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Introduction

Credit risk is a fundamental dimension in banking, representing the possibility that an
unexpected deterioration in a counterparty’s creditworthiness may lead to losses on the
associated exposure Sironi and Resti [2007].
It encompasses both default risk, which reflects the actual failure to meet financial
obligations, and migration risk, which refers to changes in credit quality without formal
default. Modern credit risk management goes beyond simple binary outcomes, using
probability distributions to capture the full spectrum of potential credit events.

Accurate measurement and management of credit risk are essential not only for the
stability of individual banks but also for the resilience of the financial system. Regulatory
frameworks, particularly the Basel Accords, provide structured guidance on how banks
should quantify and mitigate these risks. Basel I introduced minimum capital require-
ments based on fixed risk weights; Basel II refined the approach by incorporating the
Internal Ratings-Based (IRB) methodology; Basel III further strengthened capital
quality and introduced additional buffers to enhance systemic resilience Baesens et al.
[2016].

Within the IRB framework, the Probability of Default (PD) plays a central role.
PD models estimate the likelihood that a counterparty will default within a specified
horizon, providing the basis for internal ratings, risk-weighted asset calculations, and reg-
ulatory capital requirements. PD model calibration ensures that estimated probabilities
are aligned with historically observed default frequencies and reflect both portfolio charac-
teristics and economic conditions European Banking Authority [2017], European Central
Bank [2025].

A key challenge in credit risk modeling arises when historical data are incomplete.
Interruptions in data collection, portfolio changes, or missing time series create gaps that
complicate both model calibration and validation. Accurately reconstructing these missing
distributions is therefore essential to estimate long-term PD reliably while preserv-
ing the Accuracy Ratio (AR) before and after calibration, in line with supervisory
expectations.

The central aim of this thesis is thus twofold: on one hand, to estimate the long-term
PD for a retail mortgage portfolio, even in the absence of internal rating data for the
2008–2014 period; on the other hand, to ensure that PD calibration does not compro-
mise the model’s discriminatory power, as measured by the AR, maintaining consistency
between estimated PDs and observed default rates.

To achieve these objectives, the thesis integrates multiple sources of information. On
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one hand, detailed loan-level data from 2015 to 2022 provide a direct basis for cal-
culating PDs for each rating grade. On the other hand, aggregated portfolio-level
data from 2008 to 2014, published by the Bank of Italy, provide the historical perspective
necessary to reconstruct missing default dynamics. These sources are combined using
statistical and dynamic approaches, including regression techniques and Markov chain
models, to estimate the missing distributions and create a coherent dataset across the
entire period.

This reconstruction approach preserves essential data characteristics, such as the mono-
tonicity of PDs across rating grades and the stability of ratings over time, ensur-
ing that long-term PD estimates are reliable and that the model’s discriminatory power,
measured by the AR, remains consistent both pre- and post-calibration.

The thesis is structured in eleven chapters. The first chapters provide a theoretical
and regulatory foundation, introducing credit risk, Basel regulatory frameworks, and the
IRB approach. Subsequent chapters focus on PD model development, calibration, and
validation. The central chapters present a case study on long-term calibration with
missing data, exploring reconstruction methods and comparing alternative approaches.
The final chapters apply calibration techniques to assess differences between pre- and
post-calibration PD values and summarize the results, demonstrating that the proposed
methods allow for estimating long-term PD without distorting the Accuracy
Ratio.
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Chapter 1

Credit Risk and the Basel
Regulatory Framework

The content of this chapter is based on a review of academic and regulatory literature. In
particular, the following texts have been used as primary references:

• Sironi and Resti [2007], Credit Risk Management

• Baesens et al. [2016] Credit Risk Analytics: Measurement Techniques, Applications,
and Examples in SAS

1.1 Credit Risk: Definition and Challenges in Credit
Risk Analytics

This first chapter aims to introduce the fundamental concepts of credit risk and to frame
them within the international regulatory framework established by the Basel Committee.
After providing a general definition of credit risk and its main components, the chapter
examines how these risks have been addressed through the successive Basel Accords and
identifies the key parameters that play a central role in the assessment and management
of credit exposures. This theoretical and regulatory foundation serves as the ground-
work for the subsequent chapters, which will focus on the development and calibration
of Probability of Default models and on the empirical case study conducted on Intesa
Sanpaolo.

1.1.1 Definition and Key Concepts
Credit risk can be defined as "the possibility that an unexpected change in a counterparty’s
creditworthiness may generate a corresponding unexpected change in the market value of
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Credit Risk and the Basel Regulatory Framework

the associated credit exposure1". This concept incorporates three fundamental aspects:

• The dual nature of risk: default and credit migration

• The inherently unpredictable character of credit events

• The scope and measurement of credit exposure

Credit risk involves not only the possibility that a borrower may become insolvent but
also the potential worsening of their creditworthiness. In this sense, it comprises both
default risk, referring to actual failure to meet financial obligations, and migration
risk, which arises from downgrades in credit ratings without a formal default.

Therefore, rather than relying on a simple binary model that distinguishes only between
default and non-default, it is more appropriate to model credit risk using probability
distributions that represent the entire spectrum of potential outcomes. In this framework,
default appears as the tail event, and the overall risk profile is more accurately captured.

Another key consideration is the fact that changes in a counterparty’s rating can
occur unexpectedly. Although banks attempt to forecast financial deterioration at the
time of lending—often incorporating it into interest rates and loan terms—the real risk
lies in deviations from these expectations. Unexpected negative developments, even if
theoretically foreseeable, may not have been accounted for in advance, and thus represent
true credit risk.

The final component concerns the definition of exposure. Credit risk is not limited to
traditional on-balance-sheet lending (such as loans or debt securities), but also includes off-
balance-sheet items like derivatives, unsettled securities trades, and currency transactions.
These exposures may still be subject to counterparty risk even if no loan has formally been
extended.

It is worth noting that the original definition references the market value of exposures,
which introduces two practical challenges:

• Financial institutions often record exposures at historical cost, while proper risk
measurement requires assessing them at their economic or market value. Under
IFRS 9, assets are measured based on their cash flow characteristics and business
model.

• Many credit assets are illiquid and do not trade in active markets, making it necessary
to estimate their fair value using internal valuation models.

While the theoretical understanding of credit risk is well-established, practical implemen-
tation presents several significant challenges.

1Sironi and Resti [2007]
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1.1 – Credit Risk: Definition and Challenges in Credit Risk Analytics

1.1.2 From Theory to Practice
Commercial banks are generally large institutions whose core activity is financial inter-
mediation. They obtain funding through a combination of deposit collection, wholesale
financing, and equity capital, which they then use primarily for lending—by far the prin-
cipal source of credit risk.

Their loan portfolios are generally heavily concentrated in areas such as residential
mortgages, commercial real estate financing, and lending to small and medium-sized en-
terprises (SMEs), frequently secured by real assets owned by the borrowers. Exposure to
the real estate sector thus plays a significant role in their credit risk profile. Mortgage
structures range widely and may include prime and subprime loans, reverse mortgages,
home equity lines of credit (HELOCs), interest-only products, and loans with fixed, vari-
able, or hybrid interest rates.

Beyond real estate lending, banks also extend credit through consumer loans—such as
car loans, student loans, and credit card debt—as well as corporate loans. While loans
to large corporations are still offered, many of these firms also rely on capital markets to
meet funding needs, via equity issuance or bond placements.

Credit risk also arises from other exposures, including fixed-income instruments (such
as sovereign, corporate, or bank bonds), investments in securitized products, contingent
claims like credit lines and guarantees, and derivative instruments—especially over-the-
counter (OTC) contracts and credit derivatives.

The global financial crisis (GFC) of 2007–2009 placed credit risk at the center of in-
ternational concern. In response, regulators implemented sweeping reforms that reshaped
the risk landscape. Among the most significant changes were:

• Basel III framework: Enhanced regulatory standards were introduced to strengthen
both the quality and quantity of bank capital, introduce leverage and liquidity re-
quirements, and provide more robust impact assessments. We will delve deeper into
Basel III in a dedicated section.

• Stress testing: Regulatory bodies now require financial institutions to perform an-
nual stress tests on their risk models to assess their resilience under adverse macroe-
conomic conditions.

• Harmonization of regulations: Efforts have been made to promote greater con-
sistency in risk management rules across institutions and jurisdictions.

• Recovery of capital markets: Particularly within the private securitization sector,
which had contracted sharply in the aftermath of the crisis.

• Increased transparency: Enhanced reporting standards, such as centralized trade
repositories and access to granular, loan-level data, have improved the informational
landscape for credit risk analysts.
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Credit Risk and the Basel Regulatory Framework

• Boosting competition and efficiency: More accurate credit risk measurement
contributes to a healthier banking sector by promoting operational efficiency and
fairer competition.

Risk modeling techniques have undergone significant development in the years since the
crisis. Early approaches tended to be theoretical and were often based on qualitative/expert-
based assumptions that failed to reflect economic fluctuations. Contemporary models are
grounded in empirical data, incorporating long-term historical observations, including pe-
riods of severe stress like the GFC.

Modern credit risk models account for macroeconomic influences and are capable of
tracking the full life cycle of financial products—from origination through repayment, de-
fault, or maturity—while dynamically adapting to changing economic conditions. These
models also apply sophisticated techniques, including Bayesian inference and nonpara-
metric approaches, which help capture both observable factors and latent risks.

Nevertheless, despite these improvements, it is essential to recognize that no model is
without limitations. They are built upon assumptions and past data possibly incomplete
and typically explain only a portion of the observed outcomes. This underscores the
ongoing need for refinement and innovation in the field. Enhancing the precision and
robustness of credit risk models will remain a central challenge for the foreseeable future.

1.2 The Basel Framework
Managing credit risk effectively also requires compliance with a global regulatory frame-
work. Among the most important of these is the Basel Framework, established by the
Basel Committee on Banking Supervision and then trasformed into effective regulation
for EU institutions by means of the CRR. The Basel framework is the full set of standards
for the international banking system. It focus on the requirement for banks to maintain
enough capital reserves to meet their obligations and absorb unexpected losses.

Banks collect inflows of funds from a variety of sources and allocate these resources
across different types of investments. Among these, lending remains one of the core func-
tions of banking activity.

To ensure financial stability and protect both themselves and their depositors, banks
must be adequately protected from the risks they assume—particularly on the asset side
of their balance sheet. The failure of a bank due to insolvency is a scenario to be avoided,
and the risks embedded in a bank’s assets should be counterbalanced by sufficient and
appropriate liabilities.

A sound capital structure plays a crucial role in risk mitigation. A bank with solid
capital reserves, especially in the form of equity, is better equipped to absorb unexpected
losses. Consequently, there must be a clear relationship between the level of risk under-
taken and the amount of capital held. This relationship is determined through a two-step
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1.2 – The Basel Framework

process: first, the bank quantifies its risk exposure using specific risk metrics; then, these
values are applied in a regulatory formula that determines the minimum level of capital
required to cover such risks.

Regulatory frameworks distinguish among different types of regulatory capital, each
with varying levels of quality and loss-absorption capacity:

• Tier 1 Capital: Considered the highest-quality capital, it includes instruments
such as common equity, preferred shares, and retained earnings.

• Tier 2 Capital: Comprises supplementary elements like subordinated debt, reval-
uation reserves, undisclosed reserves, and general loan-loss provisions. Although
useful, it offers lower loss capacity compared to Tier 1.

• Tier 3 Capital: Introduced under the Basel II framework to cover market risks, it
was composed of short-term subordinated debt. However, Tier 3 capital has been
phased out under the more stringent Basel III regulations.

Basel I
The Basel I Accord marked a major step in international banking regulation by introducing
a capital adequacy framework focused primarily on credit risk. It established the concept
of the Cooke ratio which compares a bank’s regulatory capital to its risk-weighted assets.
Under this framework, banks were required to maintain a minimum capital ratio of 8%,
meaning that their available capital had to cover at least 8% of the total risk-weighted
asset exposure.

It introduced fixed risk weights dependent on the exposure class. For cash exposures,
the risk weight was 0 percent, for mortgages 50 percent, and for other commercial expo-
sures 100 percent.

As an example, consider a mortgage of $100. Applying the risk weight of 50 percent,
the risk-weighted assets (RWA) then become $50. This is the risk number we referred to
earlier. Since the regulatory minimum capital is 8 percent of the risk-weighted assets our
$100 mortgage should be financed by least $4 of equity to cover potential credit losses.

Basel II
It was introduced to address the limitations of the Basel I framework and is based on a
three-pillar structure:

• Pillar 1 – Minimum Capital Requirements: This pillar establishes capital
requirements for three categories of risk:

– Credit Risk, which arises from the possibility of a counterparty failing to meet
its obligations.

– Market Risk, which results from adverse movements in market variables such as
interest rates, exchange rates, and equity prices.
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– Operational Risk, defined as the risk of loss resulting from inadequate or failed
internal processes, people, systems, or from external events .

To model credit risk, Basel II allows for three approaches of increasing complexity:
the Standardised Approach, the Foundation Internal Ratings-Based (IRB) Approach,
and the Advanced IRB Approach.

• Pillar 2 – Supervisory Review Process: This pillar emphasizes the role of
supervisory authorities in evaluating banks’ internal processes for assessing capi-
tal adequacy. A key element is the Internal Capital Adequacy Assessment Process
(ICAAP), which ensures that banks identify, measure, and manage all relevant risks
beyond the minimum capital requirements.

• Pillar 3 – Market Discipline: This pillar promotes transparency by requiring
banks to disclose qualitative and quantitative information about their risk exposures
and management practices. The objective is to strengthen market discipline by en-
abling stakeholders to assess a bank’s risk profile and governance, thereby supporting
confidence and potentially lowering funding costs.

Basel III
Basel III emerged as a regulatory response to the Global Financial Crisis (GFC) to
strengthen the banking sector’s resilience. It places greater emphasis on tangible eq-
uity capital, recognizing it as the most effective buffer against unexpected losses. The
framework enhances the quality of capital by eliminating Tier 3 capital—considered in-
sufficiently robust—and reinforcing the role of Tier 1 capital, composed mainly of common
equity and retained earnings.

A key innovation is the introduction of a non-risk-based leverage ratio (minimum 3%)
to act as a safeguard against model risk, supplementing the traditional risk-weighted
approach. This ratio includes off-balance-sheet exposures and derivatives, offering a more
comprehensive view of total exposure.

Basel III introduces two new buffers:

• a capital conservation buffer of 2.5% of RWA, to be met with common equity;

• a countercyclical capital buffer, ranging from 0 to 2.5% of RWA, designed to build
up capital in good times to be used in downturns.

Additionally, Basel III raises the minimum Tier 1 capital ratio from 4% to 6%, and
the Common Equity Tier 1 (CET1) ratio from 2% to 4.5%. For systemically important
banks, Basel III requires an extra capital surcharge to mitigate the risks their failure could
pose to the broader financial system.

1.3 Risk Parameters and the IRB Framework
Following the introduction of enhanced capital requirements and risk buffers under the
Basel framework, it becomes essential to understand how banks assess and quantify credit
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risk internally. This leads us to the Internal Ratings-Based (IRB) approach—a more
refined, risk-sensitive methodology introduced to enhance credit risk evaluation under
Basel regulations.

At the core of the IRB approach are four fundamental risk parameters:

• Probability of Default (PD): the likelihood that a borrower will default over a one-
year horizon.

• Loss Given Default (LGD): the proportion of exposure lost in the event of a default,
relative to the outstanding amount.

• Exposure at Default (EAD): the total value the bank is exposed to when the borrower
defaults.

• Expected Loss (EL): the product of the previous three parameters:

EL = PD · LGD · EAD

The IRB framework includes two variants:

• Foundation IRB (F-IRB): Banks estimate the PD internally (approved by su-
pervisors and validated through robust internal procedures), while LGD and EAD
values are standardized and set by regulators.

• Advanced IRB (A-IRB): Banks can internally estimate all three components—PD,
LGD, and EAD—subject to supervisory approval and robust internal validation.

It is important to note that the Foundation IRB is generally not applicable to retail
exposures. For such cases, banks must opt for either the Standardised Approach or the
Advanced IRB. Once the relevant risk parameters are defined, Basel’s regulatory formulas
are used to compute the required capital.

1.4 Lifecycle of a Credit Exposure
After discussing the Basel framework and the IRB approach, it is important to understand
how credit risk unfolds over time in practice. To this end, we now turn to the lifecycle
of a credit exposure, which outlines the sequence of stages in the relationship between a
financial intermediary and a borrower—from the initial origination to the eventual clo-
sure of the exposure. Each phase carries specific risk implications and requires distinct
analytical approaches.

The lifecycle of a credit exposure can be articulated through the following stages:

1. Origination: This initial phase encompasses the assessment, approval, and dis-
bursement of credit. At this stage, the contractual terms are defined, the borrower’s
creditworthiness is evaluated, and any collateral arrangements are established.
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2. Monitoring and Observation: Once the credit has been granted, the exposure
enters a continuous monitoring phase. During this stage, the borrower’s behavior
is evaluated in terms of payment discipline, financial performance, and compliance
with contractual obligations.

3. Default Risk Assessment: Throughout the monitoring phase, the lender regu-
larly assesses the likelihood that the borrower may face financial distress potentially
leading to a default. This risk is formally quantified through the estimation of the
Probability of Default (PD).

4. Default Event: If the borrower exhibits persistent financial difficulties (e.g., over-
due payments exceeding 90 days) or is deemed “unlikely to pay” according to regu-
latory standards, the exposure is classified as defaulted. This transition represents
a critical escalation in risk.
Article 178 of Capital Requirements Regulation (CRR)- No 575/2013 defines default2

5. Post-Default and Recovery: Once an exposure is classified as defaulted, the
lender initiates recovery processes. These may include collateral repossession, legal
actions, debt restructuring, or sale of the exposure. During this stage, the actual
loss is registered and used for models estimating the LGD, representing the share of
the exposure expected not to be recovered.

6. Closure or Return to Performing Status: The credit exposure lifecycle con-
cludes either through full repayment, write-off, recovery, or legal resolution. In some
cases, if the borrower’s financial condition improves significantly, the exposure may
be reclassified as performing.

Having outlined the theoretical and regulatory foundations of credit risk, the next chapter
moves to the practical construction of Probability of Default (PD) models, focusing on
the processes of risk differentiation and quantification.

2:
“A default shall be considered to have occurred with regard to a particular obligor when either or both

of the following have taken place:
(a) the institution considers that the obligor is unlikely to pay its credit obligations to the institution,
the parent undertaking or any of its subsidiaries in full, without recourse by the institution to actions
such as realising security;
(b) the obligor is more than 90 days past due on any material credit obligation to the institution, the
parent undertaking or any of its subsidiaries.
In the case of retail exposures, institutions may apply the definition of default laid down in points (a)
and (b) at the level of an individual credit facility rather than in relation to the total obligations of a
borrower.”
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Chapter 2

Risk Differentiation and
Quantification in PD Models

The content of this chapter is based on a review of academic and regulatory literature. In
particular, the following texts have been used as primary references:

• European Banking Authority [2017] Guidelines on PD estimation, LGD estimation
and the treatment of defaulted exposures

• European Central Bank [2025] ECB guide to internal models

• Best practices for PD modelling as observed within ISP activities.

2.1 Development and Calibration of PD Models
The estimation of Probability of Default (PD) and other risk parameters generally follows
a two-phase process, which, while conceptually distinct, are closely interlinked. These
phases are:

1. Risk Differentiation (Model Development)
This phase focuses on developing models that povides a risk ordering and allows to
classify credit exposures into homogeneous risk segments or rating grades, based on
their underlying credit quality. The objective is to discriminate between borrowers
with different levels of credit risk.
Internal rating systems or scoring models are typically employed to assign expo-
sures to risk categories, using a combination of quantitative (e.g., financial ratios,
repayment history) and qualitative (e.g., industry outlook, management quality) in-
formation. The output is a risk ranking or grade that reflects relative riskiness among
borrowers.
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2. Risk Quantification (Calibration)
Once exposures are adequately differentiated, the next step involves quantifying
credit risk through the calibration of key risk parameters. This phase assigns nu-
merical values to each risk grade or segment, translating a label-based relative risk
differentiation into quantitative measures.
Calibration aims to estimate parameters that reflect long-term averages and, where
applicable, stressed conditions (e.g., downturn LGD). This step ensures that model
outputs are not only discriminatory but also aligned with observed historical loss
experience and regulatory requirements.

Both phases rely on the preparation and use of datasets, which may partially overlap.
However, it is important to note that the data used for model development and the one
used for calibration may differ in terms of scope, sample period, or granularity, depending
on the specific objective and requirement of each phase. In this case, a lack of sufficient
representativeness is not, by itself, a valid reason to exclude the data from the calculation.

We now focus on the processes of Risk Differentiation and Risk Quantification within
the framework of Probability of Default (PD) modeling.

The PD model development comprises five main steps: the first four pertain to Risk
Differentiation, while the final step concerns Risk Quantification.

2.2 Risk Differentiation

2.2.1 Data Collection and Estimation Sample Construction
Effective data collection is fundamental to the development of reliable PD models. It
involves gathering and aggregating data with the goal of ensuring its quality and consis-
tency, forming the basis for estimation and validation samples.

The data collection process must ensure:

• High-quality and reliable data;

• Homogeneity and representativeness of counterparties in the estimation sample;

• Consistency in the definition of default over time;

• Availability1 of sufficiently long time series.

Data used in PD model development typically falls into the following categories:

• Personal / Entity Data:
Corporate: sector, legal form, size;
Retail: age, occupation, residence.

1Availability is subject to the type of counterparty
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• Financial / Economic Data:
Corporate: capital structure, liquidity, profitability, current account balance;
Retail: income, debt level, savings, repayment capacity, current account balance.

• Qualitative Data:
Corporate: management quality, group affiliation, strategic policies;
Retail: employment stability, household composition, significant life events.

• Behavioral Data:
Corporate: payment history, credit utilization, account activity;
Retail: installment punctuality, transaction patterns, past defaults.

Each type of data may lead to different sample structures and modeling outcomes.
Therefore, the model design process should evaluate the relative importance of each data
source in assessing the borrower’s creditworthiness.

Handling of Missing Data Missing data must be treated carefully, taking into ac-
count its nature and associated risk. Appropriate imputation techniques or exclusions
are applied depending on the type and the impact of the missing information on model
performance and reliability.

2.2.2 Risk Driver Selection
The selection of risk drivers represents a foundational step in the construction of a credit
rating model, aiming to reduce reliance on expert judgment by automating the identifi-
cation of the most predictive variables. This process begins with the construction of a
long list of candidate variables, drawn from the dataset underlying each specific model
module (a specific component of the rating model that analyzes a defined set of homoge-
neous variables and produces a partial score representing the risk associated with those
characteristics).
Beyond their statistical relevance, risk drivers must also exhibit a clear and economically
sound relationship with default risk. In other words, the expected economic sense of each
variable should be validated and documented. Ensuring this consistency avoids spuri-
ous correlations, strengthens the interpretability of the model, and aligns the statistical
framework with established principles of credit risk analysis.

Prior to analysis, the variables undergo appropriate transformations based on their
data type:

• Nominal (non-ordered categorical) variables should be aggregated through
dedicated algorithms that optimize predefined criteria—such as maximizing the Ac-
curacy Ratio (AR), ensuring monotonicity of default rates, and preserving predictive
consistency.

• Continuous variables are typically transformed within the modeling framework
to ensure comparability and standardization.
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Subsequently, categorical and discrete variables are encoded into numeric formats by
assigning risk-consistent scores, facilitating their inclusion in multivariate statistical pro-
cedures.

A univariate analysis is conducted to assess the individual predictive power of each
candidate variable with respect to the default event. This step enables the reduction of
the long list to a short list of variables with the highest explanatory power, evaluated
through metrics such as:

• Direction and strength of the Accuracy Ratio (AR)

• Module-specific statistical indicators.To ensure robustness, the selected variables are
grouped into homogeneous informational areas based on their nature and economic
meaning.

Within and across these areas, two types of validation tests are performed:

• Performance stability analysis, comparing indicators across different time frames

• Distribution stability, assessed via statistical tests (e.g PSI).

Finally, a correlation analysis is carried out to eliminate the risk of multicollinearity.
Through a structured algorithmic approach, the most representative variables are selected
among correlated candidates, both within and across informational areas.

2.2.3 Model Selection
Following the definition of the short list and the standardization of the associated variables,
the model specification is finalized. A multivariate procedure is applied to the training
sample to identify the optimal combination of predictors. Candidate models are evaluated
using both statistical and economic criteria, including:

• In-Sample, Out-of-Sample, Out-of-Time discriminatory power (measured via the Ac-
curacy Ratio), Absence of overfitting

• Significance and interpretability of coefficients

• Economic consistency and robustness

Post-selection, the model undergoes a battery of ex-post validation tests to assess its
sensitivity to the selected time series and to ensure long-term stability across economic
cycles.

2.2.4 Rating Scale Definition
The final score, resulting from the integration of model modules and post-notch compo-
nents, is discretized through a clustering process if the discrete PD modelling approach is
used. A clustering algorithm such as Ward’s minimum-variance method is employed
to minimize intra-cluster variance and maximize inter-cluster distance. The optimal num-
ber of clusters (i.e., rating grades) is determined based on portfolio characteristics, such
as:
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• Overall population structure

• Default rate distribution and monotonicity

• Class concentration and homogeneity

The final rating scale is designed to optimize key properties such as monotonicity,
discriminatory power, granularity, stability, and model usability.

2.3 Risk Quantification

2.3.1 Risk Calibration
The risk calibration phase translates the model’s ordinal grading into quantitative mea-
sures of default probability. This process begins with the estimation of the portfolio’s
Long-Run Average Default Rate (LRAvDR), established through a robust framework
that ensures statistical and economic representativeness as required by the regulation.
The framework includes:

• A minimum default observation period of five years and a period sufficiently long to
include max and min of a cycle.

• A macroeconomic validation to ensure that the selected time series adequately rep-
resents a balanced mix of stressed and non-stressed conditions.

Once the optimal period of LRAvDR has been determined, the portfolio LRAvDR is
also computed at the level of rating grades with dedicated approaches (where needed).
The result of this outputs is the Baseline Probability of Default (PD) for each grade.

Incorporation of Adjustments and Margins of Conservatism (MoC)

In compliance with regulatory guidance, institutions must identify any deficiencies in
the data, methodology, or modeling environment that could introduce bias or increase
estimation uncertainty beyond standard statistical error. These deficiencies are classified
into two distinct, non-overlapping categories:

• Category A – Data and Methodology Deficiencies: Includes incomplete or
low-quality historical data, limitations in the model’s design, or incorrect implemen-
tation of the definition of default. For example, missing observations of risk drivers
or inaccurate default identification must be treated under this category.

• Category B – External or Process-Related Uncertainties: Encompasses
changes in the operational environment that impact the predictive stability of the
model. These include shifts in underwriting policies, macroeconomic volatility, or
legal/regulatory changes—such as amendments to bankruptcy laws or collection pro-
cedures—that may affect default or loss behavior, excluding changes specifically tar-
geting internal model regulation or default definitions.
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• Category C – General Estimation Error: In addition, institutions should quan-
tify a general estimation error, beyond Categories A and B, and present it transpar-
ently in a separate category. This accounts for unavoidable statistical uncertainty
inherent in the estimation process, even when no specific deficiencies or external
process-related uncertainties are identified.

As a general rule, all identified deficiencies must be addressed through appropriate
quantitative adjustments and/or the application of Margins of Conservatism
(MoC). These MoCs can be implemented at both the portfolio and rating-grade level,
depending on the nature and materiality of the deficiency.

The final Regulatory PDs are obtained by summing the Baseline PDs and the rele-
vant MoCs, thereby ensuring compliance with prudential requirements and safeguarding
against model risk.
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The estimation of risk parameters involves more than just model development and cali-
bration; it is embedded within a comprehensive regulatory and operational framework, as
summarized in Figure 2.1. The subsequent stages—independent validation, supervisory
approval, system implementation, application of risk parameters, and ongoing review—are
critical to ensuring the reliability, compliance, and effective use of the models within the
institution. These steps guarantee that the risk parameters are operationally integrated
and continuously monitored to reflect evolving portfolio and regulatory conditions.

Figure 2.1: Overview of the full risk parameter estimation process European Banking
Authority [2017]

The following chapter outlines the validation framework adopted to assess the perfor-
mance and adequacy of the resulting rating system.
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Chapter 3

Qualitative and Quantitative
Criteria for Rating System
Validation

The content of this chapter is based on a review of academic literature. In particular, the
following text has been used as primary reference:

• Sironi and Resti, Credit Risk Management Sironi and Resti [2007]

3.1 Qualitative Validation Criteria for Rating Sys-
tems

As introduced in the previous chapter, it is essential to assess the adequacy and reliability
of a rating system through a structured validation process.

This assessment can be performed by verifying whether the following criteria are sat-
isfied:

• Monotonicity: Default rates should increase as the rating worsens, reflecting the
expected risk hierarchy across rating grades.

• Stability of Default Rates: Default rates within each rating grade should remain
stable over time, indicating that the rating system maintains predictive accuracy
across different periods.

• Rating Grade Persistence: A sufficiently high proportion of exposures should
remain in the same rating grade from one year to the next, suggesting stability in
borrower credit quality and in the system’s assessment (TTCness of the model).
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• Migration Smoothness: Migration rates toward adjacent rating grade should be
more frequent than those toward distant ones, reflecting gradual changes in credit
quality rather than abrupt shifts.

• Early Risk Detection: Most borrowers who eventually default should have been
assigned to high-risk rating grade well before the default event.

In addition to these rules, some quantitative criteria have been proposed to verify the
correctness of rating assignments.

3.2 Quantitative Validation Criteria for Rating Sys-
tems

3.2.1 Contingency tables
The first method is based on contingency tables: matrices that compare the forecasts of a
model with the actual outcomes observed later. Each table is divided into four quadrants,
indicating:

• the number N1 of counterparties correctly rated as “performing” by the model;

• the number N2 of counterparties incorrectly rated as performing, corresponding to
the number of Type I errors;

• the number N3 of counterparties incorrectly rated as high-risk, corresponding to the
number of Type II errors;

• the number N4 of counterparties correctly rated as high-risk.

Rating by model Performing Defaulting Total

Low-risk ("pass") Correct valuation
(N1)

Type II errors
(N3)

N1 + N3

High-risk ("fail") Type I errors (N2) Correct
evaluations (N4)

N2 + N4

Total N1 + N2 N3 + N4 N1 + N2 + N3 + N4

Table 3.1: Contingency table of credit risk model classification

Using these values, it is possible to compute several performance indicators. The most
important are:
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• Sensitivity: the percentage of correctly identified defaulting counterparties:

N4

N2 + N4

• Specificity: the percentage of correctly identified performing counterparties:

N1

N1 + N3

• α Error rate: the percentage of defaulting counterparties incorrectly classified as
performing:

Eα = N2

N2 + N4

• β Error rate: the percentage of performing counterparties incorrectly classified as
defaulting:

Eβ = N3

N1 + N3

• Hit Rate: the percentage of correctly classified counterparties:

HitRate = N1 + N4

N1 + N2 + N3 + N4
= N1 + N4

N

The quality of a rating model should be assessed through the joint analysis of the Type
I (Eα) and Type II (Eβ) error rates. These error levels are critically influenced by the
choice of the cut-off threshold used to distinguish between performing and defaulting
counterparties. In general, a more conservative cut-off value leads to an increase in Type
II errors (false negatives) and a reduction in Type I errors (false positives).
Therefore, a robust evaluation of model performance requires examining its sensitivity
to variations in the cut-off threshold. This allows the analyst to understand how
classification accuracy shifts under different decision rules.

3.2.2 Receiver Operating Characteristic (ROC) curve
Another method for model validation is the Receiver Operating Characteristic (ROC)
curve. This graphical representation illustrates the trade-off between the False Alarm and
the Sensitivity across all possible cut-off values. Specifically, for each threshold k, a high-
performing rating model will exhibit a rapid increase in sensitivity (Hk) with minimal
increases in false positives. In other words, as k increases, the model should be able to
correctly identify defaulting borrowers (abnormal firms) without mistakenly classifying a
significant number of performing borrowers as defaulters.
The figure 3.1 shows an example of ROC curve which express the tradeoff of Type I errors
and type II errors. This figure shows two theoretical ROC curves as benchmarks:
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• The first one is the curve of a “perfect model”, for which a value of k exists that
allows 100% (Hk) of defaulted companies to be classified correctly, without making
any one mistake (Fk = 0)

• The second curve is that of a wholly “naive” model,which lacks any real ability to
separate healthy from defaulted companies.

Figure 3.1: Examples of ROC curve Sironi and Resti [2007]
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3.2.3 Cumulative Accuracy Profile (CAP)
Another useful way to assess the performance of a rating model is through the Gini curve,
also known as the Cumulative Accuracy Profile (CAP).
Let’s imagine we have a sample of N companies, each assigned a score by the model.
We start by selecting the companies with the worst scores, one by one, and for each step
S = 1, 2, . . . , N , we record two things: the number of companies considered so far (on the
horizontal axis), and how many among them actually defaulted, which we call D(S) (on
the vertical axis).
This process helps us visualize how well the model ranks companies in terms of risk. To
interpret the curve, we compare it to three reference cases:

• An ideal model: this model perfectly ranks all defaulters at the top. So, for the
first N2 + N4 companies (the actual defaulters), D(S) = S. After that, the curve
flattens, because there are no more defaults to detect.

• A naïve model: this one has no predictive ability. Defaults are randomly dis-
tributed, so the number of defaults grows proportionally with S: in other words,
D(S) = p · S, where p = N2+N4

N is the default rate in the sample.

• A real-world model: its curve typically falls somewhere between the ideal and
naïve cases. The closer it gets to the ideal curve, the more accurate the model is at
distinguishing risky companies from safe ones.
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A typical CAP curve is therefore the one in 3.2

Figure 3.2: Examples of CAP curve Sironi and Resti [2007]
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A widely used performance indicator for a rating system is the Gini ratio, also known as the
Accuracy Ratio (AR). This measure plays a central role in evaluating the discriminatory
power of a model and will be the main focus of the next chapter, where we explore how
it is affected by artificial inflation of the underlying numbers.
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Chapter 4

Effects of Data Inflation on
Accuracy Ratio

In this section, we define the key variables used in the calculation of the Accuracy Ratio
(AR) and its inflated versions. The objective is to understand how the artificial increase
in the number of defaulted counterparties affects the calculation of the AR. In the
context of credit risk, the application of a limitation, an adjustment, or a MoC leads to
an artificial increase in the default rate for each rating, which may result in a distortion
of the AR compared to its initial value. In the course of this chapter, we will examine
under which circumstances this occurs.
The Accuracy Ratio is a metric commonly used to evaluate the performance of clas-
sification models, particularly in fields such as credit scoring and fraud detection. It
assesses the model’s ability to differentiate between distinct classes—such as defaulters
and non-defaulters—by comparing its performance to that of a perfect classifier. A
higher AR indicates stronger discriminatory power, meaning the model is more effective
at correctly separating the two groups.

In order to calculate the Accuracy Ratio (AR) and explore how it may be affected by
inflating either defaults or non-defaults, it is essential to first establish a clear set of
definitions and notation.
Consider a credit rating system that assigns counterparties to n distinct rating grades.
For each rating grade i, we denote:

• defi: the number of counterparties that migrated to default within the one-year
observation window in rating grade i

• bonisi: the number of non-defaulted (i.e., performing) counterparties in rating grade
i

The total number of defaulted counterparties across all grades is denoted by:

def =
nØ

i=1
defi
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Similarly, the total number of performing counterparties is:

bonis =
nØ

i=1
bonisi

For each rating grade i, the total number of observed counterparties is:

obsi = defi + bonisi

and the overall number of observed counterparties is:

obs = def + bonis

To normalize the distribution of defaults and non-defaults across the rating scale, we
define:

πi = defi

def
and ωi = bonisi

bonis

where πi represents the share of defaulted counterparties in grade i, and ωi the share of
performing counterparties in the same grade.

We also introduce the cumulative hit rate, defined as:

HitRatei−1 = P(risk < rating grade i | default)

which gives the cumulative proportion of defaults in rating grades worse than i. We
assume that the dataframe is sorted such that rating grades are ordered from best to
worst credit quality. That is, the default rate (DR) is increasing with increasing rating
number:

• Rating 1 has the lowest default rate (best obligors),

• Rating n has the highest default rate (worst obligors).

With this notation, the baseline formula for the Accuracy Ratio (AR) is expressed as:

AR =
nØ

i=1
πi · ωi + 2

n−1Ø
i=1

ωi · HitRatei+1 − 1 (4.1)

This formula quantifies the discriminatory power of the rating model by comparing the
model’s ability to distinguish between defaulting and non-defaulting counterparties. A
higher AR value indicates a model with greater ability to separate riskier from safer
obligors.

36



4.1 – Inflated Accuracy Ratio Formulations

4.1 Inflated Accuracy Ratio Formulations
We discuss how the Accuracy Ratio (AR) behaves when the number of defaults is
artificially increased while the number of performing counterparties remains unchanged.

Specifically, we examine the scenario in which the default counts in each rating grade are
scaled by a common inflation factor of (1 + x), where x > 0.

Such an adjustment may arise for several reasons, including data misalignment between
the LRAvDR reference period and availability of historical data to reprocess ratings: the
calibration target (and period) may not match the calibration sample with computed
grades , post-estimation adjustments applied for conservatism or scenario analysis, or
regulatory-imposed limitations
The purpose of this analysis is to evaluate the effect of such inflation on the AR calculation,
and to understand whether, and to what extent, the model’s discriminatory power is
impacted by this transformation.
Let us denote the inflated number of defaults in rating grade i as

def
(x)
i = (1 + x) · defi,

which implies a total inflated number of defaults

def (x) = (1 + x) · def

.
The proportion of defaults in each grade remains unchanged, since:

π
(x)
i = def

(x)
i

def (x) = (1 + x) · defi

(1 + x) · def
= defi

def
= πi

Despite the increase in the absolute number of defaults, the relative distribution across
rating grades is preserved. Using this, we can write the inflated version of the AR formula
as:

ARinflated =
nØ

i=1

defi(1 + x)
def(1 + x) · bonisi

bonis
+ 2

n−1Ø
i=1

bonisi

bonis

i+1Ø
j=1

defj(1 + x)
def(1 + x)

− 1

=
nØ

i=1

defi

def
· bonisi

bonis
+ 2

n−1Ø
i=1

bonisi

bonis

i+1Ø
j=1

defj

def

− 1

= ARbaseline

This derivation shows that when default counts are uniformly inflated across all rating
grades, the Accuracy Ratio remains unchanged. The scaling factor (1 + x) cancels out
in both the point-wise default proportions and the cumulative hit rate, leaving the
discriminatory power of the model—as measured by the AR—unaffected.
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We now consider a more complex scenario in which the number of defaulted counterparties
is inflated—just as in the previous case—but, in contrast, the number of performing (non-
defaulted) counterparties is adjusted downward to maintain the original total number of
observed counterparties in each rating grade.
In this case, the number of non-defaulted counterparties is adjusted as:

adjusted_bonisi = obsi − defi(1 + x)

This adjustment ensures that the total number of counterparties in each grade remains
unchanged:

obsi = defi(1 + x) + adjusted_bonisi

In this framework, the distribution of performing counterparties is no longer preserved,
and the proportions ωi must be recalculated based on the adjusted non-default counts.
The advantage is that a constant scaling factor is applied across all rating grades.
The formula for the inflated AR becomes:

ARinflated =
nØ

i=1

defi(1 + x)
def(1 + x) · adjusted_bonisi

adjusted_bonis
+ 2

n−1Ø
i=1

adjusted_bonisi

adjusted_bonis

i+1Ø
j=1

defj(1 + x)
def(1 + x)

− 1

=
nØ

i=1

defi

def
· obsi − defi(1 + x)

obs − def(1 + x) + 2
n−1Ø
i=1

obsi − defi(1 + x)
obs − def(1 + x)

i+1Ø
j=1

defj

def

− 1

=
nØ

i=1
πi · ωi, inflated + 2

n−1Ø
i=1

ωi, inflated · HitRatei+1 − 1

=
nØ

i=1
ωi, inflated · (πi + 2 · HitRatei+1) − 1

where HitRaten+1 = 0
We can define the following two constants, that do not depend on the inflation factor x:

C1 =
nØ

i=1
obsi · (πi + 2 · HitRatei+1)

C2 = −
nØ

i=1
defi · (πi + 2 · HitRatei+1)

These constants capture weighted sums over the portfolio, combining the observed counts
and default distributions with the cumulative hit rates.
Using these, the Accuracy Ratio after inflating the default counts by (1+x) and adjusting
the number of non-defaulted counterparties accordingly can be compactly expressed as:

ARinflated = C1 + C2(1 + x)
obs − def · (1 + x) − 1
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The two formulations of the Accuracy Ratio (AR) reflect distinct approaches to modeling
distortions caused by inflation in observed data:

1. Baseline AR. This formulation uses the observed proportions of defaults (πi) and
non-defaults (ωi), combined with cumulative Hit Rates, to provide an unbiased measure
of the model’s discriminatory power.

2. Inflated AR. In the inflated AR, the number of defaults is artificially increased by
a factor of (1 + x). Two scenarios arise:

• When only the default counts are inflated while the non-default counts remain un-
changed, the overall AR remains unchanged:

ARinflated = ARbaseline.

This occurs because the inflation factor cancels out when computing the relevant
proportions.

• When the non-default counts are also recalculated to reflect the inflated defaults,
the structure of the AR changes to:

ARinflated = C1 + C2(1 + x)
obs − def · (1 + x) .

This rational expression shows that the AR depends explicitly on the inflation pa-
rameter x, capturing how inflated observations impact the performance measure.

An interesting result emerging from the analysis is that artificially inflating the number of
defaults—while keeping the population of non-defaulters constant—does not change the
Accuracy Ratio (AR). This stability is noteworthy in the context of credit risk modeling,
as it suggests that the AR remains robust even under stressed default scenarios.
From a practical perspective, this finding implies that certain model adjustments—such
as the application of Margin of Conservatism (MoC), overrides, or rating limitations—can
be implemented without impacting the AR.
However, when the non-defaults are adjusted accordingly, the AR becomes sensitive to
the inflation factor.

Mathematically, the function

ARinflated(x) = C1 + C2(1 + x)
obs − def · (1 + x)

is a hyperbola in terms of the inflation parameter x. This implies a nonlinear and
asymptotic relationship between AR and x.
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Nevertheless, in practical credit risk applications, inflation factors x are typically small
(usually x < 1). Within this limited range, the hyperbolic shape is not pronounced, and
the AR change function and it may appear approximately linear. This explains why
empirical observations often suggest a near-linear relationship despite the underlying
nonlinear structure.

This analysis underscores the importance of carefully considering how regulatory con-
straints, data misalignment, or adjustments may distort the underlying data.
Such distortions can bias the Accuracy Ratio, particularly when the number of non-default
counterparties (bonis) is recalculated, as shown. To avoid introducing bias into the AR,
it is generally preferable to apply inflation solely to the default counts.

Visual Illustration. To better understand the behavior of the inflated Accuracy Ratio
as a function of the inflation parameter x, we provide graphical illustrations. We begin by
presenting an illustrative case based on a dataset with 7 rating grades, shown in Table 4.1.

Table 4.1: Rating Grade Data

Rating obsi defi DR bonisi ωi πi HitRate

1 5000 25 0.51% 4975 6.95% 1.32% 100.0%

2 10000 90 0.91% 9910 13.84% 4.75% 98.7%

3 20000 240 1.21% 19760 27.60% 12.66% 93.9%

4 17000 300 1.78% 16700 23.32% 15.83% 81.3%

5 11000 340 3.12% 10660 14.89% 17.94% 65.4%

6 6000 400 6.73% 5600 7.82% 21.11% 47.5%

7 4500 500 11.22% 4000 5.59% 26.39% 26.4%
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Figure 4.1: ARinflated(x) for x[0, 1]
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Figure 4.2: ARinflated(x) for x ∈ R

Figure 4.1 illustrates the plot of ARinflated(x) for x ∈ [0, 1], where a near-linear behavior
can be observed within this range. In some cases, this approximate linearity may extend
to values x > 1; however, as x increases further, the curve tends to exhibit a hyperbolic
shape, as shown in Figure 4.2. In both cases, the performing population has also been
updated. By contrast, in Figure 4.3, we observe that the accuracy remains constant as
x varies, when only the defaulters are inflated while keeping the performing population
unchanged.
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Chapter 5

Confidence Intervals and
Statistical Tests for the
Accuracy Ratio

In line with the European Banking Authority (EBA) guidelines, maintaining the discrim-
inatory power of a rating model represents a fundamental requirement.
This principle is explicitly stated in the latest EGIM guidelines (par. 133(b)), in particular
footnote 73, which highlights that:

“The use of a calibration sample for the purposes of obtaining the scores/raw
PDs at grade level or the use of a calibration methodology where the discrim-
inatory power implied by the PDs at grade level is not consistent with the
discriminatory power implied by the observed average of the one-year default
rates at grade level from the sample corresponding to the period of the LRA
default rate may result in PD estimates at grade level which do not reflect the
LRA default rate at grade level.”

The above extract underlines the importance of ensuring consistency between the
observed discriminatory power and the implied default rates at grade level, especially in
the context of calibration. Indeed, inappropriate calibration practices may distort the
relationship between predicted and observed default frequencies, thus undermining both
statistical validity and regulatory acceptability.
In practice, when calibrating a model, the LRA default rate is considered at the segment
level, but PDs at grade level may not fully reflect it if the calibration sample is not
representative. Bias can occur, for example, if adverse years or riskier grades are
over-represented.

A key concept in this context is the implied discriminatory power, which measures
how well the PDs assigned by the model differentiate between high- and low-risk
exposures. Misaligned calibration can weaken this discriminatory power, so ensuring
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consistency between the implied and observed discriminatory power is essential for both
statistical validity and regulatory compliance.

Against this background, same statistical methods are presented to verify whether the
difference between two Accuracy Ratios (e.g., before and after calibration) is statistically
significant or not.

5.1 Theoretical Background for Confidence Intervals
This chapter presents the theoretical framework used to derive confidence intervals and
variance estimators for the Accuracy Ratio (AR). Given that the AR is a linear transfor-
mation of the Area Under the ROC Curve (AUC), much of the statistical theory developed
for the AUC can be directly applied to the AR. Specifically, the relationship is given by

AR = 2 · AUC − 1, (5.1)

which shows that any result concerning the AUC can be straightforwardly translated to
the AR.

The AUC represents a measure of the possibility that a randomly selected defaulted
counterparty is assigned a worse (i.e., higher-risk) score than a randomly selected
non-defaulted counterparty.

The chapter focuses in particular on the estimation of the variance of the AR, which is
fundamental for:

• constructing confidence intervals around AR estimates;

• performing hypothesis tests to assess whether differences in AR across models or
scenarios are statistically significant;

• evaluating the robustness of model performance under stressed or adjusted condi-
tions.

The main reference for the theoretical treatment is the paper: "Confidence Intervals for
the Area Under the Receiver Operating Characteristic Curve in the Presence of Ignorable
Missing Data", which offers a detailed non-parametric approach to variance estimation
for the AUC.
Thanks to the identity in 5.1 all the variance and confidence interval results derived for the
AUC can be applied to the AR through a simple transformation. This connection allows
for a consistent and theoretically grounded approach to analyzing model discrimination
through AR-based metrics.

Bamber initially proposed a variance estimator of the unbiased estimator of the AUC,
defined as:
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ˆAUC =
qnY

i=1
qnX

j=1
#
I(yi > xj) + 1

2I(yi = xj)
$

nY · nX

where xj and yi are the test scores of the j-th individual in the non-default group and the
i-th individual in the default group, respectively, with j = 1, . . . , nX and i = 1, . . . , nY .
Using the equivalence between the Mann–Whitney statistic U and the AUC θ, estimator
variance of ˆAUC is given by:

ˆV AR( ˆAUC) = 1
4(nX − 1)(nY − 1)

è
p(X /= Y ) + (nX − 1)bXXY

+ (nY − 1)bY Y X − 4(nX + nY − 1)
1
θ̂ − 1

2

22 é
(5.2)

where:
bY Y X = 1

nX(nX − 1)nY

nYØ
i=1

(u·i (u·i − 1) + v·i (v·i − 1) − 2u·i v·i)

bY Y X = 1
nY (nY − 1)nX

nXØ
j=1

(u·j (u·j − 1) + v·j (v·j − 1) − 2u·j v·j)

v·j =
nYØ
i=1

5
I(yi > xj) + 1

2I(yi = xj)
6

, u·j = nY − v·j

vi· =
nXØ
j=1

5
I(yi > xj) + 1

2I(yi = xj)
6

, ui· = nX − vi·

Here, X1, X2, Y1, Y2 are randomly sampled independently without replacement from X
and Y , respectively.
The quantities bXXY and bY Y X are unbiased estimators of:

BXXY = P (X1, X2 < Y ) + P (Y < X1, X2) − P (X1 < Y < X2) − P (X2 < Y < X1)

BY Y X = P (Y1, Y2 < X) + P (X < Y1, Y2) − P (Y1 < X < Y2) − P (Y2 < X < Y1)

Another shortcoming of the variance formula in Hanley & McNeil (1982) is that it assumes
the underlying score or biomarker is sufficiently continuous, meaning the scores assigned
to defaulted and performing counterparties do not have any ties—that is, no defaulted
and performing counterparties share the same score.
Then, the revised variance estimator is given by:

ˆV AR( ˆAUC) = 1
(nX − 1)(nY − 1)θ(1−θ)−1

4p(Y = X)+(nY −1)(Q1−θ2)+ nX − 1
(nXnY )2 (Q2−θ2)

where:
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Q1 =

qnX
j=1

5qnY
i=1
!
I(yi > xj) + 1

2I(yi = xj)
" 62

(nXnY )2

is an estimator of:

Q1 = P (Y1, Y2 > X) + 1
2P (Y1 > Y2 = X) + 1

2P (Y2 > Y1 = X) + 1
4P (Y1 = Y2 = X)

which represents the probability that the score of two randomly chosen defaulted
counterparties (possibly the same) is greater than or equal to the score of a randomly
chosen performing counterparty, with tied scores counted as half.

Similarly:

Q2 =
nYØ
i=1

nXØ
j=1

3
I(yi > xj) + 1

2I(yi = xj)
42

is an estimator of:

Q2 = P (Y > X1, X2) + 1
2P (Y = X1 > X2) + 1

2P (Y = X2 > X1) + 1
4P (Y = X1 = X2)

Hanley & McNeil (1982) further simplified the variance estimator under the assump-
tion that X and Y are exponentially distributed. In this case, the variance becomes:

ˆV AR( ˆAUC) = 1
(nX − 1)(nY − 1)

5
ˆAUC(1 − ˆAUC) − 1

4p(Y = X)

+ nY − 1
(nXnY )2

1
ˆAUC(2 − ˆAUC) − ˆAUC

22+ nX − 1
(nXnY )2

 2 ˆAUC
2

1 + ˆAUC
− ˆAUC

2
6

where we have:

Q̂1 =
ˆAUC

(2 − ˆAUC)
, Q̂2 = 2 ˆAUC

2

1 + ˆAUC

Considering the relationship between Accuracy Ratio (AR) and AUC, we can derive the
standard deviation of AR, denoted as σAR, using the properties of the standard deviation.
Specifically, we have:

σÂR = 2 · σ ˆAUC
ˆV AR(ÂR) = 4 · ˆV AR( ˆAUC)

46



5.2 – Accuracy Ratio Comparison

5.2 Accuracy Ratio Comparison
The theoretical framework for the standard deviation of the Accuracy Ratio, developed in
the previous sections, is used to implement statistical tests aimed at assessing whether two
ARs differ significantly. This estimate of variability is crucial for conducting hypothesis
tests and constructing confidence intervals, allowing for a rigorous evaluation of model
performance.
To this end, we apply the following statistical methods:

• Kolmogorov–Smirnov test, which compares the empirical distributions of the two
samples;

• Two-sample t-test, which tests for differences between the means of the two AR
distributions.

In addition to these tests, we employ a bootstrap procedure to approximate the sampling
distribution of the Accuracy Ratio and to construct non-parametric confidence intervals.
Furthermore, we build confidence intervals based on the variance estimated using De-
Long’s method, offering a robust parametric approach.

5.2.1 Kolmogorov–Smirnov test
The Kolmogorov–Smirnov (KS) test is a non-parametric test used to determine whether
two samples come from the same continuous distribution. It compares the empirical
cumulative distribution functions (ECDFs) of two samples and quantifies the maximum
absolute difference between them.
Given two empirical distributions Fn(x) and Gm(x), corresponding to two samples of sizes
n and m, the two-sample KS test statistic is defined as:

Dn,m = sup
x

|Fn(x) − Gm(x)|

Large values of Dn,m indicate a significant difference between the two distributions, leading
to the rejection of the null hypothesis. Conversely, small values of Dn,m suggest no
significant difference. A small p-value (typically p < 0.05) suggests rejecting the null
hypothesis that the two samples are drawn from the same distribution.
In our context, the KS test is used to evaluate the robustness of the Accuracy Ratio
(AR) under default inflation scenarios. Specifically, we simulate the effect of increasing or
decreasing the number of defaults and observe how this inflation impacts the distribution
of AR.

Given the two levels of Accuracy Ratio—baseline and inflated—we model each as a normal
distribution using the respective means and standard deviations. These distributions
are then compared using the two-sample Kolmogorov–Smirnov (KS) test, which assesses
whether the difference in AR under stress is statistically significant with respect to the
baseline.
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If the p-value is greater than 0.05, we fail to reject the null hypothesis, meaning the AR
distribution under inflation is statistically indistinguishable from the baseline.

Assuming a normal distribution often results in a test that is not very sensitive to small
changes in the Accuracy Ratio (AR). This is especially true in credit risk contexts, where
we observe an inflation factor x < 1.
Because the AR (which corresponds to the mean of the normal distribution) changes only
slightly, and the standard deviation changes accordingly, the test tends to treat the two
AR values as essentially the same, reducing its ability to detect meaningful differences.
To overcome this limitation, one can generate random samples without assuming any spe-
cific distribution shape, while still preserving the calculated mean and standard deviation.

5.2.2 T-test for Accuracy Ratio Comparison
The t-test is a parametric statistical test used to assess whether the means of two in-
dependent samples differ significantly. It assumes that the samples are approximately
normally distributed and that their variances are equal. The independent two-sample
t-test evaluates the null hypothesis:

H0 : µ1 = µ2,

where µ1 and µ2 are the population means of the two groups.
The test statistic is calculated as:

t = X̄1 − X̄2

SE , with SE =
ó

s2
p

3 1
n1

+ 1
n2

4
,

where s2
p is the pooled sample variance, given by:

s2
p = (n1 − 1)s2

1 + (n2 − 1)s2
2

n1 + n2 − 2 ,

and s2
1, s2

2 are the sample variances of the two groups. The resulting t-statistic is compared
to the t-distribution with n1 + n2 − 2 degrees of freedom to compute the p-value.
In our framework, the t-test is used to evaluate whether the baseline Accuracy Ratio (AR)
differs significantly from an AR calculated under a default-inflation scenario.
If the p-value is greater than 0.05, we fail to reject the null hypothesis, suggesting that
the inflated AR is not significantly different from the original.

Interpretation of KS Test and t-Test in Credit Risk Modeling Application

Both the t-test and the KS test can be used to explore the robustness of the Accuracy
Ratio. Specifically, they allow us to:

• Identify the largest inflation factor xmax such that the AR under inflation is not
significantly different from the baseline AR.
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• Test whether two AR values—such as those observed before and after a model cali-
bration—are statistically distinguishable.

It is important to note that while the t-test focuses on comparing the means of two
distributions, the KS test evaluates their entire cumulative distributions. Hence, using
both tests in tandem can provide complementary insights into AR stability under different
types of perturbations.

5.2.3 Bootstrapping on the Accuracy Ratio (AR)
Bootstrapping is a non-parametric technique that allows for the estimation of the vari-
ability of the Accuracy Ratio (AR) by repeatedly simulating samples obtained through
resampling with replacement from the original dataset.
In practice, an empirical distribution of the AR is constructed by recalculating it hundreds
or thousands of times on different samples, all randomly drawn (with replacement) from
the set of evaluated borrowers. From this distribution, it is possible to derive:

• A confidence interval for the AR (e.g., at the 95% level);

• An assessment of the statistical significance of any differences between two models:
if the confidence intervals of the two ARs do not overlap, one can conclude that the
difference is statistically significant.

5.2.4 Confidence Intervals for the Accuracy Ratio Using De-
Long’s Method

DeLong’s test is a non-parametric statistical method used to compare the AUCs of two
correlated ROC curves. It computes the asymptotic variance of the Area Under the Curve
(AUC) based on U-statistics, which rely on the differences in predicted scores between
defaulters and non-defaulters. This variance can be directly applied to derive a confidence
interval for the AUC, and by extension, for the Accuracy Ratio (AR).
Using this estimate, a confidence interval for the AR can be constructed under the as-
sumption of asymptotic normality:

CI
(1−α)
AR =

è
AR − zα/2 · σAR, AR + zα/2 · σAR

é
where:

• AR is the observed Accuracy Ratio;

• σAR is the standard deviation estimated via DeLong’s method;

• zα/2 is the critical value from the standard normal distribution corresponding to the
desired confidence level.

This approach offers a theoretically grounded alternative to bootstrapping and is
particularly advantageous from a computational standpoint, as it is significantly faster.
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Both bootstrapping and De Longe techniques are highly sensitive to even small variations
in the Accuracy Ratio (AR). For this reason, it is crucial to ensure that the AR—and,
consequently, the model’s discriminatory power—is preserved after any post-model ad-
justments, the application of Margin of Conservatism (MoC), or other overlays.
In addition,these methods were employed to calculate the percentage of overlap between
the confidence intervals of the AR estimates.

50



Chapter 6

Case Study: Long-Run
Calibration with Missing Data

6.1 Introduction to the Case Study
In this chapter, we present a case study on the estimation of long-run probability
of default for a retail mortgage portfolio at Intesa Sanpaolo. The primary
challenge lies in the lack of rating data for the period 2008–2014, which hinders the direct
computation of long-run PDs by rating grade.

Moreover, the data used in this study do not reflect the true figures of the Intesa Sanpaolo
retail portfolio, and the number of ratings does not correspond to the number of ratings
actually assigned by the bank. Nevertheless, the results have been tested and validated,
and they remain fully applicable when using the actual portfolio data.

6.2 Description of Available Data
The dataset comprises two distinct blocks:

• 2015–2022: granular loan-level data, containing the following fields:

– Counterparty ID: an alphanumeric code uniquely identifying each counter-
party;

– Assigned Internal Rating: a risk grade assigned to the counterparty based
on the internal PD model, ranging from 1 to k, where k is the maximum number
of internal rating grades;

– Reference Year: the year corresponding to the observation date of the data;
– Default Flag: a binary indicator equal to 1 if the counterparty is classified as

in default (based on the applicable default definition), and 0 otherwise.

• 2008–2014: only aggregated data are available:
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– Number of performing and defaulted counterparties
– Overall portfolio default rates

Note that the default rates refer to data published by the Bank of Italy.

Year Performing Default TOT DR

2008 944,256 18,151 962,407 1.89%

2009 940,110 20,548 960,658 2.14%

2010 995,197 17,747 1,012,944 1.75%

2011 1,282,060 18,705 1,300,765 1.44%

2012 1,118,398 19,330 1,137,728 1.70%

2013 946,238 15,836 962,074 1.65%

2014 954,676 14,233 968,909 1.47%

2015 653,253 9,699 662,952 1.46%

2016 696,368 8,672 705,040 1.23%

2017 937,292 9,879 947,171 1.04%

2018 1,076,078 9,948 1,086,026 0.92%

2019 1,080,503 9,285 1,089,788 0.85%

2020 729,915 6,510 736,425 0.88%

2021 408,367 3,717 412,084 0.90%

2022 667,848 4,011 671,859 0.60%

Table 6.1: Annual Data: Performing, Default, Total (TOT), and Default Rate (DR)
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6.3 Identification of Missing Data
The absence internal detailed data for rating computation between 2008 and 2014 implies
that:

• Yearly default rates by rating grade are unavailable

• The distribution of counterparties across rating grades (rating mix) is missing

These elements are essential for the calibration of the model, as they provide the necessary
inputs to accurately estimate the risk parameters, in particular the probability of default
(PD) by rating grade. We will therefore focus on reconstructing these quantities and
subsequently assess the discriminatory power of the resulting model.

6.4 Initial Data Analysis

6.4.1 Default Rate Trends
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Figure 6.1: Default Rate (DR) over the
years (2008-2014).
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Figure 6.2: Default Rate (DR) over the
years (2015-2022).

The figures 6.1 and 6.2 reveals a predominantly downward trend, which can be divided
into three distinct phases.

In the aftermath of the global financial crisis, default rates were relatively high, reaching
1.89% in 2008 and peaking at 2.14% in 2009. During the subsequent period (2010–2014),
a gradual reduction took place, with a trough of 1.44% in 2011, followed by a modest
rebound to 1.70% in 2012, and eventual stabilization around 1.5–1.6%.

From 2015 onwards, the portfolio experienced a marked improvement, with default rates
declining steadily from 1.46% in 2015 to 1.04% in 2017. This downward trajectory
continued in 2018–2019, when values fell further to 0.92% and 0.85% respectively,
representing the lowest levels observed up to that point.

53



Case Study: Long-Run Calibration with Missing Data

Contrary to initial expectations, the outbreak of the COVID-19 pandemic in 2020 did not
lead to a significant deterioration in credit quality. Default rates remained contained at
0.88% in 2020 and 0.90% in 2021.
This resilience can plausibly be attributed to extensive government support measures,
which effectively mitigated the immediate impact of the crisis on borrower performance.
Finally, in 2022 the default rate declined further to 0.60%, the lowest value in the entire
sample. This result confirms the strengthening of the portfolio’s creditworthiness and
highlights the structural improvements achieved over the last decade.
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6.4.2 Portfolio Evolution
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Figure 6.3: Annual distribution of performing and defaulted counterparties in the observed
period (2015–2022).”

Figure 6.3 reports the overall distribution of counterparties across rating grades in the
observed period (2015–2022). The portfolio composition is dominated by the central
rating grade (approximately between 3 and 8), while the extreme rating, both very high
quality (1–2) and very low quality (12–13), remain relatively underpopulated.
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Figure 6.4: Annual distribution of defaulted counterparties in the observed period
(2015–2022).

Figure 6.4 illustrates the distribution of defaulted counterparties. Here the picture changes
substantially: defaults are concentrated almost entirely in the lowest rating grades, es-
pecially between 11 and 13. This concentration confirms the discriminative power of the
rating system, as weaker grades capture the majority of credit events.
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Figure 6.5: Annual distribution of performing counterparties in the observed period
(2015–2022).

Figure 6.5 shows the distribution of performing counterparties. As expected, the pattern
largely mirrors the overall distribution, since the majority of the portfolio is composed of
performing exposures. However, the right-hand tail (grades 11–13) is thinner compared
to the overall distribution. This is consistent with the fact that exposures in the
weakest rating grades are more likely to migrate towards default and therefore are
under-represented among performing counterparties.

In summary, the joint analysis of the three distributions highlights a consistent and in-
tuitive pattern: the bulk of the portfolio lies in the intermediate rating grades and the
default events concentrate in the weakest ratings.

6.5 Challenges and Methodological Blocks
Based on the available data, we identify four key methodological components:

• Default Rate Reconstruction (Chapter 7): Estimation of rating-level distribu-
tions and default rates for the period 2008–2014.

• Migration Matrices (Chapter 8): Use of migration matrices to model rating
transitions.

• Dynamic Equation (Chapter 9): Application of a dynamic equation to estimate
rating observations for the missing years.

• Long-Run PD Calibration (Chapter 10): Calibration of point-in-time proba-
bility of default (PD) estimates to long-term default rates, and assessment of model
performance using the Accuracy Ratio (AR).

Each of these steps is detailed in the following chapters.
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Chapter 7

Reconstruction of Default
Rates

7.1 Theoretical Background on Regression Analysis
Regression analysis is a fundamental statistical tool used to investigate and quantify the
relationship between a dependent variable and one or more independent variables. In its
simplest form, the method assumes a linear relationship between variables, enabling the
prediction of outcomes based on explanatory factors.
In general, regression models take the form:

Y = β0 + β1X1 + · · · + βkXk + ε

where Y is the dependent variable, X1, . . . , Xk are the independent variables, β0, . . . , βk

are the model parameters, and ε is the random error term.
In the case of linear regression with one explanatory variable, the parameters β0 (intercept)
and β1 (slope) can be estimated using the Ordinary Least Squares (OLS) method. The
formulas are:

β1 =
qn

i=1(Xi − X̄)(Yi − Ȳ )qn
i=1(Xi − X̄)2

β0 = Ȳ − β1X̄

These estimators minimize the sum of squared residuals:
nØ

i=1
(Yi − Ŷi)2

Once the parameters are estimated, we assess whether the observed relationships are sta-
tistically significant. This is typically done through hypothesis testing on the regression
coefficients.
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For the slope β1, we test the null hypothesis:

H0 : β1 = 0

against the alternative:
H1 : β1 /= 0

To do this, we compute the t-statistic:

t = β̂1

SE(β̂1)

where SE(β̂1) is the standard error of the slope estimate.
The p-value associated with this test indicates the probability of observing such an
extreme value of the test statistic under the null hypothesis. A small p-value (commonly
< 0.05) suggests that the null hypothesis can be rejected, implying that the slope β1 is
statistically significant.

• If p-value < 0.05, the effect is considered statistically significant.

• If p-value ≥ 0.05, there is insufficient evidence to conclude that the predictor has a
real effect on the outcome.

This evaluation is crucial for interpreting the regression results and for determining
whether the model captures meaningful relationships in the data.

7.1.1 Application in Credit Risk: Modeling Default Rates
In credit risk modeling, regression can be employed to estimate the default rates of
individual rating classes during periods where such granular data are missing. However,
since default rates are bounded between 0 and 1, applying traditional linear models
directly to them can lead to biased or ill-behaved predictions. To address this issue, a
transformation such as the log-odds (logit) function is applied to map the default rates
onto the entire real line, making linear modeling more appropriate.

The logit function transforms a probability p ∈ (0, 1) into a value on the real line:

logit(p) = log
3

p

1 − p

4
To overcome the missing information in the years between 2008 and 2014, we estimate
default rates (DR) for each rating grade using a regression-based methodology. This ap-
proach leverages the available data from 2015 to 2022 to infer class-level default dynamics
and reconstruct missing default rates per grade The use of regression is motivated by the
fact that default rates display a predominantly decreasing trend over time, making it pos-
sible to capture and extrapolate the underlying structural dynamics rather than relying
on static averages.

58



7.1 – Theoretical Background on Regression Analysis

The regression-based methodology is therefore adopted as the reference framework for
the backward reconstruction of default rates, ensuring consistency across observed and
non-observed periods.
The workflow proceeds as follows:

• Annual portfolio-level default rates from 2008 to 2022 are converted into quarterly
estimates via linear interpolation.
Given the annual default rates DRPTF,Y for year Y , the quarterly rates DRPTF,Q

for each quarter Q ∈ {1, 2, 3, 4} are obtained by:

DRPTF,Q(Y ) = DRPTF,Y +Q − 1
4 ·(DRPTF,Y +1 − DRPTF,Y ) for Y = 2008, . . . , 2021

For the last year:
DRPTF,Q(2022) = DRPTF,2022 ∀Q

• Similarly, annual default rates by rating grade DRi,Y (when available) for the period
2015–2022 are also interpolated into quarterly values using the same linear rule:

DRi,Q(Y ) = DRi,Y + Q − 1
4 · (DRi,Y +1 − DRi,Y ) for Y = 2015, . . . , 2021

And for 2022:
DRi,Q(2022) = DRi,2022 ∀Q

This results in a consistent quarterly panel for both the portfolio and each rating
grade, enabling regression and historical reconstruction:

DRPTF,Q(2008–2022), DRi,Q(2015–2022)

• For each rating grade i, the following regression is run over the period 2015–2022:

log
A

1 − DRi,Q

DRi,Q

B
= αi + βi log

A
1 − DRPTF,Q

DRPTF,Q

B
+ εi,Q

where αi and βi are parameters to be estimated and εi,Q is the residual term.

• Using the estimated coefficients α̂i and β̂i, the predicted default rates for each rating
grade i in the missing period 2008–2014 are computed by applying the regression to
the quarterly portfolio default rates of that period:

äDRi,Q(2008–2014) = 1
1 + exp

1
−α̂i − β̂i log

1
1−DRPTF,Q(2008–2014)

DRPTF,Q(2008–2014)

22
• In cases where βi is not statistically significant, the predicted default rate for class i is

obtained by scaling the portfolio default rate for 2008–2014 using the ratio observed
in 2015:

äDRi,Q(2008–2014) = DRPTF,Q(2008–2014) × DRi(2015)
DRPTF(2015)
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7.2 Reconstruction of Historical Default Rates
In this section, we present the reconstructed series of default rates (DR) obtained using a
regression-based methodology. The main objective is to fill the missing information for the
period 2008–2014 and to construct a consistent dataset suitable for subsequent analyses.
The results are presented both in tabular and graphical form to highlight different aspects
of the reconstruction.

7.2.1 Tabular Evidence

DR 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022

1 0,03% 0,03% 0,02% 0,02% 0,02% 0,02% 0,02% 0,02% 0,03% 0,01% 0,01% 0,02% 0,04% 0,05% 0,02%

2 0,05% 0,06% 0,05% 0,04% 0,05% 0,05% 0,04% 0,04% 0,05% 0,02% 0,03% 0,02% 0,05% 0,07% 0,03%

3 0,10% 0,11% 0,09% 0,07% 0,09% 0,09% 0,08% 0,08% 0,06% 0,04% 0,04% 0,06% 0,08% 0,13% 0,07%

4 0,17% 0,19% 0,16% 0,13% 0,15% 0,15% 0,13% 0,13% 0,12% 0,07% 0,07% 0,11% 0,16% 0,22% 0,14%

5 0,26% 0,29% 0,24% 0,19% 0,23% 0,22% 0,20% 0,20% 0,15% 0,10% 0,11% 0,15% 0,21% 0,32% 0,15%

6 0,44% 0,50% 0,41% 0,34% 0,40% 0,38% 0,34% 0,34% 0,24% 0,19% 0,16% 0,23% 0,32% 0,42% 0,24%

7 0,61% 0,69% 0,57% 0,47% 0,55% 0,53% 0,48% 0,47% 0,42% 0,31% 0,31% 0,41% 0,48% 0,51% 0,34%

8 0,70% 0,73% 0,68% 0,63% 0,67% 0,66% 0,64% 0,67% 0,58% 0,46% 0,44% 0,56% 0,63% 0,62% 0,41%

9 1,13% 1,19% 1,10% 1,03% 1,09% 1,08% 1,04% 1,06% 0,92% 0,78% 0,87% 1,11% 1,01% 0,76% 0,63%

10 1,57% 1,64% 1,53% 1,44% 1,52% 1,50% 1,45% 1,43% 1,34% 1,17% 1,38% 1,64% 1,34% 0,90% 0,97%

11 4,50% 5,11% 4,18% 3,43% 4,06% 3,93% 3,50% 3,49% 3,83% 1,38% 3,23% 4,18% 3,51% 1,88% 2,28%

12 8,78% 9,40% 8,42% 7,55% 8,28% 8,14% 7,64% 8,15% 7,42% 4,18% 7,30% 7,55% 5,71% 3,79% 5,38%

13 22,11% 24,36% 20,86% 17,79% 20,36% 19,85% 18,11% 17,25% 16,12% 14,94% 16,38% 14,30% 9,37% 7,46% 9,54%

Table 7.1: Default rates (DR) per rating and per year reconstructed using the regression-
based approach.

The table confirms that the reconstructed values not only fill the historical gaps but
also preserve the relative differences across rating grades. In particular, the higher DRs
observed in 2008–2010 reflect the financial crisis, while the subsequent decline mirrors
the gradual normalization of credit conditions. Another key feature is the stability of
distances between rating classes, supporting the credibility of the reconstruction.

7.2.2 Graphical Evidence
Figure 7.1 provides a synthetic overview of the time series. The reconstructed DRs exhibit
a generally decreasing trend over time. During the missing period (2008–2014), DRs
are consistently above the levels recorded after 2015, reflecting a structurally higher risk
environment. The reconstruction captures the decreasing component of credit risk, with
higher levels during stressed years and lower values in normal periods.
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Figure 7.1: Reconstructed DR dynamics over time.

The reconstructed series also allows for an assessment of average DRs across two distinct
periods: 2008–2014 and 2015–2022. Table 7.2 summarizes the mean DR per rating grade
for these periods, together with the corresponding portfolio-level default rates 7.3. The
results show that average DRs in the earlier period were systematically higher, reflecting a
riskier credit environment, whereas the later period shows a general stabilization of credit
risk, consistent with post-crisis normalization.
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Rating Avg DR 2008–2014 Avg DR 2015–2022

1 0,02% 0,02%

2 0,05% 0,04%

3 0,09% 0,07%

4 0,15% 0,13%

5 0,23% 0,17%

6 0,40% 0,27%

7 0,56% 0,41%

8 0,67% 0,55%

9 1,10% 0,89%

10 1,52% 1,27%

11 4,10% 2,97%

12 8,32% 6,19%

13 20,49% 13,17 %

Table 7.2: Average reconstructed DRs per rating grade for the periods 2008–2014 and
2015–2022

Average Portfolio DR 2008–2014 Average Portfolio DR 2015–2022

Portfolio 1,72% 0,99%

Table 7.3: Average Portfolio DR

Finally, Figures 7.2 and 7.3 illustrates the class-level DRs. The regression-based method
preserves monotonicity across ratings, a crucial property for model consistency. Beyond
monotonicity, the figure highlights how different grades respond differently to changes in
portfolio-level risk, capturing the heterogeneity of credit quality. This confirms that the
reconstructed dataset provides a reliable foundation for further validation exercises and
risk quantification.
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Figure 7.2: Reconstructed DR profiles by rating grade (2008-2014).
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Figure 7.3: Reconstructed DR profiles by rating grade (2015-2022).
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Chapter 8

Markov Chain Models for
Rating Transitions

The content of this chapter is based on a review of academic literature. In particular, the
following text has been used as primary reference:

• Sheldon M.Ross [1995]

In this chapter, we introduce both the theoretical background and the estimation methods
for Markov chains, as well as the analysis of the migration matrices, which are fundamental
for reconstructing the distribution of counterparties. These concepts and techniques will
be applied and further explored in the following chapters.

8.1 Theoretical background

8.1.1 Introduction
Let {Xn}n≥0 be a discrete-time stochastic process (Markov chain) taking values in the
state space S = {0, 1, 2, . . . }, which may be finite or countably infinite. The defining
property of a Markov chain is that the conditional distribution of the next state depends
only on the current state, not on the full history. This is known as the Markov property,
formally:

P(Xn+1 = j | Xn = i, Xn−1 = in−1, . . . , X0 = i0) = P(Xn+1 = j | Xn = i) = pij

for all states i0, i1, . . . , in−1, i, j ∈ S and for all n ≥ 0. We define the one-step transition
probabilities as:

pij = P(Xt+1 = j | Xt = i)

and organize them into a matrix P = [pij ], known as the transition probability matrix:
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P =



p00 p01 p02 · · ·

p10 p11 p12 · · ·

p20 p21 p22 · · ·
...

...
... . . .


Each row of the matrix sums to 1, since the process must transition to some state:

pij ≥ 0 and
∞Ø

j=0
pij = 1 for all i ∈ S

We define the n-step transition probabilities as:

p
(n)
ij = P(Xt+n = j | Xt = i)

These describe the probability that the process, starting in state i, is in state j after n
steps.
Let P (n) = [p(n)

ij ] be the matrix of n-step transition probabilities.
The Chapman-Kolmogorov equations state that:

P (n+m) = P (n) · P (m) for all n, m ≥ 0

This recursive relation implies that we can compute the n-step transition matrix as the
n-th power of the one-step transition matrix:

P (n) = P · P (n−1) = P n

Hence, to obtain the transition probabilities after n steps, it suffices to raise the one-step
transition matrix P to the power n using matrix multiplication.

To describe the relationships between states in a Markov chain, we consider the following
fundamental concepts:

• A state j is said to be accessible from state i if there exists an integer n ≥ 0 such
that p

(n)
ij > 0.

• Two states i and j are said to communicate if each is accessible from the other. In
that case, we write i ↔ j.

8.1.2 Communication as an Equivalence Relation

Communication between states in a Markov chain is an equivalence relation. That is, the
relation satisfies the following properties:
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1. Reflexivity: Every state communicates with itself:

i ↔ i

2. Symmetry: If state i communicates with state j, then state j communicates with
state i:

i ↔ j ⇒ j ↔ i

3. Transitivity: If state i communicates with state j, and state j communicates with
state k, then state i communicates with state k:

i ↔ j and j ↔ k ⇒ i ↔ k

Therefore, the set of states of a Markov chain can be partitioned into communication
classes, i.e., subsets of states where each pair of states communicates with each other.

8.1.3 Irreducibility and Periodicity in Markov Chains
A Markov chain is said to be irreducible if all states belong to a single communication
class. That is, every state is accessible from every other state:

∀i, j ∃ n ≥ 0 such that P
(n)
ij > 0

In this case, we say that the chain is irreducible, since no subset of states is isolated from
the rest.
Let state i be a state in a Markov chain. The period d(i) of state i is defined as:

d(i) = gcd
î

n ≥ 1 : P
(n)
ii > 0

ï
In words, d(i) is the greatest common divisor of the set of time steps n at which it is
possible to return to state i.

• If d(i) = 1, then state i is said to be aperiodic.

• If P
(n)
ii = 0 for all n > 0, then the period is defined to be infinite: d(i) = ∞.

Periodicity is a class property. That is, if states i and j communicate (i.e., i ↔ j), then:

d(i) = d(j)

This means that all states in the same communication class share the same period.
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8.1.4 Recurrence and Transience
For any two states i and j, let f

(n)
ij denote the probability that, starting from state i, the

first transition into state j occurs exactly at time n. Formally, we define:

f
(n)
ij = P(Xn = j, X1 /= j, X2 /= j, . . . , Xn−1 /= j | X0 = i)

Let:

fij =
∞Ø

n=1
f

(n)
ij

Then fij is the probability that, starting in state i, the process will eventually reach state
j at some time n ≥ 1.

• If fij > 0, then state j is said to be accessible from state i.

• A state j is said to be recurrent (or persistent) if:

fjj = 1

That is, starting from j, the process is guaranteed to return to j eventually.

• Otherwise, if fjj < 1, then state j is said to be transient.

• A state j is said to be recurrent if the expected number of visits to state j, starting
from j, is infinite. Formally:

State j is recurrent ⇐⇒ E[Number of visits to j | X0 = j] = ∞

This last result has two important implications:

1. A transient state is visited only a finite number of times.

2. In a finite-state Markov chain, not all states can be transient.

This conclusion leads to the following fundamental result:

If state i communicates with state j, and i is recurrent, then j is also recurrent. That is,
recurrence is a class property.

8.1.5 Forward and Backward Transition Matrices
It is especially important for our application n credit risk modeling to distinguish between
two types of transition matrices: forward and backward transition matrices.
The forward transition matrix describes the probability of moving from a given rating
at time t to another rating at time t + 1. It is defined as:

P fwd = [P(Xt+1 = j | Xt = i)]i,j
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This is the standard Markov transition matrix introduced earlier. Each row represents
the conditional distribution of future states given the current state.
The backward transition matrix captures the probability that a rating state at time t+1
originated from a specific state at time t. Formally, it is defined as:

P bwd = [P(Xt = i | Xt+1 = j)]i,j
Using Bayes’ theorem, it can be computed from the forward transition matrix and the
marginal distribution of ratings at time t as follows:

P(Xt = i | Xt+1 = j) = P(Xt+1 = j | Xt = i) · P(Xt = i)
P(Xt+1 = j)

Interpretation and Use Cases

• Forward matrices (P fwd) are commonly used for simulating future rating migra-
tions and computing multi-period default probabilities. However, they suffer from
a limitation: their inverses generally do not represent valid probability matrices,
as they may violate probability constraints (e.g., negative entries or rows not sum-
ming to one). In particular, to estimate the distribution πt at time t from a known
distribution πt+1 at time t + 1, one would need:

πt =
1
P fwd

2−1
πt+1

which is not guaranteed to yield a valid probability vector.

• Backward matrices (P bwd) are particularly relevant for inferring historical rat-
ing dynamics and offer a solution to this issue. They allow backward propagation
without needing to invert the forward matrix:

πt = P bwd πt+1

In our application, estimating the distribution of performing and defaulted counterparties
at an earlier time requires going backward.
If a forward matrix is used, one would need to invert it, which is problematic due to lack
of probabilistic consistency. By contrast, using the backward matrix allows us to compute
directly πt

8.2 Estimation Framework

8.2.1 Matrix Estimation
The transition probabilities were estimated using the Maximum Likelihood Estimation
(MLE) method.
For the forward transition matrix, the probability of moving from rating i to rating j is
estimated as:
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p̂fwd
ij = Nij

Ni

where:

• Nij is the number of observed transitions from rating i to rating j.

• Ni is the total number of observed transitions originating from rating i.

This represents the probability that an obligor currently in rating i migrates to rating j
after one period.

For the backward transition matrix, which models the probability of a previous rating
given the current rating, the probability of having been in rating i at time t given rating
j at time t + 1 is estimated as:

p̂bwd
ij = Nij

N
(+)
j

where:

• Nij is the same count of observed transitions from rating i to rating j.

• N
(+)
j is the total number of observed transitions arriving at rating j.

This represents the probability that an obligor observed in rating j at time t + 1 came
from rating i at time t.
The resulting one-year forward and backward transition matrices, estimated using the
Maximum Likelihood method described above, are reported for each year from 2015 to
2022. These matrices summarize the observed annual rating migrations and serve as the
empirical foundation for the subsequent dynamic analysis.
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Figure 8.1: Year-over-Year Estimated Forward Migration Matrices
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Figure 8.2: Year-over-Year Estimated Backward Migration Matrices

The heatmaps of the migration matrices show that, across all years, the highest probability
for each initial rating is concentrated along the main diagonal. This reflects significant
credit stability: most borrowers tend to maintain the same rating level over time.
Movements outside the diagonal indicate that:

• transitions to adjacent grades are the most common changes, representing mod-
erate risk variations;

• severe downgrades are relatively rare but highlight cases of material credit dete-
rioration;

• upgrades are present but less frequent, confirming a generally prudent portfolio
profile.

Next, we present the trends in stability percentage, stability probability, and the percent-
ages of deteriorations and improvements.
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8.2.2 Analysis of Estimated Forward Matrices
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Figure 8.3: Year-over-Year Percentage Variation for Percentages of Deteriorations and
Improvements

In the figure 8.3 we can observe the trend of the percentages of deteriorations
(number of counterparties that downgrade over the total number of counterparties) and
improvements (number of counterparties that upgrade their rating) over the years.

The deterioration curve reaches its minimum in 2016, when only 27% of counterparties
downgraded. It then increases to a peak of 40% in 2018, decreases in 2019, and rises
again in 2022.

Conversely, the improvements curve reaches its minimum in 2018, with 26%, then rises in
2019, before decreasing again until 2022.
Overall, the two graphs are almost specular, highlighting the opposing dynamics between
deteriorations and improvements.
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Figure 8.4: Trend of Stable Counterpar-
ties Percentage Over Time.
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Figure 8.5: Stability Probability Trend
Over Time

In Figures 8.4 and 8.5, we report the trends of the percentage of counterparties that do
not change their rating from one year to the next and the probability of counterparties
maintaining their rating. Both indicators fluctuate within a narrow range, with the
percentage ranging from 33% to 40% and the probability from 33% to 38%.

They reach their minimum in 2018 and their maximum in 2022, with another local
minimum observed in 2021.

These patterns are consistent with those shown in Figure 8.3: periods of lower stability
(2018 and 2021) coincide with higher deterioration rates and fewer improvements, while
periods of higher stability (2016 and 2022) correspond to fewer downgrades and more
upgrades. This confirms the strong interdependence between stability, improvements,
and deteriorations.
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Chapter 9

Reconstruction of Missing
Data through Dynamic
Equations and Migration
Matrices

In order to reconstruct the distribution of observations in the missing years, it is necessary
to understand the underlying dynamics of the system — specifically, how counterparties
move into and out of the mortgage portfolio over time. To formally capture this behavior,
we introduce the dynamic equation governing the evolution of the rating distribution over
time.
To model the yearly dynamics of the mortgage portfolio, we define several vectors that
capture the distribution and transitions of counterparties across rating classes. Each
vector is of dimension 1 × k, where k is the number of rating classes (e.g., 1, 2, 3, 4, . . . ,
13). These rating classes remain consistent over time and define the state space of our
Markov framework.
The following vectors are used:

• Obst: Vector representing the number of counterparties present in the portfolio at
time t, distributed across rating classes.

• Newt: Vector representing the number of counterparties entering the portfolio be-
tween t − 1 and t, for instance due to new mortgage originations.

• Exitt: Vector capturing the number of counterparties leaving the portfolio between
t − 1 and t, due to events such as full loan repayment, refinancing, or portfolio sale.

• Defaultt: Vector indicating the number of counterparties transitioning into the de-
fault state at time t.

• CuredDefaultt: Vector representing the number of counterparties previously in de-
fault who returned to performing states between t − 1 and t.
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All the above vectors have been computed directly from the available dataset for the years
2015 to 2022. They form the empirical basis for reconstructing and understanding the
system dynamics during the observed period.

9.1 Estimation of Non-Observed Distributions via
Dynamic Equation

In the following, we present the dynamic system equations under both forward and back-
ward formulations.
The Forward Formulation leads to

ˆObst = (Obst+1 − Cured Defaultt+1 − Newt+1) ·
1
P fwd

t,t+1

2−1
+ defaultt+1 + exitt+1

where P fwd
t,t+1 denotes the forward transition matrix between years t and t + 1.

The Backward Formulation leads to
ˆObst = (Obst+1 − Cured Defaultt+1 − Newt+1) · P bwd

t,t+1 + defaultt+1 + exitt+1

where P bwd
t,t+1 denotes the backward transition matrix between years t and t + 1.

We have tested both dynamic formulations over the period from 2015 to 2022 and
successfully reconstructed the observed distributions with zero reconstruction error.
Based on these results, we choose to adopt the backward formulation for extrapolating
the missing distributions from 2008 to 2014. This choice allows us to avoid the numerical
instability associated with the inversion of forward transition matrices.
However, to apply this approach to the unobserved period, certain assumptions must be
introduced.

To enable the backward reconstruction of rating distributions for the period 2008–2014,
we rely on the following set of assumptions:

• Constant Structure of Entries and Exits: The inflow of new exposures and
the outflow due to portfolio exits are assumed to follow a stable pattern over time.
Specifically, for each rating class and each unobserved year, the number of new entries
and exits is assumed to be equal to the average observed over the period 2015–2022.
It is worth noting that entries and exits may add complexity to the reconstruction
process and, if needed, may require additional assumptions or access to more granular
historical data.

• Stable Performing Behavior: Transition probabilities among performing rating
classes are assumed to remain approximately constant, and are set equal to their
average values observed during the 2015–2022 period.

• Default Reconstruction: The number of exposures transitioning into default was
estimated using a regression-based methodology.
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• Consistent Default Definition: The definition of default is assumed to remain un-
changed throughout the historical period under analysis, allowing for comparability
across years.

Based on these assumptions, we tested three alternative approaches for estimating the
yearly rating distributions during the period 2008–2014:

1. Fully Averaged Inputs: Using the average values from 2015–2022 for all compo-
nents — new entries, exits, cured defaults, and defaults.

ˆObst = (Obst+1 − Cured Defaultavg − Newavg) · P bwd
avg + Defaultavg + Exitavg

2. Regression-Driven Defaults with Averaged Flows: Using regression-estimated
default values while keeping new entries, exits, and cured defaults fixed at their
average 2015–2022 values.

ˆObst = (Obst+1 − Cured Defaultavg − Newavg)·P bwd
avg +RegressionDefaultt+1+Exitavg

3. Hybrid Method: Using the average values from 2015–2022 for new entries and
exits, while estimating cured defaults by applying the average cured default rate
(2015–2022) to the regression-estimated default counts for each year.

ˆObst =
!
Obst+1 −

!
Cured Default Rateavg × RegressionDefaultt+1

"
− Newavg

"
· P bwd

avg

+ RegressionDefaultt+1 + Exitavg

where:

• Obst+1 is the observed rating distribution vector at time t + 1.

• For each rating grade i = 1, . . . , k, where k is the number of rating classes:

Newi,avg = 1
7

2022Ø
t=2016

Newi,t

Exiti,avg = 1
7

2022Ø
t=2016

Exiti,t,

Cured Defaulti,avg = 1
7

2022Ø
t=2016

Cured Defaulti,t

represent the average vectors computed over the years 2015–2022.

• P bwd
avg is the average backward transition matrix computed over 2015–2022.
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• RegressionDefaultt+1 is the estimated default vector at time t + 1 obtained via re-
gression.

• Cured Default Rateavg is a vector of average cured default rates computed over
2015–2022. In Method 3, the term

Cured Default Rateavg × RegressionDefaultt+1

denotes the element-wise (Hadamard) product between the two vectors.
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9.2 Reconstructed Rating Distribution
This section presents the reconstructed distribution of counterparties across ratings ob-
tained using the three methodological approaches described in the previous section.

9.2.1 Fully Averaged Inputs Approach

Table 9.1: Normalized distribution of Ratings for Fully Averaged Inputs Approach (2008–
2014)

Year 1 2 3 4 5 6 7 8 9 10 11 12 13

2008 5.66% 8.87% 12.20% 7.64% 9.77% 7.80% 9.73% 11.51% 6.53% 8.42% 3.31% 4.63% 3.93%

2009 5.71% 8.91% 12.24% 7.66% 9.77% 7.79% 9.70% 11.46% 6.52% 8.39% 3.32% 4.63% 3.90%

2010 5.78% 8.95% 12.29% 7.68% 9.79% 7.78% 9.67% 11.40% 6.50% 8.33% 3.35% 4.62% 3.85%

2011 5.77% 9.01% 12.41% 7.76% 9.87% 7.84% 9.70% 11.36% 6.45% 8.23% 3.28% 4.53% 3.79%

2012 5.76% 9.08% 12.53% 7.84% 9.97% 7.89% 9.72% 11.31% 6.38% 8.14% 3.20% 4.43% 3.74%

2013 5.76% 9.14% 12.67% 7.93% 10.07% 7.93% 9.71% 11.27% 6.31% 8.06% 3.14% 4.33% 3.70%

2014 5.72% 9.17% 12.86% 8.08% 10.24% 7.99% 9.65% 11.29% 6.15% 8.07% 2.92% 4.15% 3.71%
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Figure 9.1: Evolution of Ratings over Years - Fully Averaged Inputs Approach

The distribution exhibits a characteristic bell-shaped pattern, with central ratings (3–
8) consistently exhibiting the highest proportions. Ratings at the extremes (1–2 and
11–13) are comparatively underrepresented, reflecting fewer counterparties in these cate-
gories. Over the period 2008–2014, there is a modest upward trend in mid-to-high ratings
(particularly 5–8) accompanied by slight declines in the lowest and highest ratings. The
overall distribution remains stable, highlighting that this approach fails to capture the
year-to-year variations in the distributions of defaults and performing exposures.
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9.2 – Reconstructed Rating Distribution

9.2.2 Regression-Driven Defaults with Averaged Flows Ap-
proach

Table 9.2: Normalized distribution of Ratings for Regression-Driven Defaults with Aver-
aged Flows (2008–2014)

Year 1 2 3 4 5 6 7 8 9 10 11 12 13

2008 5.31% 8.37% 11.58% 7.29% 9.37% 7.53% 9.50% 11.40% 6.56% 8.64% 3.54% 5.25% 5.66%

2009 5.44% 8.51% 11.73% 7.37% 9.44% 7.57% 9.51% 11.37% 6.54% 8.58% 3.50% 5.15% 5.28%

2010 5.56% 8.64% 11.88% 7.45% 9.51% 7.60% 9.51% 11.30% 6.51% 8.47% 3.49% 5.07% 5.00%

2011 5.61% 8.78% 12.10% 7.57% 9.66% 7.69% 9.56% 11.25% 6.43% 8.30% 3.39% 4.89% 4.77%

2012 5.66% 8.93% 12.34% 7.72% 9.83% 7.79% 9.62% 11.22% 6.36% 8.16% 3.27% 4.67% 4.42%

2013 5.71% 9.06% 12.56% 7.86% 9.99% 7.88% 9.64% 11.21% 6.29% 8.06% 3.16% 4.47% 4.11%

2014 5.70% 9.15% 12.83% 8.07% 10.22% 7.98% 9.62% 11.27% 6.13% 8.06% 2.91% 4.20% 3.86%
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Figure 9.2: Evolution of Ratings over Years - Regression-Driven Defaults with Averaged
Flows Approach

The reconstructed distribution for this approach similarly demonstrates a bell-shaped
pattern, with the highest proportions concentrated in central ratings (3–8). Extreme
ratings remain comparatively lower; however, the uppermost rating (13) shows slightly
higher representation than in the Fully Averaged Inputs Approach. Across the years
2008–2014, mid-to-high ratings (5–8) display a gradual increase, while the lowest and
extreme high ratings are relatively stable or exhibit slight decreases. Compared to
the Fully Averaged Inputs Approach, the distribution here exhibits slightly
greater year-to-year variation, suggesting that the method introduces more
dynamism in the rating assignments. The overall shape is consistently maintained
over time, indicating a stable emphasis on central ratings despite the observed variations.
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9.2.3 Hybrid Approach

Table 9.3: Normalized distribution of Ratings for Hybrid Method(2008–2014)

Year 1 2 3 4 5 6 7 8 9 10 11 12 13

2008 5.37% 8.46% 11.69% 7.35% 9.44% 7.58% 9.54% 11.42% 6.55% 8.59% 3.50% 5.15% 5.36%

2009 5.49% 8.58% 11.82% 7.42% 9.50% 7.61% 9.54% 11.38% 6.53% 8.53% 3.47% 5.08% 5.05%

2010 5.60% 8.69% 11.95% 7.49% 9.56% 7.63% 9.53% 11.31% 6.50% 8.43% 3.46% 5.01% 4.82%

2011 5.64% 8.82% 12.15% 7.60% 9.70% 7.72% 9.58% 11.26% 6.43% 8.28% 3.37% 4.84% 4.62%

2012 5.68% 8.96% 12.37% 7.74% 9.85% 7.81% 9.64% 11.23% 6.36% 8.15% 3.26% 4.64% 4.32%

2013 5.72% 9.07% 12.58% 7.87% 10.00% 7.89% 9.65% 11.22% 6.29% 8.05% 3.16% 4.45% 4.06%

2014 5.71% 9.15% 12.84% 8.07% 10.22% 7.98% 9.63% 11.27% 6.13% 8.06% 2.90% 4.19% 3.84%
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Figure 9.3: Evolution of Ratings over Years - Hybrid Method

The distribution obtained via the Hybrid Method retains a bell-shaped profile, with
central ratings (3–8) exhibiting the highest frequencies. Extreme ratings (1–2 and 11–13)
are consistently lower, though the upper extreme (13) initially presents slightly greater
representation relative to the other approaches. From 2008 to 2014, mid-to-high ratings
(5–8) gradually increase, while low and extreme high ratings show minor declines or
remain stable. Notably, compared with the Fully Averaged Inputs Approach,
the Hybrid Method displays more pronounced year-to-year fluctuations in
the distributions, indicating a higher degree of variability introduced by this
approach. Overall, the distribution is maintained across years, reflecting the method’s
consistent emphasis on central ratings with moderate temporal shifts.
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9.2.4 Comparative Analysis of Rating Evolution (2008–2014)
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Figure 9.4: Evolution of normalized distributions per rating (2008–2014), comparison
across the three approaches.
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Figure 9.4 presents the evolution of normalized rating distributions across the period
2008–2014 for all three approaches. Several key observations can be drawn:

• Across all approaches, the distributions maintain a bell-shaped profile, with cen-
tral ratings (3–8) consistently showing the highest frequencies. This indicates a
persistent emphasis on mid-level ratings across methodologies.

• For the lower-risk ratings (1–7), the distribution remains relatively stable under the
Fully Averaged Inputs Approach, while the Regression-Driven Defaults and Hybrid
Approaches exhibit slightly greater year-to-year variability, reflecting a more
dynamic reallocation of counterparties within these categories.

• In the higher-risk ratings (8–13), Approaches 2 and 3 display a modest downward
trend, whereas the Fully Averaged Inputs Approach shows only minimal variation.
This occurs because, by relying solely on averaged vectors, the method tends to
“smooth out” temporal fluctuations, thus limiting its ability to capture distributional
shifts over time.

• Overall, annual changes remain gradual, with no abrupt variations across methods.
The main trend indicates subtle yet consistent shifts toward mid-to-high ratings
under Approaches 2 and 3, while Approach 1 stays essentially constant.

• These findings suggest that, although all methods preserve the central tendency of
the distributions, Approaches 2 and 3 introduce slightly more dynamics, potentially
capturing finer fluctuations in counterparties’ risk profiles.

• Calibration implication: as will be shown in the following section, the calibration
procedure will require the introduction of a smaller inflation factor for Approaches 2
and 3, in order to properly adjust the sample and account for the greater variability
observed.

In summary, the Fully Averaged Inputs Approach produces highly stable distributions,
as averaging tends to smooth out year-to-year fluctuations. By contrast, the Regression-
Driven Defaults and Hybrid Approaches reveal slightly stronger dynamics, with less stabil-
ity in lower ratings and a smoother downward adjustment in higher ratings. Consequently,
in calibration, Approaches 2 and 3 will require a smaller inflation factor to balance the
sample.
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9.2.5 Implied Default Rate Analysis (2008–2014)
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Figure 9.5: Implied Default Rates per year (2008–2014) computed for Approaches 1, 2,
and 3, compared with observed portfolio DRs.

Figure 9.5 illustrates the evolution of the implied default rates (DRs) for the three
approaches across the period 2008–2014, alongside the actual observed portfolio DRs.

As can be seen, the Fully Averaged Inputs Approach tends to smooth out year-to-year
variations and, as a result, does not fully capture the real trend of the observed default
rates. This limitation reflects the inherent averaging of the method, which reduces respon-
siveness to fluctuations in the portfolio. In contrast, both the Regression-Driven Defaults
and the Hybrid Approach closely follow the observed DRs, effectively capturing the an-
nual changes. Overall, the comparison indicates that these last two approaches provide
a similar trend to the observed default rates, offering a more accurate and responsive
estimation of portfolio risk over time.
In conclusion, the implied default rate analysis highlighting that the last two approaches
are better suited to reflect dynamic changes in risk profiles over time.
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Chapter 10

Long-Run PD Calibration
Methodology

In Section 2.3.1 we introduced two calibration methods: Linear Scaling and Ordinary
Least Squares (OLS) regression. In this chapter, we provide a detailed explanation
of these procedures, outlining their underlying rationale, implementation steps, and role
in translating the Long-Run Average Default Rate (LRAvDR) into grade-level Baseline
Probabilities of Default (PDs). In addition, we implement the Linear Scaling procedure
and report in this section the results obtained from its application.

10.0.1 Linear Scaling
During the linear scaling procedure, the estimated average default rate of the portfolio is
computed as:

D̂R =
nØ

i=1
D̄Ri · fi,

where n denotes the total number of grades in the rating scale, D̄Ri is the estimated
average default rate of grade i over the reference period (2008–2022, selected as the cali-
bration sample), and fi = obsi

obstot
represents the relative frequency of estimated observations

in grade i.
The realized average default rate of the portfolio, denoted by D̄Rport, is then used to
compute the scaling factor:

ρ = D̄Rport

D̂R
.

Finally, the grade-level probabilities of default are obtained as:

PDi = D̄Ri · ρ.
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10.0.2 Ordinary Least Squares (OLS) Regression
Differently from the Linear Scaling procedure, the OLS method requires solving the fol-
lowing optimization problem:

min
{P Di}

Total Error subject to PDi ≤ D̂Ri, ¯PD = DRport,

where the total error is defined as

Total Error =
nØ

i=1
(ln(DRi) − ln(PDi))2 ,

and the portfolio-average probability of default is given by

¯PD =
nØ

i=1
PDi · fi,

with n denoting the number of rating grades, DRi the observed default rate for grade
i, PDi the calibrated probability of default for grade i, and fi the relative frequency of
observations in grade i within the portfolio.

10.1 Results of Linear Scaling Calibration
In this section, we present the results obtained by applying the Linear Scaling procedure
to the estimated default rates derived using the three different methods. Additionally, we
compare our method against:

• the approach that only estimates default rates without adjusting performing expo-
sures

• the direct linear scaling.
For each method, the results are visualized using histograms representing the observed
default rates per rating grade, accompanied by the corresponding probability of default
(PD) curve obtained through the Linear Scaling procedure. Alongside each plot, we
include a table reporting the pre-calibration default rates (DRi) and the post-calibration
probabilities of default (PDi). This layout allows for a clear comparison of the default
rate distributions and the calibrated PDs across the different estimation methods.
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10.1 – Results of Linear Scaling Calibration

10.1.1 Reconstruction of Observations via Migration Matrix
and Dynamic Equations

This subsection presents the results obtained when the observation distribution is recon-
structed using migration matrices and dynamic equations, while default rates are esti-
mated via regression (outside Fully Averaged Inputs Approach). Both the probabilities of
default and the distribution of performing exposures across rating grades are considered.

Fully Averaged Inputs Approach
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Figure 10.1: Histogram of default rates per grade with PD
curve.

Grade DRi(%) PDi(%)

1 0.02 0.03

2 0.04 0.05

3 0.06 0.09

4 0.11 0.16

5 0.15 0.22

6 0.23 0.33

7 0.36 0.51

8 0.48 0.68

9 0.78 1.11

10 1.08 1.55

11 2.44 3.49

12 5.20 7.43

13 11.02 15.75

Figure 10.2: Pre-
calibration default rates
and post-calibration PDs.

The Fully Averaged Inputs Approach shows that post-calibration PDs tend to increase
progressively across rating grades, with larger deviations in the upper tail. This suggests
a systematic overestimation of risk when assuming averaged inputs over time.
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Regression-Driven Defaults with Averaged Flows Approach

1 2 3 4 5 6 7 8 9 10 11 12 13
Rating Grade

0.0

2.5

5.0

7.5

10.0

12.5

15.0

De
fa

ul
t R

at
e 

/ P
D 

(%
)

Linear Scaling Calibration: DR vs Regression-Driven Defaults with Averaged Flows Approach
DR Pre-Calibration
Regression-Driven Defaults with Averaged Flows Approach

Figure 10.3: Histogram of default rates per grade with PD
curve.

Grade DRi(%) PDi(%)

1 0.02 0.02

2 0.04 0.04

3 0.08 0.07

4 0.14 0.13

5 0.20 0.19

6 0.33 0.31

7 0.48 0.45

8 0.61 0.57

9 0.99 0.93

10 1.39 1.31

11 3.50 3.31

12 7.18 6.79

13 16.59 15.68

Figure 10.4: Pre-
calibration default rates
and post-calibration PDs.

Here, post-calibration PDs are closely aligned with observed DRs across almost all grades,
with only marginal deviations. This indicates that regression-driven estimation combined
with averaged flows provides a stable calibration outcome.
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Hybrid Approach
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Figure 10.5: Histogram of default rates per grade with PD
curve.

Grade DRi(%) PDi(%)

1 0.02 0.02

2 0.04 0.04

3 0.08 0.07

4 0.14 0.13

5 0.20 0.19

6 0.33 0.31

7 0.48 0.45

8 0.61 0.57

9 0.99 0.93

10 1.39 1.31

11 3.50 3.31

12 7.18 6.79

13 16.59 15.68

Figure 10.6: Pre-
calibration default rates
and post-calibration PDs.

The Hybrid Approach also yields PDs very close to the observed DRs, showing only limited
deviations across grades. This balance suggests that combining regression and flow-based
information helps to preserve consistency in the calibration.
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10.1.2 Estimation of Default Rates Using Regression
Here we present the results obtained using regression to estimate default rates, assuming
that the distribution of performing exposures in the years 2015–2022 remains stable while
the default rates D̄i are averaged over the entire period 2008–2022.
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Figure 10.7: Histogram of default rates per grade with PD
curve.

Grade DRi(%) PDi(%)

1 0.02 0.03

2 0.04 0.05

3 0.08 0.09

4 0.14 0.16

5 0.20 0.23

6 0.33 0.37

7 0.48 0.54

8 0.61 0.69

9 0.99 1.12

10 1.39 1.58

11 3.50 3.97

12 7.18 8.15

13 16.59 18.84

Figure 10.8: Pre-
calibration default rates
and post-calibration PDs.

Regression-based estimation leads to post-calibration PDs that are generally higher than
the observed default rates, especially in the upper grades. This reflects the impact of
keeping the distribution of performing exposures stable while reconstructing only the
default rates.
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10.1.3 Results of Direct Linear Scaling Applied to the 2015–
2022 Sample

In this subsection, we present the results obtained by applying the Linear Scaling pro-
cedure directly to the 2015–2022 sample, under the assumption that the distribution of
performing exposures during this period remains stable. In this scenario, the default rates
(DRi) are calculated based solely on the observed defaults within the 2015–2022 period.
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Figure 10.9: Histogram of default rates per grade with PD
curve.

Grade DRi(%) PDi(%)

1 0.02 0.03

2 0.04 0.05

3 0.07 0.10

4 0.13 0.17

5 0.17 0.24

6 0.27 0.36

7 0.41 0.55

8 0.55 0.74

9 0.89 1.21

10 1.27 1.71

11 2.97 4.01

12 6.19 8.35

13 13.17 17.77

Figure 10.10: Pre-
calibration default rates
and post-calibration PDs.

Direct Linear Scaling produces systematically higher PDs than observed DRs, with in-
creasing distortions in higher grades. This is due to the direct application of scaling
without reconstructing either default rates or exposure distributions.
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10.1.4 Comparison of Absolute Differences Between Pre- and
Post-Calibration

Table 10.1: Differences between Pre- and Post-Calibration PDs for Each Approach (%)

Grade Fully Averaged Inputs Regression-Driven Defaults & Avg Flows Hybrid Regression-Driven Defaults Direct LS

1 0.01 0.00 0.00 0.00 0.01

2 0.02 0.00 0.00 0.01 0.01

3 0.03 0.00 0.00 0.01 0.02

4 0.05 -0.01 -0.01 0.02 0.04

5 0.07 -0.01 -0.01 0.03 0.06

6 0.10 -0.02 -0.01 0.04 0.09

7 0.15 -0.03 -0.02 0.06 0.14

8 0.20 -0.03 -0.03 0.08 0.19

9 0.33 -0.05 -0.04 0.13 0.31

10 0.46 -0.08 -0.06 0.19 0.44

11 1.05 -0.19 -0.16 0.47 1.04

12 2.23 -0.39 -0.32 0.97 2.16

13 4.73 -0.91 -0.74 2.25 4.60

Table 10.1 summarizes the differences between the pre-calibration default rates (DRi)
and the post-calibration probabilities of default (PDi) for each rating grade across the
various approaches. The differences highlight how methodological assumptions influence
the calibration results.

The last two approaches show the largest distortions in the post-calibration PDs.
In the Regression-Driven Default Approach, PDi values increase moderately, with
deviations ranging from 0.00% for the lowest grades to 2.25% for the highest grade.
This comparison reflects that it is not sufficient to only reconstruct default rates (DRi)
without considering the heterogeneity in portfolio risk across periods. When the riskiness
of a given sample (e.g., 2015–2022) differs significantly from the longer calibration horizon
(2008–2022), approaches that only rely on DRi reconstruction tend to produce biased
results.
Similarly, Direct Scaling produces deviations up to 4.60% in the highest grade, due
to applying scaling directly without reconstructing either default rates or exposure
distributions.

The first approach, which assumes that the distribution of defaults remains stable
over the years while only the distribution of performing exposures changes, consis-
tently leads to an overestimation of risk. In fact, we observe a difference greater than
one notch in the riskiness of the rating profile compared to the pre-calibration distribution.

In contrast, the second and the third approaches exhibit the smallest deviations across all
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grades, with maximum differences of 0.74% and 0.91% respectively. This demonstrates
that reconstructing both default rates and exposure distributions, without assuming
stability of the performing exposures, produces the most balanced and realistic PD curves.

These observations confirm the key point: accurate estimation of default rates and proper
reconstruction of the exposure distribution are essential to adequately capture the inherent
credit risk.

Table 10.2: ρ of each method

Fully Averaged Inputs Regression-Driven Defaults & Avg Flows Hybrid Regression-Driven Defaults Direct LS

ρ 142.94% 94.53% 95.56% 113.56% 134.90 %

Table 10.2 reports the ρ coefficients for each method. Values close to 100% (as in the
second and in the third, with 94.53% and 95.56% respectively) indicate good alignment
with the target distribution, while higher values (e.g., 142.94% for Fully Averaged Inputs
Approach and 134.90% for Direct LS) confirm the overestimation of risk observed in
Table 10.1.
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Chapter 11

Accuracy Ratio after
Calibration: Results and
Statistical Assessment

The empirical results presented in the last chapter highlight that accurate risk estimation
requires more than a simple recalibration of default rates (DRi). As shown, approaches
that reconstruct both the DRi and the exposure distribution achieve minimal deviations
and produce probability-of-default curves that are more balanced and consistent with the
estimated DRi.
In contrast, methods that only adjust the DRi or methods based on overly simplistic
assumptions regarding default exposures, or exclusively use the available sample to recal-
ibrate over a period with missing data, generate significant calibration bias, particularly
in the tail risk (see Table 10.1 and 10.2).

As discussed in the chapter on AR, such deviations in default rates directly translate into
a deviation of AR: the larger the misalignment of PDi relative to DRi, the greater the
misalignment in the AR compared to the baseline level.

In line with the EBA Guidelines, maintaining the discriminatory power of a rating
model is an essential requirement, since significant changes can compromise its predictive
reliability and lead to cases of non-compliance with model validation standards (Chapter
5).
This confirms the importance of ensuring consistency between the observed discrimina-
tory power and the implied default rates at grade level, especially during the calibration
process.

In this chapter, we present the Accuracy Ratio (AR) resulting from the model after cali-
bration under all approaches.
We will further illustrate the results obtained using statistical methods presented in Sec-
tion 5.2.
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11.1 Accuracy Ratio Results
Using the formula in Equation (4.1), we computed the Accuracy Ratio (AR) for each
model.
First, we calculate the AR of the target model, i.e., the sample of mortgages with data
from 2015 to 2022, denoted as AR15−22.
Next, we compute the AR for the various models obtained using the methods presented
in Chapter 9.

Finally, we evaluate the AR after calibration for each method to assess how calibration
impacts the model’s discriminatory power and the consistency of the PD curves across
rating grades.

For clarity, we denote the AR values as follows:

• ARF AI_pre, ARF AI_post: Fully Averaged Inputs approach
• ARRDD_AF _pre, ARRDD_AF _post: Regression-Driven Defaults & Averaged Flows ap-

proach
• ARHY B_pre, ARHY B_post: Hybrid approach
• ARRDD_pre, ARRDD_post: Regression-Driven Defaults (only DR) approach
• ARDLS : Direct Linear Scaling approach

These AR calculations were performed considering a variable number of rating grades in
the rating scale, ranging from 7 to 13, to evaluate the sensitivity of the results to different
granularities of the rating system.
The suffixes pre and post indicate values computed before and after calibration, respec-
tively.

Rating AR15−22 ARDLS ARRDD_pre ARRDD_post ARF AI_pre ARF AI_post ARRDD_AF _pre ARRDD_AF _post ARHY B_pre ARHY B_post

7 82.87 83.10 82.90 83.01 82.00 82.31 83.16 83.07 83.12 83.04

8 83.14 83.34 83.23 83.35 82.10 82.42 83.29 83.19 83.01 82.95

9 83.30 83.50 83.42 83.53 82.22 82.53 83.42 83.33 83.39 83.30

10 83.39 83.59 83.53 83.64 82.11 82.41 83.49 83.40 83.46 83.37

11 83.53 83.73 83.67 83.78 74.02 74.29 83.64 83.54 83.60 83.52

12 83.54 83.39 83.51 83.65 82.18 82.51 83.47 83.40 83.43 83.37

13 83.62 83.81 83.57 83.89 82.47 82.78 83.68 83.58 83.64 83.55

Table 11.1: Comparative overview of AR results across all methods for ratings 7–13

The table reports the results obtained by applying different calibration approaches. When
applying direct linear scaling (DLS) to the sample of the period 15–22 in order to calibrate
on the period 08–22, the AR increases for ratings 7 to 11, while it decreases for higher
ratings. If only default rates (DR) are estimated, the AR systematically increases after
calibration. A similar behavior is observed for the Fully Averaged Inputs (FAI) method,
whereas for the other two methods the AR generally decreases after calibration.
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In line with the EBA Guidelines, the key aspect is not whether the AR is slightly higher
or lower after calibration, but rather that the difference between pre- and post-calibration
AR values remains limited in absolute terms. To highlight this point, we report below
a graph comparing the absolute differences between pre- and post-calibration AR values
across methods.

Rating ARDLS − AR15−22 ARRDD_pre − AR15−22 ARF AI_pre − AR15−22 ARRDD_AF _pre − AR15−22 ARHY B_pre − AR15−22

7 0.23 0.03 -0.87 0.29 0.25

8 0.20 0.09 -1.04 0.15 -0.13

9 0.20 0.12 -1.08 0.12 0.09

10 0.20 0.14 -1.28 0.10 0.07

11 0.20 0.14 -9.51 0.11 0.07

12 - 0.15 -0.03 -1.36 -0.07 -0.11

13 0.19 -0.05 -1.15 0.06 0.02

Table 11.2: Differences between AR15−22 and pre-calibration values (and DLS) for ratings
7–13.
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Figure 11.1: Absolute differences between AR(15-22) and Pre-calibration values

Observing Figure 11.1 and Table 11.2, we can note that estimating the distributions using
all the averaged flows (FAI) produces the largest absolute differences in AR. The other
methods show much smaller differences, generally below 0.30%. Among these, the largest
differences are observed for the Direct Linear Scaling (DLS) method.
In the previous graph we looked at the absolute differences with respect to the AR of the
2015–2022 sample. Here, we focus on the differences between pre- and post-calibration
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Rating ARRDD_post − ARRDD_pre ARF AI_post − ARF AI_pre ARRDD_AF _post − ARRDD_AF _pre ARHY B_post − ARHY B_pre

7 0.11 0.31 -0.09 -0.08

8 0.12 0.32 -0.10 -0.06

9 0.11 0.31 -0.09 -0.09

10 0.11 0.30 -0.09 -0.09

11 0.11 0.27 -0.10 -0.08

12 0.14 0.33 -0.07 -0.06

13 0.32 0.31 -0.10 -0.09

Table 11.3: Differences between pre and post calibration values for ratings 7–13.

7 8 9 10 11 12 13

Rating

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Ab
so

lu
te

 D
iff

er
en

ce
 (p

p)

Absolute differences between Pre and Post calibration
Method
Diff_RDD
Diff_FAI
Diff_RDD_AF
Diff_HYB

Figure 11.2: Absolute differences between Pre and Post calibration

values within the reconstructed samples, because from now on our reference is no longer
the original 2015–2022 sample, but the reconstructed sample obtained using the various
calibration approaches. From the results, we can observe that the FAI method contin-
ues to produce the largest absolute differences, followed by the RDD method, while the
Regression-Driven Defaults with Averaged Flows Approach and the Hybrid approach show
the smallest differences.
This observation highlights that, to comply with the EBA Guidelines, it is not sufficient
to estimate only the default rates of the missing data in the calibration sample; it is also
crucial to estimate the distribution of defaults and performing observations across the
ratings.
In this context, all differences for the Regression-Driven Defaults with Averaged Flows
and Hybrid methods are negative. Although this indicates that the AR decreases after
calibration, it is not problematic in our credit risk application. Indeed, a lower AR
implies that if the estimated data produce a lower long-run DR, the higher-risk classes
will be populated correctly, or conversely, a negative delta is preferable because it prevents
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over-populating the riskier classes. Thus, from a credit risk perspective, this behavior is
actually desirable.

11.2 AR Analysis for Rating 13 Using Statistical
Tools

In this section, we present the results of applying the statistical tools specifically to ob-
servations with rating 13.
We focus on the Regression-Driven Defaults with Averaged Flows Approach.
Although the same statistical tools could be applied to other approaches, for simplicity
and clarity we illustrate the results only for RDD_AF in this section.
The results are compared using the statistical tools introduced in5.2, highlighting the
performance of the RDD_AF method relative to both the Direct Linear Scaling (DLS)
and the standard RDD approaches.
For reference, we report in the following table all the Accuracy Rate (AR) measures for
rating 13.

Method AR (%)

AR15−22 83.62

ARDLS 83.81

RDD_pre 83.57

RDD_post 83.89

FAI_pre 82.47

FAI_post 82.78

RDD_AF_pre 83.68

RDD_AF_post 83.58

HYB_pre 83.64

HYB_post 83.55

Table 11.4: Accuracy Rates (AR) for rating 13 across all methods.
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Model CI Lower (%) CI Upper (%)

AR15−22 83.43 83.81

ARRDD_pre 83.45 83.68

AUCRDD_AF _pre 83.59 83.79

ARRDD_post 83.78 84.00

AUCRDD_AF _post 83.47 83.66

ARDLS 83.72 83.91

Table 11.5: Confidence intervals (CI) for the different models.

11.2.1 Bootstrapping on the Accuracy Ratio (AR) Confidence
Intervals for the Accuracy Ratio Using DeLong’s

The tables 11.4 and 11.5 report the lower and upper bounds of the confidence intervals for
each AR measure, obtained through bootstrapping with 1000 samples. We observe that,
when considering only the DR estimation, the two intervals do not overlap. In contrast,
applying linear scaling leads to a percentage overlap of 19.38%. The highest overlap,
however, is achieved by the Regression-Driven Defaults with Averaged Flows (RDD-AF)
approach.

Comparison Percent Overlap (%)

ARRDD_AF _pre - ARRDD_AF _post 20

AUC15−22 - ARDLS 19.38

AUCRDD_pre - AUCRDD_post 0

Table 11.6: Percentage of overlap between model AUCs using DeLong’s method.
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11.2.2 Confidence Intervals for the Accuracy Ratio Using De-
Long’s

Model AUC (%) CI Lower (%) CI Upper (%)

AUC15−22 78.19 56.15 56.61

AUCRDD_AF _pre 91.79 83.45 83.70

AUCRDD_pre 91.94 83.76 84.01

ARDLS 91.91 83.69 83.94

Table 11.7: AUC values with DeLong confidence intervals for different models.

Comparison Percent Overlap (%)

AUC15−22 − AUCRDD_AF _post 0

AUC15−22 − AUCRDD_pre 0

AUC15−22 − ARDLS 0

AUCRDD_AF _pre − AUCRDD_AF _post 41.66

AUCRDD_pre − AUCRDD_post 0

Table 11.8: Percentage of overlap between model AUCs using DeLong’s method.

Observing Tables 11.7 and 11.8, we note that all calibrated models achieve significantly
higher AUC values compared to the AR15−22.
The confidence intervals, computed using DeLong’s method, are relatively narrow
for all LS-based models, suggesting stability in the AUC estimates. Regarding the
percentage overlap, a moderate overlap (41.66%) is observed between RDD_AF_post
and RDD_AF_post, indicating some similarity in their performance.
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To summarize, Table 11.9 reports all AR and AUC comparison results. For each pair
of measures, we indicate the method used (Bootstrapping or DeLong) and whether their
confidence intervals overlap () or not (). This provides a clear overview of which models
show statistically significant differences and which exhibit overlapping performance.

AR Comparison Method Overlap

ARRDD_AF _pre - ARRDD_AF _post Bootstrapping ✓

AUC15−22 - ARDLS Bootstrapping ✓

AUCRDD_pre - AUCRDD_post Bootstrapping ×

AUC15−22 - AUCRDD_AF _post DeLong ×

AUC15−22 - AUCRDD_pre DeLong ×

AUC15−22 - ARDLS DeLong ×

AUCRDD_AF _pre - AUCRDD_AF _post DeLong ✓

AUCRDD_pre - AUCRDD_post DeLong ×

Table 11.9: Summary of AR/AUC comparisons, indicating the method used (Bootstrap-
ping or DeLong) and whether the confidence intervals overlap (✓) or not (×).

As we can see, only the RDD-AF method passes the tests, showing overlapping confidence
intervals with both pre- and post-calibration AR/AUC measures. All other methods
exhibit non-overlapping intervals, indicating statistically significant differences.
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Conclusions and Future Work

This thesis addressed a critical challenge in credit risk management: estimating long-
term Probabilities of Default (PDs) for a retail mortgage portfolio in the presence of
incomplete historical data. By combining detailed loan-level data from recent years with
aggregated historical information, and by employing both statistical and dynamic recon-
struction techniques, it was possible to generate a coherent dataset spanning the entire
period of interest. This allowed for the calibration of PD models that are consistent
with observed default rates while preserving the discriminatory power of the models, as
measured by the Accuracy Ratio (AR).
The results demonstrate that reconstructing both default rates and the underlying dis-
tribution of counterparties significantly improves the consistency of the Accuracy Ratio
compared to alternative pre- and post-calibration methods. This confirms the importance
of carefully reconstructing historical dynamics, using migration matrices and dynamic
equations, to maintain the reliability and regulatory compliance of PD models. The
study thus provides a practical approach to bridging gaps in historical data, addressing a
common issue faced by banks and supervisors alike.
Despite these achievements, several avenues remain open for further improvement. The
assumptions made in this work—such as constant inflows and outflows of exposures, sta-
ble behavior of performing rating classes, regression-based default reconstruction, and a
fixed definition of default—simplify the modeling process but limit the ability to capture
more complex, real-world dynamics. Future research could refine these aspects by incor-
porating cyclical or economic variations in entries and exits, introducing macroeconomic
or counterparty-specific factors into transition probabilities, employing advanced stochas-
tic methods for default reconstruction, or considering evolving regulatory definitions of
default.
Pursuing these extensions would allow the development of more flexible and adaptive
models, capable of responding to structural changes in the portfolio and dynamic coun-
terparty behaviors, while still maintaining robust predictive performance. In this sense,
the thesis represents both a concrete solution to a practical problem and a foundation
for further exploration, offering insights into the long-term calibration of PDs and the
reconstruction of missing historical information in credit risk models.
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