α1−α2)−α1e
xl1(l1 + λ)
λ

−α2e
xl2(l2 + λ)
λ

Choice of parameters (changes in α1, α2 do not modify the general behavior of g(x, α1, α2, l1, l2)):

• λ = 1 (we decide to fix λ and try different values of x)

• α1 = 0.3

• α2 = 0.5

x gmin gmax
−4 -0.70000 -5.5511e-17
−3 -0.69999 -5.5511e-17

−2.1 -0.69957 -5.5511e-17
−1.9 -0.69894 3.5377e-05
−1 -0.63901 0.058775

−0.5 -0.3926 0.33666
−0.1 -5.5511e-17 1.7359

Table 3.2: Exponential results with two suppliers

In Table 3.2, we underline in red the chance of behavior of the function g(x, α1, α2, l1, l2)
near to the point x = − 2

λ (x = −2 in our example). In fact, we observe that:

• if x < − 2
λ , then g(x, α1, α2, l1, l2) < 0 ∀l1, l2 > 0

• if x ≥ − 2
λ , g(x, α1, α2, l1, l2) can also assume positive values. In particular, for small

values of l1, l2, g(x, α1, α2, l1, l2) is positive, while for large values of l1, l2, it becomes
negative (contour lines in Figure 3.4).

3.4.3 Single node gamma shock transmitted through two sup-
pliers

We perform numerical simulations to analyze the default condition in the case in which
the single-node shock comes from a gamma distribution and it is transmitted through two
suppliers.
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3.4 – Default condition with a single node shock transmitted through two suppliers and a generic distribution

(a) x = −2.1 (b) x = −1.9 (c) x = −0.5

Figure 3.4: Positive and negative regions of g(x, α1, α2, l1, l2) with an exponential shock

For a gamma distribution Gamma(α, β), the general expression of g(x, α1, α2, l1, l2),
as given in (3.34), becomes:

g(x, α1, α2, l1, l2) = ex(α1l1+α2l2)1
β

β+(α1l1+α2l2)

2α − (1 − α1 − α2) − α1e
xl11

β
β+l1

2α − α2e
xl21

β
β+l2

2α
Choice of parameters:

• x = −0.5

• α1 = 0.5

• α2 = 0.3

(a) α = 0.5, β = 1 (b) α = 1, β = 1 (c) α = 3, β = 1

Figure 3.5: Positive and negative regions of g(x, α1, α2, l1, l2) with a gamma shock

From Figure 3.5 it is possible to observe that if α ≤ 1, the default condition is
an interval of l1, l2, in fact g(x, α1, α2, l1, l2) ≥ 0 for small values of l1, l2, then it be-
comes and remains negative for the other values of l1, l2. On the contrary, when α > 1,
g(x, α1, α2, l1, l2) ≤ 0 for small values of l1, l2, g(x, α1, α2, l1, l2) > 0 for intermediate values
and g(x, α1, α2, l1, l2) < 0 for large values of l1, l2; hence more than one default interval
might be generated.
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Default analysis

Numerical simulations show that the default condition for a single node gamma shock
transmitted through two suppliers depends on the value of the parameter α and it is
equivalent to the analysis with a single node gamma shock propagated through just one
supplier.

3.4.4 Single node Bernoulli shock transmitted through two sup-
pliers

We can show that the default condition, in the case in which the single node shock comes
from a Bernoulli distribution and it is transmitted through two suppliers, is similar to one
found with a single node Bernoulli shock propagated through just one supplier.

Case in which the shock is realized (x = −ϵ):

For a Bernoulli distribution, if the shock is realized, the general expression of g(x, α1, α2, l1, l2),
as given in (3.34), reduces to:

g(x, α1, α2, l1, l2) = e−ϵ(α1l1+α2l2)

1 − p+ pe−ϵ(α1l1+α2l2) −(1−α1 −α2)− α1e
−ϵl1

1 − p+ pe−ϵl1
− α2e

−ϵl2

1 − p+ pe−ϵl2

Choice of parameters (changes in α1, α2 do not modify the general behavior of g(l1, l2)):

• α1 = 0.3

• α2 = 0.5

• ϵ = 2

p gmin gmax
0.1 -0.69986 -5.5511e-17
0.3 -0.69982 -5.5511e-17
0.49 -0.69976 -5.5511e-17
0.53 -0.69974 3.31e-05
0.8 -0.69938 0.027326
0.9 -0.69877 0.072393

Table 3.3: Bernoulli results with two suppliers and x = −ϵ

In Table 3.3, we underline in red the chance of behavior of the function g(x, α1, α2, l1, l2)
near to the point p = 1

2 , in the case in which the Bernoulli shock is realized. In fact, we
observe that:

• if p < 1
2 , g(x, α1, α2, l1, l2) < 0 ∀l1, l2 > 0

• if p > 1
2 , g(x, α1, α2, l1, l2) can also assume positive values. In particular, for small

values of l, g(x, α1, α2, l1, l2) is positive, while for large values of l, it becomes negative
(contour lines in Figure 3.6).
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3.4 – Default condition with a single node shock transmitted through two suppliers and a generic distribution

(a) p = 0.48 (b) p = 0.53 (c) p = 0.9

Figure 3.6: Positive and negative regions of g(x, α1, α2, l1, l2)
with a realized Bernoulli shock

Case in which the shock is not realized (x = 0):

For a Bernoulli distribution, if the shock is not present, the general expression of g(x, α1, α2, l1, l2),
as given in (3.34), simplifies to:

g(x, α1, α2, l1, l2) = 1
1 − p+ pe−ϵ(α1l1+α2l2) −(1−α1 −α2)− 1

1 − p+ pe−ϵl1
− 1

1 − p+ pe−ϵl2

Choice of parameters (changes in α1, α2 do not modify the general behavior of g(l1, l2)):

• α1 = 0.3

• α2 = 0.5

• ϵ = 2

p gmin gmax
0.1 -5.5511e-17 0.077763
0.3 -5.5511e-17 0.29992
0.49 -5.5511e-17 0.67232
0.53 -3.7325e-05 0.78907
0.8 -0.10931 2.7975
0.9 -0.65154 6.2889

Table 3.4: Bernoulli results with x = 0

In Table 3.4, we underline in red the chance of behavior of the function g(x, α1, α2, l1, l2)
near to the point p = 1

2 , in the case in which the Bernoulli shock is not realized. In fact,
we observe that:

• if p < 1
2 , g(x, α1, α2, l1, l2) > 0 ∀l1, l2 > 0

• if p > 1
2 , g(x, α1, α2, l1, l2) can also assume negative values. In particular, for small

values of l1, l2, g(x, α1, α2, l1, l2) is negative, while for large values of l1, l2, it becomes
positive (contour lines in Figure 3.7).
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Default analysis

(a) p = 0.48 (b) p = 0.53 (c) p = 0.53

Figure 3.7: Positive and negative regions of g(x, α1, α2, l1, l2) with a non-realized Bernoulli
shock

We have shown that in the case in which the single node shock is transmitted through
two suppliers, the function h(t), used to understand the default condition, is equal to the
one used in the case in which there is just one supplier.

However, since g(x, α1, α2, l1, l2) is a complex two dimensional function to analyze, it
is hard to understand the behavior of it starting from h′(t). Despite that, from numerical
simulations, we can deduce that g(x, α1, α2, l1, l2) has a similar behavior of g(x, α, l) in all
exponential, gamma and Bernoulli cases.
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Chapter 4

Model’s simulations

The aim of this chapter is to show and to explain the results obtained from the imple-
mentation of the model.

Simulations are performed using a MonteCarlo method to generate shock’s samples
and to compute the mean of their exponential transformation and selecting exponential,
gamma and Bernoulli density functions as shock’s distributions.

First, we verify the results obtained in the example made in section 2.3.
Then, we test the model choosing as network structures a line, a DAG and a cycle.
Finally, we analyze a real world network composed of 62 firms extracting its adjacency

matrix from a symmetric table ’branch by branch’.

4.1 Example
We show the results of the example presented in section 2.3.

1

2

3

4

Fixing a12 = 0.3, a13 = 0.4, a23 = 0.2, a24 = 0.5, a34 = 0.3, we obtain that the
adjacency matrix is:

A =


0 0.3 0.4 0
0 0 0.2 0.5
0 0 0 0.3
0 0 0 0


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Model’s simulations

Using the fact that L = (I − A′)−1, the Leontief matrix is:

L =


1 0 0 0

0.3 1 0 0
0.46 0.2 1 0
0.288 0.56 0.3 1


We fix the following quantities:

• wage: w = 1,

• consumer preference weight: γ = [0.25, 0.25, 0.25, 0.25],

• fraction of each firm’s liabilities financed by the bank: θ = [0.2, 0.5, 0.4, 0.7],

• interest rate: r = [0.1, 0.3, 0.2, 0.4], they are fixed since we use exogenous interest
rates in this example,

• exponential parameter: λ = [2, 0.5, 1, 3].

We obtain the following results:

• debt cost: ζ = [0.0198, 0.1398, 0.0770, 0.2469],

• total cost: ξ = [0.0198, 0.1457, 0.1140, 0.3539].
The debt cost has all positive components since the fraction of liabilities financed
by the bank is different from 0 for all the nodes involved in our example. Moreover,
the total cost is larger or equal than the debt cost for each firm because it takes into
account the leverage which is propagated through the network.

• Distorted Leontief matrix:

Lζ =


1 0 0 0

0.261 1 0 0
0.419 0.185 1 0
0.200 0.434 0.234 1


• normalization factor: ψ = 0.8604,

• Bonacich centrality: v0 = [0.512, 0.44, 0.325, 0.25],

• distorted Bonacich centrality: vζ = [0.5461, 0.4705, 0.3586, 0.2905].

Since the debt cost is different from 0 for all the firms, the distorted centrality differs
from the Bonacich centrality, however the centralities’ order is invariant. In fact, for
instance, the first firm is the one with the highest centrality both before and after the
distortion is realized.

The quantities at the equilibrium are:

• maximal production: y0 = [0.5354, 0.4067, 0.3200, 0.2039],
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4.1 – Example

• actual production: yη = [0.3570, 0.1168, 0.0932, 0.0486];

• maximal intermediate quantities:

z0
jk =


0 0.1203 0.1302 0
0 0.5741 0.0981 0
0 0 0 0.0608
0 0 0 0


• actual intermediate quantities:

zηjk =


0 0.0802 0.0868 0
0 0 0.0165 0.0282
0 0 0 0.0177
0 0 0 0


• labor: l = [0.5354, 0.2864, 0.1328, 0.0454];

• maximal household consumption: c0 = [0.2849, 0.2512, 0.2592, 0.2039],

• actual household consumption: cη = [0.1899, 0.0722, 0.0755, 0.0486];

• prices over wages: p
w = [1.5298, 4.0266, 3.8468, 5.9771].

We can notice that actual intermediate quantities, household consumption and conse-
quently actual production are smaller then their maximal values, as expected from the
theory, because they are affected by a negative exponential shock.

The variances and covariances of profits and the default probabilities for each industry
are:

• τk − ϵk variances: [0.1235, 0.8041, 0.4116, 0.1406]
Since the distorted centrality is a deterministic quantity and the profit is defined as
in equation (2.44), if we multiply the variance of τk − ϵk by the distorted Bonacich
centrality squared, we obtain the profit variance:

• profit variances: [0.0374, 0.1803, 0.0526, 0.0114],

• total variance of profits: 0.2816;

• profit covariances: 
0.0374 0.0027 0.0015 0.0002
0.0030 0.1803 0.0136 0.0102
0.0015 0.0136 0.0526 0.0071
0.0002 0.0100 0.0071 0.0114


• default probabilities: [0.4443, 0.5766, 0.5355, 0.5474]
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Model’s simulations

We can notice that shock on node 2 has a greater impact on the corresponding firm
than shocks on the other nodes. In fact, its profit variance and its default probability
are larger than the same quantities on the other nodes. This effect is coherent with the
fact that the second firm is hit by an exponential shock with the smallest λ parameter,
hence the distribution is more concentrated on negative values, as a consequence shocks
are more intense and likely.

The profit variance of node 4 is the lowest, as it has the highest λ parameter, and
is therefore subject to the weakest shock. However, this does not imply that it has the
lowest default probability. Indeed, for the chosen value of θ, this node receives the largest
amount of financing from the bank; consequently, its debt cost is high, which may make
loan repayment more difficult.

We also observe that profit variance is determined not only by the distorted Bonacich
centrality, but also by the term τk − ϵk, which reflects the strength of the shock. Indeed,
although node 1 exhibits the highest distorted centrality, it does not correspond to the
maximum profit variance, which is observed in node 2.

4.2 Line, DAG and cycle structures tested on differ-
ent shock distributions

The results obtained in the following subsections show that the default probabilities and
profit variances decrease moving away from the node where the shock occurs.

When the shock affects all nodes rather than a single one, the profit variances across
the different nodes become similar and the total profit variance is larger than the one
obtained when the shock hits a single node.

Moreover, when the shock is restricted to a specific node and the network structure
is a line or a DAG, only its direct and indirect consumers are influenced by the shock’s
effects, while its suppliers are not affected by them. In fact, their default probabilities
and their profit variances are equal to 0.

Conversely, in the presence of a cycle, a node may still receive the shock even if it is
a supplier of the initially affected node, as the propagation can reach it through another
node in the cycle that acts as a consumer of the shocked firm.

Another observation is the fact that when the shock hits a single node and the network
structure is a line or a DAG, the total variance of profits is greater when the impacted
node is the first in the production line. On the contrary, in the case of a cycle, the profit
variance is larger when the node affected by the shock belongs to the cycle.

4.2.1 Fixed parameters
The parameters fixed in all the following simulations are:

• N = 6 nodes,

• Aij = α
dj

, with α = 0.5 and dj is the in-degree of node j,

• wage: w = 1,
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4.2 – Line, DAG and cycle structures tested on different shock distributions

• consumers preference weight: γk = 1
N ∀k = 0, ..,5,

• fraction of the liabilities financed by the bank: θk = 0.25, ∀k = 0, ..,5,

• interest rate: rk = 1, ∀k = 0, ..,5, they are fixed since we use exogenous interest
rates in these examples.

4.2.2 Exponential shock
The parameters of the exponential distribution chosen for these experiments are:

• exponential parameter: λ = 2,

• amplitude of the negative exponential shock: scale = −1.

Line

0 1 2 3 4 5

A =



0 0.5 0 0 0 0
0 0 0.5 0 0 0
0 0 0 0.5 0 0
0 0 0 0 0.5 0
0 0 0 0 0 0.5
0 0 0 0 0 0


From Tables 4.1 and 4.2 we can observe that, in the case of a line structure, the default

probabilities and the profit variances decrease as firms are further away from the shock’s
source and they are null for the suppliers of the node affected by the shock. In fact, when
the shock hits node 3, firms 0, 1, 2 are not affected by it, since they are suppliers of node
3 and the propagation is downstream.

Shocked node Default probabilities

Node 0 [0.58, 0.34, 0.26, 0.20, 0.17, 0.16]

Node 3 [0, 0, 0, 0.58, 0.34, 0.25]

All nodes [0.58, 0.63, 0.64, 0.64, 0.65, 0.64]

Table 4.1: Default probabilities under an exponential shock in a line network

From Table 4.3, we can notice that when the shock is restricted to an individual node,
the total profit variance reaches its maximum if the first node in the network is impacted.
However, the effect of the shocks is stronger when all nodes are hit, as the total profit
variance in this case exceeds that observed when only a single node is affected.
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Model’s simulations

Shocked node Profit variances

Node 0 [1.28e-01, 5.34e-03, 1.31e-03, 2.16e-04, 2.21e-05, 1.08e-06]

Node 3 [0, 0, 0, 1.10e-01, 3.76e-03, 4.81e-04]

All nodes [1.22e-01, 1.67e-01, 1.85e-01, 1.76e-01, 1.49e-01, 7.53e-02]

Table 4.2: Profit variances under an exponential shock in a line network

Shocked node Total variance of profits

Node 0 0.135

Node 3 0.114

All nodes 0.873

Table 4.3: Total variance of profits under an exponential shock in a line network

DAG

0

1

2

3 4 5

A =



0 0.5 0.5 0 0 0
0 0 0 0.25 0 0
0 0 0 0.25 0 0
0 0 0 0 0.5 0
0 0 0 0 0 0.5
0 0 0 0 0 0


Differently from the line case, in a DAG structure, nodes 1 and 2 are both directly

connected with node 0 and they are both the suppliers of node 3. When the shock’s source
is node 0, they have the same default probability and profit variance.

From Tables 4.4, 4.5, we can see that both default probabilities and profit variances
decrease as firms are located further from the shock origin and they become zero for the
suppliers of the affected node, as in a line structure.
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4.2 – Line, DAG and cycle structures tested on different shock distributions

Shocked node Default probabilities

Node 0 [0.58, 0.34, 0.34, 0.26, 0.20, 0.17]

Node 3 [0, 0, 0, 0.58, 0.34, 0.25]

All nodes [0.58, 0.63, 0.63, 0.64, 0.64, 0.64]

Table 4.4: Default probabilities under an exponential shock in a DAG network

Shocked node Profit variances

Node 0 [1.90e-01, 3.29e-03, 3.29e-03, 1.17e-03, 1.70e-04, 1.10e-05]

Node 3 [0, 0, 0, 1.08e-01, 3.67e-03, 4.70e-04]

All nodes [1.82e-01, 1.03e-01, 1.04e-01, 1.63e-01, 1.37e-01, 7.23e-02]

Table 4.5: Profit variances under an exponential shock in a DAG network

From Table 4.6, we observe that, while the total variance is larger when the shock
affects all nodes simultaneously, in the case of a single node shock, it is maximized when
the first node in the network is impacted, as in a line structure.

Shocked node Total variance of profits

Node 0 0.198

Node 3 0.112

All nodes 0.760

Table 4.6: Total variance of profits under an exponential shock in a DAG network

Cycle

0 1 2 3 4

5
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Model’s simulations

A =



0 0.5 0 0 0 0
0 0 0.25 0 0 0
0 0 0 0.5 0 0
0 0 0 0 0.5 0
0 0 0 0 0 0.5
0 0 0.25 0 0 0


The aspects that remain unchanged also in the case of a cycle are the fact that the

total variance is greater when the shock affects all nodes simultaneously rather than a
single node as shown in Table 4.9. Furthermore, both default probabilities and profit
variances decrease as firms are located further from the shock origin as reported in Tables
4.7, 4.8.

Shocked node Default probabilities

Node 0 [0.58, 0.34, 0.24, 0.17, 0.16, 0.15]

Node 3 [0, 0, 0.19, 0.60, 0.34, 0.26]

All nodes [0.58, 0.63, 0.63, 0.65, 0.65, 0.65]

Table 4.7: Default probabilities under an exponential shock in a cycle network

Both default probabilities and profit variances might not be zero for the suppliers of the
affected node. In fact, from Tables 4.7, 4.8, we can observe that, when the shock is located
on node 3, although node 2 is its supplier, its profit variance and default probability are
different from 0. The reason of this behavior is the fact that node 2 belongs to the cycle,
hence it receives the shock’s propagation from node 5, which is an indirect consumer of
node 3.

Shocked node Profit variances

Node 0 [1.10e-01, 3.49e-03, 1.04e-03, 3.28e-05, 2.86e-06, 1.71e-07]

Node 3 [0, 0, 1.93e-04, 1.14e-01, 4.91e-03, 9.42e-04]

All nodes [1.08e-01, 1.07e-01, 1.74e-01, 1.75e-01, 1.60e-01, 1.22e-01]

Table 4.8: Profit variances under an exponential shock in a cycle network

Differently from the other topologies, from Table 4.9, we can see that when the shock
is confined to a single node, the total variance reaches its maximum value when a node
within the cycle is impacted, rather than the first node.
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4.2 – Line, DAG and cycle structures tested on different shock distributions

Shocked node Total variance of profits

Node 0 0.114

Node 3 0.120

All nodes 0.846

Table 4.9: Total variance of profits under an exponential shock in a cycle network

The results obtained with a gamma and a Bernoulli shock are shown in the appendix
A.1, A.2 since they are similar to the exponential case.

4.2.3 Combination of two Bernoulli shocks
We consider two Bernoulli shock distributions, the first one on node 0 and the second one
on node 3.

The parameters of the Bernoulli distributions chosen for these experiments are:

• amplitude of the two negative Bernoulli shocks: ϵ = −2,

• shock’s probability on node 0 : p1 = 0.65, shock’s probability on node 3 : p2 = 0.45.

Line

In a line structure, we obtain that the default probabilities are:

[0.65, 0.65, 0.35, 0.45, 0.45, 0.45]

with profit variances:

[1.39e− 01, 2.32e− 04, 2.86e− 06, 6.86e− 02, 8.75e− 04, 2.06e− 05]

leading to a total variance of profits of 0.209.

DAG

In a DAG structure, we have that the default probabilities are:

[0.65, 0.65, 0.65, 0.45, 0.45, 0.65]

with profit variances:

[2.05e− 01, 1.50e− 04, 1.50e− 04, 7.03e− 02, 9.54e− 04, 2.68e− 05]

implying a total variance of profits equal to 0.277.

In general, when the shock comes from a Bernoulli with parameter p, the positive
default probabilities correspond with p or 1 − p for all nodes.
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Model’s simulations

Both in the case of the line and in that of the DAG, we can observe that the default
probabilities are equal to p1 or 1 − p1 and p2 or 1 − p2, in particular nodes 1 and 2 are
influenced by the shock on node 0, while nodes 4 and 5 are affected by the shock on node
3, as it is closer to them than node 0. Then, the variation in the profit variance of node
4 and 5 is greater than the one obtained when the shock is confined solely to node 0.

Cycle

In a cycle structure, we obtain that the default probabilities are:

[0.65, 0.65, 0.15, 0.45, 0.45, 0.45]

with profit variances:

[1.19e− 01, 1.59e− 04, 1.21e− 05, 6.92e− 02, 1.16e− 03, 3.90e− 05]

which lead to a total variance of profits equal to 0.189.

We can notice that node 2 is affected both by the shock originating from node 0, as it
acts as its supplier, and by the shock transmitted from node 3 through the propagation
coming from node 5. Consequently, the default probability of node 2 does not coincide
with p1 or p2, as it does in the linear and DAG configurations.

For all the three structures, the total variance of profits lies between the values obtained
when a Bernoulli shock affects a single node and when it impacts all nodes (cases shown
in the appendix A.2).

4.3 Simulations on a real world network
Now we want to test the model on a real network structure, shown in Figure 4.1, which
is composed of 62 firms that are highly interconnected. We extract its adjacency matrix
from a symmetric table ’branch by branch’.

4.3.1 Extraction of the adjacency matrix from a symmetric table
A symmetric table ’branch by branch’ [13] describes the industrial relationships and, for
each branch, the use of goods produced by other branches.

The branch technology assumption implies that each product has its specific sale struc-
ture, meaning that the proportion of output sold to intermediate and final uses is the same,
independently from the branch. The matrix of direct coefficients ’branch by branch’ is:

A = DB (4.1)

where B is the matrix of intermediate coefficients and D is the matrix of market shares.
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4.3 – Simulations on a real world network

Figure 4.1: Network structure

The element aij of matrix A is given by the ratio between the input of sector i used in
sector j and the total output given by the intermediate production of the various sectors
plus the value added which contains wages, profits, and taxes:

aij = input of sector i used in sector j
total output of sector j

With this procedure we compute the coefficients of the adjacency matrix for the net-
work shown in Figure 4.1 and use them in the following examples.
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Model’s simulations

4.3.2 Experiments with a real network structure
The parameters chosen for all the following simulations are:

• N = 62 nodes,

• wage: w = 1,

• consumers preference weight: γ = 1
N ∀k = 0, ..,61,

• negative exponential shock: λ = 2, shock’s amplitude : scale = −1.

We perform the following simulations using only an exponential shock since the choice
of the shock’s distribution does not influence the results. We examine different cases:

1. the fractions of liabilities financed by the bank are null for all the firms in the network:
θk = 0 ∀k = 0, ..,61;

2. the fractions of liabilities financed by the bank and the interest rates are exogenous,
meaning that they are fixed: θk = 0.25, rk = 0.2 ∀k = 0, ...,61 and the debt cost is
a deterministic quantity computed through (2.25);

3. the fractions of liabilities financed by the bank are exogenous, in particular we choose
θk = 0.25, ∀k = 0, ...,61, while the interest rates are endogenous, meaning that the
debt cost is found from proposition (2).

The results presented below suggest several observations:

• The Bonacich centrality assumes the same values in the three examples, since it
depends only on the network structure and consumers preference.

• The distorted Bonacich centrality is different in the three cases, as it is influenced by
the values of the debt cost. In fact, in the first example, the debt cost is null since
the fractions of firms’ liabilities financed by the bank are zero, in the second setting,
it is deterministic due to the fact that the interest rates are exogenous. Finally, in
the last case, the debt cost depends on the shock’s samples because the interest rates
are endogenous.

• The total variance of profits takes higher values when the shock is on all nodes rather
than on a single node.

• The default probabilities are identical in the three examples for each node, which is
consistent with the fact that they do not depend on the choice of θ and r. Conversely,
although the profit variances are of the same order of magnitude, they differ across
the three cases, as profits (2.44) are also affected by the distorted centrality, which
depends on the debt cost, determined by the choice of θ and r.

Case 1.

The Bonacich centrality is equal to the distorted Bonacich centrality when the bank does
not finance firms, since θk = 0 ∀k = 0, ..,61, hence the debt cost ζk = 0, ∀k = 0, ...,61.

60



4.3 – Simulations on a real world network

Case 2.

The Bonacich centrality is different from the distorted Bonacich centrality when the bank
finances a fraction of firms’ liabilities, since θk and consequently ζk are not null for all the
firms.

The centrality does not depend on which node the shock is located, meaning that it
assumes the same values when the shock is on node 0 or on all the nodes, because the
interest rates are chosen exogenously. Then, the debt cost is not influenced by the shock’s
samples and it is deterministic.

Case 3.

As in the second case, the Bonacich centrality is different from the distorted Bonacich
centrality since the bank finances a fraction of firms’ liabilities, in fact θk = 0.25 ∀k =
0, ...,61.

However, differently from the previous cases, the centrality depends on which node the
shock is located because the interest rates are chosen endogenously, hence the debt cost
changes as the shock samples vary.

For all the three cases, the explicit computations of the distorted Bonacich centrality,
default probabilities, profit variances and total profits variance, when the shock is on node
0 or on all the nodes, are reported in the appendix A.3.

Total variance of profits in relation with firms’ centrality

For this experiment we choose exogenous interest rates, as in case 2. above.
We observe which is the node that, when it is affected by the shock, maximizes the

total variance of profits.
We might aspect that the total variance of profits assumes the maximum and the

minimum values when the shock hits node 14 and node 2 respectively, since they are the
ones with the highest and the lowest distorted Bonacich centrality (Figure 4.2).

Figure 4.2: Distorted Bonacich centrality
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From Table 4.10 we can observe that, although node 14 is the one with the highest
distorted centrality, shock on it is not associated with the largest total profit variance. In
fact node 3, 10, 28 have a larger total profit variance than node 14. It can happen because
the profit (2.44) does not depend only on the distorted centrality, but it also is influenced
by the shock samples, through the difference τk − ϵk. On the contrary, node 2, which is
the one with the lowest distorted centrality, has also the smallest total profit variance.

Shock on node 0 1 2 3 4 5
Total profit variance 1.55e-03 6.25e-04 5.12e-04 2.13e-03 1.24e-03 9.93e-04

6 7 8 9 10 11 12 13
1.06e-03 1.21e-03 9.56e-04 1.29e-03 1.69e-03 8.61e-04 1.45e-03 1.15e-03

14 15 16 17 18 19 20 21
1.68e-03 1.66e-03 1.08e-03 1.28e-03 1.37e-03 1.23e-03 9.30e-04 9.47e-04

22 23 24 25 26 27 28 29
8.92e-04 1.43e-03 7.09e-04 1.34e-03 1.04e-03 1.06e-03 1.83e-03 1.16e-03

30 31 32 33 34 35 36 37
1.60e-03 6.21e-04 6.16e-04 1.49e-03 8.15e-04 1.19e-03 8.83e-04 8.90e-04

38 39 40 41 42 43 44 45
1.14e-03 1.30e-03 1.46e-03 8.36e-04 1.25e-03 1.44e-03 1.67e-03 1.21e-03

46 47 48 49 50 51 52 53
7.32e-04 1.04e-03 1.08e-03 1.01e-03 8.82e-04 7.83e-04 1.46e-03 1.22e-03

54 55 56 57 58 59 60 61
7.28e-04 6.74e-04 7.64e-04 9.55e-04 9.43e-04 7.78e-04 5.94e-04 5.96e-04

Table 4.10: Total profit variance varying the shock’s source

We then fix the shock on node 0 and analyze which nodes exert the greatest influence
on it, in terms of default probability and total profit variance. Our aim is to determine
whether the greatest risk to firm 0 arises when the shock affects its direct or its indirect
suppliers and if it is also influenced by shocks on its consumers.

In Figure 4.3, we can observe that the direct suppliers of node 0 are firms 4, 5, 23, 28, 29, 35,
while its direct consumers are nodes 4, 9, 10, 22, 23, 28.

From Table 4.11, we can notice that nodes which influence most firm 0 are 4, 5, 9, 10, 23, 26,
since, when the shock hits those nodes, the default probability and the total profit vari-
ance of node 0 are higher than the ones obtained when the shock affects other nodes. On
the other hand, node 0 is weakly influenced by shock on firms 1, 2, 54, 55, 56, 60, 61, in fact
its default probabilities are low and its total profit variances are almost negligible.

62



4.3 – Simulations on a real world network

Figure 4.3: Nodes linked with firm 0

Hence, combining the observations made from Table 4.11 and Figure 4.3, we can affirm
that node 0 is mainly influenced by shocks on its direct suppliers (nodes 4, 5, 23), however
it is also affected by nodes which are not directly linked with it, as node 26. Moreover,
node 0 is surprisingly impacted also by shocks on firms 9, 10, which are its consumers.

Shock on node 0 1 2 3 4 5
Total profit variance 1.47e-03 2.47e-11 1.25e-11 1.16e-06 1.99e-05 1.89e-07
Default probability 0.592 0.145 0.155 0.230 0.298 0.280

6 7 8 9 10 11 12 13
3.52e-08 5.22e-08 1.37e-09 3.92e-06 5.61e-06 2.06e-07 2.29e-07 3.92e-07

0.243 0.244 0.239 0.273 0.273 0.254 0.245 0.250

14 15 16 17 18 19 20 21
2.24e-08 9.55e-08 5.32e-09 4.63e-08 6.00e-08 8.50e-09 8.86e-09 8.18e-08

0.211 0.242 0.243 0.252 0.257 0.225 0.252 0.255

22 23 24 25 26 27 28 29
3.99e-07 1.45e-06 2.69e-07 9.60e-08 8.21e-05 1.39e-08 1.02e-06 2.56e-07

0.257 0.278 0.248 0.237 0.272 0.234 0.250 0.235

30 31 32 33 34 35 36 37
5.17e-07 4.40e-09 2.42e-10 6.23e-08 1.54e-09 1.04e-07 5.38e-10 4.12e-10

0.241 0.232 0.231 0.201 0.211 0.235 0.163 0.217
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38 39 40 41 42 43 44 45
3.58e-09 1.02e-08 1.07e-07 2.03e-07 9.58e-08 1.26e-08 1.51e-07 5.03e-09

0.204 0.222 0.242 0.260 0.244 0.208 0.240 0.206

46 47 48 49 50 51 52 53
3.30e-09 1.66e-08 1.16e-07 5.10e-09 1.69e-10 7.52e-11 6.74e-08 4.29e-08

0.241 0.205 0.253 0.225 0.145 0.148 0.238 0.243

54 55 56 57 58 59 60 61
2.99e-11 3.45e-11 3.35e-11 1.59e-09 2.73e-09 2.69e-07 6.96e-11 1.77e-11

0.156 0.221 0.165 0.173 0.207 0.247 0.192 0.226

Table 4.11: Total profit variance and default probability for node 0 varying the shock’s
source
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Chapter 5

Conclusions

In this work we studied the propagation of microscopic productivity shocks, which might
generate aggregate fluctuations in highly interconnected and asymmetric networks.

Our model assumes that firms make rigid, state-independent decisions prior to the
realization of shocks. Firms partly rely on debts financed by a bank, whose interest rates
can be exogenous or endogenous. While the model guarantees the existence of a unique
equilibrium, profits are not zero at the equilibrium, hence the default may occur and loans
might remain unpaid.

The analysis of default events constitutes the central aspect of this thesis. We proved
that for a generic firm affected by a single-node shock transmitted through one supplier,
the default condition depends on the moments of the exponentially tilted distribution of
the shock. Using the function g(x, α, l) defined in (3.20), we characterized the default
intervals and we derived sufficient moment-based conditions ensuring the existence of at
most one default interval. We proved that a single default interval exists for exponential
and Bernoulli distributions, while for a Gamma(α, β) distribution, the interval is unique
only if α ≤ 1. The analysis was then extended to a single-node shock transmitted through
two suppliers, using the function g(x, α1, α2, l1, l2) defined in (3.33). In this case, the
default condition remains determined by the tilted moments and the default intervals
coincide with those obtained for a single supplier across all considered distributions.

Moreover, numerical simulations complement the theoretical results, demonstrating
how shocks can propagate across different network structures. They highlight that shocks
have stronger effects when they hit all nodes simultaneously, and they can propagate to
firms not directly connected to the shock source. In simple structures, as a line or a
DAG, shocks primarily affect downstream consumers, with impacts diminishing along the
supply chain. By contrast, in a cycle or in a real world network, shocks might also reach
upstream suppliers. Furthermore, default probabilities are independent of the bank’s
presence, depending only on realized shocks. Conversely, profit variances are influenced
by both distorted Bonacich centrality, determined by the debt cost, itself driven by the
choice of interest rates, and on shock realizations. As a result, firms with the highest
distorted Bonacich centrality do not necessarily exhibit the largest profit variance.

The main contribution of this thesis is therefore twofold. First, it highlights how net-
work topology and the choice of shock distribution are decisive in shaping firms’ profits
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Conclusions

and default conditions. Second, it introduces the use of the moments of exponentially
tilted distributions as a novel analytical tool to explicitly characterize default intervals,
an approach not previously applied in this context. These theoretical insights are strength-
ened by explicit derivations for specific distributions and by simulations that quantify the
interaction between network structures, distributional choices, and firm-level risk.

Equally important, the adopted model captures a realistic decision-making environ-
ment, in which firms must choose their strategies before shocks are realized.

Finally, the analysis suggests several promising avenues for future work.
A natural extension would be to investigate analytically cases in which shocks affect

multiple nodes simultaneously rather than a single one, thereby introducing correlations
among different shocks.

Another promising direction concerns the incorporation of demand shocks, which could
be modeled, for instance, through a lump-sum tax imposed by the government.

A further aspect that might be considered is the geographic collocation of industries
[2], which might be a powerful transmitter of shocks from one industry to others, distinct
from network effects. It reflects the importance of localized networks, as industries with
substantial exchanges frequently locate near each other to reduce transportation costs and
facilitate information transfer.
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Appendix A

Results of the experiments

A.1 Gamma shock
The parameters of the gamma distribution chosen for these experiments are:

• gamma parameters: α = 0.5, β = 1,

• amplitude of the negative gamma shock: scale = −1.

A.1.1 Line

Shocked node Default probabilities

Node 0 [0.41, 0.20, 0.17, 0.14, 0.13, 0.13]

Node 3 [0, 0, 0, 0.40, 0.19, 0.16]

All nodes [0.41, 0.43, 0.44, 0.44, 0.44, 0.44]

Table A.1: Default probabilities under a gamma shock in a line network

Shocked node Profit variances

Node 0 [2.40e-02, 5.96e-04, 1.01e-04, 1.13e-05, 8.38e-07, 3.31e-08]

Node 3 [0, 0, 0, 2.10e-02, 4.36e-04, 3.91e-05]

All nodes [2.31e-02, 2.51e-02, 2.45e-02, 2.45e-02, 1.94e-02, 1.01e-02]

Table A.2: Profit variances under a gamma shock in a line network
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Shocked node Total variance of profits

Node 0 0.025

Node 3 0.021

All nodes 0.127

Table A.3: Total variance of profits under a gamma shock in a line network

A.1.2 DAG

Shocked node Default probabilities

Node 0 [0.41, 0.20, 0.20, 0.16, 0.14, 0.13]

Node 3 [0, 0, 0, 0.40, 0.19, 0.16]

All nodes [0.41, 0.43, 0.43, 0.44, 0.43, 0.44]

Table A.4: Default probabilities under a gamma shock in a DAG network

Shocked node Profit variances

Node 0 [3.56e-02, 3.68e-04, 3.68e-04, 9.06e-05, 8.86e-06, 4.17e-07]

Node 3 [0, 0, 0, 2.05e-02, 4.26e-04, 3.82e-05]

All nodes [3.44e-02, 1.55e-02, 1.53e-02, 2.37e-02, 1.86e-02, 9.79e-03]

Table A.5: Profit variances under a gamma shock in a DAG network

Shocked node Total variance of profits

Node 0 0.036

Node 3 0.021

All nodes 0.117

Table A.6: Total variance of profits under a gamma shock in a DAG network
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A.2 – Bernoulli shock

A.1.3 Cycle

Shocked node Default probabilities

Node 0 [0.41, 0.20, 0.16, 0.13, 0.13, 0.12]

Node 3 [0, 0, 0.14, 0.41, 0.19, 0.16]

All nodes [0.41, 0.43, 0.44, 0.44, 0.44, 0.45]

Table A.7: Default probabilities under a gamma shock in a cycle network

Shocked node Profit variances

Node 0 [2.06e-02, 3.90e-04, 7.01e-05, 1.26e-06, 8.81e-08, 4.65e-09]

Node 3 [0, 0, 1.00e-05, 2.12e-02, 5.65e-04, 7.60e-05]

All nodes [1.99e-02, 1.64e-02, 2.42e-02, 2.45e-02, 2.20e-02, 1.69e-02]

Table A.8: Profit variances under a gamma shock in a cycle network

Shocked node Total variance of profits

Node 0 0.021

Node 3 0.022

All nodes 0.124

Table A.9: Total variance of profits under a gamma shock in a cycle network

A.2 Bernoulli shock
The parameters of the Bernoulli distribution chosen for these experiments are:

• amplitude of the negative Bernoulli shock: ϵ = −2,

• shock frequency: p = 0.65.

We can observe that, in the case of a Bernoulli distribution, the positive default prob-
abilities correspond with the Bernoulli parameters p or 1 − p for all nodes.
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A.2.1 Line

Shocked node Default probabilities

Node 0 [0.65, 0.65, 0.35, 0.35, 0.35, 0.35]

Node 3 [0, 0, 0, 0.65, 0.65, 0.35]

All nodes [0.65, 0.65, 0.65, 0.65, 0.65, 0.65]

Table A.10: Default probabilities under a Bernoulli shock in a line network

Shocked node Profit variances

Node 0 [1.37e-01, 2.56e-04, 2.05e-06, 1.12e-06, 9.54e-08, 3.71e-09]

Node 3 [0, 0, 0, 1.21e-01, 1.84e-04, 7.79e-07]

All nodes [1.38e-01, 1.70e-01, 1.76e-01, 1.69e-01, 1.34e-01, 6.70e-02]

Table A.11: Profit variances under a Bernoulli shock in a line network

Shocked node Total variance of profits

Node 0 0.137

Node 3 0.121

All nodes 0.859

Table A.12: Total variance of profits under a Bernoulli shock in a line network

A.2.2 DAG

Shocked node Default probabilities

Node 0 [0.65, 0.65, 0.65, 0.35, 0.35, 0.35]

Node 3 [0, 0, 0, 0.65, 0.65, 0.35]

All nodes [0.65, 0.65, 0.65, 0.65, 0.65, 0.65]

Table A.13: Default probabilities under a Bernoulli shock in a DAG network
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Shocked node Profit variances

Node 0 [2.04e-01, 1.58e-04, 1.58e-04, 1.85e-06, 8.78e-07, 4.75e-08]

Node 3 [0, 0, 0, 1.19e-01, 1.70e-04, 9.34e-07]

All nodes [2.02e-01, 1.06e-01, 1.05e-01, 1.42e-01, 1.29e-01, 6.67e-02]

Table A.14: Profit variances under a Bernoulli shock in a DAG network

Shocked node Total variance of profits

Node 0 0.204

Node 3 0.119

All nodes 0.751

Table A.15: Total variance of profits under a Bernoulli shock in a DAG network

A.2.3 Cycle

Shocked node Default probabilities

Node 0 [0.65, 0.65, 0.35, 0.35, 0.35, 0.35]

Node 3 [0, 0, 0.35, 0.65, 0.65, 0.35]

All nodes [0.65, 0.65, 0.65, 0.65, 0.65, 0.65]

Table A.16: Default probabilities under a Bernoulli shock in a cycle network

Shocked node Profit variances

Node 0 [1.18e-01, 1.68e-04, 3.10e-06, 1.43e-07, 9.91e-09, 5.10e-10]

Node 3 [0, 0, 9.28e-07, 1.27e-01, 2.91e-04, 1.11e-06]

All nodes [1.15e-01, 1.14e-01, 1.61e-01, 1.67e-01, 1.61e-01, 1.19e-01]

Table A.17: Profit variances under a Bernoulli shock in a cycle network

71



Results of the experiments

Shocked node Total variance of profits

Node 0 0.118

Node 3 0.128

All nodes 0.837

Table A.18: Total variance of profits under a Bernoulli shock in a cycle network

A.3 Real-world network results
In this section we show the results of the three cases presented in 4.3.2.

The Bonacich centrality vector for all the three cases is:

[3.99e − 02, 2.06e − 02, 1.77e − 02, 4.50e − 02, 4.21e − 02, 3.80e − 02, 3.10e − 02, 3.52e −
02, 2.74e− 02, 3.67e− 02, 4.39e− 02, 2.65e− 02, 3.85e− 02, 3.32e− 02, 4.72e− 02, 4.34e−
02, 3.07e− 02, 3.59e− 02, 4.02e− 02, 3.60e− 02, 3.00e− 02, 2.98e− 02, 2.63e− 02, 4.42e−
02, 2.28e− 02, 3.59e− 02, 3.47e− 02, 3.01e− 02, 4.33e− 02, 3.12e− 02, 4.04e− 02, 2.07e−
02, 1.99e− 02, 3.83e− 02, 2.48e− 02, 3.19e− 02, 2.53e− 02, 2.75e− 02, 3.36e− 02, 3.53e−
02, 3.67e− 02, 2.58e− 02, 3.25e− 02, 3.54e− 02, 3.97e− 02, 3.26e− 02, 2.25e− 02, 2.86e−
02, 3.01e− 02, 2.89e− 02, 2.62e− 02, 2.36e− 02, 3.69e− 02, 3.22e− 02, 2.24e− 02, 2.24e−
02, 2.40e− 02, 2.95e− 02, 2.83e− 02, 2.33e− 02, 1.94e− 02, 1.95e− 02]

A.3.1 Case 1.
The distorted Bonacich centrality vector is:
[3.99e − 02, 2.06e − 02, 1.77e − 02, 4.50e − 02, 4.21e − 02, 3.80e − 02, 3.10e − 02, 3.52e −
02, 2.74e− 02, 3.67e− 02, 4.39e− 02, 2.65e− 02, 3.85e− 02, 3.32e− 02, 4.72e− 02, 4.34e−
02, 3.07e− 02, 3.59e− 02, 4.02e− 02, 3.60e− 02, 3.00e− 02, 2.98e− 02, 2.63e− 02, 4.42e−
02, 2.28e− 02, 3.59e− 02, 3.47e− 02, 3.01e− 02, 4.33e− 02, 3.12e− 02, 4.04e− 02, 2.07e−
02, 1.99e− 02, 3.83e− 02, 2.48e− 02, 3.19e− 02, 2.53e− 02, 2.75e− 02, 3.36e− 02, 3.53e−
02, 3.67e− 02, 2.58e− 02, 3.25e− 02, 3.54e− 02, 3.97e− 02, 3.26e− 02, 2.25e− 02, 2.86e−
02, 3.01e− 02, 2.89e− 02, 2.62e− 02, 2.36e− 02, 3.69e− 02, 3.22e− 02, 2.24e− 02, 2.24e−
02, 2.40e− 02, 2.95e− 02, 2.83e− 02, 2.33e− 02, 1.94e− 02, 1.95e− 02]

Shock on node 0:

• default probabilities:
[0.60, 0.22, 0.22, 0.22, 0.37, 0.26, 0.24, 0.23, 0.21, 0.20, 0.23, 0.23, 0.25, 0.23, 0.23, 0.23,
0.24, 0.22, 0.21, 0.22, 0.20, 0.23, 0.19, 0.26, 0.22, 0.22, 0.21, 0.20, 0.26, 0.25, 0.21, 0.22,
0.21, 0.21, 0.20, 0.26, 0.21, 0.23, 0.22,0.21, 0.22, 0.25, 0.19, 0.21, 0.22, 0.24, 0.24, 0.20,
0.22, 0.19, 0.21, 0.19, 0.25, 0.23, 0.21, 0.22, 0.23, 0.23, 0.25, 0.22, 0.22, 0.23],

• profit variances:
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[1.14e−03, 2.42e−13, 1.21e−09, 4.87e−09, 1.84e−05, 1.96e−06, 3.07e−09, 1.07e−
08, 5.38e−10, 1.70e−08, 4.12e−07, 1.06e−07, 3.31e−07, 1.08e−08, 1.34e−07, 8.65e−
09, 1.33e−08, 4.12e−09, 9.96e−09, 4.14e−09, 1.37e−09, 7.97e−09, 1.50e−09, 8.82e−
07, 1.26e−09, 3.04e−09, 1.25e−08, 5.84e−09, 3.92e−06, 5.60e−07, 1.04e−07, 1.49e−
08, 1.59e−10, 2.23e−08, 1.48e−10, 1.18e−05, 4.34e−10, 7.59e−10, 1.63e−09, 2.23e−
09, 8.59e−11, 5.36e−10, 4.94e−10, 8.57e−10, 9.86e−09, 2.68e−08, 6.91e−09, 4.04e−
10, 1.59e−09, 4.76e−10, 8.67e−12, 1.88e−09, 3.03e−07, 7.11e−09, 1.33e−09, 1.43e−
08, 9.35e− 09, 5.72e− 09, 1.45e− 08, 1.70e− 09, 2.83e− 11, 2.87e− 09],

• Total variance of profits: 1.18e− 03.

Shock on all nodes:

• default probabilities:
[0.60, 0.58, 0.58, 0.58, 0.69, 0.66, 0.61, 0.62, 0.58, 0.67, 0.65, 0.60, 0.62, 0.60, 0.66, 0.64,
0.60, 0.62, 0.68, 0.67, 0.62, 0.63, 0.58, 0.64, 0.59, 0.60, 0.65, 0.60, 0.62, 0.58, 0.61, 0.58,
0.59, 0.61, 0.58, 0.62, 0.58, 0.61, 0.62, 0.60, 0.60, 0.61, 0.59, 0.58, 0.59, 0.58, 0.58, 0.61,
0.58, 0.58, 0.58, 0.58, 0.59, 0.59, 0.58, 0.61, 0.59, 0.61, 0.59, 0.58, 0.58, 0.58],

• profit variances:
[1.22e−03, 3.20e−04, 2.51e−04, 1.63e−03, 2.69e−03, 8.97e−04, 7.03e−04, 9.09e−
04, 5.83e−04, 1.66e−03, 1.69e−03, 5.60e−04, 1.30e−03, 8.29e−04, 1.79e−03, 1.56e−
03, 7.35e−04, 1.01e−03, 1.84e−03, 1.46e−03, 6.88e−04, 7.96e−04, 5.77e−04, 1.22e−
03, 4.20e−04, 1.02e−03, 1.04e−03, 7.79e−04, 1.75e−03, 8.11e−04, 1.37e−03, 3.71e−
04, 3.36e−04, 1.18e−03, 4.77e−04, 1.08e−03, 5.16e−04, 5.52e−04, 8.11e−04, 9.61e−
04, 1.06e−03, 5.64e−04, 8.42e−04, 9.90e−04, 1.23e−03, 8.62e−04, 4.19e−04, 7.62e−
04, 7.22e−04, 6.63e−04, 5.50e−04, 4.41e−04, 1.14e−03, 8.40e−04, 4.08e−04, 4.22e−
04, 4.40e− 04, 6.17e− 04, 6.10e− 04, 4.36e− 04, 2.98e− 04, 3.01e− 04],

• total variance of profits: 5.50e− 02.

A.3.2 Case 2.
The distorted Bonacich centrality vector is:
[4.10e − 02, 2.22e − 02, 1.92e − 02, 4.61e − 02, 4.32e − 02, 3.93e − 02, 3.25e − 02, 3.66e −
02, 2.89e− 02, 3.80e− 02, 4.51e− 02, 2.81e− 02, 3.97e− 02, 3.46e− 02, 4.82e− 02, 4.45e−
02, 3.22e− 02, 3.73e− 02, 4.14e− 02, 3.74e− 02, 3.15e− 02, 3.13e− 02, 2.78e− 02, 4.52e−
02, 2.44e− 02, 3.72e− 02, 3.61e− 02, 3.15e− 02, 4.45e− 02, 3.26e− 02, 4.15e− 02, 2.22e−
02, 2.15e− 02, 3.95e− 02, 2.63e− 02, 3.33e− 02, 2.69e− 02, 2.91e− 02, 3.50e− 02, 3.67e−
02, 3.80e− 02, 2.73e− 02, 3.40e− 02, 3.68e− 02, 4.10e− 02, 3.40e− 02, 2.40e− 02, 3.00e−
02, 3.16e− 02, 3.04e− 02, 2.77e− 02, 2.53e− 02, 3.82e− 02, 3.36e− 02, 2.40e− 02, 2.40e−
02, 2.56e− 02, 3.10e− 02, 2.98e− 02, 2.48e− 02, 2.09e− 02, 2.11e− 02].

Shock on node 0:

• default probabilities:
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[0.60, 0.22, 0.22, 0.22, 0.37, 0.27, 0.23, 0.22, 0.20, 0.20, 0.23, 0.23, 0.25, 0.23, 0.23, 0.22,
0.24, 0.22, 0.21, 0.22, 0.20, 0.22, 0.19, 0.26, 0.22, 0.22, 0.21, 0.20, 0.26, 0.25, 0.21, 0.22,
0.20, 0.21, 0.20, 0.26, 0.20, 0.23, 0.22, 0.21, 0.21, 0.25, 0.18, 0.21, 0.22, 0.24, 0.23, 0.20,
0.22, 0.18, 0.21, 0.19, 0.25, 0.23, 0.21, 0.22, 0.22, 0.23, 0.25, 0.22, 0.22, 0.22],

• profit variances:
[1.18e−03, 3.03e−13, 1.46e−09, 5.32e−09, 1.86e−05, 2.03e−06, 3.50e−09, 1.19e−
08, 6.58e−10, 1.95e−08, 4.32e−07, 1.20e−07, 3.51e−07, 1.20e−08, 1.40e−07, 9.54e−
09, 1.49e−08, 4.70e−09, 1.11e−08, 4.64e−09, 1.65e−09, 9.23e−09, 1.85e−09, 9.09e−
07, 1.51e−09, 3.43e−09, 1.42e−08, 6.85e−09, 4.05e−06, 6.06e−07, 1.15e−07, 1.74e−
08, 2.01e−10, 2.51e−08, 1.82e−10, 1.23e−05, 5.31e−10, 8.80e−10, 1.89e−09, 2.59e−
09, 1.00e−10, 6.07e−10, 6.11e−10, 9.82e−10, 1.10e−08, 2.98e−08, 7.99e−09, 4.84e−
10, 1.83e−09, 5.90e−10, 1.05e−11, 2.35e−09, 3.27e−07, 8.00e−09, 1.62e−09, 1.68e−
08, 1.09e− 08, 6.51e− 09, 1.62e− 08, 1.97e− 09, 3.51e− 11, 3.52e− 09],

• total variance of profits: 1.22e− 03.

Shock on all nodes:

• default probabilities:
[0.61, 0.58, 0.58, 0.58, 0.68, 0.67, 0.61, 0.61, 0.59, 0.67, 0.64, 0.60, 0.62, 0.60, 0.66, 0.64,
0.59, 0.62, 0.68, 0.67, 0.63, 0.63, 0.58, 0.65, 0.58, 0.61, 0.67, 0.61, 0.61, 0.59, 0.61, 0.59, 0.59,
0.61, 0.58, 0.62, 0.58, 0.60, 0.61, 0.61, 0.60, 0.60, 0.59, 0.58, 0.59, 0.59, 0.58, 0.60, 0.59,
0.58, 0.58, 0.59, 0.60, 0.59, 0.58, 0.61, 0.59, 0.61, 0.60, 0.58, 0.58, 0.58],

• profit variances:
[1.31e−03, 3.81e−04, 2.88e−04, 1.70e−03, 2.69e−03, 9.96e−04, 7.53e−04, 9.58e−
04, 6.93e−04, 1.78e−03, 1.78e−03, 6.20e−04, 1.38e−03, 8.92e−04, 1.91e−03, 1.65e−
03, 7.90e−04, 1.12e−03, 1.95e−03, 1.56e−03, 7.91e−04, 8.49e−04, 6.44e−04, 1.28e−
03, 4.77e−04, 1.11e−03, 1.21e−03, 8.73e−04, 1.83e−03, 8.97e−04, 1.51e−03, 4.20e−
04, 3.92e−04, 1.23e−03, 5.49e−04, 1.15e−03, 5.69e−04, 6.23e−04, 8.71e−04, 1.06e−
03, 1.12e−03, 6.26e−04, 9.14e−04, 1.07e−03, 1.30e−03, 9.49e−04, 4.75e−04, 8.37e−
04, 8.10e−04, 7.29e−04, 6.17e−04, 4.99e−04, 1.24e−03, 9.21e−04, 4.61e−04, 4.87e−
04, 4.96e− 04, 6.95e− 04, 6.65e− 04, 4.95e− 04, 3.51e− 04, 3.58e− 04],

• total variance of profits: 5.97e− 02.

A.3.3 Case 3.
In this case, the distorted Bonacich centrality vector depends on which node the shock is
realized.
Shock on node 0:

• distorted Bonacich centrality:
[3.85e−02, 2.09e−02, 1.78e−02, 4.51e−02, 4.10e−02, 3.80e−02, 3.13e−02, 3.54e−
02, 2.76e−02, 3.67e−02, 4.38e−02, 2.66e−02, 3.86e−02, 3.33e−02, 4.76e−02, 4.38e−
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02, 3.10e−02, 3.62e−02, 4.05e−02, 3.63e−02, 3.03e−02, 2.998e−02, 2.65e−02, 4.42e−
02, 2.30e−02, 3.61e−02, 3.49e−02, 3.03e−02, 4.33e−02, 3.12e−02, 4.03e−02, 2.09e−
02, 2.01e−02, 3.84e−02, 2.50e−02, 3.21e−02, 2.56e−02, 2.78e−02, 3.38e−02, 3.55e−
02, 3.68e−02, 2.60e−02, 3.27e−02, 3.55e−02, 3.99e−02, 3.29e−02, 2.27e−02, 2.87e−
02, 3.03e−02, 2.91e−02, 2.64e−02, 2.39e−02, 3.71e−02, 3.24e−02, 2.26e−02, 2.26e−
02, 2.43e− 02, 2.98e− 02, 2.85e− 02, 2.34e− 02, 1.96e− 02, 1.97e− 02],

• default probabilities:
[0.60, 0.22, 0.22, 0.21, 0.38, 0.26, 0.23, 0.22, 0.20, 0.20, 0.23, 0.23, 0.25, 0.22, 0.23, 0.22,
0.24, 0.22, 0.21, 0.22, 0.20, 0.22, 0.19, 0.25, 0.22, 0.22, 0.21, 0.20, 0.25, 0.25, 0.21, 0.22,
0.20, 0.21, 0.20, 0.26, 0.20, 0.23, 0.21, 0.21, 0.21, 0.25, 0.19, 0.21, 0.22, 0.24,
0.23, 0.20, 0.21, 0.19, 0.20, 0.19, 0.24, 0.23, 0.21, 0.22, 0.22, 0.23, 0.24, 0.22, 0.22, 0.22],

• profit variances:
[1.09e−03, 2.63e−13, 1.28e−09, 5.13e−09, 1.76e−05, 2.00e−06, 3.26e−09, 1.13e−
08, 5.85e−10, 1.80e−08, 4.21e−07, 1.11e−07, 3.42e−07, 1.13e−08, 1.40e−07, 9.21e−
09, 1.41e−08, 4.41e−09, 1.06e−08, 4.40e−09, 1.49e−09, 8.50e−09, 1.63e−09, 9.01e−
07, 1.34e−09, 3.23e−09, 1.33e−08, 6.28e−09, 3.99e−06, 5.76e−07, 1.09e−07, 1.57e−
08, 1.73e−10, 2.36e−08, 1.61e−10, 1.21e−05, 4.71e−10, 8.08e−10, 1.74e−09, 2.40e−
09, 9.20e−11, 5.61e−10, 5.41e−10, 9.11e−10, 1.04e−08, 2.82e−08, 7.30e−09, 4.33e−
10, 1.69e−09, 5.22e−10, 9.37e−12, 2.05e−09, 3.16e−07, 7.51e−09, 1.44e−09, 1.52e−
08, 9.92e− 09, 6.05e− 09, 1.52e− 08, 1.79e− 09, 3.06e− 11, 3.08e− 09],

• total variance of profits: 1.13e− 03.

Shock on all nodes:

• distorted Bonacich centrality:
[4.69e−02, 2.82e−02, 2.52e−02, 5.14e−02, 4.90e−02, 4.62e−02, 3.86e−02, 4.23e−
02, 3.48e−02, 4.35e−02, 5.05e−02, 3.40e−02, 4.53e−02, 4.04e−02, 5.35e−02, 4.99e−
02, 3.81e−02, 4.30e−02, 4.70e−02, 4.30e−02, 3.76e−02, 3.72e−02, 3.36e−02, 5.10e−
02, 3.02e−02, 4.28e−02, 4.21e−02, 3.73e−02, 5.01e−02, 3.84e−02, 4.70e−02, 2.81e−
02, 2.73e−02, 4.49e−02, 3.21e−02, 3.90e−02, 3.26e−02, 3.51e−02, 4.09e−02, 4.23e−
02, 4.37e−02, 3.32e−02, 3.98e−02, 4.24e−02, 4.65e−02, 3.97e−02, 2.99e−02, 3.58e−
02, 3.73e−02, 3.62e−02, 3.35e−02, 3.13e−02, 4.39e−02, 3.93e−02, 2.99e−02, 3.00e−
02, 3.16e− 02, 3.70e− 02, 3.58e− 02, 3.06e− 02, 2.68e− 02, 2.70e− 02],

• default probabilities:
[0.60, 0.58, 0.58, 0.58, 0.67, 0.67, 0.61, 0.62, 0.58, 0.67, 0.64, 0.60, 0.62, 0.61, 0.66, 0.64,
0.60, 0.62, 0.68, 0.67, 0.62, 0.63, 0.58, 0.64, 0.58, 0.60, 0.66, 0.61, 0.62, 0.58, 0.61, 0.59,
0.58, 0.61, 0.58, 0.62, 0.58, 0.61, 0.61, 0.60, 0.59, 0.61, 0.58, 0.58, 0.59, 0.59, 0.58, 0.60,
0.59, 0.58, 0.58, 0.58, 0.59, 0.58, 0.57, 0.61, 0.59, 0.61, 0.59, 0.58, 0.58, 0.58],

• profit variances:
[1.70e−03, 6.08e−04, 5.17e−04, 2.12e−03, 3.22e−03, 1.34e−03, 1.05e−03, 1.29e−
03, 9.78e−04, 2.32e−03, 2.23e−03, 9.05e−04, 1.81e−03, 1.24e−03, 2.31e−03, 2.05e−
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03, 1.10e−03, 1.39e−03, 2.57e−03, 2.18e−03, 1.09e−03, 1.23e−03, 9.16e−04, 1.59e−
03, 7.06e−04, 1.44e−03, 1.62e−03, 1.23e−03, 2.34e−03, 1.26e−03, 1.92e−03, 7.11e−
04, 6.23e−04, 1.62e−03, 8.20e−04, 1.59e−03, 8.61e−04, 9.04e−04, 1.17e−03, 1.36e−
03, 1.48e−03, 9.40e−04, 1.23e−03, 1.45e−03, 1.69e−03, 1.30e−03, 7.13e−04, 1.16e−
03, 1.12e−03, 1.05e−03, 9.01e−04, 7.61e−04, 1.62e−03, 1.22e−03, 6.78e−04, 7.68e−
04, 7.65e− 04, 9.85e− 04, 9.50e− 04, 7.75e− 04, 5.73e− 04, 5.95e− 04],

• total variance of profits: 8.07e− 02.
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Appendix B

Code

1 import numpy as np
2 import scipy.stats as stats
3 import pandas as pd
4 import matplotlib . pyplot as plt
5

6 np. random .seed (42)
7 # DEFINITION OF THE ADJACENCY MATRIX A
8 #N=6
9 def A_line (N, alpha):

10 A = np.zeros ((N, N))
11 indices = [(0 ,1) , (1 ,2) , (2 ,3) , (3 ,4) , (4 ,5)]
12 for i, j in indices :
13 A[i, j] = alpha
14 return A
15

16 def A_DAG(N, alpha):
17 A = np.zeros ((N, N))
18 edges = [(0, 1), (0, 2), (1, 3), (2, 3), (3, 4), (4, 5)]
19 in_deg = {0: 0, 1: 1, 2: 1, 3: 2, 4: 1, 5: 1}
20 for i, j in edges:
21 if in_deg [j] > 0:
22 A[i, j] = alpha / in_deg [j]
23 return A
24

25 def A_cicle (N, alpha):
26 A = np.zeros ((N, N))
27 edges = [(0, 1), (1, 2), (2, 3), (3, 4), (4, 5), (5, 2)]
28 in_deg = {i: 0 for i in range(N)}
29 for j, k in edges:
30 in_deg [k] += 1
31 for j, k in edges:
32 A[j, k] = alpha / in_deg [k]
33 return A
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34

35 N=4
36 def example (N):
37 A_example =np.zeros ((N, N))
38 A_example [0 ,1]=0.3
39 A_example [0 ,2]=0.4
40 A_example [1 ,2]=0.2
41 A_example [1 ,3]=0.5
42 A_example [2 ,3]=0.3
43 return A_example
44

45 A= example (N)
46 #A= A_line (N ,0.5)
47 #A=A_DAG(N, 0.5)
48 #A= A_cicle (N, 0.5)
49 print(’A:\n’, A)
50

51 beta = (np.ones ((N, )) - np.sum(A, axis =0))
52 L = np. linalg .solve(np.eye(N) - A.T, np.eye(N))
53 print(’L:\n’,L)
54

55 # EXTRACTION OF THE ADJACENCY MATRIX FROM A SYMMETRIC TABLE
56 N=62
57 df = pd. read_excel (’SIMM_TOT_63BxB_v2 .xlsx ’,
58 index_col =0, usecols =’B:BZ’, skiprows

=[0 ,1 ,2 ,3 ,5] , engine =’openpyxl ’,
sheet_name =" STOTBB_2020 ")

59 df = df.drop(index=df.index [ -1])
60 temporaryA = df.iloc [0:62 , 0:62]. values
61 industries = df.iloc [0:62 , 0:62]. index
62 A = temporaryA / (np.sum(temporaryA , axis =1, keepdims =True) + df.

iloc [-6, :62]. values )
63

64 A = np.array(A, dtype=float)
65 print(’A:\n’, np.round(A, 5))
66 beta = (np.ones ((N, )) - np.sum(A, axis =0))
67 L = np. linalg .solve(np.eye(N) - A.T, np.eye(N))
68 print(’L:\n’, np.round(L, 5))
69

70 industries =[i for i in range(N)]
71 import networkx as nx
72 G = nx. DiGraph ()
73 for i in range(N):
74 G. add_node ( industries [i])
75

76 for i in range(N):
77 for j in range(N):
78 if A[i, j] > 0.01:
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79 G. add_edge ( industries [j], industries [i], weight =A[i, j
])

80

81 pos = nx. spring_layout (G, seed =42)
82 plt. figure ( figsize =(10 , 10))
83 nx. draw_networkx_nodes (G, pos , node_size =250 , node_color =’skyblue ’

)
84 nx. draw_networkx_edges (G, pos , arrowstyle =’->’, arrowsize =8,

edge_color =’grey ’)
85 nx. draw_networkx_labels (G, pos , font_size =6)
86 plt.title(’Network ’, fontsize =15)
87 plt.axis(’off ’)
88 plt. tight_layout ()
89 plt. savefig (" network_graph .png", dpi =300)
90 plt.show ()
91

92 # GENERATION OF SAMPLES
93 def sample_from_distribution ( distribution_name , params , industries

, size , affected_industries , scale):
94

95 affected_industries = set( affected_industries )
96 samples = np.zeros (( len( industries ), size), dtype=float)
97

98 distribution = getattr (stats , distribution_name )
99

100 for i, industry in enumerate ( industries ):
101 if industry in affected_industries :
102 samples [i] = scale * distribution .rvs (** params , size=

size)
103 return samples
104

105 industries =[i for i in range(N)]
106 size=int (1e4)
107

108 bern_samples = sample_from_distribution (" bernoulli ", {"p": 0.65} ,
industries , size , affected_industries =[0] , scale =-2)

109 bern_samples_2 = sample_from_distribution (" bernoulli ", {"p":
0.45} , industries , size , affected_industries =[3] , scale = -2)

110 total_bern_samples = bern_samples + bern_samples_2
111

112 exp_samples = sample_from_distribution ("expon", {"scale": 2},
industries , size , affected_industries =[0] , scale =-1)

113

114 gamma_samples = sample_from_distribution ("gamma", {"a": 0.5, "scale"
: 1} , industries , size , affected_industries =[0] , scale =-1)

115

116 shock1 = sample_from_distribution ("expon", {"scale": 0.5} ,
industries , size , affected_industries =[0] , scale =-1)
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117 shock2 = sample_from_distribution ("expon", {"scale": 2}, industries ,
size , affected_industries =[1] , scale =-1)

118 shock3 = sample_from_distribution ("expon", {"scale": 1}, industries ,
size , affected_industries =[2] , scale =-1)

119 shock4 = sample_from_distribution ("expon", {"scale": 1/3} ,
industries , size , affected_industries =[3] , scale =-1)

120 example_exp_shock_tot = shock1 + shock2 + shock3 + shock4
121

122 # MONTECARLO MEAN
123 def monte_carlo_expectation (samples , L):
124 rho= np.dot(L, samples )
125 exp_rho =np.exp(rho)
126 expectation = np.mean(exp_rho , axis =1)
127 return expectation
128 monteCarlo_mean = monte_carlo_expectation ( example_exp_shock_tot , L)
129 print(’MonteCarlo expectation : \n’, monteCarlo_mean )
130

131 #DEBT COST FROM PROPOSITION 2 (when the interest rates are
endogenous )

132 from scipy. optimize import root_scalar
133

134 rho= np.dot(L, exp_samples )
135 exp_rho =np.exp(rho)
136 tau = exp_rho / monteCarlo_mean [:, None]
137 epsilon = A.T @ tau + beta [:, None]
138 theta =0.25* np.ones ((N))
139

140 from scipy. optimize import bisect
141

142 def f_k(x, tau_k , eps_k , theta_k ):
143 vals = np. maximum (x * np. minimum (tau_k , eps_k),
144 (1 - theta_k ) * eps_k)
145 return vals.mean () - 1
146

147 def solve_zeta (tau , eps , theta , x_min =1.0 , x_max =100.0 , tol =1e -8):
148

149 zeta = np.zeros(N)
150 for k in range(N):
151 tau_k = tau[k]
152 eps_k = eps[k]
153 th_k = theta[k]
154

155 if f_k (1.0 , tau_k , eps_k , th_k) >= 0:
156 zeta[k] = 0.0
157 continue
158

159 root = bisect (f_k , x_min , x_max , args =( tau_k , eps_k , th_k)
, xtol=tol)

160 zeta[k] = np.log(root)
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161

162 return zeta
163 debt_cost = solve_zeta (tau , epsilon , theta)
164 print(’Debt cost:’, debt_cost )
165

166 # DETERMINISTIC DEBT COST (when the interest rates are exogenous )
167 #theta = 0.25 * np.ones ((N, ))
168 #r = np.ones ((N, ))
169 theta=np.array ([0.2 , 0.5, 0.4, 0.7]) #for example 1.3
170 r=np.array ([0.1 , 0.3, 0.2, 0.4]) #for example 1.3
171

172 debt_cost = np.zeros ((N,))
173 for i in range(N):
174 if theta[i]!=0:
175 debt_cost [i]=np.log (1+r[i]* theta[i])
176 print(’Deterministic debt cost:’, debt_cost )
177

178 # QUANTITIES AT THE EQUILIBRIUM
179 w=1
180 gamma =1/N * np.ones ((N, ))
181 v=np.dot(L.T, gamma)
182 print(’Bonacich centrality :’, v)
183

184 total_cost =np.zeros ((N,))
185 total_cost =np.dot(L, debt_cost )
186 print(’Total cost:’, total_cost )
187

188 D = np.diag(np.exp(- debt_cost ))
189 L_dist =np. linalg .solve(np.eye(N) - D@A.T, np.eye(N))
190 print(’Distorted Leontief matrix : \n’, L_dist )
191 chi=gamma @ L_dist @ (beta*np.exp(- debt_cost ))
192 print(’Chi:’, chi)
193 v_dist = np.dot( L_dist .T, gamma) / chi
194 print(’Distorted Bonacich centrality :’, v_dist )
195

196 plt. figure ( figsize =(10 , 6))
197 plt.plot(v_dist , marker =’o’, linestyle =’-’, color=’blue ’)
198 plt. xlabel (’Node ’)
199 plt. ylabel (’Distorted Bonacich Centrality ’)
200 plt.title(’Distorted Bonacich Centrality of Nodes ’)
201 plt.grid(True , linestyle =’--’, alpha =0.6)
202 plt. tight_layout ()
203 plt. savefig (" bon_cen .png")
204 plt.show ()
205

206 # maximal and actual production
207 y= v_dist *np.exp(- total_cost )
208 actual_production = monteCarlo_mean *y
209 print(’Maximal production :’, y)
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210 print(’Actual production :’, actual_production )
211

212 # maximal and actual intermediate quantities
213 z = np.zeros ((N, N))
214 actual_zeta = np.zeros ((N, N))
215 for j in range(N):
216 for k in range(N):
217 z[j, k] = v_dist [k] * A[j, k] * np.exp(- debt_cost [k] -

total_cost [j])
218 actual_zeta [j, k] =z[j, k] * monteCarlo_mean [j]
219 print(’Maximal intermediate quantities : \n’, z)
220 print(’Actual intermediate quantities : \n’, actual_zeta )
221

222 #labor
223 l= v_dist *beta*np.exp(- debt_cost )
224 print(’Labor:’, l)
225

226 # maximal and actual household ’s consumption
227 c=( gamma*np.exp(- total_cost ))/chi
228 actual_c = monteCarlo_mean *c
229 print(’Maximal household consumption :’, c)
230 print(’Actual household consumption :’, actual_c )
231

232 # prices over wages
233 p=w*(np.exp( total_cost )/ monteCarlo_mean )
234 print(’Prices over wages:’, p)
235

236 # utility
237 s = np.sum(v[:, None] * ( example_exp_shock_tot - debt_cost [:,

None ]), axis =0)
238 utility =(np.exp(s)) / chi
239 print(’Utility :’, utility )
240 ut_mean =np.mean( utility )
241 print(’Utility mean:’, ut_mean )
242

243 # RESAMPLING FOR PROFIT COMPUTATIONS
244 new_bern_samples = sample_from_distribution (" bernoulli ", {"p":

0.65} , industries , size , affected_industries =[0] , scale= -2)
245 new_bern_samples_2 = sample_from_distribution (" bernoulli ", {"p":

0.45} , industries , size , affected_industries =[3] , scale= -2)
246 new_bern_total_samples = new_bern_samples + new_bern_samples_2
247

248 new_exp_samples = sample_from_distribution ("expon", {"scale": 2},
industries , size , affected_industries =[0] , scale =-1)

249

250 new_gamma_samples = sample_from_distribution ("gamma", {"a": 0.5, "
scale": 1}, industries , size , affected_industries =industries ,
scale =-1)

251
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252 new_shock1 = sample_from_distribution ("expon", {"scale": 0.5} ,
industries , size , affected_industries =[0] , scale =-1)

253 new_shock2 = sample_from_distribution ("expon", {"scale": 2},
industries , size , affected_industries =[1] , scale =-1)

254 new_shock3 = sample_from_distribution ("expon", {"scale": 1},
industries , size , affected_industries =[2] , scale =-1)

255 new_shock4 = sample_from_distribution ("expon", {"scale": 1/3} ,
industries , size , affected_industries =[3] , scale =-1)

256 new_example_exp_shock_tot = new_shock1 + new_shock2 + new_shock3 +
new_shock4

257

258 new_expectation = monte_carlo_expectation ( new_example_exp_shock_tot ,
L)

259

260 # DEFAULT PROBABILITY AND PROFIT VARIANCE
261 def profit_distribution (L, beta , w, v_dist , A):
262

263 rho= np.dot(L, new_example_exp_shock_tot )
264 exp_rho =np.exp(rho)
265

266 tau = exp_rho / new_expectation [:, None]
267 epsilon = A.T @ tau + beta [:, None]
268 #print(tau)
269 #print( epsilon )
270 diff = tau - epsilon
271 print(’Tau - epsilon : \n’, diff)
272 diff_var =np.var(diff , axis =1)
273 print(’tau - epsilon variances :’, diff_var )
274 print(’tau - epsilon variances * v_dist ^2: ’, diff_var * v_dist **2)
275 tau_mean =np.mean(tau , axis =1)
276 print(’mean of tau:’, tau_mean )
277 epsilon_mean =np.mean(epsilon , axis =1)
278 print(’mean of epsilon :’, epsilon_mean )
279

280 profit = w * v_dist [:, None] * diff
281 print(’Profit : \n’, profit )
282 profit_mean = np.mean(profit , axis =1)
283 profit_mean = np.where(np.abs( profit_mean ) < 1e-15, 0,

profit_mean )
284 print(’mean profit :’, profit_mean )
285 profit_var = np.var(profit , axis =1)
286 print(’Profit variances :’, profit_var )
287 total_profit_variance = np.sum( profit_var )
288 print(’Total variance of profits :’, total_profit_variance )
289 profit_cov = np.cov( profit )
290 print(’Profit covariances :\n’, profit_cov )
291

292 default = epsilon > tau
293 default_int = default . astype (int)
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294 corr_matrix = np. corrcoef ( default_int )
295 #print( corr_matrix )
296

297 prob_default = np.mean(default , axis =1)
298 print(’Default probability : \n’, prob_default )
299

300 return tau_mean , epsilon_mean , profit_mean , prob_default ,
profit_var , total_profit_variance , corr_matrix , profit_cov
,diff , profit

301 tau_mean , epsilon_mean , profit_mean , prob_default , profit_var ,
total_profit_variance , corr_matrix , profit_cov , diff , profit =
profit_distribution (L, beta , w, v_dist , A)
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