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Abstract

In materials science, crystal lattice defects play a crucial role in determining
the mechanical behavior of solids. These defects are generally classified into
two main categories: dislocations and disclinations. Dislocations are related to
translational defects, characterized by a Burgers vector, and are commonly divided
into screw and edge types, depending on the orientation of the defect line with
respect to the Burgers vector. On the other hand, disclinations are rotational
defects associated with an angular mismatch, quantified by the Frank angle. In
recent years disclinations have gained growing attention for their role in plasticity
phenomena at small scales.

From a theoretical point of view, both dislocations and disclinations can be
studied using variational methods. The minimizers of the isotropic elastic energies
under the constraint of kinematic incompatibility can be modeled as a finite number
of such defects. One key result is that the renormalized energy of a disclination
dipole is equivalent to that of an edge dislocation under appropriate rescaling.
Building on the variational framework of [10], we investigate the dynamics of a
finite number of disclinations within a two-dimensional circular domain, assuming
that the defects evolve according to the maximal dissipation criterion, in line with
the Peierls-Nabarro approach [9, 11]. This implies that the dynamics follows a
gradient flow structure, where the evolution is governed by the steepest descent of
the renormalized energy.

Our main focus is the study of a dipole of disclinations with equal Frank angles
in a unit disk. Due to symmetry, the problem can be reduced to two degrees of
freedom: the position of the center of the dipole and the distance between the two
defects. Through a detailed force analysis and a numerical implementation based on
the explicit Euler scheme, we identify the stationary regimes and, correspondingly,
classify the qualitative behavior of the system into three categories: a converging
dipole with its center moving toward the origin; a converging dipole with its center
approaching the boundary; and a diverging dipole where the defects move away
from each other.

In the diverging regime, we compute an asymptotic estimate for the dipole
separation, which exhibits a polynomial-in-time growth rate of the distance between
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the defects. In the converging regimes, on the contrary, we observe an exp(-exp)
decay profile in the distance. Regardless of the converging regime, a particularly
interesting outcome is that the collision of disclinations occurs only asymptotically
in time. This behavior contrasts with that of dislocations, which are known to collide
in finite time. Furthermore, in a specific case, we obtain an implicit formulation
for the evolution of the dipole center. After a suitable transformation and a time
renormalization, this formulation turns out to be mathematically equivalent to
the dynamics of a screw dislocation in a circular domain [29], revealing a deep
connection between the two types of defects.

In the final part of this thesis, we derive the dynamics of an edge dislocation
from Eshelby’s equivalence. In particular, to achieve this result, we extract the
non-divergent contribution of the energy. By exploiting the maximal dissipation
criterion, we obtain the dynamics of an edge dislocation in a circular domain. The
obtained dynamics coincides with those derived from the time rescaling of the
disclination dipole dynamics. From the analysis of the problem, it emerges that an
edge dislocation, when located away from the center, tends to reach the boundary
in finite time, while those positioned at the center of the domain remain there due
to symmetry considerations.

vi



Acknowledgements

First of all, I would like to thank Prof. Morandotti and Prof. Cesana for giving
me the opportunity to work on this project, allowing me to discover the beauty
in the smallest defects, as well as for their great support throughout this year. I
would also like to thank Kyushu University and Politecnico di Torino for partially
funding my two trips to Fukuoka: it was an incredibly formative experience that
has contributed significantly to my personal growth and scientific development. In
particular, most of the funding came from the JASSO scholarships offered within
the Kyushu University Programm for Emerging Leaders in Science (Q-PELS). A
special thanks goes to the Institute of Mathematics for Industry, an international
joint usage and research facility located at Kyushu University, which gave me
the opportunity to present part of the results discussed in this thesis at the 2024
Ajou-Kyushu-NIMS Joint workshop and the Forum "Math-for-Industry” 2025 -
Challenge of Mathematics for Industry in the AI era, in South Korea.

vii





Table of Contents

1 Introduction 1
1.1 Dislocations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Disclinations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Eshelby’s equivalence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Variational model for crystalline defects 7
2.1 Compatible elastic model . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 Kinematic incompatibilities . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3 Variational formulation with incompatibilities . . . . . . . . . . . . . . . . 12
2.4 From disclinations to dislocations . . . . . . . . . . . . . . . . . . . . . . . 13

3 Dynamics of a dipole of disclinations 15
3.1 Maximal dissipation criterion . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2 An isolated disclination . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.3 Radial dipole . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.3.1 Numerical simulations . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.3.2 Region 1: boundary behaviour . . . . . . . . . . . . . . . . . . . . 33
3.3.3 Region 2: convergent behavior . . . . . . . . . . . . . . . . . . . . 39
3.3.4 Region 3: diverging behavior . . . . . . . . . . . . . . . . . . . . . 43

3.4 Anisotropic scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.4.1 Fixed distance behavior . . . . . . . . . . . . . . . . . . . . . . . . 46
3.4.2 Fixed center of the dipole . . . . . . . . . . . . . . . . . . . . . . . 47

4 Edge dislocation 53
4.1 The energy of an edge dislocation . . . . . . . . . . . . . . . . . . . . . . . 54
4.2 Dynamics of an edge dislocation . . . . . . . . . . . . . . . . . . . . . . . 56

5 Conclusions and perspectives 61

List of Figures 63

Bibliography 65

ix





Chapter 1

Introduction

In 1907, Vito Volterra published his seminal paper Sur l’équilibre des corps élastiques
multiplement connexes [58], where he introduced a geometric and topological
framework for describing defects in elastic bodies. His construction, later known
as the Volterra’s process, consists of cutting an infinite hollow cylinder along a
surface, performing a rigid transformation (translation or rotation), and welding
the cut surfaces back together. The resulting incompatibility models a defect: a
dislocation if the transformation is translational (Figure 1.1a,b,c), or a disclination
if it is rotational (Figure 1.1d,e,f).

Volterra’s motivation was to explain the discrepancy between theoretical and
experimental values of shear strength in crystalline solids. Classical elasticity, based
on the assumption of perfect crystals, predicted critical stresses one to two orders of
magnitude larger than those observed experimentally. The missing element was the
presence of imperfections breaking lattice periodicity, which dramatically reduces
the stress required for plastic deformation.

Although Volterra’s approach was pioneering, the terminology dislocation was
only introduced in 1927 by Love [37]. A decisive breakthrough occurred in 1934,
when Taylor [56], Orowan [48], and Polányi [49] independently demonstrated that
plastic deformation in metals is mediated by the collective motion of dislocations.
Subsequently, Burgers introduced the concept of the Burgers vector [7], providing
a precise quantitative characterization of dislocations and distinguishing between
edge (Figure 1.1a,b) and screw types (Figure 1.1c).

The theory of rotational defects developed later: in the early 1950s, Frank
and Read formulated a framework for characterizing rotational mismatches [20],
introducing the Frank angle to quantify angular lattice distortions. This marked the
birth of the modern theory of disclinations. In 1956, Hirsch, Horne, and Whelan [60]
achieved the first experimental observation of dislocations through diffraction con-
trast microscopy (TEM), confirming the validity of Volterra’s geometric description
nearly fifty years after its proposal. The development of a systematic theory of
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Introduction

Figure 1.1: Schematic representation of the Volterra’s process. A translational
mismatch produces a dislocation (a,b,c), while a rotational mismatch produces a
disclination (d,e,f). Where b is the Burgers vector, while here ϕ is the Frank Angle.
Credit: [35, Figure 1].

disclinations was largely due to the work of de Wit [14, 15, 16, 17], who provided a
rigorous mathematical formulation, later extended by Romanov [50]. These studies
highlighted the fundamental role of disclinations in describing both plastic and
microplastic phenomena in crystalline materials, explaining the growing attention
that disclinations currently receive in materials science and applied mathematics.

Defects are ubiquitous in nature, from the microstructure of metals to macro-
scopic objects, such as footballs or maize cobs, and play a crucial role in determining
the mechanical properties of materials. In particular, interactions between defects
can lead to emergent material behaviors, such as strain hardening and local brittle-
ness. A paradigmatic example is the annihilation of a pair of dislocations, which
locally inhibits plastic slip. This type of interaction underlies the celebrated Eshelby
equivalence [19], which relates an edge dislocation to a dipole of disclinations. A
formal mathematical proof has been presented in [10], and it has renewed interest
in the interplay between these two classes of defects.

In this chapter, we present the most significant and well-known properties
of dislocations and disclinations, highlighting both the results established in the
existing literature and those derived in the present thesis. Furthermore, we introduce
the key aspects and distinctive features of Eshelby’s equivalence.
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1.1 – Dislocations

1.1 Dislocations
We now return to Volterra’s construction and focus on Figure 1.1a,b,c, which
correspond to a translational defect. Consider a hollow cylindrical body cut along
a generator; depending on how the cut surfaces are re-glued together, one obtains
either an edge (cases a, b) or a screw dislocation (case c).

A screw dislocation is so named because of the helical distortion of the lattice
around the dislocation line, resembling a screw. In contrast, an edge dislocation is
created by the insertion or removal of a half-plane of atoms, producing a wedge-like
lattice distortion. Dislocations are graphically represented by a line indicating the
defect and a Burgers vector b, a quantity introduced by Burgers [7] to characterize
the magnitude and direction of lattice distortion. Mathematically, the Burgers
vector is defined as the closure failure of a circuit surrounding the defect:

b =
j

Γ
∇u(x) dx,

where Γ is a closed contour encircling the dislocation line, and u is the displacement
field. Edge dislocations are characterized by a Burgers vector perpendicular to the
defect line, while screw dislocations have a Burgers vector parallel to the defect
line.

Figure 1.2: On the left a perfect crystal, where the black arrows represent the
circuit Γ; on the right a crystal with an edge dislocation, where the red path
represents the line defect, and b is the Burgers vector. Credit: [23, Figure 9].

From an energetic standpoint, dislocations are costly defects: their elastic energy
diverges logarithmically with the core-radius. This singular behavior makes it
necessary to introduce a variational technique known as the core-radius approach
(for further details, see [8]).

In the case of screw dislocations, it is known that a single dislocation within a
domain tends to be expelled in finite time, while a dipole of dislocations tends to
collide in finite time. Regarding edge dislocations, in this thesis we will show that
the behavior of a single edge dislocation is analogous: it tends to be expelled from
the domain in finite time.
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Introduction

Figure 1.3: On the left a perfect crystal, where the black arrows represent the
circuit Γ; on the right a crystal with screw dislocation where b is the Burgers vector.
Credit: [23, Figure 12].

1.2 Disclinations
We now turn to Figure 1.1.d,e,f, corresponding to rotational defects. Consider
an infinite hollow cylinder; if a triangular wedge of material is inserted and the
cut surfaces are reattached while constraining the lattice to remain flat, atoms
must shift to accommodate the extra wedge, resulting in a negative planar wedge
disclination. Conversely, removing a wedge of material produces a positive planar
wedge disclination [50].

Figure 1.4: Formation of a planar wedge disclination: (a) is the negative disclina-
tion, while (b) is the positive one. Credit: [61, Figure 3].

Isolated disclinations are extremely energetic: their elastic energy diverges
linearly with the area of the sample [54, Formula (2.22)]. making them rare in
crystalline solids. On the other hand, the scenario with a pair of disclinations with
opposite Frank angle, known as dipole, is more common. In [11] the behavior of a
single disclination and a symmetric disclination dipole in a unit disk is analyzed.
Furthermore, in this thesis, we analyze the behavior of a radial disclination dipole
and its dynamical relationship with an edge dislocation. In particular, it has been
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1.3 – Eshelby’s equivalence

Figure 1.5: Scheme of a sample with disclinations. The green point represent a
positive disclination, while the orange one a negative disclination. Credit: [32].

shown that single disclinations tend to be expelled from the domain in infinite time,
whereas a dipole of disclinations may collapse in infinite time.

First experimental evidence for disclinations only became available in 1974 in
nematic liquid crystals [38, 57, 62]. Nevertheless, they arise naturally in many
physical systems, also including grain boundaries in polycrystals [3, 51], biological
structures [24, 44], and engineered tessellations (e.g. Biodôme de Montréal), where
they induce geometric effects, such as curvature.

1.3 Eshelby’s equivalence
Over the years, several relationships between different types of defects have been
studied (see [14, 26, 27, 31, 43, 50] for historical and technical overviews). Of
particular interest in this work is the equivalence proposed by Eshelby in [19], which
states that a dipole of disclinations behaves, in the limit where the distance between
the two singularities tends to zero, as an edge dislocation. This equivalence suggests
a deep geometric and energetic equivalence between dislocations and disclinations,
despite their fundamentally different characterizations.

This relationship is particularly important for two main reasons: first, it allows
us to elegantly derive the formulation for the dynamics of an edge dislocation,
which was previously unknown; second, it enables a more detailed investigation
of plasticity and microplasticity phenomena associated with the presence of such
defects. In particular, the link with plasticity is discussed in [2, 21, 34, 42, 50, 55],
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where it is observed that, as the number of defects in the domain increases, a plastic
behavior emerges. Based on this equivalence, it would therefore be possible to gain
additional insight by understanding how the presence of such defects influences
plastic behavior. Clearly, a deeper understanding of this phenomenon would have
significant applications in engineering and materials science, providing further
knowledge for the design of innovative materials, such as graphene [51].

This energetical equivalence bridges two fundamental types of lattice defects,
linking disclinations, rare but powerful sources of rotational distortion, to disloca-
tions. In Chapter 2, we analyze the mathematical model and some sketches of the
proof strategy from [10, Section 4] that establish this equivalence rigorously.
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Chapter 2

Variational model for
crystalline defects

The study of crystalline defects has developed along fragmented paths, driven both
by the evolution of experimental techniques and by advances in continuum modeling.
Discrete and continuum descriptions have been proposed for both dislocations and
disclinations (see, e.g., [54] for dislocations and [50] for disclinations). However,
classical linearized continuum models, while mathematically tractable, often suffer
from either excessive complexity or insufficient mechanical fidelity at the defect
scale, reducing their effectiveness in delivering quantitative, predictive insight.

A turning point came with the introduction of Γ-convergence (see [12, 13]), which
provided a powerful variational framework to pass from discrete to continuum
and to extract effective models in singularly perturbed problems. Within this
framework, Cermelli and Leoni [8] addressed the issue of the infinite elastic energy
associated with line defects by introducing what is now known as the core-radius
regularization approach: the energy is analyzed by removing a disk, or core, of radius
ε > 0 around each singularity, and the contributions to the energy that diverge in
the limit as ε → 0 are isolated to define a finite, renormalized energy/force. This
paradigm paved the way for a series of works on linear models for screw dislocations
[21, 40] and nonlinear variants [41], and it underpins dissipative evolutions driven
by renormalized forces under the maximal dissipation criterion [9].

In this chapter we adopt the viewpoint proposed in [9], which is both concise
and robust: it makes the role of incompatibilities transparent, yields the governing
PDE as Euler–Lagrange conditions, and is well suited for singular limits. We first
set up the compatible elastic model, then introduce kinematic incompatibilities
that encode point defects, and finally derive the PDE formulation. We then use
this framework to explain, in a precise asymptotic sense, how disclination dipoles
converge to edge dislocations, following the analysis in [10].
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Variational model for crystalline defects

2.1 Compatible elastic model
Let Ω ⊂ R2 be a bounded, simply connected domain with ∂Ω ∈ C2. We work in
planar linearized elasticity (plane strain kinematics), placing the reference frame
on the cross-section of the body so that line defects appear as points in Ω ⊂ R2.
The displacement is u ∈ H1(Ω;R2), with linearized strain

ϵ := ∇symu = 1
2

1
∇u+ ∇u⊤

2
∈ L2(Ω;R2×2

sym). (2.1)

For an isotropic material with Lamé constants λ and µ, the Cauchy stress is

σ = Cϵ = λ tr(ϵ) I + 2µ ϵ, (2.2)

with
µ = E

2(1 + ν) and λ = Eν

(1 + ν)(1 − 2ν) ,

where E > 0 is the Young’s modulus and ν ∈ (−1, 1
2) is the Poisson ratio. An

equivalent formulation of (2.2) is

σ = Eν

(1 − ν)(1 − 2ν)cof ϵ+ E

1 − 2ν ϵ,

and its inverse formulation reads

ϵ = C−1σ = 1 − ν2

E
σ − (1 + ν)ν

E
cof σ, (2.3)

where we define cof : R2x2 → R2x2 so thatA
m11 m12
m21 m22

B
= m → cof m =

A
m22 −m21

−m12 m11

B
.

The elastic energy reads

E(u; Ω) = 1
2

Ú
Ω
σ : ϵ dx = 1

2

Ú
Ω

1
λ tr(ϵ)2 + 2µ |ϵ|2

2
dx. (2.4)

We now introduce the Airy potential v ∈ H2(Ω) so that

σ11 = ∂2
yv, σ22 = ∂2

xv, σ12 = σ21 = −∂2
xyv. (2.5)

By using the Airy potential it is possible to express σ in terms of v

σ = σ[v] = A(v), (2.6)
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2.2 – Kinematic incompatibilities

where A is defined as

A(v) = cof (∇2v) =
 ∂2

yyv −∂2
xyv

−∂2
yxv ∂2

xxv

 . (2.7)

From (2.7) we can observe that the condition

div σ[v] = div (cof (∇2v)) = 0 in Ω (2.8)

is always satisfied. In terms of v, the energy in (2.4) can be written as

G(v; Ω) = 1
2

1 + ν

E

Ú
Ω

1
|∇2v|2 − ν (∆v)2

2
dx, (2.9)

which is strictly convex, bounded below and coercive [10, Section 2]. The traction-
free boundary condition

σn = 0 on ∂Ω

translates, using (2.6), into

0 = σ[v]n = cof (∇2v)n =
 ∂2

yyv −∂2
xyv

−∂2
yxv ∂2

xxv

An1
n2

B
= ∇2v t (2.10)

where n is the outward unit normal and t := Rn is the unit tangent obtained via
the π/2-rotation R = ( 0 −1

1 0 ).

2.2 Kinematic incompatibilities
Let us consider a field V = (V1, V2) : Ω → R2, we define

curlV := ∂xV2 − ∂y V1 .

If M is a 2 × 2 matrix, we introduce the operator

CurlM = (curlM (1), curlM (2)),

where M (r) is the r-th row of M . Let u ∈ C3, we set

β := ∇u

and decompose it in
β = ϵ+ ω, (2.11)

9



Variational model for crystalline defects

with ϵ defined in (2.1) and ω := 1
2(β − β⊤). By construction,

ω =
A

0 f
−f 0

B
, (2.12)

for some f ∈ C2 and it follows that Curlω = ∇f . By applying Curl to (2.11), and
recalling that Curl ∇ = 0, it follows that

Curl ϵ = −∇f. (2.13)

By applying the curl to (2.13), one has the de Saint-Venant condition [53]:

curl Curl ϵ = 0. (2.14)

Vice versa, it is possible to prove that from (2.14), with ϵ ∈ C2(Ω,R2x2
sym), it follows

that u ∈ C3(Ω,R2) such that ϵ = ∇symu. In particular, in [10, Proposition 1.1]
it is shown that it is possible to extend (2.14) also to u ∈ H1(Ω,R2), the natural
Sobolev space for applying the direct method of calculus of variations. We consider
H1(Ω,R2) to be the natural functional setting for the application of the direct
method in the calculus of variations, due to several key properties:

(i) H1(Ω,R2) is a reflexive Banach space, which ensures the weak compactness
of bounded sequences, a fundamental requirement for extracting convergent
subsequences of minimizing sequences;

(ii) many energy functionals arising in elasticity and mechanics are coercive and
lower semicontinuous with respect to the weak topology of H1, ensuring the
existence of minimizers via the direct method;

(iii) in problems where the strain tensor ϵ = ∇symu appears, the weak differentia-
bility of u ∈ H1(Ω,R2) is sufficient to give meaning to ϵ ∈ L2(Ω,R2×2

sym), so
that the energy functional depending on ϵ is well-defined.

Hence, H1(Ω,R2) provides the minimal regularity assumptions under which the
variational problem is well-posed and the standard tools of functional analysis can
be effectively applied.

Let us now suppose that f ∈ L2(Ω) and consider the operator ∇ in the sense of
distribution. By denoting with D′(Ω) the distributions, we can state that

Curl β = α with α ∈ D′(Ω),

so it follows that
Curl ϵ = α− ∇f.

10



2.2 – Kinematic incompatibilities

In the same fashion, we suppose that

Curl ∇f = θ , with θ ∈ D′(Ω),

then it follows that the de Saint-Venant condition now reads

curl Curl ϵ = curlα − θ. (2.15)

For finitely many point defects J,K ∈ N we take

α :=
JØ

j=1
bj δxj , θ :=

KØ
k=1

sk δyk , (2.16)

where α is the dislocation measure and θ is the disclination measure. Here bj ∈ R2

is a Burgers vector, sk ∈ R is a Frank angle, and δz is the Dirac delta centered at z
the position of the defect. In this chapter we focus only on disclinations, so we set
α ≡ 0 in (2.15). The differential problem describing the disclination incompatibility
reads 

curl Curl ϵ = −θ in Ω,
div σ = 0 in Ω,
σ n = 0 on ∂Ω.

(2.17)

From (2.3) and (2.6) it follows that

ϵ = 1 + ν

E

A
(1 − ν)σ11 − νσ22 σ12

σ12 (1 − ν)σ22 − νσ11

B

= 1 + ν

E

A
(1 − ν)∂2

yyv − ν∂2
xxv −∂2

xyv
−∂2

xyv (1 − ν)∂2
xxv − ν∂2

yyv

B

By applying the de Saint-Venant condition, we obtain that

Curl ϵ =
A

curl ϵ(1)

curl ϵ(2)

B
=
A
∂x ϵ12 − ∂y ϵ11
∂x ϵ22 − ∂y ϵ12

B

curl Curl ϵ = ∂x(∂x ϵ22 − ∂y ϵ12) − ∂y(∂x ϵ12 − ∂y ϵ11)
= ∂2

xx ϵ22 − 2 ∂2
xy ϵ12 + ∂2

yy ϵ11

11



Variational model for crystalline defects

curl Curl ϵ[v] = 1 + ν

E
∂2

xx [(1 − ν)∂2
xxv − ν∂2

yyv]

+ 2 1 + ν

E
∂2

xy ∂
2
xy v + 1 + ν

E
∂2

yy [(1 − ν)∂2
yyv − ν∂2

xxv]

= 1 + ν

E
[(1 − ν)(∂4

xxxxv + ∂4
yyyyv + 2 ∂4

xxyy v)]

= 1 − ν2

E
(∂4

xxxx v + ∂4
yyyyv + 2 ∂4

xxyy v)

= 1 − ν2

E
∆2 v.

So now the problem reads

1 − ν2

E
∆2v = −θ in Ω. (2.18)

Combining (2.8), (2.10), and (2.18), we can express (2.17) as


1−ν2

E
∆2v = −θ in Ω,

∇2v t = 0 on ∂Ω.
(2.19)

2.3 Variational formulation with incompatibili-
ties

The variational functional that encodes the elastic response and the incompatibility
source is

Iθ(v; Ω) := G(v; Ω) + ⟨θ, v⟩

:= 1
2

1 + ν

E

Ú
Ω

1
|∇2v|2 − ν (∆v)2

2
dx +

KØ
k=1

sk v(yk), (2.20)

to be minimized over v ∈ H2(Ω) subject to the traction-free boundary condition
(2.10). In particular, G is the elastic contribute in (2.20), whereas the linear term
⟨θ, v⟩ is the natural duality pairing between the disclination measure and the Airy
potential.

12



2.4 – From disclinations to dislocations

A standard computation shows that for any φ ∈ H2
0 (Ω) with (∇2φ) t = 0 on ∂Ω,

d
dη

----
η=0

Iθ(v + ηφ) = d
dη

----
η=0

A
G(v + ηφ; Ω) + ⟨θ, v + ηφ⟩

B

= d
dη

----
η=0

A
1
2

1 + ν

E

Ú
Ω

C
(∇2v + η∇2φ)2 − ν(∆v + η∆φ)2

D
dx

+ ⟨θ, v⟩ + η⟨θ, φ⟩
B

= 1 + ν

E

Ú
Ω

1
∇2v∇2φ− ν∆v∆φ

2
dx+ ⟨θ, φ⟩

= 1 − ν2

E

Ú
Ω

∆v∆φ dx+ ⟨θ, φ⟩.

Integrating by parts twice and using the traction-free boundary condition yields
the Euler–Lagrange equation

1 − ν2

E
∆2v = −θ in Ω, ∇2v t = 0 on ∂Ω. (2.21)

Equation (2.21) is precisely the distributional form of the incompatibility relation
curl Curl ϵ = − θ, expressed through the Airy function (2.5).

2.4 From disclinations to dislocations
We now show how an edge dislocation emerges as the limit of a disclination dipole.
Fix a point x ∈ Ω and a unit vector e ∈ S1; for h > 0 small, we define the dipole
measure

θh = s
1
δx+ h

2 e − δx− h
2 e

2
,

with Frank angle s ∈ R. The associated energy is

Iθh(v; Ω) = 1
2

1 + ν

E

Ú
Ω

1
|∇2v|2 − ν(∆v)2

2
dx + s

è
v
1
x+ h

2e
2

− v
1
x− h

2e
2é
.

To analyze the relevant rescaling for the Airy stress function, we assume v → hw.
It follows that

G(hw; Ω) = 1
2

1 + ν

E

Ú
Ω

1
|∇2(hw)|2 − ν(∆(hw))2

2
dx

= 1
2

1 + ν

E
h2
Ú

Ω

1
|∇2w|2 − ν(∆w)2

2
dx

= h2G(w; Ω) (2.22)
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Variational model for crystalline defects

and
⟨θh, hw⟩ = h⟨θh, w⟩. (2.23)

Motivated by the emerging h2 term in (2.22), we introduce the following rescaled
functional:

J h(w; Ω) := 1
h2 Iθh(hw; Ω) = G(w; Ω) +

K
θh

h
,w

L
= Iθh/h(w; Ω)

= 1
2

1 + ν

E

Ú
Ω

1
|∇2w|2 − ν(∆w)2

2
dx+ s

w
1
x+ h

2e
2

− w
1
x− h

2e
2

h
.

(2.24)
As h → 0, the last term converges to the directional derivative of w:

w
1
x+ h

2e
2

− w
1
x− h

2e
2

h
−→ ∂ew(x), (2.25)

which can be expressed, in the sense of distributions, using the derivative of a Dirac
delta, as

∂ew(x) = − ⟨∂eδx, w⟩.
Therefore, J h converges to the limiting functional

Iedge(w; Ω) = 1
2

1 + ν

E

Ú
Ω

1
|∇2w|2 − ν(∆w)2

2
dx − s ⟨∂eδx, w⟩. (2.26)

Regarding the boundary condition ∇2v t = 0, we observe that, due to the parame-
terization of v and the linearity of the operator ∇, it follows that

0 = ∇2v t = ∇2(hw) t = h∇2w t.

The Euler–Lagrange equation associated with (2.26) is
1 − ν2

E
∆2w = s ∂eδx in Ω, ∇2w t = 0 on ∂Ω, (2.27)

which is the Airy formulation for an edge dislocation located at x. Geometrically,
the Burgers vector b is orthogonal to the dipole axis e (up to the π/2 rotation
relating σ and ∇2v), with magnitude proportional to |s|:

b = sRe, (2.28)
consistent with the fact that an edge dislocation arises as the limit of two opposite
disclinations approaching along e.
Remark 2.4.1 (Eshelby’s equivalence). Identity (2.27) shows that the energy of a
disclination dipole rescaled by h2 and its corresponding governing PDE converge
to those of an edge dislocation as the distance h → 0, thus establishing Eshelby’s
equivalence in a rigorous variational sense (see [10, Section 4] for a complete proof,
recovery sequences, and compactness).
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Chapter 3

Dynamics of a dipole of
disclinations

3.1 Maximal dissipation criterion
Defects in crystalline lattices, such as dislocations, disclinations, vacancies, and
grain boundaries, are known to significantly alter the mechanical, electrical, and
thermal properties of materials. These defects can, for instance, act as stress
concentrators [36, 59], or reduce the thermal [28, 52] and electrical [18] conductivity.
In particular, with regard to disclinations, in [2, 34, 42, 50] is observed that plastic
phenomena in crystalline solids can be attributed to defects and, in particular, to
the breaking of rotational symmetry. Understanding the dynamics of these defects,
namely, how they move, interact with each other, or with the domain boundaries, is
therefore essential for a deeper investigation of the mechanisms governing plasticity
in crystalline materials [55].

The evolution of defect dynamics can be described through the so-called maximal
dissipation criterion (as done, e.g., in [9, 11, 29]), a variational principle that
provides a theoretical framework consistent with the second law of thermodynamics.
This principle allows one to derive motion laws for defects or plastic deformations
that are energetically admissible within the system [39]. It is applicable both
in discrete models and in continuum formulations, and has been successfully
employed, for instance, in the study of screw dislocations within the Peierls–Nabarro
framework, where the evolution is governed by the so-called Peach–Koehler force
[4, 5, 6, 30, 46].
In this thesis, we aim to extend the application of the maximal dissipation criterion
to the case of disclinations, as recently proposed in [11]. According to this approach,
given the minimal energy associated with the system as a function of the defect
position, the dynamics is obtained by imposing that the velocity of the defect is
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Dynamics of a dipole of disclinations

proportional to the negative gradient of the energy with respect to its position,
thereby ensuring a monotonic dissipation of energy over time.

Let
v̄ = arg min

î
Iθ(v; Ω)

--- v ∈ H2
0 (Ω)

ï
be the configuration that minimizes the elastic energy under homogeneous boundary
conditions (v = ∂nv = 0 on ∂Ω). In particular, we consider v ∈ H2

0 (Ω), as this is
the minimum regularity required to guarantee that the energy is in L2. Moreover,
as demonstrated in [10, Proposition A.2], we have the following equivalence:

∇2 v t = 0 on ∂Ω ⇐⇒ v = a, ∂nv = ∂na on ∂Ω, (3.1)

for some affine function a. By exploiting the fact that the problem is closed under
rigid body motions, we can choose a = 0 and thus minimize over H2

0 (Ω). Since
v̄ is also a solution to the associated differential problem in (2.21), we can apply
Clapeyron’s theorem, which implies that

G(v̄; Ω) = −1
2⟨θ, v̄⟩. (3.2)

Clapeyron’s theorem, in this context, establishes a fundamental relationship between
the elastic energy stored in the system and the work done by the sources of
incompatibility on the deformation v̄. More precisely, the term ⟨θ, v̄⟩ can be
interpreted as the mechanical work exerted by the disclinations (represented by θ)
on the resulting elastic configuration. This principle is consistent with the classical
energetic interpretation in linear elasticity theory and is essential for deriving
explicit formulas for the energy in the presence of localized defects.

In the special case where the domain Ω is the disk of radius R > 0 centered
at the origin, Ω = BR(0), the solution v̄ corresponds to the one obtained in the
so-called clamped disk problem, as described in [45]. In (3.5) below, we will first
derive the solution to the biharmonic problem and then impose the boundary
conditions. As introduced in Section 2.2, by substituting the definition of θ given
in (2.16) into (3.2), we obtain the explicit expression for the energy:

G(v̄;BR(0)) = −1
2

KØ
k=1

skv̄(yk), (3.3)

where K denotes the number of disclinations present in the domain, and each
pair (sk, y

k) represents the Frank angle and the position of the k-th disclination,
respectively.
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3.1 – Maximal dissipation criterion

Let us restrict ourselves, for the moment, to the case of a single disclination,
K = 1. In this scenario, the differential problem reads

1 − ν2

E
∆2v = −sδy in BR(0),

v = ∂nv = 0 on ∂BR(0),
(3.4)

where y ∈ BR(0) represents the position of the single disclination and the associated
energy functional is

Iθ(v;BR(0)) = G(v;BR(0)) + s⟨δy, v⟩,

where δ is a Dirac delta centered in y.
The problem in (3.4) can be interpreted as a point source energy version of

the clamped disk problem, where the source term is represented by a disclination
localized at the point y ∈ BR(0). The solution v̄ can be expressed in terms of the
Green’s function of the biharmonic operator with clamped boundary conditions, as
presented in [45].
Under the assumption that the biharmonic operator ∆2 is defined as the composition
of the Laplacian with itself, i.e., ∆2 = ∆∆, and by reformulating the problem in
polar coordinates, we have that

1
ρ
∂ρ(ρ∂ρ(1

ρ
∂ρ(ρ∂ρv̄))) = 0; (3.5)

∂ρ(1
ρ
∂ρ(ρ∂ρv̄)) = A

ρ
;

∂ρ(ρ∂ρv̄) = Aρ log ρ+Bρ;

∂ρv̄ = A
4 ρ(log ρ2 − 1) + B

2 ρ+ C
ρ
;

v̄ = Ãρ2 log ρ2 + B̃ρ2 + C log ρ+D.

From this expression, we aim to determine the constants Ã, B̃, C, and D by
imposing the boundary conditions v = ∂nv = 0 on ∂BR(0). More precisely, the
function v̄ ∈ H2

0 (Ω) is such that

v̄(x) :=


ū(x), x ∈ BR(0) \ {y},

w̄, x = y,
(3.6)

where the terms ū(x) and w̄ are explicitly given by:

ū(x) := − E

1 − ν2
sR2

16π

 |x− y|2

R2 log
A

|x− y|2

R2

B
+
A

1 − |x|2

R2

BA
1 − |y|2

R2

B

− |x− y|2

R2 log
A
R4 − 2R2x · y + |x|2|y|2

R4

B,
17



Dynamics of a dipole of disclinations

w̄ := − E

1 − ν2
sR2

16π

A
1 − |y|2

R2

B2

.

Substituting the expression for v̄(x) into (3.3) yields

G(v̄;BR(0)) = E

1 − ν2
s2R2

32π

A
1 − |y|2

R2

B2

. (3.7)

We now generalize to the case where K disclinations are present inside the
domain. Exploiting the principle of superposition of effects, the differential problem
reads 

1 − ν2

E
∆2v = −θK in BR(0),

v = ∂nv = 0 on ∂BR(0),

where θK represents the total incompatibility distribution generated by the K
defects, each localized at the point yk ∈ BR(0) with Frank angle sk.

Thanks to the linearity of the biharmonic operator and the boundary condi-
tions, the solution to the problem can be expressed as the sum of the solutions
corresponding to single-defect problems. Let v̄k denote the solution associated with
the defect located at yk, that is:

v̄(x) =
KØ

k=1
v̄k(x), with v̄k(x) :=


ūk(x), x ∈ BR(0) \ {yk},

w̄k, x = yk,
(3.8)

where the functions ūk(x) and w̄k are explicitly given by:

ūk(x) = −Csk

 |x− yk|2

R2 log
A

|x− yk|2

R2

B
+
A

1 − |x|2

R2

BA
1 − |yk|2

R2

B

− |x− yk|2

R2 log
A
R4 − 2R2x · yk + |x|2|yk|2

R4

B,

w̄k := −Csk

A
1 − |yk|2

R2

B2

,

where the constant C is defined as

C := ER2

16π(1 − ν2) . (3.9)

18



3.1 – Maximal dissipation criterion

Substituting the expression for v̄(x) in (3.8) into the energy in (3.3), it follows that

G(v̄;BR(0)) = −1
2

KØ
k=1

skv̄(yk) = −1
2

KØ
k=1

KØ
ℓ=1

skv̄ℓ(yk) =

= −1
2

KØ
k=1

skv̄k(yk) −
KØ

k=1

KØ
ℓ=k+1

skv̄ℓ(yk) =

= −1
2

KØ
k=1

skw̄k −
KØ

k=1

KØ
ℓ=k+1

skūℓ(yk),

which yields a fully explicit formulation of the elastic energy of the system as a
function of the positions yk and intensities sk of the disclinations. This expression
constitutes a fundamental starting point for the study of defect dynamics and their
mutual interactions.

At this point, by applying the maximal dissipation criterion, it is possible
to derive the dissipative dynamics of the defects by considering the gradient of
the energy with respect to the position of each disclination. This leads to the
formulation of the following system of ordinary differential equations:

ẏk(t) = −λk∇ykG(v̄, BR(0)),

yk(0) = yk,0 ,
(3.10)

where λk is a positive parameter with units [λk] = [s kg−1].
In the isotropic case where λk = λ for all k, it is possible to perform a nondi-

mensionalization of the problem by introducing the following scaled variables:

Yk = yk

R
X = x

R
, G = CH, T = λC

R2 t,

where
C = ER2

16π(1 − ν2)
is the constant introduced previously in (3.9) and H denotes the nondimensionalized
energy.

In the following treatment, unless otherwise specified, the isotropic case will
be considered. However, in Section 3.4, two particular anisotropic cases for the
disclination dipole problem will be analyzed: the fixed distance and the constrained-
center of the dipole scenarios, for which the corresponding dynamics will be derived.

The nondimensional system describing the evolution of the disclinations thus
takes the form: 

Ẏk = −∇Yk
H(Y1, . . . , YK), k = 1, . . . , K;

Yk(0) = Yk,0 , k = 1, . . . , K;
(3.11)
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Dynamics of a dipole of disclinations

where, by a slight abuse of notation, Ẏk denotes the derivative with respect to the
nondimensional time T of the normalized position of the k-th disclination and

H(Y1, . . . , YK) = 1
2

KØ
k=1

s2
k(1 − |Yk|2)2 +

KØ
k=1

KØ
ℓ=k+1

sksℓ(1 − |Yℓ|2)(1 − |Yk|2)

+
KØ

k=1

KØ
ℓ=k+1

sksℓ|Yℓ − Yk|2 log |Yk − Yℓ|2

|Yk − Yℓ|2 + (1 − |Yk|2)(1 − |Yℓ|2)
. (3.12)

We have thus derived the dynamics of a finite number of disclinations in the domain
S1, by employing the maximal dissipation criterion. This leads to the following
system of ordinary differential equations

Ẏk = Fk(Y1, . . . , YK), k = 1, . . . , K;

Yk(0) = Yk,0, k = 1, . . . , K,
(3.13)

where

Fk(Y1, . . . , YK) := F
(1)
k (Yk) +

KØ
ℓ=1,ℓ /=k

F
(2)
kℓ (Yk, Yℓ) +

KØ
ℓ=1,ℓ /=k

F
(3)
kℓ (Yk, Yℓ), (3.14)

with

F
(1)
k (Yk) := 2s2

k(1 − |Yk|2)Yk;

F
(2)
kℓ (Yk, Yℓ) := 2sksℓ

A
1 − |Yk − Yℓ|2

|Yk − Yℓ|2 + (1 − |Yk|2)(1 − |Yℓ|2)

B
(1 − |Yℓ|2)Yk;

F
(3)
kℓ (Yk, Yℓ) := 2sksℓ

C
1 − |Yk − Yℓ|2

|Yk − Yℓ|2 + (1 − |Yk|2)(1 − |Yℓ|2)
+

log
A

|Yk − Yℓ|2

|Yk − Yℓ|2 + (1 − |Yk|2)(1 − |Yℓ|2)

BD
(Yk − Yℓ) .

We observe that the Cauchy–Lipschitz (or Picard–Lindelöf) theorem applies to
(3.13), ensuring the global existence and uniqueness of the solution.

3.2 An isolated disclination
Following the work in [11], let us now consider the case of a single disclination
(K = 1) in the domain, characterized by a Frank angle of magnitude s > 0. In
this case, the non-dimensional energy (obtained by (3.7) imposing the rescaled
variables) related to a single disclination is

H(Y ) = s2

2 (1 − |Y |2)2 (3.15)
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3.2 – An isolated disclination

and the dynamics reduces to the following differential equation:Ẏ = 2s2(1 − |Y |2)Y ,
Y (0) = Y0 ,

(3.16)

where Y0 ∈ S1 represents the initial (nondimensional) position of the defect.
To analyze the dynamics, we introduce a polar complex representation:

Y (T ) = ρ(T )eiϕ(T ),

where ρ(T ) ∈ [0,1) is the modulus and ϕ(T ) ∈ [0, 2π) is the phase. In these
variables, the system separates into the two equations:

ρ̇ = 2s2(1 − ρ2)ρ,

ρ(0) = ρ0,


ϕ̇ = 0,

ϕ(0) = ϕ0.
(3.17)

The second system shows that the polar angle ϕ remains constant in time, while
the evolution of the radial distance from the center ρ is governed by a logistic
equation (for ρ /= 0). The explicit solution to the problem is given by:

ρ(T ) = 1ñ
1 + µ0e4s2T

, ϕ(T ) = ϕ0, ∀T > 0, (3.18)

where µ0 = 1−ρ2
0

ρ2
0

.
We first observe that the dynamics of the disclination does not depend on the

sign of s, but only on its magnitude: positive and negative disclinations evolve
identically. From solution (3.18) it follows that:

• if ρ0 = 0, the disclination is initially located at the center of the disk, the
solution remains constant over time: ρ(T ) ≡ 0 for all T > 0. In this case, the
defect does not move due to the symmetry of the problem;

• if ρ0 /= 0, then ρ(T ) → 1 as T → +∞, meaning the disclination is progressively
attracted toward the boundary of the domain;

• the attraction towards the boundary is asymptotic: the defect’s position
approaches |Y (T )| = 1 only as T → +∞, so no collision with the boundary
occurs in finite time;

• The configuration with the disclination centered is unstable: even a small
perturbation of ρ0 leads the trajectory to diverge towards the boundary.
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Dynamics of a dipole of disclinations

In particular, we can prove the last remark by observing that ρ(T ) = 0 is a
stationary point and

d
dρ(2s2(1 − ρ2)ρ)

-----
ρ=0

= 2s2(1 − 3ρ2)
---
ρ=0

= 2s2 > 0, (3.19)

so we can conclude that ρ = 0 is an unstable point.
This simple case reveals a fundamental behavior: in the presence of a single

disclination, the energy of the system is minimized when the defect reaches the
boundary of the domain. This effect is reflected in the dynamics, which drives the
disclination toward the boundary, consistent with the maximal dissipation criterion.

3.3 Radial dipole
The analysis of the dynamics of defects configurations in elastic materials is of
fundamental importance for understanding the mechanisms that govern mechanical
properties at the microscopic scale. In particular, while the presence of isolated
disclinations is theoretically significant, such configurations are energetically un-
favorable in practice: a single disclination generates a long-range stress field that
results in infinite energy in unbounded domains, or in any case leads to very
high energy even in bounded ones [22]. For this reason, the configurations most
commonly observed in nature are those in which defects combine into more ener-
getically stable structures. One of the simplest and most relevant among these is
the disclination dipole. This configuration is energetically more compact, as the
stress fields generated by the two defects tend to cancel each other out at large
distances [25, 33, 42].
Let s1 = −s2 =: s > 0 denote the Frank angle of the dipole of disclinations.
The dynamics of the system consisting of two interacting disclinations in a two-
dimensional domain is governed by the following system of ordinary differential
equations: 

Ẏ1 = −∇Y1H(Y1, Y2),

Ẏ2 = −∇Y2H(Y1, Y2),
(3.20)

where H denotes the nondimensional energy of the system, which depends on the
positions of the two defects and is obtained from (3.12) by imposing K = 2:

H(Y1, Y2) = s2

2

C
(1 − |Y1|2)2 + (1 − |Y2|2)2

D
− s2(1 − |Y1|2)(1 − |Y2|2)

− s2|Y1 − Y2|2 log |Y1 − Y2|2

|Y1 − Y2|2 + (1 − |Y1|2)(1 − |Y2|2)
.
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3.3 – Radial dipole

We now consider the case where the dipole is arranged radially, meaning that
the line connecting the defect positions passes through the center of the disk. We
introduce the following quantities.
Definition 3.3.1. We define the distance as the length of the segment joining
the two defects:

h(T ) := h(Y1(T ), Y2(T )) =
---Y1(T ) − Y2(T )

--- .
Definition 3.3.2. We define the center of the dipole as the arithmetic mean of
the positions of the two disclinations:

d(T ) := d(Y1(T ), Y2(T )) = Y1(T ) + Y2(T )
2 .

Without loss of generality, we assume that Y1 > Y2. The positions of the two
defects can therefore be rewritten as:

Y1(T ) = d(T ) + h(T )
2 and Y2(T ) = d(T ) − h(T )

2 .

d

h
Y1Y2

O

Figure 3.1: A disclination dipole in radial symmetry. The green triangle represents
a negative disclination, while the orange one is a positive disclination.

After performing this change of variables and exploiting the symmetry of the
decomposition, the problem is now defined in the domain

Ω̃ :=
I

(h, d) ∈ (0,2) × [0,1) : 0 < d+ h

2 ≤ 1
J
,
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Dynamics of a dipole of disclinations

instead of the original unit disk. By substituting this representation into the
System (3.20), we obtain the following dynamical system for the variables (h, d):ḣ = F1 − F2,

h(0) = Y1,0 − Y2,0 =: h0,

ḋ = (F1 + F2)/2,
d(0) = (Y1,0 + Y2,0)/2 =: d0,

(3.21)

where h0, d0 are the initial conditions for the distance of the defects and the center
of the dipole and they are obtained from Y1,0, Y2,0 the initial positions of the defects.
In (3.21), we have posed

F1 := F1(h, d) = 2s2
C
2h log

A
4h

h2 + 4 − 4d2

B
− h

A
4h

h2 + 4 − 4d2

B2

+ h

+
A
d+ h

2

BA
h

2 + d− 1
B

+
A
d+ h

2

BA
− d2 + d h− h2

4 + 1
B

·

·
A

−16d4 + 8d2h2 + 32d2 − h4 + 8h2 − 16
(h2 + 4 − 4d2)2

BD

and

F2 := F2(h, d) = −2s2
C
2h log

A
4h

h2 + 4 − 4d2

B
+ h

A
4h

h2 + 4 − 4d2

B2

− h

−
A
d− h

2

BA
h

2 − d+ 1
B

−
A
d− h

2

BA
− d2 + d h+ h2

4 − 1
B

·

·
A

−16d4 + 8d2h2 + 32d2 − h4 + 8h2 − 16
(h2 + 4 − 4d2)2

BD

For the sake of clarity, we introduce:

f(h, d) := F1 − F2

= 4s2h

C
2 log

A
4h

h2 − 4d2 + 4

B
− 2h2d2 + h2 − 8d4 + 12d2 − 4

h2 − 4d2 + 4

D
(3.22)

as the driving force of the distance between the defects and

g(h, d) := F1 + F2

2 = −2s2h2d(h2 − 4d2)
h2 − 4d2 + 4 (3.23)

as the driving force of the center of the dipole.
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3.3 – Radial dipole

System (3.21) governs the time evolution of the dipole configuration within the
domain. A qualitative analysis of its solutions reveals whether the defects tend to
migrate toward the boundary or remain in symmetric configurations, depending
on the initial data and the geometric features of the setting. Figure 3.2 displays
the plots of the two driving forces. In particular, Figure 3.2a illustrates the
behavior of the forcing term associated with the evolution of the distance h between
the disclinations. A negative value of this function corresponds to an attractive
interaction (the distance h decreases), while a positive value indicates repulsion
(the defects move apart). Zero values identify configurations where the distance
remains stationary. Similarly, Figure 3.2b shows the driving force governing the
evolution of the center of the dipole d. When this force is negative, the dipole
moves toward the center of the domain, while a positive value indicates a drift
toward the boundary. Again, vanishing values correspond to stationary positions
of the center of the dipole.

(a) Distance between the defects (b) Center of the dipole

Figure 3.2: Behavior of the forcing functions of System (3.21).

We now proceed to analyze the dynamics of the system by identifying the zeroes
of the functions f(h, d) and g(h, d). Setting f(h, d) = 0, we find that the trivial
condition h = 0 is a solution for all d, as well as the more involved condition

2 log
A

4h
h2 + 4 − 4d2

B
− 2h2d2 + h2 − 8d4 + 12d2 − 4

h2 + 4 − 4d2 = 0.

Similarly, solving g(h, d) = 0, we obtain the solutions h = 0 for all d, d = 0 for all
h, and h = 2d. Figure 3.3 displays the zero-level curves of both functions. The
intersections of these curves indicate stationary configurations for the dipole.
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Dynamics of a dipole of disclinations

(a) Distance between the defects (b) Center of the dipole

Figure 3.3: Zeroes of f(h, d) and g(h, d).

We are interested in identifying the equilibrium points (h∗, d∗) of the dynamical
system (3.21), namely the stationary configurations of the disclination dipole. These
are the points in the domain Ω̃ such that both driving forces vanish:

f(h∗, d∗) = 0 and g(h∗, d∗) = 0.

We identify and characterize the following stationary points.

Lemma 3.3.1 (Stationary points). The following hold:

1. the point E1 = (2, 0) is an asymptotically stable equilibrium;

2. the point E2 = (1, 1
2) is an unstable equilibrium;

3. the point E3 = (h∗, 0), with h∗ ≈ 0.8, is an unstable equilibrium (the same
equilibrium point analyze in [11]);

4. the set E4 = {(h, d) ∈ Ω : h = 0} is an attracting set.

Proof. To analyze the stability of E1, E2, E3, we compute the Jacobian matrix of
the system:

J(h, d) =
C
∂hf(h, d) ∂df(h, d)
∂hg(h, d) ∂dg(h, d)

D
,

with

∂hf(h, d) = 4 s2
C
2 log

A
4h

h2 + 4 − 4 d2

B

− 32d6 − 16d4(h2 + 7) + 2d2(h4 + 64) + 3h4 + 16h2 − 48
(h2 − 4 d2 + 4)2

D
;
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3.3 – Radial dipole

∂df(h, d) = −16 d h s2 (16 d4 − 8 d2 h2 − 16 d2 + h4 + 8h2)
(−4 d2 + h2 + 4)2 ;

∂hg(h, d) = −4 d h s2 (16 d4 − 8 d2 h2 − 16 d2 + h4 + 8h2)
(−4 d2 + h2 + 4)2 ;

∂dg(h, d) = −2h2 s2 (16 d4 − 8 d2 h2 − 48 d2 + h4 + 4h2)
(−4 d2 + h2 + 4)2 .

Evaluating the Jacobian at E1 and computing the eigenvalues, we find λ(1)
E1 = λ

(2)
E1 =

−4: both are negative and the equilibrium is asymptotically stable. In the same
fashion, we can also prove that the points the eigenvalues related to E2 are λ(1)

E2 = 2,
λ

(2)
E2 = 0 and those related to E3 are λ(1)

E3 ≈ 3.75, λ(2)
E3 = −0.19: because of the

presence of eigenvalues with a positive real part, we can conclude that both E2 and
E3 are unstable equilibrium configurations.
Let us consider the case h = 0. We observe that it is possible to extend for
continuity f in h = 0 as follow:

f(h, d) :=


4s2h

C
2 log

A
4h

h2 − 4d2 + 4

B
− 2h2d2 + h2 − 8d4 + 12d2 − 4

h2 − 4d2 + 4

D
if h /= 0;

0 if h = 0.

We observe that the qualitative behavior of the system can be studied by dividing
the analysis into two distinct regions: one where ḣ < 0 and ḋ < 0, and another
where ḣ < 0 and ḋ > 0. In both cases, the functions h and d exhibit monotonic
behavior: specifically, h is strictly decreasing, while d is decreasing in the first
region and increasing in the second. Moreover, both variables are bounded, since
h(T ) ∈ [0,2) and d(T ) ∈ [0,1). Therefore, we can assert the existence of limits as
T → +∞, denoted by:

lim
T →+∞

h(T ) = h∞ ∈ [0,2), lim
T →+∞

d(T ) = d∞ ∈ [0,1).

Given that the forcing terms f and g of the system are continuous with respect to
h and d, it follows that:

lim
T →+∞

ḣ(T ) = f(h∞, d∞) ∈ R,

lim
T →+∞

ḋ(T ) = g(h∞, d∞) ∈ R.

If (h∞, d∞) ∈ dom(f)∩dom(g), then by the asymptotic stability theorem (or under
the assumption of asymptotic regularity), we obtain:ḣ(+∞) = f(h∞, d∞) = ĥ∞,

ḋ(+∞) = g(h∞, d∞) = d̂∞.
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Dynamics of a dipole of disclinations

However, since both h and d converge, we must have:f(h∞, d∞) = 0,
g(h∞, d∞) = 0,

so the point (h∞, d∞) is a stationary point of the system. If we further assume
that the nullclines satisfy:f(h, d) = 0

g(h, d) = 0
⇐⇒

h = 0
d = d̄ ∈ [0,1)

then the only possible equilibrium point as T → +∞ is

(h∞, d∞) = (0, d̄), for some d̄ ∈ [0,1).

Remark 3.3.1. The equilibrium point E2 = (1,0.5) represents a limiting case of
the model, where one defect is located at the center of the domain and the other
lies exactly on the boundary. In this configuration, the defect at the center does
not feel the influence of the one at the boundary, and due to symmetry, it remains
stationary. Consequently, this case can be interpreted as a limiting situation in
which the defect at the center behaves as an isolated defect (as demonstrated in
Section 3.3.4).

d = 0.5
h = 1

Figure 3.4: Representation of the equilibrium point E2 = (1, 1
2). In this scenario

the positive disclination (orange triangle) lies on the boundary of the domain, while
the negative one (green triangle) is sitting at the center of the disk.

3.3.1 Numerical simulations
It is not possible to analytically solve System (3.21), so to gain insight into
the dynamics of the dipole an explicit Euler method with a fixed timestep was
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3.3 – Radial dipole

implemented in MATLAB R2023b. This problem is ill-conditioned and also the
stiff solvers natively implemented in MATLAB (such as ode23s and ode23t [47])
produce solutions that do not align with expected results. Specifically, using these
solvers, it is possible to observe oscillatory motions where the two defects overlap
and exchange positions (see Figure 3.5).

(a) (h0, d0) = (0.3, 0.75) solved using
ode23s

(b) (h0, d0) = (0.3, 0.75) solved using
ode23t

Figure 3.5: Details of the interaction between defects in the presence of numerical
errors using different stiff solvers in Matlab.

As demonstrated in [11, Section 4.2] for a symmetric configuration and in Sections
3.3.2 and 3.3.3 below, this behavior of defects is prohibited: two defects must
asymptotically approach each other, but they cannot overlap in finite time.
To gain a more complete understanding of the dynamics, we proceeded by solving
the problem at various points in the domain and analyzing the obtained results
(excluding d = 0 which has been already studied in [11] and h = 0 which is a
nonphysical configuration).

Figure 3.6 shows the results of the analysis performed over a time interval [0,20].
The obtained results are then classified as follows:

• The filled square represents the behavior of the distance by comparing the
initial and final conditions. Specifically, if the color is yellow, the defects are
converging on the boundary of the domain (h → 0, d → 1); if the color is green,
the defects are converging (h → 0) at some point d̄ ∈ [0, 1); if the color is blue,
the defects are diverging to opposite edges of the domain (h → 2, d → 0).
The triangle represents the stationary points.

• The border of the square represents the behavior of the center of the dipole by
comparing the initial d0 and final conditions d̄. Specifically, when the border is
blue, the final position of the center of the dipole is expected to have increased
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Dynamics of a dipole of disclinations

compared to the initial position (d̄ ∈ (d0,1)); when it is red, the center of the
dipole is expected to have decreased (d̄ ∈ [0, d0)); when it is green, no change
is expected (d̄ = d0).

Figure 3.6: Scheme of the dynamics of a dipole of disclinations.

As can be seen graphically, the three regions defined by the zeros of f and g
can be characterized as follows.

• Region 1: ḣ < 0 and ḋ > 0, which corresponds to the case where the two
defects converge and the center of the dipole shifts towards the boundary of
the domain. This corresponds to the squares with a blue border.

• Region 2: ḣ < 0 and ḋ < 0, which corresponds to the case where the defects
converge and the center of the dipole shifts towards the center of the domain.
This corresponds to the squares with a red border.

• Region 3: ḣ > 0 and ḋ < 0, which corresponds to the case where the defects
diverge to opposite edges of the domain and the center of the dipole shifts
towards the center. This corresponds to the squares with a red border.
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3.3 – Radial dipole

From this summary scheme, some observations can be made. If we consider the
cases analyzed along the hypotenuse of the triangular domain Ω̃, we examine the
problems where one defect is located at the boundary of the domain and the
other along the radius. Consistently with the stationary limiting case previously
observed, the non-boundary defect tends to behave as an isolated defect and tends
to move toward the domain boundary, as proved analytically in Section 3.3.2. It is
important to note that, contrary to the initial hypotheses made, the dynamics of
the dipole exhibit an anomaly. As it can also be seen graphically, just below the
curve representing the zeros of g(h, d), the border of the squares is blue instead of
red.

To further investigate, Figure 3.7a shows the graph of the solution with (h0, d0) =
(1

2 ,
1
5) as starting point.

(a) Detailed of the dynamics of a dipole
(h0, d0) = (1

2 , 1
5)

(b) Details of the anomaly in (h0, d0) =
(1

2 , 1
5)

Figure 3.7: Details of the anomaly near g(h, d) = 0.

As it can be observed, initially the center of the dipole decreases, consistently with
expectations, but then tends to increase before stabilizing at a position higher than
the initial one. This indicates that the dynamics of the distance dominates the
dynamics of the center of the dipole, leading to a change in sign in the description
of the motion of the center of the dipole.

Let us consider [0, T̄ ] as the integral time, with T̄ > 0 (referring to our simulation,
T̄ = 20); n ∈ {0, . . . , N} with N ∈ N \ {0}. We define

δT := T

N
and Tn := n δT = n

N
T,

and we consider
hn := h(Tn), dn := d(Tn).
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It is possible to better understand this behavior by analyzing step-by-step the
explicit Euler methods hn+1 = hn + δT f(hn, dn)

dn+1 = dn + δT g(hn, dn).

Step one:
h1 = h0 + δT f(h0, d0)ü ûú ý

<0

< h0

d1 = d0 + δT g(h0, d0)ü ûú ý
<0

< d0,

we can determinate the sign of f, g, because we chose h0, d0 to be such that ḣ < 0
and ḋ < 0.
Step two:

h2 = h1 + δT f(h1, d1) < h1

d2 = d1 + δT g(h1, d1)ü ûú ý
undetermined sign

we can say that the sign of f(h1, d1) is still negative, because h1 < h0 and d1 < d0,
but we can not define the sign of g(h1, d1) without knowing the exact value of h1

and d1. In particular, if h1 → 0 is faster then d1, then g(h1, d1) > 0. As it can
be seen in Figure 3.7b starting from (h0, d0) = (1

2 ,
1
5), ḣ is faster than ḋ, so that ḋ

became positive and it generates the anomaly.
We now analyze the behavior of the dipole within the previously defined Region

1, 2, 3. Our goal is to identify suitable upper and lower bounds of the dynamics in
order to obtain estimates on the evolution of the dipole. To this end, we recall the
following preliminary lemma, which will be instrumental in our analysis.
Lemma 3.3.2 (Preliminary lemma). Let us consider the Cauchy problemẋ(t) = ψ(t, x(t)),

x(0) = x0,
x(t) ∈ Rn,

and suppose that there exist continuous functions ζ1, ζ2 : R × Rn → R such that

ζ1(t, x) ≤ ψ(t, x) ≤ ζ2(t, x) componentwise for all (t, x) ∈ R × Rn.

Then, the solutions x1(t) and x2(t) of the Cauchy problems

ẋ1(t) = ζ1(t, x1(t)), ẋ2(t) = ζ2(t, x2(t)), x1(0) = x2(0) = x0,

satisfy the componentwise estimate

x1(t) ≤ x(t) ≤ x2(t) for all t ≥ 0.
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3.3 – Radial dipole

Proof. Let us consider the Cauchy problem for the system:ẋ(t) = ψ(t, x(t)),
x(0) = x0.

We are given that there exist continuous functions ζ1, ζ2 : R × Rn → R such that

ζ1(t, x) ≤ ψ(t, x) ≤ ζ2(t, x) componentwise for all (t, x) ∈ R × Rn.

To prove the lemma, we first note that the functions ζ1(t, x) and ζ2(t, x) are
continuous, and therefore the Cauchy problems

ẋ1(t) = ζ1(t, x1(t)), ẋ2(t) = ζ2(t, x2(t)), x1(0) = x2(0) = x0

have unique solutions x1(t) and x2(t), respectively, for all t ≥ 0. Now, consider the
difference between the solutions of the two systems. Let us define the difference
y(t) = x2(t) − x1(t). Then, we have the system:

ẏ(t) = ẋ2(t) − ẋ1(t) = ζ2(t, x2(t)) − ζ1(t, x1(t)).

Since ζ1(t, x) ≤ ψ(t, x) ≤ ζ2(t, x) componentwise, we deduce that

ẏ(t) = ζ2(t, x2(t)) − ζ1(t, x1(t)) ≥ 0.

Thus, the solution y(t) is non-decreasing. Since y(0) = x2(0) − x1(0) = 0, it follows
that y(t) ≥ 0 for all t ≥ 0. Therefore, we obtain the componentwise estimate

x1(t) ≤ x2(t) for all t ≥ 0.

In particular, since x1(t) and x2(t) are solutions of the Cauchy problems with the
same initial condition x0, we have

x1(t) ≤ x(t) ≤ x2(t), for all t ≥ 0.

3.3.2 Region 1: boundary behaviour
Inside Region 1, we have ḣ < 0 and ḋ > 0, which means that we expect the dipole
to collapse and its center to move towards the boundary. Referring to Figure 3.6,
we analyze the case with the squares with blue borders. Consequently, inside this
region, we have the following conditions hold:

0 < h(T ) ≤ h0 ≤ 1 and 0 ≤ d0 ≤ d(T ) ≤ 1, for all T > 0.

In particular, we can define Region 1 as

Ω1 :=
I

(h, d) ∈ (0,1] × [0,1) : d+ h

2 < 1 and d− h

2 < 0
J

∩ Ω̃.
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From Lemma 3.3.1, we know that h → 0 and we wish to investigate the rate at
which this occurs. More specifically, we are interested in determining whether
there exists a time T̃ > 0 such that h(T̃ ) = 0 or if h → 0 as T → +∞. We would
also like to prove some regularity properties of h. Similarly, we are interested in
understanding whether there exists a value d̄ > d0 such that d → d̄ or if d → 1
as T → +∞. To answer these questions, we will proceed by defining appropriate
upper and lower bounds for both f and g, which, together with Lemma 3.3.2, will
allow us to extract the desired information.

Theorem 3.3.1 (Bounds for f and g in Ω1). Consider (h, d) ∈ Ω1, then there exist
functions h(1)

l , h(1)
u : R+ → R such that

h
(1)
l (T ) ≤ h(T ) ≤ h(1)

u (T ), for all T > 0.

In particular, h(1)
l is defined by

h
(1)
l (T ) = C1 exp

1
−C2 exp(8s2 T )

2
,

where C1 := h2
0+4−4d2

0
4 > 0 and C2 = log(C1/h0) > 0, while h(1)

u is the solution to

ḣ = 8s2h log
A

h

1 − d2

B
.

There exist functions d(1)
l , d(1)

u : R+ → R such that

d
(1)
l (T ) ≤ d(T ) ≤ d(1)

u (T ) for all T > 0.

In particular, d(1)
l is the solution to

log
A
d

d0

B
− 2
h2

0
log

d0

d

------h
2
0 − 4d2

h0 − 4d2
0

------
 = −2 s2

Ú T

0
h(t)2 dt,

while d(1)
u is the solution to

2 log
A
d

d0

B
+ 1
d2 − 1

d2
0

= −4 s2
Ú T

0
h(t)2 dt.

Proof. First, consider

f(h, d) = 8s2h log
A

4h
h2 + 4 − 4d2

B
ü ûú ý

f1(h,d)

+ −4h s2

h2 + 4 − 4d2 (2h2d2 + h2 − 8d4 + 12d2 − 4)ü ûú ý
f2(h,d)

.
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For h → 0, f2(h, d) ∼ o(h) for all d, thus we can neglect it. We now estimate f1 as
follows:

4(1 − d2) ≤ h2 + 4 − 4d2 ≤ h2
0 + 4 − 4d2

0,

1
h2

0 + 4 − 4d2
0

≤ 1
h2 + 4 − 4d2 ≤ 1

4(1 − d2) , (3.24)

4h
h2

0 + 4 − 4d2
0

≤ 4h
h2 + 4 − 4d2 ≤ h

1 − d2 ,

log
A

4h
h2

0 + 4 − 4d2
0

B
≤ log

A
4h

h2 + 4 − 4d2

B
≤ log

A
h

1 − d2

B
,

8s2 h log
A

4h
h2

0 + 4 − 4d2
0

B
≤ 8s2 h log

A
4h

h2 + 4 − 4d2

B
≤ 8s2 h log

A
h

1 − d2

B
.

(3.25)

From Lemma 3.3.2 it follows that exist h(1)
l , h(1)

u : R+ → R such that

• h
(1)
l is the solution to the problem ḣ = 8s2h log

1
4h

h2
0+4−4d2

0

2
:

h
(1)
l (T ) = C1 exp

1
−C2 exp(8s2T )

2
,

with C1 := h2
0+4−4d2

0
4 > 0 and C2 = log(C1/h0) > 0;

• h(1)
u is the solution to the problem ḣ = 8s2h log

1
h

1−d2

2
.

Regarding ḋ, using (3.24), we obtain the following upper and lower estimates:
−d2

1 − d2 ≤ h2 − 4d2

h2 + 4 − 4d2 ≤ h2
0 − 4d2

h2
0 + 4 − 4d2 ≤ 0,

−2d3h2

1 − d2 ≤ 2h2d
h2 − 4d2

h2 + 4 − 4d2 ≤ 2h2d
h2

0 − 4d2

h2
0 + 4 − 4d2 ≤ 0.

Thus, it follows that

−2s2h2d
h2

0 − 4d2

h2
0 − 4d2 + 4 ≤ −2s2h2d

h2 − 4d2

h2 − 4d2 + 4 ≤ s2h2 2d3

1 − d2 . (3.26)

From Lemma 3.3.2 it follows that there exist d(1)
l , d(1)

u : R+ → R such that

d
(1)
l : log

A
d

d0

B
− 2
h2

0
log

d0

d

------h
2
0 − 4d2

h2
0 − 4d2

0

------
 = −2s2

Ú T

0
h(t)2 dt,

d(1)
u : 2 log

A
d

d0

B
+ 1
d2 − 1

d2
0

= −4s2
Ú T

0
h(t)2 dt.
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Corollary 3.3.1 (Collision time in Ω1). In Ω1, h → 0 as T → ∞.

Proof. From the estimates in Theorem 3.3.2, we know that h(1)
l → 0 as T → +∞.

Hence, from Lemma 3.3.1 we know that in this region h → 0, so we can conclude,
by comparison, that h → 0 as T → +∞.

Remark 3.3.2. We can observe that the dynamics of d is proportional to h2, and
therefore, as h → 0, we have ḋ ∼ o(h2), which allows us to assume that d can be
approximated as constant (d(T ) = d0, for every T > 0).

Definition 3.3.3. Let C ⊆ Ω1 be the region where the Remark 3.3.2 holds.

We define C ⊆ Ω1 computationally by solving the problem point by point and
selecting those that have an error below a certain low threshold, which we can then
estimate as good candidates. The result, after setting a threshold of 10−3 and 10−4,
is shown in Figure 3.8.

(a) Considering an error threshold of
10−3.

(b) Considering an error threshold of
10−4.

Figure 3.8: Numerical definition of C ⊆ Ω1 based on different error threshold.

Proposition 3.3.1 (Regularity of h in Ω1). Inside C, as h0 ≪ 1, we can state
that h ∈ L2(R+).

Proof. In C we can assume d(T ) ≈ d0, so from (3.25), we can estimate ḣ as

8s2h log
A

4h
h2

0 + 4 − 4d2
0

B
≤ ḣ ≤ 8s2h log

A
h

1 − d2
0

B
;

since we are assuming that h0 ≪ 1, we can neglect it in the left-hand side and
obtain that

ḣ = 8s2h log
A

h

1 − d2
0

B
,
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which can be integrated explicitly, thus we can conclude that

h(T ) = (1 − d2
0) exp

A
log

A
h0

1 − d2
0

B
exp(8s2T )

B
. (3.27)

When (3.27) is squared and integrated, this yields
Ú T

0
h2(t) dt = C2

1
8

A
Ei
1
−2C2 exp(8s2T )

2
− Ei (−2C2)

B
, (3.28)

where C1 = 1 − d2
0 and C2 = log(C1/h0). Here, Ei( · ) represents the exponential

integral function, defined as:

Ei(x) = −
Ú ∞

−x

e−t

t
dt.

In particular,

Ei
A

−2 log
A

1 − d2
0

h0

BB
< +∞,

whereas, for T → +∞, we have:

lim
T →+∞

Ei
A

−2 log
A

1 − d2
0

h0

B
exp(8s2T )

B
= 0.

Therefore, (3.28) is finite as T → +∞ and we conclude that h ∈ L2(R+).

Corollary 3.3.2 (Behavior of d when T → +∞). In C, we can state that there
exist dl,∞, du,∞ such that

dl,∞ ≤ d(T ) ≤ du,∞ as T → +∞.

Proof. Since in C we know an explicit formula for h, we can substitute it into the
implicit formulas of the lower and upper bounds from Theorem 3.3.1 and take the
limit as T → +∞. This leads to the determination of dl,∞ and du,∞.

Limit case

Let us now analytically justify the behavior of defects as h → 0 and d → 1, which
corresponds to the case with the full yellow square in Figure 3.6.

Proposition 3.3.2 (Boundary behavior in Ω1). Consider (h, d) ∈ Ω1; when h → 0
and d → 1, the defect Y2 = d− h

2 behaves as an isolated disclination.
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Proof. First, we make the following ansatz for κ → 0:

h(T ) = κh1(T )

d(T ) = 1 + κd1(T )
with h1(T ) ∈ (0,∞) and d1(T ) ∈ (−∞,0). We substitute h and d into (3.21) as
follow.

κ ḣ1 = ḣ = 4κ s2h1

C
2 log

A
4κh1

κ2 h2
1 + 4 − 4(1 + κ d1)2

B
+

− 2κh2
1(1 + κ d1)2 + κ2h2

1 − 8(1 + κ d1)4 + 12(1 + κ d1)2 − 4
κ2h2

1 + 4 − 4(1 + κ d1)2

D
,

by simplifying κ

ḣ1 =4 s2h1

C
2 log

A
4h1

κh2
1 + 4κ d2

1 + 8 d1

B
+

− 2κh2
1(1 + κ d1)2 + κ2h2

1 − 8(1 + κ d1)4 + 12(1 + κ d1)2 − 4
κ2h2

1 + 4κ2 d2
1 + 8κ d1

D
,

as κ → 0, we obtain

ḣ1 = 8s2h1 log
A

− h1

2d1

B
− 4s2h1.

Similarly,

κ ḋ1 = ḋ = −2s2κ2 h2
1(1 + κ d1)

κ2h2
1 + 4κ2 d2

1 + 8κ d1 + 4
κ2h2

1 + 4κ2 d2
1 + 8κ d1

,

by simplifying κ

ḋ1 = −2s2 h2
1(1 + κ d1)

κ2h2
1 + 4κ2 d2

1 + 8κ d1 + 4
κh2

1 + 4κ d2
1 + 8 d1

,

and as κ → 0, we obtain
ḋ1 = −s2h

2
1
d1
.

Thus, we consider the new system of ODEs:

ḣ1 = 8s2h1 log
A

− h1

2d1

B
− 4s2h1;

ḋ1 = −s2h
2
1
d1

;

h1(0) = h1,0;
d1(0) = d1,0.

(3.29)
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To find a solution to (3.29), we will analyze the behavior of

d(h1/d1)
dT = ḣ1d1 − ḋ1h1

d2
1

By defining y := h1/d1, we obtain the following system in
ẏ = s2y3 + 4s2y

A
2 log

A
− y

2

B
− 1

B
y(0) = h1,0/d1,0 = y0.

(3.30)

By imposing ẏ = 0, we find out that y = −2 for every T > 0 is a solution to (3.30).
Since y = h1/d1, it follows that h1 = −2d1 is a solution to (3.29), so that

h1(T ) = 2d1,0 exp(−4s2T ) and d1(T ) = −d1,0 exp(−4s2T ). (3.31)

As it can be observed, this solution holds only if h1,0 = −2d1,0. This corresponds
to studying the problem in a neighborhood where one of the defects is on the
boundary and the other is not.

We compare, now, the behavior of the solution in (3.31) with the result obtained
in (3.17) by studying the problem of an isolated disclination. From an analytical
perspective, we can observe that:

ρ(T ) =
1
1 + µ0 exp(−4s2T )

2−1/2
≈ 1 − µ0

exp(−4s2T )
2 ≈ 1 − C exp(−4s2T );

d− h

2 =
1
1 − κd10 exp(−4s2T )

2
− κd10 exp(−4s2T ) = 1 − κd10 exp(−4s2T )

≈ 1 − C exp(−4s2T ).

The resulting error in norm L∞ is shown in Figure 3.9, using κ = 10−α, with
α ∈ {1, . . . ,16}.

3.3.3 Region 2: convergent behavior
Within Region 2, we have ḣ < 0 and ḋ < 0, which means that we expect the dipole
to collapse and its center to move toward the center of the disk. Referring to Figure
3.6, we study the case with green squares and the red boundary. It follows that
within this region we have

0 < h(T ) ≤ h0 ≤ 1 and 0 ≤ d(T ) ≤ d0 <
1
2 , for all T > 0
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Dynamics of a dipole of disclinations

Figure 3.9: Behavior of the L∞ -error as κ → 0.

In particular, we can define Region 2 as

Ω2 :=
I

(h, d) ∈ (0,1] × [0, 1
2 ] : d > h

2 and f1 < −f2

J
∩ Ω̃. (3.32)

From Lemma 3.3.1, we know that h → 0 and d → d̄, where d̄ ∈ [0, d0). In the
same fashion as in the analysis of Region 1, we would like to characterize these
behaviors.

Theorem 3.3.2 (Bounds for f and g in Ω2). Consider (h, d) ∈ Ω2, then there exist
functions h(2)

l , h(2)
u : R+ → R such that:

h
(2)
l (T ) ≤ h(T ) ≤ h(2)

u (T ), for every T > 0

with h(2)
l defined by

h
(2)
l (T ) = C1l exp(−C2l exp(8s2T )),
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3.3 – Radial dipole

with C1l := h2
0+4
4 and C2l := log(C1l/h0), while h(2)

u is defined by

h(2)
u (T ) = C1u exp(−C2u exp(8s2T )),

where C1u := 1 − d2
0 and C2u := log(C1u/h0).

There exist functions d(2)
l , d(2)

u : R+ → R such that:

d
(2)
l (T ) ≤ d(T ) ≤ d(2)

u (T ), for every T > 0

where d(2)
l , d(2)

u are defined by:

d
(2)
l : 4

h2
0

log
A
d

d0

B
+
A

1
2 − 2

h2
0

B
log

------h
2
0 − 4d2

h2
0 − 4d2

0

------
 = −4s2

Ú T

0
h2(t) dt,

d(2)
u : h2

0 + 4
4

A
1
d2 − 1

d2
0

B
+ 2 log

A
d

d0

B
= −4s2

Ú T

0
h2(t) dt.

Proof. As in the proof of Theorem 3.3.2, we consider ḣ = f1(h, d) + f2(h, d) and
we notice that f2 ∼ o(h) for all d, as h → 0, so we neglect it. We now estimate f1
as follows:

0 ≤ h ≤ h0,

0 ≤ d ≤ d0,

4(1 − d2
0) ≤ h2

0 + 4 − 4d2 ≤ h2
0 + 4,

1
h2

0 + 4 ≤ 1
h2 + 4 − 4d2 ≤ 1

4(1 − d2
0)
,

4h
h2

0 + 4 ≤ 4h
h2 + 4 − 4d2 ≤ h

1 − d2
0
,

log
A

4h
h2

0 + 4

B
≤ log

A
4h

h2 + 4 − 4d2

B
≤ log

A
h

1 − d2
0

B
,

8s2h log
A

4h
h2

0 + 4

B
≤ 8s2h log

A
4h

h2 + 4 − 4d2

B
≤ 8s2h log

A
h

1 − d2
0

B
. (3.33)

Notice that 8s2h log
A

h

1 − d2
0

B
< 0 if h < 1 − d2

0.

From Lemma 3.3.2 it follows that exist h(2)
l , h(2)

u : R+ → R such that:

• h
(2)
l is the solution to the problem ḣ = 8s2h log

1
4h

h2
0+4

2
, which is

h
(2)
l (T ) := h2

0 + 4
4 exp

A
− log

A
h2

0 + 4
4h0

B
exp(8s2T )

B
;
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Dynamics of a dipole of disclinations

• h(2)
u is the solution to the problem ḣ = 8s2h log

1
h

1−d2
0

2
, which is

h(2)
u (T ) = (1 − d2

0) exp
A

− log
A

h0

1 − d2
0

B
exp(8s2T )

B
.

Regarding the forcing term for ḋ, we can highlight the following features:

−4d2

h2
0 + 4 − 4d2 ≤ h2 − 4d2

h2 + 4 − 4d2 ≤ h2
0 − 4d2

4(1 − d2) ,

−8h2d3

h2
0 + 4 − 4d2 ≤ 2h2 h2 − 4d2

h2 + 4 − 4d2d ≤ h2

2
h2

0 − 4d2

1 − d2 d,

−s2h
2

2
h2

0 − 4d2

1 − d2 d ≤ −2s2h2 h2 − 4d2

h2 + 4 − 4d2d ≤ s2 +8h2d3

h2
0 + 4 − 4d2 . (3.34)

From Lemma 3.3.2 it follows that exist d(2)
l , d(2)

u : R+ → R such that

d
(2)
l : 4

h2
0

log
A
d

d0

B
+
A

1
2 − 2

h2
0

B
log

------h
2
0 − 4d2

h2
0 − 4d2

0

------
 = −4s2

Ú T

0
h2(t) dt,

d(2)
u : h2

0 + 4
4

A
1
d2 − 1

d2
0

B
+ 2 log

A
d

d0

B
= −4s2

Ú T

0
h2(t) dt.

Corollary 3.3.3 (Regularity of h in Ω2). In Ω2, we state that h ∈ L2(R+).

Proof. From the definition of h(2)
l and h(2)

u obtained from Theorem 3.3.2, we can
conclude by computation (similar to that of Corollary 3.3.1) that h(2)

l , h(2)
u ∈ L2(R+).

By comparison follows that h ∈ L2(R+).

Proposition 3.3.3 (Collision time in Ω2). In Ω2, the defect collision occurs at
infinite times.

Proof. From Lemma 3.3.1, we know that h → 0 in Ω2, so it is sufficient to use the
estimate of the lower bound to draw conclusions. From Theorem 3.3.2 we know
that h(2)

l is a lower bound for h and we observe that h(2)
l → 0 as T → +∞. So,

by comparison we can conclude that h → 0 as T → +∞, which means that the
collision occurs at infinite times.

Remark 3.3.3. We can observe that, when h0 ≪ 1, the estimates in (3.33) reduces
to:

8s2h log (h) ≤ ḣ ≤ 8s2h log
A

h

1 − d2
0

B
.
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3.3 – Radial dipole

When we consider d0 = 0, meaning the case of a disclination dipole symmetric to
the origin of the disk with a fixed center of the dipole, we obtain

ḣ = 8s2h log(h),

thus recovering the estimate in [11, Section 4.3].

3.3.4 Region 3: diverging behavior
In Region 3, we have ḣ > 0 and ḋ < 0, which means we expect the dipole to diverge
and the center to move towards the boundary. Referring to Figure 3.6, we study
the case with the blue squares and the red boundary. It follows that within this
Region, we have

0 < h0 ≤ h(T ) < 2 0 ≤ d(T ) ≤ d0 ≤ 1
2 , for all T > 0.

In particular, we define Region 3 as

Ω3 := {(h, d) ∈ (0,2) × [0, 1
2 ] : f1 > −f2 } ∩ Ω̃

From Lemma 3.3.1, we know that in this region h → 2 and d → 0. We are
interested in understanding how h → 2, particularly in estimating the rate at which
it happens.

Theorem 3.3.3 (Bounds for f in Ω3). Consider (h, d) ∈ Ω3, then there exists
h(3)

u : R+ → R such that

0 ≤ h(T ) ≤ h(3)
u (T ) , for all T > 0.

where h(3)
u is defined as the solution to

ḣ = s2h
4 − h2 + 8d4

0
2 − d2

0
. (3.35)

Proof. As in the proof of Theorem 3.3.1, we consider ḣ = f1 +f2. In Ω3, we observe
that f1 ≤ 0, while f2 ≥ 0. Now, we focus on (f2):

h2 − 8d4
0 − 4 ≤ 2h2d2 + h2 − 8d4 + 12d2 − 4 ≤ 0

h

2 − d2
0
(h2 − 8d4

0 − 4) ≤ 4h
h2 + 4 − 4d2 (2h2d2 + h2 − 8d4 + 12d2 − 4) ≤ 0

0 ≤ −4h2h2d2 + h2 − 8d4 + 12d2 − 4
h2 + 4 − 4d2 ≤ h

2 − d2
0
(4 − h2 + 8d4

0)

0 ≤ ḣ ≤ s2 h

2 − d2
0
(4 − h2 + 8d4

0)
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Dynamics of a dipole of disclinations

From Lemma 3.3.2 it follows that exist h(3)
u : R+ → R such that h(3)

u is the solution
to the problem

ḣ = s2 h

2 − d2
0
(4 − h2 + 8d4

0).

In particular, h(3)
u is defined as follows:

h(T )2(4 − h(T )2 + 8d4
0)2 = h0(4 + 8d4

0 − h2
0)2 exp

A
4s2 1 + 2d4

0
2 − d2

0
T + C

B
,

where C is a constant to be determinated by imposing the initial condition.

Limit case

Observe that in (3.35) for d0 = 0, we recover the behavior of the symmetric dipole
of disclinations as defined in [11]:

ḣ = s2h
4 − h2 + 8d4

0
2 − d2

0
∼ 2s2h

1 −
A
h

2

B2
 (3.36)

What we want to highlight is that this behavior is effectively reducible to that of an
isolated disclination: the defects are sufficiently far apart to not experience mutual
attraction, and they tend towards the boundary as if they were the only defects in
the domain, as proved in the following proposition.

Proposition 3.3.4 (Behavior of diverging dipole). In Ω3, the defects behave as if
they were isolated defects.

Proof. For the sake of clarity, we recall the definition of the problem of an isolated
disclination introduced in (3.17) and the problem of a diverging dipole (3.36) in
the limit of d → 0 and h → 2.ρ̇ = 2s2(1 − ρ2)ρ

ḣ = 4s2(2 − h) h → 2, d → 0,
(3.37)

where ρ represents the distance between the position of the defect and the center of
the domain, and h represents the distance between the two defects symmetrically
placed relative to the center of the domain.
Considering the first equation and multiplying both sides by 2ρ, we can rewrite
the equation as:

⌢̇

ρ2 = 4s2(1 − ρ2)ρ2.

Considering the asymptotic behavior in the limit of ρ → 1, we obtain the following
equation:

⌢̇

ρ2 = 4s2(1 − ρ2).
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3.4 – Anisotropic scenario

By imposing ρ2 = h/2, we can define the equivalence between the two behaviors in
the limit.

3.4 Anisotropic scenario
Now, let us return to (3.10) and consider an anisotropic scenario for the dynamics
of a disclination dipole. It is possible to perform a nondimensionalization of the
problem by introducing the following scaled variables:

Yk = yk

R
X = x

R
, G = CH, T = λC

R2 t,

where
C = ER2

16π(1 − ν2) and λ = 1 s · kg−1.

Let us introduce λ1 := λ1(Y1, Y2) and λ2 := λ2(Y1, Y2), to be determinated later, so
that: Ẏ1 = −λ1∇Y1H(Y1, Y2);

Ẏ2 = −λ2∇Y2H(Y1, Y2).
(3.38)

We can proceed as in the isotropic scenario, by introducing
F1 := −∇Y1H and F2 := −∇Y2H ,

and the change of variables

Y1 = d+ h

2 and Y2 = d− h

2 .

At this point, we can derive the dynamics of h distance between the defects and d
center of the dipole. The problem now readsḣ = λ1F1 − λ2F2 ,

ḋ = (λ1F1 + λ2F2)/2.

We define k, p ∈ R such thatλ1F1 + λ2F2 = k(F1 + F2),
λ1F1 − λ2F2 = p(F1 − F2),

(3.39)

meaning that we are considering the case with
λ1 = k(F1 + F2) + p(F1 − F2)

2F1
,

λ2 = k(F1 + F2) − p(F1 − F2)
2F2

.

In particular, we are interested in analyzing two scenarios:
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Dynamics of a dipole of disclinations

• (k, p) = (1,0), which corresponds to a dipole with a fixed distance between
the defects and a movable center;

• (k, p) = (0,1), which corresponds to a dipole with a fixed center and a movable
distance between the defects.

3.4.1 Fixed distance behavior
We consider λ1, λ2 so that (k, p) = (1,0) and the following resulting system

ḣ = 0;
h(0) = h0;

ḋ = −2s2 h2
0d

h2
0 − 4d2

h2
0 − 4d2 + 4;

d(0) = d0 .
(3.40)

The problem now readsḋ = −2s2 h2
0d

h2
0 − 4d2

h2
0 − 4d2 + 4 =: ḡ(d)

d(0) = d0

(3.41)

and we observe that ḋ < 0 if d < h0/2,
ḋ > 0 if d > h0/2.

We are considering the problem where the distance h is held constant at h0 and
the center of the dipole evolves over time. This simplification allows us to focus on
the dynamics of the dipole center, without the added complexity of the changing
distance, thus reducing the problem to one involving only the movement of the
center of the dipole.

Lemma 3.4.1 (Stationary points). Consider (k, p) = (1,0). Fixing h0 ∈ (0,2), it
follows that

• d = 0 is a stable stationary point when ḋ < 0;

• d = h0/2 is an unstable stationary point.

Proof. By the computation of

Jd(d) := ḡ′(d) = −2s2 h2
0

h2
0 − 4d2 + 4

A
h2

0 − 4d2 − 32d2

h2
0 − 4d2 + 4

B
,

we observe that:

• Jd(d = 0) = −2s2 h4
0

h2+4 < 0, so d = 0 is a stable point when ḋ < 0;
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3.4 – Anisotropic scenario

• Jd(d = h0/2) = s2 h4
0 > 0, so d = h0/2 is an unstable point.

Remark 3.4.1. The solution to system (3.41) is the following implicit solution

log
A
d

d0

B
− 2
h2

0
log

A
d2

0
d2

------h
2
0 − 4d2

h2
0 − 4d2

0

------
B

+ 2s2h2
0T = 0. (3.42)

In Figure 3.10 we represent the numerical solution at h0 ∈ [2d0 ,2 − 2d0] fixed,
in particular in Figure 3.10a we present the ḋ > 0 scenario, while in Figure 3.10b
the ḋ < 0 scenario. As it can be observed, in the first case, d → 1 in a finite time,
whereas in the second case, the numerical simulations suggests that d → 0 in an
infinite time; we make this intuition formal in the following proposition.
Proposition 3.4.1 (Collision with the boundary). In the fixed distance scenario,
the center of the dipole d reaches the boundary in finite time T̄ when ḋ > 0, while
it reaches the center of the unit disk for infinite time when ḋ < 0.
Proof. From (3.42) we can compute the time T as:

T = 1
2s2h2

0

3
log d0

d
+ 2
h2

0
log

A
d2

0
d2

------ h
2
0 − 4d

h2
0 − 4d2

0

------
B4

. (3.43)

Now, if we suppose that d reaches the boundary, meaning that d = 1, we can find
that the time T̄ needed is

T̄ := 1
2s2h2

0
log d0 + 1

s2h4
0

log
A
d2

0

------ h
2
0 − 4

h2
0 − 4d2

0

------
B
.

Similarly, if we suppose that d → 0, meaning that the center of the dipole approaches
the center of the disk, we find that T̃ → +∞, which is the time required in this
case.

3.4.2 Fixed center of the dipole
By imposing λ1, λ2 so that (k, p) = (0,1) in (3.39), it follows thatḋ = 0,

d(0) = d0 ,
(3.44)

and the problem for h now readsḣ = 8s2h log
1 4h
h2 + 4 − 4d2

0

2
−4s2h

h2(2d2
0 + 1) − 8d4

0 + 12d2
0 − 4

h2 + 4 − 4d2
0

=: f̄(h),

h(0) = h0 ,
(3.45)

representing the fixed center of the dipole, d(T ) = d0 for every T > 0, and a
moving distance between the two defects.
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Dynamics of a dipole of disclinations

(a) d0 = 0.80 (b) d0 = 0.10

Figure 3.10: Behavior of a dipole of disclinations with a fixed distance, varying
h0 from bottom h0 = 0.01 to top h0 = 2 − 2d0, with d0 = 0.80 (left) and d0 = 0.10
(right).

Lemma 3.4.2 (Stationary points). Consider (k, p) = (0,1). Fixing d0 ∈ [0,1), it
follows that

• h = 2 is an asymptotically stable point;

• h∗ such that log
3 4h
h2 + 4 − 4d2

0

4
− h2(2d2

0 + 1) − 8d4
0 + 12d2

0 − 4
h2 + 4 − 4d2

0
= 0 is an

unstable stationary point;

• h = 0, for every d0 ∈ [0,1), is an asymptotically stable point.

Proof. By the computation of

Jh(h) := f̄ ′(h)

= 8s2
C
log( 4h

h2 + 4 − 4d2
0
) + 4 − 4d2

0 − h2

h2 + 4 − 4d2
0

− 4h
4(2d2

0 + 2) + (8 − 8d2
0 − h2)

(h2 + 4 − 4d2
0)2

D
,

(3.46)

we observe that:

• Jh(2) = 16s2 log
1
− 2

d2
0−2

2
− s2 8 d2

0 (2 d2
0−5)

d2
0−2 < 0, so h = 2 is an asymptotically

stable point when d0, h so that ḣ > 0;

• Jh(h∗) > 0, where h∗ is the solution to log
1

4h
h2+4−4d2

0

2
− h2(2d2

0+1)−8d4
0+12d2

0−4
h2+4−4d2

0
= 0,

is an unstable point.

To prove that h = 0 is an asymptotically stable point when ḣ < 0 we refer to the
proof of Lemma 3.3.1.
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3.4 – Anisotropic scenario

Proposition 3.4.2 (Bounds for f). In the region in which ḣ ≤ 0 is true that:

hl ≤ h ≤ hu

with hl solution to ḣ = 8s2h log( 4h
h2

0+4−4d2
0
), while hu solution to ḣ = 8s2h log( h

1−d2
0
).

In the region in which ḣ > 0 is true that

h ≤ hu ,

with hu solution to ḣ = −4s2h
h2(2d2

0+1)−8d2
0+12d2

0−4
h2

0+4−4d2
0

.

Proof. First, let us consider

f(h, d) = 8s2h log
A

4h
h2 + 4 − 4d2

0

B
ü ûú ý

f1(h)

+ −4s2h

h2 + 4 − 4d2
0
(2h2d2

0 + h2 − 8d4
0 + 12d2

0 − 4)ü ûú ý
f2(h)

In the region in which ḣ ≤ 0, we know that h → 0, so f2 ∼ o(h) and we neglect it.
We can estimate f1 as follow:

4(1 − d2
0) ≤h2 + 4 − 4d2

0 ≤ h2
0 + 4 − 4d2

0
1

h2
0 + 4 − 4d2

0
≤ 1
h2 + 4 − 4d2

0
≤ 1

4(1 − d2
0)

8s2h log
A

4h
h2

0 + 4 − 4d2
0

B
≤8s2h log

A
4h

h2 + 4 − 4d2
0

B
≤ 8s2h log

A
h

1 − d2
0

B

We can now apply Lemma 3.3.2 and conclude that exist hl, hu : R+ → R so that

hl ≤ h ≤ hu.

In particular,

1.
hl(T ) = C1l exp(−C2l exp(8s2T ))

is the solution to the problem ḣ = 8h log
1

4h
h2

0+4−4d2
0

2
, with C1l = h2

0+4−4d2
0

4 and
C2l = log(C1l/h0);

2.
hu(T ) = C1u exp(−C2u exp(8s2T ))

is the solution to the problem ḣ = 8h log
1

h
1−d2

0

2
, with C1u = 1 − d2

0 and
C2u = log(C1u/h0).
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In the region in which ḣ > 0, f1 ≤ 0 and f2 ≥ 0, so we can estimate f2 as follow:

0 ≤ −4s2h
h2(2d2

0 + 1) − 8d2
0 + 12d2

0 − 4
h2 + 4 − 4d2

0
≤ −4s2h

h2(2d2
0 + 1) − 8d2

0 + 12d2
0 − 4

h2
0 + 4 − 4d2

0
.

Applying Lemma 3.3.2, then exists hu : R+ → R so that

h ≤ hu.

In particular,

hu(T ) =

öõõô C1u exp(−8s2T )
1 − C2u exp(−8s2T ) ,

with C1u := D
k

exp( D
h2

0+4−4d2
0
), C2u := C

k
exp( D

h+
0 4−4d2

0
), C = 2d2

0+1, D = 12d2
0−4−8d4

0

and k = Ch2
0+D

h2
0

, is the solution to

ḣ = −4s2h
h2(2d2

0 + 1) − 8d2
0 + 12d2

0 − 4
h2

0 + 4 − 4d2
0

. (3.47)

Corollary 3.4.1 (Properties of h). In the fixed center of the dipole, it holds that:

1. h ∈ L2, when ḣ < 0;

2. h → 0 as T → +∞, when ḣ < 0;

3. when h → 2 and d0 → 0, each defect behaves like an isolated defect.

Proof. In the same fashion of Propositions 3.3.1 and 3.3.3, we can use the results of
Proposition 3.4.2 to observe that hl, hu ∈ L2(R+) and so by comparison it follows
that h ∈ L2(R+). We also observe that hl, hu → 0 as T → +∞, so it follows that
h → 0 as T → +∞.
From (3.47), considering d → 0, h → 2− we obtain

ḣ = 2s2
A

1 −
A
h

2

B2B
,

recovering the same dynamical system presented in Proposition 3.3.4.

Remark 3.4.2. When h0 ≪ 1, then

ḣ = 8s2h log
A

h

1 − d2
0

B
,

whose solution is

h(T ) = (1 − d2
0) exp

A
− log

A
1 − d2

0
h0

B
exp(8s2T )

B
.
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Remark 3.4.3. When d0 = 0, meaning we are considering the case with symmetric
disposition of defects with respect to the center of the disk, we find the case analyzed
in [11].
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Chapter 4

Edge dislocation

The purpose of this section is to derive the formulation of the dynamics of an edge
dislocation by establishing its energetic equivalence with the rescaled energy of a
colliding dipole of disclinations [10]. In this framework, the energetic formulation
of a dislocation is expected to yield a diverging minimal energy in the limit h → 0.
In fact, it is known that the energy related to dislocations is diverging near the
singularity (see, e.g., [9, 27, 29, 43]). Cermelli and Leoni, in [8], introduce a
variational technique known as the core-radius regularization approach, which
rigorously establishes the possibility of focusing solely on the regular part of the
energy to fully describe all the information regarding self and mutual interactions
between dislocations. As discussed in Chapter 2, this technique allows one to
consider the domain excluding a core of radius ε > 0 around the singularity, and
to expand the minimum energy as ε → 0. Following this expansion, the minimum
energy can be expressed as:

H(x; Ω) = E

1 − ν2
|b|2

8π | log ε| + Hren(x) + o(ε), (4.1)

where the first term is diverging as ε → 0, and b denotes the Burgers vector
associated with a dislocation sitting at x; the term Hren represents the regular part
of the asymptotic expansion, commonly referred to as the renormalized energy;
the remainder term o(ε), as ε → 0, accounts for the negligible contributions to
the energy. As shown in [8], the dislocation problem can be fully characterized by
focusing solely on the renormalized energy Hren.

In a similar spirit, we propose a core-radius type approach to extract, from
the rescaled energy of a collapsing dipole of disclinations, the formulation of the
minimum energy associated with an edge dislocation sitting at the center of the
dipole. This dislocation has a Burgers vector b rotated by π/2 with respect to
the axis of the dipole, denoted by e. It is important to note that, in contrast to
the core-radius regularization approach in [8], we propose a regularization in the
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limit as h, the distance between the two disclinations, tends to zero. Once the
energy of an edge dislocation is obtained, we proceed as in Chapter 3 and [11] for
disclinations, and as in [1, 4, 5, 8, 29] for screw dislocations: we assume that the
dynamics of edge dislocations can be derived via the maximal dissipation criterion.
Finally, we analyze the dynamics of a single edge dislocation in the unit disk.

4.1 The energy of an edge dislocation
The idea is to follow the argument in [10, Section 4], in order to show the energetic
equivalence between a dipole of disclinations and an edge dislocation. We consider
the rescaled energy functional introduced in (2.24):

J h(w; Ω) = 1
2

1 + ν

E

Ú
Ω

3
|∇2w|2 − ν(∆w)2

4
dx + s

h

5
w
1
x+ h

2e
2

− w
1
x− h

2e
26
,

and we are interested in the minimization problem

w̄ = arg min
î
J h(w; Ω)

---w ∈ H2
0 (Ω)

ï
.

It can be shown, in the same way as for the disclination problem, that H2
0 (Ω) is

the minimal regularity required to ensure the well-posedness of the problem for
dislocations. By applying Clapeyron’s theorem, one obtains the identity

G(w̄,Ω) = −1
2s
w̄(x+ h

2e) − w̄(x− h
2e)

h
. (4.2)

The variational problem associated with J h reads
1 − ν2

E
∆2w = − s

h
(δx+h/2 e − δx−h/2 e) in Ω,

w = ∂nw = 0 on ∂Ω,
(4.3)

which can be reduced to the clamped disk problem [45], as in Chapter 3 and [11].
Thanks to the linearity of the biharmonic operator and the boundary conditions,

the solution of the problem can be expressed as

w̄(x) =
2Ø

k=1
w̄k(x), with w̄k(x) :=

p̄k(x), x ∈ Ω \ {yk}
q̄k, x = yk,

(4.4)

where the functions p̄k(x) and q̄k are explicitly given by:

p̄k(x) = −Csk

h

 |x− yk|2

R2 log
A

|x− yk|2

R2

B
+
A

1 − |x|2

R2

BA
1 − |yk|2

R2

B

− |x− yk|2

R2 log
A
R4 − 2R2x · yk + |x|2|yk|2

R4

B,
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q̄k := −Csk

h

A
1 − |yk|2

R2

B2

,

where the constant C is defined in (3.9).
Substituting the expression for w̄ in (4.4) into the energy in (4.2), it follows that

G(w̄;BR(0)) = − 1
2h

2Ø
k=1

skw̄(yk) = − 1
2h

2Ø
k=1

2Ø
ℓ=1

skw̄ℓ(yk) =

= − 1
2h

2Ø
k=1

skw̄k(yk) − 1
h

2Ø
k=1

2Ø
ℓ=k+1

skw̄ℓ(yk) =

= −sq̄1 − q̄2

2h − s
p̄2(y1)
h

= −Cs2

2h2

CA
1 − |y1|2

R2

B2

+
A

1 − |y2|2

R2

B2D

− Cs2

h2

C
|y1 − y2|2

R2 log
A

|y1 − y2|2

R2

B
+
A

1 − |y1|2

R2

BA
1 − |y2|2

R2

B

− |y1 − y2|2

R2 log
A
R4 − 2R2y1 · y2 + |y1|2 |y2|2

R4

BD
.

We introduce a nondimensionalization of the problem by setting

Yk = yk

R
, X = x

R
, G = CH, T = C

R2 t,

where C is defined in (3.9).
This leads to the expression

H(Y1, Y2) := − s2

2h2

5
(1 − |Y1|2)2 + (1 − |Y2|2)2 + 2|Y1 − Y2|2 log |Y1 − Y2|2

+ 2(1 − |Y1|2)(1 − |Y2|2) − 2|Y1 − Y2|2 log(1 − 2Y1 Y2 + |Y1|2|Y2|2)
6

= −s2

2

C
(1 − |Y1|2)2

|Y1 − Y2|2
+ (1 − |Y2|2)2

|Y1 − Y2|2
+ 2 log |Y1 − Y2|2

+ 2(1 − |Y1|2)(1 − |Y2|2)
|Y1 − Y2|2

− 2 log(1 − 2Y1 · Y2 + |Y1|2|Y2|2)
D
, (4.5)

where we have used that h = |Y1 − Y2|. We now consider a radial dipole (see
Section 3.3) and, without losing of generality, we assume that Y1 > Y2:

H(Y1, Y2) = s2
C
2 log

A
1 − Y1 Y2

Y1 − Y2

B
+ (Y1 + Y2)2

2

D
. (4.6)
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To emphasize the contribution of the dipole, we substitute Y1, Y2, the positions of
the defects, into h, d, the distance between the defects and center of the dipole.
The energy in (4.6) now reads

Ĥ(h, d) := s2
C
2 log

A
h2 − 4 d2 + 4

4

B
− log

1
h2
2

+ 2 d2
D
. (4.7)

In particular, as h → 0, the energy diverges. This behavior is expected, since the
construction ultimately leads to the energy associated with an edge dislocation,
which is known to diverge near the singularity. More specifically, from the formula-
tion in (4.7) it follows that the only diverging contribution, in the limit h → 0, is
associated with the term log h2.

In the spirit of the core-radius approach, we isolate from the minimum energy
Ĥ the diverging contribution given by log h2

Ĥren(d) := Ĥ(h, d) + s2 log(h2) = 2s2 log
A
h2 − 4 d2 + 4

4

B
+ 2 s2 d2.

By taking the limit as h → 0, we obtain

W(d) := lim
h→0

Ĥren(d) = lim
h→0

C
2s2 log

A
h2 − 4 d2 + 4

4

B
+ 2 s2 d2

D

= 2s2
A

log(1 − d2) + d2
B
. (4.8)

The formulation obtained in (4.8) represents the energy of an edge dislocation in a
unit disk, which, after a π/2-rotation (see (2.28)), can be expressed in terms of the
magnitude of the Burgers vector b that characterizes the edge dislocation

W(d) := 2|b|2
A

log(1 − d2) + d2
B
. (4.9)

4.2 Dynamics of an edge dislocation
The energy of an isolated edge dislocation in (4.9) already suggests a strong
analogy with the energy of screw dislocations (see, e.g., [29, Formula (65)]) or with
the dynamic contribution that emerges in the Cermelli–Leoni formulation of the
Peach–Koehler force.

Assuming that the dynamics of edge dislocations, as with screw dislocations
and disclinations, is governed by the maximal dissipation criterion, the evolution
equation for d can be derived as the gradient flow of the energy:

ḋ = −W ′(d) = 4|b|2 d3

1 − d2 . (4.10)
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For the sake of consistency with the theory introduced in [10], we rename d, which
originally represented the center of the disclination dipole, with x, which now
represents the position of a dislocation. The resulting dynamics can therefore be
formulated as ẋ = 4|b|2 x3

1 − x2 ,

x(0) = x0.
(4.11)

In particular, the implicit solution to this problem is given by

log x
2

x2
0

+ 1
x2 − 1

x2
0

+ 8|b|2T = 0. (4.12)

From this result, we can observe that x∗ = 0 is an unstable equilibrium condition.
This configuration corresponds to the solution where the dislocation remains
stationary at the center of the disk (x ≡ 0) due to the symmetry of the problem.

Proposition 4.2.1 (Collision time for an isolated edge dislocation). An isolated
edge dislocation, initially positioned away from the origin (d0 /= 0), reaches the
boundary of the domain in the finite time

T̄ := 1
8|b|2

A
log x2

0 − 1 + 1
x2

0

B
. (4.13)

Proof. Consider the problem formulated in (4.11) for a single edge dislocation in
a unit disk, along with its solution in (4.12). By imposing that x(T̄ ) = 1, which
means that the dislocation has reached the boundary of the disk, we obtain:

− log x2
0 + 1 − 1

x2
0

+ 8|b|2T̄ = 0,

from which the collision time is derived as

T̄ := 1
8|b|2

A
log x2

0 − 1 + 1
x2

0

B
.

Proposition 4.2.2 (Relation between an isolated edge dislocation and an isolated
screw dislocation). By means of the maps

T → t

8|b|2π
and x2(T ) → 1

R(t) , (4.14)

a relationship between an isolated edge dislocation and an isolated screw dislocation
can be established.
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Proof. Consider the problem presented in [29, Section 4.2], where the dynamics of
an isolated screw dislocation in a circular domain is discussed. Several similarities
can be observed between this formulation and the edge dislocation case. Specifically,
the paper provides an implicit formulation for the motion of a screw dislocation,
given by

log R(t)
R0

−R(t) +R0 = t

π
, for t ∈ [0, t̄ ∂Ω

coll] , (4.15)

where R(t) := |z(t)|2 and R0 := |z(0)|2, with z(t) representing the position of the
dislocation relative to the center of the domain and t̄ ∂Ω

coll is the collision time defined
in [29, Formula (67)] as

t̄ ∂Ω
coll := π((1 −

ñ
R0)2 − 2 (1 −

ñ
R0) − logR0) = π(R0 − 1 − logR0). (4.16)

By comparing (4.12) and (4.15), (4.13) and (4.16), we observe a relationship
between the two formulations. Specifically, by imposing the maps in (4.14), a
direct connection between the dynamics of edge and screw dislocations can be
established.
Theorem 4.2.1 (Convergence to an edge dislocation). By introducing the time
rescaling

τ(T ) := 1
2

Ú T

0
h2(t) dt,

in the dynamics of a converging disclination dipole (see (3.26) in Ω1 and (3.34) in
Ω2), we can state that a converging disclination dipole is dynamically equivalent to
an edge dislocation, see (4.11).
Proof. We begin by assuming the behavior of the disclination dipole in both regions
Ω1 (see Section 3.3.2) and Ω2 (see Section 3.3.3). In Ω1, as h0 ≪ 1, the estimates
introduced in (3.26) yield

ḋ = 2s2h2d3

1 − d2 . (4.17)

In the same fashion, in Ω2 taking (3.34) into account, when h0 ≪ 1, we observe
that

ḋ = 2s2h2d3

1 − d2 .

In both cases, the implicit solution of the problem is

log
A
d2

d2
0

B
+ 1
d2 − 1

d2
0

= −4s2
Ú T

0
h2(t) dt.

In particular, by Propositions 3.3.1 and 3.3.3, h ∈ L2(R+) in C ⊆ Ω1 and in Ω2 .
We define

τ(T ) := 1
2

Ú T

0
h2(t) dt, (4.18)
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and we note that τ(0) = 0, the function τ is strictly increasing, and it converges to
a finite limit as T → +∞

τ∞ := lim
T →+∞

τ(T ) = 1
2

Ú ∞

0
h2(t) dt.

Therefore, τ is a strictly increasing and positive function, so that we have:

0 < τ(T ) ≤ τ∞ < +∞, for every T > 0.

The introduction of this time rescaling allows us to suppress the transient
contribution and observe the behavior of the center of the dipole over longer
timescales, thereby highlighting the long-time dynamics of an edge dislocation.

In particular, the monotonicity of τ allows us to apply the Inverse Function
Theorem, and thus conclude the existence of a bijective map σ : [0, τ∞] → R+ such
that σ(τ) = T . This, in turn, allows us to formally rewrite the problem in terms of
the new variable τ . Specifically, we observe that:

d(T ) = d(σ(τ)) = d̃(τ).

We now rewrite (4.17) in terms of d̃ and τ :

˙̃d = 4s2d̃3

1 − d̃2
,

whose implicit solution is given by:

log
A
d̃2

d̃0
2

B
+ 1
d̃2

− 1
d̃0

2 + 8s2τ = 0. (4.19)

From this solution we can observe that the time τ̄ needed to reach the boundary
(d̃ = 1) is finite and can be computed as:

τ̄ = 1
8s2

A
log(d̃0

2) − 1 + 1
d̃0

2

B
.

The result obtained in (4.19) is the description of an edge dislocation, derived
through a time rescaling from the collision of a dipole of disclinations.

Remark 4.2.1. It is worth noting that the assumption h ∈ L2 is not strictly
required in order to introduce the time rescaling. However, it plays a key role in
ensuring that τ ∈ [0, τ∞], with τ∞ < +∞, thus reinforcing the analogy with the
formulation for dislocations. Without this assumption, the integral defining τ could
diverge, potentially preventing a complete identification between the two dynamics.
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Remark 4.2.2. In a similar fashion, this result can also be extended to the case
of the fixed-arm configuration (see Section 3.4.1).
Specifically, by dividing the system in (3.41) by 1

2h
2
0, considering the limiting case

as h0 → 0, and performing a suitable expansion, we obtain the following implicit
formulation:

1
d2 − 1

d2
0

+ log
A
d2

d2
0

B
+ 8s2T = 0.

This leads to the formulation of the dynamics of an edge dislocation in (4.12).

This result, which can be interpreted as an extension, from the dynamical point
of view, of the Eshelby’s equivalance, not only provides a consistent formulation for
the motion of edge dislocations in the unit disk, but also reveals a deeper structural
connection with the theory of the two defects.

We can therefore conclude that the dynamics of edge dislocations may be
naturally obtained from the limit behavior of collapsing disclination dipoles. This
observation also opens the door to the possibility of constructing explicit mappings
between models describing edge and screw dislocations and disclinations.
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Chapter 5

Conclusions and
perspectives

In this thesis we have investigated the variational formulation of the elastic energy
in the presence of crystalline defects, with particular attention to disclinations and
their relation to dislocations. Starting from the classical framework of linearized
elasticity, we have introduced incompatibilities to model the presence of topological
defects. In particular, we have focused on disclinations, characterized by the Frank
angles, and on their energetic and variational description.

A central starting point of this work is the rigorous derivation of the variational
model for disclinations, and the subsequent analysis of its scaling limit, which shows
the energetic equivalence with edge dislocations. This result is consistent with
Eshelby’s equivalence, and provides a solid mathematical framework for interpreting
disclinations as precursors of dislocations in the appropriate limit. The rescaling
argument and the limiting process not only highlight the structural analogies
between the two types of defects, but also justify the passage from one model to
the other within a unified variational perspective.

From a numerical standpoint, we observed that the problem is often affected by ill-
conditioning, which makes the computation of solutions particularly challenging. A
more systematic analysis of the numerical sources of instability would be desirable,
possibly leading to the construction of efficient preconditioners or alternative
discretization strategies. Such an investigation could open the way to more robust
simulations, especially when extending the model to multiple interacting defects.

Future developments of this research may include the extension of the present
model to a larger number of defects, both of the same type and of different types, in
order to analyze their mutual interactions. From the analytical viewpoint, a careful
study of regularity and convexity properties of the variational functional could
further strengthen the mathematical foundation of the model. From the numerical
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viewpoint, it would be particularly relevant to explore the long-time behavior of
defect dynamics: as shown by our analysis, disclinations tend to move toward the
boundary as time tends to infinity, and their collision occurs only asymptotically.

To conclude, this thesis has confirmed the validity of the variational description
of disclinations, its connection to the theory of dislocations, and its consistency
with Eshelby’s equivalence. The results obtained not only enrich the theoretical
understanding of crystalline defects, but also suggest several promising directions
for future analytical and computational investigations.

62



List of Figures

1.1 Schematic representation of the Volterra’s process. A translational
mismatch produces a dislocation (a,b,c), while a rotational mismatch
produces a disclination (d,e,f). Where b is the Burgers vector, while
here ϕ is the Frank Angle. Credit: [35, Figure 1]. . . . . . . . . . . . 2

1.2 On the left a perfect crystal, where the black arrows represent the
circuit Γ; on the right a crystal with an edge dislocation, where
the red path represents the line defect, and b is the Burgers vector.
Credit: [23, Figure 9]. . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 On the left a perfect crystal, where the black arrows represent the
circuit Γ; on the right a crystal with screw dislocation where b is the
Burgers vector. Credit: [23, Figure 12]. . . . . . . . . . . . . . . . . 4

1.4 Formation of a planar wedge disclination: (a) is the negative discli-
nation, while (b) is the positive one. Credit: [61, Figure 3]. . . . . . 4

1.5 Scheme of a sample with disclinations. The green point represent a
positive disclination, while the orange one a negative disclination.
Credit: [32]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3.1 A disclination dipole in radial symmetry. The green triangle rep-
resents a negative disclination, while the orange one is a positive
disclination. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2 Behavior of the forcing functions of System (3.21). . . . . . . . . . . 25
3.3 Zeroes of f(h, d) and g(h, d). . . . . . . . . . . . . . . . . . . . . . . 26
3.4 Representation of the equilibrium point E2 = (1, 1

2). In this scenario
the positive disclination (orange triangle) lies on the boundary of
the domain, while the negative one (green triangle) is sitting at the
center of the disk. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.5 Details of the interaction between defects in the presence of numerical
errors using different stiff solvers in Matlab. . . . . . . . . . . . . . 29

3.6 Scheme of the dynamics of a dipole of disclinations. . . . . . . . . . 30
3.7 Details of the anomaly near g(h, d) = 0. . . . . . . . . . . . . . . . . 31
3.8 Numerical definition of C ⊆ Ω1 based on different error threshold. . 36

63



List of Figures

3.9 Behavior of the L∞ -error as κ → 0. . . . . . . . . . . . . . . . . . . 40
3.10 Behavior of a dipole of disclinations with a fixed distance, varying

h0 from bottom h0 = 0.01 to top h0 = 2 − 2d0, with d0 = 0.80 (left)
and d0 = 0.10 (right). . . . . . . . . . . . . . . . . . . . . . . . . . . 48

64



Bibliography

[1] R. Alicandro, L. De Luca, A. Garroni, and M. Ponsiglione, «Dynamics of
discrete screw dislocations on glide directions», Journal of the Mechanics and
Physics of Solids, vol. 92, pp. 87–104, 2016.

[2] R. Alicandro, L. De Luca, M. Palombaro, and M. Ponsiglione, «Γ-convergence
analysis of the nonlinear self-energy induced by edge dislocations in semi-
discrete and discrete models in two dimensions», Advances in Calculus of
Variations, vol. 18, no. 1, pp. 1–23, 2025.

[3] F. Banhart, J. Kotakoski, and A. Krasheninnikov, «Structural defects in
graphene», ACS nano, vol. 5, no. 1, pp. 26–41, 2011.

[4] T. Blass, I. Fonseca, G. Leoni, and M. Morandotti, «Dynamics for systems of
screw dislocations», SIAM Journal on Applied Mathematics, vol. 75, no. 2,
pp. 393–419, 2015.

[5] T. Blass and M. Morandotti, «Renormalized energy and Peach-Köhler forces
for screw dislocations with antiplane shear», arXiv preprint arXiv:1410.6200,
2014.

[6] G. A. Bonaschi, P. Van Meurs, and M. Morandotti, «Dynamics of screw dis-
locations: A generalised minimising-movements scheme approach», European
Journal of Applied Mathematics, vol. 28, no. 4, pp. 636–655, 2017.

[7] J. M. Burgers, «Physics.—Some considerations on the fields of stress connected
with dislocations in a regular crystal lattice», in Selected papers of JM Burgers,
Springer, 1939, pp. 335–389.

[8] P. Cermelli and G. Leoni, «Renormalized energy and forces on dislocations»,
SIAM journal on mathematical analysis, vol. 37, no. 4, pp. 1131–1160, 2005.

[9] P. Cermelli and M. E. Gurtin, «The motion of screw dislocations in crystalline
materials undergoing antiplane shear: Glide, cross-slip, fine cross-slip», Archive
for rational mechanics and analysis, vol. 148, no. 1, pp. 3–52, 1999.

65



BIBLIOGRAPHY

[10] P. Cesana, L. De Luca, and M. Morandotti, «Semidiscrete modeling of systems
of wedge disclinations and edge dislocations via the Airy stress function
method», SIAM Journal on Mathematical Analysis, vol. 56, no. 1, pp. 79–136,
2024.

[11] P. Cesana, A. Grillo, M. Morandotti, and A. Pastore, «Dissipative Dynamics
of Volterra Disclinations», SIAM Journal on Applied Mathematics, vol. 85,
no. 4, pp. 1361–1386, 2025.

[12] G. Dal Maso, «Ennio De Giorgi and Γ-convergence», Discrete and Continuous
Dynamical Systems, vol. 31, no. 4, pp. 1017–1021, 2011.

[13] E. De Giorgi, «Sulla convergenza di alcune successioni d’integrali del tipo
dell’area», Ennio De Giorgi, vol. 414, p. 64, 1975.

[14] R. deWit, «Relation between dislocations and disclinations», Journal of
Applied Physics, vol. 42, no. 9, pp. 3304–3308, 1971.

[15] R. deWit, «Theory of disclinations: II. continuous and discrete disclinations
in anisotropic elasticity», Journal of Research of the National Bureau of
Standards. Section A, Physics and Chemistry, vol. 77, no. 3, p. 359, 1973.

[16] R. deWit, «Theory of disclinations: III. continuous and discrete disclinations in
isotropic elasticity», Journal of Research of the National Bureau of Standards.
Section A, Physics and Chemistry, vol. 77, no. 3, p. 359, 1973.

[17] R. deWit, «Theory of disclinations: IV. Straight disclinations», Journal
of Research of the National Bureau of Standards. Section A, Physics and
Chemistry, vol. 77, no. 5, p. 607, 1973.

[18] E. Domoroshchina, A. Dubovskii, G. Kuz’Micheva, and G. Semenkovich, «In-
fluence of point defects on the electrical conductivity and dielectric properties
of langasite», Inorganic materials, vol. 41, no. 11, pp. 1218–1221, 2005.

[19] J. Eshelby, «A simple derivation of the elastic field of an edge dislocation»,
British Journal of Applied Physics, vol. 17, no. 9, p. 1131, 1966.

[20] F. Frank and W. Read Jr, «Multiplication processes for slow moving disloca-
tions», Physical Review, vol. 79, no. 4, p. 722, 1950.

[21] A. Garroni, G. Leoni, and M. Ponsiglione, «Gradient theory for plastic-
ity via homogenization of discrete dislocations», Journal of the European
Mathematical Society, vol. 12, no. 5, pp. 1231–1266, 2010.

[22] M. Y. Gutkin and E. Aifantis, «Dislocations and disclinations in the gradient
theory of elasticity», Physics of the Solid State, vol. 41, no. 12, pp. 1980–1988,
1999.

[23] A. Haddad, Difetti dei cristalli, https://www.gmpe.it/minerali/difetti-
cristalli.

66

https://www.gmpe.it/minerali/difetti-cristalli
https://www.gmpe.it/minerali/difetti-cristalli


BIBLIOGRAPHY

[24] W. Harris, «Disclinations», Scientific American, vol. 237, no. 6, pp. 130–145,
1977.

[25] J. P. Hirth, G. Hirth, and J. Wang, «Disclinations and disconnections in
minerals and metals», Proceedings of the National Academy of Sciences,
vol. 117, no. 1, pp. 196–204, 2020.

[26] J. Hirth, «A brief history of dislocation theory», Metallurgical Transactions
A, vol. 16, no. 12, pp. 2085–2090, 1985.

[27] J. Hirth, J. Lothe, and T. Mura, «Theory of dislocations», Journal of Applied
Mechanics, vol. 50, no. 2, pp. 476–477, 1983.
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