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Introduction

Credit risk constitutes the primary financial risk for intermediaries and is defined as the
risk of loss arising from a borrower’s failure to meet contractual obligations. Developing
models to estimate and predict this risk is therefore a fundamental task of a bank’s
risk management function. This involves creating statistical models based on historical
defaults to assess the risk of current borrowers, which in turn informs risk management
strategies and lending policies. Key parameters include the Probability of Default (PD),
Exposure at Default (EAD) and Loss Given Default (LGD). While credit risk research has
focused extensively on the estimation of PD, LGD modelling - the focus of this thesis -
has received comparatively less attention.

Loss Given Default (LGD) measures the proportion of an exposure that is lost following a
default. Its estimation in industry practice is characterized by a classic trade-off between
model complexity and interpretability. Standard practice favours parsimonious, grid-
based models that are easily understood but impose severe constraints on predictive
power, often resulting in high bias. Conversely, flexible machine learning models, widely
explored in academic literature, can achieve lower estimation error but suffer from a lack
of interpretability and a higher risk of overfitting.

The primary objective of this work is to develop and validate a new methodological
paradigm that resolves this conflict, yielding estimates that are both more accurate and
operationally manageable. The proposed approach first employs unconstrained, high-
capacity estimation models to accurately capture the complex relationships within the
data. Subsequently, a post-processing aggregation step, based on hierarchical clustering,
is applied to the continuous predictions. This second phase reduces the granularity of the
output to a manageable number of discrete grades, thereby restoring parsimony while
preserving the predictive accuracy of the initial, more complex model.

The thesis is structured to logically develop and test this methodology. Chapter 1 provides
the general context, introducing the regulatory framework and the core parameters of the
AIRB approach. The analysis then proceeds in Chapter 2 to establish the theoretical
foundation, framing LGD estimation as a supervised learning problem. In particular, two
model designs are examined: the single-stage approach and the two-stage framework,
with the latter specifically designed to address the latent heterogeneity often found in
borrower populations. Chapter 3 focuses on the validation methodology, presenting
a critical analysis of the Somers’ d metric. We analyze how this metric can exhibit
potential biases in certain scenarios, suggesting that both of its asymmetric formulations
should be considered, contrary to common practice. This groundwork supports the core
empirical validation in Chapter 4, where the proposed models are implemented and the
effectiveness of the post-aggregation procedure is illustrated.






Chapter 1

General context and research
objective

This chapter establishes the context and research objective of the thesis. It begins by
outlining the fundamentals of credit risk modelling, its key parameters, and the regula-
tory framework (Section 1.1). It then details the standard methodology for LGD model
development, from historical data processing to the phases of risk differentiation and
quantification (Section 1.2). The chapter concludes by focusing on the Intesa Sanpaolo
case, defining the core objective of this work: to explore a methodological evolution
toward a more granular LGD estimation for the Other Retail segment (Section 1.3).

1.1 Credit risk modelling: purposes, parameters and regulation

The activity of financial intermediation lies at the core of the business model of commercial
banks. It consists in collecting funds from different sources - such as retail deposits,
wholesale funding and shareholder equity - and then, on the asset side, allocating these
resources across various investments - most notably through the extension of credit to
households and firms.

Credit risk arises directly from the activity of financial intermediation and is generally
defined as the risk of financial loss resulting from a borrower’s inability to meet contrac-
tual obligations. Since banks inevitably assume this risk through their lending activities,
regulation requires them to hold a minimum amount of capital as a safeguard known as
capital requirement - also referred to as regulatory capital, capital adequacy or capital
base. This amount is designed to absorb unexpected losses and to ensure that the institution
does not become excessively leveraged or insolvent.

In practice, a distinction is made between expected and unexpected losses. Expected
losses are already recognised in accounting terms and are covered through provisions,
which appear as adjustments on the asset side of the balance sheet. Unexpected losses,
on the other hand, are those that exceed expectations and represent the main focus of
credit risk management and regulatory requirements, that aim to absorb these shocks,
since provisions alone may be insufficient. Unlike provisions, the regulatory capital is not
part of the balance sheet itself, but consists of specific balance sheet elements: CET1, AT1
and Tier 2 capital.

The required amount of regulatory capital is usually expressed as a Capital Adequacy
Ratio (CAR), which measures the bank’s regulatory capital divided by its risk-weighted
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assets (RWA):
Regulatory Capital

RWA

According to Basel regulations, banks are required to maintain a minimum CAR of 8% -
meaning that the regulatory capital must be at least 8% of the total RWA. RWA represent
the bank’s total assets, weighted by the risk associated to each exposure - so that riskier
assets require more capital and safer assets require less, ensuring that the capital held by
the bank is proportional to the actual risk it carries on its balance sheet.

CAR =

x 100% (1.1)

In the Italian banking system, as in other European jurisdictions, there are rules governing
credit risk management and capital adequacy that originate from international, European
and national sources. At the international level, the most influential body is the Basel
Committee on Banking Supervision (BCBS) - operating under the auspices of the Bank
for International Settlements (BIS). Within the European Union, the Basel framework
is transposed into European law through the Capital Requirements Regulation (CRR)
and the Capital Requirements Directive (CRD). Building on these provisions, the Euro-
pean Banking Authority (EBA) issues Guidelines and Regulatory Technical Standards -
which provide further specifications and ensure consistent implementation across Mem-
ber States. Finally, at the national level, the Bank of Italy issues supervisory provisions
and ensures the concrete application of the European regulatory framework within the
whole Italian banking system, except for the significant institutions which are under the
direct control of the ECB.

The regulatory framework has evolved significantly over time. The first step towards
international cooperation in banking supervision was the establishment of the BCBS in
1974. Since then, the Basel Accords have been revised multiple times: Basel I (1988)
introduced the first global capital standards, Basel II (2004) refined risk sensitivity and
incorporated internal model approaches, Basel III (2010) strengthened capital and lig-
uidity requirements in response to the global financial crisis and Basel IV (2017) further
addressed model risk and standardisation in capital calculation.

Given the central role of RWA in determining capital requirements, to prevent incon-
sistencies across institutions and jurisdictions, regulators have established detailed rules
and methodologies governing their calculation, including how risk weights should be
assigned to different exposures. Let us now focus on assets exposed to credit risk, and
therefore on the computation of credit risk weights. Under Basel I, capital requirements
were based on simple, standardized risk-weight coefficients applied to broad asset classes,
without differentiating between borrowers” individual creditworthiness. With Basel II,
the determination of credit risk weights has undergone a significant evolution, with the
introduction of both the Standardised Approach (SA) and the Internal Ratings-Based
(IRB) approach.

The SA approach substitutes the standardized risk-weight coefficients of Basel I with ex-
ternally determined risk weights and credit ratings provided by agencies such as Standard
& Poor’s, Moody’s or Fitch. The IRB framework - which is at the core of this work - goes
further, allowing banks to assign a risk weight to each exposure based on their own in-
ternal assessments of borrowers’ creditworthiness, providing a more granular measure
of capital requirements. Within this framework, a distinction is made between the Foun-
dation IRB (FIRB) and the Advanced IRB (AIRB) approaches - depending on the degree of
autonomy granted to banks in estimating the parameters used for risk-weighting. Under
FIRB, certain parameters are prescribed by regulation (LGD, CCF) whereas under AIRB
banks must develop internal models for their estimation.

Formally, for each credit exposure i, both in FIRB and in AIRB it is not computed the



associated risk weight, but directly its contribution to regulatory capital - also referred to
as Risk Contribution (RC) - by applying the so-called IRB formula:

Rci = fIRB(PDi/ EADl‘, LGDI‘,MZ') (12)

where the function firp is specified by the regulatory framework while the inputs - the
risk parameters - must be estimated internally - at least in part, depending on FIRB or
AIRB.

Before defining these parameters, it is necessary to clarify the notion of default. According
to the BCBS, a default is deemed to have occurred when a counterparty has credit obliga-
tions past due for more than 90 consecutive days and /or when strong signals of financial
difficulties are detected. On this basis, the IRB framework requires banks to estimate the
following parameters:

* Probability of Default (PD): the estimated probability that a counterparty will
default within one year. Both FIRB and AIRB banks must rely on historical data to
calibrate PDs for each internal rating grade.

¢ Exposure At Default (EAD): it represents the amount of exposure that remains out-
standing at the moment of default. Its estimation largely depends on the contractual
features of the credit facility and can be straightforward or complex depending on
the case. For a simple amortizing loan, the EAD corresponds to the outstanding
principal that has not yet been repaid through scheduled instalments. For revolving
facilities - such as credit lines - the calculation is more intricate: part of the exposure
may already be drawn by the borrower - and is therefore certainly at risk - while
another portion remains undrawn but can still be drawn down before default - thus
becoming at risk as well. In general, EAD is computed as the sum of the drawn
portion and the undrawn portion multiplied by a Credit Conversion Factor (CCF) -
which represents the fraction of the unused credit line that is expected to be utilized
at the time of default. Under FIRB, CCF values are fixed by regulation whereas
AIRB banks develop their own methodologies.

* Loss Given Default (LGD): it corresponds to the proportion of the exposure that
is lost in the event of default. As with CCF, LGD is prescribed by regulation under
FIRB whereas AIRB banks must estimate it internally.

* Maturity (M): the effective remaining life of the exposure, reflecting both the timing
and size of future cash flows. Under FIRB, M is set to fixed regulatory values
whereas under AIRB it is calculated using the Macaulay duration formula - subject
to regulatory bounds (1 < M < 5 years).

The institution - after having estimated the previous parameters for a credit exposure i
- obtains the related risk contribution using Equation 1.2, which in its explicit version
according to BCBS is:

O Y(PD;) + y/p(PD;) ®1(0.999)

V1 - p(PD;)

RC; =EAD; - |LGD; - ®

) — LGD; - PD;

(1.3)
1+ (M; —2.5)b(PD;)
1-15b(PD;)

The derivation of the previous formula and the definitions of its individual components
are discussed in detail in Appendix A. Because RC; is directly the capital requirement of
the exposure 7, and RC; = 8% - RWA;, we deduce that the risk-weighted asset amount for



the credit exposure i according to the IRB approach is equal to:

RWA; = — . EAD; - | LGD; - ® @~'(PD;y) + y/p(PD;) @~1(0.999)
i~ 5o i i
o 1-p(PD;) ”
_1GD; . pD,| . LEMi =25 b(PD:)

1-1.5b(PD;)

Therefore, as outlined in this section, the primary purpose of credit risk modelling - with
a specific focus on the AIRB approach at the core of this work - is the quantification
of the fundamental credit risk parameters (PD;, LGD;, EAD; and M;). The accurate
estimation of these components for each exposure i is the crucial step that enables the
institution to calculate its risk-weighted assets (RW A;) according to the formulas imposed
by the regulatory framework, thereby fulfilling capital adequacy requirements in a more
precise manner that is aligned with the risk actually assumed.

1.2 Main steps in LGD models development

Having in mind the general purposes of credit risk modelling, from now on this work
will focus on one of the risk parameters: the Loss Given Default (LGD). As previously
mentioned, LGD represents the proportion of the exposure that is lost in the event of
default. Specifically, LGD refers to the economic loss rather than the accounting loss.
Hence, all costs - and potentially also benefits - must be properly taken into account
when defining the LGD. Examples of costs include the expenses for realising collateral
value, administrative costs related to collection activities - such as sending letters or
making telephone calls to defaulted obligors - and legal costs. At the same time, benefits
such as late-payment interest, penalty fees or other commissions may also be considered.

The development of an LGD estimation and prediction model is preceded by the phase
in which observed LGDs - related to the institution’s portfolio of credit exposures - are
calculated. These observed LGDs serve as the ground truth for the development of
statistical models. There are two main methodologies for computing LGD: the workout
method and the market approach.

The workout method is based on discounting, at the time of default, the net cash flows
actually realised during the recovery process. Therefore, in order to estimate LGD through
this methodology, each defaulted exposure must be monitored over time, with all relevant
information explicitly recorded, such as balances, cash flows, recovery costs and any other
useful details. It is important to note that the workout LGD is not known either at the time
the facility is granted or when the borrower defaults, but only once the recovery process
has been completed. Under this approach, the LGD is given by:

EAD -3 CF-(1+1)"

LGD = FAD

(1.5)

where CF; and r; denote, respectively, the cash flow and the discount rate at time ¢.

Considering Equation 1.5, the value of LGD typically ranges between 0 and 1: it equals 0
in cases where the recovery process leads to the full repayment of the defaulted exposure,
and 1 when the entire exposure is lost. However, in some situations LGD may fall outside
this range. For instance, it can take negative values if the borrower returns to performing
status and late-payment interests collected exceed the recovery costs. Conversely, LGD
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Figure 1.1: Example of an LGD grid where the risk drivers considered are the EAD, the
credit facility type, the presence of collateral and the geographical area. As shown in
the table, all risk drivers are treated as discrete variables with two distinct values each,
including EAD, which could in principle be a continuous variable. This discretisation
serves to reduce the granularity of values, mitigate noise and ensure a tractable grid
representation, a topic that will be discussed in more detail later.

may exceed 1 when no recovery is achieved and, in addition to the total loss of the
exposure, further indirect costs are incurred.

On the other hand, the market approach, relies on observing the prices of debt instruments
issued by firms that have defaulted. Once bankruptcy occurs, outstanding bonds or
loans become distressed instruments and investors trade them at prices that reflect their
expectations about recoveries. These market prices are then used as a proxy for LGD
estimation.

According to paragraph 6.1.1 of the EBA Guidelines [1], institutions applying the AIRB
approach are not allowed to rely exclusively on the market-based methodology. Instead,
the workout method is considered the reference approach, although external data may
be integrated with internal observations.

Once the historical sample of observed LGDs has been collected, the next step under the
AIRB approach is to develop an internal model capable of estimating LGD for each facility
on the basis of a set of observed risk factors. According to the EBA Guidelines [1], model
development generally follows two main steps:

1. Risk differentiation: The purpose of risk differentiation is to identify the best set
of risk drivers that make it possible to discriminat LGD values. The outcome
consists of groups of exposures that exhibit homogeneous risk drivers within each
class, heterogeneous risk drivers across classes and different riskiness in terms of
LGD. Typically, the output of this phase is referred to as the LGD grid, where
the significant risk drivers are crossed to generate all possible combinations of
classes, each of which is assigned its final LGD value. An example of a possible
LGD grid is shown in Figure 1.1. In this phase, only exposures with completed
recovery processes are used, as they are the only ones providing LGD values that
are representative of the entire recovery process.

2. Risk quantification: This phase of the estimation process consists in applying cal-
ibration factors to the LGD level of each class obtained in the previous step, in
order to reflect either the long-run average LGD (LRALGD) or, where more conser-
vative, to the downturn LGD appropriate for a recessionary period. At this stage, all
defaults observed in the available historical period (falling within the scope of the
model) must be considered, including both closed and still active recovery processes
- referred to as open positions. The long-run average LGD is then calculated as the
arithmetic mean of realized LGDs, weighted by the number of defaults. This value s
subsequently calibrated to incorporate the potential impact of a recessionary phase,



obtaining downturn LGD.

In this thesis, we will focus specifically on the risk differentiation phase, developing
statistical and machine learning models capable of identifying not only the most relevant
risk drivers for discriminating observed LGD values, but also the underlying relationships
between such drivers and LGD itself. In the following section, we will analyse the case of
Intesa Sanpaolo, examining how its internal practices fit into the general framework just
outlined and discussing the challenges that the models proposed in the following may
help to address.

1.3 A focus on the Intesa Sanpaolo case

Intesa Sanpaolo Group is one of the leading banking groups in Italy and within the euro
area and it is classified among the significant institutions under the European Union’s
prudential supervisory framework. According to the public disclosure as of 31 March
2025, the Group reported a total capital ratio (CAR defined in Equation 1.1) of 18.50%.
Specifically, this reflects total own funds of € 56,370 million against RWA amounting to
€304,636 million, of which € 226,899 million stem from credit risk.

With regard to credit risk, Intesa Sanpaolo applies the AIRB approach to almost its
entire portfolio, with the exception of certain segments - such as Non-Banking Financial
Institutions and Sovereigns - where the very limited number of defaults makes the use
of internal models less meaningful. Concerning the LGD parameter, according to [2], the
Group has been authorised to use the AIRB method for the following portfolio segments:

* Mortgage: including residential mortgage loans to private individuals.

¢ Corporate: including banking products, leasing and factoring to companies with
exposures exceeding €1 million or consolidated turnover above €2.5 million.

* SME Retail: including banking products, leasing and factoring to small and medium-
sized enterprises not included in the corporate segment.

* Other Retail: including loans to private individuals other than residential mort-
gages.
¢ Banks and Public Sector Entities.

In this work, in collaboration with the Credit Risk Accelerator of Intesa Sanpaolo, a potential
methodological evolution for LGD estimation will be explored. Specifically, focusing on
the risk differentiation of the Other Retail segment, the aim is to move away from the
traditional LGD grid approach (see Section 1.2) in favour of a less parsimonious method.

On the one hand, the grid-based approach offers several advantages. It allows for an
intuitive interpretation of LGD estimates and an easy assessment of their economic con-
sistency. For instance, one can readily verify that LGD tends to be higher in cases where
the risk drivers indicate economically adverse conditions, and lower in more favourable
scenarios (e.g., higher LGD is expected for unsecured exposures or loans issued in geo-
graphical areas associated with weaker economic conditions). These features are appre-
ciated by regulators and are fundamental for pricing credit instruments coherently, thus
maintaining a competitive advantage in the credit market.

On the other hand, the current implementation of the grid-based approach imposes strin-
gent parsimony constraints in the model development pipeline, limiting the potential of
the underlying estimation models. As anticipated in Figure 1.1, it also requires discretiza-
tion of the input risk drivers, which restricts their expressivity. This study therefore



investigates whether removing these parsimony constraints and abandoning the re-
quirement for a predefined LGD grid can yield models with substantially improved
predictive performance, potentially justifying the resulting reduction in interpretabil-
ity.

To this end, the proposed methodologies are compared with a baseline model consisting
of a highly parsimonious Decision Tree. By controlling the number of terminal leaves and
the tree depth, this baseline model naturally produces a grid-like output, with each split
of the tree assigning facilities to the corresponding LGD cell. In contrast, we relax the
parsimony constraints on the number of leaves and maximum depth, aiming to achieve
more deep and accurate models while sacrificing the strict grid representation. This
allows us to further experiment with more complex ensemble methods, such as Random
Forest and Gradient Boosting, and to introduce a novel two-stage model design, in which
estimation occurs in two sequential phases - hence the name two-stage models.

It is important to note that, when parsimony constraints are relaxed, the estimation may
become excessively granular, leading to a very high number of distinct LGD values. Since
such an output is difficult to manage - and precisely for this reason a parsimonious grid is
usually employed - the approach explored in this study consists of two phases. The first is
an unconstrained estimation, based on the models discussed above, where no restrictions
on granularity are imposed; by construction, this step is expected to deliver more accurate
results than the baseline. The second is an aggregation phase, designed to reduce the
number of distinct LGD values produced by the models. The main finding will be
that, even after this aggregation - which brings the level of granularity down to one
comparable with the baseline - the higher performance is preserved, thus achieving a
balance between accuracy and tractability.






Chapter 2

Theoretical framework for LGD
modelling

In this chapter, we provide the theoretical framework of LGD estimation by framing it as a
supervised learning problem. We begin by defining the mathematical notation and stating
the core underlying assumptions (see Section 2.1). Secondly, we formalize the estimation
problem using standard statistical learning theory (see Section 2.2). Then, we present
an overview of the main modelling approaches found in the literature, distinguishing
between single-stage and two-stage frameworks (see Section 2.3). Finally, we compare
these methodologies through the lens of statistical learning theory, with a focus on their
learnability and generalization properties (see Section 2.4).

2.1 Assumptions and learning settings

Let (Q, 7, P) be a probability space, X € R? denote the d-dimensional input space,
which includes the relevant explanatory features - referred to as risk drivers - such as
borrower characteristics, loan details and macroeconomic indicators, and Y C R denote
the output space, representing continuous LGD target values, usually between 0 and 1
(see Section 1.2).

We denote by:
X:(Q7F)—X

a d-dimensional random vector defined on the probability space (Q2, ¥,P) and taking
values in the risk drivers space X. We write x € X to denote a realization of X - i.e,, a
realization of the random risk drivers -, and Dy to denote its probability distribution:

Dy(A)=P(X e A), ACX.

Finally, we denote by:
Y (QF) -V

the one-dimensional random variable defined on the probability space (Q, ¥ ,P) and
taking values in the output space . We write y € Y to denote a realization of Y - i.e., a
realization of LGD target value.

The learning framework considered in this work relies on three standard assumptions,
widely adopted in the statistical learning literature: the existence of a deterministic target
function, a non-realizable hypothesis class and an i.i.d. sample forming the training set.
We detail each below.
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Assumption 1 (Deterministic target function). We assume the existence of a fixed
but unknown target function f : X — Y such that:

Y =f(X) P-as.

Equivalently, any realization x € X is mapped deterministically to a unique y = f(x).

This implies that two credit exposures with identical features in X will yield the same LGD
outcome. While this promotes consistency and interpretability - both highly desirable
in credit risk modelling - it is also a strong assumption. In practice, latent variables
and inherent randomness may introduce noise that X alone cannot fully capture. To
address this modelling simplification, one often abandons the deterministic setting in
favour of a stochastic one, where the conditional distribution of the target variable Y
given X = x is not degenerate, i.e., Y is not uniquely determined by x via a deterministic
function. However, in this work, we adopt the deterministic assumption as a simplifying
foundation for theoretical clarity.

The aim of the estimation process is to approximate the target function f using a suitable
function & from a fixed set of functions H c {h : X — Y}, called hypothesis class.

Assumption 2 (Non-realizable setting). We assume that the true target function f
may not belong to the hypothesis class H, i.e., f & H. Consequently, even with access
to infinite data, the algorithm may not be able to exactly recover f.

This reflects a key limitation in practical learning: hypothesis classes are often constrained
by statistical, computational or domain-specific considerations and may lack the expres-
siveness to fully capture the true data-generating process.

Assumption 3 (ii.d. credit portfolio). We assume access to a credit portfolio P
consisting of n realizations of the pair (X, Y), drawn iid from Dx over X, with Y = f(X)
P-a.s.. Denoting by x; and y; the observed realizations of X and Y, we have y; = f(x;).

The credit portfolio P is partitioned into three disjoint subsets: the training or in-sample
set Prs, the test or out-of-sample set Poos and the out-of-time set Poor, with Pis used for
model development . Without loss of generality, we assume that the observations in the
training set correspond to the first m entries of the credit portfolio, i.e., Pis = {(x;, yi)};”:l.

On the one hand, the i.i.d. assumption facilitates the application of classical learning
theory results, such as generalization bounds. On the other hand, in real-world credit
portfolios, mild violations of this assumption may arise. A common example is when
the overall population comprises distinct homogeneous subgroups of borrowers. In
such cases, the data are not identically distributed, as the population exhibits latent
heterogeneity. In this work, we adopt the i.i.d. assumption as the default setting to ensure
analytical tractability, but we will explicitly relax it in those modelling frameworks where
heterogeneity is accounted for.

2.2 Formalization of the LGD estimation problem

Given the assumptions and using the notation introduced in the previous section, the
LGD estimation task can be formalized as follows. A learning algorithm A receives as

!While the in-sample and out-of-sample sets are always disjoint, the out-of-time set may overlap with
either the in-sample or the out-of-sample set, or with both.



input a finite training set Ps and returns as output the hypothesis hp, = A(Prs), which
corresponds to the best function within a predefined hypothesis class H. This function
hp, represents the trained regression model used to estimate LGD values across the entire
dataset, including in-sample, out-of-sample and out-of-time observations?:

:91' = h?ls(xi)/ i€ [TZ]

To assess the quality of a given hypothesis & € H and to select the best one, we ideally
rely on its generalization error R(h), which measures the expected loss over the data-
generating distribution. Given a suitable loss function ¢ : Y X Y — Ry, it is defined
as:
R(h) := Ex-py [€(h(x), f(x))].

where h(x) is the predicted value by the hypothesis i and f(x) is the observed value.
The optimal hypothesis #* within the hypothesis set H is the one that minimizes this
quantity:

h* = in R(h).

argmin (h)

Since both the distribution Dy and the true function f are unknown, the generalization
error cannot be computed directly. In practice, for a given hypothesis i € H the algorithm
evaluates the empirical error Ry (h) over the training sample Pis:

. 1 v ,
Rpg(h) = — Z E(h(xi), yi)*,  (xi,yi) € Pris, Vi € [m]
i=1
and, according to the Empirical Risk Minimization (ERM) principle, it returns the empir-
ical risk minimizer:
hﬂs = ﬂ(PIS) = arg 52171’{1 Rpls(h).

Under ERM, the selected hypothesis iy, is not necessarily the one with lowest gener-
alization error /", but the one that best fits the training data. As a result, the model may
also capture noise or spurious patterns, leading to overfitting and poor out-of-sample
performance. A common approach to mitigate this risk is to constrain the complexity of
the hypothesis class H so as to balance model flexibility and robustness.

This consideration highlights the importance of studying the so-called learnability of
the chosen hypothesis class H, that is, its capacity to yield hypotheses that generalize
well when trained on sufficiently large samples. In this context, learnability ensures
that minimizing the empirical error translates into strong generalization performance,
namely a low generalization error. We now review the models commonly used in the
LGD literature and examine their learnability properties.

2.3 Academic state of art in LGD estimation

The introduction of the Basel II framework has stimulated a growing body of literature
focused on LGD estimation. The proposed models can be broadly categorized into two
families: single-stage and two-stage modelling frameworks.

2This highlights a key aspect of statistical and machine learning model development: only the training
data is used to fit the model, but predictions are made on the full dataset, including in-sample, out-of-sample
(OOS) and out-of-time (OOT) examples.

3Specifying the loss function {(-, -) leads to common evaluation metrics. In this work, we adopt the Mean
Squared Error (MSE), defined as MSE = % Z:‘ﬂ:l (h(xi) - y,-)z, which corresponds to the £, loss, and the Mean

Absolute Error (MAE), defined as MAE = % 2 |h(xi) = yil, corresponding to the ¢; loss. These metrics

allow us to assess LGD estimation accuracy under different sensitivity assumptions.
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Figure 2.1: The training and estimation processes of single-stage models are illustrated
with a diagram consisting of arrows and blocks, whose meaning is explained in the
legend.

In single-stage frameworks, a unique algorithm A receives as input the training credit
portfolio Prs = {(X;, ¥i)}ic[n] and outputs a unique regression model hp. Then, LGD
is directly estimated by applying the regression model to a set of realizations of the
explanatory variables:

Ui = hpg(xi), i€ [n]. 2.1)

Both the training and estimation workflows are illustrated in Figure 2.1. Specifically, the
credit portfolio is split into a training set and a test set (blue line). The training set serves
as input to the algorithm A to produce and tune the model hp, thus concluding the
training phase (blue arrow). During the estimation phase (green dashed arrow), both the
training and test datasets are fed into the model /¢, which returns the estimated values
Ji, for i € [n]. The test estimates are then used to evaluate the robustness of the model,
that is, to assess whether the model chosen using the training set is sufficiently stable and
able to generalize well to unseen data.

The approaches in this category include linear regression, beta regression, robust re-
gression, regularized regression, regression trees, support vector regression and artificial
neural networks, among others. Several studies have highlighted the superior perfor-
mance of non-parametric models - particularly non-linear ones - such as those reported
by Qi and Zhao (2011) [3] and Loterman et al. (2012) [4].

More recently, two-stage frameworks have gained increasing popularity. This trend is
largely driven by the complex distributional characteristics of LGD, which typically de-
viates from normality and often exhibits bi-modal or multi-modal patterns. Unlike
single-stage models, they do not rely on the i.i.d. assumption for the population of
defaulted borrowers (see Assumption 3), attributing the observed multi-modality to
latent heterogeneity in the data. As a result, these approaches introduce a preliminary
segmentation step before estimation. In the first stage, the population is divided into
multiple homogeneous subgroups and, in the second stage, a separate LGD estimation
model is trained for each subgroup. Figure 2.2 illustrates the training and estimation
workflows of the two-stage models.
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Figure 2.2: The training and estimation processes of two-stage models are illustrated with
a diagram consisting of arrows and blocks, whose meaning is explained in the legend.

More formally, assuming the presence of k distinct homogeneous classes within the
population of defaulted borrowers, the training set can be partitioned into k disjoint
subsets based on the observed class membership: Pis = C1U---UCy = U;‘:l C;j. A separate
learning algorithm A; is then applied to each subset C;, resulting in a class-specific
regression model hcj forj=1,...,k.

To assign observations to the appropriate class, class membership must be estimated
rather than observed, as would be required when processing new data. For this purpose, a
classification model is trained. Specifically, an algorithm Ay receives the entire training set
Pis and outputs a classifier gp,, which predicts the class membership for each observation
in the form of a label in {1, ..., k}.

The final LGD estimate is obtained through a two-step prediction process: first, the
classifier gp,, assigns each observation to a class constructing an estimated partition of
the data, i.e. Ps = U;‘zl Cj, and then the corresponding regression model h¢; is applied
considering the estimated class membership. Formally:

k
9= > 1(gms(xi) = ) ey (xq). (22)
j=1



The main distinction among two-stage models lies in the methodology used for the initial
segmentation in classes. One of the earliest examples is presented by Matuszyk et al.
(2010) [5], who used logistic regression in the first stage to distinguish defaults with
strictly positive LGD from those with zero or negative LGD. A separate regression model
is then applied in the second stage to estimate LGD for the positive-LGD group.

Recognizing and demonstrating that a simple logistic regression may not adequately cap-
ture complex non-linear relationships between explanatory variables and LGD, Tanoue
et al. (2020) [6] proposed using more advanced models for the segmentation step, but
preserving the partitioning into non-positive and positive LGD observations. They ex-
perimented with random forests, k-nearest neighbours and support vector machines and
found that random forests yielded the best overall performance.

Salko and D’Ecclesia (2021) [7] proposed a segmentation strategy based on the work-out
process *, classifying borrowers into three distinct categories: cures, partial recoveries and
write-offs . Each class is handled with a dedicated regression model in the second stage,
following multi-class classification using machine learning algorithms in the first stage.

Bosker et al. (2024) [8] used unsupervised cluster analysis to group borrowers according
to their intrinsic similarities. This is a fully data-driven segmentation, without assuming
a priori a class-wise partition. This procedure yielded economically meaningful and
interpretable clusters, for each of which a separate predictive model was subsequently
developed.

It is evident that two-stage frameworks offer numerous opportunities for extension, both
thanks to the wide variety of possible combinations between parametric, non-parametric,
linear and non-linear models - as explored by Loterman et al. (2012) [4] - and the
availability of many segmentation criteria based on different underlying principles.

2.4 A theoretical comparison of modelling architectures

Given the different methodological approaches discussed earlier, we now present a theo-
retical comparison of the learnability of the corresponding hypothesis classes, using the
formal framework introduced in Section 2.2. The goal is to assess the theoretical appli-
cability and limitations of each modelling architecture and to provide a foundation that
supports the empirical evaluation in the following sections.

In the context of binary classification, the conditions for learnability of a hypothesis class
‘H are established by the fundamental theorem of statistical learning. This theorem
allows us to reason, at least intuitively, about the relative merits of different modelling
strategies, even beyond strictly binary classification tasks.

The theorem relies on two central notions. The first is the VC-dimension V C(H), which
measures the capacity or expressiveness of the hypothesis class H. Intuitively, the more
complex the hypothesis class, the higher its VC-dimension. Although originally de-
fined for binary classifiers, the concept can be extended to real-valued functions through
Pollard’s pseudo-dimension. For simplicity, we refer only to the VC-dimension in this
discussion.

The second notion is that of sample complexity, which quantifies the minimum number
of training examples required to ensure that a model generalizes well. More precisely,

4The work-out process refers to the post-default recovery procedures through which the lender attempts
to recover the outstanding exposure. This process typically ended in borrowers being classified into three
categories: cures, when the borrower resumes regular payments; partial recoveries, when only a portion of the
exposure is recovered; and write-offs, when the loss is considered irrecoverable.



given a hypothesis class H, its sample complexity n4(€, ) denotes the number of samples
needed to guarantee, with probability at least 1 — 0, that the absolute difference between
the true risk R(hp,) and the empirical risk Ry (hp) is at most €.

Theorem 1 (Fundamental Theorem of Statistical Learning). In a binary classifi-
cation setting, if a hypothesis class H is such that VC(H) < oo, then H is (Probably
Approximately Correct) learnable with sample complexity nqey(e, 8) satisfying:

VC(H) +log(1/5)
€

VC(H)log(1/e) + log(1/6)
€

@)

) < ng(e,8) < O ( (2.3)

This result has three main implications. First, a given hypothesis class H is learnable
whenever its VC-dimension is finite; in other words, H is not too complex. Second,
assuming a finite VC(H), both the lower and upper bounds on the sample complexity
scale linearly with it. Intuitively, this means that reducing the complexity of the hypothesis
class - i.e., lowering V C(H) - also reduces the number of samples required for successful
learning roughly by the same factor.> Third, assuming that the sample size m is at least as
large as the required sample complexity, the theorem gives a bound on the generalization
error:

log (%)

WIVEH) Y

R(hpg) < Rpg(hpg) + O

These theoretical relationships allow us to compare modelling architectures based on their
expected generalization performance and data requirements. In a one-stage approach,
a single global model is trained to approximate a function over the entire dataset #is,
using a hypothesis class Hy. If we follow empirical evidences and we do not assume the
validity of the Assumption 3, but we instead acknowledge the heterogeneity of the de-
faulted portfolio, the hypothesis class Hy may need to be highly expressive to achieve low
approximation error ﬁgols(hgors). This typically results in a large VC-dimension V C(Hp),
which in turn increases both the required sample complexity (see Equation 2.3) and the
generalization gap (see Equation 2.4). In scenarios with limited training data, this can
lead to overfitting.

In contrast, a two-stage approach first partitions the data into k smaller, potentially more
homogeneous subsets {C; };.‘:1. A simpler model with hypothesis class #; is then trained
independently on each subset. Regardless of how the partitioning is performed (see
Section 2.3), the underlying theoretical rationale remains the same: each sub-problem is
expected to be simpler, allowing for a less complex hypothesis class such that VC(H;) <
VC(Hp). This leads to a reduction in sample complexity and a tighter generalization
bound for each sub-model.

However, this benefit comes at the cost of having fewer training examples per sub-model.
Since each model is trained on a smaller subset of data, the effective sample size m;
satisfies m; << m. The learnability is ensured only if the sample size is reduced by the
same factor of the model complexity, in such a way not to violate Equation 2.3.

Against this background, we can conclude that two-stage models have the potential to
outperform single-model approaches in heterogeneous data settings, provided that the
partitioning leads to sufficiently simpler and learnable sub-problems. However, this

5This fact aligns with common intuition, where simpler hypothesis classes require less data to be learned.
The interesting point is that both bounds scale at the same rate.



theoretical advantage does not account for the complexity of the classification task in the
first stage. In fact, while the second-stage problems may indeed be simpler and more
learnable, assigning each observation to the correct subgroup C; is itself a non-trivial
challenge, one that remains underexplored in the literature.

For instance, considering the segmentation proposed by Salko and D’Ecclesia (2021) [7],
from a credit risk perspective, predicting the likely work-out outcome for a loan before it
even defaults - as required by a two-stage model - is inherently complex. First, if it were
already known that a borrower would be written off in case of default, the loan might
not be granted in the first place. Second, the work-out process evolves over time with
the evolution of borrowers’ internal policies, implying that models must be continuously
updated to duly reflect current practices and institutional policies.

Building on these considerations, we will employ the reviewed approaches as a foundation
for the development of the novel methodologies proposed in this thesis. Before doing so,
however, we introduce empirical validation metrics that will complement the theoretical
analysis, thereby completing the framework for a practical comparison and evaluation of
the different modelling strategies.



Chapter 3

Model validation under the ECB
regulatory framework

In this chapter, we focus on the practical validation of LGD models in accordance with
regulatory requirements. We begin by outlining the regulatory framework and the stan-
dardized validation tools established by the European Central Bank (see Section 3.1).
Special emphasis is placed on tools aimed at assessing discriminatory power, including
the generalized Area Under the Curve (gAUC) and Somers’ d metrics, with a discussion
of how these measures apply to LGD estimation (see Section 3.2 and Section 3.3). Finally,
we examine potential pitfalls in the use of Somers’ d and their implications for model
evaluation and hyperparameter tuning (see Section 3.4).

3.1 LGD model validation tools

In accordance with the Capital Requirements Regulation (CRR), established by Regulation
(EU) No 575/2013 of the European Parliament, credit institutions are required to subject
their internal credit risk models to a formal validation process (see Article 185 of the CRR).
This process, firstly conducted by the model developers and then by the internal validation
function, aims to assess the overall adequacy, robustness and reliability of the internal
estimates used to calculate own funds requirements. Furthermore, the validation review
serves as the primary reference for supervisory authorities when carrying out tasks related
to internal models, such as model approvals and ongoing performance monitoring.

Although all institutions must follow the same regulatory framework when validating
credit risk models, comparing models across different banks remains challenging. To
address this, the European Central Bank (ECB) requires institutions to submit additional
validation reports using a standardised set of statistical tests and accuracy measures,
known as wvalidation tools. These tools provide a common basis for evaluating and com-
paring the predictive performance and robustness of internal models across institutions.

In February 2019, the ECB published the Instructions for reporting the validation results of in-
ternal models [9], which describes the scope of these validation tools, their methodological
application and the associated reporting requirements. Regarding the LGD parameter,
the validation tools focus on monitoring model performance in two key areas: predictive
ability and discriminatory power. The analysis of predictive ability aims to ensure that
LGD estimates provide reliable forecasts of realized loss rates. The analysis of discrimi-
natory power assesses the model’s ability to distinguish between facilities - i.e., credit
exposures in the dataset - with high and low LGD values and is particularly crucial for
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the validation of the risk differentiation phase. Since risk differentiation is the specific
model development phase on which this work focuses (see Section 1.2), we will therefore
place greater emphasis on the measurement of discriminatory power.

The measure used for this purpose is the generalized Area Under the Curve (gAUC),
which extends the classical AUC metric to multi-class classification problems. Let us now
further explore the discriminatory power related validation tools in depth.

3.2 Analysis of discriminatory power

As mentioned earlier, the analysis of discriminatory power is carried out using gAUC,
a metric typically employed in multi-class classification problems. At first, referring to
multi-class classification may seem inconsistent with the learning framework introduced in
Chapter 2, where LGD is modelled as a continuous target variable and estimated through
regression techniques. This apparent mismatch raises the question of how a classification-
based metric like gAUC can be meaningfully applied in our regression context.

In practice, however, the ECB validation tool instructions [9] prescribe a post-processing
discretisation procedure to be applied to the LGD estimates produced by the chosen
regression model, making the regression task resemble an ordinal classification one,
where gAUC becomes applicable.

To clarify this point, let us consider as example the simplified LGD grid in Figure 3.1,
derived from the example in Figure 1.1 by excluding the geographical area driver. In this
grid, each cell is associated with an LGD estimate, as if produced by a given regression
model. The resulting structure of the example yields eight distinct estimated LGD values,
or grades:

0.10, 0.15, 0.20, 0.25, 0.50, 0.60, 0.70, 0.80.

According to the post-processing discretisation procedure prescribed by [9], when the
model produces 20 or fewer grades as in this example, the estimated LGDs are first sorted
in ascending order and then mapped into LGD segments defined as follows:

* Segment 0: LGD < 0.10

* Segment1: 0.10 < LGD < 0.15
* Segment 2: 0.15 < LGD < 0.20
¢ Segment 3: 0.20 < LGD < 0.25
* Segment 4: 0.25 < LGD < 0.50
* Segment 5: 0.50 < LGD < 0.60
¢ Segment 6: 0.60 < LGD < 0.70
* Segment7: 0.70 < LGD < 0.80
* Segment 8: LGD > (.80

Observed LGDs - typically more granular and quasi-continuous - are then discretised
consistently, by mapping them into the same segments defined from the estimated LGDs.
At this stage, each credit exposure can be associated not only with its observed and
estimated continuous LGDs, but also with the corresponding observed and estimated
discrete segments, as shown in Figure 3.2.

This discretised representation makes the regression problem effectively resemble an
ordinal classification task, where the target is the LGD segment. In such a setting,



EAD < 15000 >15000
TECHNICAL FORM Self-liquidating | Other Self-liquidating | Other
SECURITY
Secured 20% 25% 10% 15%
Unsecured 70% 80% 50% 60%

Figure 3.1: Example of an LGD grid where the risk drivers considered are EAD, credit
facility type and presence of collateral. The percentage values in the grey grid represent
the LGD estimates.

SECURITY EAD TEC. FORM EST.LGD OBS.LGD EST. SEGMENT | OBS. SEGMENT
Secured < 15000 Self-liquidating 20% 22% 2 3
Unecured > 15000 Other 60% 30% 5 4
Secured > 15000 Other 15% 12% 1 1
Secured < 15000 Other 25% 25% 3 3
Unecured > 15000 Self-liquidating 50% 90% 4 8

Figure 3.2: Example of a credit portfolio containing three risk drivers (EAD, credit facility
type and presence of collateral), along with observed LGDs, estimated LGDs according
to the grid in Figure 3.1, and the corresponding observed and estimated LGD segments.
The colours used in this table are designed to facilitate the cross-reference with the table
in Figure 3.1.

classification-based metrics such as gAUC become both applicable and meaningful, as
they measure the model’s ability to correctly rank exposures by expected loss severity
segment.

When the model produces more than 20 grades - as in the case of a more complex LGD grid
or in the case of fully continuous LGD estimates not expressed as grids - the ECB instead
prescribes a different discretization of the estimated LGD into 12 predefined segments,
followed by the application of the gAUC metric. These segments are independent from
the estimated values and are always defined as follows: [0, 0.05), [0.05,0.10), [0.10, 0.20),
and then successive 10% steps up to [0.90, 1.00), with a final segment for [1.00, +o0). This
discretization makes it possible to apply gAUC even to continuous models by mapping
their outputs into ordered bins, thus enabling a consistent assessment of discriminatory
power using classification-based metrics like gAUC also in this case.

The models that will be proposed in this work do not take into account constraints of
parsimony and they generate LGD estimates on a continuous scale, instead of on a LGD
grid. However, as anticipated in Section 1.3, for tractability purposes these outputs are
subsequently grouped into a discrete LGD scale using a hierarchical clustering—inspired
technique, resulting in a discretised output. As will be shown in the empirical analysis
presented in Chapter 4, this hierarchical clustering step will yield a relatively small number
of grades - though always higher than 20. As a result, the validation procedure prescribed
for models with more than 20 grades is consistently applied throughout this work.

In conclusion, in our regression context the use of the classification-related metric
gAUC is justified by the discretisation step discussed above. Now, to better understand
what the gAUC actually measures in practice, it is useful to explore its relationship with
Somers’ d statistic since it offers a more interpretable and intuitive perspective.
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Figure 3.3: Two-way contingency table constructed according to regulatory guidelines for
models producing more than 20 grades. Rows represent the 12 segments of estimated
LGD, while columns represent the 12 segments of realised LGD. For each observation in
a;j, the corresponding concordant pairs are highlighted in blue, the discordant pairs are
highlighted in orange and the columns tied pairs tied in green; in accordance with the
definition of concordance, discordance and tie reported in the following.

3.3 gAUC and Somers’ d in discriminatory power measurement

Somers introduced in 1962 a pair of asymmetric association coefficients [10], dyx and dxy,
which are closely related to both Kendall’s 7 and Goodman and Kruskal’s y. These
coefficients are specifically designed to measure the degree of monotonic association
between two ordinal variables in a contingency table '. In our context, Somers’ d is used
to quantify the ordinal relationship, or monotonic association, between predicted and
observed LGD segments.

The asymmetry of the metric lies in the fact that dyx is used when X is the indepen-
dent variable and Y is the dependent one, and vice versa for dxy. Unlike Kendall’s 7
and Goodman-Kruskal’s y, which treat both variables symmetrically, Somers” D explic-
itly reflects the direction of prediction, from the independent to the dependent. This
characteristic makes it particularly suitable for evaluating categorical prediction, as it
captures not only the ordinal relationship but also the extent to which knowledge of
the independent variable improves the prediction of the dependent one.

Let us now illustrate how this metric is computed, focusing on the case of validating
a model that produces more than 20 grades, as in the models examined in this work.
As discussed in Section 3.2, when dealing with models with more than 20 grades, a
discretisation step into 12 predefined LGD segments must be performed. In this cases,
according to the regulatory guidelines, the computation of Somers” 4 is based on the
construction of a two-way contingency table that cross-classifies all possible combinations
of discretised estimated LGD segments (LGDf) as rows and realised LGD segments
(LGDZR) as columns. As shown in Figure 3.3, this results in a 12 x 12 table, since the
predefined LGD segments are 12 both for estimated and realised LGDs.

Let a;; denote the observed frequency in cell (i, j), i.e., the number of exposures for which
the estimated LGD belongs to segment i while the realised LGD belongs to segment ;.

1Perfect monotonic correlation refers to a situation in which, for two variables X and Y, the value of
X increases whenever Y increases, and conversely, regardless of the (possibly varying) rate of increase.
Linear correlation is a special case of monotonic correlation. In general, the concept allows for curvilinear
relationships, provided that the function does not “double back” on itself. More formally, for each X there
is a unique corresponding value of Y, and vice versa.



On this basis, we define the following quantities:
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Specifically, P represents the total number of concordant pairs. For a given observation
in cell (7, j), a concordant pair is any other observation with both a higher estimated
segment (k > i) and a higher realised segment (I > j), corresponding to the elements
in the cell highlighted in blue in Figure 3.3. Thus, P;; counts the number of concordant
pairs associated with a single observation in (i, j). By multiplying this quantity by a;;, we
obtain the total number of concordant pairs with respect to all observations contained in
that cell. Summing over all cells finally yields P, the overall number of concordant pairs.

Analogously, Q denotes the total number of discordant pairs. For an observation in cell
(1, j), a discordant pair is any other observation with a higher estimated index (k > i) buta
lower realised index (I < j), corresponding to the elements in the cell highlighted in orange
in Figure 3.3. Here Q;; gives the number of discordant pairs for a single observation in
(i,j), and multiplying by a;; extends this to all observations in the cell. Summing across
all cells provides Q, the total number of discordant pairs.

Finally, TC corresponds to the total number of ties on the column variable. For an observation
in cell (i, j), the ties on the column variable are the cases where exposures share the same
realised segment j (column) but differ in their estimated segment i (row), corresponding
to the elements in the cell highlighted in green in Figure 3.3. As before, Tlf measures such
ties for a single observation in cell (7, j), and multiplying by a;; gives the contribution of
the whole cell.

In accordance with the validation tool instructions provided by the ECB [9], we treat
the row variable LGDE as the independent variable and the column variable LGD® as
the dependent variable, and we compute the metrics gAUC and Somers’ d(C|R) - that is,
Somers’ d of the column given the row, which reflects the assumed direction of dependency
- as follows:

__P-Q _
d(C|R) := P10+ e[-1,1] (3.1)
gAUC := dCIR+1 g 4 (3.2)

Equation 3.2 highlights the direct connection between the two metrics, justifying the use
of Somers’ d as an alternative to gAUC. In fact, since one can be derived from the other,
all insights obtained from the gAUC can be equivalently expressed through Somers’ d,
and vice versa. Somers’ d, which is often directly referred to as the Accuracy Ratio (AR),
is formally defined in Equation 3.1 as the difference between the number of concordant
and discordant pairs, normalized by the total number of comparable pairs - i.e., all
pairs not tied on the independent variable. Importantly, it is precisely this definition
of comparable pairs that introduces the asymmetry in the metric: when one of the two
variables is designated as the independent variable, all pairs tied on that variable are
excluded from the count of comparable pairs.

The (empirical) model validation using Somers’ d(C|R) will complement the (theoretical)
assessment in terms of learnability and sample complexity introduced in Chapter 2, and
will also serve as the main reference metric for hyperparameter tuning of the models



under analysis. Before proceeding, however, it is important to highlight some potential
pitfalls associated with the use of Somers” d(C|R), which are discussed in the following
section.

3.4 Pitfalls in using Somers’ d

In his 1962 paper [10], Somers investigates these two asymmetric association measures in a
sociological context, where the distinction between independent and dependent variables
is well defined. Specifically, he refers to the independent variables as stimuli or indicators,
and the dependent ones as responses. This framing clearly establishes the direction in
which the asymmetry of Somers” metric should be interpreted: in dyx, the variable
X represents the independent stimulus, while Y represents the dependent response. A
classical example provided by Somers illustrates this distinction: the variable years of school
completed can be considered a stimulus or indicator X, while a corresponding response
variable Y might be the amount of knowledge acquired. The assumption is that the former
contributes to or influences the latter, justifying its role as the independent variable in the
analysis.

As previously mentioned, within the context of LGD model validation, the regulatory
guidelines [9] specify that the estimated LGD should be treated as the independent
variable and the realised LGD as the dependent one, leading to Somers” d(C|R). At first,
this might seem counterintuitive, since it reverses the usual modelling perspective in
which the observed value is considered the input and the predicted value the output.
Despite the direction of the asymmetry is less clear than in the sociological context, this
choice has a clear operational justification 2.

Indeed, since by construction Somers” d(C|R) captures both ordinal association and the
ability to predict categorical outcomes (see Section 3.3), the underlying question being
asked becomes: how much more likely is it that a facility with a given higher estimated
LGD (R, rows) will result in a higher realised LGD (C, columns)? If the roles were
inverted - and Somers’ d(R|C) is considered treating the observed LGD as the independent
variable - the question would become: how well does a higher given realised LGD (C)
help in predicting a higher estimated one (R)? This would defeat the purpose of model
validation, as it no longer tests the model’s ability to predict loss severity.

Despite the operational justification discussed above, treating the estimated LGD as the
independent variable may introduce a potential bias. As shown in Equation 3.1, the
effect of dependency direction mainly lies in the computation of Somers” d denominator:
in addition to concordant and discordant pairs, only pairs tied on the dependent vari-
able (i.e., realised LGD in the columns) are included, while ties on the independent
variable (i.e., estimated LGD in the rows) are excluded. This choice reflects the idea that
pairs tied on the independent variable do not provide information about concordance or
discordance.

As a result, if a model produces “lazy” estimates that fall into only a small number of
estimated LGD segments - leading to many ties on the independent variable (i.e., along the
rows) - the total number of comparable pairs in the denominator decreases significantly.
In fact, most pairs end up tied on the rows and therefore do not fall into ties on the columns
(T°), nor into the sets of concordant (C) or discordant (D) pairs. This reduces the number
of comparable pairs and, consequently, the denominator. This can artificially inflate the

2]t is important to note that no direction of dependence is justified by causal relationships; this is precisely
what makes the choice of dependence direction less straightforward, and allows, as we will see later, the use
of both directions to fully assess the model under validation.
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Figure 3.4: A two-way contingency table constructed according to regulatory guidelines,
with realized LGD segments as columns and estimated LGD segments as rows. Here, we
illustrate an example of a lazy estimate, i.e., an estimate where most of the estimated LGD
values fall into a few segments - Segment 3 in this example - with only a single observation
in Segment 4, despite a range of realized LGD values across different segments.

value of Somers’ D, even when the model lacks real discriminative and predictive power.
In such cases, a lazy model producing predictions concentrated in only a few segments,
may appear to perform well under Somers’” d(C|R) despite limited predictive usefulness.

To better illustrate this effect, consider Figure 3.4, in which estimated LGD values fall
exclusively into segments 3 and 4, producing what we have called a "lazy" estimate. In
terms of monotonic association, the relationship appears perfect, resulting in a Somers’
d(C|R) =1:

P=20, Q=0, T“=0
20-0

dCIR) = 307070 =

Does perfect accuracy imply a perfect model? On the one hand, the monotonic correlation
is indeed perfectly satisfied. On the other hand, because this metric also aims to capture
how well the independent variable can predict the dependent one, it becomes clear that
the model’s predictive power is limited. For example, knowing that an LGD estimate falls
in segment 4 allows for a precise prediction, but knowing that it falls in segment 3 offers
no such certainty.

Exploring the issue of considering both predictability power and monotonic correlation
when the prediction is made from a smaller number of segments (Segment 3 and Segment
4 in the example) to a wider range of outcomes (from Segment 1 to Segment 12 in the
example), Somers [10] suggests - perhaps counterintuitively - to reverse the roles of the
independent and dependent variables.

Returning to the example shown in Figure 3.4, according with this proposed solution,
we now consider the realised LGD (columns) as the independent variable. In this way,
P and Q remain unchanged, while the tied pairs that should be now taken into account
are the ties on estimated LGD (rows), which is equal to TR = 181. Therefore, the reversed
Somers’ d is: 500
R|C) = ——————— =10.099
4(RIC) 20+0+181

As seen in the example, this proposed solution would include in the denominator all
pairs tied on the estimated LGD (ties on the rows), substantially increasing the number
of comparable pairs and, consequently, decreasing the value of Somers’ d. In this way,



models that produce lazy estimates - i.e., concentrated in a small number of segments -
are no longer rewarded, and the bias is mitigated.

This result supports the conclusion that while Somers’ 4(C|R) - as prescribed by regu-
latory guidelines - is certainly a valid performance metric, in specific model designs
where lazy estimates are possible to be produced it should be complemented by the
analysis of Somers’ d(R|C) to detect and avoid the bias described above.

One could argue that, even when reversing the direction of dependence, the same issue
mightarise: toincrease the AR, one could create more tied pairs on the variable considered
as independent. The crucial point is that if the estimate is treated as independent, the
model could exploit this bias by producing “lazy” and tied estimates. Conversely, if the
realised observations are treated as independent, it is not possible to artificially create
ties, since the observations are not under the model’s control.

One notable example of model design that could exploit this bias is Gradient Boosting.
This method builds a sequence of decision trees that iteratively refine predictions, starting
from an initial constant estimate and gradually introducing complexity through a learning
process. If Somers” d(C|R) is used to determine when to stop this learning process - e.g.,
for hyperparameter tuning - it may favour early stopping, when the estimates are still
overly coarse and concentrated in a few segments, resulting in inflated scores.

A second example, referring back to the model classes introduced in Section 2.3, is a
two-stage model where the first stage assigns nearly all observations to the same class
Ci, and the associated regressor returns LGD estimates within a very narrow range. This
design would again lead to a large number of tied estimates and an artificially high value
of Somers’ d(C|R), despite limited practical usefulness.



Chapter 4

Empirical validation of the proposed
methodologies

This chapter represents the empirical core of the thesis, where the theoretical concepts,
modelling architectures, and validation frameworks discussed previously are applied
and tested. The primary objective is to empirically validate the proposed methodological
evolution, demonstrating its ability to produce LGD estimates that are both more accurate
and more parsimonious than those derived from traditional approaches.

The analysis is structured in three main parts. We begin with an exploratory data analysis,
outlining the key statistical features of the illustrative dataset (see Section 4.1). Subse-
quently, we present the implementation and the comparative performances of the pro-
posed single-stage and two-stage models against the parsimonious baseline (see Sec-
tion 4.2). Finally, we demonstrate how the proposed post-aggregation technique effec-
tively resolves the trade-off between accuracy and granularity, reducing the number of
distinct LGD estimates to a manageable level while preserving the significant performance
improvements achieved in the unconstrained estimation phase (see Section 4.3).

The models developed in this work are based on Intesa Sanpaolo’s Other retail dataset.
During the collaboration with the Group, the original data were analysed and used to
derive insights that directly informed the model development. For confidentiality reasons,
however, the dataset underlying those analyses cannot be disclosed in this thesis.

Instead, the empirical evidence presented here is based on a distorted sample, constructed
by applying subsampling procedures and distortion factors to the original portfolio.
As such, results, numerical values and figures reported in this chapter should not be
interpreted as a faithful representation of Intesa Sanpaolo’s data; rather, they are provided
for illustrative purposes only, to reproduce in a consistent way the main conclusions of
analysis on the true dataset.

4.1 Empirical data analysis

The here considered sample consists of 5957 facilities, for each of which the following
information is available: the observed LGD (calculated using the workout method), a flag
indicating whether the recovery process ended in cure or non-cure, and a set of 24 risk
drivers.

In Figure 4.1, a histogram showing the empirical distribution of the observed LGD is
presented together with the corresponding boxplot. The distribution clearly exhibits a

29



bimodal shape, with one mode at 0 and another around 1, which is a typical feature of
LGD data. The predominance of the mode near zero, further confirmed by a median LGD
of approximately 0.225, suggests that the majority of defaults in this portfolio ultimately
end either in a cure or in relatively low loss severity, rather than resulting in a total loss.
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Figure 4.1: Empirical distribution of ob- Table 4.1: Descriptive statistics of observed
served LGDs in the illustrative sample, to- LGDs in the illustrative sample.
gether with the corresponding boxplot.

In addition to the median, further descriptive statistics are reported in Table 4.1. They
show that LGD values range from 0 to 2.941, although 50% of the distribution is concen-
trated between 0.007 (the 25th percentile) and 0.907 (the 75th percentile), while the 99th
percentile reaches 1.40. This indicates the presence of outliers above one, also confirmed
by the boxplot in Figure 4.1. By contrast, no negative LGD values are observed, since
the results were floored at zero. This flooring procedure also accounts for the high con-
centration of mass around zero, which would otherwise have extended into the negative
domain.

The 24 risk drivers available in the dataset can be classified into four broad categories:

1. Customer information: variables that describe the characteristics of the counter-
party, which in the case of the Other Retail segment is always an individual. Typical
examples include geographical area, age, years of banking relationship (banking
tenure) and occupation, among others.

2. Facility information: variables that describe the contractual features of the specific
credit facility under consideration. These usually include the technical form of the
loan, the exposure amount and the type of product.

3. Collateral-related variables: indicators that capture the presence or absence of
collateral, its type and its nominal value.

4. Financial indicators of the counterparty: measures of the economic and financial
standing of the borrower. In the case of retail customers, these typically refer to
statistics related to account balances, while for corporates they may include financial
statement ratios.

In the original development of the internal LGD models, all 24 drivers were jointly
considered in order to build the estimation framework. However, for the purposes of this
empirical data analysis we restrict attention to only four illustrative features: the boolean
indicating whether the recovery process ended in cure or non-cure, hereafter referred to
as the flag cured; banking tenure, representing customer information; EAD, representing
facility information; and a statistic derived from current account balances, representing



financial indicators of the counterparty, here in after referred to as the liquidity indicator.
Collateral-related variables are not further considered in this section.

In Figure 4.2, we report the empirical distribution of the four selected risk drivers along
with their relationship to the observed LGD'. For each driver, the left-hand subfigure
reports the empirical distribution of its discrete values in the form of a bar plot, where
categories are ordered in ascending order of the driver value. On top of each bar, the
median LGD and the 25th and 75th percentiles are superimposed. This graphical rep-
resentation allows us to assess whether LGD exhibits a systematic trend with respect to
the driver. The right-hand subfigure shows the empirical distribution of observed LGD
conditional on the extreme values of the driver - the minimum and the maximum values
- to highlight differences in behaviour between the two ends of the scale.

Starting from the flag cured (Figures 4.2a and 4.2b), this binary variable indicates whether
the recovery process ended in a cure (value = 1) or a non-cure (value = 0). In the dataset,
about 55% of facilities are classified as non-cured and 45% as cured. The bar plot in
Figure 4.2a shows that the median LGD drops dramatically from approximately 0.5 in the
case of non-cured exposures to nearly 0.005 for cured ones. Moreover, for cured exposures
the interquartile range is extremely narrow, indicating that LGD values are consistently
very low, as expected by definition. Conversely, non-cured exposures show a much wider
interquartile range, reflecting the fact that this group includes both partial recoveries and
complete losses. This interpretation is confirmed by the LGD histograms in Figure 4.2b:
cured exposures concentrate almost entirely near zero, while non-cured exposures are
spread across the full LGD range, with peaks near both 0 and 1; the peak near 0 is very
small, corresponding to non-cured defaults that nevertheless resulted in very limited or
almost negligible losses.

Turning to the EAD (Figures 4.2c and 4.2d), the discretisation process produced 11 dis-
tinct values ranging from 150 to 12.811. Approximately 40% of observations have the
minimum exposure (EAD = 150), while the remainder are distributed across the other
classes, with slight over-representation at 1.792 and 12.811. Figure 4.2c shows a generally
monotonic increasing relationship between EAD and the median LGD, with higher ex-
posures tending to be associated with larger relative losses. Two intermediate categories
(2.544 and 2.959) deviate slightly from this trend, displaying unexpectedly high median
LGD values, yet the overall increasing pattern remains clear. This result is economically
intuitive: lower exposures are easier to recover, whereas very high exposures are more
likely to reflect financial conditions that hinder recovery.

While the median shifts across classes, the 25th and 75th percentiles remain largely
unchanged, resulting in a stable interquartile range. This indicates that the bimodality of
the LGD distribution persists: the relative weight of the two modes changes, causing
the median to move, but no mode disappears and the interquartile range remains
essentially unaffected. Figure 4.2d further illustrates this pattern: for EAD = 150, the
empirical LGD distribution is heavily skewed towards zero (with the mode at zero nearly
three times higher than that at one), whereas for EAD = 12.811 the two modes at 0 and 1
are almost equally frequent, and partial recovery outcomes become more common.

Finally, the same type of considerations can also be drawn for the other two drivers,

1]t is important to note that all drivers in the dataset were already discretized prior to this analysis. This
discretization reflects the format in which the data were originally provided, rather than a preprocessing
step performed here. As mentioned in Section 1.3, discretization of all risk drivers is required to obtain a
grid-based output. This aspect is relevant because, even though the proposed methodologies go beyond a
grid-based output and this discretization requirement, it is not possible to evaluate the potential benefit of
maintaining sufficient input granularity, since the raw data are already aggregated.
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namely banking tenure (Figures 4.2e and 4.2f) and the liquidity indicator (Figures 4.2g and
4.2h). In both cases, observed median LGD tends to increase as the underlying economic
condition captured by the driver deteriorates: LGD rises as the banking tenure decreases,
and likewise LGD increases when the liquidity indicator decreases. These patterns are
consistent with the economic intuition that shorter relationships with the bank and lower
levels of liquidity are associated with weaker creditworthiness and more severe losses in
the event of default.

In conclusion, in Figure 4.3 we analyse the correlation between these four features and
the observed LGD. The observations made previously are confirmed: the sign of the
correlation coefficient is consistent with the patterns shown in Figure 4.2. However, apart
from a strong negative correlation between LGD and the flag cured equal to -0.84, the other
correlations in absolute value remain low: 0.12 with EAD, -0.19 with banking tenure and
-0.06 with the liquidity indicator. Finally, we observe generally weak correlations among
the features themselves, except for a moderate correlation of 0.20 between banking tenure
and the flag cured, suggesting a linear relationship between cured exposures and those
with longer banking tenure.

4.2 Proposed unconstrained methodological evolution

As anticipated in Section 1.3, the proposed methodologies are compared with a baseline
model consisting of a highly parsimonious Decision Tree that, controlling the number of
terminal leaves and the tree depth, naturally produces a grid-like output. In this part,
we relax the parsimony constraints, with the goal of improving predictive accuracy at the
expense of the grid representation. Two model designs are considered: single-stage and
two-stage.

The single-stage models, presented in Subsection 4.2.1, include the natural non-parsimonious
extensions of the baseline: an unconstrained Decision Tree, a Random Forest and an Ex-
treme Gradient Boosting (XGBoost) model.

The two-stage models, described in Subsection 4.2.2, consist of two models that differ
in the segmentation performed in the first stage (see Section 2.3). The first two-stage
model divides the sample according to whether the observed LGD is above or below a



given threshold; we refer to this as the two-stage threshold model. The second instead splits
observations based on whether the recovery process ends in cure or non-cure, which we
denote as the two-stage flag cured model.

421 Single stage methods

From an implementation perspective, the single-stage models were developed using
python standard machine learning routines:

1. The DecisionTreeRegressor from scikit-learn was employed. The hyperpa-
rameters max_depth and max_leaf_nodes were tuned, while min_samples_leaf
was fixed to a constant value determined according to the size of the in-sample
dataset.

2. The RandomForestRegressor from scikit-learn was used, tuning the hyperpa-
rameters n_estimators, max_depth and max_leaf_nodes. Both min_samples_leaf
and max_features were fixed: the former following the same rationale as in the
Decision Tree case (i.e., based on the size of the in-sample dataset), and the latter set
to ’sqrt’, so that the number of features considered at each split equals the square
root of the total number of features.

3. The XGBRegressor from xgboost was utilised. The tuned hyperparameters included
max_depth, max_leaf_nodes, n_estimators, colsample_bytree, subsample and
learning_rate. In addition, the base_score parameter was set equal to the in-
sample average LGD.

Hyperparameter tuning was performed through a sequential random search strategy,
implemented with RandomizedSearchCV combined with a ShuffleSplit cross-validation
scheme, both in scikit-learn. The procedure began with broad ranges of admissible
values for each hyperparameter and an initial random exploration within these ranges.
Based on the results, the search region was progressively narrowed to the most promising
intervals, where additional random searches were carried out. This sequential strategy
improves computational efficiency by allocating resources to regions of the parameter
space where high-performing combinations are more likely to be found.

For each candidate tuple of hyperparameter values, the average Somers’ d across the
validation folds was computed. The optimal hyperparameter configuration was identified
as the one maximising this metric, subject to the condition that the difference between
training and validation performance did not exceed a predefined overfitting threshold.

The ShuffleSplit scheme was preferred to the standard k-fold approach because it
reassigns observations to training and validation sets both across candidate tuples and
at each CV iteration. This repeated randomisation reduces variance and provides more
robust parameter selection, especially in the context of iterative search refinements.

After completing the tuning phase, feature importance was computed in order to remove
irrelevant risk drivers. The model was then retrained using the optimal hyperparameters
and only the most relevant features. With this refined specification, we obtained final
LGD predictions on the in-sample, out-of-sample, and out-of-time datasets, and evaluated
predictive performance in terms of Somers’ d.

In Figure 4.4, the histograms of predicted LGDs (in blue) are compared with the observed
distribution (in orange) for each of the three proposed models. For confidentiality reasons,
the corresponding histogram for the baseline model cannot be reported. In any case,
both the baseline and the proposed models fail to capture the bimodality of the LGD
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Figure 4.4: Histograms of predicted LGDs (blue) versus observed LGDs (orange) for the
three single-stage models.

distribution. In particular, the resulting predicted distributions provided by all the
models are unimodal with the mode concentrated around the average LGD value.

This behaviour can be explained, for example in the case of the Decision Tree, by the pres-
ence of terminal leaves that group together exposures with highly heterogeneous LGD
values. The prediction for each leaf, being the average of these diverse observations, there-
fore tends to approximate the overall sample mean, as also visible from the histogram.
As a result, most predicted values concentrate around this mean, revealing the model’s
limited ability - within the depth and split constraints imposed to avoid overfitting - to
capture non-linearities and relationships that would enable a finer discrimination of LGD
levels.

Despite this limitation, we still observe an improvement in terms of predictive power
compared with the baseline. Specifically, the accuracy ratio (AR) increases from 22.3%
for the baseline model to 24.84% for the Decision Tree, 25.50% for the Random Forest, and
25.99% for XGBoost (see Table 4.2).

It is worth stressing that, as prescribed by the regulatory guidelines [9] and recalled
in Chapter 3, the performance metrics reported in Table 4.2 and used to compare
models refer to Somers’ d(C|R). However, during the hyperparameter tuning phase
both versions of Somers’ d - namely d(C|R) and d(R|C) - were considered. Specifically,
for the Decision Tree and the Random Forest models, only d(C|R) was used both to
evaluate their performances and to select the optimal hyperparameters. In contrast, for
XGBoost only the use of d(R|C) led to meaningful hyperparameter configurations. As
discussed in Section 3.4, relying exclusively on d(C|R) to determine parameters, such
as the learning rate, may favour very slow learning, where the estimates remain overly
coarse and concentrated around the base score.

To illustrate this issue empirically, Figure 4.5 presents an example where only the learning
rate of XGBoost is tuned while monitoring both metrics. In Figure 4.5a, the orange
curve shows that d(C|R) decreases as the learning rate increases within the displayed
range, reaching its maximum at the smallest value of the learning rate. Conversely,
d(R|C) (blue curve) reaches its minimum at this point and attains the maximum around
0.07. As a consequence, relying on d(C|R) would suggest selecting an extremely small
learning rate, resulting in overly “lazy” predictions that remain close to the base score,
as shown in the top histogram of Figure 4.5b. In contrast, using d(R|C) points to a more
appropriate learning rate, producing less concentrated predictions, as illustrated in the
bottom histogram of Figure 4.5b.
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ratios as the learning rate varies. Panel (b) highlights the impact on the distribution of
predicted LGDs, where d(C|R) produces overly concentrated estimates close to the base
score, while d(R|C) yields more informative predictions.

4.2.2 Two-stage methods

Two-stage models are inherently more complex than single-stage models, as they con-
sist of multiple components: a first-stage classifier ¢ and one or more second-stage
regressors h, one for each considered class (see Figure 2.2). In this work, we em-
ployed tree-based models for both stages: DecisionTreeClassifier at the first stage
and DecisionTreeRegressor instances at the second stage. Specifically, we consider for
both models only two classes: for the two-stage threshold model, the two classes corre-
spond to above-threshold and below-threshold observations; for the two-stage flag-cured
model, the classes represent cured and non-cured exposures.

It is crucial to note that neither the threshold indicator nor the cured flag is directly
observable; they must be predicted and this is exactly how two-stage models work. The
classifier assigns a predicted class to each observation and the second-stage regressors are
applied conditionally on this predicted class. Each regressor is trained exclusively on the
observations belonging to its corresponding class (observed class) and, at prediction time,
the appropriate regressor is chosen based on the first-stage classification output (predicted
class).

Hyperparameter tuning follows the same methodology as described in Subsection 4.2.1,
including sequential random search with shuffle split cross-validation and subsequent
feature importance analysis to remove irrelevant risk drivers.

As shown in Figure 4.6, the predicted distributions produced by the two-stage models
successfully reflect the bimodality of the observed LGD. However, several limitations
remain. First, we observe an excessive polarization of predictions, which prevents the
model from accurately capturing observations near the threshold or partially cured cases.
Second, classification errors in the first stage can propagate, assigning an observation
to the wrong class and producing an LGD estimate that may deviate substantially from
the true value. This limitation is particularly relevant for risk management, which is not
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stage models.

Model AR (%)
Baseline 22.30
Decision Tree 24.84
Random Forest 25.50
XGBoost 25.99

Two-stage Threshold 22.90
Two-stage Flag Cured ~ 24.28

Table 4.2: Accuracy Ratios (AR), i.e., Somers’ d, for baseline, single-stage, and two-stage
models.

present in single-stage models, but at the cost of ignoring bimodality.

These issues could be partially addressed by increasing the number of classes, which
would reduce polarization and improve granularity. However, doing so may result in
insufficient data for some classes, raising learnability and overfitting concerns as discussed
in Chapter 2. Another possible improvement consists of considering more powerful
classifier as first stage model such as Random Forest classifier and XGBoost which could
improve class prediction reducing misclassification.

In Table 4.2, we report the performance of the single-stage models, two-stage models and
the baseline. Specifically, we observe that two-stage models outperform the baseline but
are less performant than the single-stage models, with XGBoost achieving the highest
performance overall.

In summary, two-stage models provide a better representation of LGD bimodality
compared to single-stage models, but they introduce challenges related to first-stage
classification errors, prediction polarization and potential data scarcity when further
increasing class granularity. These factors negatively affect their overall performance,
making them less effective than single-stage models; however, they still offer substantial
space for improvement through more accurate classifier or a different and more suitable
class design.

Also in this case, during model development it was necessary to use both forms of
Somers’ d to avoid producing “lazy” estimates while defining an important parameter:



the cut-off threshold used by the classifier. Specifically, a DecisionTreeClassifier
assigns the predicted class to each leaf based on the composition of the observations
contained in that leaf. In a standard binary classification setting, the default cut-off is
50%, meaning that if more than 50% of the observations in a leaf belong to a particular
class, that leaf is assigned this class.

In the case of the two-stage threshold model, the cut-off refers to the minimum proportion
of observations "above threshold" required for the leaf to be assigned the “above thresh-
old” class; we denote this quantity as P(above). For the flag cured model, the cut-off
represents the minimum proportion of cured observations necessary for the leaf to be
assigned the cured class, denoted as P(cured).

In Figure 4.7 the effect of the cut-off threshold on accuracy ratio is illustrated for both
two-stage models: the threshold model on the top-left Figure 4.7a and the flag cured
model on the bottom-left Figure 4.7c. In neither case does the default 50% cut-off perform
adequately. For the threshold model, a P(above) of 50% would yield a very high d(C|R),
almost 30%, but a much lower d(R|C), below 15%. This occurs because such a threshold
produces “lazy” predictions forcing the model to assign most observations to a single
class, inflating d(C|R) as already discussed.

In fact, in the top-right panel Figure 4.7b, we show the predicted LGD distributions
obtained both when using a cut-off that maximizes d(C|R) (between 50% and 60%) and
when using a cut-off that maximizes d(R|C) (between 30% and 40%). As anticipated,
in the first case the predictions are “lazy” and extremely concentrated near zero. In the
second case, predictions covers the entire range of values and are less concentrated.

Specifically this happens because, requiring a stronger majority for the above-threshold
class, already under-represented in the dataset, effectively combines two effects: it makes
it even less likely for an observation to be classified as above-threshold, and it inflates
d(C|R) by concentrating predictions in the below-threshold class.

A similar mechanism occurs for the P(cured) in the flag cured model. Maximizing d(C|R)
would lead to an artificially high accuracy ratio (up to 35%) simply because the threshold
is set lower than 50% and cured observations are more numerous. As a result, the
majority of observations are assigned to the cured class, producing “lazy” predictions
that overstate the model’s apparent discriminative power.

In order to avoid this issue, literature suggests adjusting the cut-off to reflect the class
proportions in the in-sample dataset, balancing the evidence required within each leaf.
In both cases, the cut-off that maximizes d(R|C) is close to this theoretical value, which is
why we selected it for the final models.

4.3 Post processing aggregation

The higher performance of the proposed models compared to the baseline is not surpris-
ing. The stringent parsimony constraints imposed on the baseline, by construction, limit
its predictive power. This is evident by simply comparing the number of distinct esti-
mates produced by the models. For instance, the best-performing model, XGBoost, raises
the accuracy from 22.3% (baseline) to 25.99%, but at the cost of producing 4261 distinct
predicted values instead of only 22. The substantial increase in prediction granularity
explains the accuracy gain of 3.69%, yet it naturally raises the question of whether such a
trade-off between accuracy and parsimony should be considered acceptable.

As a final methodological contribution, this work explores the possibility of reducing
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Figure 4.7: Effect of the classifier cut-off threshold on two-stage models. In each row,
respectively for two-stage threshold and two-stage flag cured, left panels show the impact
of varying the threshold on the accuracy ratios d(C|R) (orange) and d(R|C) (blue). Right
panels display the resulting predicted LGD distributions for cut-offs that maximize d(C|R)
(top) and d(R|C) (bottom).

the granularity of the predictions ex post, i.e., after the model has been trained, rather
than a priori by imposing parsimony constraints during training. The key idea is to let
the model grow freely and capture complex patterns without restrictions, and only
afterwards simplify the predictions by aggregating them into a smaller number of
distinct values. The aim of this approach is to retain as much as possible of the accuracy
gains while restoring a more parsimonious structure, although the actual impact on
performance must be empirically assessed.



In order to do so, we apply techniques inspired by hierarchical clustering. In general,
hierarchical clustering is a stepwise process that aggregates data points by progressively
merging them, first combining individual points into small clusters and then gradually
merging these smaller clusters into larger ones, until eventually obtaining a single cluster
containing all observations. In this context, the procedure is applied to the large number
of distinct LGD predictions produced by the models, with the idea of grouping similar
values into a single representative one. In practice, predicted LGDs that are close to each
other are merged into clusters, and each cluster is then associated with a representative
value, which becomes the new estimated LGD for all the observations belonging to that
cluster.

The hierarchical approach has the advantage of not requiring the final number of clusters
to be fixed a priori (as in the case of k-means), but rather allows this number to be chosen
ex post by monitoring how specific metrics evolve throughout the successive aggregation
steps. In this way, the final number of clusters - and therefore the degree of parsimony
- can be determined by balancing the trade-off between reducing the number of distinct
predictions and preserving prediction quality.

In order to perform the aggregation, we adopt Ward’s linkage as the merging criterion.
Ward’s method minimizes the increase in within-cluster variance at each step, which is
particularly suitable in our context because it ensures that LGD values merged together
are as homogeneous as possible. To evaluate the quality of the aggregation at different
stages, we monitor both the pseudo—t2 statistic and the cluster inertia. The pseudo-if2
statistic measures the relative increase in total within-cluster variance that would result
from a potential merge, while the inertia quantifies the total within-cluster variance if the
merge were performed. These metrics allow us to assess how compact the clusters remain
as the hierarchy progresses and to determine the optimal stopping point, i.e., when further
merging would substantially degrade cluster quality by either significantly increasing the
within-cluster variance producing an excessive relative jump in the pseudo-t? statistic or
by resulting in an excessively high inertia.

In Figure 4.8, we provide an example of how the pseudo-t? and inertia metrics can be
used to select the optimal number of clusters for LGD aggregation. In the top panel,
the pseudo-t? statistic is plotted for a range of cluster numbers from 15 to 50. Peaks in
the pseudo-t2, such as the maximum at 27 (highlighted with an orange arrow), indicate
merges that would produce a relatively large increase in within-cluster variance. This
signals that such merges should be avoided, suggesting an good stopping point at 28
clusters, as marked by the orange dot.

The bottom panel shows the cluster inertia across the same range. Using the elbow
method, a clear “elbow” appears at 28 clusters, confirming the pseudo-t> suggestion.
Before this point - clusters from 50 to 29 - merging clusters increases the within-cluster
variance gradually, but beyond the elbow - clusters from 27 to 1 - the variance rises sharply,
indicating a substantial loss of cluster homogeneity. Together, these two metrics provide
a robust way to determine the number of clusters that balances reducing the number of
distinct LGD predictions while maintaining high prediction quality.

Once clusters are defined, each cluster is represented by its centroid, i.e., the mean of
the LGD values within the cluster, reducing granularity and providing a natural and
interpretable summary for all LGDs contained in the cluster.

In Table 4.3, we report the number of distinct grades and the Accuracy Ratio (AR) be-
fore and after post-aggregation. We observe that this aggregation process allows us to
reduce the number of grades dramatically - for instance, XGBoost decreases from 4,261
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Figure 4.8: Example of using pseudo-t? (top) and inertia (bottom) metrics to guide the
selection of the final number of clusters.

Pre-aggregation | Post-aggregation
Model grades AR (%) | grades AR (%)
Baseline 22 22.30 - -
Decision Tree 4455 24.82 24 25.03
Random Forest 4349 25.50 22 25.84
XGBoost 4261 25.99 27 25.97
Two-stage Threshold 331 22.90 22 22.46
Two-stage Flag Cured 354 24.28 26 24.32

Table 4.3: Comparison of model performance before and after post-aggregation. “Grades”

indicates the number of distinct LGD predictions and AR refers to the Accuracy Ratio
(Somers’ d(C|R)).

pre-aggregation to just 27 post-aggregation - while preserving nearly the same level of pre-
dictive accuracy. In addition, Figure 4.9, we show the histograms of the LGD predictions
after the aggregation process compared to the observed LGDs. The key distributional
features identified in the pre-aggregation estimates are maintained, indicating that the ag-
gregation preserves the overall structure and variability of the predictions. Overall, these

results demonstrate that our proposed methods enable the generation of parsimonious
LGD estimates that improve upon the baseline accuracy.
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Conclusions

The central finding of this thesis is that the accuracy-parsimony trade-off can be overcome
through a new paradigm consisting of an initial unconstrained estimation followed by
ex-post aggregation. This was empirically illustrated by an XGBoost model, which, after
being trained without constraints and subsequently simplified, achieved an Accuracy
Ratio (AR) of 25.97% while being reduced to just 27 final grades. This result significantly
outperforms the parsimonious baseline, which recorded an AR of 22.30% with 22 grades.

A second critical contribution concerns model validation. This work has empirically
illustrated that the exclusive use of the standard Somers’ d(C|R) metric is inappropriate
for hyperparameter tuning, as it rewards overly simplistic or "lazy" estimates, leading
to the selection of suboptimal models. The analysis found that a dual-metric approach,
which complements d(C|R) with its reversed form d(R|C), is essential for robust model
selection, representing a significant methodological refinement for industry practice.

The analysis also highlighted the unique strength of two-stage models in capturing the
bimodal nature of the LGD distribution, an achievement that single-stage models did
not reach. Although their final AR was lower, these models offer a conceptually sound
framework with significant potential for future improvement, particularly by enhancing
the classifiers used in the first stage.

A key limitation of the empirical study was the use of pre-discretized risk drivers. This
prevented the proposed models from leveraging their full potential in handling continu-
ous variables, suggesting that the reported performance gains are a conservative estimate
of what could be achieved with raw data.

Future research should therefore focus on three main areas: validating the methodology
on continuous data to quantify its full potential; enhancing two-stage models with more
advanced classifiers to combine distributional accuracy with predictive power; and pro-
moting the adoption of the dual-metric approach to refine industry validation standards.

43






Acknowledgements

Desidero esprimere la mia pili sincera gratitudine alla mia relatrice, la Prof.ssa Patrizia
Semeraro, per la sua disponibilita e i preziosi consigli che hanno indirizzato questo lavoro
di tesi.

Un ringraziamento speciale va anche al mio correlatore, il Dott. Francesco Grande, per il
supporto fondamentale nella parte applicativa e per aver condiviso la sua esperienza nel
settore, permettendomi di contestualizzare la ricerca in un ambito aziendale concreto. La
sua visione e il suo rigore metodologico sono stati per me una fonte di grande ispirazione.

Ringrazio inoltre il Gruppo Intesa Sanpaolo per la preziosa opportunita offerta e, in
particolare, la struttura Credit Risk Accelerator per avermi guidato e supportato in questo
percorso, insegnandomi tanto con metodo e cura.

Un grazie sentito a Paolo, per il suo interesse sincero e il continuo confronto a tutto
tondo che mi ha stimolato nel produrre un lavoro completo e accurato. Grazie anche a
Riccardo, per la sua guida nel collegare I’analisi teorica al contesto applicativo, offrendo
una prospettiva complementare che ha arricchito significativamente la tesi.

Un pensiero speciale va a chi € con me da sempre, i miei genitori, che con il loro incrollabile
sostegno e la loro fiducia hanno permesso che tutto questo potesse realizzarsi. Grazie a
Federica, la mia fidanzata, per avermi supportato in ogni momento e per essere al mio
fianco; il confronto con lei & una costante fonte di ispirazione e di nuove idee.

Infine, un ringraziamento ai miei amici, Alberto, Matteo e Francesco, compagni di un
percorso ormai decennale fatto di momenti leggeri e non, e con cui spero di condividere
molti altri traguardi in futuro.

45






Appendix A

The IRB formula

In Section 1.1, the concept of capital requirement was introduced. Under the IRB ap-
proach, the risk contribution RC; of each credit exposure i to the overall capital require-
ment is calculated using the IRB formula shown in Equation 1.3. The purpose of this
appendix is to show how the IRB formula is derived, to interpret it and to state the
underlying assumptions.

Let us start by considering a portfolio with n credit exposures, where the i-th exposure is
characterised by a residual maturity T; and an exposure at default EAD;. Let #; and LGD;
denote the default time and the loss given default of exposure i, respectively. We make
the following assumptions:

1. The residual maturity T; and the exposure at default EAD; are treated as determin-
istic.

2. The default time %; and the loss given default LGD; are random variables (hence
the tilde ~).

3. The default time 7; depends on a single systematic risk factor X, a random variable
with distribution function H.

4, "I:he random variable D; = 1{7; < T;} is the default ind}cator. Conditionally on X,
D; is Bernoulli with conditional default probability p;(X).

5. The loss given default is independent of the default time and of systematic risk
factors.

6. The portfoliois infinitely granular, i.e. no single exposure is large enough to generate
concentration risk:

. EAD;
lim max ————— =0.
n—eo jeln] ijl EAD;

Given these assumptions, the IRB formula can be derived in several steps: first, by
obtaining a closed-form expression for the value-at-risk of the portfolio loss; second, by
introducing additional assumptions inspired by Merton’s model; third, by incorporating
annual default probabilities P D;; finally, by applying adjustments prescribed by the BCBS.
In the following we study these steps one by one and make the related assumptions
explicit.
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Step 1: Closed-form expression of portfolio loss VaR  The total portfolio loss is repre-
sented by the random variable L, defined as the sum of the n individual losses:

n
L= ZEADi .LGD; - D;
i=1

Therefore, the expected loss conditioned on the systematic risk factor X is equal to:

E[L|X] = ZEAD E[LGD;] - E[Dl|5<]:ZEADi-E[LGDi]-pi(X)

Under the assumption of infinitely granular portfolio, it can be shown that the conditional
distribution of the loss L | X collapses to its conditional expectation E[L|X] [11]. Intu-
itively, the absence of concentration risk and the infinitely fine-grained structure imply
that idiosyncratic uncertainty associated with individual debtors vanishes, leaving only
the systematic risk factor X as relevant. Then, the cumulative distribution function of the
loss L is:

P(L<)=P(E[L|X]<])= ZEAD E[LGD,]-pi(X) < 1| =P (g(X) < 1)
i=1

where, for simplicity, g(-) is defined as:

g(X):= > EAD; -E[LGD;] - pi(X),
i=1

Let us now assume g(-) to be an increasing transformation of the random variable X.
Then, let us consider the value-at-risk VaR_, of the loss L defined as:

P(L > VaRi_o(L)) = a

hence:

P (L < VaRi_o(L)) = P (g(X) < VaRy_a(L)) =
=P (X < g7 (VaRo(D)) = H (g7 (VaRi-o(D) = 1-a

which leads to VaR_.(L) expressed in a closed form as:
n
VaR;_o(D) = ¢ (H—1(1 - a)) = 3 EAD; -E[LGD{] - pi(H ' (1-a)) (A
For completeness, in the case g(-) is a decreasing transformation, VaR1_,(L) is given by:

VaRi_o(D) =g (H*(a)) = Z EAD; - E[LGD;] - pi(H™ () (A2)

Step 2: Introduction of Merton-based assumptions In Merton’s model, the default
occurs when the asset value Z; is below a given barrier B;: D; =1 <= Z; < B;. Letus
now further extend the set of assumptions as follows:



7. The asset value Z; is a Gaussian random variable that depends on the common risk
factor X and on an idiosyncratic risk factor €; as follows:

Zi=\pX++1-pé&
where p is a non negative constant.
8. X and ¢é; are independent standard normal random variables

Specifically, it is easy to show that p is the constant asset value correlation:
E[ZZZ]] =E [(\/552 + \/1 - pél) (\/55( + \/1 - pé])] =
E [pXZ VI - p X & +pVI-p K& +(1- p)éiéj] -
E[pX*]=p (Var(X) - E[X]z) =p

Considering these new assumptions, the unconditional default probability p; becomes:
pi :=P(D; =1) =P(Z; < B;) = ®(B;)
and the conditional default probability p;(x) is equal to:
pi(x) :=P(D; =1|X =x)=P(Z; <B;| X =x) =
=P(ypX++1-pé& <B;|X=x)=
Bi —+/px Bi —+px
1-p Vv1-p

With this new expression of conditional default probability, the function g(-) could be
expressed as:

g(x) = Z EAD; -E[LGD;] - pi(x) = Z EAD; -E[LGD;] - ®
i=1 i=1

O (pi) —px
1-p

Since the obtained function g(-) is decreasing if EAD; > 0Vi, then the value-at-risk
expression to be considered is the Equation A.2, that becomes:

>l (p) - ypH (@) _
L-p

O~ (p;) + p O (1 - a))
Vi-p

Step 3: Incorporation of the annual default probability (PD) At this point, a new
assumption is necessary:

VaRi_o(D) = ¢ (H—l(a)) - zn: EAD; -E[LGD;]- @
i=1

(A.3)

n
= Z EAD; -E[LGD;] - @
i=1

9. The default time is assumed to be Markovian, hence we have the following relation-
ship:
pi=1-P@ >T)=1-(1-PD)"

Finally, Equation A.3 is equal to:

N 1(1-(1-PD)T “1(1 _
VaRy (L) = ) EAD;-E[LGD;]- @ ' (1-(1-PD)") +yp@~'(1 - a)

i=1 Vv1i-p

(A4)



where the risk contribution of the exposure i is given by:

O (1-(1-PD)") +pP 1 (1-0a)
1-p

RC; = EAD; -E[LGD;] - @

) (A.5)

Step 4: Regulatory adjustments (BCBS) In order to obtain the finalized IRB formula,
the BCBS introduced the following modifications:

¢ The formula was simplified as:

O 1(PD;) + p (1 - a)
Vi

where the conditional default probability p; is direclty replaced by the unconditional
annual probability of default PD;, while the contribution of maturity T; is isolated
in the function @(M), with M denoting the effective maturity - following BCBS
notation. The maturity adjustment is defined as:

RC; ~ EAD; - E[LGD;] - @

) (M), (A6)

_ 1+ (M-25)-b(PD))

(M) 1-15-6(PD;) '

with
b(PD;) = (0.11852 — 0.05478 - In(PD;))> .

¢ The confidence level a used in the value-at-risk is fixed at 0.1%.

e The asset value correlation - also referred to as default correlation - is modelled as
a parametric function p(PD) defined as:

1 — ¢~50-PD ( 1— e—50~PD)
- - 1o —

p(PD) =12%- — +24%- —

— 6_5

* The measure of credit risk is the unexpected loss, defined as:

UL, = VaRu(L) - E[L].

Finally, the IRB formula is given by:

firg = EAD; — Exposure at default

. O~ Y(PD;) + y/p(PD) ®71(0.999)
- |E[LGD;] - @ —> Expected percentage
V1-p(PD) loss over one year
under extreme condi-
tions.
—E[LGD;]-PD;| — Expected percentage loss over one year under normal
conditions.

-@(M) — Maturity adjustment factor that extends the horizon beyond

one year.
(A7)
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