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Abstract

Efficient monitoring and forecasting of vendor performance are critical to the
scalability and reliability of Amazon’s Direct Fulfillment (DF) model, where third-
party vendors ship products directly to customers without involving Amazon’s
own warehouses. This model requires reliable integration systems and timely order
fulfillment across a broad network of vendors spread out over different regions.

This thesis aims to develop scalable methods to monitor vendor performance
and integration health, and forecast vendor cancellations across Amazon’s DF
supply network. To achieve this, we designed and implemented the Vendor Health
Dashboard, a centralized tool that automates monitoring of thousands of vendors
worldwide, significantly reducing manual oversight and extending coverage to long-
tail vendors who were previously difficult to track. For forecasting, we conducted
a comparative evaluation of classical time series models, including ARIMA and
ARMA-GARCH, alongside neural network models based on Gated Recurrent Units
(GRUs). We assessed these models on their ability to predict cancellations, as well
as their scalability and generalizability across different vendors and regions.

Results show that ARMA-GARCH models perform well for short-term forecasts
involving vendors with high variance, while GRUs deliver higher accuracy and
better generalization for longer-term predictions across various vendor types and
regions. Notably, both models maintained strong performance when applied to
unseen vendors without requiring custom modelling, supporting their scalability
for large operational deployments.

These findings support a hybrid forecasting strategy that adapts to each vendor’s
behaviour, enabling teams to step in proactively and use data to better manage
risks such as order cancellations. Bringing together monitoring and forecasting in
a flexible dashboard gives a solid way to improve supply chain efficiency, minimize
disruptions for customers, and support future improvements such as real-time alerts,
additional metrics, and automated management of predictive models.
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Chapter 1

Introduction

In modern e-commerce, efficient inventory management and order fulfillment repre-
sent fundamental challenges, particularly for platforms handling millions of products
across diverse categories. Traditional retail models require storing products in
company-owned fulfillment centers before shipping to customers, an approach that
can be costly and logistically complex for certain product categories. Direct Fulfill-
ment (DF)[1] has emerged as an innovative solution to these challenges, representing
a strategic partnership between e-commerce platforms and their vendors.

In the DF model, vendors maintain their own warehouses and fulfill customer
orders directly, eliminating the need for intermediate storage. When a customer
places an order, rather than shipping from a company warehouse, the order is
routed to the appropriate vendor who ships the product directly to the customer.
This process is seamless and transparent to the end user, who experiences the
same level of service quality and reliability as with traditional fulfillment methods.
Vendors may operate using their own shipping carriers or leverage the platform’s
carrier network, providing flexibility while maintaining control over the customer
experience.

One of the companies which has employed the DF model is Amazon. Amazon is
an American conglomerate which owns the worlds largest retail business in terms
of market cap. Having started as an online book store Amazon has branched out
into selling electronics, fashion articles, food and furniture amongst other things.

1.1 Focus and Scope

The success of the DF model depends not only on vendor reliability but also on
seamless information exchange between Amazon and its vendors. This commu-
nication is managed by the AmazonLink Integration, Operation and Intelligence
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Introduction

(IOI) team, which oversees the electronic data interchange (EDI) and applica-
tion programming interfaces (APIs) facilitating data flow between Amazon Retail
and Direct Fulfillment vendors across North America, Europe, and Asia-Pacific.
IOI is responsible for maintaining the quality and continuous improvement of
these integration services, including documentation, notifications, training, and
troubleshooting.

Despite these efforts, monitoring vendor performance across a global network
of thousands of partners remains highly complex. Current monitoring is largely
manual and resource-intensive, covering only a small fraction of vendors. For
example, internal analysis showed that only 15-20 top EU vendors by volume
receive detailed attention, requiring approximately 266 hours annually to complete
38 vendor reviews. This leaves thousands of vendors unmonitored, creating a
critical visibility gap.

This thesis focuses on addressing these challenges by developing an automated
Electronic Integration health monitoring dashboard that consolidates multiple data
sources and tracks three fundamental performance metrics capturing key aspects
of vendor health:

« Inventory Update (IAA) Errors: the ratio of errors to total items in vendor
data feeds, measured over a rolling 60-day window, considering different error

types;

o Order Fulfillment (OF) Delays: tracking processing delays between the assign-
ment of an order to a vendor and its receipt;

e Order Fulfillment Cancellations: the ratio of order cancellations over the
total number of shipments, with cancellations categorized into out-of-stock
situations, full floor denials, item-level errors, and internal cancellations.

1.2 Relevance of Research

Monitoring vendor performance at scale is essential for ensuring operational ef-
ficiency and maintaining high customer satisfaction. Initial evaluations indicate
that the current manual monitoring process covers only about 0.2% of vendors,
leaving substantial operational risks unaddressed. Notably, internal reviews of
the most important vendors in terms of business impact have revealed concerning
patterns: 26% showed critical inventory accuracy issues and 21% faced significant
cancellation problems. These findings suggest that unmonitored vendors may have
even more severe challenges.

Poor vendor performance shows up in inventory updates inaccuracies, order
fulfillment delays, and cancellations, all of which directly impact customer ex-
perience and supply chain operations. Although existing monitoring efforts are
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labour intensive and inefficient, automation can dramatically improve scalability
and responsiveness.

Moreover, despite the importance of forecasting vendor cancellations, current
predictive capabilities are limited or non existent. Accurate forecasting methods
would enable Amazon to prevent delayed or unfulfilled orders, which damage brand
reputation and customer loyalty. They also generate inefficiencies in inventory
management and supply chains, causing stock imbalances and logistical challenges.
Without reliable forecasting, interventions happen only reactively, after cancellations
occur, leading to costly operational disruptions.

Vendor behaviour varies widely across regions and product categories, compli-
cating forecasting efforts and underscoring the need for robust, scalable analytics.

1.3 Research Questions and Objectives

This thesis aims to close these gaps by pursuing three main objectives. First, it aims
to develop an automated vendor health monitoring dashboard that consolidates
data from various sources to track key performance metrics continuously. Second, it
seeks to design and rigorously evaluate forecasting models for vendor cancellations,
utilizing both classical time series techniques and modern machine learning meth-
ods. Finally, the study explores how the insights gained through monitoring and
forecasting can support vendor management teams in making informed decisions
that improve operational efficiency and enhance customer satisfaction. In order to
fulfill this purpose we propose the following research questions:

o How can vendor health monitoring be automated and scaled to cover thousands
of partners globally?

« How do machine learning models, such as Gated Recurrent Units (GRUs),
compare to classical time series models like ARIMA and GARCH in forecasting
vendor order cancellations?

o Can predictive models accurately anticipate vendor cancellations sufficiently
in advance to enable proactive interventions?

o How well do these models generalize across different geographic regions within
Amazon’s vendor network?

1.4 Thesis Structure

The remainder of this thesis is organized as follows. Chapter 2 lays the theoretical
foundations by outlining the mathematical and conceptual frameworks that support

3
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the proposed approach. This chapter offers an overview of time series analysis
techniques, including both classical econometric models and modern machine
learning approaches. The classical econometric models include the Autoregressive
Integrated Moving Average (ARIMA)[2] model, commonly used for time series
forecasting, and the Generalized Autoregressive Conditional Heteroskedasticity
(GARCH)[3] model, which models time-varying variance. Modern approaches, such
as Gated Recurrent Units (GRUs)[4], are also discussed for their ability to capture
more complex temporal patterns.

Chapter 3 presents a literature review, examining the current state of the art
and analysing existing applications of these models across diverse fields. Particular
attention is paid to the adaptation of GARCH models, traditionally applied in
financial market analysis, to the context of supply chain management. Similarly
we summarize previous literature concerning the usage of GRUs in different fields.

The methodology, detailed in Chapter 4, describes the technical framework
developed in this work. It begins with a description of the architecture and
implementation of the vendor’s health monitoring dashboard. This is followed by a
discussion outlining how the time series models will be used. This includes data
pre-processing steps, feature engineering, and considerations made in model design.

Chapter 5 presents the empirical results of the implemented solutions. This
analysis covers both in-sample fit and out-of-sample predictive accuracy, with a
particular focus on identifying prediction horizons that balance accuracy with
operational needs. In particular, we look at horizons that would allow the IOI team
to intervene timely in order to address potential vendor issues.

In Chapter 6, the discussion examines the experimental findings and their
implications for managing vendor performance. It highlights how the developed
predictive tools can be used to prevent order cancellations.

Finally, in Chapter 7, the thesis concludes by summarizing the main contribu-
tions. This closing chapter also outlines potential directions for future research,
emphasizing opportunities to enhance and extend the current framework through
further methodological and practical advances.



Chapter 2

Background

This chapter offers an overview of time series analysis techniques, covering both
classical econometric models such as ARIMA and GARCH, as well as modern
machine learning methods like Gated Recurrent Units.

2.1 Time Series Analysis

Autoregressive Moving Average (ARMA) models were introduced in 1976 by Box
and Jenkins in their article [2]. Since then ARMA models have found a wide range
of applications in modelling a stochastic process (X;)iez. A process is said to be an
ARMA(s,t) process if it is a sum of an autoregressive part and a moving average
part. That is if the process is of the form,

P q
Xe=) 0uXoi+ ) OWi i+ W,
i=1 i=1
with Wj being white noise and ¢y, 6 being parameters. In order to model a process
(X¢)iez as an ARMA we require the process to be weakly stationary. This, in part,
means that the process to be modelled should have constant variance. For some
processes this assumption is justifiable.

However, if the variance is varying with ¢, and this is due to the W; term
having changing behaviour, we can model this using Autoregressive conditional
heteroskedasticity (GARCH) models, first introduced in [3]. In this case, we treat
the heteroskedasticity not as an issue, but something to be modelled. We assume
that the process to be modelled is of the form

€t = OWy,

where o; is the time dependent standard deviation of the process and w; is zero-
mean white noise. More formally, a process (€))7 is said to be a GARCH(p,q)
process if its two first moments exists finitely and satisfy, for u < t with ¢t € Z
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1. E[e]en] = 0,

2. dw, 0, 8; withi=1,...,gand j =1,...,ps.t

q p
o; = Var(ele,) =w+ Y e+ > Bio; ;.
i=1 j=1

To model a process as an ARMA(s,t)-GARCH(p,q) we model the process conditional
mean using an ARMA (s,t) model and the conditional variance using a GARCH(p,q)
model.

2.2 Gated Recurrent Units

As described in [4], a Gated Recurrent Unit is a Recurrent Neural Network (RNN)
[5] equipped with two additional gates to process information, an input gate and a
forget gate. As opposed to Long Short-Term Memory (LSTM) Networks [6], GRUs
do not have an output gate. This means that GRUs also have fewer parameters
and hence are more computationally effective.

A GRU network consists of the input layer, implicit layers and finally the output
layer. The hidden layers are composed of GRU neurons and the input is the data
at time ¢t. Suppose that the input sequence to the GRU-network is,

(z1,...,2)7".
Then, at time ¢, the network conducts the following calculations, where ® denotes
the Hadamard product:

re= oW, [he1,2), (2.1)
a=o(W.- [hy,m)), (2.2)
ny = tanh(W - {rt ® hi_1, xt} ), (2.3)
he=(1—2)0 hy + 2 ©ny, (2.4)
yr = o(Wy - hy). (2.5)

Equations 2.1 and 2.2 represents the reset and update gate vector respectively. W,
is the weight matrix between the input and h;_; in the update gate, where h;_; is
the output of the GRU unit at time ¢t — 1. W, is the weight between the input and
hy—1 in the reset gate. Equation 2.3 shows the calculation of the hidden state where
W is the update gate’s output. In the literature n; is also called the candidate
activation vector and essentially works as a substitute for the memory cell in an
LSTM network. Equation 2.4 is how this hidden state is added to the current state,
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2 being the weight between the inputs. The last equation, Equation 2.5, is the
final output of the GRU where W, is the weight matrix for h;, see [7].

The architecture of a GRU cell is shown in Figure 2.1, note that h; = ny.
Intuitively, the update and reset gates manage the information flow on the GRU.

Figure 2.1: A GRU cell [§].

That is, it regulates what information the GRU should remember and which it
should discard.

2.3 Bayesian hyperparameter optimization

Finding the most accurate hyperparameters for machine learning models is a
research field itself. A grid search, where one looks through every combination of
parameters and chooses the best model, is traditionally very expensive as a new
model has to be trained and evaluated each time. A randomized grid search works
in a similar way, but chooses only some of the parameters in the parameter space
to look through at random. It is cheaper than a full grid search, as shown in [9],
but at the cost of not looking through each parameter combination. Often the
hyperparameters are chosen by some trial and error process. A cost-effective way to
find appropriate hyperparameters, proposed in [10], is to use Bayesian optimization.
In principle we want to solve the problem

heg /)
and approximate the solution by building a surrogate for f. This surrogate
is represented by P(score | hyperparameters) and often modelled using Gaussian
process regression. The surrogate is often much easier to optimize than the objective
function, and we can use established Bayesian methods. These methods help in

7
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finding the next set of parameters which maximizes the surrogate, these parameters
are then evaluated on f and the surrogate is updated to incorporate the new results.
Hyperparameters are chosen according to whichever gives the best score on the
objective function. The broad idea of this means of hyperparameter search is
essentially to make calculated guesses as to where the best hyperparameters are in
the defined space, see also [11].

In this thesis Bayesian Optimization is used to find the optimal hyperparameters
for the GRUs.

2.4 Metrics and Tests

This section outlines the key metrics and statistical tests used in this thesis to
evaluate model performance and assess time series characteristics.

2.4.1 Root Mean Squared Error (RMSE)

The Root Mean Squared Error is a standard metric for evaluating the accuracy
of predictive models [12]. It measures the square root of the average squared
differences between predicted and actual values. Mathematically, for a set of
predictions g; and actual values y;, where i = 1,2,...,n, RMSE is defined as:

i=1
RMSE gives more weight to higher errors due to the squaring operation, making it

particularly sensitive to outliers. It is expressed in the same units as the dependent
variable, which makes interpretation easier in the context of the data.

2.4.2 Mean Absolute Error (MAE)

The Mean Absolute Error is another common metric for assessing prediction
accuracy [12]. Unlike RMSE, MAE measures the average of the absolute differ-
ences between predicted and actual values, giving equal weight to all errors. For
predictions g; and actual values y;, MAE is defined as:

1 A
MAE = n Z lyi — il (2.7)
=1

MAE is less sensitive to outliers compared to RMSE and is also expressed in the
same units as the dependent variable. The comparison between RMSE and MAE
can provide insights into the variance of errors; a larger difference between RMSE
and MAE indicates a greater variance in individual errors.
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2.4.3 Akaike Information Criterion (AIC)

The Akaike Information Criterion, introduced by H. Akaike in 1974 [13], is a
measure used for model selection that balances model fit against complexity. It is
particularly useful when comparing different models fitted to the same data. AIC
is defined as:

AIC = 2k — 2In(L) (2.8)
where k is the number of estimated parameters in the model and L is the maximum
value of the likelihood function for the model. A lower AIC value indicates a
better model, as it represents a better trade-off between goodness of fit and model
simplicity.

For time series models like ARMA and GARCH, AIC helps in determining
the optimal order (number of lags) by penalizing models with more parameters,
thus mitigating the risk of overfitting. In the context of this thesis, AIC is used
to compare different model specifications and select the most sparse model that
captures adequately the characteristics of the data.

2.4.4 Augmented Dickey-Fuller (ADF) Test

The Augmented Dickey-Fuller test is a widely used statistical method for testing
the presence of a unit root in a time series, which helps assess whether the series
is stationary [14]. Stationarity, meaning the statistical properties of the series do
not change over time, is a fundamental assumption for many time series models,
including the ARMA family.

The ADF test builds upon the basic Dickey-Fuller test by including lagged
differences of the series to account for higher-order serial correlation. The regression
equation used in the ADF test is:

Ay = a+ Bt + Y1 + 01AY—1 + 028y o + ... + 0pAY—p + & (2.9)

where Ay, = y; — y,—1 is the first difference of the series, « is a constant (drift
term), 5t represents a deterministic time trend, v is the coefficient of interest, and
the 9; terms account for lagged differences to mitigate autocorrelation. The error
term ¢; is assumed to be white noise.

The null hypothesis of the ADF test is that the series has a unit root (y = 0),
implying non-stationarity. The alternative hypothesis is that the series is stationary
(v < 0). If the test statistic is more negative than the critical value, we reject the
null hypothesis and infer that the series does not have a unit root.

In this thesis, the ADF test is employed to preliminarily assess whether the time
series data is stationary before applying ARMA models, which require stationarity
for reliable estimation and forecasting. It is important to note, however, that
rejecting the null hypothesis does not guarantee stationarity. The ADF test

9



Background

primarily checks for the presence of a unit root, which is a strong form of non-
stationarity, but it may not detect other properties such as time-dependent variance.
Conversely, if the null is not rejected, the series is almost surely non-stationary.

Therefore, while the ADF test provides valuable insight, it should be comple-
mented with visual diagnostics such as time series plots, and autocorrelation (ACF)
and partial autocorrelation (PACF) plots, to more robustly assess the stationarity
of the series.

2.4.5 ARCH Test for Heteroskedasticity

The Autoregressive Conditional Heteroskedasticity (ARCH) test, also known as the
Engle’s ARCH test [15], is used to detect the presence of conditional heteroskedas-
ticity (time-varying variance) in a time series. This test is particularly important
when considering GARCH models, as these models are specifically designed to
capture such patterns. Following the methodology described in the original article,
the ARCH test is carried out in the following steps:

1. Estimate an autoregressive model for the time series and obtain the residuals
€.

2. Square the residuals and regress them on their own lagged values:
2 ) ) )
€ = o+ €y + aof ot ..+ agf, (2.10)

where ¢ is the number of lags and v; is the error term.

3. Test the null hypothesis Hy : oy = as = ... = oy = 0 (no ARCH effects)
against the alternative hypothesis that at least one a; #+ 0 (ARCH effects
present).

The test statistic is nR?, where n is the sample size and R? is the coefficient of
determination from the regression in step 2. Under the null hypothesis, this statistic
follows a chi-squared distribution with ¢ degrees of freedom.

In this thesis, the ARCH test is employed to determine whether GARCH
modelling is appropriate for the time series data. If the test rejects the null
hypothesis, it indicates the presence of conditional heteroskedasticity, suggesting
that GARCH models may provide better forecasts than models that assume constant
variance.
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Related Work

In this chapter we present an extensive review of the current literature on ARIMA
models, GARCH/ARCH models, and Gated Recurrent Units.

3.1 Previous Literature on ARIMA Models

ARIMA models have been central in time series analysis since their formalization
by Box and Jenkins in [2]. These models have demonstrated their versatility across
various domains due to their ability to capture linear temporal dependencies in
stationary or differenced-to-stationary data.

In supply chain management, ARIMA models have been broadly applied for
demand forecasting. In [16] Aburto and Weber combined ARIMA with neural net-
works to improve inventory management in a Chilean supermarket, demonstrating
that hybrid approaches can outperform simple ARIMA models. Similarly, [17]
proposed a hybrid ARIMA and support vector machines approach for stock price
forecasting, showing improved accuracy over traditional methods.

For seasonal data, which is common in supply chains, Seasonal ARIMA (SARIMA)
models have proven effective. Ediger and Akar in [18] applied SARIMA to forecast
primary energy demand in Turkey, while [19] used ARIMA models to predict
electricity prices in Spanish and Californian markets. Both studies highlighted
ARIMA’s capability to capture seasonal patterns and provide reliable short-term
forecasts.

The comparative study by [20] evaluated various forecasting methods, including
ARIMA, across different domains and found that ARIMA models consistently
perform well for short-term forecasting tasks. However, they noted that performance
degrades for longer forecast horizons, suggesting the need for more complex models
in such scenarios.

Recent advancements have focused on addressing ARIMA’s limitations. For
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example, [21] demonstrated that hybrid approaches combining ARIMA with neural
networks can significantly improve forecasting accuracy by capturing both linear
and nonlinear patterns in time series data.

Despite the emergence of more sophisticated models, ARIMA remains relevant
in modern forecasting applications due to its interpretability, established theoretical
foundation, and computational efficiency. In [22] a comprehensive framework is
provided for automatic ARIMA modelling, making these models accessible for
large-scale forecasting applications.

3.2 Previous Literature on ARMA-GARCH

Much of the literature on GARCH is dominated by financial applications, see
e.g. [23],]24],[25] and [26] for applications on stock market volatility, [27] for an
application in electricity prices and [28] for an application on crude oil prices. This
is mainly because these models were designed for such applications and take into
account common patterns in financial data, like volatility clustering, varying levels
of variability, and extreme values.

The work by Engle in [15] introduced the ARCH model to address time-varying
volatility, which was later extended by Bollerslev [3] to the GARCH model. These
models revolutionized volatility forecasting by explicitly modelling the conditional
variance of time series data. The article [29] conducted a comprehensive comparison
of GARCH-type models for volatility forecasting, finding that more complex variants
like Exponential GARCH (EGARCH) and Glosten-Jagannathan-Runkle GARCH
(GJR-GARCH) often outperform the standard GARCH model when asymmetric
effects are present in the data.

Plenty of researchers have employed GARCH models outside of financial appli-
cations and seen good success. See for example [30] for an exotic application where
the researchers attempt to predict the health of a machine using GARCH models.
Similarly, GARCH models have been employed in the field of supply chains to
predict e.g. inventory management and oscillated demand, see [31].

The authors of [32] use GARCH and EGARCH models in order to forecast
production volatility with applications in supply chain management. The article
finds that production volatility is time varying and often can be predicted.

In the context of supply chain disruptions, [33] applied GARCH models to
quantify and forecast supply chain risks. In [34] this application is extended by
combining ARMA-GARCH models with extreme value theory to predict extreme
events in supply chains, which is particularly valuable for risk management.

The integration of ARMA and GARCH models (ARMA-GARCH) has proven
particularly effective for time series that exhibit both autocorrelation in the mean
and conditional heteroskedasticity. The authors of [35] applied ARMA-GARCH
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models to electricity price forecasting, showing that accounting for both mean
and volatility dynamics significantly improves forecast accuracy. Similarly, [36]
demonstrated the effectiveness of ARMA-GARCH models for day-ahead electricity
price forecasting in competitive markets.

Recent advancements include the development of multivariate GARCH models
for capturing volatility spillovers across multiple time series. The paper [37]
provided a comprehensive survey of multivariate GARCH models, highlighting
their applications in portfolio optimization and risk management. In [38] practical
aspects of implementing these models in high-dimensional settings are further
explored.

The flexibility of GARCH models has led to multiple extensions tailored to spe-
cific data characteristics. For instance, [39] introduced the Fractionally Integrated
GARCH (FIGARCH) model to capture long memory in volatility processes, while
[40] proposed the EGARCH model to account for asymmetric volatility responses
to positive and negative shocks.

3.3 Literature on Gated Recurrent Units

The GRU was first presented in [41] where the authors compared a Gated Recurrent
Convolutional Network (grConv) to an RNN Encoder-Decoder for the purpose of
translating text from English to French. The conclusion of this paper was that
grConv’s performance is comparable to that of the RNN Encoder-Decoder. Similarly,
[42] compares different types of recurrent units in RNNs which employ some kind
of gating mechanism. These models are evaluated and compared according to their
performance in the tasks of modelling polyphonic music and speech signals. They
also find that GRUs give results comparable to those of LSTM.

A comprehensive comparison between GRU and LSTM was conducted by [43],
who evaluated over 10000 RNN architectures and found that GRUs can match
or exceed LSTM performance while being computationally more efficient due to
their simpler structure. This efficiency advantage was further explored by [44],
who proposed a light GRU variant that reduces parameters while maintaining
performance for speech recognition tasks.

In [45] the authors leverage GRUs in order to predict various financial sequences.
As opposed to AMRA-GARCH models, the authors here comment that GRUs are
rarely used in financial applications. The GRU is compared to a traditional deep
net as well as a support vector machine model, of which the GRU outperforms
both.

Building on this financial application, [46] demonstrated that GRU-based models
have better results than traditional econometric models for stock market prediction
by effectively capturing non-linear dependencies and long-term patterns. The
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authors of [47] further showed that GRUs can effectively model the temporal
dynamics of limit order books in high-frequency trading environments.

In [48] the authors attempt to predict resource demands on Cloud Workloads
using GRUs. One of the arguments the authors give for choosing this model is
its ability to perform well on time series data with long-range dependencies and
high levels of noise. They find that, while GRUs by themselves perform well, their
performance can be further improved using attention-based mechanisms.

The integration of attention mechanisms with GRUs has become increasingly
popular. Li et al. proposed in [49] an independently recurrent neural network
with attention for document classification, demonstrating significant improvements
over standard GRUs. Similarly, [50] introduced a dual-stage attention-based GRU
network for time series prediction, which outperformed traditional methods on
multiple datasets.

The authors of [51] attempt to build a stacked model in order to forecast supply
chain demand. They use, amongst other models, LSTM and GRUs. The findings
indicate that GRUs, although outperformed by the combined model, outperform
other models such as Stacked LSTM, vanilla LSTM, and Convolutional Neural
Networks on the test task.

Similarly, [52] attempt to predict multivariate sales as a means of market
forecasting for supply chain management. They build various models, including
GRU, to predict the sales of a multitude of stores. The GRU is benchmarked
against both Light Gradient Boosting Machine (LGBM) and Vectorized ARMA,
and outperforms both. The authors attribute this to the GRUs ability to learn
hidden patterns and its efficiency in handling temporal features.

In [53] the goal is to forecast product demand in supply chains. A model called
GA-GRU is proposed, short for Genetic Algorithm (GA) with Gated Recurrent
Unit. The reasoning is that GRU requires many parameters to be tuned for optimal
performance, and the authors apply GA in order to optimize window size, number
of neurons, initial learning rate, number of epochs and batch size. They compare
their GA-GRU model to GRU, ARIMA and LSTM. The results indicate that, for
their purpose, GRU is more powerful than LSTM. The authors also stress the
importance of using robust hyperparameters that can be found using any number
of different meta-heuristic methods.

The application of GRUs has extended beyond traditional time series forecasting.
In the article [54] a GRU-based model for handling irregularly sampled time series
in healthcare applications is proposed, demonstrating its effectiveness for clinical
prediction tasks with missing data. The work of [55] further extended this approach
with a non-autoregressive multiresolution GRU for imputing missing values in time
series data.

Recent advancements include the development of hybrid models that combine
GRUs with other techniques. Lin, Ye and Xu proposed in [56] a CNN-GRU model
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for multivariate time series classification that uses CNNs for feature extraction and
GRUs for temporal modelling. The authors of [57] introduced a graph convolutional
GRU for traffic forecasting that incorporates spatial dependencies through graph
structures, demonstrating superior performance over traditional time series models.

In the context of comparing GRUs with traditional statistical models like ARIMA
and GARCH, [58] conducted a comprehensive evaluation for time series forecasting
and found that GRUs consistently outperform statistical models for complex, non-
linear time series. However, they noted that statistical models remain competitive
for simpler, more linear time series, highlighting the importance of model selection
based on data characteristics.
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Chapter 4

Methodology

In this chapter we discuss the methodology of the thesis. It features two sections,
one covering the methodology for the implementation of the DF EI health dashboard
and one covering the forecasting part of the thesis.

4.1 Dashboard Implementation

The following subsections describe the key components of the dashboard. First, we
explain how the three core performance metrics are computed, highlighting data
sources, calculation logic, and aggregation methods. Next, we present the scoring
system, which integrates these metrics into both overall and volume-adjusted scores
to provide a comprehensive view of vendor performance. Finally, we provide an
overview of the dashboard layout and its deep-dive sheets, showing how it supports
both quick monitoring and in-depth analysis.

4.1.1 Metrics Computation

The vendor health monitoring dashboard focuses on three essential performance
metrics that directly affect operational efficiency and customer satisfaction. In-
ventory Update (IAA) Errors, Order Fulfillment Delays, and Order Fulfillment
Cancellations.

The first metric, IAA Errors, measures the percentage of errors in the vendor’s
inventory data feeds. In this context, a feed represents the inventory snapshot that
a vendor submits to Amazon, detailing all products (identified by unique ASINs)
and their quantities per warehouse. An ASIN, or Amazon Standard Identification
Number, is a unique identifier assigned to each product listing. To calculate IAA
errors, two key datasets are used. The first contains error records with timestamps
and error types, reported at the ASIN level. The second provides counts of ASINs
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processed correctly, also at the ASIN and warehouse level. Since there is no direct
record of the total feed size, it is computed by summing the number of ASINs
without errors (from the second table) and those with errors (from the first). This
combined total reflects the feed size for a given warehouse and time period. The
error percentage is then obtained by dividing the count of ASINs with errors by
the total feed size. Aggregating this measure over a rolling 60-day window allows
the dashboard to capture error trends and highlight prevalent issues.

For Order Fulfillment Delays, the objective is to track the time it takes for a DF
vendor to receive an order after Amazon assigns it. Assignment timestamps, along
with shipment IDs, are obtained from DF data. However, to measure the actual
delay in the EDI transmission, that is critical for seamless vendor operations, it
is necessary to link these shipments to their corresponding EI receipt dates. The
EI receipt data includes transmission timestamps but lacks shipment identifiers.
Therefore, a third table is utilized to connect EI transmissions with shipment IDs,
enabling precise calculation of the delay between the order assignment and EI
receipt. This measure reflects the vendor’s responsiveness in processing orders
within the electronic system, rather than the physical delivery time.

Finally, Order Fulfillment Cancellations are analysed by examining shipment
records containing condition codes that indicate shipment status, including cancel-
lations. These cancellations may arise from vendor-initiated actions or upstream
issues such as inventory shortages or operational errors. By combining successful
and cancelled shipment counts, the dashboard computes cancellation rates over
a rolling 60-day window. This metric helps identify recurring bottlenecks and
reliability concerns within the fulfillment process.

4.1.2 Scoring System

To effectively monitor vendor performance, the dashboard employs a scoring system
based on three above mentioned metrics. These metrics are combined through
weighted sums to produce two main scores: the Base Score and the Volume-Adjusted
Score.

Let the metrics be denoted as:

my = IAA Error Rate, my = Cancellation Rate, m3 = OF Delay Rate.

The OF Delay Rate, mg, is calculated by considering only delays that exceed
acceptable thresholds. Delays under 2 minutes are not included, as they are
acceptable. Delays between 2 and 5 minutes are classified as yellow-flagged and
weighted at 0.3, while delays exceeding 5 minutes are red-flagged and weighted at
0.7. These weighted components are combined to produce the overall OF Delay
Rate used in the scoring system.
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The corresponding weights, reflecting the relative importance of each metric, are
set as:
w1 = 057 Wy = 03, Wy = 0.2.

The Base Score Spase is calculated as the weighted sum of the raw metric values
for each vendor:

Shase = WM + WaMmey + w3ms. (4.1)

To put vendor performance in perspective within their regional context, each

metric is normalized by the vendor’s share of the total value of that metric across

all vendors in the same region. Denote the normalized metrics as m; for 1 = 1,2, 3,
where each is computed as:

Total Metric Value for Vendor
S Total Metric Value'

vendors in region

m; =

For example:

» 1y corresponds to the vendor’s total number of inventory update errors divided
by the regional total;

e Mg is the number of cancelled shipments by the vendor divided by the total
cancellations in the region;

« 13 is the vendor’s cumulative order fulfillment delay (in seconds) divided by
the total delay observed across all vendors in the region.

The Volume-Adjusted Score Syolume incorporates these normalized metrics to account
for both performance and scale:

Svolume = wlﬁh + U)g'ﬁlg + U)g'ﬁl;;. (42)

These scores enable the user to identify vendors with critical performance issues both
on an absolute scale and in relation to vendors from the same region, supporting
targeted interventions.

4.1.3 Dashboard Overview and Deep-Dive Sheets

The vendor health monitoring dashboard comprises four main sheets, each designed
to support different levels of analysis and operational decision-making:

o EI Health: this serves as the dashboard’s command centre, providing an
overview of vendor performance across all key metrics. It offers a high-level
snapshot that facilitates rapid identification of vendors exhibiting performance
issues or emerging trends requiring further investigation. In particular, it
highlights the top offender vendors as identified by the scoring system, enabling
quick prioritization of which issues to address first.
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e TAA - Deep Dive: this sheet allows for a detailed examination of inventory
update errors by categorizing error types such as invalid item ID, obsolete or
suppressed item, and missing dropship flag. By breaking down these error
patterns, it helps distinguish between systematic problems affecting multiple
products or warehouses and isolated incidents.

o OF Delays - Deep Dive: this section provides a detailed temporal analysis
of order fulfillment delays, presenting trends over time and distributions. It
highlights the proportion of transmissions with quick responses (delays under 2
minutes, flagged green), moderate delays (2 to 5 minutes, flagged yellow), and
significant delays (over 5 minutes, flagged red). This view helps to monitor
vendor responsiveness.

o Cancellations - Deep Dive: this sheet offers an overview of cancellation be-
haviour by distinguishing between overall cancellation rates and vendor-specific
cancellation rates, which only consider cancellations due to vendor errors. This
distinction helps isolate vendor performance issues from upstream supply chain
disruptions.

4.2 Time Series Analysis for Cancellation Fore-
casting

Building on the vendor health dashboard’s ability to continuously rank vendors
by performance across key metrics and regions, we identified the highest-impact
vendors, the top offenders, in Europe, North America, and Far East. These vendors
exhibit high cancellation rates and operational inefficiencies, making them good
candidates for early intervention.

To better prevent and manage these risks, we developed a time series forecasting
model focused on these key vendors. By concentrating on the top offenders in each
region, the models can provide early warnings of possible cancellation spikes. This
would help the IOI team to act quickly and prevent disruptions, and supports the
dashboard’s current scoring and monitoring tools.

4.2.1 Data

The dataset used for this analysis includes detailed daily shipment records from
multiple warehouses, containing information such as order dates, shipment condi-
tions, cancellation events, vendor and warehouse identifiers, timestamps, and status
codes that indicate shipment progress or reasons for cancellation. From this raw
data, we aggregated key metrics at the vendor level on a daily basis. Specifically,
for each vendor and day, we compiled total shipment counts, vendor cancellation
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counts, and upstream cancellation counts. These daily aggregated metrics form
time series that capture shipment activity and cancellation patterns, which we then
analysed to identify trends and potential correlations.

The plots in Figures 4.1, 4.2, and 4.3, illustrate the daily trends of the three
key metrics, total shipments, upstream cancellations, and vendor cancellations,
respectively for the North America, Europe and Far East top offenders. In several
instances, we observe that spikes in shipment volume coincide with increases in
cancellation counts, both on the vendor and upstream sides, suggesting a potential
link between operational load and failure rates. These visual patterns motivate
further analysis into how volume pressure may contribute to vendor performance
issues. This observed relationship led us to explore a GRU model, rather than
limiting the analysis to more traditional time series approaches such as ARIMA
or ARMA-GARCH, which are univariate. As detailed in Subsection 4.2.4, the
GRU model enables the use of multiple input features, including for example
shipment volume, allowing for more flexible and data-driven forecasting of vendor
cancellations.
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(a) Total Daily Shipments (NA) (b) Upstream Cancellations (NA)
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(c) Vendor Cancellations (NA)

Figure 4.1: Daily trends for the three key metrics: total shipments, upstream
cancellations, and vendor cancellations for NA top offender.

To further understand the temporal dependencies within the cancellation data,
we examined the autocorrelation function and partial autocorrelation function
plots of the original cancellation time series (see Figure 4.4). For clarity and
interpretability, these plots refer specifically to the top offending vendor in the North
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Figure 4.2: Daily trends for the three key metrics: total shipments, upstream
cancellations, and vendor cancellations for EU top offender.
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Figure 4.3: Daily trends for the three key metrics: total shipments, upstream
cancellations, and vendor cancellations for FE top offender.
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America region. Visual inspection of these plots reveals a strong autocorrelation
persisting for lags up to around 40 days, alongside a pronounced spike in the PACF
at lag 1. This pattern suggests significant short- and medium-term dependencies
in the data.

Autocorrelation Function (ACF) Partial Autocorrelation Function (PACF)
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Figure 4.4: ACF and PACF of NA top offender.

Given the presence of strong autocorrelation and the evident non-stationarity,
the cancellation series was transformed to stabilize variance and obtain stationarity.
We applied a logarithmic transformation followed by first-order differencing, defined
as:

y = log(z; + 1) — log (w1 + 1),

where adding 1 ensures the logarithm is defined even when the count is zero. The
logarithmic transformation helps mitigate heteroskedasticity commonly observed
in count data, while differencing removes linear trends. This transformation was
applied only in the context of traditional statistical models, specifically ARIMA and
ARMA-GARCH, which require stationary input series. In contrast, the GRU neural
network model was trained on data transformed using the sklearn MinMaxScaling,
as it does not rely on stationarity assumptions.

The transformed series was subsequently tested for stationarity using the Aug-
mented Dickey-Fuller test, which yielded a highly significant p-value on the order of
10!, indicating strong evidence against the presence of a unit root. Furthermore,
the ACF and PACF plots of the transformed series, shown in Figure 4.5, confirm
that the preprocessing steps substantially reduced autocorrelation and stabilized
the data. In particular, we see that both the ACF and PACF converge to zero
following geometric decay.

To make the forecasts interpretable, the predicted values from models trained
on transformed data were converted back to the original scale of cancellation
counts by reversing the differencing and logarithmic transformations. This was
performed in two steps: first, the differenced forecast #; was added to the previous
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Figure 4.5: ACF and PACF of the transformed temporal series.

log-transformed observed value:
&y =2}, + log(xy_1 + 1),

then, the original scale was recovered by exponentiation:

7% = exp(dy) — 1.
This procedure produced forecasted values expressed as actual daily cancellations,
enabling their direct use in decision-making.

For all models, we split the data into training and testing sets, using 80% for
training and the remaining 20% for testing. This division allows us to evaluate
how well the models perform on data they have not seen before, which helps to
estimate their accuracy in real-world forecasting. To keep the comparison fair, we
calculated all evaluation metrics on the original data scale.

4.2.2 ARIMA Model

The ARIMA model was selected as a baseline to benchmark the performance of
more advanced forecasting approaches. As a widely used and well-understood
method for modelling univariate time series, ARIMA provides a reference point for
evaluating the added value of more complex models.

To identify an appropriate ARIMA configuration, a grid search was performed
over the following hyperparameter ranges:

pef{0,...,9}, de{0,1}, ¢€{0,...,9}.

Candidate models were assessed based on multiple criteria including RMSE, MAE,
and AIC. The final model was selected as the one with the lowest AIC.
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After fitting the ARIMA model, we checked the residuals to evaluate how well the
model captured the dynamics of the data. In particular, we looked at the squared
residuals over time, shown in Figure 4.6, as sustained deviations from zero in these
values can indicate heteroskedasticity. To test this more formally, we used the
ARCH test, which confirmed that the residuals exhibited significant ARCH effects.
Based on this result, we decided to extend the analysis using an ARMA-GARCH
model, which is better suited to handle time series with time-varying variance.
Further details are provided in the next subsection.

ACF of Squared Residuals
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Figure 4.6: ACF of the squared residuals from the ARIMA model.

4.2.3 ARMA-GARCH Model

To capture both the autocorrelation structure and the time-dependent variance
observed in the transformed cancellation time series, an ARMA-GARCH framework
was adopted. This modelling approach allows to model the conditional mean using
an ARMA process, while handling changing variability in the residuals with a
GARCH component.

In particular, the conditional mean was modelled using an ARMA (s, ) process,
paired with a GARCH(p, ¢) specification for the variance. The differencing or-
der was kept at zero, as the input series had already been log-transformed and
differenced during preprocessing.

The modelling proceeded in two stages: first, an ARMA(s,t) model was fitted
to the transformed training data to capture the conditional mean,

Yy = pe + €, iy = ARMA(s, ).

Then, the residuals from this fit were modelled using a GARCH(p, ¢) process, to
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capture time-varying volatility:
p q
ol =w+ Zaief,i + Z ﬁjat{j.
i=1 j=1

Forecasts over the entire test horizon were generated as:
Jp=iu+e, €] F NN(OaUE)

where fi; and 62 denote the predicted conditional mean and variance at time t.

Similarly to the baseline model, a grid search was conducted over the ARMA
orders (s,t) and GARCH orders (p, ¢) within the set {1,2,3,4}. The best model
was chosen on the basis of the lowest AIC.

To better mimic real-world forecasting, we applied a rolling forecast approach
using the selected ARMA-GARCH model. Starting with the training data, the
model was repeatedly updated as new observations became available. At each step,
forecasts were made for a fixed horizon (e.g. 1, 3 or 30 steps ahead) by fitting the
ARMA model to the current data to get the conditional mean, and then fitting
the GARCH model to the residuals to estimate conditional variance. The forecasts
were computed as

A N A2
Yet+h = Mt:t+h T €ttth,  Ctt+h ™ N<O, Ut:t+h>-

where fiz1 is the predicted mean and 67, is the estimated variance over the
forecast horizon.

After each forecasting step, the actual observed values were added to the dataset
before proceeding to the next iteration. This rolling setup lets the model adapt to
new data over time, making the forecasts more realistic. Finally, the predicted values
were transformed back to the original scale of cancellation counts for interpretation.

4.2.4 GRU-Based Deep Learning Model

The earlier plots revealed strong relationships between shipment volumes, upstream
cancellations, and vendor cancellation counts, especially a pronounced connection
between vendor cancellations and total shipments. This suggests that vendor
cancellations are driven not only by their own historical patterns but also by
multiple interacting factors that evolve over time, potentially showing nonlinear
dependencies and long-range temporal effects. To further explore these relationships,
we calculated Spearman’s rank correlation coefficients, which measure monotonic
associations between variables without assuming linearity (see more in [59]). This
analysis confirmed the presence of significant monotonic trends among the features,
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Spearman Correlation Heatmap
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Figure 4.7: Spearman correlation heatmap between vendor cancellations, upstream
cancellations, and total shipments.

supporting the need for models capable of capturing complex, nonlinear temporal
dependencies.

As illustrated in Figure 4.7, these monotonic correlations further justify the
adoption of advanced sequence modelling techniques. To effectively capture these
complex dynamics, we adopted a deep learning approach based on Gated Recurrent
Units.

Unlike traditional linear models, which often assume fixed relationships and
limited memory of past values, GRUs provide the flexibility to model sequences with
multiple correlated features and can capture nonlinear patterns more effectively.
Our model used the following input features: vendor cancellation counts, upstream
cancellation counts, and total shipment volumes, together with temporal features.
Prior to training, all non-temporal features were normalized to the [0,1] range using
Min-Max scaling, ensuring the model treats all inputs on a comparable scale, which
stabilizes and accelerates learning.

To prepare the data for training, we employed a sliding window method that
converts the multivariate time series into supervised learning examples. Each
input consists of a sequence of 50 consecutive time steps of the features, and the
corresponding target is the vendor cancellation count immediately following this
sequence. This setup formulates the task as a many-to-one forecasting problem,
where the model learns to predict the next vendor cancellation count based on
historical feature data. Additionally, the day of the week corresponding to the
target time step is included as a predictive feature, enabling the model to capture
weekly patterns in cancellation behaviour.

The architecture consists of multiple stacked GRU layers, with the number of
hidden units varied as part of hyperparameter tuning. After the recurrent layers, a
dropout layer, with a fixed dropout rate p = 0.2, was included to reduce overfitting

26



Methodology

by randomly deactivating neurons during training. Finally, a dense layer outputs a
single scalar representing the forecasted vendor cancellations for the next time step.
We limit the training to 100 epochs with early stopping. The callback for early
stopping is validation loss together with a patience of 3. This means that 15% of
the training sample is used for validation during training and if the validation loss
increases 3 times the training of the parameters are halted.

Given the many hyperparameters affecting model performance, i.e. the number
of GRU units, number of stacked layers, batch size, and number of epochs, careful
tuning is essential. Instead of relying on traditional grid search, as previously
mentioned we employed Bayesian hyperparameter optimization. This approach
uses Gaussian processes to create a probabilistic model of performance, helping to
efficiently find the best hyperparameters.

To better understand the optimization process and assess the influence of each
hyperparameter, we visualized the search results using Optuna’s built-in tools. In
particular, the slice plot, shown in Figure 4.8, depicts the distribution of objective
values (i.e. mean squared error) across the entire range of each hyperparameter by
plotting the observed performance at different sampled values, for the NA vendor.
This allows us to examine how changes in individual parameters impact model
performance while marginalizing over other parameters, revealing trends such as
regions where increasing a parameter improves or worsens results. If performance
clustered near the upper or lower bounds of a parameter (e.g., consistently better
results with higher units), it indicated that the current range might need to be
expanded or shifted. This iterative analysis helped guide adjustments to the
parameter ranges leading to improved model performance.

Slice Plot
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100k . . ]
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Figure 4.8: Slice plot showing how individual hyperparameters affect model MSE.

The full hyperparameter space searched through is the following:
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n_layers € {1,2, 3},
units_per_layer € {32,...,128},
batch_ size € {8, 16, 32,64},
epochs = 40,
dropout_ rate = 0.2.

The activation function for hidden layers is given by the hyperbolic tangent,

et —e™®
er + e’

tanh(x) =

and the activation function at the output layer is given by the Rectified Linear
Unit (ReLU),

ReLU(x) = max(0, z).

We use the Adaptive Moment Estimation (Adam) optimizer with default pa-
rameters !, and MSE as the loss function. The Adam optimizer works by using
parameter specific learning rates based on 2"¢ order moments, see e.g. [60]. We
proceeded to evaluate the model using multiple forecast horizons: 1, 3, and 30 days
to enable direct comparison with the time series models. Forecast accuracy was
evaluated using the aforementioned metrics: MSE, RMSE, and MAE.

4.2.5 Scalability of the Models

To evaluate the scalability of the proposed forecasting approach, we conducted a
generalization experiment in which the best-performing models for each region were
applied to additional vendors within the same geographic area. Specifically, we
tested both ARMA-GARCH models and GRU models, using the hyperparameters
previously optimized for the top-performing vendor in each region.

This setup reflects a realistic operational scenario: rather than tuning separate
models for each vendor, we assess whether a model trained and optimized for one
vendor can be reused for others in the same region without further modification.
This form of intra-regional generalization is particularly important for scalable
deployments, where resource constraints make individual model tuning impractical.

While this is not generalization in the strict machine learning sense of training
and testing across independent and identically distributed samples, it offers an
approximation of how models would perform in production across a heterogeneous

Thttps://keras.io/api/optimizers/adam/. Accessed 2025-07-20.
28



Methodology

vendor base. It also reflects the organizational structure of vendor management at

Amazon, where teams are typically responsible for specific regional portfolios.
The experiment was carried out using the same evaluation setup and timeframes

described in previous sections, ensuring consistency in the comparison of GRU and

ARMA-GARCH models.
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Results

This chapter presents the results of this thesis. It is structured into two main
sections, reflecting the two core components of the work. The chapter starts with a
few comments about the DF EI Health Dashboard. The second section presents the
development and evaluation of the predictive models aimed at forecasting vendor
cancellations.

5.1 Vendor Health Dashboard Results

The first element of the dashboard, shown in Figure 5.1, is a summary table offering
an overview of vendor performance across the three core metrics: IAA Error Rate,
Average OF Delay, and Cancellation Rate. Each vendor is scored and flagged
using a traffic-light system: green for good performance, yellow for moderate
issues, and red for critical cases, enabling quick identification of vendors requiring
attention. For confidentiality, information such as company codes, vendor codes,
and warehouse codes has been removed from this figure and from all subsequent
dashboard views in this section.

Alongside the metrics, the table includes other descriptive attributes of vendors.
These include company and vendor codes and names, warehouse identifiers, and
the region and marketplace of operation, helping localize and segment performance.
Financial and operational attributes such as General Ledger (GL) classification,
Gross Merchandise Sales (GMS), and shipment volume provide insight into the
vendor’s scale and impact on Amazon business. The table also reflects the vendor’s
level of integration through the EI profile (e.g. EDI, API, hybrid, or not integrated)
and the IAA feed type (automated via EDI/API or manual via Vendor Central, an
Amazon internal portal). Labelling practices are captured as well, distinguishing
between vendors using Amazon-provided labels and those shipping through their
own carriers (Vendor Own Carrier, VOC).
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El Health Summary Table
Company Code  Company Name  Vendor Code  Vendor Name oL Region  Marketplace I Profile EllAAFeed  Label Type GMS  ShipmentsVolume 1A Error Rate OFDelay  Cancellation Rate
BISS EU FR API vc ‘Amazon $7,929,280 92,499
Lawnand... EU 86 €Dl €DI/API Amazon 45,933,177 88462
Biss & oE apl v Amazon 45,356,157 66949
Large..  EU oE €Dl €DI/API Amazon 45,146,502 8,005
Large ... EU DE EDI EDI/API ‘Amazon $5,144,453 7,979
Books. EU DE EDI EDI/API Other $4,447,201 195,680
Furniture EU DE APl ve ‘Amazon $3,453,892 122,671
Fumitre  EU 3 HYBRID v Amazon 43,252,779 34,985
Fumitre  EU oE €Dl €DI/API voc 43,207,257 45,787
Kitchen & e €Dl €DI/API Amazon 43,182,827 23610
Biss Y 8G "l v Amazon $2901,431 47,057
BiSS Y " "l v Amazon 42,833,043 34775
Fumitwre  EU 8G HYBRID v Amazon 42,565,939 44,411
Kitchen B DE €Dl €DI/API Amazon 42,498,443 13,518
Home B 86 NoT ve Amazon 42,423,456 94,806
Personal .. EU oE €Dl €DI/API voc 42,141,501 15,821
Personal .. EU BG EDI EDI/API ‘Amazon $1,854,079 8,138 %
Fumiture  EU G "l v Amazon 41,713,852 15071
BiSs Y DE "l v Amazon 41628202 8,640
Lawn and. EU R NoT ve ‘Amazon $1,570,775 30,066
Lawnand... EU oE €0l ve Other 41,495,195 93,300
Fumiture  EU o apt ve Amazon 41,409,535 14,726
Home & 86 €0l EDI/API Amazon 41,390,112 16,550

e B e e voc fissozss s I

Music EU BG AP Ve Amazon $1,337,320 59,138

avomoive & 0 el amszon 110097 no A 2

Figure 5.1: DF EI Health Summary Table, displaying attributes and metrics for
each vendor-warehouse combination.

To quantify and prioritize vendor risk, the dashboard includes a scoring table
(Figure 5.2) that brings together both performance metrics and business impact.
Each vendor is assigned a total score, with individual components reflecting their
behaviour across key EI dimensions. The table includes two scoring columns:
one that evaluates performance in isolation, computed using the base scoring
formula (Equation 4.1), and one that adjusts this score to account for the vendor’s
impact on the overall business, incorporating factors such as sales volume and
shipment activity, as defined in the volume-adjusted scoring formula (Equation
4.2). This dual perspective enables stakeholders to identify vendors who may seem
operationally reasonable but whose issues have a larger effect due to their business
scale. As a result, the system helps direct attention toward those vendors whose
behaviour poses the greatest risk to the supply chain.

One key component of vendor performance is the correctness and consistency
of item data contained in the inventory feeds. Figure 5.3 highlights the most
common errors found among flagged vendors, including invalid item IDs, obsolete
or suppressed items, and missing dropship flags.

The dashboard also monitors Order Fulfillment delays, which can impact overall
operational efficiency. Figure 5.4a shows how these delays have evolved over time
for vendors flagged as high risk. Figure 5.4b further categorizes delays by severity:
orders fulfilled in under 2 minutes, between 2 and 5 minutes, and over 5 minutes.

The final component of the dashboard focuses on cancellations, one of the most
disruptive issues in vendor operations. Figure 5.5 distinguishes between cancel-
lations initiated by vendors themselves and those occurring upstream (e.g. due
to system issues). For several vendors flagged in red or yellow in the cancellation

31



Results

Vendor Performance Impact Assessment

Cumulative risk score table (0-100), with and without considering orders volume
Higher scores indicate greater risk or poorer performance

Vendor Code  Region  Marketplace Vendor Score (No Volume) Vendor Score
EU DE 391 12.84
EU BG 217 11.52
EU DE 354 282
EU DE 4245 223
EU [ 26.54 218
EU I 38.32 2,04
EU ES 37.54 201
EU FR 37.63 196
EU DE 4676 184
EU BG 38.41 183
EU BG 17.87 165
EU ES 37.94 156
EU EG 24 156
EU DE 069 153
EU DE 4675 151
EU BG 075 14
EU DE 4264 116

Figure 5.2: Vendor Scoring Table including Base-Scores and Volume-Adjusted
Scores.

IAA Error Types by Vendor Code
Top Offenders Based on Number of Errors

Legend

100% —
invalid_item_id_error_count
W item_obsoleted_count
0%
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20% -

o%

&
d

Vendor Code

Figure 5.3: TAA error types across flagged vendors.

column of the summary table, vendor-initiated cancellations frequently exceed up-
stream ones. Since these cancellations directly harm vendor experience, predicting
them ahead of time becomes important.

In the following section, we present the results of the predictive models focused on
vendor cancellations. These models aim to forecast disruptive events before they
happen. By identifying likely cancellation spikes in advance, we can support timely
interventions and improve overall vendor performance.
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OF Delays Over Time Distribution of Delays (Under 2 min, Between 2-5 min, Over 5 min)

ate(wed . VendorCode

(a) OF Delays Over Time (b) Distribution of OF Delays

Figure 5.4: Visualization of OF delays for flagged vendors.

Reasons of Cancellations by Vendor Code

0
Vendor Code

Figure 5.5: Comparison of Vendor and Upstream Cancellations.

5.2 Cancellation Forecasting Results

Following the procedure outlined in the methodology, we begin the modelling by
transforming the original vendor cancellation count series to stabilize variance
and prepare it for time series analysis. The left panel of Figure 5.6 displays the
raw cancellation count over time, showing noticeable variance and potential non-
stationarity. In the right panel, the transformed series is shown after first-order
differencing, which helps remove trends and stabilize the mean. This differenced
log-transformed series serves as the input for the ARIMA and ARMA-GARCH
models.

The cancellation forecasting was implemented for the top offender in each of
the three regions, North America, Europe, and the Far East. However, for clarity
and to highlight key observations that motivated further model refinement, we
present the NA vendor as a representative case. The same analytical steps and
diagnostics were applied to the other two vendors, and their respective performance
metrics and forecast plots are reported in the final comparison tables.
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(a) Original vendor cancellation count (b) Differenced Log-transformed series

Figure 5.6: Transformation of the cancellation count series prior to modelling.

5.2.1 ARIMA Model

Following the transformation of the vendor cancellation series discussed previously,
we proceed with the implementation of the ARIMA model as a baseline for time
series forecasting. As outlined in the methodology, the ARIMA configuration
was selected via an extensive grid search over various combinations of the (p,d, q)
parameters, with the goal of minimizing the AIC while maintaining competitive
predictive accuracy.

Table 5.1 summarizes the performance of the best ARIMA model selected for
each of the three vendors under analysis.

Metric Vendor (NA) Vendor (EU) Vendor (FE)
Best Model ARIMA(3, 0, 8) ARIMA(0, 0, 3) ARIMA(7, 0, 8)

MSE 0.7291 0.2822 0.8780
RMSE 0.8539 0.5312 0.9370
MAE 0.5944 0.3663 0.7365
AIC 1062.1396 697.6067 1724.0724

Table 5.1: ARIMA model performance metrics for the top offender vendors.

Figure 5.8 illustrates the models fit and forecast performance. The green curve
shows the in-sample fitted values compared to the training data (blue), while the
red curve represents the model’s forecast over the test set, aligned against the
actual test values in orange. In all the cases, the ARIMA models capture the overall
level and general trend of the cancellation series but struggle to reflect its true
dynamics. A strong seasonality pattern is present in the forecasts, which does not
align with the actual fluctuations in the test data, especially around sharp increases
or sudden drops. This suggests that while ARIMA provides a structured baseline,
it lacks the flexibility needed to model the more irregular behaviour observed in
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real cancellation patterns.

Tmeberiod T imeperiod

(a) ARIMA forecast for NA vendor (b) ARIMA forecast for EU vendor

(c) ARIMA forecast for FE vendor

Figure 5.7: ARIMA model forecasts for vendor cancellations across the three
top-offending vendors by region.

To better understand how the ARIMA forecasts behave in real-world terms, we
transform the predictions back to the original scale of cancellation counts. The
forecasted values for each of the three top vendors are shown in Figure 5.8. The
models significantly underestimate both the level and variability of the actual
values. The forecasts are overly smooth, with little responsiveness to the sharp
increases and fluctuations present in the real data.

This qualitative observation is supported by the quantitative error metrics
reported in Table 5.2.

Metric Vendor (NA) Vendor (EU) Vendor (FE)
Best Model ARIMA(3, 0, 8) ARIMA(0, 0, 3) ARIMA(7, 0, 8)

MSE 118608.56 12068.30 111.03
RMSE 344.40 109.86 10.54
MAE 79.32 101.73 5.58

Table 5.2: ARIMA model performance metrics on the original scale for the top
offender vendors.
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(a) ARIMA forecast for NA vendor (b) ARIMA forecast for EU vendor

Original Data, Training Data, and Forecasted Values on Original Scale

(c) ARIMA forecast for FE vendor

Figure 5.8: ARIMA model forecasts for vendor cancellations across the three
top-offending vendors by region, shown on the original scale.
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To further assess the adequacy of the ARIMA model we examined its residuals.
Figure 5.9 presents both the residuals over time and their rolling variance computed
with a 20-period window. Rolling variance tracks how the dispersion of residuals
evolves over time, providing insights into changes in the uncertainty of predictions.
While the residuals appear mostly centred around zero, the rolling variance fluc-
tuates significantly across the series, suggesting the presence of time-dependent
variance. In a homoskedastic model, the rolling variance should remain relatively
stable. However, in our case, the substantial variation indicates heteroskedastic
behaviour. These results are consistent with our previous findings from the ACF of

Residuals of ARIMA(3, 0, 8)

15 — Residuals

1.0
T 05

0.0
-05
-1.0
-15

0 100 200 300 400 500 600 700 800

—— Rolling Variance (window=20)

Figure 5.9: Residuals and 20-period rolling variance of the ARIMA(3, 0, 8) model
for NA vendor.

the squared residuals (Figure 4.6) and the ARCH test discussed in the methodology,
both of which point to the presence of ARCH effects. As a result, we conclude
that a more flexible modelling approach is needed to accommodate the changing
variance in the series. The next section introduces the ARMA-GARCH model,
which explicitly models both the mean and variance dynamics.

5.2.2 ARMA-GARCH Model

We now present the results obtained with the ARMA-GARCH model, which
was implemented to address the limitations observed in the ARIMA approach,
particularly its inability to capture time-dependent variance. As described in the
methodology, the optimal configuration for each vendor was selected through a
grid search over ARMA and GARCH parameter combinations, using the AIC as
the primary selection criterion.

Table 5.3 summarizes the performance metrics of the best-fitting ARMA-GARCH
models for the three vendors under analysis. Figure 5.10 illustrates the in-sample
fits and out-of-sample forecasts of the ARMA-GARCH models on the differenced
log-transformed series for the three vendors.
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Metric Vendor (NA) Vendor (EU) Vendor (FE)

Best Model ARMA(4, 4)-GARCH(1, 1) ARMA(2, 1)-GARCH(1, 1) ARMAC(1, 1)-GARCH(1, 1)
MSE 0.8813 0.3855 1.2750

RMSE 0.9388 0.6209 1.1292

MAE 0.6901 0.4737 0.8988

AIC 1072.7039 697.6537 1737.0598

Table 5.3: ARMA-GARCH model performance metrics for the top offender
vendors.

(a) ARMA-GARCH forecast for NA vendor (b) ARMA-GARCH for EU vendor

(c) ARMA-GARCH forecast for FE vendor

Figure 5.10: ARMA-GARCH model forecasts for vendor cancellations across the
three top-offending vendors by region, shown on the differenced log-transformed

scale.

Finally, we transform the ARMA-GARCH forecasts back to the original scale
of cancellation counts for practical interpretability and error metric calculation.
Figure 5.11 presents these forecasts alongside the actual cancellations. The ARMA-
GARCH models demonstrate improved responsiveness to sharp increases and
variability in cancellations compared to the ARIMA baseline, producing forecasts
that are both smoother and more accurate in reflecting real-world behaviour,
particularly in the first predicted values.

Table 5.4 reports the error metrics of the ARMA-GARCH models on the original
cancellation count scale.
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Original Data, Training Data, and Forecasted Values on Original Scale Original Data, Training Data, and Forecasted Values on Original Scale

(a) ARMA-GARCH forecast for NA vendor (b) ARMA-GARCH for EU vendor

Data, Training Data, and Forecasted Values on Original Scale

b | I

W#J'

(c) ARMA-GARCH forecast for FE vendor

Figure 5.11: ARMA-GARCH model forecasts for vendor cancellations across the
three top-offending vendors by region, shown on the original scale.

Metric Vendor (NA) Vendor (EU) Vendor (FE)

Best Model ARMA(4, 4)-GARCH(1, 1) ARMA(2, 1)-GARCH(1, 1) ARMA(2, 2)-GARCH(I, 1)
MSE 121539.66 17965.50 782.93

RMSE 348.63 134.04 27.98

MAE 91.44 99.14 13.97

Table 5.4: ARMA-GARCH model performance metrics on the original scale for
the top offender vendors.

Rolling Predictions

We now present the results of the rolling forecast evaluation using the ARMA-
GARCH models. This framework was designed to more closely replicate a real-time
forecasting environment by updating the model sequentially as new observations
became available, as outlined in the methodology. Forecasts were produced for
horizons of 1, 3, and 30 days across all three vendors, and performance was assessed
on the original scale.

Figures 5.12, 5.13, and 5.14 illustrate the forecasts obtained at each rolling step
for the three vendors, plotted against the actual observed cancellation counts.

Tables 5.5, 5.6, and 5.7 report the prediction error metrics (MSE, RMSE, and
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Original Data, Training Data, and Forecasted Values on Original Scale Original Data, Training Data, and Forecasted Values on Original Scale

(a) ARMA-GARCH forecast for NA vendor (b) ARMA-GARCH for EU vendor

Data, Training Data, and Forecasted Values on Original Scale

(c) ARMA-GARCH forecast for FE vendor

Figure 5.12: ARMA-GARCH model forecasts for vendor cancellations across the
three top-offending vendors by region, using 1-day rolling predictions.

MAE) for each horizon. These tables provide a view of how forecast accuracy
evolves with the length of the prediction window.

Metric Vendor (NA) Vendor (EU) Vendor (FE)
Model ~ ARMA(4, 4)-GARCH(1, 1) ARMA(2, 1)-GARCH(1, 1) ARMA(2, 2)-GARCH(1, 1)
MSE 64049.65 1816.07 106.31

RMSE 253.08 42.62 10.31

MAE 71.22 33.63 5.91

Table 5.5: ARMA-GARCH model performance metrics for the top offender
vendors, using 1-day rolling predictions.
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Original Data, Training Data, and Forecasted Values on Original Scale Original Data, Training Data, and Forecasted Values on Original Scale

(a) ARMA-GARCH forecast for NA vendor (b) ARMA-GARCH for EU vendor

ing Data, and Forecasted Values on Original Scale

(c) ARMA-GARCH forecast for FE vendor

Figure 5.13: ARMA-GARCH model forecasts for vendor cancellations across the
three top-offending vendors by region, using 3-day rolling predictions.

Metric Vendor (NA) Vendor (EU) Vendor (FE)
Model ~ ARMA(4, 4)-GARCH(1, 1) ARMA(2, 1)-GARCH(1, 1) ARMA(2, 2)-GARCH(1, 1)
MSE 88654.25 2050.57 104.95

RMSE 297.75 45.28 10.24

MAE 86.81 35.35 6.20

Table 5.6: ARMA-GARCH model performance metrics for the top offender
vendors, using 3-day rolling predictions.

5.2.3 GRU Model

This section presents the performance of the GRU models trained as described in
Section 4.2.4, evaluated across three forecast horizons: 1-day, 3-day, and 30-day
ahead predictions. Figures 5.15, 5.16, and 5.17 display the model forecasts alongside
actual vendor cancellation counts for each vendor and forecast horizon.

Corresponding performance results are summarized in Tables 5.8, 5.9, and 5.10.
These tables report the evaluation metrics for each vendor and horizon, as well as
the best hyperparameter settings identified through Bayesian optimization. This
provides insight into the model configurations that yielded optimal forecasting
accuracy for the different scenarios.
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Original Data, Training Data, and Forecasted Values on Original Scale Original Data, Training Data, and Forecasted Values on Original Scale

(a) ARMA-GARCH forecast for NA vendor (b) ARMA-GARCH for EU vendor

Original Data, Training Data, and Forecasted Values on Original Scale

A

(c) ARMA-GARCH forecast for FE vendor

Figure 5.14: ARMA-GARCH model forecasts for vendor cancellations across the
three top-offending vendors by region, using 30-day rolling predictions.

Metric Vendor (NA) Vendor (EU) Vendor (FE)
Model ~ ARMA(4, 4)-GARCH(1, 1) ARMA(2, 1)-GARCH(1, 1) ARMA(2, 2)-GARCH(1, 1)
MSE 83488.39 30319.34 4009.37

RMSE 288.94 174.13 63.32

MAE 126.04 123.26 36.61

Table 5.7: ARMA-GARCH model performance metrics for the top offender
vendors, using 30-day rolling predictions.

5.3 Scalability Results

In this section, we present the performance of both ARMA-GARCH and GRU
models when applied to a second, previously unseen vendor in each region. The
models used here retain the hyperparameters optimized for the top-offending vendor
in their respective regions. This setup allows us to evaluate the scalability of each
modelling approach without retraining or tuning. Performance is measured again
using 1-day, 3-day, and 30-day rolling forecasts. We report standard metrics
(MSE, RMSE, MAE) in Tables 5.11, 5.12, 5.13, 5.14, 5.15, 5.16 and include the
corresponding forecast plots in Figures 5.18, 5.19, 5.20, 5.21, 5.22, 5.23, grouped
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Original Data, Training Data, and Forecasted Values on Original Scale Original Data, Training Data, and Forecasted Values

(a) GRU forecast for NA vendor (b) GRU forecast for EU vendor
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(c) GRU forecast for FE vendor

Figure 5.15: GRU model forecasts for vendor cancellations across the three
top-offending vendors by region, using 1-day rolling predictions.

Metric Vendor (NA) Vendor (EU) Vendor (FE)
n_ layers 1 1 1
units_per layer 44 48 33
batch_ size 8 8 32
MSE 78334.30 1387.91 108.99
RMSE 279.88 37.25 10.44
MAE 90.94 27.51 5.43

Table 5.8: GRU model performance metrics for the top offender vendors, using
1-day rolling predictions.

by model type and forecast horizon.
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(a) GRU forecast for NA vendor (b) GRU forecast for EU vendor

&

(c) GRU forecast for FE vendor

Figure 5.16: GRU model forecasts for vendor cancellations across the three
top-offending vendors by region, using 3-day rolling predictions.

Metric Vendor (NA) Vendor (EU) Vendor (FE)
n_ layers 1 3 3

units per_layer 37 [46, 77, 91] (63, 122, 95]
batch size 8 32 32
MSE 96310.89 1817.05 145.49
RMSE 310.34 42.62 12.06
MAE 98.12 32.20 6.90

Table 5.9: GRU model performance metrics for the top offender vendors, using
3-day rolling predictions.
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(a) GRU forecast for NA vendor (b) GRU forecast for EU vendor

(c) GRU forecast for FE vendor

Figure 5.17: GRU model forecasts for vendor cancellations across the three
top-offending vendors by region, using 30-day rolling predictions.

Metric Vendor (NA) Vendor (EU) Vendor (FE)
n_ layers 2 3 1
units_per_ layer (82, 127] 91, 62, 121] 115
batch size 8 8 64
MSE 124354.58 6425.51 117.74
RMSE 352.64 80.15 10.85
MAE 121.30 68.77 5.77

Table 5.10: GRU model performance metrics for the top offender vendors, using
30-day rolling predictions.

Metric Vendor (NA) Vendor (EU) Vendor (FE)
Model ~ ARMA(4, 4)-GARCH(1, 1) ARMA(2, 1)-GARCH(1, 1) ARMA(2, 2)-GARCH(1, 1)
MSE 66.26 652.65 209.68

RMSE 8.14 25.55 14.48

MAE 5.40 21.09 8.70

Table 5.11: ARMA-GARCH model performance metrics for unseen vendors, using
1-day rolling predictions.
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(a) GRU forecast for NA vendor (b) GRU forecast for EU vendor

(c) GRU forecast for FE vendor

Figure 5.18: ARMA-GARCH model forecasts for vendor cancellations across
three unseen vendors, using 1-day rolling predictions.

Metric Vendor (NA) Vendor (EU) Vendor (FE)
Model ~ ARMA(4, 4)-GARCH(1, 1) ARMA(2, 1)-GARCH(1, 1) ARMA(2, 2)-GARCH(1, 1)
MSE 105.04 886.64 232.33

RMSE 10.25 29.78 15.24

MAE 6.96 24.59 9.29

Table 5.12: ARMA-GARCH model performance metrics for unseen vendors, using
3-day rolling predictions.

Metric Vendor (NA) Vendor (EU) Vendor (FE)
Model ~ARMA(4, 4)-GARCH(1, 1) ARMA(2, 1)-GARCH(1, 1) ARMA(2, 2)-GARCH(1, 1)
MSE 10770.90 26046.62 5141.13

RMSE 103.78 161.39 71.70

MAE 49.89 105.67 43.58

Table 5.13: ARMA-GARCH model performance metrics for unseen vendors, using
30-day rolling predictions.
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(c) ARMA-GARCH forecast for FE vendor

Figure 5.19: ARMA-GARCH model forecasts for vendor cancellations across
three unseen vendors, using 3-day rolling predictions.

Metric Vendor (NA) Vendor (EU) Vendor (FE)

n_ layers 1 1 1
units_per_layer 44 48 33
batch size 8 8 32
MSE 66.43 598.32 227.78
RMSE 8.15 24.46 15.09
MAE 4.43 18.76 8.40

Table 5.14: GRU model performance metrics for unseen vendors, using 1-day
rolling predictions.
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Figure 5.20: ARMA-GARCH model forecasts for vendor cancellations across
three unseen vendors, using 30-day rolling predictions.

Metric

Vendor (NA) Vendor (EU) Vendor (FE)

n_ layers
units_per_layer
batch size

MSE

RMSE

MAE

1
37
8
71.74
8.47
0.08

3
[46, 77, 91]
32
531.66
23.05
17.77

3
(63, 122, 95]
32
280.70
17.02
0.82

Table 5.15: GRU model performance metrics for unseen vendors, using 3-day

rolling predictions.
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Original Data, Training Data, and Forecasted Values on Original Scale

Original Data, Training Data, and Forecasted Values on Original Scale

(a) GRU forecast for NA vendor (b) GRU forecast for EU vendor

Original Data, Training Data, and Forecasted Values on Original Scale

(c) GRU forecast for FE vendor

Figure 5.21: GRU model forecasts for vendor cancellations across three unseen
vendors, using 1-day rolling predictions.

Metric Vendor (NA) Vendor (EU) Vendor (FE)
n_ layers 2 3 1
units_ per_layer (82, 127] 91, 62, 121] 115
batch size 8 8 64
MSE 93.57 1057.35 259.94
RMSE 9.67 32.52 16.12
MAE 6.58 24.34 9.11

Table 5.16: GRU model performance metrics for unseen vendors, using 30-day
rolling predictions.
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Figure 5.22: GRU model forecasts for vendor cancellations across three unseen
vendors, using 3-day rolling predictions.

50



Results
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Figure 5.23: GRU model forecasts for vendor cancellations across three unseen
vendors, using 30-day rolling predictions.
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Chapter 6

Discussion

This chapter discusses the results obtained and their impact on vendor performance
monitoring and forecasting at Amazon. It also highlights how different models
can support decisions across short and long-term planning, depending on vendor
behaviour and operational needs.

6.1 Vendor Health Dashboard

The implementation of the DF EI Health Dashboard represents a major step
forward in Amazon’s ability to monitor Electronic Integration performance at scale.
The dashboard makes vendor reviews much easier by automatically gathering and
sorting the data, cutting down on manual work. Tasks that previously required
hundreds of hours annually to cover less then 40 vendors can now be performed
in a matter of minutes, enabling broader and more frequent oversight across the
global vendor network. This efficiency gain not only allows IOI teams to respond
more quickly to integration issues, but also extends visibility to long-tail vendors
that were previously unmonitored due to resource constraints.

Beyond improving coverage and responsiveness, the dashboard has also proven
to adapt well in different operational settings. It has been actively adopted by
EU IOI team in Spain, where much of the manual review process was historically
concentrated, and has since been used in other key markets including the United
States, Italy, Germany, Australia and Japan. These early deployments span multiple
continents and demonstrate the tool’s scalability and relevance across Amazon’s
global supply chain landscape. Figure 6.1 illustrates the current regional footprint
of the dashboard’s usage, reflecting its growing role in supporting integration health
management worldwide.
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Visits per Country

Esr, TomTom, Garmin, FAO, NOAA, USGS, © OpenStreethiap.

Figure 6.1: Geographic scope of Vendor Health Dashboard adoption.

6.2 Cancellation Forecasting

To provide a comprehensive comparison of forecasting performance, Table 6.1
summarizes the key error metrics for both the baseline ARIMA models and the
ARMA-GARCH models, with static and rolling forecasts.

Starting with the baseline ARIMA models, we observe notable differences in
forecasting accuracy across the vendors. However, it is important to note that
each vendor’s data presents distinct characteristics, such as differences in mean,
variance, and overall scale, that affect error metrics. For example, the NA vendor
has a substantially larger range and volume of orders and cancellations, leading
to naturally higher error values (MSE: 118608.56, RMSE: 344.40, MAE: 79.32)
compared to the FE vendor, which operates on a smaller scale and shows much lower
errors (MSE: 111.03, RMSE: 10.54, MAE: 5.58). The EU vendor falls in between
these two extremes with moderate error levels. Due to these inherent differences
in data magnitude, direct comparisons of raw error metrics across vendors should
be interpreted with caution, as higher errors may simply reflect larger underlying
values rather than poorer model performance.

Overall, the ARIMA models perform poorly across all vendors. Their simplicity
limits their ability to capture the complex dynamics and heteroskedasticity present
in the data, resulting in forecasts that fail to explain much of the observed variance.

The ARMA-GARCH models introduce volatility modelling to capture conditional
heteroskedasticity in the data. This added complexity influences forecast perfor-
mance differently across vendors and horizons. In the static setting, ARMA-GARCH
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Model Category Metric

Vendor (NA)

Vendor (EU)

Vendor (FE)

ARIMA (Baseline)

Model ARIMA(3,0,8) ARIMA(0,0,3) ARIMA(7,0,8)

MSE 118608.56 12068.30 111.03

RMSE 344.40 109.86 10.54

MAE 79.32 101.73 5.58

ARMA-GARCH

Model ~ ARMA(4,4)-GARCH(1,1) ARMA(2,1)-GARCH(1,1) ARMA(2,2)-GARCH(1,1)
Static forecast

MSE 121539.66 17965.50 782.93

RMSE 348.63 134.04 27.98

MAE 91.44 99.14 13.97
1-day rolling forecast

MSE 64049.65 1816.07 106.31

RMSE 253.08 42.62 10.31

MAE 71.22 33.63 5.91
3-day rolling forecast

MSE 88654.25 2050.57 104.95

RMSE 297.75 45.28 10.24

MAE 86.81 35.35 6.20
30-day rolling forecast

MSE 83488.39 30319.34 4009.37

RMSE 288.94 174.13 63.32

MAE 126.04 123.26 36.61

Table 6.1: Original-scale performance metrics for all ARIMA and ARMA-GARCH
models across the three top-offending vendors. ARIMA serves as the baseline, while
ARMA-GARCH results are presented for static and rolling forecast horizons.

errors are generally comparable to or slightly higher than those of the simpler
ARIMA models, especially for the NA and EU vendors. This indicates that without
frequent re-estimation, the benefits of explicitly modelling volatility remain limited.
A key characteristic of ARMA-GARCH processes is their mean-reverting na-
ture. In this application, both the mean and the variance dynamics are explicitly
modelled. As a result, these models tend to perform reasonably well for short-term
predictions, particularly the first forecast step, where the effects of recent volatility
are still present. However, as the forecast horizon extends, the predictions tend to
revert to the process mean, gradually losing their ability to reflect recent fluctua-
tions. This tendency limits their usefulness in capturing longer-range dynamics.

However, the advantage of ARMA-GARCH becomes evident in rolling forecasts,
where the model is updated regularly with new information. The 1-day rolling
forecasts show a pronounced reduction in error metrics across all vendors. For
instance, the NA vendor’s MSE decreases from 121539.66 (static) to 64049.65
(1-day rolling), nearly halving the error. Similar improvements are observed for the
EU vendor, where MSE drops from 17965.50 to 1816.07, and for the FE vendor,
from 782.93 to 106.31.
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Extending the forecast horizon to 3 days, errors increase slightly compared
to the 1-day rolling forecasts but remain well below static forecast errors. This
indicates that ARMA-GARCH models maintain reasonable predictive power with
moderate horizon extension.

At the 30-day rolling forecast horizon, prediction errors rise substantially, par-
ticularly for the NA and EU vendors (MSE of 83488.39 and 30319.34, respectively),
emphasising the increased uncertainty and difficulty in modelling longer-term fore-
casts under volatile conditions. While the FE vendor also shows increased error
(MSE: 4009.37), the impact is more moderate, consistent with its relatively stable
and less erratic cancellation patterns.

Visual inspection of the forecasted values reveals a notable shortcoming in the
model behaviour at this horizon. Specifically, the ARMA-GARCH models appear
to overestimate the variance of the series, producing periodic spikes that do not
align with the actual test data. This pattern suggests that the models may be
reacting too strongly to recent volatility, projecting it forward in a way that inflates
uncertainty rather than capturing realistic dynamics.

These limitations, especially the difficulty in capturing variance and maintain-
ing accurate long-range forecasts, highlighted the need to supplement the statistical
models with a more flexible, data-driven method. To that end, we summarize the
performance of the GRU models in Table 6.2, which presents key error metrics and
model configurations across rolling horizons for the top-offending vendors.

The GRU models demonstrate a clear improvement in forecasting performance
over the traditional statistical baselines, particularly as the forecast horizon in-
creases.

For the 1-day rolling forecast, GRU models achieve strong performance with
relatively simple architectures. The FE vendor exhibits low RMSE and MAE
(10.44 and 5.43, respectively), consistent with the stable patterns observed in its
cancellation data. The EU and NA vendors, while operating on more volatile
or larger-scale series, also benefit from the GRU’s ability to model short-term
nonlinear dependencies effectively.

At the 3-day horizon, increased model complexity becomes noticeable, particu-
larly for the EU and FE vendors, which both converge to three-layer architectures.
The models maintain good performance, suggesting the GRU’s capacity to adapt
to medium-range temporal dynamics. Although errors increase modestly compared
to the 1-day case, they remain well below the levels observed in traditional models
for comparable horizons.

At the 30-day rolling forecast horizon, the GRU model demonstrates a marked
improvement over the ARMA-GARCH approach for the European and Far East
vendors, with notably lower RMSE and MAE values. This indicates that the GRU
is better able to capture the temporal dynamics in these less variable and more
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Forecast Horizon Metric Vendor (NA) Vendor (EU) Vendor (FE)
1-day rolling forecast
n_layers 1 1 1
units_ per_ layer 44 48 33
batch size 8 8 32
MSE 78334.30 1387.91 108.99
RMSE 279.88 37.25 10.44
MAE 90.94 27.51 5.43
3-day rolling forecast
n_ layers 1 3 3
units per layer 37 [46, 77, 91] (63, 122, 95]
batch size 8 32 32
MSE 96310.89 1817.05 145.49
RMSE 310.34 42.62 12.06
MAE 98.12 32.20 6.90
30-day rolling forecast
n_ layers 2 3 1
units per layer [82, 127] [91, 62, 121] 115
batch size 8 8 64
MSE 124354.58 6425.51 117.74
RMSE 352.64 80.15 10.85
MAE 121.30 68.77 5.77

Table 6.2: Summary of GRU model architecture and performance metrics for the
top offender vendors, across 1-day, 3-day, and 30-day rolling forecast horizons.

stable series. For the North America vendor, however, the forecasting challenge
remains greater due to its higher volatility, and the GRU errors are somewhat larger
compared to ARMA-GARCH. Beyond the quantitative metrics, visual inspection of
the GRU forecasts reveals smoother and more realistic prediction trajectories across
all vendors. Unlike the ARMA-GARCH forecasts, which occasionally exhibited
unrealistic periodic spikes especially at longer horizons, the GRU outputs are more
stable and coherent.

Table 6.3 reveals that model performance varies significantly by vendor and forecast
horizon. For the NA vendor, characterized by high volatility and scale, ARMA-
GARCH models consistently achieve lower error metrics than GRU models across
all rolling forecast horizons, reflecting their relative strength in capturing short
to medium-term volatility dynamics in this dataset. In contrast, the EU ven-
dor benefits notably from GRU modelling, with GRU forecasts outperforming
ARMA-GARCH across all rolling horizons, particularly at longer horizons where
GRU’s MSE is substantially lower. The FE vendor presents a mixed picture:
ARMA-GARCH models yield slightly better accuracy at shorter horizons (1-day
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and 3-day rolling), while GRU models significantly outperform ARMA-GARCH
at the 30-day rolling forecast horizon, suggesting GRU’s ability to better model
longer-term trends in this more stable vendor data. Across all vendors, static
forecasts perform worse than rolling forecasts, highlighting the value of frequent
model updates, except for the 30-day forecasts. This can be attributed to the fact
that while two out of three of the static models predict one spike in variance which
does not realize, the rest of the prediction hover around the mean. While for the
30 day models the model contentiously overshoots the realized values.

Overall, these results suggest that while ARMA-GARCH is more suitable for
volatile, large-scale data like NA, GRU models offer clear advantages for vendors
with more stable patterns, especially over longer forecast horizons. Visual inspection
corroborates these findings, as GRU forecasts tend to produce smoother, more
realistic trajectories compared to the sometimes volatile ARMA-GARCH outputs.

6.2.1 Scalability Assessment

The scalability evaluation compares ARMA-GARCH and GRU models trained on
the top offenders in each region and then directly applied, without retraining, to
a second, previously unseen vendor in the same region. Tables 5.11, 5.16 report
forecasting performance across 1-day, 3-day, and 30-day rolling windows.

For 1-day rolling forecasts, both model families performed comparably across
most regions. GRUs slightly outperformed ARMA-GARCH in NA (MAE: 4.43 vs.
5.40) and EU (18.76 vs. 21.09), while the results were similar in the FE (8.40 vs.
8.70). This suggests that the GRU model generalizes well to similar vendor time
series over short horizons, possibly due to its ability to capture nonlinear temporal
dependencies.

At the 3-day horizon, GRU models again demonstrated slightly lower MAE
values across all regions compared to ARMA-GARCH. Notably, in the EU region,
GRU reduced the MAE to 17.77 from 24.59, indicating better adaptability despite
a more complex architecture (i.e., three hidden layers).

However, for long-term forecasts (30-day rolling), both models experienced
significant error growth, as expected. ARMA-GARCH performance degraded
more sharply, e.g. MAE reached 105.67 in the EU, whereas GRU maintained
comparatively lower errors (MAE: 24.34). This indicates stronger robustness of
GRUs to temporal drift in longer horizons, likely due to their recurrent memory
capabilities.

Overall, both models are able to transfer reasonably well to unseen vendors
without ad hoc modelling. GRUs consistently achieved slightly better or equivalent
accuracy, particularly at longer horizons and in more variable regional contexts.
However, ARMA-GARCH maintained competitive performance with far simpler
architectures. Importantly, the accuracy levels observed on the second set of
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Model Forecast Metric NA EU FE
ARIMA (Baseline)

Static MSE  118,608.56 12,068.30 111.03
RMSE 344.40 109.86 10.54
MAE 79.32 101.73 5.58

ARMA-GARCH

Static MSE  121,539.66 17,965.50 782.93
RMSE 348.63 134.04 27.98
MAE 91.44 99.14 13.97

1-day rolling MSE 64,049.65  1,816.07  106.31
RMSE 253.08 42.62 10.31
MAE 71.22 33.63 5.91

3-day rolling MSE 88,664.25  2,050.57  104.95
RMSE 297.75 45.28 10.24
MAE 86.81 35.35 6.20

30-day rolling ~ MSE 83,488.39  30,319.34 4,009.37
RMSE 288.94 174.13 63.32
MAE 126.04 123.26 36.61

GRU

1-day rolling MSE 78,334.30  1,387.91  108.99
RMSE 279.88 37.25 10.44
MAE 90.94 27.51 5.43

3-day rolling MSE 96,310.89  1,817.05  145.49
RMSE 310.34 42.62 12.06
MAE 98.12 32.20 6.90

30-day rolling  MSE  124,354.58 6,425.51  117.74
RMSE 352.64 80.15 10.85
MAE 121.30 68.77 5.77

Table 6.3: Comparison of key performance metrics (MSE, RMSE, MAE) across
ARIMA, ARMA-GARCH, and GRU models for NA, EU, and FE vendors. Rolling
forecast horizons are shown where applicable.

vendors remained comparable to those on the original vendors, suggesting that
both approaches are scalable across similar vendor time series. This supports the
feasibility of reusing trained models regionally without per-vendor hyperparameter
tuning.

Building on these modelling insights, the Amazon IOl team can apply customized
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forecasting methods to better manage vendor performance at scale. For vendors
exhibiting higher volatility or error rates, integrating ARMA-GARCH models
into daily monitoring processes can improve short-term accuracy and enable more
responsive interventions. These models are especially useful when the focus is on
capturing rapid fluctuations or variance patterns, such as during high-pressure
periods like Prime Week!, when operations teams need precise, day-level predictions
to minimize disruptions.

In contrast, for more stable vendors, GRU-based forecasts offer a better fit.
These models are good at identifying underlying trends and maintaining smoother,
more consistent predictions over longer horizons. Their ability to avoid spikes or
anomalous behaviour makes them well suited for use cases like weekly or monthly
planning, where business stakeholders are more interested in average cancellation
rates and long-term performance.

Importantly, the choice between models doesn’t need to be static. Forecasting
needs vary with the time frame and operational context. GRUs generally perform
better overall, both in terms of accuracy and the visual quality of the forecasts,
and should be the default for strategic, forward-looking assessments. However,
ARMA-GARCH remains a practical option for short-term use cases that demand
interpretability and quick updates, particularly in volatile conditions.

!Prime Week is an annual sales event created by Amazon to celebrate its anniversary and offer
exclusive deals to Amazon Prime members.
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Chapter 7
Conclusion

This thesis focused on developing systematic methods to monitor and forecast
vendor performance and electronic integration quality at scale within Amazon’s
supply chain ecosystem. By building and deploying the Vendor Health Dashboard,
we automated and scaled vendor health monitoring to cover thousands of global
partners, reducing hours of manual effort and expanding oversight to long-tail
vendors who were previously left out from regular reviews. This approach demon-
strates how vendor integration health can be managed effectively using a centralized,
scalable tool that’s accessible throughout Amazon’s network

On the forecasting side, we conducted a comparative analysis of classical time
series models, including ARIMA and ARMA-GARCH, alongside a neural network
approach based on Gated Recurrent Units. Our results showed that ARMA-
GARCH models perform well for highly volatile vendors in short-term forecasting,
while GRUs consistently outperform at longer forecast horizons, particularly for
vendors with more stable cancellation patterns. This demonstrates the value of
hybrid forecasting strategies that adapt model choice and forecast frequency to
vendor-specific behaviours, improving accuracy and robustness. Furthermore, these
predictive models proved capable of anticipating vendor cancellations sufficiently
in advance, allowing more proactive interventions to address emerging issues before
they escalate.

The scalability of the forecasting models was also evaluated by testing their
ability to generalize to unseen vendors without additional fine-tuning of the pa-
rameters. Results showed that both ARMA-GARCH and GRU models maintained
strong performance across new vendors from different regions, suggesting that a
region-specific model can be reused in similar operational contexts. This supports
the feasibility of deploying forecasting at scale, where building custom models for
each vendor may be impractical.
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Looking ahead, there are several promising directions for future work. The dash-
board could be extended with real-time alerting systems that automatically notify
the TOI team when critical thresholds are exceeded, such as a sudden spike in can-
cellation rates or prolonged delays in order fulfillment. Furthermore, incorporating
methods to assess the effects of specific interventions, such as the implementation
of a new API version or a change in EI configuration, could help identify whether
these actions are driving observed changes in vendor performance.

Beyond methodological improvements, future iterations of the dashboard could
incorporate new metrics to deepen the evaluation of vendor integration. Two specific
additions have been identified as valuable for further improving the dashboard.
The first is Shipping Label Processing Delays, which would track the time elapsed
between the submission of a label request and the receipt of the label file by the
vendor. This metric is especially relevant for vendors that rely on Amazon-provided
shipping labels through EDI or API integrations. In these cases, any delay in
the transmission or processing of label information can introduce bottlenecks in
order preparation and shipping. Monitoring this delay would allow Amazon to
assess how efficiently the label exchange process is functioning and to identify
vendors experiencing latency in this step of the fulfillment process. The second
proposed metric is API Certification Status, which monitors the validity period of
the vendor’s API credentials, specifically, the Login with Amazon (LWA) tokens
required for secure system-to-system communication. Rather than serving as a
direct performance metric, this functions as an early-warning indicator, alerting the
IOI team when a vendor’s certification is approaching expiration. Adding this flag
to the dashboard would help the team reach out to vendors in advance to renew
their credentials, reducing the risk of last-minute disruptions caused by expired
credentials and ensuring continuity in data exchange.

Regarding forecasting, adding more data, such as inventory levels, or details
about each vendor, could improve both the accuracy and robustness of the models.
Moreover, when forecasting models are deployed at scale within a company, it
becomes crucial to implement automated pipelines for continuous model evaluation,
retraining, and monitoring. Such systems could monitor model performance metrics
in real time, trigger retraining when performance drops below certain thresholds,
and deploy updated models without manual intervention.
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