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Summary

An important challenge present in the retail setting is the handling of perishable
goods, that is, those products for which there is a limited time to consume them.
One example of all is food. It is clear that implementing improved management
strategies is crucial since it can greatly decrease food waste by selling food prior to its
sell-by date. Perishable retailers face the challenge of maximizing profitability and in
addition trying to reduce food waste as well. This thesis focuses on the construction
of a method for optimizing replenishment policies and the application of discounts
for perishable products in a robust setting with respect to the parameters modeling
the customers’ preferences. It has already been demonstrated in the literature that
the application of discounts has the potential to contribute to reducing waste and
increasing profitability. The setting is established within a robust framework that
includes a multi-item environment with substitutable products with the objective
to maximize the expected daily profit. A major challenge in the management
of perishable goods is the uncertainty of demand, which makes planning and
scheduling difficult. In our analysis, we consider a vertical differentiation setting for
the substitutable products, where price is the determining factor when the products
are of the same quality. A linear discrete demand model is used to estimate the
utility of each product for each customer. A stochastic parameter that depends on
the customer’s valuation is employed, while the price and quality of the product
are used to model the utility in a linear form. The parameter is assumed to be
modeled by a Beta distribution. We consider products with given deterministic
prices, qualities and costs, where each product faces a quality degradation as its
residual life decreases. A thorough first phase of simulations has been instrumental
in providing insight into the environment and the impact of changing parameters
and products on profit. Following this phase, the optimization phase is initiated.
The approach taken to optimize the policies involves the implementation of a
metamodel. In particular, we adopt Kriging, a low-cost interpolation method that
uses a stochastic process approach to construct a surrogate model of an expensive
function. In our case, we refer to the proposed algorithm as the Efficient Global
Robust Optimization algorithm. After an initialization phase, the next step is
an iterative process in which the new sampling locations are selected using an
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adaptive sampling method. Given the nature of this problem as a worst-case robust
configuration, we define a control variable space and an uncertain variable space.
In this analysis, we refer to the order parameters and the discounting variables as
the control variables. The parameters representing the Beta distribution of the
uncertain parameter that models the utility, as well as the coefficient of variation on
the distribution of consumers entering the store in some experiments, are considered
to be uncertain variables. Two versions of the Expected Improvement Criterion
are selected for sampling in the designated spaces. The significance of this work
lies in the scarcity of literature dealing with the handling of perishable products
in a worst-case, robust environment. This makes it a valuable contribution to the
field. The results demonstrate the effectiveness of a metamodeling approach to the
topic, as well as its adaptability in different settings.
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Chapter 1

Introduction

The management and pricing of perishables can be a fundamental task for companies
selling them. Firstly, it is important to know the classification of products into
the groups of Obsolescence and Deterioration. When referring to obsolescence, a
product faces a reduction in price due to market or technological reasons, whereas
an item can go through deterioration only because of some internal characteristics
as in the case of ageing. Therefore perishability belongs to the second group
(Gioia et al. 2022). Products with a maximal shelf life (use-by date) of a few
weeks are considered to be perishable products (Buisman et al. 2019). A relevant
operational dilemma arises: should retailers sell older products together with fresher
ones, possibly offering a discount? How should replenishment be managed in such
situations? There is no easy answer to these questions. Demand uncertainty and
consumer behavior, such as preferences for new or older products, complicate
inventory control. Consumers may follow different issuing policies (LIFO or FIFO),
but retail settings often lack tight control over which items are chosen. Studies
on the management of perishable goods emphasize that pricing is a key lever for
balancing profitability and waste reduction. Developing effective pricing methods is
essential not only for newer products, but also for older inventory. What should not
take for granted is the impact food waste has on the environment. Managing the
balance between the two can significantly improve profitability and reduce waste.
To encourage sales of older items and reduce waste, discounts on aging products
can be effective. A key aspect in designing such pricing strategies is understanding
the dynamics of product perishability and customer demand. The first step is
to determine the product’s shelf life. When shelf life is considered deterministic,
the remaining days before expiration are known with certainty. Demand can be
either deterministic or stochastic. In real-world settings, however, demand is rarely
predictable. Assuming deterministic demand often results in oversimplified models
that fail to capture actual variability. Therefore, this study considers stochastic,
independent demand that evolves over time while accounting for delivery lead times.
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Introduction

Furthermore, the analysis is extended to a multi-item context with substitution
between similar products. Specifically, the analysis focuses on two substitutable
products with deterministic shelf life.

Discrete choice models can be employed to model demand, as they can be capable
of capturing vertical or horizontal product differentiation. Vertical differentiation
reflects quality-based differences, where consumers share a common preference
ranking. In contrast, horizontal differentiation accounts for idiosyncratic preferences,
such as taste or brand loyalty, where no product is universally preferred. This
study focuses on vertical differentiation, which is particularly relevant in grocery
retail, where product age or residual shelf life strongly influence consumer choices.
indent We assume that customers are myopic and base their purchasing decisions
solely on current utility without anticipating future price changes. Consumer utility
is modeled using a linear discrete choice model in which original product prices are
treated as exogenously determined (Gioia et al. 2022; Fadda et al. 2024).



Chapter 2
Literature review

In this study, we address inventory management and pricing decisions together
by considering a scenario in which the initial product price is set, but discounts
can be applied as items age. This integrated approach captures the interplay
between pricing and inventory dynamics to increase profitability and reduce waste.
Traditionally, these two areas have been studied separately. Inventory management
models often assume constant, exogenous prices, while dynamic pricing literature
solely considers how price adjustments affect demand without accounting for stock
levels or aging. Below, we review key contributions from both streams of literature.
Besides pricing and inventory management, modeling demand through consumer
choice behavior plays a crucial role. The literature focuses on various choice models
that describe how consumers make purchasing decisions. Thus, we also present
some relevant work on discrete choice models and utility functions.

2.1 Inventory management and pricing policies

Chua et al. (2017) analyze inventory and discounting policies for perishable goods
with short shelf life and uncertain demand. The base model assumes a two-period
shelf life and shows that a threshold discount policy reduces waste: discounts are
applied only when old stock is below a threshold. Extensions include endogenous
discount decisions, new customer segments (bargain hunters), and longer shelf lives.
Results show that flexible discounting improves profits, attracts more customers,
and helps manage waste, with two-period models offering useful approximations
even for longer shelf lives. Moving on, Sainathan (2013) analyzes a retailer’s
simultaneous pricing and ordering decisions for a perishable product with a two-
period shelf life over an infinite horizon. The retailer sets prices for both product
ages and orders new stock each period. Key findings include: demand uncertainty
can make selling old products profitable, and allowing only the order quantity
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to vary dynamically captures most benefits of full flexibility. The optimal price
of the new product does not always decrease with old inventory, contradicting
common clearance strategies. Market segmentation by selling old products with
constant pricing yields much higher benefits than fully flexible policies, which can
be costly to implement. The model highlights when and how retailers should vary
decision variables, offering practical insights such as avoiding price changes due
to potential negative customer reactions. Differently, Solari et al. (2024) explore
how discount strategies can help reduce waste and improve profitability in B2C
retail settings where perishable products are managed. In such environments,
consumers typically prefer items with longer remaining shelf lives, increasing the
likelihood that near-expiry products go unsold. The authors develop a simulation-
based model incorporating a mixed LEFO-FEFO issuing policy and analyze how
discounts can shift demand toward expiring products. Their findings suggest
that well-designed discount policies can effectively mitigate waste, improve shelf
utilization, and enhance overall profitability. Turning to Chew et al. (2014), the
authors develop a model to jointly determine optimal order quantities and pricing
for perishable products with multiple-period lifetimes, explicitly accounting for
demand substitution among products of different ages. For products with a two-
period lifetime, they formulate a stochastic dynamic programming model and
demonstrate that considering demand transfers between old and new products
significantly enhances total profit. For products with longer lifetimes, the authors
propose a heuristic based on the optimal single-period solution to address the
complexity. Next, Haijema and Minner (2015) show that traditional stock-level
policies, like base-stock and constant order, are popular for perishable inventory
due to their simplicity, relying only on total stock without age differentiation. This
study compares hybrid policies via simulation optimization, finding that some
enhanced versions outperform traditional ones by smoothing orders and cutting
costs under specific lead time and demand scenarios. Finally, Buisman et al. (2019)
develop a simulation-based optimization model to improve replenishment and
discounting policies for perishable foods. They show that using a Dynamic Shelf
Life based on actual product quality significantly reduces waste and improves profit
compared to a Fixed Shelf Life. Combining a Dynamic Shelf Life with dynamic
discounting yields the best performance in terms of waste reduction, profit and
food safety.

2.2 Discrete choice models and utility functions

Understanding how consumers make purchasing decisions is essential in problems
involving substitutable products, especially when product attributes like price and
quality (or freshness) vary. To model this behavior, we rely on discrete choice
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models, which allow us to represent the utility each consumer associates with the
available alternatives. The literature proposes a variety of such models, differing in
their assumptions about consumer heterogeneity, preference structure and product
characteristics. We present several approaches from the literature, each defining a
different utility function to model consumer preferences.

A first group of models adopts a simple linear structure for utility, where consumer
preferences depend on product quality and price, without incorporating horizontal
differentiation. In Sainathan (2013), each consumer n chooses between two versions
of the same perishable product (i.e., the older unit or the fresher one) or no purchase
based on the following utility function for each version i

Uni = 0nq; — i,

where ¢; represents the quality associated with freshness, p; the price, and 6,
is drawn from a uniform distribution on [0,1] to capture heterogeneity across
consumers. A similar linear structure is found in Transchel et al. (2022), although
in a non-perishable setting. What distinguishes this model is the substitution
mechanism: if the preferred product (i.e., the one with the highest utility) is
unavailable, the consumer moves to the next-best option, and so on. While
perishability is not explicitly modeled, this behavior realistically reflects how
consumers may respond to stockouts.

A different formulation is proposed in Akgay et al. (2010), where the utility function
includes a stochastic component to account for idiosyncratic preferences toward
specific products. The utility for consumer n and product ¢ is given by

Uni = 0nqi — i + 11, (2.1)

with &,; capturing product-specific preference shocks and 1 controlling their mag-
nitude. This model introduces horizontal differentiation, reflecting differences in
individual tastes beyond price and quality. This formulation is useful for modeling
unobservable heterogeneity in large assortments. When p = 0 and 6, ~ U[0,1] in
2.1, the model reduces to the previous case of vertical differentiation only.
Finally, a widely used class of models is based on the Multinomial Logit (MNL)
framework (Sifringer et al. 2020; Ben-Akiva et al. 2003; Herring et al. 2020). These
models express the utility of consumer n for product j as

Um’ = Vm + €ns,

where V,; = 7 x,;, with z,,; denoting the observed attributes of product i (e.g.,
price, freshness) and [ the associated preference parameters.

Assuming that the error terms ¢,; are i.i.d. Gumbel-distributed, the probability
that consumer n selects product i is



Literature review
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where C), denotes the set of available products for consumer n. The parameters 3
are estimated via maximum likelihood, maximizing the following function

Pa(i)

N

L=3"% yuilog[P.(i)],

n=1¢e€Cp,

where y,; = 1 if consumer n chooses product j, and 0 otherwise. MNL models
allow for flexible substitution patterns and are particularly effective when modeling
choices among alternatives with multiple attributes.
Together, these models offer a range of tools for capturing consumer behavior in
the presence of price differences, freshness, and availability. The choice of model
depends on the specific application and trade-offs between analytical tractability
and behavioral realism.
The policies adopted in this work are inspired by inventory models such as those
discussed above, which demonstrate that simple and structured approaches can
effectively balance profitability and operational complexity under uncertainty. For
the modeling of demand, we follow the framework proposed by Gioia et al. (2022),
which is closely aligned with the approaches developed by Sainathan (2013) and
Transchel et al. (2022). The specific modeling choices are described in detail in
Chapter 3.



Chapter 3

Context and problem
definition

We begin by detailing the problem under consideration and the adopted approach.
Starting from the ideas in Fadda et al. (2024) and Gioia et al. (2022), we develop a
robust optimization framework that handles multiple items.

3.1 Problem overview

We examine a combined pricing and replenishment problem within a discrete
periodic review setting for two perishable products, featuring deterministic shelf
lives, replenishment lead times and stochastic demand. The two products, namely
A and B, are substitutable, meaning that they serve a similar purpose from the
customer is perspective and compete in the same category. Each item of each
product i € {A, B} is characterized by its purchasing cost ¢!, selling price p’, a
fixed discrete delivery lead time LT’, and a deterministic discrete shelf life 7 (in
days), which is equal to SL* upon delivery. Here, 7 denotes the residual shelf life of
a unit of product 7; the superscript ¢ is omitted for clarity and applies throughout.
Every item with 7 > 0 is perceived with a quality ¢ < ¢.,,, (quality increasing
with 7); when 7 = 0, the item is scrapped. We define three possibilities for the
shelf life: 3, 5, 7 days. The characteristics of the two products for the possible
values of shelf life are shown in Tables 3.1, 3.2 and 3.3.

Table 3.1: Products A and B with SL = 3.

Product LT Price Cost Qualities (per period)
A 1 6 4 24.5, 23, 18
B 1 55 3.55 93.5, 22, 17

7



Context and problem definition

Table 3.2: Products A and B with SL = 5.

Product LT Price Cost Qualities (per period)
A 1 6 4 30, 29, 28, 26, 24
B 1 5.0 3.55 29, 28, 27, 25, 23

Table 3.3: Products A and B with SL = 7.

Product LT Price Cost Qualities (per period)
A 1 6 4 30,2905 29, 28, 26, 24, 22
B 1 55 355 29,285, 28, 27, 25, 23, 21

The simulation is divided discrete time steps, where each step corresponds to one
day. The retailer makes decisions every day concerning new orders and the possible
application of discounts on the items. At the start of day ¢, prices for existing items
are updated based on applied discounts; we denote by p, the price of items that
have a residual shelf life of 7 days. The quantity of items scheduled for delivery
in [ €{0,...,LT} days is represented by O!, while the on-hand inventory of items
with residual shelf life 7 € {1,...,SL} days at time t before sales is indicated by
I7.

Considering two products, we track these quantities separately for each product
to accurately represent inventory dynamics. Thus, for product ¢ € {A, B}, we
denote the delivered items by Of;i and the on-hand inventory by I, Prices are also
adjusted independently per product and residual shelf life, with p! representing
the price for product ¢ with shelf life 7. In each experiment, we fix SL to a given
value, equal for both products. This modeling choice makes the two products more
comparable, as it removes differences arising from perishability duration.

This discrete-time approach enables detailed modeling of inventory aging, delivery
scheduling and dynamic pricing strategies for multiple products simultaneously.
The number of customers entering the shop is modeled as a Negative Binomial
random variable. As done in Fadda et al. (2024), we set the mean daily number of
customers p = 30. The standard deviation o is derived based on the coefficient
of variation (cv), which reflects the variability in demand beyond the mean. In
particular, following the calculations in Fadda et al. (2024), we consider two levels
of demand uncertainty: a baseline setting with cv = 0.3 (i.e., 0 = 9) and, in some
experiments, a more challenging setting with cv = 0.7 (i.e., ¢ = 21). This approach
allows modeling daily arrivals as independent Negative Binomial random variables
with fixed mean but adjustable variance to capture different demand uncertainty
scenarios. Each day the shop opens, customers arrive and decide whether to buy
one item from any of the available products or to buy nothing. Following Gioia et al.
(2022), we adopt a discrete choice framework to model consumer behavior. Each

8
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customer n evaluates the utility of any available unit of product ¢ with residual
shelf life 7 through a linear function

Upr = 0nd; — Py,

where 0,, ~ Beta(q, ) represents the consumer’s price-quality sensitivity. 7
uniquely identifies each alternative within a product category. Thus, items of
the same product with different remaining shelf lives are treated as distinct alter-
natives.

A purchase occurs if at least one utility value is positive; otherwise, the customer
opts for the no-purchase option, modeled with utility U,y = 0. The product variant
chosen is the one yielding the highest utility

Choice,, = argmax{Uno, Ufw} , forallie {A B}, re{l,...,SL"}.

Therefore, to account for perishability, we model quality degradation due to ageing
as an additional vertical differentiation within each product category. Specifically,
we disaggregate each product into multiple variants distinguished by their residual
shelf life 7, treating them as distinct alternatives in the consumer choice process.
This effectively enriches the quality space and allows consumers to differentiate
between fresher and older items of the same product, while the retailer continues
to manage inventory at the product level.
As we can see from Tables 3.1, 3.2 and 3.3, the product A is defined by a higher
price, cost and higher qualities (at a given 7) than product B. To better understand
the differences in product choice, we analyze the previously defined utility function
The consumer prefers product A over B when

Ul >us

nrto

which leads to the switching point in 6,,:

A B

—p
(1) = F—=.
qt —qP

For the given prices and qualities at each 7, this switching value 6% (7) is always 0.5.
Moreover, in the absence of discounts, an item with lower residual life never yields
a higher utility than an item of the same product with higher residual life. That is

<t = U,,<U.,. forallé,c[0]1].

We can see from the plots in Figure 3.1 what happens in the case of the products,
with SL = 3, when no discounts are applied and when varying the simulated 6,
in the case of 6 ~ Beta(2,3). It is quite interesting to observe how things change
when applying a discount. For instance, in Figure 3.2, we apply a 40% discount

9
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Utilities and Beta(2,3) density for products of SL = 3 and T=3 Utilities and Beta(2,3) density for products of SL = 3 and T=2
175 175
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Figure 3.1: Utilities and Beta(2,3) for products of SL = 3 and varying .
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on product B with 7 = 1. As a result, product B becomes the preferable choice
over every other item for lower values of #, and consistently remains higher than
product A with the same 7, unlike the scenario without any discount. This example
illustrates the significant impact that discounts can have on customer choices and
is be explored on some policies in Section 3.2.

Utilities and Beta(2,3) density, SL = 3, each possible t, 40% and discount on B with T =1

0.‘0 O.‘Z O.‘4 0:6 0.‘8 l.‘O
Simulated Beta(2,3)

Figure 3.2: Utilities and Beta(2,3) for products with SL = 3 and 7 = 3, when a
40% discount is applied on product B with 7 = 1.

3.2 Decision policies

Before diving into the actual objective, we show the policies that are used in
the problem. As partially done in Fadda et al. (2024), we define the following
parametric policies where decisions are made simultaneously for each product and
therefore may differ between them:

« Base Stock Policy No Discount (BSPnd): orders at every time step ¢
quantity for every product Vi based on the following formula:

LT SL—1
T __ i 1,0 )
xt—maxz—EOt—E 1,7, 0].
=0 T=1

2* represents the base stock level for product i. The policy does not apply
discounts; it requires 2 parameters to be set.

« Base Stock Policy Simple (BSPs): follows the same ordering policy as
BSPnd, while applying a discount ¢° to items older than a threshold 7y Vi; it
requires 6 parameters to be set.

« Constant Order Policy No Discount (COPnd): orders at every time step
t a fixed constant quantity for every product Vi and does not apply discounts;
it requires 2 parameters to be set.
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« Constant Order Policy Simple (COPs): orders at every time step ¢ a fixed
constant quantity ¢! for every product and applies a discount §° to items older
than a threshold 7y Vi; it requires 6 parameters to be set.

In all cases the orders are placed at the end of the day after the store closes.

3.3 Problem Statement

Decision-making under uncertainty can be approached in various ways. In our case,
we formulate a robust optimization problem and use a simulation-based approach
to evaluate policy performance against worst-case parameter realizations. The
objective is to maximize the expected daily profit under this uncertainty for each
given policy. The decision variables x are the parameters defining the policy (e.g.,
base stock levels, discounts-related parameters), while the uncertain parameters u
include the shape parameters (a, §) of the Beta distribution that models the utility
function. In some experiments, we also include the coefficient of variation cv of
arrivals as an additional uncertain parameter.

In addition to the symbols introduced in the previous sections, we define the
following variables:

e ST units of product i with residual shelf life 7 sold at day ¢.
e« M;: units of product 7 scrapped at day t.

Z' . . .
o Plarkdown: Markdown price of product i.

The daily profit obtained on day t under decision x and uncertainty realization u
is then defined as

K

. i QT i i i ALT i
Ht (X7 u) - Z Z P St + Prarkdown Mt - C Ot
€L =1 g Y
revenue from scrapped units  ordering cost
revenue from units sold

In our experiments we set p’ .. = (, so the term associated with scrapped
units vanishes.

Using this definition, the worst-case robust optimization problem can be formulated
as

ways iy B[ G

Here, the expectation is taken with respect to the stochastic elements of the system,
which include the random arrival of customers and the sampling of utility param-
eters from a Beta distribution. The inner minimization captures the worst-case
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Context and problem definition

performance over the set of uncertain parameters I/, while the outer maximization
optimizes the policy parameters to be robust against such uncertainty. To tackle
the computational complexity, we use a metamodel (surrogate model) that approxi-
mates the objective function, enabling efficient simulation-based optimization. The
algorithm that we employed is called Efficient Global Robust Optimization (EGRO)
with the Kriging metamodel, and is described in detail in the next sections.

13



Chapter 4

Kriging Surrogate Modeling

4.1 Modeling Assumptions

Kriging is a surrogate modeling technique widely used in simulation-based opti-
mization to approximate computationally expensive objective functions. The core
idea is to construct a predictive model f (x) that interpolates known data points
and provides uncertainty estimates in unobserved regions of the domain.

We assume that the unknown expensive function f(x) is a realization of a Gaussian
process Y (x), modeled as

Y (x) ~ GP(u, 0*R(0)),

where p is the constant mean of the process, o2 is its variance, and R(6) is a

correlation matrix defined by a correlation function parameterized by 6. The
correlation between two inputs x; and x; is given by

k
Corr(Y(x;), Y (x;)) = exp (— > Oglwig — qul”) 7
qg=1

where £ is the dimensionality of the input space, 8, controls the correlation decay
rate along dimension ¢, and p is typically set to 2. Larger values of ¢, imply that
the function varies more rapidly along the corresponding dimension.

Given observed responses y = (y1,...,%,)  at training points X = {xy,...,X,}, the
joint distribution of y is multivariate normal with mean p1 and covariance matrix
o?R, where R is the correlation matrix with entries R;; = Corr(Y(x;), Y (x;)).
The log-likelihood function is

n n 1 1 _
log L(p, 0%, 8) = = log(2m) — S log o — S log|R| = 5 (y — u1) 'R (y — pi1).

14
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For fixed correlation parameters €, the maximum likelihood estimators (MLEs) for
p and o2 are obtained by setting the derivatives of the log-likelihood to zero

- _1'R7ly
H=1TR11°

s2o_ Y1) Ry —1p)
n

Substituting these back, the profile log-likelihood to maximize over @ becomes

A

_ M loss? — L
0= arg max < 5 log 6 5 log |R|> ,

where A is the feasible parameter space for 6.
Once the parameters are estimated, the Kriging predictor for a new point x is
given by

g(x) = i+r R (y — 14),
where r is the vector of correlations between x and the training points.

A key feature of Kriging is its ability to quantify prediction uncertainty. The mean
squared error of the prediction at x is

(1-1"R71r)?
1TR-11

s2(x)=6%|1—r R7'r +

This variance represents the Kriging model’s uncertainty in predicting the response
at x.

4.1.1 Example: Kriging fit and prediction with confidence
bounds

To illustrate how Kriging approximates a function and predicts new values, we
consider a nonlinear function defined as

f(z) = sin(3rz)e ™ + 0.22%

We generate 10 training points using Latin Hypercube Sampling over the domain
[0, 1], and fit a Kriging model using the Surrogate Modeling Toolbox (SMT; Bouhlel
et al. 2019).

The resulting surrogate not only interpolates the training points but also provides
predictions with associated uncertainty estimates. In Figure 4.1, we observe how
the Kriging model closely approximates the true function and provides a 95%

15



Kriging Surrogate Modeling

confidence interval, which becomes narrower in regions with training data and
wider in unexplored areas.

Kriging approximation of a nonlinear function

0.5 1 —— True functien
—=—- Kriging prediction
95% confidence interval
® Training points

0.4 1

0.3+

fix)

0.2 1

0.14

0.0 4

T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0
x

Figure 4.1: Non linear function and Kriging approximation.

In our work, Kriging is employed to build a surrogate model of the simulation-based
objective function. We now introduce the EGO and EGRO algorithms, in which
Kriging can be used to tackle optimization problems, with EGRO being selected
for our case due to its suitability in a robust setting.

4.2 Efficient Global Optimization

Consider the global optimization problem

max f(x),

where f: X C R¥ — R is an expensive-to-evaluate black-box function defined over
a bounded domain D. The objective is to find the global maximizer x* such that

Fx") = max f(x).

xeX

The Efficient Global Optimization (EGO) algorithm, introduced by Jones et al.
(1998), addresses this problem by iteratively constructing a surrogate model, typi-
cally a Kriging model, to approximate f(x) based on previously evaluated points.
This surrogate provides both a prediction f (x) and an estimate of uncertainty,
enabling efficient exploration of the design space.

16
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To guide the search for the global maximum, EGO employs the Expected Improve-
ment (ET) acquisition function defined as

BI(x) = E [max (0, f(x) = funax)]

where fiax is the best (maximum) observed objective value so far, and the expec-
tation is taken over the predictive distribution of f(x).

The EI function quantifies the expected increase in objective value achievable
by sampling at x, thus balancing exploitation of known promising regions and
exploration of uncertain areas.

At each iteration, the next evaluation point is chosen by maximizing the ET function
next = EI(x).
Xnext = arg max El(x)

The true function f(Xpext) is then evaluated, the surrogate is updated with the new
data, and the process repeats until a stopping criterion is met. A pseudo-code is
presented in Algorithm 1.

Algorithm 1 Efficient Global Optimization (EGO) (Jones et al. 1998)

1: Input: domain X, expensive black-box f, initial sample size ng, max iterations
Nhax, stopping tolerance e

2: Generate initial design D,,, = {x1,...,X,,} (e.g., LHS)
3: Evaluate y; < f(x;) for all x; € D,,

4: Fit Kriging surrogate f(x) using {(x;, v:)}%,

5: for n < ng+ 1 to Ny, do

6: Solve surrogate max problem to find f,.x = max f
7 Define acquisition: EI(x) using current f and observed fiax
8: Xpext <— arg maxyey EI(X)

9: Evaluate Ynext < f(Xnext)

10: Dn A Dn—l U {(Xnexta ynext)}

11: if stopping criterion met (e.g., EI(Xuext) < €) then
12: break

13: else

14: Re-fit Kriging surrogate f (x) with D,

15: end if

16: end for

17: return x* = arg maxf

17
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4.3 Efficient Global Robust Optimization

The idea of EGRO has been proposed in Rehman and Langelaar (2015) as an
extension of the EGO algorithm to robust design problems involving parametric
uncertainties. The method aims to efficiently identify the global robust optimum
of an expensive-to-evaluate black-box function through a nested optimization
procedure using surrogate modeling and adaptive sampling. While the original
formulation in Rehman and Langelaar (2015) adopts a min-max structure, in this
work we present the algorithm in its equivalent max-min form, which aligns with
our problem setting.
Given an objective function f(x,u) where x € X" are control variables and u € U
are uncertain variables, the robust optimization problem is formulated as

e o)
To reduce the number of expensive evaluations, a Kriging surrogate model f =
K¢(x,u) is built. The robust optimization is thus approximated as

e Ko

The following sections outline the algorithm in detail.

4.3.1 Initial Sampling

Before starting the iterative optimization process, an initial set of sample points is
selected in the joint space of control and uncertain variables, X x U. These initial
samples are typically chosen using space-filling designs such as Latin Hypercube
Sampling (LHS) or low-discrepancy sequences to ensure a good coverage of the input
domain. The objective function f(x,u) is evaluated at these points to generate
the initial dataset. This dataset is then used to build the initial Kriging surrogate
model K¢(x,u), which serves as the foundation for subsequent adaptive sampling
steps within the EGRO algorithm.

4.3.2 Selection in X

The EGRO method modifies the classical EI criterion to fit the max-min robust
setting. For any x, we define the worst-case Kriging prediction as
Jmin(x) = min Ky (x, u).

Then, the current robust optimum on the surrogate is
ri = max Omin (X).
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which approximates the solution of the inner max-min problem over the surrogate.
Following the principles of EGO, EGRO assumes that the uncertain value of i, (%)
can be modeled as a normally distributed random variable

Yanin ~ N (Grain (%), 8% (X, i) )

where s2(X, Uy, ) is the Kriging mean squared error at (X, Upin)-
An improvement occurs when the predicted worst-case outcome Y, at a candidate
decision x exceeds the current robust estimate rg, i.e.,

Ymin > K,

since the robust objective is defined as a maximization over the worst-case scenario.
Thus we can compute an expected Improvement as

E[I.(x)] = E[max (Y — 7k, 0)].

For simplicity, we refer to it as Fl.. The formula of the FI. simplifies to

EL(X) = (fnin — ric(x)) @ (W) (%) (M) |

X) X)

where ®(-) and ¢(z) are respectively the cumulative distribution function and
probability density function of the standard normal distribution.
The point x"*" that maximizes FI.(x) is selected as the next control candidate

X' = arg max EI.(x).

4.3.3 Selection in U

Once the new candidate control point x"°" has been selected, the EGRO algorithm
proceeds by identifying the most informative uncertain variable u™*" at which to
evaluate the expensive objective function. This step focuses on selecting u € U
such that the evaluation at (x"*% u) is most likely to improve the current robust
estimate.

At the fixed control location x"°V, we define the worst-case Kriging prediction as
the minimum value of the surrogate function over the uncertainty domain

o : new
gk = rglelg}Kf(X ,u),

which serves as the reference worst-case cost for the current x"°V.

The goal is now to find a point u™*" such that the Kriging prediction K ;(x"*", u)
exceeds the current worst-case value gg, indicating a potential for improvement in
the inner minimum.
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As before, we model the Kriging prediction at each (x"*V,u) as a Gaussian random
variable

Y ~ N(?j? 82)7

new new

where § = K;(x™",u), and s? = s*(x"*¥, u) is the Kriging mean squared error.
Since we are searching for a global minimum in the uncertain variable space U, an
improvement occurs when Y < gx. Here, the ET is becomes

EI,(x"",u) = E[max(gx — Y,0)].

This expectation simplifies to

EL(x"",u) = (gx — §) P (gK — y) Y (gK - y) .

S S

The new uncertain variable sample is selected by maximizing this criterion

u"" = argmax El,(x
ucXe

new

,u).

Once the expensive function is evaluated at the new candidate point, the algorithm
checks whether the sampling budget has been exhausted (or a maximum number
of iterations is reached) or if the maximum E*** is below a predefined threshold.
If not, the surrogate model is updated with the new sample, the new Kriging
metamodel is constructed and the search continues. Otherwise, the algorithm
terminates, and the current robust optimum rg is returned as the final solution
Xpest- A pseudo-code of the EGRO algorithm is detailed in Algorithm 2.
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Algorithm 2 Efficient Global Robust Optimization (EGRO) (Rehman and Lange-
laar 2015)

1: Input: Decision domain &X', uncertainty domain U, expensive black-box f,
initial sample size ng, max iterations Ny.x, stopping tolerance e
Generate initial design D,,, = {(x;, ;) };2; using space-filling design (e.g., LHS)
Evaluate y; < f(x;, u;) for all (x;,0;) € Dy,
Fit Kriging model Ky using D,,,
for n < ng+ 1 to Ny, do

Solve surrogate max-min problem on f to compute rg(x) =

maXxex minueu f(X, 1_1)

7 Compute expected improvement FEl.(x) and select x"% =
arg maxyey Fl.(X)

8: For fixed x™*%, compute FI,(u) and select u"*" = arg maxyey F1,(u)

9: Evaluate true function yney < f(x"°V, u™%)

10: Augment dataset: D, < D1 U {(X"", 0", Ynew) }

11: if stopping criterion met (e.g., FI.(x"") < ¢) then

12: break

13: else

14: Re-fit Kriging surrogate f with D,,
15: end if

16: end for

17: return robust solution x* = argrg
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Chapter 5
Implementation details

This chapter provides an insight into the code structure. Before presenting the
optimization algorithm, we first describe the simulation framework, outlining the
main classes that underpin the simulation process:

o Agents: each agent represents a parametric policy governing inventory re-
plenishment and pricing decisions. The agents implement the decision rules
evaluated during optimization.

o Environment: it simulates daily system operations such as demand arrivals,
inventory updates, order processing, and sales fulfillment. We use the
DailySimulation environment in this work.

e Managers: these classes manage specific subsystems within the environ-
ment, including customer demand (CustomerManager), inventory tracking
(InventoryManager), order queues and lead times (SupplyManager) and statis-
tics collection (StatManager).

Together, these classes constitute the simulation algorithm used in this work and
are described in detail in Appendix A.

We now explain how the expected value of the daily profit
E[Ht(x, u)}

is estimated experimentally using an algorithm based on Welch’s method. Lastly,
this chapter concludes with a detailed explanation of the main EGRO algorithm
implemented with Kriging.

The code is implemented in Python language.
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5.1 Welch’s method for steady-state mean
estimation

In simulation-based optimization, particularly when dealing with stochastic systems
that evolve over time, it is important to distinguish between transient and steady-
state behavior. When estimating performance metrics such as the expected daily
profit for a given policy and fixed uncertainty parameters, using data from the
initial transient phase may introduce bias and lead to inaccurate conclusions. To
address this, we adopt Welch’s method (Law 2014), a standard procedure for
detecting and eliminating the initial transient period in simulation outputs.

Welch’s method relies on the ideas of replication averaging and moving average
smoothing. First, n independent replications of the simulation are performed, each
generating a time series of length m. Let Y); denote the i-th observation of the

7-th replication. For each time step ¢ = 1,..., m, we compute the average across
replications
S
i — }/}h
n =
resulting in an averaged time series Y3, Ys, ..., Y,,. This step reduces the variance

of the process, making trends and structural patterns easier to detect.
To further suppress high-frequency noise, a moving average filter is applied to the
averaged series. For a window size w, the smoothed value at time ¢ is given by

1 Yoo
) 2w+15;w}/;+8 ifi=w+1,...,m—w,
Yi(w) = 1 i-1
51 Y Yy ifi=1,...,w.

s=—(i—1)

This smoothing step helps to reveal the long-term trend of the system and facilitates
the identification of the steady-state region.

Once the smoothed series is obtained, a cutoff point ¢ is selected to mark the end
of the transient period. The transient length ¢, is chosen as the smallest index
beyond which the smoothed series Y;(w) appears to have stabilized, indicating that
the system has reached steady state. Several values of w can be tested to find a
window size that balances smoothness and detail in the curve. Typically, plots of
Y;(w) against i are inspected visually to determine ¢,. Increasing the number of
replications n also helps to reduce noise and improve the clarity of this identification.
In our case, we use Welch’s method to estimate the steady-state mean v =E(Y') of
the process Y7, Ys.... Assuming that the simulation replications are sufficiently long
( m > ty) and the number of replications n is adequate, the steady-state mean can
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be estimated by considering only the observations beyond the warm-up period in

each replication. Specifically, for each replication j = 1,...,n, we compute
Xj = >,
t(] i=to+1

The values X are treated as independent and identically distributed (i.i.d.) random
variables. An unbiased point estimator of v is given by

1 n
= nj;Xj’

which satisfies E[X,)] &~ v . Similarly, an unbiased estimator of the variance o2 is
given by the sample variance

zi:(x - X))

An approximate 100(1 — «)% confidence interval for v is then

Sn)
\/_

where t,_11_q/2 is the upper (1 — a/2) quantile of the Student is ¢-distribution
with n — 1 degrees of freedom.

Welch’s method provides a simple yet effective approach to steady-state estimation
without requiring prior knowledge of the system dynamics.

X(n) ) A 11-a/27 —

5.1.1 Steady-state mean estimation

Following the proposed methodology based on Welch’s method, we developed an
automated algorithm to detect the warm-up period and estimate the steady-state
mean of the expected daily profit (reward), E[Ht(x, u)} The overall procedure is
summarized in Algorithm 3. We set a maximum number of 200 simulation episodes.
The window size used to compute the moving average for transient detection was
fixed at 20, which was empirically found to yield a sufficiently smooth curve during
preliminary tests. Additionally, we required the relative width of the 95% confidence
interval for the estimated mean to fall below a threshold of 0.02 before stopping the
simulation. For example, consider the case with SL = 3, 6,, ~ Beta(2,3), cv = 0.7,
and base stock levels (10, 25), respectively for products A and B. Starting from
10 episodes and increasing by 10 at each step, the required confidence interval is
achieved after 40 episodes, with a relative width of 1.61%. The plots in Figure 5.1
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show the moving average curves for 10 and 40 episodes, while Figure 5.2 illustrates
all the computed confidence intervals.

Number of episodes: 10 Number of episodes: 40
251 A et 254 A
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Figure 5.1: Moving averages in Welch’s method.
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Figure 5.2: 95% confidence intervals and means computed at each iteration.

5.2 Main optimization algorithm

The core idea behind the optimization algorithm is the implementation of the
EGRO algorithm suited for the problem at hand. The algorithm is contained in a
class and is adapted to different settings depending on the domains of the uncertain
variables.

The general idea is presented in the pseudo-code in Algorithm 4.

Implementation notes

The algorithm is implemented in the Kriging class. In particular, the Kriging
surrogate model is explicitly built using the MixedIntegerKrigingModel or KRG
methods from the SMT library, which is important for handling mixed discrete-

continuous variables in our implementation. In fact, experiments were developed
for three settings:
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Algorithm 3 Automatic estimation of steady-state mean daily profit

1:

[ I N I N R N e e T e S e R

24:
25:
26:

Input: Environment &£, policy 7, initial episodes ny, step size An, max episodes
Nmax, CI threshold €, warm-up window w, stability threshold 7, required stable
points s, minimum length of post-transient scenario L,

Initialize n < ng, ngg < 0

Initialize rewards matrix R € R maxxT

while n < n,,x do

Simulate An = n — ngyq new episodes of length T
Append results to R
Compute average reward process over episodes: Y; < % S Riy
Compute moving average M, of ¥; using window w
Compute differences D, = | M, 1 — M|
if there exists ¢ such that D;, D;,1,...,D;1s 1 < 7 then
Set warm-up L <+ 1+ w
else
Set fallback warm-up
end if
if T'— L < Ly, then
continue > not enough post-transient data
end if
Compute steady-state samples: Z; < ﬁ Yieri Ri
Compute sample mean v,,, sample variance s?, and CI width wc;
Compute relative CI width: r = ﬁ
if r < e then
return v,, CI, r, L, n
else
Nold < N
n<n+An
end if

27: end while
28: return last computed statistics

o Discrete domain for (a,f3) and discrete domain for cv ("dd");
e Discrete domain for (04,6) and continuous domain for cv ("dc");

o Continuous domain for («, () and fixed value for cv ("cf").

Because of this, some methods in the Kriging class may differ across settings (e.g.,
treatment of uncertainty variables); the current code listing implements the dd
case with cv € {0.3,0.7} encoded categorically as {’03’,°07°} and is presented in
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Algorithm 4 Proposed EGRO Algorithm with Kriging surrogate

1: Initialize design space, data structures and parameters
2: Generate initial training samples

3: Evaluate the expensive function on initial samples

4: for iteration = 1 to N; do

5: Encode samples and train the Kriging surrogate model

6: Compute robust performance values and identify the current best solution
7 Evaluate the control variable space E1. for all candidate controls

8: Select a new candidate control point x"V from EI. maximization

9: Evaluate the uncertain variable space EI, with x"*V as control variable
10: Select a new candidate uncertain point u™*"V from FE[, maximization

11: Define the new candidate point: (x"*V, u™*")

12: Evaluate the expensive function at the new sample and update the dataset
13: Check convergence criteria (stagnation / E threshold)

14: if converged then

15: break

16: end if

17: end for

18: Return the robust solution and all evaluated samples

the following sections.

Class overview

SL: products’ shelf life (SL3, SL5, SL7).

num_prods: number of products (2 in the experiments).

policy: replenishment policy.

X_beta: set of discrete («, f) pairs.

X_cv: possible coefficients of variation ({°03°,707’} in dd).

N_t : maximum algorithm iterations; n_tot_samples: total initial samples to use.
step_bs_levels: step for base-stock integer grid.

store_setting 03/07: store infos depending on cv.

prod_settinge: products infos. eps_ei FI,. tolerance for stopping.

Setup and sampling

e __init__(...): initializes hyperparameters, experiment settings, and logger.
Sets cv levels to {?03”,707} (categorical) and time horizon to 700 days.
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e build_design_space(): constructs the mixed design space for SMT.

— For bsnds: variables are (bsy,bsp, i1, 0, cv) with IntegerVariable for
base stocks, FloatVariable for (i, o) computed from («, 3), and
CategoricalVariable for cv € {0,1} (mapping 04+0.3, 1<>0.7).

— For bssimple: variables are (bsa, day 4, startgay ., bSp, startiay,, discg, i, o, cv))
where the discounts and start days are encoded as CategoricalVariables,
since they take values from a discrete, non-consecutive set (e.g., days 1,
3,...) rather than a continuous or consecutive range.A possible mapping
could assign consecutive integers to these days if they were to be treated
as integers.

— For conds: variables are analogous to bsnds, except that the base stock
variables (bsa,bsp) are replaced by fixed order quantities (coa, cog) for
each product.

— For cosimple: variables are analogous to bssimple, except that the base
stock variables (bsa, bsp) are replaced by fixed order quantities (coq, cop)
for each product. Tests for this policy are not reported in this thesis.

Also precomputes a dictionary dict_ab_enc mapping («, 5) — (u,0) and
stores p, 0 bounds from all Xpg.

o discrete_lhs(domains, seed): samples over discrete domains (control X,
X3, Xey). Draws n_samples_to_add indices per domain (with/without re-
placement as needed), shuffles, zips across dimensions and removes duplicates.

+ encode_samples_continuous (samples): encodes a list of triples (x., (o, 3), cv)
into SMT input rows. It replaces (a, ) with (u, o) from dict_ab_enc and
maps cv € {'03’,°07’} to {0,1}. The control-part layout depends on policy.

e _possible_orders(env): returns feasible order quantities {0,6,12,...} per
product up to a newsvendor bound.
Evaluation
» setup_environment (x), given = = (z., («, 5), cv):

1. Selects store settings by cv (store_setting_03/07), sets DCM.alpha,
DCM.beta.

2. Instantiates managers and the environment DailySimulation for a fixed
time horizon.

e setup_agent(x, env): builds an agent matching the chosen policy. The
options are:
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— bsnds: BaseStockNoDiscount with order_param.

— bssimple: BaseStockSimple with order param, discount_ from,
discount_amount.

— conds: ConstantOrderNoDiscount with order_param.
— cosimple: ConstantOrderSimple with order_param, discount_from,

discount amount.

o compute_real y(x): evaluates the reward through simulation. It proceeds
this way:

1. Builds env and agent; calls auto_evaluate_policy (Welch’s automated
method).

2. Returns (7, Nepisodes) s Ooises 17 e, CI, where 7 is the estimate of the mean

steady-state daily reward , 52, is the sample variance and CI is the

confidence interval computed by the method for the mean reward.
Surrogate predictions and robust objective

« comp_dict_preds_forxc(y_preds): reshapes batched predictions over (z., (o, §), cv)
into a nested dictionary

dict_results_xc[z.|[(a, )] = [J(cv=0.3), y(cv=0.7)].

e comp_rk_ymin_forxc(dict_results_xc): for each z., finds the minimum
value across (a, ) and cv, returning

— dict_ymin([z.] = (min(aﬁ)w 7, (a, B)%, cv*),
— the robust value 7, = max,, min g)c, ¥,

— the current robust point z* = (2%, (o, B)*, cv*).

Expected Improvement

e expected_improvement_batch(y_min, rk, sigma) computes the vectorized
ET formula. Numerically guards o > 1075.

o comp_all EIs_xc(dict_ymin, rk) computes EI for each z. (FEl.) by:

1. taking ymin(z.) from dict_ymin,

2. encoding (x, (i, 0), cv),

3. querying predictive variance to build o,
4. returning a map x.— EI..
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o comp_gk_ymin_forxe(xc_new), with z, fixed, predicts g(z¢*, -) for all (o, ), ¢
and returns

— dict_results_xcnew[(a, 5)] = [y(cv=0.3), §(cv=0.7)],

new

— ge(x2™) = min, gy e U

o comp_all EIs_xe(xc_new, gk, dict_results_xcnew), for each (o, 3) and
cv at fixed z, (the candidate xc™"), computes E T using ymin = g(xc™", («, B), cv)
and target g, returning a dictionary («, 8) — [EI(cv=0.3), EI(cv=0.7)].

Outer loop

main_computation(): contains the overall EGRO loop.

1. Builds the design space; creates the candidate grid X, and full prediction
batch over X, x Xz x X,.

2. Generates initial samples via discrete_lhs, evaluate compute_real_y for
each and collects per-sample noise estimates.

3. Trains MixedIntegerKrigingModel from SMT (KRG surrogate) on the training
encoded samples and averaged rewards and use it to predict mean rewards on
all encoded samples.

4. Computes robust incumbent (7, z*) on the surrogate via comp_rk_ymin_forxc|

new

5. Computes EI. for all z. via comp_all_EIs_xc; picks 22V maximizing E/..

6. Fixs 22, computes g and ET over ((«, (), cv) via comp_gk_ymin_forxe and
comp_all_EIs_xe; selects (a, 5)™%, cv™™ with maximum ET,; evaluates the

new triplet if unseen.

new

7. Checks stopping: either (i) EI1™®* < ey, or (ii) stagnation in * (i.e., the best
solution has not improved for several iterations; here we chose an arbitrary
value of 5 iterations) with stagnation counter > 5, EI™* < 10eg, and
1 > 50.

Accumulates the sequence of robust solutions.

Notes on the three uncertainty settings

« dd (current code): («, ) and cv are discrete. Encodes («, 3) — (pu,0) and
cv € {0.3,0.7} as a categorical variable {0,1}. The inner min is realized by
scanning (o, 5) and cv on the surrogate.
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Implementation details

o dc: (o, 3) discrete but models cv as a FloatVariable on [0.3,0.7]. Replace
the categorical cv in build_design_space and encode_samples_continuous
with its numeric value; samples the points with a LHS for the cv domain. The
inner minimization over cv is performed using the global optimizer shgo from
SciPy (Virtanen et al. 2020). In general, that making cv continuous introduces
slight changes in the methods compared to the original discrete version.

o cf: (a,f) continuous with a fixed cv. Fixes cv and replaces Xz with a
continuous parameterization (e.g., variables (u, o), respectively mean and std
of the Beta). Chooses the domains to sample « and § from (we sample p
and t = o + f from two arbitrary domains). Implements continuous solvers
using shgo; an additional encoder/decoder for (a, ). Since the uncertain
variables are continuous, there are some changes in the methods and structures
compared to the original ones, especially when computing E1,,.
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Chapter 6

Computational experiments
and results

The experiments for the different policies are reported by setting and by shelf life.
In general, three settings were considered, corresponding to different domains of
the uncertain parameters:

o Discrete domain for (a,f) and discrete domain for cu:
(o, B) € {(0.5,0.5), (1,1), (1,2), (2,1), (2,2), (2,3), (3,2), (3,3),
(374)7 (473)7 (474)7 (475)7 (574)7 (575)7 (274)7 (275)}7
cv € {0.3,0.7}.

o Discrete domain for (a,f3) and continuous domain for cv:
(, ) € {(0.5,0.5), (1,1), (1,2), (2,1), (2,2), (2,3), (3:2), (3.3),
(3:4), (4,3), (4,4), (4,5), (5:4). (5.5), (24), (2,5)},
cv € [0.3, 0.7].

o Continuous domain for («,[3) and fixed value for cu:

(Oé,ﬁ) < {(Mta (1 - M)t) | e [037 07}7 t= 04—0—6 < [47 10]}7
=a€[l2 70], ge[l.2 7.0],
cv = 0.3.

In the continuous case, the domains for p and t were chosen to guarantee

a, 3 > 1, avoiding anomalous behavior at the distribution boundaries. The
uncertainty set is the polytope, represented in Figure 6.1.
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Figure 6.1: Uncertainty set for («, 3) in the continuous case.

The last domain was the one where every policy was tested. For each experiment,
a specific set of decision variables was defined according to the chosen policy and
uncertainty setting, reflecting the particular requirements of that setup. The initial
number of sampled points is given following the rule in Rehman and Langelaar
2015, meaning 10d, where d represents the number of variables.

6.1 Base Stock Policy No Discount

Recall that we only have two decision variables in this policy: base stock level for
product A and base stock level for product B.

6.1.1 Discrete domain for (o, 3) and discrete domain for cv

For this first set of experiments, the number of initial sampled points is 50.
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Computational experiments and results
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Figure 6.2: Initial sampled (bsu, bsg) colored by cv (SL = 3, 5, 7).
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Figure 6.3: Frequency of («, ) pairs in sampled points (SL = 3, 5, 7).

The decision variable domains for the base stock levels are defined for each product.
Specifically, for products A and B, the base stock levels range from 6 to 42 units.
Table 6.1 presents the results, including the number of iterations to reach the final
solution, the solution decision variables and uncertain parameters and the true
mean daily reward, i.e., the performance observed directly from the system rather
than the EGRO robust estimate.

SL #iters (bsa, bsg) ((«, ), cv) value

3 69 (7,25)  ((25),0.7) 19.44
5 116 (11,34)  ((1,2),0.7) 2855
7T 3 (9,42)  ((1,2),0.7) 31.12

Table 6.1: Final solutions summary for each SL.

To illustrate the progression of the algorithm, we present the plots in Figures 6.4, 6.5
and 6.6.

34



Computational experiments and results

Robust solution value per iteration

@ Final solution point: ((7, 25), (2, 5), 0.7)
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Robust solution value
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Robust solution value per iteration

®  Final solution point: ((9, 42). (1, 2), 0.7)
—e— Robust value

Figure 6.4: Robust solution value per iteration.

From Figure 6.4, it is evident that during the first iterations the algorithm makes
optimistic assumptions, starting with large values for the initial robust solutions
when the exploration phase has just begun. For SL = 3, the algorithm first identifies
the final robust solution after 49 iterations, but requires an additional 20 iterations
to confirm its value while considering alternative candidates as robust solutions.
Overall, we observe a stable trend from early iterations, as the algorithm already
evaluates a point very close to the final robust solution, namely (6,25).

In contrast, for SL = 5, the robust values fluctuate considerably, leading to a larger
number of required iterations. Only in the very last iterations does the process
stabilize, with the final solution value itself changing until the last two iterations,
since the point had not been evaluated earlier by the algorithm.

Finally, for SL = 7, we observe a generally decreasing trend and a rather fast
convergence to the solution.

The observed fluctuations in Figure 6.5 in E1. for SL = 3 and SL = 5 across the
control variables are entirely expected. This is because the Expected Improvement
reflects not only the predicted mean from the Kriging model, but also its associated
uncertainty. Points with higher uncertainty can contribute significantly to the
Expected Improvement, even if their predicted mean is not optimal. Consequently,
FEI. exhibits an alternating pattern as the algorithm explores different regions of
the control variable space. In the case of SL = 7, we get a more stable trend.
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Computational experiments and results

Trend of maximum El. values per iteration
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Computational experiments and results

In Figure 6.6, we show all the points evaluated throughout the algorithm using
the same uncertain parameters as the final solution. The 95% confidence intervals
and mean values, computed using the aforementioned Welch algorithm, are also
displayed in a increasing reward order. It is quite expected that many points yield
very similar results, and it is interesting to observe that the algorithm evaluates a
substantial number of them before converging.

6.1.2 Discrete domain for («, ) and continuous domain for
cv

For this set of experiments, the number of initial sampled points is once again 50.
The decision variables domains are defined for each shelf life in Table 6.2.

Product SL bs level domains

A 3 [3,.,11]
B 3 [21,...,29]
A 5 [7,...,15]
B 5 30,...,38]
A 7 [5,...,13]
B 7 [38,...,46]

Table 6.2: Domains of the base stock level (bs) for each product.

Unlike the case with only discrete domains, here we chose to differentiate between
the products and to narrow the sets based on the results of the prior analysis. We
see the distribution of initial sampled point in the case of SL = 3 in Figures 6.7
and 6.8.

Distribution of initial training points sampled (bsa, bsg) coloredol%}/ cv
291 ©

281¢
27 1+-¢ ° e e S oeo
26 o -3 o S e e o [ 0-35
251 © e o © ° ° t0.50

241 © © @ ¢ 13 Lo.4s

Base stock level product B (bsg)

3 4 5 6 7 8 9 10 11
Base stock level product A (bsa)

Figure 6.7: Initial sampled (bsa, bsg) colored by cv for SL = 3.
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Frequency of (a, B) pairs in initial training points
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Figure 6.8: Frequency of («, ) pairs in sampled points for SL = 3.

SL  #iters (bsa, bsg) ((o, ), cv) value

3 34 (7,24)  ((25),0.7) 1948
5 0 21 (10,35)  ((1,2),0.7) 28.54
725 (9,41)  ((1,2),0.7) 31.15

Table 6.3: Final solutions summary for each SL.

Looking at Table 6.3, we observe results that are consistent with the case where cv
is treated as a discrete variable. In all instances, the worst-case scenario corresponds
to cv = 0.7, as expected, since a higher coefficient of variation introduces greater
uncertainty in the arrivals. Overall, the algorithm converges in fewer iterations
across all cases, which can be attributed to the narrower domains of the base stock
levels. The solution points across every SL are very similar to those found in the
previous case.

Examining the plots in Figure 6.9, we notice an initially optimistic behavior that
rapidly decreases toward values close to the final solution. In the case of SL = 3,
the final solution point is identified as robust at an early stage and consistently
confirmed as the robust solution well before the algorithm terminates, while for SL
= 5 and SL = 7 the final solution is first evaluated in later stages.

Regarding the trends of the maximum E[. in Figure 6.10, we observe a relatively
smooth behavior across all cases, without pronounced oscillations. This contributes
to a consistently fast convergence in every instance.
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Figure 6.11: Confidence intervals and means for evaluated points with same

uncertainty parameters as final solution.

Based on the 95% confidence intervals of the points evaluated with the same
uncertainty parameters as the final solution in Figure 6.11, we again observe very
close values in terms of both means and confidence intervals. This is even clearer

here, since the possible base stock levels are restricted to a small set.

6.1.3 Continuous domain for (o, ) and fixed value for cv

For this set of experiments, the number of initially sampled points is now set to 40,
as cv is fixed at 0.3. The domains of the decision variables have been redefined to
better reflect the current setting, given that cv is fixed. The updated domains are

summarized in Table 6.4.

Product SL bs level domains

A 3 [3,.11]
B 3 [21,...,29]
A 5 [4,...,12]
B 5 [27,...,35]
A 7 3,...,11]
B 7 [36,...,44]

Table 6.4: Domains of the base stock level (bs) for each product.

We can examine the distribution of initial sampled point in the case of SL = 3 in
Figure 6.12, where, given the continuous nature of («, 3), we color the points by
t=a+p.
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SL

#iters

(bsa, bsp)

value

(a, )

3
5
7

41
31
13

(4, 27)
(11, 29)
(3,40)

25.59
32.87
34.09

(1.2, 2.8)
(1.2, 2.8)
(1.2, 2.8)

Table 6.5: Final solutions summary for each SL.
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Figure 6.13: Robust solution value per iteration.
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Table 6.5 reports the results. In all cases, the worst-case (a, ) corresponds to
(1.2,2.8), which is the vertex of the polytope with the lowest values of p (with
the higher variance) and ¢. Interestingly, for SL = 3 and SL = 7, the base stock
levels in the optimal solutions are close to the minimum values in their respective
domains, whereas for SL = 5 this is not observed.

The plots in Figures 6.13, 6.14, 6.15 are consistent with the results and align
well with our expectations.

6.2 Base Stock Simple

For the Base Stock Simple policy, recall the four additional decision variables: the
set of possible discounts and the days on which the discounts start. For this policy,
as well as for the following ones, we only performed three experiments in the last
case, i.e., with continuous («, ) domains and a fixed cv, since we focused only on
the continuous case.

6.2.1 Continuous domain for («, ) and fixed cv

The number of initial sampled points is 80. The domains for the base stock levels
are kept unchanged from the case of the Base Stock No Discount Policy, while the
discount-related variables are defined in Table 6.6. The set of possible discounts
follows the choice in Fadda et al. 2024. Note that the first day of sale is indexed as
0.

Product SL discounts discount start days
A; B 3 [0.15, 0.25, 0.50] 1, 2]
A; B 5 [0.15, 0.25, 0.50] 1, 3, 4]
A; B 7 [0.15, 0.25, 0.50] 1, 3, 5, 6]

Table 6.6: Domains of the discount variables for each product.

The results are summarized in Table 6.7.

SL #iters (bsa, bsp) (disca, discg) (startgay,, startiay,) (e, B) value

3 80 (7, 27) (0.15, 0.15) (1, 1) (1.2,2.8) 25.65
5 98 (7, 33) (0.15, 0.15) (3, 3) (1.2,2.8) 32.62
749 (5, 41) (0.15, 0.15) (3, 3) (1.2,2.8) 34.16

Table 6.7: Final solutions obtained for each value of SL.

43



Computational experiments and results
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Figure 6.18: Confidence intervals and means for evaluated points with same

uncertainty parameters as final solution.

What can be observed is that the number of iterations required increases before
the algorithm reaches the final solutions. In the plots of Figure 6.16, the case
with SL = 3 illustrates that the algorithm identified the final solution relatively

early, yet a substantial number of additional iterations were necessary to confirm
it as optimal. In contrast, for SL = 7, the maximum FEI. decreases rapidly with
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Figure 6.17: Maximum FI. values per iteration.

limited oscillations, resulting in smoother convergence and a considerably smaller
number of iterations. The case with SL = 5, however, exhibits a more challenging
behavior: the algorithm required a significantly longer run and ultimately provided
a less satisfactory solution, as evidenced by the confidence intervals reported in
Figure 6.18. Under the same uncertainty conditions, alternative solutions led to
higher mean profits. This phenomenon can be attributed to the fact that the actual
final solution was never directly evaluated by the system. Consequently, the robust
estimate of the average daily profit does not accurately reflect the simulated value,
which leads to the observed performance degradation. In general, the Base Stock
Simple setting introduces a larger number of decision variables, which increases the
complexity of the optimization problem and, in turn, results in a higher number of
iterations being required by the algorithm.
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6.3 Constant Order No Discount

Similar to the Base Stock No Discount Policy, this policy has two decision variables,
which in this case correspond to the fixed order quantities for both products.

6.3.1 Continuous domain for («, ) and fixed cv

The number of initial samples is 40. The set of possible order quantities (co) is
the same across all cases. Specifically, for products A and B, the possible order
quantities range from 3 to 27 units in steps of 3 (i.e., 3, 6, 9, ..., 27).

SL #iters (coa, cop) (o,B)  value

3 12 (3,12)  (1.2,28) 25.66
5 14 (3,15)  (1.2,2.8) 31.41
715 (3,15)  (1.2,2.8) 32.31

Table 6.8: Final solutions summary for each SL.

The results are shown in Table 6.8. As observed previously in the Base Stock cases,
the worst-case uncertain variable remains consistently (1.2,2.8). Interestingly, the
solutions for both SL = 5 and SL = 7 exhibit the same pattern. As in the Base Stock
Policies, there is still a strong preference for product B, which receives substantially
higher order quantities in all solutions.

nnnnnnnnnnnnnnnnnnn per iteration Robust solution value per iteration

© Final solution point: ((3, 12), (1.2, 2.8), 0.3) 7 © Final solution point: (3, 15), (1.2, 2.8), 0.3)
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Figure 6.19: Robust solution value per iteration.
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Figure 6.21: Confidence intervals and means for evaluated points with same
uncertainty parameters as final solution.
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From the results and Figures 6.19, 6.20, we see that the algorithm reaches a
solution quickly in all cases, with the EI. decreasing rapidly. The final solutions
are therefore evaluated over only a few iterations before being confirmed as actual
solutions. In plots in 6.21, another observed phenomenon is that some evaluated
points yield negative daily mean rewards, resulting in large differences compared
to other solutions.

6.4 Comparison between policies

In this section, we compare the results obtained from all policies in the setting of
continuous (a, #) and fixed cv = 0.3. First, for each SL, we illustrate the differences
between the confidence intervals of the solutions in terms of daily profit in Figure
6.22.
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Figure 6.22: Comparison of confidence intervals of the solutions’ average daily
profits.
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In all cases, the Base Stock No Discount and Base Stock Simple policies exhibit
overlapping confidence intervals, suggesting that, despite differences in their mean
values, the observed differences may not be statistically significant.

For SL = 3, as expected, the Base Stock Simple policy has a higher mean profit
value than the corresponding policy without discounts, with its confidence interval
positioned slightly above. Interestingly, the Constant Order No Discount Policy
also appears marginally higher; however, once again, due to the overlap of the
confidence intervals, we cannot conclude that these differences are statistically
significant.

For SL = 5, the mean value achieved by the solution of the Base Stock Simple
policy is lower, which, as discussed in previous sections, likely reflects a suboptimal
solution identified by the algorithm. In contrast, the confidence interval for the
Constant Order No Discount Policy is lower than those of the other policies and
does not overlap with them, indicating that its performance is statistically inferior.
Similar patterns are observed for SL = 7, with the exception that the policy
incorporating discounts achieves a higher average profit.

In Tables 6.9, 6.10, 6.11. we report results in terms of the following metrics:
o Avg. Sales A: average daily number of units sold for product A.
o Avg. Sales B: average daily number of units sold for product B.
o Avg. Total Sales: total average daily sales across all products.
o Avg. Scrapped A: average daily number of scrapped units of product A.
o Avg. Scrapped B: average daily number of scrapped units of product B.

o Avg. Total Scrapped: total average daily scrapped units across all products.

o Avg. Lost Clients: average daily number of clients who are offered products
but do not purchase any, as all utilities are < 0.

o Avg. Unmet Clients: average daily number of clients who could not be offered
any product (e.g., no availability at all).

In a manner similar to the estimation of the average daily profit, we compute, for
each case, a quantity analogous to the steady-state mean estimation, using the
same warm-up period and scenarios as those employed for the profit calculation.
The results are reported separately for SL.

What becomes immediately apparent is the impact of discounts on the scrapped
items, with a notable difference observed across all shelf lives, particularly when
compared to the Constant Order No Discount Policy. This is partly explained by
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Metric BSPnd BSPs COPnd
Avg. Sales A 2.36 2.92 2.94
Avg. Sales B 11.97 12.16 11.39
Avg. Total Sales 14.33  15.07 14.33
Avg. Scrapped A 0.09 0.01 0.06
Avg. Scrapped B 0.60 0.15 0.61
Avg. Total Scrapped  0.69 0.16 0.67
Avg. Lost Clients 12.24 11.67 11.81
Avg. Unmet Clients 3.46 3.24 3.86
Table 6.9: Comparison of key daily metrics across the four ordering policies for
SL = 3.
Metric BSPnd BSPs COPnd
Avg. Sales A 4.63 2.83 2.95
Avg. Sales B 12.81 14.59 14.36
Avg. Total Sales 17.45 17.42 17.31
Avg. Scrapped A 0.15 0.06 0.05
Avg. Scrapped B 0.22 0.21 0.64
Avg. Total Scrapped  0.37 0.27 0.69
Avg. Lost Clients 10.25 10.05 10.05
Avg. Unmet Clients 2.30 2.52 2.68
Table 6.10: Comparison of key daily metrics across the four ordering policies for
SL = 5.
Metric BSPnd BSPs COPnd
Avg. Sales A 1.81 2.33 2.96
Avg. Sales B 16.22 16.24 14.51
Avg. Total Sales 18.04 18.58  17.47
Avg. Scrapped A 0.03 0.02 0.04
Avg. Scrapped B 0.30 0.06 0.49
Avg. Total Scrapped  0.33 0.08 0.53
Avg. Lost Clients 10.54 10.42 10.14
Avg. Unmet Clients 1.40 0.99 2.43

Table 6.11: Comparison of key daily metrics across the four ordering policies for

SL=7.

the fact that the Constant Order Policy orders the same fixed quantities regardless
of the current on-order stock and inventory levels. A clear pattern emerges: total
sales increase with longer shelf lives, while the number of unmet customers decreases
correspondingly. This is due to the longer shelf life allowing products to remain

50



Computational experiments and results

available for sale over an extended period, increasing the chances of meeting
customer demand.

In general, product B exhibits higher sales and scrapped items, owing to its
consistently larger order sizes relative to product A.

Finally, regarding lost clients, the Base Stock Simple Policy consistently outperforms
the Base Stock No Discount Policy, demonstrating the role of discounts in retaining
a larger share of customers.
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Chapter 7

Conclusions

This thesis addresses the optimization of replenishment policies within a worst-case
robust framework. The problem is posed as a max-min optimization, aiming to
maximize the expected daily profit under the worst-case realizations of uncertain
parameters, in a setting with two perishable and substitutable products: the
objective is to maximize the expected profit with respect to the control variables
defined by the policy (e.g., base stock levels, discount days, discount percentages),
while simultaneously minimizing over the uncertain parameters, including the
(o, B) parameters of the Beta distribution governing customer utility, and, in some
experiments, the coefficient of variation (cv) of customer arrivals. Customers arrive
daily following a Negative Binomial distribution, and their purchasing decisions
depend on the available inventory, the applied discounts, and the utility parameters.
The products are analyzed separately for three cases of shelf life: 3,5,7.

The main contribution of this work is the application of the Efficient Global Robust
Optimization algorithm, combined with a Kriging metamodel, which enables an
efficient surrogate optimization procedure by approximating the solution space
while maintaining accuracy. Another important aspect is the estimation of daily
average profits, performed using Welch’s method to account for stochastic variability.
The study focuses on three policies: Base Stock No Discount, Constant Order No
Discount, and Base Stock Simple, where discounts are applied. These policies were
optimized across a range of scenarios by varying the types of uncertain parameters.
The environment is inherently stochastic, reflecting both the random arrival of
customers and the uncertainty in the utility parameters associated with each
arriving customer.

Particular attention was given to the Base Stock No Discount Policy in the discrete
setting, where the parameters (a, 3) were chosen arbitrarily and the coefficient of
variation of arrivals was limited to two possible values or to a continuous range.
However, the scenario considered most relevant is the continuous setting in which
the pair («, 3) of the Beta distribution is constrained within a polytope, while the
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cv remains fixed. This scenario was the one tested for all the policies.

The results highlight a clear pattern in the uncertain variables: in the continuous
setting, the solutions consistently converge to the same Beta distribution parameters,
corresponding to one of the vertices with the lowest mean and highest standard
deviation. Moreover, the findings illustrate the benefit of incorporating discounts.
When comparing the policies, we observe that the simple Base Stock Simple Policy
consistently outperforms the others in terms of scrapped items and in most cases
in terms of unmet clients, highlighting the role of discounts in mitigating waste.
Regarding profit, the confidence intervals usually overlap, but the mean is generally
higher, indicating a slight but favorable trend.

In future work, we plan to investigate cases where the minimization step is more
challenging and to incorporate observation noise into the construction of the
Kriging surrogate. In addition, we aim to extend the Base Stock Simple Policy by
introducing more options for discount levels and starting days, thereby enabling
optimization over a larger decision space. Beyond this, we also plan to explore new
policies that explicitly incorporate discounts.
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Appendix A

Simulation environment

This section describes the main classes that constitute the simulation environment
in our framework.

A.1 Agents

A.1.1 BaseStockNoDiscount

The BaseStockNoDiscount agent is implemented as a Python class. It represents
a simple inventory policy that maintains a fixed base stock level for each product
by ordering only the quantity needed to replenish inventory up to that level. No
discounts are applied in this policy. Its key methods that we use are:

o set_parameters: receives a dictionary of order parameters and sets the target
base stock levels internally for each product.

« get_action: given the current state observations, (which include on-order
quantities, inventory levels for each product, and the current day of the week),
this method computes order quantities to replenish inventory up to the base
stock targets. The orders are rounded to allowed discrete sizes, and zero
discount values are returned alongside the orders.

A.1.2 BaseStockSimple

The BaseStockSimple agent extends the basic base stock policy by including the
ability to apply time-based discounts on products with limited shelf life. This
Pyhton class manages discrete order quantities along with discount levels over a
finite horizon. Its main methods are:
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o set_parameters: receives a dictionary containing decision parameters for
each product, namely base stock levels, discount amounts, and the start day
for discounts, and stores them internally.

e get_action: given the current state observation, computes order quantities
required to replenish inventory up to the base stock targets. It also returns the
discount vectors, where all units with age greater or equal to discount_from
receive the constant discount discount_amount, while younger units receive
no discount.

Orders for the base stock policies are rounded to the nearest multiple of 6 by
rounding up if the remainder when divided by 6 is 3 or more; otherwise, they are
rounded down.

A.1.3 ConstantOrderNoDiscount

The ConstantOrderNoDiscount agent is a class that implements a simple inventory
policy that orders a fixed quantity for each product regardless of the observed state,
and applies no discounts.

Its main methods include:

e set_parameters: receives a dictionary containing constant order quantities
for each product and stores them internally.

e get_action: returns the fixed order quantities for all products along with
zero discounts for all shelf life periods.

A.1.4 ConstantOrderSimple

The ConstantOrderSimple agent class orders a fixed quantity for each product
and applies a constant discount to all products older than a specified age threshold.
The key characteristics are:

o set_parameters: sets fixed order quantities, discount amounts, and discount
start ages for each product from input parameters.

e get_action: returns the fixed order quantities and a discount schedule where
all units with age greater or equal to discount_from receive the constant
discount discount_amount, while younger units receive no discount.
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A.2 DailySimulation Environment

The DailySimulation environment models inventory and demand dynamics over
a finite horizon for multiple products, considering inventory aging, replenishment
lead times, pricing, and stochastic demand. It integrates supply and inventory
management, components with demand simulation to evaluate profit outcomes in
daily time steps.

Its main methods are:

e __init__: initializes the environment with product parameters, consumer
model (costumer manager), inventory, supply and stat managers. It sets up
internal state variables such as inventory aging vectors, lead times, shelf lives,
prices, demand scenarios, and computes a newsvendor bound used to compute
the upperbound of possible orders.

o clean: resets the environment is state before each simulation run, clearing
inventories, sales records, prices, and other internal trackers. It is called in
the constructor method.

e reset: initializes the environment for a new simulation episode. It first
sets the random seed for the consumer demand generator to ensure re-
producibility. Then, it creates a new demand scenario over the defined
time horizon by calling the method makeScenario of the consumer. If
rnd_initial_condition is True, it modifies the initial inventory and supply
conditions randomly by calling change_initial_condition. Alternatively,
if a specific initial_state is provided, the method sets the environment to
that state using set_initial_condition. Finally, it calls restart to reset
the internal step counter, clear histories, and generate the initial observation,
which it returns.

e restart: resets the simulation environment to its initial state, preparing it
for a new run. It sets the internal day counter current_step to zero and
clears the states of all inventory and supply managers by reinitializing their
inventories and orders to their starting values. It also resets the history logs
for each product and constructs the initial observation dictionary obs. For
each product, the observation consists of the current orders normalized by
residual lead time, concatenated with the current inventory . Additionally,
the observation includes the current day of the week (initialized to zero,
representing Monday). Finally, it clears any accumulated statistics calling
the clearStatistics method of the StatManager to ensure a fresh start for
performance tracking, and returns the initial observation dictionary.

o _reset_prices: compiles and updates the current prices of all products into a
single vector, which is used during demand simulation and profit calculations.
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o changePrice: updates the price of a specific product dynamically during
simulation by applying discounts.

» step: simulates a single day of operations by processing incoming inventory,
generating stochastic demand based on current prices, fulfilling orders from
available inventory, calculating daily profit, updating sales and inventory
records, and advancing the simulation clock by one day. It returns the new
observation state obs, the profit of the day (reward), a boolean value called
done that is True whether this was the last day of the simulation and a
dictionary named info containing information on the simulation.

A.3 Managers

A.3.1 CustomerManager

The CustomerManager class models customer arrivals and purchase behavior. It
supports different discrete choice models (DCMs) to simulate customer preferences
and demand scenarios with seasonal or custom arrival distributions. The class
manages utility parameter generation, customer choice given product availability,
and sales simulation over a finite time horizon.

Its main methods are:

e __init__: initializes the customer manager with store arrival settings and
discrete choice model parameters, supporting types such as LinearBeta, Logit,
and Easy.

e _manage_arrival_settings: processes the seasonal arrival distribution pa-
rameters and prepares statistical models (e.g., Negative Binomial) for daily
arrivals.

» makeChoice: determines the product choice of a customer given availability,
prices, qualities and utility parameters. Implements logic for different DCM
types to simulate customer purchase decisions (in our case LinearBeta.

» makeScenario: generates a single demand scenario and corresponding cus-
tomer utility parameters over a specified time horizon, sampling from the
configured seasonal distribution.

e sell_products: simulates daily sales by iterating over customers in the
demand scenario, offering available products, recording sales, and tracking lost
or unmet demand. It is called in the step_method of the DailySimulation
environment.
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e get_availability: retrieves current product availability from inventory
managers.

o setEnv, reset, setSeed: utility methods to link environment, reset random
seed, or set a specific seed for reproducibility.

A.3.2 InventoryManager

The InventoryManager class handles inventory tracking for a single product with
a fixed shelf life. Each product requires its own InventoryManager instance to
maintain its stock levels correctly.

Its main methods are:

e __init__: initializes the inventory with a specified ShelfLife, setting up
zero stock for each age category.

e clearState: resets the inventory to a given initial state, allowing a clean
start for simulations.

» updateInventory: advances the inventory ages by shifting stock to older age
buckets, scrapping expired units at the end of the shelf life. It is called in the
step method of DailySimulation.

» receiveSupply: adds newly ordered units to the freshest age bucket (age 0).
It is called in the step method of DailySimulation.

» meetDemand: simulates selling one unit of a specific age if available; raises an
error if the requested age is out of stock. It is used in the sell_products
method of the CustomerManager.

e isAvailable: checks if any units of the product are currently in stock regard-
less of age.

o isAvailableAge: verifies availability of units at a specified age, raising an
error if the age is invalid.

o getProductAvailabilty: returns a boolean array indicating the presence of
stock at each age bucket.

A.3.3 StatManager

The StatManager class tracks inventory and sales statistics over the simulation
horizon.
Some of its main methods, which are employed in DailySimualtion, are:
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__init__: initializes counters for total ordered, sold, scrapped, unmet and
lost demand and profit, based on the product settings.

clearStatistics: resets all statistics and the internal clock.

setTimeHorizon: sets the total time horizon and adjusts active periods
considering head and tail transients.

setHeadTail: sets the transient periods to exclude from statistics.
updateClock: advances the internal time step by one unit.

compute_reward: calculates daily profit from ordered, sold and scrapped
quantities using product-specific prices and costs.

updateStats: updates cumulative statistics if the current time is within the
active period; returns the daily profit.

updateUnmet and updateLost: update counts of unmet demand and lost
demand respectively.

setEnv: assigns an environment reference to access external data such as price
arrays.

A.3.4 SupplyManager

The SupplyManager class manages outstanding supply orders with respect to lead
times for a single product. It maintains a queue of orders in transit and tracks
deliveries as time progresses.

Its methods, used in DailySimulation, are:

__init__: initializes the supply manager with a given lead time and creates
an order queue of appropriate length.

clearState: resets the order queue to a specified initial state.

deliverSupply: advances the order queue by one time step, returning the
quantity delivered at the end of the lead time.

GetOrder: inserts a new order at the start of the order queue to be delivered
after the lead time.
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