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Abstract

Over the years, an increasing number of studies have focused on the impact on public
health of non-transmissible diseases. These conditions (which include, e.g., cardiovascular
and oncological diseases) are characterized by the fact that they are driven by the exposure
to behavioral risk factors (such as smoking, sedentary lifestyle, alcohol consumption) and
not by human-to-human interactions.

In this paper, we focus on the impact of three behavioral risk factors: smoking, seden-
tary lifestyle and alcohol consumption. We construct a Markovian model that charac-
terizes each agent by an independent Markov chain, whose states describe age, gender,
exposure to risk factors and health of the individual. Importantly, we assume that the evo-
lutions of the subjects are independent, and keep track of the dynamics of the population
over a finite time horizon.

The ultimate goal of this work is to compare a baseline scenario, where no intervention
is implemented, with intervention scenarios, in which the exposure of the population to
the risk factors is decreased. In order to evaluate the benefits, the impact is measured in
terms of DALYs.

To obtain a more realistic representation of the population, the model is constructed
and calibrated based on real data and evidence published in the literature. The main
novelty introduced lies in the inclusion of three risk factors. In particular, the main focus
of this model is on the coupling between smoking and alcohol consumption, whose effects
are known to be deeply correlated.

In order to assess the impact of selected public health measures, we compare the
model’s outcomes under different parameter assumptions. In particular, results indicate
that while differences between independent and dependent models can be modest for some
quantities of interest, accounting for dependencies among behavioral risk factors is crucial
for interventions targeting single factors, since they generate complex interactions.
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Chapter 1

Introduction

Over the years, epidemiology has started to focus more and more on non-communicable
diseases (NCDs). These conditions, which include for example cardiovascular diseases,
oncological pathologies and diabetes, now represent one of the major causes of mortality
in populations.

Unlike infectious diseases, they do not spread from one person to another but are
closely related to behaviors and lifestyle habits, also called behavioral risk factors.

Because of their long-lasting nature and slow progression, NCDs are often described
as chronic diseases. This terminology highlights the fact that they typically persist for
years, requiring continuous care.

In recent years, chronic diseases have accounted for a large proportion of global mor-
tality. In 2021, NCDs caused at least 43 million deaths, accounting for 75% of deaths
not linked to pandemics. Cardiovascular diseases accounted for most NCD deaths (19
million), followed by cancers (10 million), chronic respiratory diseases (4 million), and
diabetes (over 2 million, including kidney disease deaths caused by diabetes) (WHO).

The high burden of these conditions is driven by risk factors. Among the most rel-
evant are tobacco smoking, low physical activity, and unhealthy dietary habits. These
factors, individually or combined, significantly contribute to the development of chronic
conditions, heavily impacting individual health.

Since chronic diseases are the leading cause of death and are closely linked to risk
factors, prevention is a crucial tool to reduce their impact. It consists of interventions
aimed at lowering the prevalence of these factors (e.g., reducing tobacco use, promoting
a balanced diet, or encouraging physical activity) to decrease both the incidence and
severity of these conditions.

A key indicator for measuring the benefits of such strategies is DALYs (Disability-
Adjusted Life Years), which combine years of life lost due to premature mortality and
years lived with disability. Effective prevention strategies can therefore translate into a
substantial number of DALYs averted.
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Introduction

To estimate the potential impact of interventions, many countries have developed mod-
els predicting reductions in mortality and DALYs resulting from strategies such as tobacco
control, healthier diets, alcohol reduction, and increased physical activity, either individ-
ually or in combination.

In the literature, these strategies are modeled using both Markovian and non-Markovian
approaches.

In particular a wide variety of articles utilizes Markov chain models to estimate cost-
effectiveness of prevention strategies for smoking habits (SF and JP [2007], F et al. [2017]),
also combined with sedentary lifestyle (Cianfanelli et al. [2024]), and for alcohol use (Bar-
bosa et al. [2010]).

Other works implement life table models to estimate the impact and effectiveness of
intervention on risk factors such as smoking (H and J [2012]) and physical activity (OT
et al. [2017]), along with dietary habits (ADM et al. [2019]).

Furthermore, there exist papers that rely on other types of conceptual analysis and
literature review for evaluating policies regarding tobacco use (V et al. [2012]) combined
with alcohol consumption (D et al. [2021]).

Studying risk factors and their interactions requires mathematical tools capable of
representing transitions between different health states. In this context, Markov chain
models, subject to certain assumptions, offer an effective way of representing these dy-
namics.

From a technical perspective, the model is structured at individual level: each subject
is represented as a chain of states evolving over time according to predetermined transition
probabilities. An individual’s state includes information on the presence of risk factors,
health status, and other characteristics, such as age and gender. Most importantly, indi-
viduals are assumed to be independent of one another, which simplifies the simulation of
the overall population.

We, however, do not simulate the full trajectory of each subject using these individual
Markov chains. Instead, we focus on the expected number of individuals in each possible
state at every time step, which allows us to study the population dynamics more efficiently.

Interventions are modeled as modifications to the initial prevalence of the population,
and we compare the expected evolution of the population under intervention and non-
intervention scenarios to quantify the impact on chronic disease outcomes.

In order to simulate these expected trajectories, as a second contribution of this thesis
(in addition to the modeling framework itself), we developed a MATLAB code, which
provides a practical tool to implement and analyze the proposed approach.

The first innovative aspect of this thesis (compared for example to Cianfanelli et al.
[2024]), are interventions on three major risk factors: smoking, alcohol consumption, and
sedentary lifestyle, as it allows the simultaneous assessment of the impact of preventive
strategies on multiple risk behaviors.

A key aspect of this thesis is the construction of the model, in particular when intro-
ducing alcohol consumption, making sure that the assumptions match what the literature
already shows. Ensuring consistency with previous epidemiological evidence is essential,
one of the reasons being that data is difficult to obtain and challenging to integrate.
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A second innovative aspect, compared to previous works, concerns the interdependence
of the risk factors: in particular, alcohol and smoking are closely correlated, and the model
accounts for this relationship, enabling an analysis of how changes in one factor influence
the other.

In fact, while risk factors are often studied independently, growing evidence suggests
that they are not. In reality, behaviors tend to cluster within individuals: smoking is
frequently associated with higher alcohol consumption and vice versa. Ignoring these
correlations could lead to biased conclusions when evaluating interventions.

We therefore place special emphasis on the possibility of interactions among risk fac-
tors. This modeling approach considers both independent and dependent scenarios, al-
lowing for a comparison of intervention outcomes under different assumptions. In doing
so, we highlight how even small changes in the way dependencies are presented can alter
predictions of measures of interest such as DALYs and incidence.

For the future, we aim to optimize public health interventions using our model.
In addition, we would like to introduce diet into the risk factors. This in particular has

been investigated in the first stages of this thesis, but it has been left for future research
because of the many challenges involved, which include for instance the lack of data.

Indeed, many works already present in literature describe diets through categories such
as meat, vegetables, fish, fruit and nuts however, it would be hard to find enough data to
populate the model. In order to solve this problem, research papers (such as Springmann
et al. [2018]) derive data from food production estimates and questionnaires. In both
instances we have to account for differences between reported values and true ones. In
the first case, we have to account for food waste (Gustavsson et al. [2011]) while in the
second for unreliable self-reports (Rennie et al. [2007]).

Due to data limitations and other challenges, we initially considered BMI as a substi-
tute for diet. However, since BMI does not directly reflect behavior, we opted to focus on
alcohol consumption instead, which presents its own challenges.

This thesis is structured as follows. In Chapter 2 we will provide the mathematical
tools used to construct the model.

In Chapter 3, we provide a detailed description of our model, explaining the main
elements that define its structure. We illustrate the reasoning behind the choices we
made and show how these decisions are supported by existing findings in the literature. A
special focus is given to alcohol use, discussing how this risk factor can be integrated into
pre-existing models. By comparing our approach with other studies, we highlight both
the strengths and the limitations of our framework.

In Chapter 4 we introduce the concept of prevention intervention and describe the
measures used in order to understand the results. Then, we will provide simulation outputs
and comment each finding.
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Chapter 2

Markov chains and population
models

In the first section of this chapter we provide some preliminary general notions on Markov
chains, while the second section describes the class of population models that we are going
to adopt in this thesis.

2.1 Markov chains
In this chapter, we present some theoretical definitions and results of Markov chains that
are essential for understanding the proposed model. These concepts provide the necessary
background to interpret the model’s dynamics and to justify the choices made.

Definition 2.1.1. A stochastic process is a collection of random variables {Xi}i∈I for
some set of ordered indices I, with the random variables sharing a common state space S.
Moreover,

• if S and I are discrete sets, we have a discrete stochastic process with discrete time

• if S is discrete and I is continuous, we have a discrete stochastic process with con-
tinuous time

• if S and I are continuous sets, we have a continuous stochastic process with contin-
uous time

Definition 2.1.2. Let (Xt)∞
t=0 be a discrete-time stochastic process with a discrete state

space S. (Xt)∞
t=0 is a discrete-time Markov chain (DTMC) if for any j, i, it−1, ..., i0 ∈ S,

P(Xt+1 = j|Xt = i, Xt−1 = it−1, ..., X0 = i0) = P(Xt+1 = j|Xt = i) (2.1)

Observation 2.1.1. Markov processes are stochastic processes such that the probability
distribution of future observations is completely determined by the present state, regard-
less of any knowledge of the past history.
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Definition 2.1.3. A Markov process is time homogeneous if P(Xt+1 = j|Xt = i) does
not depend on t.

From this moment forward, let us assume that Markov chains are homogeneous in
time. If the state space S is finite with cardinality N , the transition probabilities from
state i to state j

Pij := P(Xt+1 = j|Xt = i) (2.2)
can be organized into a stochastic matrix P ∈ RN×N , meaning that the entries are non
negative and the row sums are 1: Ø

j∈S

Pij = 1, ∀i (2.3)

Denoting as πn the probability distribution on the state set S at time t, its evolution is
given by

π(t + 1) = P ′π(t) (2.4)
where P ′ denotes the transpose of P .

Applying the Markov property to compute the probability of observing any trajectory
X0, X1, ..., Xt , allows us to obtain that

P(Xt = in, Xt−1 = it−1, ..., X0 = i0) = Pit−1it · Pit−2it−1 · · · Pi0,i1 · P(X0 = i0) =
= πi0(0)

Ù
1≤s≤t

Pis−1is
(2.5)

Theorem 2.1.1. Consider a Markov chain (Xt)∞
t=0. Let Pij(t) = P(Xt = j|X0 = i) be

the probability that X is in state j at time t given that it started from state i at time 0.
Then

Pij(t) =
Ø
k∈S

Pik(t1)Pkj(t2), ∀t1, t2 : t1 + t2 = t (2.6)

In matrix form:
P (t) = P (t1) · P (t2) (2.7)

In summary, a Markov chain is fully specified by:

• the state space S

• the transition probability matrix P

• the initial distribution π(0)

Definition 2.1.4. A set of states B ⊂ S is said to be reachable from a set of states A ⊂ S
if there exists an integer t ≥ 0 such that the t-step transition probability from some state
in A to some state in B is positive, i.e such that ∃i ∈ A, j ∈ B such that

Pij(t) > 0 (2.8)

Definition 2.1.5. A subset A ⊂ S of the state space is called absorbing if S ∖ A is not
reachable from A.
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2.2 – Model population

In other words, A is absorbing if when the chain is started in A there is no way out of A.

Let us now suppose that the state space S contains an absorbing A set that is also
reachable from S \ A. Hence, we can partition the transition matrix P in a way such that

P =
C

P̃ P̂

0 P̄

D
where we ordered the states in such a way that the first ones belong to S \ A and the last
belong to A, so that P̂ has at least one entry strictly positive.

Then, we can construct a new Markov chain, called killed Markov chain, where the
new state space is S̃ = S ∖ A and its associated transition matrix is P̃ .

The system evolves according to the following

π̃(t + 1) = P̃ ′π̃(t) (2.9)

where π̃ is the new probability distribution over S̃.

Remark 1. The main property of the matrix P̃ is its sub-stochasticity, meaning thatq
j∈S̃ P̃ij ≤ 1, ∀i, with strict inequality for at least one row. Note that, in our case, the

inequality follows from the fact that P̂ is non null since the absorbing state is globally
reachable.

This property will be important later on.

2.2 Model population
In this work, we represent individuals using killed Markov chains. In particular, when
an individual dies, it transitions into the death state, which is absorbing and globally
reachable. Our interest, however, does not lie in the analysis of individual trajectories;
rather, we focus on the expected population values. In order to do so, one of the main
assumptions is that individuals behave independently from one another.

In this section, we focus on defining these quantities and outlining the main properties
of the proposed model.

When studying the evolution of a population (described by some factors) over time,
since transitions between states depend on the combination of different factors only at the
present time (we assume that the future depends only on the current state and not on the
full history), the most appropriate framework for modeling an individual’s trajectory is
through the definition of a homogeneous Markov chain (Xt)∞

t=0 with a finite and discrete
state space.

Transitions are described by a probability matrix, where each element is defined as

P̃ij = P(Xt+1 = j|Xt = i) (2.10)

and, assuming π̃(t) to be the distribution of each agent, it holds

π̃(t + 1) = P̃ ′π̃(t) (2.11)

9
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Moreover, as already stated, in this case such matrix is obtain by removing absorbing
states, such as death, so that we are working with a sub-stochastic matrix.

The main objective of this study is to analyze the evolution of a population of indi-
viduals over time. To this end, we introduce a discrete-time process (Nt)∞

t=0 where each
state represents the expected number of individuals alive at time t,

N(t) = E[individuals per state] (2.12)

More precisely, the process can be expressed as

Ns(t) =
NtotØ
i=1

π̃(i)
s (t), (2.13)

where Ns denotes the total number of individuals in state s, Ntot the total number of
individuals in the population and π̃

(i)
s (t) represents the probability of individual i being

in state S at time t.
The temporal evolution of the population then follows the dynamics

N(t + 1) =
Ø

i

π̃(i)(t + 1) =
Ø

i

P̃ ′π̃(i)(t) = P̃ ′N(t), ∀t ∈ N (2.14)

where the evolution in time of each individual is assumed to be independent of others.

Since each individual is characterized by a deterministically assigned initial state, the
initial distribution of the population N(0) can be derived from (2.13) at time t = 0.

Moreover, thanks to Theorem 2.1.1 it is easy to see that the process is linear with
respect to N(0),

N(t) = (P̃ ′)tN(0) (2.15)

Formula (2.14) in particular represents the case of a close cohort, a setting such that
the total population size can only decrease due to mortality (or other forms of exit), and
no additional individuals are introduced into the system under consideration.

A different and more realistic way of representing a population is by introducing new
subjects following a certain distribution at each time step. Under this framework, the
dynamics of the process can be written as

N(t + 1) = P̃ ′N(t) + b(t), ∀t ∈ N, (2.16)

where b(t) represents the input at each year of the simulation.
A simplifying assumption is that at each time step the number of people introduced in

each state remains constant, meaning that they are introduced following the same initial
distribution so that time dependence is removed, meaning b(t) = b constant.

All of the assumptions made for the model are so that the following theorem would
apply:

10



2.2 – Model population

Theorem 2.2.1. Suppose now that there is a constant inflow b of new individuals, such
that

N(t + 1) = P̃ ′N(t) + b, (2.17)

if P̃ is sub-stochastic, then the only equilibrium point is

N = (I − P̃ ′)−1b (2.18)

and
lim
t→∞

N(t) = (I − P̃ ′)−1b (2.19)

Proof. The existence and uniqueness of the equilibrium point are easily obtained from the
fact that the matrix is sub-stochastic.

Then, given the evolution of the system through recurrence we can write

N(1) = P̃ ′N(0) + b,

N(2) = P̃ ′N(1) + b = (P̃ ′)2N(0) + P̃ ′b + b,

...

N(t) = (P̃ ′)t N(0) +
t−1Ø
k=0

(P̃ ′)kb.

(2.20)

Since P̃ is sub-stochastic, (P̃ ′)t → 0 and
∞Ø

k=0
(P̃ ′)k = (I − P̃ ′)−1 (2.21)

This leads to

lim
t→∞

N(t) = lim
t→∞

1
(P̃ ′)tN(0) +

t−1Ø
k=0

(P̃ ′)kb
2

= (I − P̃ ′)−1b, (2.22)

It is crucial to note that, in the construction of the model, death states are excluded
from the transition matrix P̃ , since they correspond to exits from the system. As a
result, the matrix P̃ is sub-stochastic and, by Theorem 2.2.1, we obtain convergence of
the process. Without this assumption, the matrix I − P̃ would not be invertible and
consequently no equilibrium point would exist.
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Chapter 3

Case study

In this chapter, we present the construction of the Markovian framework used to describe
the evolution of individuals over time.

The model proposed captures changes in health status and risk factors within a struc-
tured state space, where each state represents a specific combination of individual char-
acteristics. Transitions between states reflect epidemiological evidence and are calibrated
based on both published literature and up-to-date estimates.

Moreover, given that our aim is to evaluate outcome differences when considering
versus ignoring dependencies, we investigate how this topic is treated in the literature.

3.1 Attributes, risk factors and admissible transitions
In order to study the evolution in time of a population, we need to first describe a single
individual through its states.

Since the aim of the study is to analyze the long-term impact of different pathologies, a
possible approach is to characterize each individual by age, gender, risk factors and health
status.

The final state space is then constructed as a combination of the states deriving from
each of these attributes. Assuming that n risk factors are taken into consideration, it can
be represented as

S = Se × Sg × Ssm × Sr1 × . . . × Srn (3.1)
where Se denotes the state space for age, Sg for gender, Ssm for health status and Srk

for
risk factor k.

Let us consider two states s and s′ in the state space S, characterized respectively
by risk factors r1, . . . , rn and r′

1, . . . , r′
n, and by health conditions sm and sm′ (with

gender held constant and age deterministically increasing by one). The probability that
an individual of age e and gender g transitions from s to s′ is defined as

P e,g
s,s′ = P e,g

sm,sm′ · P e,g
r1,r′

1
· . . . · P e,g

rn,r′
n
, (3.2)

where P e,g
sm,sm′ denotes the probability of moving from one health state to another, and

P e,g
ri,r′

i
the probability of transitioning between states of risk factor i.

13
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In other words, the transition probability between two states in S is computed as the
product of the transition probabilities in each subset (health and risk factors).

In the following, we take a closer look at how states are constructed.

3.1.1 Age and gender
Age is represented as a deterministic function of time, denoted by e(t). At each discrete
time step, the function increases the individual’s age by one unit, provided that the current
value remains below a predefined upper threshold; once this threshold is reached, the age
variable ceases to increase further.

More specifically, the age function e(t) is bounded from below by a minimum admissi-
ble value, denoted by Emin. As time progresses, e(t) increases until it reaches a maximum
threshold Emax. Beyond this point, the function ceases to grow further and is held con-
stant, so that the age of all surviving individuals is fixed at Emax. In this way, those
whose age has reached the threshold value are grouped into a single category, simplifying
the representation of older age classes.

In detail, the evolution is given by

e(t + 1) = min{e(t) + 1, Emax}, (3.3)

meaning that the age function takes integer values in the range [Emin, Emax]. In particular,
given that data used to populate the model was taken from ’ISTAT, Aspetti della vita
quotidiana, 2022’ where age goes from 0 to 75+, the values were set as Emax = 75+
while Emin = 25 as already done in previous works (Cianfanelli et al. [2024]). This choice
reflects the structure of the available dataset.

Moreover, since the majority of data used for the construction of the model grouped
people by age, the initial stratification considered 5-year age groups, i.e. 25 − 29, 30 − 34,
and so forth. Finally, to achieve a more granular representation later on, these aggregated
intervals were disaggregated into single-year age groups, each associated with an index e.

One important note is that dependence on time is implicitly introduced via the evo-
lution of an individual’s age and, since this characteristic is included in the state space,
we can say that the resulting process is homogeneous in time (one of the main properties
required for this work).

With regard to gender g, g = 1 refers to males while g = 2 to female individuals. This
distinction is important since many health conditions and their associated risk factors
vary significantly between men and women.

3.1.2 Physical activity
The first risk factor taken into consideration is physical activity (att). As already done in
previous works (Cianfanelli et al. [2024], Anokye et al. [2014]), it was broken down into
two categories: active and sedentary people.

14
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In particular, given the data available, active people were defined as those individuals
who engage in sports at least occasionally, while sedentary people describe the rest of the
population.

Given this definition, an individual can start in any of the two states and, each year,
they can either remain in the current state or transition to the other.

We denote as P e,g
att,att′ the probability of transitioning from state of activity att to state

att′ given age e and gender g.
One important note is that all values for P e,g

att,att′ were taken from Cianfanelli et al.
[2024].

ACT. SED.

Figure 3.1. Physical activity graph

3.1.3 Smoking
The second risk factor considered is smoking (f). Similarly to physical activity, individuals
were categorized as already done in the previous model (Cianfanelli et al. [2024]): smoker,
never smoker and ex-smokers.

More in detail, the different states are:
• smokers, individuals who currently smoke,

• never smokers, individuals who have never smoked in their lifetime,

• ex-smokers, individuals who quit smoking. This category allows us to distinguish
them from never smokers and to keep track of the number of years since they stopped
smoking, which allows for a better representation of how the risks decay over time.

Transitions between these states are defined as follows:
• a never smoker cannot become a smoker, they can only retain their status.

• a smoker can either remain in that state or transition to that of ex-smoker of 1 year.

• an ex-smoker, if they do not relapse into smoking, progresses each year from ex-
smoker of i years to ex-smoker of i + 1 years.

In particular, people who stopped smoking for longer than 15 years are grouped together
into the category of ex-smokers of 16+ years.

Similarly to what has been done for physical activity, we denote as Le,g
f,f ′ the probability

of going from state f to state f ′, given age e and gender g and its values are taken from
Cianfanelli et al. [2024].

Overall, this behavior can be represented through a graph, as seen in Figure 3.2.
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NF F

EX1

EX2

EX+

Figure 3.2. Smoke graph

3.1.4 Alcohol consumption
The novelty introduced by this model is alcohol consumption (a). The central idea was
to investigate the behavioral issues within the population that are correlated with dietary
habits, with a particular focus on alcohol intake.

The first issue that needed to be solved when constructing the state space was its
definition. This was especially critical since the relative risk data available in the literature
are expressed in terms of the average daily alcohol consumption (g/day).

Moreover, existing studies generally describe interventions on alcohol-related risk fac-
tors as a reduction in the quantity consumed, rather than a complete cessation of drinking,
which led to the need for a more detailed description.

To address this issue, we designed four alternative models, each characterized by spe-
cific advantages and limitations.

Model 1 (3.3) consisted in a simple model based on what was already done for smoking.
The idea was to introduce a clear distinction between individuals who had never con-

sumed alcohol and those who had, thereby creating two broad categories: drinkers and
never drinkers. In addition, for former drinkers, the model kept track of the number of
years since alcohol consumption had ceased.

By incorporating past consumption, the model aimed to capture the progressive reduc-
tion in risk that follows cessation, while still retaining a relatively simple and interpretable
structure.

The pros and cons of this model were as follows:

16
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NA A

EX1

EX2

EX+

Figure 3.3. Alcohol model 1

• Pros: coherence with the framework already developed for smoking, also meaning a
more detailed representation in risk decay

• Cons: for smoking the distinction between a smoker and a non smoker is clear while
for alcohol it is more complicated. Moreover, risks are less available as they are usu-
ally based on the quantity of alcohol consumed, while this model only keeps track
of whether people consume or not alcohol. Another problem is that in the case of
intervention on the risk factor, this model only allows for complete cessation of alco-
hol consumption, with no possibility of representing more realistic strategies aimed
at reducing, rather than eliminating, intake.

Model 2 (3.4) has a similar structure to Model 1 but instead of a single state repre-
senting alcohol consumption, it distinguishes between two levels of drinking behavior.

The main reason for introducing this extension was to overcome one of the key limita-
tions of the previous model where interventions could only be represented as a complete
stop in alcohol consumption. As a result, the “ex-drinker” categories now describe indi-
viduals who reduced their intake from level A2 (higher consumption) to level A1 (more
moderate consumption). In this way, the model preserves the possibility of tracking the
time that has passed since a reduction in drinking, while at the same time reflecting more
realistically the types of interventions.

The strengths and weaknesses of this model can be summarized as follows:

• Pros: because its structure is very close to that of Model 1, it remains consistent with
what was already done for smoking, while still providing a more detailed description
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NA A1 A2

EX1

EX2

EX+

Figure 3.4. Alcohol model 2

of how risk decreases over time. At the same time it solves the issue of intervention
present in the first model by introducing a way of representing interventions as a
reduction in alcohol consumption.

• Cons: the model still struggles with the fact that most available risks are reported
as a function of the amount of alcohol consumed, since it only distinguishes between
two levels of drinking.

Model 3 (3.5) takes a different approach compared to the first two. Instead of working
with only one or two categories that define alcohol consumption, it introduces more levels,
each representing a different amount of alcohol intake.

This solves the issue of finding relative risks since categories are in line with those
reported in literature. On the other hand, since there are no “ex-drinker” categories, the
model cannot keep track of how risk decreases over time after someone reduces or stops
drinking.

This model presents the following advantages and drawbacks:

• Pros: it becomes much easier to define the states of the model using the amount of al-
cohol consumed. This means that relative risks from the literature can be used more
directly. Moreover, the small number of states allows for a cheaper representation.

• Cons: the risk of relapse over time is not tracked, contrary to what is done for
smoking. Moreover, the model does not account for differences between those who
have undergone intervention and those who have always been controlled drinkers.
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NA A1 A2 A3

Figure 3.5. Alcohol model 3

Because of this, there is also no distinction between the difference in probability of
relapse, which in the case of people who have not undergone an intervention should
be lower (Barbosa et al. [2010]).

Model 4 (3.6) builds on the structure of Model 3, but introduces the presence of ex-
drinker categories.

Differently for what has been done for Model 2 and Model 1 here there is only one ex
category for each level of alcohol consumption. This choice was made to keep the number
of states as low as possible, so that the model would remain computationally manageable.
Each of these states, denoted as EXi, represents individuals who initially belonged to a
higher consumption level Ai+1 and, after an intervention, moved down to the next lower
level.

However, unlike the smoking model, ex-drinker states are a way of keeping track of the
decrease of quantity after intervention and do not keep track of the number of years since
the reduction occurred.

NA A1 A2 A3

EX1 EX2

Figure 3.6. Alcohol model 4

The main positive and negative aspects of this model can be summarized as:

• Pros: one of the key advantages is that it allows for a more detailed representation of
risk, like what is provided in literature. By introducing ex-drinker states, the model
can differentiate between individuals who reduced their alcohol consumption due to
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an intervention (e.g., EX1 from intervention on A2, and EX2 from intervention on
A3) and those who were already moderate drinkers.

• Cons: the model still provides limited detail on how risk decreases over time.

Many of the works analyzed from the literature adopted a classification of alcohol
drinkers similar to that proposed in Model 3 and Model 4, generally dividing individuals
into 4 categories: never drinkers, light drinkers, moderate drinkers and heavy drinkers.

For this reason, the model that seemed to better follow already existing work is Model
4.

Once the model was selected, the next step was to identify appropriate transition
probabilities from the literature.

The paper "Grounding alcohol simulation models in empirical and theoretical alcohol
research: a model for a Northern Plains population in the United States" (Deutsch et al.
[2023]) proposed a similar modeling framework to Model 4, with the addition of transition
probabilities between drinking states. Therefore, we decided to adopt a similar approach
to the one described in this paper (3.7).

ND NRD RD AUD

EX
NRD
sober

EX
RD

sober

EX
AUD
sober

Init.

Init.

+Int. +
Int.

+Int.

new entries

Figure 3.7. Alcohol paper model

This model assumes 4 main categories of drinkers, defined as:

• "ND", never drinkers;

• "NRD", non risky drinkers: < 4 + /5+ drinks per session (no binge drinking) or
7 + /14+ drinks per week respectively for females/males, with no episodes of binge
drinking in the last month;

• "RD", risky drinkers: 4 + /5+ drinks per session, with episodes of binge drinking;

• "AUD", alcohol use disorder: people who fall in the "RD" category but also suffer
from behavioral (dependence) and physical problems.
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3.1 – Attributes, risk factors and admissible transitions

Following the notation used for other the risk factors, we denote as Le,g
a,a′ the probability

of transitioning from state of alcohol consumption a to state a′ and its numeric values, as
already stated, are taken from Deutsch et al. [2023].

Unlike the model presented above (3.6), in this case the interventions are only applied
to the AUD category (corresponding to A3) and lead to a transition into the "NRD",
"RD", and "ExAUD sober" categories. As a result, the model does not differentiate
between individuals who have undergone an intervention and consequently reduced their
alcohol consumption, and those who have never been subject to one.

In other words, in Model 4, the ex-drinker categories specifically represent individuals
who reduced their alcohol intake following an intervention, whereas in the new model
these categories capture individuals who have stopped drinking entirely, regardless of any
intervention, with distinctions made only by category.

Another difference lies in the way new individuals enter the system: in this model,
every year people start in the "ND" state and then move to other states according to
specified initialization probabilities.

For the reasons presented, additional states were introduced to distinguish between
transitions that occur spontaneously, i.e., those not resulting from an intervention, and
transitions that are directly caused by an intervention (states concerning intervention are
denoted with the symbols ′ and ′′ in graph 3.8).

Moreover, intervention on "RD" (denoted with ′′) and on "AUD" (denoted with ′) is
kept separate, meaning that we keep track of the two independently.

Finally, new individuals entering the system are no longer assigned to the "ND" state
by default. Instead, they follow an initial distribution derived from data collected in the
survey "ISTAT, Aspetti della vita quotidiana, 2022 ".

These modifications together define the structure of the final model for alcohol use
(3.8).

One important remark is that although the number of different states is very high,
meaning a more computationally expensive model, this allows for a better representation
of the risks since they are defined based on quantity.

In addition, compared to smoking, light drinkers are far more common, since wine and
beer are deeply rooted in the culture, much more than cigarettes, which are usually seen
as a more ‘binary’ habit (non-smokers typically never smoke at all). This leads to the
need for more categories and explains the final choice of the model.

Overall, we can summarize the pros and cons as follows:

• Pros: more detailed representation of drinking categories which allows for easier def-
inition of drinking levels. Moreover, relative risks are easier to obtain. Additionally,
it is possible to keep track of intervention and either to decrease or cease alcohol use.

• Cons: a large number of states which leads to a more computationally expensive
model. Moreover, it is built differently from what has been done for smoking. An-
other con is that there is no way of representing risk decay since the ex status does
not keep track of the years that an individual spent in that category.
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Figure 3.8. Alcohol final model

3.1.5 Health
The states also incorporate an individual’s health status, which can be either healthy,
indicating the absence of any pathology, or affected by a specific disease.

In fact, the last factor that defines the state of an individual are tracer conditions (m).
These are diseases that are used to check how well a system is working.

For this model, we considered the following pathologies.

• DIA: diabetes,

• BPCO: chronic obstructive pulmonary disease,

• IMA: acute myocardial infarction,

• STR: stroke,

• CCR: colorectal cancer,

• CO: oral cancer,

• CE: esophageal cancer,

• CF : liver cancer,

• CP : lung cancer.
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3.1 – Attributes, risk factors and admissible transitions

Each condition is linked to risk factor through relative risks (RR), a measure used to
compare the probability of an event (such as developing a disease) between two groups:
one that is exposed to a certain factor and one that is not.

For a given condition and a specific risk factor, we consider two groups: one exposed
to the risk factor and one that is not. Then, mathematically, taking the probability that
the event (pathology) occurs in each group, we write

RR = risk_exposed

risk_not_exposed
(3.4)

where:

• if RR = 1, then there is no difference between the two groups,

• if RR > 1, the risk is higher in the exposed group, meaning that the factor increases
the likelihood of the condition, becoming a "risk factor",

• if RR < 1, the risk is lower in the exposed group, in which case we say the factor
has a protective effect.

In this model, we will denote as RRe,g
f,att,a,m the risk, for an individual of age e, gender g,

state of activity att, of smoke f and of alcohol a, relative to condition m.

Based on the risk factors considered in this study, each is associated (with relative risk
> 1) to the following pathologies:

• physical activity: STR, IMA, DIA;

• smoking: CP , CF , CE, CO, STR, CCR, IMA, BPCO

• alcohol consumption: CF , CE, CO, STR, CCR, IMA, DIA

It is important to note that for some risk factors, the relative risk associated to certain
conditions is smaller than 1. In theory, this would suggest a protective effect. However,
some studies report that this effect is only due to granularity of the work rather than a
true protective role.

The paper "Why Do Only Some Cohort Studies Find Health Benefits From Low-Volume
Alcohol Use? A Systematic Review and Meta-Analysis of Study Characteristics That May
Bias Mortality Risk Estimates" (tim stockwell et al. [2024]) addresses this issue in relation
to alcohol. Specifically, it shows that higher-quality studies report relative risks for low
levels of alcohol consumption that are similar to those of never drinkers.

On the other hand, low quality studies find lower risk values for small amounts of
alcohol ingested compared to never drinkers.

In general, there are conflicting opinions in literature regarding this issue. For example,
Beulens et al. [2017] finds benefits for moderate consumption of alcohol for cardiovascular
diseases. For this reason, one of the initial assumptions in our work is that all risks < 1
are considered equal to 1, implying no protective effect.
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Another simplification that was made concerns the dominant disease.
In the previous model (Cianfanelli et al. [2024]), we kept track of all pathologies con-

tracted by individuals by defining states that covered all of the possible combinations of
pathologies.

However, since we are working with Markov chains, this approach quickly leads to
an explosion in the number of states since each combination of diseases needs to be
considered. In fact, if we consider M total conditions, the number of possible sets with
exactly m pathologies is

nm =
A

M

m

B
, ∀1 ≤ m ≤ M. (3.5)

In total, considering also the "healthy" state, there are
MØ

m=1

A
M

m

B
+ 1 = 2M (3.6)

states regarding health status.
When working with this model, each state is characterized by a dominant condition,

i.e. a disease that is more severe than the others. With this setup, all future transitions
of an individual depend on that dominant condition only.

Healthy

Cond2Cond1 Cond3 . . .

Cond1+2 Cond1+3 . . .

. . .

Figure 3.9. Tracking conditions old model

Compared to the previous model (3.9), since we now consider 9 different conditions, we
simplify the state space by keeping track of only one condition at a time, chosen according
to its severity in terms of mortality.

More in detail, if an individual is affected by a condition then, by assumption, in the
next year they can either
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• contract another disease and die from it within the same year;

• die of the already existing disease;

• become affected by a more severe condition and survive;

• remain in the same state.

This is a way of saying that, if someone develops a less severe disease but survives the
one-year time frame, then we do not keep track of the new disorder.

In order to apply this method, we first need to order the illnesses with some criteria.
In this model we ordered them by mortality, having the more serious ones correspond to
those with higher mortality.

Overall, they were arranged as follows:

• 1 → CP ,

• 2 → CF ,

• 3 → CE,

• 4 → CO,

• 5 → STR,

• 6 → CCR,

• 7 → IMA,

• 8 → BPCO,

• 9 → DIA.

For clarity, let us assume that an individual is affected by condition 5. In this case, they
may die in the same year from any other condition, but their health status will only change
if the new pathology has a severity greater than 5.

As per the other risk factors, we denote the probability of going from health state m
to m′ as P e,g

m,m′ .

All of this assumptions lead to the new model (3.10).

One downfall of this assumption is that overtime, as the chain progresses, the total
number of people in each health state, also called prevalence, is biased towards conditions
with higher indices. For this reason, the assumption is limiting, as the predicted preva-
lence does not reflect the true distribution.

Overall, the benefits and drawbacks of this choice are:

• Pros: reduction in the number of states, especially considering that there are more
conditions;
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Healthy

Cond2Cond1 Cond3 . . .

Figure 3.10. Tracking conditions model

• Cons: by considering only one pathology at a time and ranking them by mortality,
the final values do not reflect reality, as individuals with less severe conditions are
underrepresented.

It is important to note that, within this framework, the conditions listed above define
the transient states. In contrast, death resulting from a disease corresponds to absorbing
states.

As previously stated, in order to obtain convergence results presented in Chapter 2,
death states are not considered when creating the overall state space S. Indeed, people
who enter these states are not taken into account for the next time steps, in other words
they are considered as exiting the system.

3.2 Probability transitions and independence assump-
tions

The main goal of this work is to assess whether it is reasonable to assume independence
between risk factors, or if such an assumption would be too limiting.

To do this, we will focus on two main ways to analyze the difference in the results in
case of dependence and of independence.

It is worth noting that physical activity will always be treated as independent from
the other risk factors, since the interactions involving it are less documented in literature.

The first case taken into consideration concerns transition probabilities. When com-
bining risk factors, the main assumption for many works is that transitions between states
of alcohol consumption and smoking do not depend on each other. However, the literature
shows that this assumption does not always hold.

For instance, the paper "An epidemiologic analysis of co-occurring alcohol and tobacco
use and disorder" (Falk et al. [2006]) focuses on studying the prevalence of alcohol and
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tobacco use, focusing on related disorders such as alcohol dependence and nicotine de-
pendence. One of the main finding (supported by other works) is that the association
between the two disorders is strong and bidirectional: people that consume alcohol were
more likely to also meet criteria for nicotine dependence compared to non-drinkers.

Likewise, individuals with nicotine dependence were more likely to drink than those
without dependence. In particular, this relationship is not simply the result of random
overlap, but reflects a robust epidemiologic and clinical connection.

Let us denote as Le,g
f,f ′ the probability of going from state of smoking f to f ′ indepen-

dently of other risk factors (with values as defined in 3.1.3).
If we now consider an individual with drinking state a then, their probability of tran-

sition between two smoking states can be written as

P e,g
f,f ′ = re,g

a Le,g
f,f ′ (3.7)

where re,g
a > 1 if a = RD or a = AUD for smoking states that represent a transition from

non-smoking to smoking state.
Since this also holds for transitions between alcohol states, we define as

P e,g
a,a′ = re,g

f Le,g
a,a′ (3.8)

where re,g
f > 1 if f = F for alcohol states that represent a transition from lower-drinking

to higher-drinking states (values for Le,g
a,a′ are described in 3.1.4).

Other studies have also reported that the same kind of relationship is observed in the
case of relapse after an intervention.

The paper "Does alcohol consumption elevate smoking relapse risk of people who used
to smoke? Differences by duration of smoking abstinence" (Snelling et al. [2023]) shows
that for individuals who had been smoke-free for more than a year, drinking alcohol
(especially at moderate or heavy levels) was linked to a higher risk of smoking relapse.
Moderate and heavy drinkers were more than twice as likely to return to smoking compared
to those who drank little or no alcohol at all.

Similar results for alcohol relapse are provided by "Cigarette smoking and risk of alcohol
use relapse among adults in recovery from alcohol use disorders" (Weinberger et al. [2015]).
This study highlights that, when adults recovering from alcohol use disorders continue to
smoke, they face a significantly heightened risk of relapse into alcohol use.

For this reason, the same formulation is applied not only to spontaneous transitions
but also to relapse after intervention.

On the other hand, the study "The effect of alcohol use on smoking cessation: A sys-
tematic review" (van Amsterdam and van den Brink [2023]) found that smoking cessation
attempts are far less likely to succeed when individuals consume alcohol.

For this reason, following the same notation as before, the probability of quitting
smoking given state of alcohol a = RD and a = AUD can be expressed as

P e,g
f,f ′ = qe,g

a Le,g
f,f ′ (3.9)

where qe,g
a < 1 for smoking states that represent a transition from smoking to non-smoking

states.
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Similarly, we can also write
P e,g

a,a′ = qe,g
f Le,g

a,a′ (3.10)

where qe,g
f < 1 if f = F for alcohol states that represent a transition from higher-drinking

state to lower-drinking.

Another way to account for the interaction between two risk factors is through the
definition of a global risk. Relative risks are usually estimated by considering each factor
separately; however, when building a model that includes multiple factors, we need to
define a combined, or global, risk. This can be done either by allowing for interaction
through a multiplicative formula or by assuming independence and utilizing summation.

As already stated, physical activity was considered independent; however alcohol use
and smoking are reported to have some interaction.

In fact, following the work "The combined effects of alcohol consumption and smoking
on cancer risk by exposure level: A systematic review and meta-analysis" (Jun et al.
[2024]), we can assume that, for oral and esophageal cancer, the risk constructed by
combining alcohol and smoking is not only multiplicative, but also further increased by
an additional multiplicative factor that amplifies their interaction.

For this reason, such a multiplicative risk is defined as

RRe,g
f,a,m = γm(f, a) RRe,g

f,mRRe,g
a,m (3.11)

where γm(f, a) > 1 for oral and esophageal cancer and its values are taken from Jun
et al. [2024]. In particular, since the paper categorizes smoking into 2 categories while
our model only uses smoker, the corresponding values were approximated by taking the
mean of the two reported categories.

For example, for a heavy drinker and smoker individual,

γm(smoker, AUD) = 3.36 + 3.50
2 . (3.12)

On the contrary, for an additive risk, we wuold define

RRe,g
f,a,m = 1 + (RRe,g

f,m − 1) + (RRe,g
a,m − 1) (3.13)

Adding physical activity into the equation and introducing the variable λm as the weight
of a convex combination between additive and multiplicative risks for alcohol and smoking
(used in order to analyze the model sensitivity to the assumption), we obtain the global
risk

RRe,g
f,att,a,m =(λm (1 + (RRe,g

f,m − 1) + (RRe,g
a,m − 1)) + (1 − λm)

γm(f, a) RRe,g
f,mRRe,g

a,m − 1) + (RRe,g
att,m − 1) + 1

(3.14)

3.3 Parameter tuning for health transitions
In this section, we introduce the parameters regarding health transitions. Unlike those
in the previous section, which are derived from the literature, these parameters are cali-
brated, since published sources typically provide incidences, mortality rates, and related
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outcomes rather than the parameters themselves.

In Section 3.1.5 we already described how people transition from one state of illness
to another, where we assumed a certain order between conditions.

There are other two assumptions to be made:

• diseases are chronic, meaning that an individual cannot recover and the disease will
persist until death

• an individual does not contract two different diseases in the same year.

Let us now define as βe,g
m the probability that a non-smoker, active and non-drinker indi-

vidual develops disease m then,

βe,g
f,att,a,m = βe,g

m RRe,g
f,att,a,m (3.15)

where RRe,g
f,att,a,m is the global risk for an individual of gender g, age e, smoking status f ,

alcohol a and activity att, constructed using (3.14).
Since βe,g

f,att,a,m represents the probability of a healthy individual with smoking status
f , alcohol a and activity att to become sick with disease m, we still need to define the
probability to fall ill with the disease given that they are already sick with disease n.

By denoting as θnm the correlation between pathologies m and n, we obtain that the
probability of an individual with condition n, smoking status f , alcohol a and activity att
to become sick with disease m is

βe,g
f,att,a,m θnm . (3.16)

It is important to note that, because of a lack of data, all θnm = 1.

Let us now introduce the following terms:

• incidence (Ie,g
m ): the number of new cases of a disease that occur in the population

during a defined period of time (1 year);

• prevalence (N e,g
f,att,a,m): the total number of cases of a disease (given smoke, alcohol

and activity status), both new and pre-existing, in the population at a given point
in time;

• deaths (M e,g
m ): the number of individuals who die from a specific disease (or from

all causes) in the population during a defined period of time.

The parameter βe,g
m is computed imposing that the expected number of incidences matches

that of the Global Burden of Disease (GBD) data. In particular, given the definitions
presented before, the expected number of incidences is

E[Ie,g
m ] =

Ø
n /=m

Ø
f

Ø
att

Ø
a

N e,g
f,att,a,n βe,g

m RRe,g
f,att,a,m θnm , (3.17)
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and, consequently, we obtain

βe,g
m = E[Ie,g

m ]q
n /=m

q
f

q
att

q
a N e,g

f,att,a,n RRe,g
f,att,a,m θnm

. (3.18)

Once the values for βe,g
m are computed, we obtain βe,g

f,att,a,m by multiplying for RRe,g
f,att,a,m.

Let us now define parameters regarding deaths. Firstly, we differentiate between ful-
minant diseases, which are acute myocardial infarction and stroke, and non (remaining
conditions).

In this work, we will distinguish between the probability of death in the year of the
disease onset and that of death in any other year following the occurrence.

In particular, the subsequent variables are introduced:

• νe,g
f,att,a,m: probability that an individual of gender g, age e, with smoking status f ,

activity att and alcohol a, sick with disease m, dies because of pathology m in the
same year of onset;

• δe,g
f,att,a,m: probability that an individual of gender g, age e, with smoking status f ,

activity att and alcohol a, sick with disease m, dies because of pathology m in any
other year other than the first since the onset.

Just like in the case of the β parameters, let us define as δe,g
m the probability of death

of condition m in the following years of a non-smoker, active and non-drinker individual.
Then,

δe,g
f,att,a,m = δe,g

m ωf,att,a,m (3.19)
where ωf,att,a,m is a multiplicative parameter which, given the lack of data, is assumed to
be equal to 1. Even though both parameters θ and ω are assumed to be equal to 1, they
are included in the model to provide flexibility for whenever such data can be found in
the literature.

Since, in the case of fulminant diseases, the parameters νe,g
f,att,a,m are taken from litera-

ture (Cianfanelli et al. [2024]), we will also assume that they are independent of smoking,
alcohol and activity status.

For non fulminant diseases, we assume that

νe,g
f,att,a,m =

δe,g
f,att,a,m

2 (3.20)

Now, the expected number of deaths from each condition can be computed as

E[M e,g
m ] =

Ø
f

Ø
att

Ø
a

N e,g
f,att,a,m δe,g

f,att,a,m+

+
Ø
n /=m

Ø
f

Ø
att

Ø
a

N e,g
f,att,a,n βe,g

f,att,a,m θnm νe,g
f,att,a,m

(3.21)

Breaking down this equation, we have that the first term refers to deaths of individuals
already sick with disease m, while the second term refers to people who in the span of 1
year fell ill with condition m (coming from state of health n /= m) and died of m.
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Imposing the equality with GBD data and given all other parameters, we obtain that,
for non fulminant diseases,

δe,g
m = M e,g

mq
f

q
att

q
a

N e,g
f,att,a,m ωf,att,a,m +

q
n /=m

q
f

q
att

q
a

N e,g
f,att,a,n βe,g

f,att,a,m θnm ωf,att,a,m/2 ,

(3.22)
and, for fulminant diseases,

δe,g
m =

M e,g
m −

q
n /=m

q
f

q
att

q
a

N e,g
f,att,a,n βe,g

f,att,a,m θnm νe,g
mq

f

q
att

q
a

N e,g
f,att,a,m ωf,att,a,m

, (3.23)

where the dominator represents the total number of death minus those that were fulmi-
nant.

Both formulas are obtained keeping in mind that conditions are ordered and we lose
track of previous pathologies that affected an individual.

In this model we used the tracing pathologies introduced in section 3.1.5 but deaths
can be caused by other pathologies (oc) that are not considered. These conditions are not
part of the health states but are considered when computing deaths among a population,
which are defined as

M e,g
oc = M e,g

tot −
Ø
m

M e,g
m (3.24)

where M e,g
tot are the total death obtained from GBD data. In other words, deaths by other

causes are computed as the subtraction between the total amount of deaths and those
caused by tracing conditions.

Like for previous parameters, we define as γe,g the mortality from other causes for a
non-smoker, active and non-drinker individual and χm the correlation between mortality
and already existing conditions. Then, the mortality for an individual with pathology m
with exposure to risk factors is

γe,g
f,att,a,m = γe,g RRe,g

f,att,a,oc χm (3.25)

and the number of deaths is

E[M e,g
oc ] =

Ø
m

Ø
f

Ø
att

Ø
a

N e,g
f,att,a,mγe,g

f,att,a,m (3.26)

Given the global risks RRe,g
f,att,a,oc and χ factors, taking data from GBD we obtain

γe,g = M e,g
ocq

m

q
f

q
att

q
a N e,g

f,att,a,m RRe,g
f,att,a,oc χm

. (3.27)

3.4 Initial distribution
The initial distribution of individuals by age e and gender g is computed using both
ISTAT survey data and GBD estimates.
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From "ISTAT, aspetti della vita quotidiana, 2022 ", we obtained the joint prevalence
of individuals exposed to risk factors f, att, a by age and gender. Dividing these counts
by the total number of individuals of age e and gender g, and multiplying by the fraction
of individuals of age e and gender g in the overall population, we derive the fraction of
individuals with age e and gender g exposed to risk factors f, att, a. This value is denoted
by πe,g

f,att,a.
From GBD, we retrieved the prevalence of each health condition by age and gender,

which provides the fraction of individuals of age e and gender g with health condition sm,
denoted as πe,g

sm.
Since joint information on both risk factors and health status is not available, we

assume independence between the two. Under this assumption, the joint distribution is
given by:

πe,g
f,att,a,sm = πe,g

f,att,a · πe,g
sm (3.28)

where πe,g
f,att,a,sm represents the distribution of people of age e, gender g subject to f, att, a

in health state sm.
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Chapter 4

Results

In this chapter we will first provide some general information regarding interventions and
the metrics used to asses their impact. Then we will analyze the results obtained from
simulations.

4.1 Theoretical notions
In this section we will provide some general notion used to better understand the results.

4.1.1 YLD,YLL and DALYs
When studying an intervention regarding public health, in order to evaluate the perfor-
mance of an intervention, it is important to look not only at how many deaths there are,
but also at how diseases and disabilities affect the quality of life.

In fact, many conditions don’t cause death but can still have a big impact on how
people live, so both aspects need to be taken into account to understand the real value of
an intervention.

For this reason, the two key measures used for this are Years of Life Lost (YLL), which
focuses on premature death, and Years Lived with Disability (YLD), which reflects the
years lived in less than full health. Together, they help us understand the overall impact
of diseases on a population.

More in detail,

• YLL: quantifies the burden of premature mortality. It captures the gap between
current age at death and the age to which individuals could have been expected to
live under ideal circumstances.
Life expectancy data vg(e) is obtained from ISTAT, where g refers to gender and
e to age, meaning that the value vg(e) is the life expectancy of an individual with
gender g and age e. Then, for a person with gender g that dies at age e, the years
of life lost are:

Y LLe,g = vg(e) − e . (4.1)
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• YLD: measures the burden associated with non-fatal health outcomes. Given the
age and gender of an individual, it is derived by multiplying the prevalence of a given
health condition (N e,g

m ) by a disability weight (we,g
m ), which reflects the severity of

the condition on a scale from perfect health to death. Thus, YLD expresses the
number of years lived in less than full health due to disease, injury, or disability.
In particular, the disability weights are computed by inverting the formula, using
prevalence and YLD data from GBD, such as

we,g
m = Y LDe,g

m

N e,g
m

(4.2)

• DALY: together, YLL and YLD constitute the Disability-Adjusted Life Year (DALY)
metric, that represents the total disease burden. One DALY can be interpreted as
one year of “healthy” life lost, either because of early mortality or because of time
lived with impaired health.

4.1.2 Baseline and intervention
The baseline scenario represents the situation without public health interventions. It
serves both to calibrate the model and as a reference point for comparing intervention
scenarios.

On the other hand, intervention scenarios are those in which a public health interven-
tion is implemented. Interventions may be divided in two main categories:

• counseling: this campaign modifies the prevalence of the risk factors in the popula-
tion at the time of the intervention. If it is implemented at time 0, the individuals
that enter in the cohort in the following years are not affected by the intervention.
Moreover, with this intervention it is possible to target specific subsets of the popu-
lation.
One example of counseling, when considering alcohol consumption, is Alcoholics
Anonymous (AA), a support group where people with drinking problems come to-
gether to share their experiences and encourage each other in staying sober.

• price increase: the aim is to both reduce a fraction of people at risk at time 0
(similarly to what is done in case of counseling) and to inhibit new people entering
the system from adopting behavioral habits. This is achieved by working both on
initialization (reducing the number of people who are already consumers) and on
the new input of individuals at every time step, meaning that the prevalence of new
individuals of age e = emin concerning the risk factor will be reduced. Moreover,
since we are raising prices, the entire population is affected. It is important to note
that this type of campaign is justified solely in the context of smoking and alcohol
consumption.

In particular, in this work we will be focusing on the first type of program.
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When talking about alcohol intervention, in more recent years studies have found that
strategies based on reduction and not complete abstinence are more effective.

In fact, these approaches emphasize that reduction focused interventions are more
practical and impactful. Many individuals with alcohol dependence face challenges in
achieving complete abstinence, and such strategy allows for significant improvements in
health and quality of life while maintaining a higher level of engagement.

In practice, the paper François et al. [2014] demonstrates that even partial reductions in
alcohol intake can lead to meaningful clinical benefits, including lower risk of comorbidities
and improved overall health outcomes.

Another advantage is that, by targeting reductions rather than cessation, programs
can be more widely adopted, personalized, and effective in real-world settings.

One example of focused intervention are personalized digital initiatives that help par-
ticipants decrease their drinking by tailoring strategies to individual behaviors and en-
gagement levels (Crawford et al. [2024]).

While keeping this in mind, it is also important to recognize that alcohol use often
occurs alongside other risky behaviors, especially smoking, and that the two are strongly
interconnected at both health and behavioral level. For this reason, recent research high-
lights the importance of combined interventions targeting both alcohol use and smoking.

Instead of focusing on one type of intervention at a time, models such as those presented
in “A dynamical model of drinking and smoking with optimal control analysis” (Wireko
et al. [2024]), provide insights into how alcohol and tobacco consumption interact over
time and how coordinated interventions can optimize reductions in both behaviors. These
works suggest that addressing both behaviors simultaneously can achieve greater overall
health benefits than focusing on either behavior alone.

Other studies show that alcohol consumption can interfere with efforts to quit smoking.
In fact, individuals who reduce or control their alcohol intake are more likely to suc-

cessfully achieve smoking cessation, indicating that interventions targeting alcohol use can
enhance the effectiveness of smoking cessation programs (van Amsterdam and van den
Brink [2023]).

Given the strong connection between these risk factors, it is also necessary to analyze
how they interact with each other, especially during interventions.

One of the reasons behind combined intervention is that alcohol consumption has been
shown to increase the risk of smoking relapse, particularly among individuals who had
previously quit smoking.

Evidence from studies examining relapse by duration of smoking abstinence indicates
that even moderate alcohol intake can weaken the stability of smoking cessation, especially
in the early months following quitting (Snelling et al. [2023]).

Because of this, when interventions target only smoking cessation without addressing
alcohol use, participants may face a higher likelihood of relapse. The reason for this is that
alcohol can act as a trigger, weakening behavioral control and reducing the effectiveness
of smoking-focused interventions.

This highlights the limitations of single-behavior interventions, suggesting that ad-
dressing both alcohol consumption and smoking simultaneously may provide more durable
results and reduce the risk of relapse over time.
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4.2 Simulations
In this section we will compare the results between baseline and intervention for the case
of both independent and dependent risk factors.

The reason for this choice is that we want to analyze the differences in the results in
order to analyze both how effective the intervention is and how strong of an assumption
independence is.

Indeed, while the interaction between the two risk factors is well documented in the
literature, numerical parameters that measure such interactions are not available. The goal
of this analysis is to quantify how these interactions impact the results of the simulations in
two counterfactual scenarios: in one case, we assume the absence of behavioral interactions
between tobacco and alcohol; in the second case, we assume that there are correlations
between the two risk factors.

In particular, we consider two scenarios:

• The independent scenario, in which qe,g
a = qe,g

f = re,g
a = re,g

f = 1 for all a, f, e, g,
where there is no interaction during transactions from one state to another.

• The dependent scenario, in which qe,g
a = qe,g

f = 0.6 and re,g
a = re,g

f = 1.6, where we
assume dependence between risk factors

Note that these parameters are arbitrary and assigned with the only aim to understand
whether including these dependencies provides meaningful differences in the simulations.

Moreover, for all simulations, we will suppose that alcohol and smoking show depen-
dence regarding interacting relative risk (i.e. when constructing the global risk we use a
multiplicative formula with factors γm (3.11)) since literature already provides values for
their interaction.

It is worth noting that all simulations follow an open cohort approach, i.e., new subjects
are introduced in the cohort at each year of the simulation.

4.2.1 Baseline
Let us first run the experiment without intervention.

Let us analyze what happens with smokers.
As we can see from the plots (4.1, 4.2), where the x axis represents time and the

y axis represents the fraction of individuals that are smokers over the total number of
people alive, we can firstly note that the two curves seem to follow the same trend, both
decreasing. This decreasing trend in the number of smokers in Italy has been observed
over recent years, so it is not surprising (pas).

Although the percentage of people subject to risk factors in the initial years is the
same, in time the difference becomes much more significant since smokers rise compared
to the first scenario (4.1). This is due to the fact that, when assuming dependence, a
smaller fraction of the population is going to stop smoking since alcohol influences the
quit probability and, for the same reason, a bigger fraction is going to pick up the behavior.
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Figure 4.1. Baseline smokers (inde-
pendence)
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Figure 4.2. Baseline smokers (depen-
dence)

With alcohol use we can see (4.3, 4.4) that, differently from smokers, drinkers increase
before starting to decrease.

0 2 4 6 8 10 12 14 16 18 20

time

0.7

0.705

0.71

0.715

0.72

0.725

0.73

0.735

0.74

0.745

0.75

d
ri
n
k
e
rs

fraction of drinkers

baseline

Figure 4.3. Baseline drinkers (inde-
pendence)
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Figure 4.4. Baseline drinkers (depen-
dence)

Similarly to smoking, when comparing the two scenarios, we notice that the fraction
of drinkers over the years is different. Again, this is due to the fact that when assuming
dependence, a smaller fraction of people is going to stop drinking and a bigger fraction is
going to start, since smoking influences probabilities.

Moreover, the fraction of people subject to alcohol use is widely different from that
of smokers. Indeed, the fraction of drinkers is more than 3 times that of smokers. This
could be due to the fact that, as already stated in Chapter 3, alcohol consumption in more
embedded in culture and, as such, individuals are more likely to consume small quantities
of alcohol (such as wine and beer) especially during meals.

Overall, the trends observed for both alcohol consumers and smokers are to be expected
since, when assuming dependence, the probability of quitting decreases while that of
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relapse increases compared to the independent case.
These are preliminary observations; the final objective is assessing the extent to which

these assumptions impact the intervention.

When comparing the average age of the population (4.5), we can see that it increases
overtime. This is not surprising, as the average age of the population is known to be
increasing, as ISTAT reported.
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Figure 4.5. Baseline average age of popu-
lation (independence)
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Figure 4.6. Average age in baseline sce-
nario with independence assumption minus
average age in baseline scenario with depen-
dence assumption

Though the number of both smokers and drinkers rise with the dependence assump-
tion, the average age remains approximately the same, as can be seen from 4.6, which
illustrates the difference of the average age in the baseline when assuming respectively
that the risk factors are independent or dependent.

Even though we see this trend regarding age of the population, as time progresses the
number of individuals alive drops (4.7). This is caused by the fact that the population
keeps getting older so that, even though the number of smoking and drinking individuals
lowers, the number of deaths (especially caused by oncological and fulminant diseases)
grows.

When comparing the values in case on independence with those obtained assuming
dependence, we can see that the total size of the population (4.8) is subject to changes.
In fact, when comparing the two, we can notice that at the beginning the value is close
to 0 but over time it increases almost exponentially.

The behavior described in the independence scenario can be also seen by looking at
incidence (4.9). For conditions such as stroke and myocardial infarction the number of
new cases per year increases as time passes and population ages, and the same can be
said for cancer-related diseases such as colorectal cancer.

The difference described for both population size and fraction of people subject to risk
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Figure 4.9. Baseline incidence (inde-
pendence)
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Figure 4.10. Incidence in baseline sce-
nario with independence assumption mi-
nus incidence in baseline scenario with
dependence assumption

factors is again observed when comparing incidence between assumptions. The values
shown (4.10 depicts the difference between respectively the independent and dependent
case) are negative because, as one could imagine, given the fact that both smokers and
drinkers increase, the probability of individuals falling ill with tracing diseases increases
when compared to the first case.

It is also important to observe that the gap with diabetes, as it is mainly connected to
a sedentary lifestyle (higher relative risk), remains close to 0.

One important note is that, since the values for parameters qe,g
a , qe,g

f and re,g
a , re,g

f are
not clearly reported in literature, the values chosen are arbitrary and, through simulations,
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it can be seen that even small changes in the probability of transitioning between states
(caused by an interaction factor) can lead to a difference in results.

4.2.2 Alcohol intervention
When working on intervention, we decided to implement a reduction in the initial amount
of AUD drinkers, following a counseling approach.

When simulating this type of intervention, we need to decide the amount of people
that will be moved between categories. Even though it is not a very realistic scenario but
a more extreme one, we decided to remove the entire group and split it evenly throughout
post intervention states.

These kinds of extreme interventions are typical in the literature for testing models
(Cianfanelli et al. [2024]).

More precisely, the campaign was implemented as follows:

• number of people who are AUD = 0,

• number of ex AUD now RD = 1
3 number of people who are AUD,

• number of ex AUD now NRD = 1
3 number of people who are AUD,

• number of ex AUD now sober = 1
3 number of people who are AUD.

Let us first analyze the difference in the number of smokers compared to the baseline.

0 2 4 6 8 10 12 14 16 18 20

time

-1

-0.5

0

0.5

1

1.5

2

2.5

3

s
m

o
k
e
rs

10
-4 fraction of smokers

baseline-intervention

Figure 4.11. Difference in fraction
smokers between baseline and interven-
tion (independence)
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Figure 4.12. Difference in fraction
smokers between baseline and interven-
tion (dependence)

As can be clearly seen in (4.11), the percentage of smokers remains almost unchanged
compared to the baseline; it only increases slightly. This increase is due to the fact that,
since more former drinkers remain alive, and given that these former drinkers are more
likely to be smokers compared to the general population, the fraction of smokers increases
in the intervention scenario.

40



4.2 – Simulations

We can however see a different behavior in case of dependence (4.12). The difference in
the fraction of smokers (4.12), even though small, is positive. This is due to dependence of
alcohol use: when reducing drinkers, ex-smokers are less likely to relapse and more likely
to quit smoking compared to the baseline scenario, causing them to remain in the states
of ex-smoker for longer.

Let us now examine the plots regarding the fraction of drinkers.
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Figure 4.13. Intervention drinkers (in-
dependence)
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Figure 4.14. Intervention drinkers
(dependence)

Compared to smokers, there is a greater gap in the number of alcohol users (4.13).
This result is to be expected since the campaign focuses on this risk factor. However,
even though it is present, it is small. The reason for this is that during the campaign we
are only reducing the quantity of alcohol consumed and not necessarily removing it.

As can be seen from 4.14, the fraction of drinkers after intervention presents a smaller
gap than that in the case of independence. This pattern derives from the fact that
relapse into higher drinking categories is more common among individuals who also smoke,
thereby reducing the overall effectiveness of the intervention

Indeed, it can be seen that, as time passes, the effect of the intervention vanishes.

This can be confirmed by looking at the difference in number for every level of con-
sumption (4.15): the number of individuals in the AUD state, especially in the first years,
is significantly different from the baseline. As years pass by, this variation becomes smaller
since spontaneous transitions can happen and, by construction, the system tends to forget
that intervention took place.

After analyzing the prevalence of the risk factors in the population, we now illustrate
the results regarding the health of the population. Figure 4.17 illustrates the number of
incidence avoided due to an intervention, while 4.18 illustrates the same outcome under
the dependence assumption. In particular, plot 4.17 shows that, for the independence
assumption, results align with what can be observed for the number of drinkers. Indeed,
incidence regarding pathologies correlated to alcohol use declines (values greater than 0)
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Figure 4.15. Difference numbers of con-
sumers between baseline and intervention
(independence)
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Figure 4.16. Difference numbers of con-
sumers between baseline and interven-
tion (dependence)
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Figure 4.17. Difference numbers of inci-
dence between baseline and intervention
(independence)
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Figure 4.18. Difference numbers of inci-
dence between baseline and intervention
(dependence)

while those related to smoking and physical activity slightly rises (values smaller than
0) since the number of people subject to said risk factors increases. For example, when
implementing intervention under independence assumptions, since the fraction of people
subject to smoking increases with respect to the baseline, the values of incidence regarding
BPCO (which is highly related to this risk factor) can only increase.

On the other hand, the gain in fraction of smokers in case of dependence causes in-
cidence for pathologies related to smoking, such as BPCO, to decrease compared to the
baseline (4.18). This behavior can be again observed with pulmonary cancer, where the
difference in incidence compared to the baseline is much smaller.

When observing the population size for both cases (4.19, 4.20) we can see that there is
an overall gain in the number of people alive. In particular, for the reasons stated above,

42



4.2 – Simulations

0 2 4 6 8 10 12 14 16 18 20

time

-12000

-10000

-8000

-6000

-4000

-2000

0

p
o
p
u
la

ti
o
n
 s

iz
e

population size

baseline-intervention

Figure 4.19. Difference in population
size between baseline and intervention
(independence)
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Figure 4.20. Difference population
size between baseline and intervention
(dependence)

this difference is greater in the case of dependence.
Finally, when examining the difference in DALYs (4.21, 4.22), which is a more refined

indicator, we observe an overall gain in the number of years lived in good health. This
number however is rather small, especially compared to that of intervention on smoking.
The cause for this behavior is that we are focusing our campaign on the reduction of alcohol
consumption for only one category of drinking (AUD) while, intervening on smoke means
eliminating a fraction of smokers. One possible solution would be to not only reduce the
fraction of people in state AUD but also in state RD, leading to more significant changes.

Moreover, comparing the two scenarios, we can see that, for the reasons already ex-
plained above, there is a greater gain of DALYs in case on dependence. This difference
between the two scenarios is appreciable, on the order of 10%, indicating that these de-
pendence effects are significant and are worth to be taken into account.
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Figure 4.21. Cumulative difference in
DALYs bewteen baseline and intervention
(independence)
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DALYs between baseline and interven-
tion (dependence)
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4.2.3 Alcohol and smoke combined intervention
Let us now evaluate how a combined intervention on both alcohol consumption and smok-
ing differs from that of only alcohol.

Firstly, combined intervention indicates that both risk factors are partially or entirely
removed from the population.

As this is a ’toy’ intervention, we decided to look at the effects that removing 10% of
smokers and the totality of AUD drinkers at time 0 would have on the cohort. The reason
for this choice is that we needed to make the effects of the two risk factors comparable,
since otherwise they would not be, as smoking generally has a greater impact on the
population.

Intervention on the AUD category was done according to what has already been ex-
plained (4.2.2) while, for smoking, people subject to the risk factor were moved to the
state of EX smoker of 1 year.
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Figure 4.23. Intervention smokers (in-
dependence)
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Figure 4.24. Intervention smokers
(dependence)

When looking at smokers (4.23, 4.24), it is clear that now their numbers drop because
of intervention.

Note that the effects of the intervention are quite stable over time in both cases, due
to the fact that the relapse probability are small.

Alcohol consumers however present a different behavior. In particular, under indepen-
dence assumption, in the early years we see a significant drop but later on their values
increase again, nearing that of the baseline (4.25). This is due to the fact that, when
conducting a campaign for smokers only, less people die of smoking related diseases caus-
ing the amount of individuals subject to alcohol use to increase. When combining both
interventions independently, the behaviors of both add up, causing these type of results.

When assuming dependence (4.26), compared to what was observed in the case of
single intervention on alcohol consumption and in the case of combined intervention under
independence assumptions(4.14), the amount of drinkers greatly reduces due to the fact
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Figure 4.25. Intervention drinkers (in-
dependence)
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Figure 4.26. Intervention drinkers
(dependence)

that, having also lowered the number of smokers, relapsing into higher drinking categories
is less likely (4.26). Overall these results suggest a more effective intervention.

This observation aligns with the finding already present in literature, which suggest
reducing both risk factors for better outcomes (4.1.2).
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Figure 4.27. Difference numbers of inci-
dence between baseline and intervention
(independence)
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Figure 4.28. Difference numbers of inci-
dence between baseline and intervention
(dependence)

By decreasing the number of smokers, incidence regarding CP and BPCO significantly
decreased.

On the other hand, for the independence scenario (4.27), incidence of alcohol related
pathologies slightly worsened as a consequence of what explained.

Similarly, when assuming dependence (4.28), incidence improves for all conditions since
now, compared to other scenarios, less people are subject to alcohol consumption.

In particular, from plots 4.27 and 4.28 we can see that there is a clear difference in the
incidence value for BPCO since in the scenario where dependence is assumed, the gap in
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the fraction of smokers is slightly bigger.
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Figure 4.29. Difference numbers of inci-
dence between baseline and intervention
(independence)
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Figure 4.30. Difference numbers of inci-
dence between baseline and intervention
(dependence)

For pathologies with lower incidence values that are also associated with alcohol con-
sumption, the same pattern can be observed (4.29, 4.30): for these conditions, especially
for oral cancer, combined intervention under dependence leads to a greater number of
avoided cases. This is due to the fact that the proportion of smokers and, more impor-
tantly, drinkers is smaller compared to the independence case.
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Figure 4.31. Cumulative difference in
DALYs between baseline and intervention
(independence)
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Figure 4.32. Cumulative difference in
DALYs between baseline and interven-
tion (dependence)

Finally, observing the cumulative sum of DALYs, we see an improvement in quality of
life compared to other scenarios (4.31, 4.32).

Furthermore, we see a small gain in the number of DALYs with respect to independence.
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4.2 – Simulations

In conclusion, when the intervention targets alcohol consumption only, the distinction
between dependence and independence proves to be significant, with DALYs differing by
roughly 10% (Figures 4.21, 4.22). This is caused by the fact that dependence leads to a
positive gain in the number of smokers, which is the most important risk factor in terms
of DALYs.

In contrast, in the case of a combined intervention, when dependence is considered
there is a noticeable difference in the positive gain regarding the number of people ex-
posed to alcohol, while dependence has little effect on the change in smoking prevalence.
Since smoking remains the dominant risk factor, this implies that DALY differences in
the combined intervention scenario are less sensitive to whether dependence is modeled,
amounting to roughly 5%.
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Chapter 5

Conclusion

This thesis explored the use of Markov chain models to analyze population health in
relation to chronic diseases that arise from behavioral risk factors, focusing in particular
on smoking, alcohol consumption and sedentary lifestyle.

To the best of our knowledge, this is the first model which takes into account three
different risk factors.

The ultimate goal was to simulate different intervention scenarios in which the preva-
lence of risk factors is decreased in order to improve public health, measuring the benefits
in terms of years of life lost and years of life lived with disability.

In order to achieve this, we defined a model based on previous research and then
expanded it by adding alcohol consumption.

Another innovative aspect introduced is the focus on the relationship between smoking
and alcohol consumption, which are known from the literature to be deeply intertwined,
both in terms of individuals’ behavior and in terms of relative risks for patients exposed
to both of the risks.

Overall, the contribution of this thesis is the definition of the model, its calibration
based on real data, and the implementation of a numerical code.

A key objective of this work was not to determine which of the two models constructed
(independent or dependent) is “better”, but rather to investigate whether the two ap-
proaches lead to different predictions. For this reason, validation of the models using
historical data is left for future research.

In general, the results obtained align with the established epidemiological patterns.
Notably, findings suggest that even small changes in the assumptions about the relation-
ships between behavioral risk factors can influence model outcomes. Accounting for these
dependencies is therefore crucial to design effective intervention strategies.

Findings show that the differences in quantities such as average age and population
size between the independent and dependent models are generally modest. The most
notable variations, however, concern the fractions of drinkers and smokers, where complex
dynamics emerge once dependencies are taken into account.

Considering these dependencies is therefore important when designing intervention
strategies, particularly if the goal is to predict complex interactions.
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Conclusion

There are several future research lines still open.
Firstly, this work focused on the interaction between tobacco and alcohol, while seden-

tary lifestyle was left mostly independent. For the future, we would like to expand the
analysis on this risk factor, as well as improve the calibration of the model by finding
more empirical evidence and data to obtain unknown numerical parameters.

Secondly, we would like to use this model to optimize public health interventions, which
would allow us to select the optimal ones, also taking into account feasibility and budget
constraints.

Other future improvements include considering more tracing diseases and the comor-
bidities between them, allowing for better estimates of mortality and prevalence.

Additionally, smoking and sedentary lifestyles are currently modeled with a simple
binary classification, whereas recent studies have shown the need to measure the smoking
exposure by the number of pack-years, offering a more precise measure, similar to how
alcohol consumption is handled.

Further opportunities for expansion include incorporating additional risk factors, such
as poor diet, as well as secondary interventions aimed not at preventing the incidence of
pathologies, but at ensuring their early detection.
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