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Abstract

This thesis investigates game theoretic models for public good provision. We consider
network games defined on weighted and directed graphs, where agents are hetero-
geneous with respect to income level, preference structure, and effort cost. Public
goods are here studied in their local form: the benefits of one agent’s contributions
are shared only among her direct out-neighbors. Each player allocates her income
between private consumption and contributions to the public good. While private
consumption provides purely individual benefits, public contributions yield payoffs
that also depend on the allocations of neighboring agents, scaled by the intensity of
their network connections.

We formalize the model, derive best response functions, and establish the existence
of Nash equilibria. In addition, we provide the characterization of equilibrium
profiles, with a focus on internal equilibria, where all agents contribute positively,
and specialized equilibria, where only a subset contributes while others free-ride.

The main results are threefold. First, we derive a sufficient condition for the
uniqueness of the Nash equilibrium in the general setting; provided the necessary
assumptions, this condition reduces to a bound on the lowest eigenvalue of the
symmetrized, per-row rescaled adjacency matrix. Second, we establish a Lipschitz
condition ensuring contractivity of the synchronous best response function when the
dominant eigenvalue of the adjacency matrix, suitably rescaled, is lower than one.
This sufficient condition implies the contractivity of the discrete-time best response
dynamics, which results in both the uniqueness of the Nash equilibrium and its global
asymptotic stability for the discrete- and continuous-time dynamics. Moreover, under
proper hypotheses, we characterize the stability of internal equilibria. Third, we
study the limit behavior of the continuous-time best response dynamics within an
appropriate framework where contractivity may not hold. We establish that, given
suitable assumptions, global stability of the equilibrium is ensured also under the
weaker uniqueness condition. In addition, when uniqueness is not guaranteed, we
prove that the trajectories globally converge to the set of Nash equilibria and we
characterize locally asymptotically stable equilibria as local maxima of an associated
functional.

Finally, we investigate possible efficiency metrics to evaluate equilibrium outcomes
and explore intervention strategies aimed at improving welfare. We propose a
preliminary study of a subsidy mechanism that incentivizes higher contributions and
a redistribution policy in which an external planner reallocates income to steer the
system toward socially optimal equilibria.
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Chapter 1

Introduction and literature
review

1.1 Definition of local public goods

The concept of public goods is of great philosophical and scientific interest, since
their provision allows for the smooth functioning of our society, from an economic,
political and cultural point of view [1]. Its meaning and importance is explained by
Reiss and Julian in “Public Goods” [1], where the authors give an insight of how
we have reached the current definition of this term. In 1954 Samuelson [2] is one
of the first to define public goods as “[a good] which all enjoy in common in the
sense that each individual’s consumption of such a good leads to no subtractions
from any other individual’s consumption of that good”. Thus, Samuelson introduces
the concept of non-rivalry, which implies that one person’s use of the good does
not reduce its availability to others. Musgrave [3] proposes another criterion to
characterize public goods in 1959, that of non-excludability, meaning that once the
good has been provided, all or some members of the group directly benefit from it.
Nowadays, in the economic context, public goods are expected to satisfy both, thus
to be non-rivalrous and non-excludable [4]. Let us clarify this concept with a few
examples.

In real-world settings, public goods assume a wide variety of forms at very different
scales. At the national level, a common example is clean air: once efforts are made
to reduce pollution in a given region, everyone in the affected area benefits from the
reduced emissions, regardless of whether they contributed to its cost or not. Clean
air is a typical example of non-excludable and non-rivalrous public good, since no
individual can be excluded from breathing cleaner air, and one person’s enjoyment
of it does not reduce the quality available to others. Public goods are also prevalent
at local and social levels. For instance, when a homeowner renovates their property
façade or plants a garden, neighbors benefit visually from the improved aesthetics,
even though they did not participate in the cost; other common examples concern
the public health field: actions such as vaccination protect not only the individual
who receives it, but also others by reducing disease transmission. In education
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and innovation, when an individual shares her knowledge, whether through formal
research or informal social interactions, it can help others improve some aspects of
their lives. For instance, a farmer who experiments with a new crop or technique
may share results with neighboring farmers, who will benefit from the improvements
too. Similarly, individuals often rely on the experiences of friends and family when
deciding whether to try a new product or service, thus taking advantage of the
informational public good generated by someone else’s effort or risk.

Thus, public goods can be distinguished on the basis of who benefits from them.
It is clear from the examples that, in a society, the provision of most public goods
does not affect the whole population, but only a subset of it, often the one closer
to the provider of the good. The term “local public good”, coined by Tiebout [5],
accounts for the fact that public goods are not equally enjoyed by the entire society,
but only by the part of it which is directly or indirectly in contact with the source of
the provision.

1.2 Network games

Because of their wide range of applicability in very different real-world scenarios, the
study of how public goods are provided in a society or group is of strong interest.
In the mathematical field, such kind of situations are studied by exploiting network
games, which allow to model social networks, scenarios of interconnected agents that
interact on the basis of some shared rules. This discipline merges two more general
branches of mathematics: graph theory, that allows to formally define frameworks
of connections between agents, and game theory, where the strategic interaction of
individuals that make interdependent decisions are modeled.

The core idea of network games is to model a population of agents that are
connected to each other, where the nature and strength of the connections are
determined by a graph. Networked individuals interact to make decisions, represented
by the played actions, that result in a numerical benefit, modeled by the utility
functions. Games differentiate based on whether actions are chosen between two
possibilities, which usually consist in doing the action or not doing it, or from a
continuous domain, for example how much effort to exert. Each player’s decision
is directly affected only by the actions of agents to whom they are linked in the
graph, called the neighbors. A key concept in the study of games defined on networks
is the concept of equilibrium profile, an action configuration such that no agent
has incentives to modify her action to improve its payoff, and so to escape that
configuration; indeed, their central role is justified by the fact that equilibria represent
end-points of the game dynamics.

In the past few decades, the study of games played on networks has become more
and more relevant, as it is demonstrated by the large amount of literature on this
topic. Jackson’s “Social and economic network” [6], for example, offers an overview
of models and techniques for analyzing social networks, in “Network games” Galeotti
et al. [7] provide a detailed framework to analyze strategic interactions based on a
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network of connections, “Games on networks” by Jackson and Zenou [8] contributes
with a synthesis of the literature that analyzes games where players are connected
via a network structure, and there are many more examples.

Jackson and Zenou [8] clarify that the main difficulty in the study of graphical
games is the inherent complexity of networks. In particular, obtaining precise results
while keeping the setting of interconnections general represents a tough challenge.
As the authors underline, there are two main approaches, that are also of interest
in this study, to navigate such a large and complex field. The first distinguishes
two main classes of network games: strategic complements and strategic substitute
games, that are characterized by the monotonic behavior of the agents utilities. In
particular, in games exhibiting strategic complements, an increase in the action
played by some agents results in a lower utility for individuals that are connected
to them, who are thus encouraged to increase their action too. On the contrary,
when a game exhibits strategic substitutes, each player’s utility is increasing in other
players’ actions, so that choosing higher actions promotes the reduction of the played
action for neighbors. The second approach exploits simpler models, such as linear
or quadratic utility functions, to obtain results that can be generalized or directly
apply also to more complex settings. Bramoullé and Kranton, for example, rely on
both strategies for their papers “Strategic Interaction and Networks” [9] and “Games
Played on Networks” [10]. They exploit the substitutes-complements classification
when deriving more precise results from a general model and rely on quadratic utility
functions, for which the theory of potential games is well known, to prove results
that are also valid in less specific cases.

1.3 The public good game

Public good games are a widely used class of network games that allow to study how
individuals contribute to goods or services that are shared in a group or society. As
previously anticipated, public goods typically have two main properties: they are
non-excludable and non-rivalrous. In this work we consider local public goods, since
the benefits of a given player’s action are public only limitedly to her neighborhood.
Because of these characteristics, individuals may prefer not to participate and to let
others provide the good and pay the cost that comes with it, while still benefiting
from their contributions. This gives rise to tensions between individual and collective
interests, which makes it hard to predict the behavior of the members of the group.

As a consequence to the type of situations that they model, public good games
fall under the category of strategic substitute games; indeed a given player is made
better off by an increase in the effort of her neighbors and prefers to contribute less
when she can benefit from the public good provision of contributing surrounding
agents.

An important distinction that arises when modeling public goods through games
on networks concerns the type of action that players can do, that is, their action
space. In the so-called best-shot public good games players have binary discrete
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action spaces, for example {0, 1} (as in [7], [11]) or {T, F} (as in [12]), and can
choose between providing the public good or not contributing at all. Examples of
binary scenarios include decisions on whether or not to vaccinate, report crime in
a neighborhood, or purchase a shareable tool [11]. Continuous-action public good
games, on the other hand, model situations in which agents have to choose how much
contribution to provide. The action space can thus be the positive real line (see [13],
[9], [14]) or a positive amount limited by a maximum level of effort (see [15], [16]).
The action may represent, for example, the monetary amount invested by a State in
the reduction of carbon emissions or by a firm in training for its employees, or the
quantity of effort or time spent in activities from which a whole group benefits, like
cleaning a neighborhood or acquiring knowledge that can be shared.

The features of public goods naturally lead to complex questions about individual
behavior and collective outcomes. When benefits are shared among many, individuals
often face a tension between contributing to the good and relying on the efforts of
others. It is then interesting to understand whether and in what cases a cooperative
behavior emerges, and when, in the opposite case, individuals tend to behave selfishly
or as if they were not interconnected. In a setting of networked agents, a question
could be how connections shape incentives. For example, is being surrounded by
active contributors an encouragement to participation or does it make free-riding
more tempting?

Apart from the nature of the outcomes that this kind of models leads to, attention
could also turn to the type of interventions that might improve equilibria. Incentives,
institutional planning, mechanisms for sharing information and network structure
modification can all play a role in increasing overall contributions, enhancing efficiency,
and promoting a fair distribution of responsibility throughout the network. Allouch
[16], for example, following the lead of Bergstrom et al. [15], proposes a strategy of
income redistribution via monetary transfers among players; similarly, Levit et al.
[12] implement an algorithm to improve equilibrium efficiency by the use of transfer
of payoffs. Bramoullé, Kranton and D’Amours [9] investigate how changes in the
graph and payoff parameter affect equilibrium outcomes, while Kempe et al.[11]
initiate an algorithmic study of network modifications aiming to induce equilibria of
a particular form.

1.4 Related work

We now discuss the principal contributions of the main reference papers used in this
work, following a chronological scheme to present them.

Among the main contributors to the study of public good games figure Y.
Bramoullé and R. Kranton. Their 2007 paper, “Public goods in networks”, [13] gives
an insight on a particular kind of Nash equilibrium profiles that are typical of the
public good game setting, specialized equilibria. These action profiles are character-
ized by the extreme behavior of agents, who can be split into two groups based on
their opposite behavior: specialized agents provide the individual maximal amount
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of public good, while free-riders do not contribute at all and only benefit from the
contributions of specialists. The authors analyze the game defined on an undirected
and unweighted network, with positive and unbounded action spaces, representing
the level of effort (public good) of each individual. They assume the cost of providing
some effort to be equal for every player and linear in the invested effort; the definition
of linear and concave utilities results in linear saturated best response functions. In
this setting, an important finding is that specialization in public good provision at
equilibrium is strongly related to the notion of maximal independent set; in fact,
in any network there exists an equilibrium where some individuals contribute and
others completely free-ride and specialized agents constitute a maximal independent
set of nodes of the graph. Moreover, for the stability of a Nash equilibrium in the
discrete-time dynamics, they find a sufficient and necessary condition related to the
existence of maximal independent sets of order two: a Nash equilibrium is stable if
and only if it is specialized and each free-rider has at least two specialist neighbors.

A generalization of the game is presented by Y. Bramoullé, R. Kranton and M.
D’Amours in the 2014 paper “Strategic interaction and networks” [9]. The game is
modified by adding differentiated costs for doing some effort for every agent and a
(unique and positive) payoff parameter, allowing to weigh neighbors’ contribution to
the public good. They still consider undirected and unweighted graphs and linear,
concave utilities, which leads again to best response functions with a linear saturated
form. One fundamental contribution of this paper to the study of public good
games is methodological: due to the difficulty of dealing with the saturation (non-
differentiability) of the best response, they derive results for a game with quadratic
utilities leading to the same best response function; they use the well-known property
of quadratic games to be exact potential games, which ensures that maximum and
saddle points of the potential are equilibria, thus facilitating their characterization.
With this approach, they find a precise characterization of Nash equilibria that
avoids the direct saturation and is based on solving a linear system and verifying an
inequality condition. Furthermore, they are the first to find that, for a large class
of games, equilibria depend on a single network measure, the smallest eigenvalue.
They prove a new sufficient condition for the uniqueness of the Nash equilibrium: the
smallest eigenvalue of the adjacency matrix, in modulus, must be smaller than the
inverse of the payoff parameter. If the Nash is unique, it is also stable. In addition,
the paper provides two results concerning the stability of equilibria; first, the set of
stable equilibria is the set of strict maximum points of the potential function. Second,
if the uniqueness condition on the lowest eigenvalue is satisfied by the adjacency
matrix restricted to contributors, then the equilibrium with those contributing agents
is stable. Being the best response dynamics of the quadratic and public good game
the same, the two games have the same set of equilibria, sharing the same behavior.
Thus, the results are also valid in the second, more interesting setting of the public
good games.

Similar results are published by Allouch in “On the private provision of public
goods on networks” one year later [16]. The author analyzes the private provision of
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public goods on unweighted and undirected networks employing a more economic
approach. The study considers general quasi-concave utility functions, which still lead
to the saturated form of the best response functions. The results are based on the
notion of network normality, a property that relates the spectrum of the adjacency
matrix to the Engel’s curve related to the standard demand function of public good
consumption. In particular, the derivative of the non linear part of the best reply
must be lower-bounded by the inverse of the lowest eigenvalue of the adjacency matrix
plus one and upper-bounded by one. It is proved that network normality ensures
the uniqueness and local asymptotic stability (for the continuous-time dynamics)
of the Nash equilibrium. Thus, coherently with the results of the previous work by
Y. Bramoullé and R. Kranton, bounding from above the lowest eigenvalue of the
adjacency matrix guarantees uniqueness and stability also in the more general setting
of nonlinear utilities and despite the different approach.

In 2016 Y. Bramoullé and R. Kranton further generalize the game setting in
“Games Played on Networks” [10] to the case of weighted, undirected networks and
nonlinear, concave utilities. As in the 2014 paper, the results are obtained using the
theory of potential games for undirected networks and quadratic utility functions
having the same best reply as the one of the public good game. Their previous
results are generalized to the case of weighted graphs and nonlinear utilities. In
particular, Nash equilibria are maxima and saddle points of the potential function
and only strict maxima are stable; uniqueness is again guaranteed upper bounding
the absolute value of the lowest eigenvalue of the adjacency matrix.

Some of the findings are confirmed in the same year in the paper “On the
Convergence of Piecewise Linear Strategic Interaction Dynamics on Networks” by
B. Gharesifard et al. [17], which aims at characterizing the asymptotic behavior
of piecewise linear best-response dynamical systems of strategic interactions. In
particular, they consider models where the payoff of each agent is positively enhanced
by the investment of neighbors, of which public good games are a standard example.
The main contribution is the proof that, on any weighted undirected graph, piecewise
linear best-response dynamical systems of strategic interactions are asymptotically
convergent to the set of equilibria. The proof relies again on the stability properties of
potential games with component-wise concave potential, which serves as a Lyapunov
function.

1.5 Thesis overview

This thesis work is primarily based on the presented papers, that are considered as
the starting point of the research.

We consider a game defined on a general weighted and directed graph, that
allows to model a very general setting of interconnections, where agents may not be
mutually connected and externalities can be heterogeneous. In addition, individuals
are assumed to be heterogeneous with respect to their income level, preference
structure and effort cost. Each player has a total income that she shall entirely divide
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among private and public good consumption. The two goods provide a payoff that is
modeled by a utility function; private good provision is rewarded individually for
each agent, while the payoff deriving from the public good concerns, for each player,
both the individual allocation and the one of its direct out-neighbors in the graph,
scaled by the weights of the connections. The thesis contributions are the following.

In the initial phase, we propose the general model definition, introduce the notion
of linearity property of the value functions and derive best response functions. After
observing that they present a saturated form and a monotonic behavior, we prove
their equivalence to the best response functions of the game with generalized quadratic
utilities. Afterwards, we concentrate on the game Nash equilibria and establish their
existence in the general setting. A specific subclass of such value functions, those
satisfying the linearity property, is thoroughly studied in this work; in particular, for
these games we provide a characterization of Nash equilibrium profiles, with a focus
on two specific types: internal equilibria, where all individuals contribute positively
to the public good, and specialized equilibria, where a subset of agents contributes
with their maximal amount and the others free-ride, not providing any contribution.

Subsequently, we present the most relevant results of this thesis work.
The first is a sufficient condition ensuring the uniqueness of the Nash equilibrium

in the general setting of directed and weighted graphs. This technical result, applied
to the case of linear value functions, relates uniqueness to the lowest eigenvalue of
the per-row rescaled adjacency matrix.

The second relevant contribution is another sufficient condition, that guaran-
tees the contractivity of the synchronous best response function. The uniqueness
and global asymptotic stability of the Nash equilibrium both for the discrete- and
continuous-time best response dynamics directly follows from this result.

Moreover, for the continuous-time dynamics, under the linearity of the value
functions and the hypothesis of symmetric per-row rescaled adjacency matrix, we
study the stability of Nash equilibrium profiles also in settings where contractivity
may not be guaranteed. In particular, we prove that the weaker uniqueness condition
ensures the global asymptotic stability of the unique Nash equilibrium under these
hypothesis. In addition, we provide results on the stability of equilibrium profiles
when uniqueness is violated. At this stage, we also characterize the asymptotic
behavior of internal equilibria for both the continuous- and discrete-time dynamics,
given the linearity property.

Finally, we define two efficiency metrics to evaluate the performance of different
equilibrium profiles and we propose the initial framework for two potential interven-
tions, opening the way for further study. In particular, following the lead of [18],
we start investigating a strategy of subsidies to push agents to make their public
good contributions higher and increase efficiency of equilibrium outcomes of the
game. Moreover, we give the idea of a possible redistribution strategy, where an
external planner allocates income to players in order to push the game towards a
social optimum equilibrium.

A distinctive feature of this thesis is that it unifies and generalizes previous
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results of Bramoullé and Kranton ([13], [9], [10]) and Allouch [16], generalizing
them to directed and weighted networks with heterogeneous agents and nonlinear
utilities. In this broader setting, we extend the characterization of equilibrium
profiles and generalize uniqueness conditions. We also extend previous analysis of the
asymptotic behavior of Nash equilibria, and introduce a novel contractivity condition
for the synchronous best response dynamics, which guarantees uniqueness and global
asymptotic stability of both discrete- and continuous-time dynamics.

The thesis is structured as follows. Chapter 2 represents an introductive and
notational chapter, with a theoretical background on graph theory, game theory
and games on networks. In Chapter 3 we provide the public good game model
definition together with a few preliminary results on the best response function and
Nash equilibrium existence. Chapter 4 presents the main contributions of the thesis
research: two sufficient conditions, for the uniqueness of the Nash equilibrium and
for the contractivity of the synchronous best response function, and a study of the
limit behavior of equilibrium profiles for the discrete- and continuous-time dynamics.
The last part, concerning the efficiency metrics and two intervention strategies, is
presented in Chapter 5. The conclusive part, Chapter 6, summarizes findings and
discusses future research avenues. Finally, in the Appendix A, we report some general
mathematical results on the constrained maximization of concave functions that do
not concern the game directly and that are used to make proofs, and in Appendix B
we report some examples of value functions and particular forms they can take.
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Chapter 2

Technical background

This chapter provides the notation used in the study and a theoretical background
that focuses on introducing the main general topics that this work deals with. In
particular, first comes a brief introduction on graph theory, followed by a more
detailed part concerning game theory and some of its subtopics that will be central in
the successive sections, strategic complements and substitutes and potential games;
the two areas of study meet when dealing with games on networks, which is topic
of the third part, together with a focus on benchmark quadratic games. Most of
the theory concerning graphs, games and network games is taken from “Social and
economic networks” by Jackson [6] and from “Games on networks” by Jackson and
Zenou [8].

2.1 Graph theory

Graph theory is a very useful mathematical instrument that allows to model a set of
agents that interact with each other. We give a formal definition of graph and recall
the basics of graph theory.

Let us introduce some concepts that are fundamental to the definition of a graph.
The set N = {1, 2, ..., n} is the set of nodes that are involved in the network of
relationships, often referred to as agents, players or individuals. E = {(i, j) : Gij >

0 ∀ i, j = 1, ..., n} is the set of edges, or links, of the graph, representing the presence
of connections between nodes: nodes i, j ∈ N are connected if and only if there
exists an edge (i, j) ∈ E . The weights of the connections between nodes of the graph
are stored in the adjacency matrix G ∈ Rn×n

≥0
1, a real-valued n × n matrix with

nonnegative entries such that Gij represents the strength of the link between nodes
i, j ∈ N ; Gij > 0 if and only if (i, j) ∈ E , while Gij = 0 if nodes i, j ∈ N are not
linked. We assume that the connection of a node to itself, called a self-loop, is not
allowed, so that Gii = 0 for every i ∈ N .

Definition 2.1.1. A graph, or network, G = (N , E , G) is defined by the triple
1Concerning the notation, by Rn

>0 we indicate vectors in Rn with strictly positive entries, and by
Rn

≥0 we indicate vectors in Rn with nonnegative entries. Similarly, we use Rn×n
≥0 to refer to n × n

real matrices with nonnegative entries.

9
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composed of N = {1, 2, ..., n}, the set of nodes of the graph, G ∈ Rn×n
≥0 the adjacency

matrix and E = {(i, j) : Gij > 0 ∀ i, j = 1, ..., n}, the set of edges of the graph.

A graph is said to be unweighted if the adjacency matrix only takes two values,
typically in {0, 1}, and Gij = 1 if and only if nodes i and j are linked in the graph,
otherwise Gij = 0. If the entries of the adjacency matrix can take more than two
values, they define the intensity of the relationships and they are called weights; such
a graph is said to be weighted.

A graph is undirected if connections are always reciprocal, i.e., Gij = Gji. Oth-
erwise, if non-mutual relationships can occur, meaning that it can happen that
Gij ̸= Gji, it is referred to as directed.

For a network G = (N , E , G), given a subset of nodes S ⊂ N denote GS =
(S, ES , GS) the graph restricted to the set of nodes of S. GS is the network obtained
from G by deleting all links except those between nodes in S:

(GS)ij =

Gij if i, j ∈ S

0 otherwise

so that ES = {(i, j) : (GS)ij > 0 ∀ i, j ∈ S}.
The out-neighborhood N o

i of a node i ∈ N is the set of nodes that i is linked to:
N o

i = {j ∈ N : Gij > 0} and the out-degree of i is its cardinality do
i = |N o

i |. Similarly,
the in-neighborhood N i

i is the set of nodes that are linked to i: N i
i = {j ∈ N : Gji > 0}

and the in-degree of i is its cardinality di
i = |N i

i |. These coincide in the case of a
directed network and are referred to as neighborhood Ni and degree di of node i. A
graph is said to be out-regular (or in-regular) if all nodes have the same out-degree
(or in-degree).

A (directed) path of length k ≥ 1 in a graph G = (N , E , G) is any sequence of
distinct nodes i0, i1, ..., ik ∈ N such that Gijij+1 > 0 for every j = 1, ..., k − 1. The
graph is said to be strongly connected if there is a path in G between every couple of
nodes i, j ∈ N .

An independent set relative to a network G = (N , E , G) is a subset of nodes
A ⊂ N for which no two nodes are linked, i.e., if i ∈ A and j ∈ A then (i, j) /∈ E and
(j, i) /∈ E . A is a maximal independent set if it is not a proper subset of any other
independent set of nodes.

Let us now introduce some notable graphs:

• the (undirected) complete graph is one where all possible links are present,
except for self-loops, i.e., every node is connected to every other node: Gij > 0
for every i, j ∈ N and Gii = 0.

• the directed line graph is one with two extreme nodes with only one neighbor
G1i > 0 iff i = 2 and Gin > 0 iff i = n − 1 and internal nodes only connected
to the previous node Gji > 0 iff j = i − 1. In the undirected line also opposite
links are present: G21 > 0, Gn−1n > 0 and Gji > 0 iff j ∈ {i − 1, i + 1}

10
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• the directed circle graph is one with a single cycle (a sequence of links connecting
nodes that starts and ends at the same node) and such that every node has
exactly two neighbors: Gji > 0 iff j = i−1 and Gij > 0 iff j = i+1; also, nodes
1 and n are connected, Gn1 > 0. In the undirected circle also the opposite links
are present: G1n > 0 and Gji > 0 iff j ∈ {i − 1, i + 1}.

• the (undirected) star graph is a network with a node i, called the center of the
star, such that every edge involves i: Gij > 0 and Gji > 0 for every other node
j.

2.1.1 Spectral theory for nonnegative matrices

Nonnegative square matrices are usually connected to the context of graph theory,
since the adjacency matrix of a graph has nonnegative elements. Then, it is useful
to recall some well known results concerning the spectral theory of nonnegative
matrices. The following theoretical resume is derived from “Nonnegative Matrices in
the Mathematical Sciences” by Berman and Plemmons [19].

Consider a nonnegative real square matrix G ∈ Rn×n
≥0 , meaning that every entry

of G is a real nonnegative value, Gij ∈ R and Gij ≥ 0 for every i, j = 1, ..., n. Denote
the spectrum of G as ρ(G) = {λi : λi is an eigenvalue of G, i = 1, ..., n}, its spectral
radius as λG = maxi=1,...,n{|λi| : λi ∈ ρ(G)} and the corresponding eigenvector as
vG.

G ∈ Rn×n
≥0 is said to be reducible if there exists a permutation matrix P such that

the matrix E = PGP T is in block triangular form, i.e.,

E =
A

B 0
C D

B

with B, C square matrices. Otherwise, G is irreducible.
An equivalent definition of irreducibility links nonnegative matrices and graphs.

Denote by G(G) the associated directed graph of G ∈ Rn×n
≥0 , i.e., the graph whose

adjacency matrix is G. Then, the matrix G is irreducible if and only if the associated
directed graph G(G) is strongly connected.

For irreducible nonnegative matrices the Perron Frobenius Theorem can be stated:
Let G ∈ Rn×n

≥0 nonnegative matrix. Then,

1. the spectral radius of G, λG, is an eigenvalue of G.

2. To λG is associated a nonnegative eigenvector vG ≥ 0.

3. if G is irreducible, λG is a simple eigenvalue of G and any eigenvalue of G of the
same modulus is also simple. Moreover, G has a positive eigenvector vG > 0
corresponding to λG, and any nonnegative eigenvector of G is a multiple of vG.

A consequence of the previous result is the following bound for the spectral radius

11
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λG of a nonnegative irreducible matrix G ∈ Rn×n
≥0 :

min
i=1,...,n

nØ
j=1

Gij ≤ λG ≤ max
i=1,...,n

nØ
j=1

Gij

2.1.2 Matrix induced norm

We provide the definition of a vector norm related to an irreducible nonnegative
square matrix G ∈ Rn×n

≥0 , the G − norm. Then, we prove that the G − norm of the
matrix G that defines it is exactly its dominant eigenvalue λG.

Given an irreducible nonnegative square matrix G ∈ Rn×n
≥0 , denote the dominant

eigenpair (λG, vG), where λG is the spectral radius and vG is the corresponding
eigenvector, i.e., such that GvG = λGvG.

Definition 2.1.2. For a nonnegative irreducible square matrix G ∈ Rn×n
≥0 , define the

G − norm as the vector norm || ||G : Rn −→ [0, +∞) st

||x||G =
nØ

i=1
vG

i |xi|

The induced matrix norm is then ||G||G = maxx∈Rn ||x||=1 ||Gx||G.

Then, the following Lemma identifies the spectral radius of the matrix G with its
G − norm.

Lemma 2.1.1. Given an irreducible matrix G ∈ Rn×n
≥0 for the G-norm it holds

||G||G = λG

Proof. (≥) In general, ||G||G ≥ |λi|, so that ||G||G ≥ λG.
(≤) ∀x ∈ Rn

||Gx||G =
nØ

i=1
vG

i |(Gx)i| =
nØ

i=1
vG

i |
nØ

j=1
Gijxj | ≤

nØ
i=1

vG
i

nØ
j=1

Gij |xj | =

nØ
i=1

nØ
j=1

GijvG
i |xj | =

nØ
j=1

(GvG
i )j |xj | =

nØ
j=1

λGvG
i |xj | = λG||x||G

Then ||G||G ≤ λG.

2.2 Game Theory

Game theory provides a powerful tool to model the strategic interaction of agents
that make decisions that are interdependent. Let us introduce some fundamental
concepts to recall basic notions.

The set of players (or agents) is N = {1, ..., n}. In a strategic game, each agent
has a set of actions (or strategies) χi, that can be discrete or continuous. We assume
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that χi ⊆ R is an interval of the real line. Let χ = χ1 × · · · × χn, the action space,
be the set of all profiles of actions q = (q1, ..., qn) ∈ χ. Each agent plays by choosing
an action qi ∈ χi and the reward of choosing such action is determined both by her
action and the actions played by all players but i, q−i ∈ χ−i. The payoff of player
i as a function of the action profile q ∈ χ is described by a function ui : χ → R,
ui(q) = ui(qi, q−i), called utility function.

Definition 2.2.1. A strategic game is determined by the set of players N = {1, ..., n},
the action space χ = χ1 × · · · × χn and the set of utility functions for every player
(ui)n

i=1.

Agents are assumed to be rational, in the sense that they choose an action in
order to maximize their utility. A strategy qi ∈ χi is a best response (or best reply)
of player i to a profile of strategies for the other players q−i ∈ χ−i if for every other
action q′

i ∈ χi

ui(qi, q−i) ≥ ui(q′
i, q−i)

The best response function of player i, Bi : χ−i → χi, is thus univocally defined
by the solution to the optimization problem

Bi(q−i) = argmax
qi∈χi

ui(q)

so it consists in choosing the best possible action qi given q−i.
For the set of players N , the synchronous best response function F : χ → χ, is

the unique vectorial function defined as F(q) = (Bi(q−i))n
i=1, in which every agent

plays its best response at the same time.

Definition 2.2.2. An action profile q∗ ∈ χ is said to be a pure strategy Nash
equilibrium if, for every agent i, q∗

i is a best response to q∗
−i. That is, q∗ ∈ χ is a

Nash equilibrium if and only if q∗
i ∈ Bi(q∗

−i) for every i.

In a Nash equilibrium no player has any incentive to change her action. Thus, a
Nash equilibrium is a fixed point of the synchronous best response function, that is
F(q∗) = q∗.

2.2.1 Concave games

As stated by Rosen in “Existence and uniqueness of equilibrium points for concave
n-person games” [20], one of the main complications in the context of n-person games
is the lack of uniqueness of the equilibrium profile. The author proposes a way to
overcome this difficulty by exploiting the concept of concave games and deriving a
theory to ensure the uniqueness of the Nash equilibrium in such games. Let us recall
his paper’s main contributions.

A strategic game with set of players N = {1, ..., n} and action space χ =
χ1 × · · · × χn is a concave game if the utility function ui(q) for every player is
continuous in the action profile q ∈ χ and concave in the agent’s action qi, for each
fixed value of q−i.
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Denote the positively weighted sum of the utilities, with weight vector r ∈ Rn
≥0,

as σ(q, r) = qn
i=1 riui(q), and define the pseudogradient of σ(q, r) as

h(q, r) =


r1

∂u1(q)
∂q1...

rn
∂un(q)

∂qn


σ(q, r) is said to be diagonally strictly concave for a fixed weight vector r ≥ 0 if,

for every q, q̃ ∈ χ, it holds

(q − q̃)T h(q̃, r) + (q̃ − q)T h(q, r) > 0

Being such a property hard to verify, he provides a more analytical sufficient condition
for it. Define the matrix H(q, r) such that (H(q, r))ij = ri

∂2ui(q)
∂qi∂qj

and its j-th column
is

(H(q, r)).j = ∂h(q, r)
∂qj

=


r1

∂2u1(q)
∂q1∂qj

...
rn

∂2un(q)
∂qn∂qj


Then, he proves that, if the symmetric matrix H(q, r̄) + H(q, r̄)T , for some r̄ > 0, is
negative definite, then σ(q, r̄) is diagonally strictly concave for r̄.

Then, it is possible to state Rosen’s equilibrium criterion.

Theorem 2.2.1. If σ(q, r̄) is diagonally strictly concave for some vector of weights
r̄ > 0, then there exists a unique Nash equilibrium for the concave game.

2.2.2 Game dynamics

Starting from an initial action profile q ∈ χ, players will dynamically adjust their
actions to singularly increase their utility. The game dynamics, or best response
dynamics, tracks the evolution of the action profile q ∈ χ as players sequentially
and individually choose their action according to the best response, after observing
the actions played by the other players. To define it, assume that, for every action
profile q ∈ χ and every player i, the best response Bi(q−i) is unique. Then, the game
dynamics can be described by a dynamical system.

If the time variable is discrete, t = 0, ..., T , it’s possible to define the discrete-time
best response dynamics as q(t + 1) = F(q(t)). For the continuous time variable
t ∈ [0, +∞), recalling that the action spaces are intervals of the real line χi ⊂ [0, +∞),
the continuous-time best response dynamics is defined as q̇(t) = F(q(t)) − q(t).

According to its definition, a Nash equilibrium profile is an equilibrium of the best
response dynamics, q∗ = F(q∗) for the discrete case, and q̇∗ = 0 in continuous time.
An equilibrium q∗ for the dynamical system ˙q(t) = F(q(t))−q(t) (or q(t+1) = F(q(t))
) is said to be:

• stable if for every ϵ > 0 there exists δ > 0 such that if at t = 0 the distance of
the system from q∗ is smaller than δ, i.e., ||q(0) − q∗|| < δ , then for t → +∞

14



Technical background

the system will stay ϵ-close to q∗, i.e., ||q(t) − q∗|| < ϵ.

• attractive if there exists δ > 0 such that if at t = 0 the distance of the system
from q∗ is smaller than δ, i.e., ||q(0) − q∗|| < δ, then for t → +∞ the system
will converge to q∗, i.e., ||q(t) − q∗|| →t→+∞ 0.

• locally asymptotically stable if it is stable and attractive and globally asymptoti-
cally stable if it is stable and the dynamics converges to the equilibrium for any
δ > 0.

• unstable if it is not stable.

2.2.3 Strategic complements and strategic substitutes

In the context of strategic games, there are two relevant classes of games, whose
main distinction lies on whether an increase in the action played by a given player
pushes her neighbors to consequently increase or decrease their action.

It is necessary that the action space of each player χi is well-ordered, which is
the case for χi intervals of the real line. Then also χ = χ1 × · · · × χn is associated
an ordering ≥ 2. It is then possible to define the two classes of games based on the
property of increasing and decreasing differences.

Definition 2.2.3. A game with players N , action space χ and utilities (ui)n
i=1 is

said to be a strategic complements game if it exhibits increasing differences, i.e., for
every i, for every q, q′ ∈ χ such that q ≥ q′

ui(qi, q−i) − ui(q′
i, q−i) ≥ ui(qi, q′

−i) − ui(q′
i, q′

−i)

An equivalent, analytical, definition is the following:

Definition 2.2.4. A game with players N , action space χ and utilities (ui)n
i=1 twice

continuously differentiable is said to be a strategic complements game if for every
action profile q ∈ χ and every couple of agents i, j ∈ N , i ̸= j it holds

∂2ui

∂qi∂qj
(q) ≥ 0

For a given agent, in games of strategic complements, an increase in the actions
of her neighbors pushes her to also increase her action to have a higher utility.
In strategic complements games with finite action space (or compact action space
and continuous payoffs), the existence of an equilibrium is guaranteed; moreover,
there exist algorithms to find maximal and minimal equilibria and the best response
dynamics generally converges to equilibrium points.

Definition 2.2.5. A game with players N , action space χ and utilities (ui)n
i=1 is

said to be a strategic substitutes game if it exhibits decreasing differences, i.e., for
2Concerning the notation, inequalities between vectors are intended component-wise, i.e., q ≥ q′

if qi ≥ q′
i for every i. The same holds for >, <, ≤.
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every i, for every q, q′ ∈ χ such that q ≥ q′

ui(qi, q−i) − ui(q′
i, q−i) ≤ ui(qi, q′

−i) − ui(q′
i, q′

−i)

An equivalent, analytical, definition is the following

Definition 2.2.6. A game with players N , action space χ and utilities (ui)n
i=1 twice

continuously differentiable is said to be a strategic substitutes game if for every action
profile q ∈ χ and every couple of agents i, j ∈ N , i ̸= j it holds

∂2ui

∂qi∂qj
(q) ≤ 0

On the contrary, in games of strategic substitutes, for a given player, an increase
in the actions of her neighbors pushes her to diminish her action to have a higher
utility. In strategic substitutes games existence of equilibrium points is guaranteed if
the action spaces are non empty, compact and convex subsets of a Euclidian space
and the utilities are continuous and quasi-concave for every player.

2.2.4 Potential games

Definition 2.2.7. A game is an exact potential game if there exists a function
P : χ → R, called potential function, such that for every q, q̃ ∈ χ such that qi ̸= q̃i

and q−i = q̃−i it holds

ui(qi, q−i) − ui(q̃i, q−i) = P (qi, q−i) − P (q̃i, q−i)

In an exact potential game, for any action profile q ∈ χ, the utility variation
incurred by player i when changing action unilaterally is the same as the corresponding
variation in the potential function.

The main strength of potential games lies in the fact that every global maximum
point of the potential function P is a pure strategy Nash equilibrium. Although
equilibria that are not maximum points of the potential function may exist, the result
guarantees the existence of a Nash equilibrium in at least two cases: when the action
space is finite and when utilities are continuous on a compact action space.

2.3 Games on networks

In games defined on networks, players are connected through a graph, which de-
termines the structure of relationships between them; the payoff of each individual
depends on the actions taken by the neighbors, rather than on all other players, and
the strength of the dependence is determined by the adjacency matrix of the graph.

In the field of network games, given a graph G = (N , E , G), the set of nodes
N represents the agents involved in the game, connections between players are
determined by the set of edges E and characterized by the adjacency matrix G ∈ Rn×n

≥0 .
Let the action space be χ = χ1 ×· · ·×χn. The utility of each agent i now depends on
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her action qi ∈ χi and on the actions played by her neighbors in the graph qNi ∈ χNi ,
where χNi = r

j∈Ni
χj ⊂ χ denotes the action space restricted to neighbors of i,

ui : χ(G) → R ui(q(G)) = ui(qi, qNi).

Definition 2.3.1. Given a graph G = (N , E , G), a network game, or graphical game,
on G is a game with players N = {1, ..., n}, action space χ and utilities (ui)n

i=1 such
that for every player i ∈ N and action profiles q, q̃ ∈ χ, if qi = q̃i and qNi = q̃Ni,
then ui(q) = ui(q̃)

A (pure strategy) Nash equilibrium is thus a profile of actions q ∈ χ such that
for every player i and for every other action of her neighbors q′

Ni
∈ χNi

ui(qi, qNi) ≥ ui(qi, q′
Ni

)

To simplify the notation, for each agent i, we will drop the dependency on the
graph and simply write q−i, recalling that her payoff is only affected by agents to
which i is linked in the graph.

2.3.1 Benchmark game with quadratic utilities

Quadratic utility functions are often used as a benchmark model to simplify the study
of more complicated cases. In particular, when dealing with utility functions that
are not explicitly defined but of which the main characteristics and best response are
known, one can define a quadratic utility satisfying the assumptions or having the
same best response dynamics. This strategy is adopted since the quadratic utility is
often analytically tractable and easier to study: for example, defining a potential for
such functions is usually a viable option. Then, results obtained for the quadratic
model can be proved to be valid (or used as a starting point) for the more general case
under study, as they share the hypothesis set or the underlying dynamical system.

Let us define a utility function with a quadratic term in each player’s action and
use it to prove some results that we will generalize to the game at the center of this
study in the future chapters. In particular, we derive the best response for this game
and prove, under suitable assumptions of linearity, that the game with quadratic
utilities is exact potential and equilibria can be characterized exploiting the potential
function.

Consider a graphical game on the graph G = (N , E , G). Given a vector w ∈ Rn
>0,

take as action space χ = [0, w1] × ... × [0, wn] ⊂ Rn
>0 and define the generalized

quadratic utilities ūi : χ → R with the form

ūi(q) = −q2
i

2 + wiqi − ki(wi + (Gq)i)qi

where ki : (0, +∞) → (0, +∞) ∈ C1 for every i.

Proposition 2.3.1. For the game with utilities ūi, for every agent i the best response
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B̄i(q−i) : χ−i → χi is uniquely defined and has the form

B̄i(q−i) = [wi − ki(wi + (Gq)i)]+

Proof. The best response B̄i(q−i) for the game with utilities

ūi(q) = −q2
i

2 + wiqi − ki(wi + (Gq)i)qi

with action space χ = [0, w1] × ... × [0, wn] ⊂ Rn
>0 is the solution to the maximization

problem

max
qi∈χi

ūi(q) = max
qi∈[0,wi]

−q2
i

2 + wiqi − ki(wi + (Gq)i)qi

Notice that ūi are strictly concave along every qi:

∂ūi

∂qi
(q) = −qi + wi − ki(wi + (Gq)i)

and
∂2ūi

∂q2
i

(q) = −1

So there exists a unique maximum for ūi with respect to qi and it can be found by
setting

∂ūi

∂qi
(q) = −qi + wi − ki(wi + (Gq)i) = 0

which is equivalent to
qi = wi − ki(wi + (Gq)i)

adding the non negativity constraint qi ≥ 0 we obtain a best response with the
saturated form

B̄i(q−i) = [wi − ki(wi + (Gq)i)]+

Now assume that the function ki is linear with k′
i = k̄i ∈ (0, 1). Thus, the utilities

ūi : χ → R take the form:

ūi(q) = −q2
i

2 + wiqi − k̄iqi(wi + (Gq)i)

Rearranging the terms and defining the per-row rescaled matrix Ḡ = [k̄]G =
diag(k̄1, ..., k̄n)G ∈ Rn×n

≥0 such that Ḡij = k̄iGij and the vector b = (bi)n
i=1 ∈ Rn

>0
such that bi = wi(1 − k̄i), the utilities ūi take the form

ūi(q) = −q2
i

2 + biqi − (Ḡq)iqi

and we refer to them as quadratic utilities. The best response function for every
agent i can be written as

B̄i(q−i) = [bi − (Ḡq)i]+
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Let us state some results that hold for the game with these quadratic utilities
ūi and that will be used in the subsequent part of the research to study the public
good game. We begin by establishing that the game with quadratic utility functions
exhibits strategic substitutes.

Proposition 2.3.2. The game with quadratic utilities ūi(q) = − q2
i
2 + biqi − (Ḡq)iqi

exhibits strategic substitutes.

Proof. Let us verify that for every i, ∂2ūi
∂qi∂qj

(q) ≤ 0. Take the first derivative:

∂ūi

∂qi
(q) = −qi + bi − (Ḡq)i

then
∂2ūi

∂qi∂qj
(q) = −Ḡij ≤ 0

Let us define the functional P : χ → R st

P (q) =
nØ

i=1

1
2(−q2

i − qi(Ḡq)i + 2biqi)

or, in vector form
P (q) = −1

2qT (I + Ḡ)q + bT q

We exploit P to prove that the quadratic game is an exact potential game, which
will be useful to find the characterization of Nash equilibrium profiles for such games.

Proposition 2.3.3. Given a matrix Ḡ ∈ Rn×n
≥0 and a vector b ∈ Rn

>0, the following
properties of P hold:

1. P is strictly concave along each component

2. if Ḡ is symmetric and λḠ
min, smallest eigenvalue of Ḡ, is st

−λḠ
min < 1

then P is strictly concave

Proof. 1. The proof follows directly from the computations:

∂P

∂qi
(q) = ∂

∂qi
(
Ø
j ̸=i

1
2(−q2

j − qj(Ḡq)j + 2bjqj)) + ∂

∂qi
(1
2(−q2

i − qi(Ḡq)i + 2biqi))

= −1
2

∂

∂qi
(
Ø
j ̸=i

qj(
nØ

k=1
Ḡjkqk) − qi − 1

2(Ḡq)i + bi = −qi + bi − 1
2

nØ
j=1

qj(Ḡji + Ḡij)

so that
∂2P

∂q2
i

(q) = −1
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2. If Ḡ is symmetric, its concavity is guaranteed by the negative definiteness of
the hessian matrix. The gradient of P is ∇P (q) = −(I + Ḡ)q + b so that the
hessian matrix is HP = −(I + Ḡ). It is negative definite if and only if for every
v ∈ Rn

vT HP v = −vT (I + Ḡ)v < 0

which is equivalent to having strictly negative eigenvalues, i.e., for every i
−1 − λḠ

i < 0. A sufficient condition is that the lowest eigenvalue is strictly
negative, i.e., −1 − λḠ

min < 0, which is equivalent to

−λḠ
min < 1

Thus, if this condition is satisfied, P is strictly concave.

Theorem 2.3.4. If Ḡ is a symmetric matrix, the game with quadratic utility functions
ūi(q) = − q2

i
2 + biqi − (Ḡq)iqi is a potential game with potential function P .

Proof. Recall that a game is said to be a potential game with potential function P if
for every q, q̃ ∈ χ such that qi ̸= q̃i and q−i = q̃−i it holds

ui(q) − ui(q̃) = P (q) − P (q̃)

The proof follows directly verifying the definition. Take q, q̃ ∈ χ such that qi ̸= q̃i

and q−i = q̃−i and start by noticing that (Ḡq)i = (Ḡq̃)i since Ḡii = 0. Then for ūi, it
holds

ūi(q) − ūi(q̃) = −1
2(q2

i − q̃2
i ) + bi(qi − q̃i) − (Ḡq)i(qi − q̃i)

and for the potential

P (q) − P (q̃) =
Ø
j ̸=i

1
2(−q2

j − qj(Ḡq)j + 2bjqj) −
Ø
j ̸=i

1
2(−q̃2

j − q̃j(Ḡq̃)j + 2bj q̃j)

−1
2(q2

i − q̃2
i ) + bi(qi − q̃i) − 1

2(Ḡq)i(qi − q̃i)

= −
Ø
j ̸=i

1
2qj(Ḡ(q − q̃))j − 1

2(q2
i − q̃2

i ) + bi(qi − q̃i) − 1
2(Ḡq)i(qi − q̃i)

= −1
2
Ø
j ̸=i

qj(Ḡji(qi − q̃i))j − 1
2(q2

i − q̃2
i ) + bi(qi − q̃i) − 1

2(Ḡq)i(qi − q̃i)

and for the symmetric property of Ḡ , this is equal to

P (q)−P (q̃) = −1
2(Ḡq)i(qi−q̃i)−

1
2(q2

i −q̃2
i )+bi(qi−q̃i)−

1
2(Ḡq)i(qi−q̃i) = ui(q)−ui(q̃)

Proposition 2.3.5. For the game with quadratic utilities ūi(q) = − q2
i
2 +biqi −(Ḡq)iqi

and symmetric Ḡ, if an action configuration q∗ ∈ χw is a stationary point of the
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functional P , i.e.,
∇P (q∗) = 0

then q∗ is a Nash equilibrium.

Proof. To prove the result, consider the derivatives of P along every qi

∂P

∂qi
(q) = −qi + bi − 1

2

nØ
j=1

qj(Ḡji + Ḡij) = −qi + bi − (Ḡq)i

and notice that ∂P
∂qi

(q) = ∂ūi
∂qi

(q).
If q∗ is a stationary points of P , i.e., for every i

∂P

∂qi
(q∗) = 0

then
∂ūi

∂qi
(q∗) = 0

Being ūi concave along every component, its derivative with respect to qi equal to
zero implies that agent i is playing his best response. Since it is true for every player
if q∗ is a stationary point of P , then q∗ is a Nash equilibrium for the game with
quadratic utilities ūi.

Proposition 2.3.6. For the game with quadratic utilities ūi(q) = − q2
i
2 +biqi −(Ḡq)iqi

and symmetric Ḡ, an action configuration q∗ ∈ χw is a Nash equilibrium if and only
if for every i the following conditions on P hold:

∂P

∂qi
(q∗) ≤ 0

and
q∗

i

∂P

∂qi
(q∗) = 0

Proof. Notice that
∂P

∂qi
(q) = −qi + bi − (Ḡq)i = ∂ūi

∂qi
(q)

Thus the conditions can be rewritten for ūi:

∂ūi

∂qi
(q∗) ≤ 0 and q∗

i

∂ūi

∂qi
(q∗) = 0

Then, for every i:

• if q∗
i > 0, since q∗

i
∂ūi
∂qi

(q∗) = 0, it must hold

∂ūi

∂qi
(q∗) = 0

being ūi strictly concave in qi, it corresponds to a maximum of the utility.
Thus, every agent i such that q∗

i > 0 is playing his best response.
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• if q∗
i = 0, explicitly writing the condition ∂ūi

∂qi
(q∗) ≤ 0 for q∗

i = 0, we get that it
holds

bi − (Ḡq∗)i ≤ 0

which is the condition for agent i to play zero as best response. Thus, also
every agent i such that q∗

i = 0 is playing his best response.

Then the conditions are true if and only if every agent is playing his best response,
i.e., for every i q∗

i ∈ Bi(q∗
−i), that is equivalent to q∗ being a Nash equilibrium for the

game with quadratic utilities.
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Chapter 3

The public good game model
and preliminary results

In this chapter, we provide our definition of the public good game and some initial
results. The game draws on the specification of Allouch [16], but considers a more
general setting (directed networks).

First, we introduce the game setting and the specifications of the model, presenting
its main elements, such as the income vector and the value functions, two variable
functions satisfying properties of smoothness and concavity.

Second, for the general game definition, we derive the best response functions and
observe that they present a saturated form and a monotonic behavior. In addition,
we prove that the best response functions coincide with those of the game with
generalized quadratic utility. After introducing the notion of linearity property of
the value functions, we notice that, under this assumption, the game exhibits linear
saturated best response functions and propose the case of the Cobb-Douglas value
functions, a standard example that will be recovered throughout the whole study

Afterwards, we concentrate on the game Nash equilibria. We establish their
existence in the general setting and provide their characterization when the value
functions satisfy the linearity property.

In the last part, we focus on two particular types of Nash equilibria: internal
equilibria, where all individuals provide a positive amount to the public good, and
specialized equilibria, where a subset of agents contributes with their maximal amount
and the others free-ride.

3.1 Definition of the game

Let us introduce the founding elements of the public good game, such as the income
vector and the value functions, and state the main hypothesis.

To define a public good game, let us consider the graph G = (N , E , G), a general
directed and weighted graph without self-loops, meaning that (i, j) ∈ E if and only if
Gij > 0, otherwise Gij = 0 and Gii = 0 for every i ∈ N , so that G is a matrix with
nonnegative entries.
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The public good game model and preliminary results

The game is characterized by an income vector w ∈ Rn
>0, where for every i

wi is agent i’s total income, that he shall divide among private and public good
consumption. Denote by x ∈ Rn

≥0 the vector of private good provision and q ∈ Rn
≥0

the vector of public good provision; then, for every player i the income division
constraint wi = xi + qi must be verified.

Every agent i is associated a value function ηi : R2
≥0\{(0, 0)} → R, a C2 function

with hypothesis to be specified. We store them in an n-dimensional array η =
(ηi)n

i=1 ∈ Rn. The value function of each agent i is a two variable function, depending
on her own private good provision xi, on the sum of her public good provision qi

and the weighted sum of the provisions of her neighbors to the public good (Gq)i:
ηi = ηi(xi, qi + (Gq)i) = ηi(wi − qi, qi + (Gq)i), where the last equality is obtained
using the income division constraint.

The action for every player is the amount of income reserved to the public good
provision qi ∈ χi = [0, wi], and the private good contribution is derived as xi = wi −qi.
The game action space, denoted by χw for its dependence on the income vector, is
then χw = [0, w1] × · · · × [0, wn] ⊂ Rn

≥0.
Each agent benefits from her own provision of private good and from her and her

neighbors provision of public good through the value function, which allows to define
the utility function ui : χ → R, that depends on the action profile q ∈ χw and has
the form:

ui(q) = ηi(wi − qi, qi + (Gq)i) (3.1)

For every i the following assumptions on the value function ηi : R2
≥0\{(0, 0)} → R

must hold: ηi twice continuously differentiable, strictly concave and such that for
every x, y ≥ 0

∂ηi(0, y)
∂x

≥ ∂ηi(0, y)
∂y

(3.2)

∂ηi(x, 0)
∂x

≤ ∂ηi(x, 0)
∂y

(3.3)

Remark 3.1.1. A less restrictive set of hypothesis on the value functions ηi is also
sufficient. In particular, the following assumptions must hold: ηi : R2

≥0\{(0, 0)} → R

continuous function, C2 on (0, +∞), st

1. for every (x, y) ∈ (0, +∞)2

vT Hηi(x, z − x)v < 0 (3.4)

where Hηi is the Hessian matrix of ηi and v =
A

1
−1

B

2. for every x > 0, y > 0 the limit conditions hold:

lim
ϵ→0+

∂ηi(ϵ, y)
∂x

− ∂ηi(ϵ, y)
∂y

≥ 0 (or + ∞) (3.5)

lim
ϵ→0+

∂ηi(x, ϵ)
∂x

− ∂ηi(x, ϵ)
∂y

≤ 0 (or − ∞) (3.6)
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The public good game model and preliminary results

Indeed, (3.4) is a relaxation of the strict concavity of ηi limited to the lines (x, z − x),
while (3.5) and (3.6) generalize (3.2) and (3.3). Thus, all the results are valid for
both game formulations.

Remark 3.1.2. Notice that if

ηi(0, y) = ηi(x, 0) = 0 (3.7)

for every x, y > 0 then (3.2) and (3.3) also hold and (3.7) is simpler to check.

In addition, for every value function ηi, for every x, y ∈ R2
≥0\{(0, 0)}, we assume

∂2ηi

∂y2 (x, y) ≤ ∂2ηi

∂x∂y
(x, y) (3.8)

It is now possible to provide the definition of the public good game.

Definition 3.1.1. A public good game P = (G, w, η) is a strategic network game
uniquely determined by the triple (G, w, η). G, w, η have the characteristics described
above, the action space is χw = [0, w1] × · · · × [0, wn] and the utilities are ui of (3.1).

We now introduce the Cobb–Douglas value functions, which serve as the standard
reference throughout this thesis. They allow us to demonstrate practical applications
of the results on general graphs as well as parametric cases involving notable graphs.

Example 3.1.1. Cobb-Douglas value functions
Consider a game defined on a graph G = (N , E , G), an income vector w ∈ Rn

>0, and
value functions ηi : R2

≥0\{(0, 0)} → R of the form:

ηi(x, y) = xαiyβi

for αi, βi ∈ (0, 1) In general, ηi is not strictly concave in R2
≥0\{(0, 0)}, so let us verify

that the less restrictive assumptions of Remark 3.1.1 hold.

• ηi continuous function, C2 on (0, +∞).

• The hessian matrix is Hηi(x, y) =
C
αi(αi − 1)xαi−2yβi αiβix

αi−1yβi−1

αiβix
αi−1yβi−1 βi(βi − 1)yβi−2xαi

D
,

so for every (x, y) ∈ (0, +∞)2 and for v =
A

1
−1

B
it holds:

vT Hηi(x, y)v = αi(αi − 1)xαi−2yβi − 2αiβix
αi−1yβi−1 + βi(βi − 1)yβi−2xαi < 0

• hypothesis (3.5) and (3.6) are satisfied: for every x, y > 0

lim
ϵ→0+

∂ηi(ϵ, y)
∂x

− ∂ηi(ϵ, y)
∂y

= lim
ϵ→0+

αiϵ
αi−1yβi − βiϵ

αiyβi−1 = +∞

and

lim
ϵ→0+

∂ηi(x, ϵ)
∂x

− ∂ηi(x, ϵ)
∂y

= lim
ϵ→0+

αix
αi−1ϵβi − βix

αiϵβi−1 = −∞
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The public good game model and preliminary results

• finally, we verify (3.8): for every (x, y) ∈ R2
≥0\{(0, 0)}

∂2ηi

∂y2 (x, y) − ∂2ηi

∂x∂y
(x, y) = βi(βi − 1)yβi−2xαi − αiβix

αi−1yβi−1 < 0

So, we have proved that the game with value functions ηi(x, y) = xαiyβi is a public
good game.

3.2 Best response functions

After introducing a central characteristic of the value functions, the linearity property,
we establish that the general version of the public good game has saturated best
response functions. Moreover, we observe that the best response exhibits a monotone
behavior and prove that it coincides with the best response of the game with
generalized quadratic utilities. In the end, we apply the previous results and derive
the best response functions under the linearity property.

Let us begin by proving that every value function is associated a continuous,
strictly positive function ki, specifying how much of her income an agent would
optimally spend on the private good when facing the trade-off between private and
public consumption.

Lemma 3.2.1. For the public good game P = (G, w, η), for every agent i there exists
the function ki : (0, +∞) → (0, +∞) ∈ C1 st

ki(z) = argmax
x∈[0,z],z>0

ηi(x, z − x) (3.9)

Proof. Being ηi(xi, zi − xi) ∈ C2, strictly concave, under assumptions (3.2) and (3.3),
for Lemma A.0.1, for every i there exists ki : (0, +∞) → (0, +∞) ∈ C1 solution of
the maximization problem (3.9).

Thus, for each player, the function ki(z) captures the optimal rule that she follows
when deciding how to split her income z between private and public consumption.
To each possible income level z > 0, ki associates the amount reserved to the private
good, while the remainder, z − ki(z) is provided to the public good. The derivative
k′

i(z) then describes how this optimal allocation changes with the income. When
k′

i(z) is constant across all income levels— which defines the concept of the linearity
property—the trade-off between private and public consumption does not depend on
the amount of income. This property greatly simplifies the analysis of equilibria in
the game. Let us provide the formal definition of this characteristic.

Definition 3.2.1. The value functions η = (ηi)n
i=1 of the public good game P =

(G, w, η), are said to satisfy the linearity property L if for every i for ki of (3.9) it
holds k′

i(z) = k̄i > 0. If k̄i = k̄ > 0, then we say that the value functions η satisfy the
strong linearity property L+.

Let us derive the functions ki in the Cobb-Douglas setting.
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Example 3.2.1. Cobb-Douglas value functions (cont.)
For the game with Cobb-Douglas value functions, to derive the relation for ki, recall
that for every i it is the unique solution, for a given z > 0, to:

ηi(ki(z), z − ki(z)) = max
x∈[0,z],z>0

ηi(x, z − x)

Then, ki(z) is obtained by solving

dηi

dx
(x, z − x) = αix

αi−1(z − x)βi − βix
αi(z − x)βi−1 = 0

which implies
x = ki(z) = αiz

αi + βi

Being ki a linear function for every i, the Cobb-Douglas value functions satisfy the
linearity property L with

k̄i = k′
i(z) = αi

αi + βi

If the parameters are equal, i.e., αi = α and βi = β for every i, then the strong
linearity property L+ holds with k̄ = α

α+β . Notice that, given the graph G and the
income vector w, the Cobb-Douglas public good game is completely determined by the
vectors of parameters α = (αi)n

i=1 and β = (βi)n
i=1, thus to stress this dependency,

we refer to η = (ηi)n
i=1 of P as η(α, β) = (ηi(αi, βi))n

i=1.

For other examples of value functions and particular forms they can take, refer
to Appendix B.

It is now possible to derive the best response functions. In order to maximize
her individual utility, each agent aims to play the action that solves the constrained
optimization problem:

max
qi∈χi

ui(q) = max
0≤qi≤wi

ηi(wi − qi, qi + (Gq)i) (3.10)

Proposition 3.2.2. Consider a public good game P = (G, w, η). Then, the best
response function Bi : χ−i → χi is uniquely defined for every agent i and has the
form:

Bi(q−i) = [wi − ki(wi + (Gq)i)]+

Proof. To prove the result, let us do a change of variable and reformulate the
optimization problem for the best response: define zi = (Gq)i+wi, so that qi+(Gq)i =
zi − xi since xi = wi − qi, and reformulate problem (3.10) as:

max
0≤xi≤zi−(Gq)i

ηi(xi, zi − xi) (3.11)

Consider now the relaxation of problem (3.11):

max
0≤xi≤zi

ηi(xi, zi − xi) (3.12)
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For Lemma 3.2.1, for every i there exists ki : (0, +∞) → (0, +∞) ∈ C1 solution of
(3.12). Then, since ηi strictly concave and, for hypothesis (3.2) and (3.3), increasing
at xi = 0:

x∗
i = min{ki(zi), wi}

is a solution to the initial problem (3.11). Finally, the uniquely determined best
response function (solution of (3.10)) is:

Bi(q−i) = q∗
i = wi−x∗

i = (wi−min{ki(zi), wi}) = [wi−ki(zi)]+ = [wi−ki(wi+(Gq)i)]+

Then, the synchronous best response function F : χw → χw, the vectorial function
in which every agent plays her best response at the same time, is:

F(q) = (Bi(q−i))n
i=1 = ([wi − ki(wi + (Gq)i)]+)n

i=1 = [w − k(w − Gq)]+

using the vector notation (ki(wi + (Gq)i))n
i=1 = k(w − Gq).

From the main hypothesis of the game, it is possible to derive the following
monotonicity results for the best response of each individual and for the synchronous
one.

Proposition 3.2.3. The public good game P = (G, w, η) exhibits strategic substitutes
and for every agent i the best response Bi(q−i) : χ−i → χi is decreasing in the public
good provision of her out-neighbors.

Proof. The game exhibits strategic substitutes if and only if

∂2ui

∂qi∂qj
(q) ≤ 0

The second derivatives of the utilities are:

∂2ui

∂qi∂qj
(q) = Gij(∂2ηi

∂y2 (wi − qi, qi + (Gq)i) − ∂2ηi

∂x∂y
(wi − qi, qi + (Gq)i))

Then, from hypothesis (3.8) on the value functions follows the strategic substitutability.
Moreover, from Remark A.0.1, we know that the condition that makes ki an increasing
function is exactly (3.8). Thus, since the best response has the form Bi(q−i) =
[wi − ki(wi + (Gq)i)]+ and ki is increasing, then when neighbors contributions are
higher, the best response of player i decreases.

Proposition 3.2.4. For the synchronous best response function F : χw → χw of
the public good game P = (G, w, η), for every couple of public good provision profiles
q, q̃ ∈ χw with q ≤ q̃, the following properties of monotonicity hold:

F(q) ≥ F(q̃)
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and
F2(q) ≤ F2(q̃)

Proof. The thesis follows directly from the monotonicity of the best response function
of every agent due to the strategic substitutes setting. For every couple of public
good provision profiles q, q̃ ∈ χw with q ≤ q̃, for every agent i we have:

wi + (Gq)i ≤ wi + (Gq̃)i

and, since ki increasing,

ki(wi + (Gq)i) ≤ ki(wi + (Gq̃)i)

then, for the decreasing behavior of Bi(q−i),

Bi(q−i) = [wi − ki(wi + (Gq)i)]+ ≥ Bi(q̃−i) = [wi − ki(wi + (Gq̃)i)]+

In vector form
F(q) ≥ F(q̃)

Applying F on both sides again, we get

F2(q) ≤ F2(q̃)

Now consider a general graphical game defined on the graph G = (N , E , G), with
action space χw = [0, w1] × ... × [0, wn] ⊂ Rn

>0 and define for every i the generalized
quadratic utilities ūi : χw → R with the form

ūi(q) = −q2
i

2 + wiqi − ki(wi + (Gq)i)qi

Proposition 3.2.5. Given a graph G = (N , E , G) and a vector w ∈ Rn
>0, consider

the generalized quadratic utility functions defined on χw = [0, w1] × ...× [0, wn] ⊂ Rn
>0,

ūi : χw → R, having the form

ūi(q) = −q2
i

2 + wiqi − ki(wi + (Gq)i)qi

then the game with utilities ūi has the same best response function as the public good
game P = (G, w, η).

Proof. The result follows directly from the best response of the game with utilities
ūi. For the proof see Proposition 2.3.1.

Finally, let us define a particular type of action configuration, called specialized,
where players either provide their maximum amount of public good or do not
contribute at all.
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Definition 3.2.2. Consider the game P = (G, w, η). A vector of public good
contributions q ∈ χw is said to be a specialized profile if for every i qi > 0 if
and only if qi = maxqi∈χi Bi(q−i), otherwise qi = 0.

The study repeatedly focuses on a particular subclass of public good games that
are easily tractable, those where the value functions satisfy the linearity property. We
propose a general notation that accounts for L and is based on the per-row rescaled
adjacency matrix Ḡ. Define the matrix Ḡ = [k̄]G = diag(k̄1, ..., k̄n)G ∈ Rn×n

≥0 such
that Ḡij = k̄iGij and the vector b = (bi)n

i=1 ∈ Rn
>0 such that bi = wi(1 − k̄i).

For such games, let us derive the best response functions.

Proposition 3.2.6. Consider the public good game P = (G, w, η), with value func-
tions η = (ηi)n

i=1 satisfying the linearity property L for some k̄ = (k̄i)n
i=1 ∈ (0, 1)n.

Then, the best response is uniquely defined for every agent i and has the linear
saturated form:

Bi(q−i) = [bi − (Ḡq)i]+

Proof. For Proposition 3.2.2, the best response is uniquely determined for every
agent. Moreover, the definition of property L implies that ki are linear functions and
they can be written as

ki(wi + (Gq)i) = k̄i(wi + (Gq)i)

then the best response functions have the form

Bi(q−i) = [wi − k̄i(wi + (Gq)i)]+ = [wi(1 − k̄i) − k̄i(Gq)i]+ = [bi − (Ḡq)i]+

The bound on the constants k̄i, i.e., k̄i ∈ (0, 1), relies on the fact that bi must be
a positive value, otherwise the best response of agent i is always playing zero. Indeed
bi = wi(1 − k̄i) > 0 if and only if k̄i < 1. Thus, we will assume that for the game
P = (G, w, η) it holds k̄i < 1 for every i.

The synchronous best response vectorial function is then F : χw → χw

F(q) = [b − Ḡq]+

Remark 3.2.1. Notice that, under the linearity property L, for the corresponding
quadratic game with the same best response as the public good game of Proposition
3.2.5, the utilities simplify to the quadratic form:

ūi(q) = −q2
i

2 + biqi − (Ḡq)iqi

It is interesting to notice that, under the linearity property of the value functions
and symmetric matrix Ḡ, the game with quadratic utilities is an exact potential game
with potential function

P (q) = −1
2qT (I + Ḡ)q + bT q
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for the proof see 2.3.4.

Example 3.2.2. Cobb-Douglas value functions (cont.)
Consider the public good game P = (G, w, η(α, β)) with Cobb-Douglas value functions

ηi(wi − qi, qi + (Gq)i) = (wi − qi)αi(qi + (Gq)i)βi

with αi, βi ∈ (0, 1).
As previously seen, the value functions satisfy property L with k̄i = αi

αi+βi
and, if

αi = α and βi = β for every i, property L+ holds with k̄ = α
α+β .

In this setting, bi = βiwi
αi+βi

and Ḡ = [ α
α+β ]G. Then, for Proposition 3.2.6, the best

response is uniquely defined for every agent and has the form

Bi(q−i) = [ βiwi

αi + βi
− αi

αi + βi
(Gq)i]+

To simplify the notation, for the vectors of constants α, β, w, we will refer to
the operations applied component-wise to the elements of the vectors writing the
operations for the vectors, for example α

α+β = ( αi
αi+βi

)n
i=1 and βw

α+β = ( βiwi
αi+βi

)n
i=1.

The synchronous best response vectorial function is F : χw → χw st

F(q) = [ βw

α + β
− α

α + β
Gq]+

3.3 Nash equilibria

We prove that Nash equilibria always exist for the public good game in the general
setting. In addition, under the linearity property of the value functions, we provide a
characterization of the equilibrium profiles that relies on solving a linear system and
verifying a system of inequalities.

For the public good game P = (G, w, η), a Nash equilibrium is an action profile
q∗ ∈ χw such that for every i it holds

q∗
i = [wi − ki(wi + (Gq)i)]+

Theorem 3.3.1. Consider a public good game P = (G, w, η). Then, there exists a
Nash equilibrium q∗ ∈ χw for the game.

Proof. From Proposition 3.2.2 we know the best response function for every agent is
Bi(q−i) = [wi − ki(wi + (Gq)i)]+, and that it is single-valued and continuous.
A Nash equilibrium q∗ is a fixed point of F : F(q∗) = q∗ and, being the synchronous
best response function F a continuous function from a compact, convex set χw to
itself, the existence of q∗ follows from Brouwer’s fixed point theorem.

Let us define two particular types of equilibrium profiles that will be at the center
of the study of future sections.
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Definition 3.3.1. For a general public good game P = (G, w, η), consider q∗ ∈ χw

equilibrium for the game.

1. q∗ is said to be an internal equilibrium if q∗
i > 0 for every i = 1, ..., n.

2. q∗ is said to be a specialized equilibrium if it is also a specialized profile.

We now provide a characterization of Nash equilibrium profiles under the linearity
property of the value functions. In particular, we propose two equivalent ways to see
if an action profile is a Nash equilibrium, both based on verifying a linear system and
a system of inequalities. The first one is more general, while the second one highlights
the partition of agents into contributors and non-contributors at equilibrium.

Let us first recall the definition of Nash equilibrium profile in the setting of value
functions under L and derive some preliminary results. A Nash equilibrium for the
public good game P = (G, w, η) is a public good provision profile q∗ ∈ χw st

q∗ = [b − Ḡq∗]+

Proposition 3.3.2. Consider the public good game P = (G, w, η), with value func-
tions satisfying the linearity property L for some k̄ = (k̄i)n

i=1 ∈ (0, 1)n. q∗ ∈ χw is a
Nash equilibrium if and only if the following conditions hold:

q∗T (I + Ḡ)q∗ = bT q∗

and
q∗ + Ḡq∗ ≥ b

Proof. Consider the quadratic utility function ūi(q) = − q2
i
2 + biqi − (Ḡq)iqi. It follows

from Proposition 3.2.5 that the game with utilities ūi has the same best response
functions as P, i.e., Bi(q−i) = [bi − (Ḡq)i]+.
Let us first prove that q∗ ∈ χw is a Nash equilibrium if and only if for every i the
following conditions for the quadratic utility ūi hold:

∂ūi

∂qi
(q∗) ≤ 0

and
q∗

i

∂ūi

∂qi
(q∗) = 0

For every i:

• if q∗
i > 0, since q∗

i
∂ūi
∂qi

(q∗) = 0, it must hold

∂ūi

∂qi
(q∗) = 0

being ūi strictly concave in qi, it corresponds to a maximum of the utility.
Thus, every agent i such that q∗

i > 0 is playing his best response.
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• if q∗
i = 0, explicitly writing the condition ∂ūi

∂qi
(q∗) ≤ 0 for q∗

i = 0, we get that it
holds

bi − (Ḡq∗)i ≤ 0

which is the condition for agent i to play zero as best response. Thus, also
every agent i such that q∗

i = 0 is playing his best response.

Then the conditions are true if and only if every agent is playing his best response,
i.e., for every i q∗

i ∈ Bi(q∗
−i), that is equivalent to q∗ being a Nash equilibrium for

the game with quadratic utilities. Thus, q∗ is a Nash equilibrium also for the public
good game with linear saturated best response.

Explicitly writing these conditions, we get that q∗ ∈ χw is a Nash equilibrium if and
only if for every i it holds

∂ūi

∂qi
(q∗) ≤ 0 ⇐⇒ bi ≤ q∗

i + (Ḡq∗)i

and
q∗

i

∂ūi

∂qi
(q∗) = 0 ⇐⇒ q∗

i (bi − q∗
i − (Ḡq∗)i) = 0

which is equivalent to
q∗

i
2 + (Ḡq∗)iq

∗
i = biq

∗
i

The thesis follows writing the conditions in vector form:

q∗T (I + Ḡ)q∗ = bT q∗

and
q∗ + Ḡq∗ ≥ b

Given a public good provision profile q ∈ χ, let us define the set of contributors C

as the set of agents providing a positive amount of public good, C = {i ∈ N qi > 0}
and the set of non-contributors −C as the set of agents that do not contribute to the
public good, −C = {i ∈ N : qi = 0} . Denote by qC ∈ R|C|

>0 , wC ∈ R|C|
>0 , GC ∈ R|C|×|C|

≥0
the public good provision vector, income vector and adjacency matrix restricted to
contributors, respectively, by G−C,C ∈ R|−C|×|C|

≥0 the adjacency matrix restricted to
rows of contributors and columns of non contributors and w−C ∈ R|−C|

>0 the income
vector restricted to non-contributors.

Let us see an equivalent characterization that puts the accent on the distinction
between contributing and non-contributing nodes at equilibrium.

Proposition 3.3.3. Consider the public good game P = (G, w, η), with value func-
tions satisfying the linearity property L for some k̄ = (k̄i)n

i=1 ∈ (0, 1)n. q∗ ∈ χw is a
Nash equilibrium if and only if there exists a partition of the agents N = C ∪ −C, C
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non empty, such that q∗--
C

= qC and q∗--
−C

= 0 and qC satisfies

(I + ḠC)qC = bC (3.13)

Ḡ−C,CqC ≥ b−C (3.14)

Proof. • (⇒) If q∗ ∈ χw Nash equilibrium for the game, it is a fixed point of the
best response function: F(q∗) = [b − Ḡq∗]+ = q∗. For every contributor i ∈ C,
to be at equilibrium it must hold:

q∗
i = [bi − (Ḡq∗)i]+ > 0

which means that the saturation is no longer necessary:

q∗
i = bi − (Ḡq∗)i

so that q∗
i satisfies the equation:

q∗
i + (Ḡq∗)i = bi (3.15)

For every non-contributor i ∈ −C, to be at equilibrium it must hold:

q∗
i = [bi − (Ḡq∗)i]+ = 0

which means that
bi − (Ḡq∗)i ≤ 0

that is equivalent to
(Ḡq∗)i − bi ≥ 0 (3.16)

Then, writing (3.15) and (3.16) in vector form, we get the thesis.

• (⇐)
On the one hand, if qC satisfies (3.13), then writing it component-wise, for
every i it holds

(qC)i + (ḠCqC)i = bi

that is equivalent to (3.15) restricted to C, which means that every agent i ∈ C

is playing his best response, thus is at equilibrium. On the other hand, since it
also satisfies (3.14), for every i ∈ N \C = −C it holds

(Ḡ−C,CqC)i ≥ (b−C)i

that is equivalent to the condition for non-contributors to be at equilibrium
(3.16). Thus, all agents are at equilibrium and the equilibrium profile q∗ is the
extension of qC to non contributors: q∗--

C
= qC and q∗--

−C
= 0.
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Proposition 3.3.3 generalizes the Nash equilibria characterization of Bramoullé,
Kranton and D’Amours [9] to the case of weighted directed graph G and heterogeneous
payoff parameters k̄i and incomes wi.

Example 3.3.1. Cobb-Douglas value functions (cont.)
From the previous results, it is possible to derive the characterization of Nash
equilibrium profiles for the public good game with Cobb-Douglas value functions
P = (G, w, η(α, β)). For definition, a Nash equilibrium is a public good provision
profile q∗ ∈ χw st

F(q∗) = [ β

α + β
w − α

α + β
Gq∗]+ = q∗

For Proposition 3.3.2, q∗ ∈ χw is a Nash equilibrium if and only if

q∗T (I + [ α

α + β
]G)q∗ = ( βw

α + β
)T q∗

and
q∗ + [ α

α + β
]Gq∗ ≥ βw

α + β

An equivalent characterization of Nash equilibria stressing the partition into
contributing and non-contributing agents is given by Proposition 3.3.3. q∗ ∈ χw is a
Nash equilibrium if and only if there exists a partition of the agents N = C ∪ −C, C

non empty, such that q∗--
C

= qC and q∗--
−C

= 0 and qC satisfies

(I + [ α

α + β
]CGC)qC = ( βw

α + β
)C (3.17)

and
[ α

α + β
]−CG−C,CqC ≥ ( βw

α + β
)−C (3.18)

3.4 Internal equilibria

Let us concentrate on the particular kind of equilibrium profiles, called internal,
where every node actively participates in the public good provision at equilibrium.
We prove that their existence is determined by the presence of a strictly positive
solution to the linear system that characterizes equilibria. Moreover, we provide
some sufficient conditions that ensure its presence for public good games with value
functions satisfying the strong linearity property.

Throughout this section, consider the public good game P = (G, w, η), with
value functions satisfying the linearity property L for some k̄ = (k̄i)n

i=1 ∈ (0, 1)n and
recall that an internal equilibrium q∗ ∈ χw is an equilibrium where all nodes are
contributors: q∗

i > 0 for every i ∈ N , i.e., C = N .

Proposition 3.4.1. Consider the public good game P = (G, w, η), with value func-
tions satisfying the linearity property L for some k̄ = (k̄i)n

i=1 ∈ (0, 1)n. Then, there
exists an internal equilibrium q∗ ∈ χw for the game if and only if there exists a strictly
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positive solution of the linear system

(I + Ḡ)q∗ = b (3.19)

and q∗ has the form
q∗ = (I + Ḡ)−1b

Proof. The result follows directly from the application of Proposition 3.3.3 with
contributing nodes C = N and its shape is uniquely derived solving the linear system
(3.19). It follows directly from the characterization of equilibria that, if there are no
strictly positive solutions, then there are no internal equilibria.

Example 3.4.1. Cobb-Douglas value functions (cont.)
For the Cobb-Douglas public good game P = (G, w, η(α, β)), from Proposition 3.4.1,
an internal equilibrium q∗ ∈ χw is a positive solution to the linear system

(I + [ α

α + β
]G)q∗ = βw

α + β
(3.20)

meaning that it has the form

q∗ = ([ α

α + β
]G + I)−1 βw

α + β

For the game P where αi = α and βi = β, the inverse matrix ( α
α+β G+I)−1 exists

if its determinant is non zero, that is equivalent to Ḡ having non null eigenvalues,
i.e., λG

i ̸= −α+β
α .

Also, the internal solution q = β
α+β ( α

α+β G+I)−1w is positive if the inverse matrix
is positive. Writing it as a power series, it is possible to see that it is not always the
case:

( α

α + β
G + I)−1 =

∞Ø
k=0

(− α

α + β
G)k

Notice that it is not always true that there exists an internal equilibrium for the
game. Let us see a few examples.

Example 3.4.2. Consider the public good game P = (G, w, η(α, β)), defined on the
unweighted undirected circle graph G of 4 nodes. The adjacency matrix is

G =


0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0


Take αi = α = 1

3 , βi = β = 2
3 and income vector w = (1, 2, 1, 3)T .
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When solving the linear system (3.20), the inverse matrix is not positive:

( α

α + β
G + I)−1 =


1.4 −0.6 0.4 −0.6

−0.6 1.4 −0.6 0.4
0.4 −0.6 1.4 −0.6

−0.6 0.4 −0.6 1.4


and the solution is q = (−0.8, 1.87, −0.8, 2.53)T . Thus, there exists no internal
equilibrium for the game.

Example 3.4.3. Consider the public good game P = (G, w, η(α, β)) defined on the
unweighted undirected line graph G of three nodes. The adjacency matrix is

G =


0 1 0
1 0 1
0 1 0


Take αi = α = 2

3 , βi = β = 1
3 and income vector w = (2, 1, 2)T .

When solving the linear system (3.20), the inverse matrix is not positive:

( α

α + β
G + I)−1 =


5 −6 4

−6 9 −6
4 −6 5


and the solution is q = (4, −5, 4)T . Thus, there exist no internal equilibrium for the
game.

It is thus interesting to study when there exists an internal equilibrium, i.e., when
there exists a positive solution of (3.19). We focus now on the public good game
P = (G, w, η), where the value functions satisfy the strong linearity property L+,
meaning that k̄i = k̄ ∈ (0, 1) for every i.

Proposition 3.4.2. Consider the public good game P = (G, w, η) with value functions
satisfying the strong linearity property L+ for k̄ ∈ (0, 1). If I + Ḡ is invertible and
the income vector w > 0 is a positive eigenvector of G, associated to the eigenvalue
λw, then there exists the internal equilibrium q∗ ∈ χw of the form

q∗ = (1 − k̄)(k̄λw + 1)((I + Ḡ)−1)2w

Proof. If w > 0 eigenvector of G associated to the positive eigenvalue λw, then for
definition G Gw = λww > 0. Then, also

k̄Gw = k̄λww > 0

that is equivalent to

(k̄G + I)w = (Ḡ + I)w = (k̄λw + 1)w
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which means that w is also the eigenvector of Ḡ + I associated to the eigenvalue
k̄λw + 1. Moreover notice that, being I + Ḡ invertible, w can be written as

w = (k̄λw + 1)(Ḡ + I)−1w

and b is strictly positive since bi = (1 − k̄i)wi = (1 − k̄)wi > 0 for k̄ < 1.
Then, the solution of the linear system (3.19) is:

q∗ = (I + Ḡ)−1b = (1 − k̄)(I + Ḡ)−1w

and it can be written substituting the expression for w as

q∗ = (1 − k̄)(k̄λw + 1)((I + Ḡ)−1)2w > 0

for the positivity of ((I+Ḡ)−1)2, q∗ is positive and so it is an internal Nash equilibrium
for the game.

Example 3.4.4. Cobb-Douglas value functions (cont.)
For the game P = (G, w, η(α, β)), with αi = α, βi = β, from Proposition 3.4.2, if

α
α+β G + I is invertible and the income vector w > 0 is a positive eigenvector of G,
associated to the eigenvalue λw, then there exists the internal equilibrium q∗ ∈ χw of
the form

q∗ = β

α + β
( α

α + β
λw + 1)(( α

α + β
G + I)−1)2w

Let us see some examples.

Example 3.4.5. Consider again the public good game P = (G, w, η(α, β)), with
αi = α, βi = β, defined on the unweighted undirected circle graph G of 4 nodes of
3.4.2. The dominant eigenvalue is λG = 2 and the corresponding eigenvector is
vG = (1, 1, 1, 1)T > 0. Take again α = 1

3 , β = 2
3 ; Now take as income vector w = vG.

Then, there exists an internal equilibrium for the game, that has the form

q∗ = β

α + β
( α

α + β
λw + 1)(( α

α + β
G + I)−1)2 = (2

5 , ...,
2
5)T

Example 3.4.6. Consider again the public good game P = (G, w, η(α, β)) defined on
the unweighted undirected line graph G of 3 nodes of example 3.4.3. The dominant
eigenvalue is λG =

√
2 and the corresponding eigenvector is vG = (1

2 , 7
10 , 1

2)T > 0.
Take α = 2

3 , β = 1
3 ; Now take as income vector w = vG. Then, there exists an

internal equilibrium and it has the form:

q∗ = β

α + β
( α

α + β
λw + 1)(( α

α + β
G + I)−1)2 = (0.09, 0.12, 0.09)T

Example 3.4.7. Consider the public good game P = (G, w, η(α, β)), with αi =
α, βi = β, defined on the unweighted undirected star graph G of 5 nodes, where node
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1 is the center of the star. The adjacency matrix is:

G =



0 1 1 1 1
1 0 0 0 0
1 0 0 0 0
1 0 0 0 0
1 0 0 0 0


The dominant eigenvalue is λG = 2 and the corresponding eigenvector is vG =
(0.71, 0.35, 0.35, 0.35, 0.35)T > 0. Take α = 1

4 , β = 2
3 and income vector w = vG.

Then, there exists an internal Nash equilibrium, having the form

q∗ = β

α + β
( α

α + β
λw + 1)(( α

α + β
G + I)−1)2 = (0.33, 0.17, 0.17, 0.17, 0.17)T

Let us now see a condition on the vector b that guarantees for the existence of an
internal equilibrium.

Proposition 3.4.3. Consider the public good game P = (G, w, η) with value functions
satisfying the strong linearity property L+ for k̄ ∈ (0, 1). If Ḡ + I is invertible and
the vector b > 0 satisfies

b > Ḡb (3.21)

then there exists the internal equilibrium q∗ ∈ χw of the form

q∗ = (I + Ḡ)−1b =
∞Ø

h=0
(Ḡ)2h(I − Ḡ)b

Proof. Start by observing that the hypothesis b > Ḡb is equivalent to (I − Ḡ)b > 0
and since k̄ < 1, bi = (1 − k̄)wi > 0 for every i; this implies that also I − Ḡ > 0.

Since Ḡ + I is invertible, it is possible to write the inverse matrix as a power series:

(I + Ḡ)−1 =
∞Ø

h=0
(−Ḡ)h

Notice that the series can also be written as:
∞Ø

h=0
(−Ḡ)h = (I + Ḡ2 + Ḡ4 + ...)(I − Ḡ) =

∞Ø
h=0

(Ḡ)2h(I − Ḡ)

Being it the sum of positive terms, we have that (I + Ḡ)−1 > 0. Then also

(I + Ḡ)−1b =
∞Ø

h=0
(Ḡ)2h(I − Ḡ)b > 0

39



The public good game model and preliminary results

so that the solution of the linear system (3.19)

q = (I + Ḡ)−1b =
∞Ø

h=0
(Ḡ)2h(I − Ḡ)b

is strictly positive, so it is an internal Nash equilibrium.

Example 3.4.8. Cobb-Douglas value functions (cont.)
For the game P = (G, w, η(α, β)), with αi = α, βi = β, from Proposition 3.4.3, if

α
α+β G + I is invertible and the income vector w > 0 satisfies

w >
α

α + β
Gw

then there exists the internal equilibrium q∗ ∈ χw of the form

q∗ = β

α + β
( α

α + β
G + I)−1w = β

α + β

∞Ø
h=0

( α

α + β
G)2h(I − α

α + β
G)w

Let us see a few examples.

Example 3.4.9. Consider the public good game P = (G, w, η(α, β)) defined on the
unweighted undirected circle graph G of 5 nodes. The adjacency matrix is

G =



0 1 0 0 1
1 0 1 0 0
0 1 0 1 0
0 0 1 0 1
1 0 0 1 0


Take αi = α = 1

4 , βi = β = 1
3 and income vector w = (5, 4, 4, 4, 5)T . In this case the

condition
w >

α

α + β
Gw

is satisfied: α
α+β G = 0.43G and

w − α

α + β
Gw =



5
4
4
4
5


−



3.86
3.86
3.43
3.86
3.86


>



0
0
0
0
0


thus there exists the internal equilibrium

q∗ = β

α + β
( α

α + β
G + I)−1w = (1.73, 0.89, 1.52, 0.89, 1.73)T

Example 3.4.10. Consider the public good game P = (G, w, η(α, β)), with αi =
α, βi = β, defined on the unweighted undirected line graph G of 4 nodes. The adjacency
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matrix is

G =


0 1 0 0
1 0 1 0
0 1 0 1
0 0 1 0


Take α = 1

4 , β = 1
3 and income vector w = (2, 3, 3, 2)T . In this case the condition

w >
α

α + β
Gw

is satisfied: α
α+β G = 0.43G and

w − α

α + β
Gw =


2
3
3
2

−


1.23
2.14
2.14
1.23

 >


0
0
0
0


thus there exists the internal equilibrium

q∗ = β

α + β
( α

α + β
G + I)−1w = (0.72, 0.98, 0.98, 0.72)T

Example 3.4.11. Consider again the public good game P = (G, w, η(α, β)), defined
on the unweighted undirected star graph G of 5 nodes, where node 1 is the center of the
star, of example 3.4.7. Take again α = 1

4 , β = 2
3 and income vector w = (4, 2, 2, 2, 2)T .

In this case the condition
w >

α

α + β
Gw

is satisfied: α
α+β G = 0.27G and

w − α

α + β
Gw =



4
2
2
2
2


−



2.18
1.09
1.09
1.09
1.09


>



0
0
0
0
0


thus there exists the internal equilibrium

q∗ = β

α + β
( α

α + β
G + I)−1w = (1.88, 0.94, 0.94, 0.94, 0.94)T

Remark 3.4.1. In general, for the game with Cobb-Douglas value functions and
equal parameters αi = α, βi = β, P = (G, w, η(α, β)) with players having equal income
wi = w, for G out-regular and equally weighted (of weight g), the following result on
the internal Nash equilibrium holds:
There exists an internal equilibrium q∗ ∈ χw where all nodes contribute to the public
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good with the same positive amount

q∗
i = βw

α(1 + dg) + β

Indeed, if there exists an internal equilibrium with equally contributing agents,
then the contribution of every agent must solve

qi = [ βw

α + β
− α

α + β

nØ
j=1

Gijqj ]+ = βw

α + β
− α

α + β
gdqi > 0

since all nodes have d out-neighbors and same weight g. Then

qi = βw

α(1 + dg) + β

To see that it is an equilibrium, let us verify that it satisfies (3.13) with C = N . The
left hand side of the equation is

(I + α

α + β
G) βw

α(1 + dg) + β


1
...
1



= βw

α(1 + dg) + β


1
...
1

+ α

α + β

βw

α(1 + dg) + β
G


1
...
1



= βw

α(1 + dg) + β


1
...
1

+ α

α + β

βwdg

α(1 + dg) + β


1
...
1


where the last equality is justified by the fact that the sum on the rows of G isqn

i=1 Gij = dg for every i. Then (3.13) simplifies to

α + β + αdg

α(1 + dg) + β
= 1

Then, the condition is satisfied and q∗ = (qi)n
i=1 is a Nash equilibrium.

Remark 3.4.2. For the game P = (G, w, η(α, β)) with αi = α, βi = β, and players
having equal income wi = w, for G unweighted directed line graph, the following result
on the internal Nash equilibrium holds:
There exists the internal equilibrium q∗ ∈ χw with the form

q∗
n−i = βw

α + β

iØ
j=0

(−1)j( α

α + β
)j

for i = 0, ..., n − 1.
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To derive the form of the internal equilibrium profile, let us consider nodes to be
labeled in increasing order from 1 (left-most node) to n (right-most node). Then:
Node n has no out-neighbors: Gnj = 0 for every j, which implies that its best response
is always

qn = [ βw

α + β
− α

α + β

nØ
j=1

Gnjqj ]+ = βw

α + β

Every other node i has as unique out-neighbor node i + 1: Gij = 0 if j ̸= i + 1. Then,
it is possible to recursively compute the public good provision of every node starting
from the last one:

qn−1 = βw

α + β
− α

α + β
qn = βw

α + β
(1 − α

α + β
)

qn−2 = βw

α + β
− α

α + β
qn−1 = βw

α + β
(1 − α

α + β
+ α2

(α + β)2 )

In general for every i = 0, .., n − 1:

qn−i = βw

α + β

iØ
j=0

(−1)j( α

α + β
)j

3.5 Specialized equilibria

Specialized equilibria involve a subset of contributing agents, which provide their
maximal amount of public good, while the remaining nodes free-ride on the con-
tribution of others. For the public good game with value functions satisfying the
linearity property, the notion of specialized equilibria is linked to the concept of
maximal independent sets of nodes: we prove that in this setting, under a hypothesis
on the strength of the connection between agents, an action profile is a specialized
equilibrium if and only if the set of contributors is a maximal independent set of
nodes.

Throughout this section, consider the public good game P = (G, w, η), with value
functions satisfying the linearity property L for some k̄ = (k̄i)n

i=1 ∈ (0, 1)n and recall
that a vector of public good contributions q ∈ χw is said to be a specialized profile if
for every i, qi > 0 if and only if

qi = max
qi∈χi

Bi(q−i) = max
qi∈χi

[bi − (Ḡq)i]+ = bi

otherwise qi = 0. Thus, in a specialized profile agents can be partitioned into
non contributors −C and specialized (contributing) agents C, whose action is the
maximum of their best response.

Proposition 3.5.1. Consider the public good game P = (G, w, η), with value func-
tions satisfying the linearity property L for some k̄ = (k̄i)n

i=1 ∈ (0, 1)n and a specialized
profile q∗ ∈ χw.
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• If q∗ is a Nash equilibrium, then the set of specialists C is a maximal independent
set of nodes of the graph G.

• If the set of specialists C is a maximal independent set of nodes of the graph G
and for every non contributor j ∈ −C it holds

Ø
h∈C

Gjhbh ≥ bj

k̄j

then q∗ is a Nash equilibrium.

Proof. • (⇒):
If q∗ is a specialized equilibrium, for every contributing node i ∈ C q∗

i = bi > 0.
Since they play their best response, it must hold

(Ḡq∗)i =
nØ

j=1
k̄iGijq∗

j = 0

that is true if every specialist’s neighbor is playing zero, i.e., for every j ∈ N o
i

q∗
j = 0. So, every specialist has only non-contributing neighbors. Since no

two specialists can be neighbors at equilibrium, we have proved that C is an
independent set.
For every non-contributor j ∈ −C q∗

j = 0. Since they play their best response
at equilibrium, it must hold

bj −
nØ

h=1
k̄jGjhq∗

h ≤ 0

which can happen only if

nØ
h=1

k̄jGjhq∗
h ≥ bj ≥ 0

Thus
nØ

h=1
k̄jGjhq∗

h ≥ 0

This means that every non-contributor must have at least one specialist neighbor.
Thus, the set of contributors must be maximal. If it was not maximal, some
non-contributor would have no specialist neighbors, which is not possible at
equilibrium.

• (⇐):
If C is a maximal independent set of specialists, the action of every specialized
agent i ∈ C must be

q∗
i = bi > 0

and it is the best response since each i ∈ C has no contributing neighbors for
definition of independent set.
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Let us see that every non-specialist j ∈ −C is playing her best response by
playing zero; since C is a maximal independent set, every non specialist j ∈ −C

must have at least one specialist neighbor. Then, her best response is

Bj(q−j) = [bj −
nØ

h=1
k̄jGjhqh]+ = [bj −

Ø
h∈C

k̄jGjhbh]+

For hypothesis the following condition holds

Ø
h∈C

Gjhbh ≥ bj

k̄j

and it is equivalent to
bj −

Ø
h∈C

k̄jGjhbh ≤ 0

thus the best response is playing zero:

Bj(q−j) = [bj −
Ø
h∈C

k̄jGjhbh]+ = 0

In conclusion, we have proved that both specialists and non contributors are
playing their best response, which is equivalent to saying that q∗ is a Nash
equilibrium.

The characterization of specialized equilibria is at the center of the 2007 paper
by Bramoullé and Kranton [13]. Proposition 3.5.1 extends their main contribution
that relates specialized equilibria and maximal independent sets of nodes to a more
general game setting: nonlinear utilities, agents differing in k̄i and wi and G weighted
and directed.

Corollary 3.5.2. For the public good game P = (G, w, η), with value functions
satisfying the linearity property L for some k̄ = (k̄i)n

i=1 ∈ (0, 1)n, consider a specialized
profile q∗ ∈ χw. If for every j ∈ −C, h ∈ C it holds

Gjhbh ≥ bj

k̄j

then q∗ is a Nash equilibrium if and only if C is a maximal independent set.

Proof. If for every j ∈ −C, h ∈ C it holds

Gjhbh ≥ bj

k̄j

then Ø
h∈C

Gjhbh ≥ bj

k̄j

and Proposition 3.5.1 holds.
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Notice that Corollary 3.5.2 hints that, if the strength of the connection between
specialists and non-contributing agents is high enough, then it is sufficient to have
one specialist neighbor to play zero as best response and maximal independent sets
of specialists of order 1 are equilibrium profiles.

Example 3.5.1. Cobb-Douglas value functions (cont.)
For the game Cobb-Douglas public good game P = (G, w, η(α, β)), a specialized profile
q ∈ χw is such that qi > 0 if and only if

qi = max
qi∈[0,wi]

[ βwi

α + β
− α

α + β
(Gq)i]+ = βiwi

αi + βi

For Proposition 3.5.1, given a specialized profile q∗ ∈ χw.

• If q∗ is a Nash equilibrium, then the set of specialists C is a maximal independent
set of nodes.

• If the set of specialists C is a maximal independent set and for every j ∈ −C it
holds

q
h∈C Gjh

βhwh
αh+βh

≥ βjwj

αj
, then q∗ is a Nash equilibrium.

Let us see some examples.

Example 3.5.2. Consider the Cobb-Douglas public good game P = (G, w, η(α, β)),
defined on the weighted directed line of 4 nodes, with adjacency matrix

G =


0 2 0 0
1 0 1 0
0 3 0 1
0 0 2 0


Take α(2

5 , 3
4 , 1

6 , 1
2)T =, β = (1

2 , 1
3 , 1

2 , 1
3)T and income vector w = (3, 2, 2, 3)T .

Consider the specialized action profile q = (1.67, 0, 1.5, 0). The set of specialist nodes
is C = {1, 3} and the non contributors are −C = {2, 4}. Thus, C constitutes a
maximal independent set of nodes. To verify if q is an equilibrium, let us see that the
condition is satisfied for every non contributor:

• for non contributor j = 2 ∈ −C it holds:

Ø
h∈C

G2,h
βhwh

αh + βh
− β2w2

α2
= G21

β1w1
α1 + β1

+ G23
β3w3

α3 + β3
− β2w2

α2
= 2.28 ≥ 0

• for non contributor j = 4 ∈ −C it holds:

Ø
h∈C

G4,h
βhwh

αh + βh
− β4w4

α4
= G41

β1w1
α1 + β1

+ G43
β3w3

α3 + β3
− β4w4

α4
= 1 ≥ 0

Thus,
q∗ = (1.67, 0, 1.5, 0)

is a specialized equilibrium for the game.

46



The public good game model and preliminary results

Consider now the other specialized action profile q = (0, 0.62, 0, 1.2). The set of
specialist nodes is C = {2, 4} and the non contributors are −C = {1, 3}. Thus, C
constitutes a maximal independent set of nodes. To verify if q is an equilibrium, let
us see that the condition is satisfied for every non contributor:

• for non contributor j = 1 ∈ −C it holds:

Ø
h∈C

G1,h
βhwh

αh + βh
− β1w1

α1
= G12

β2w2
α2 + β2

+ G14
β4w4

α4 + β4
− β1w1

α1
= −2.52 < 0

• for non contributor j = 3 ∈ −C it holds:

Ø
h∈C

G3,h
βhwh

αh + βh
− β3w3

α3
= G32

β2w2
α2 + β2

+ G34
β4w4

α4 + β4
− β3w3

α3
= −2.95 < 0

Thus the specialized profile q = (0, 0.62, 0, 1.2) is not a Nash equilibrium for the game.

Example 3.5.3. Consider the game P = (G, w, η(α, β)), defined on the weighted
directed star graph G of 5 nodes, where node 1 is the center of the star, with adjacency
matrix

G =



0 2 2 2 2
1 0 0 0 0
1 0 0 0 0
1 0 0 0 0
1 0 0 0 0


Take α = (3

4 , 1
4 , 1

4 , 1
4 , 1

4)T , β = (2
3 , 5

8 , 3
8 , 5

8 , 3
8)T and income vector w = (5, 3, 2, 3, 2)T .

Consider the specialized action profile q = (0, 2.14, 1.2, 2.14, 1.2). The set of specialist
nodes is C = {2, 3, 4, 5} and the non contributors are −C = {1}. Thus, C constitutes
a maximal independent set of nodes. To verify if q is an equilibrium, let us see that
the condition is satisfied for the non contributor 1 ∈ −C:

Ø
h∈C

G1,h
βhwh

αh + βh
− β1w1

α1
= 8.93 ≥ 0

Thus,
q∗ = (0, 2.14, 1.2, 2.14, 1.2)

is a specialized equilibrium for the game.
Consider now the other specialized action profile q = (2.35, 0, 0, 0, 0)T . The set of

specialist nodes is C = {1} and the non contributors are −C = {2, 3, 4, 5}. Thus, C
constitutes a maximal independent set of nodes. To verify if q is an equilibrium, let
us see that the condition is satisfied for every non contributor: for j = 2 ∈ −C

Ø
h∈C

G2,h
βhwh

αh + βh
− β2w2

α2
= −5.15 < 0

Thus the specialized profile q = (2.35, 0, 0, 0, 0)T is not a Nash equilibrium for the
game.
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Remark 3.5.1. Consider the public good game P = (G, w, η) with value functions
satisfying the strong linearity property L+ for k̄ ∈ (0, 1). For a specialized profile
q∗ ∈ χw, if the set of specialists C is a maximal independent set, the condition for q∗

to be a Nash equilibrium is: for every j ∈ −C it must hold

Ø
h∈C

Gjhbh =
Ø
h∈C

Gjh(1 − k̄)wh ≥ bj

k̄
= (1 − k̄)wj

k̄

which reduces to Ø
h∈C

Gjhwh ≥ wj

k̄

Example 3.5.4. Cobb-Douglas value functions (cont.)
Thus, for the game P = (G, w, η(α, β)), with αi = α, βi = β, a specialized profile
q∗ ∈ χw is a Nash equilibrium if and only if the set of specialists C is a maximal
independent set and for every j ∈ −C it holds

q
h∈C Gjhwh ≥ α+β

α wj.

Example 3.5.5. Consider again the public good game P = (G, w, η(α, β)), defined
on the unweighted undirected circle graph G of 4 nodes of example 3.4.2. Take
α = 1

3 , β = 2
3 and income vector w = (1, 2, 1, 3)T . Consider the specialized profile

with contributors C = {2, 4}. C is a maximal independent set; let us verify that for
every j ∈ −C it holds Ø

h∈C

Gjhwh ≥ 3wj

For j = 1 and j = 3 the condition is verified: w2 + w4 = 5 ≥ 3w1 = 3w3 = 3. Thus
the specialized profile

q∗ = (0, βw2, 0, βw4)T = (0,
4
3 , 0, 2)

is a Nash equilibrium for the game. On the contrary, for the specialized profile with
contributors the maximal independent set C = {1, 3}, the condition is not verified
w1 + w3 = 2 ≤ 3w2 = 4 and w1 + w3 = 3 ≤ 3w4 = 90, thus q = (βw1, 0, βw3, 0)T is
not a Nash equilibrium for the game.

Example 3.5.6. Consider again the public good game P = (G, w, η(α, β)), defined on
the unweighted undirected line graph G of 3 nodes of example 3.4.3. Take α = 2

3 , β = 1
3

and income vector w = (2, 1, 2)T . Consider the specialized profile with contributors
C = {1, 3}. For j = 2 ∈ −C it holds w1 + w3 = 4 ≥ w2

k̄
= 2

3 ; thus

q∗ = (βw1, 0, βw3)T = (2
3 , 0,

2
3)

is a specialized Nash equilibrium. On the other hand, taking C = {2}, the condition
is not verified since w2 = 1 ≤ w1

k̄
= w3

k̄
= 3 and so q = (0, βw2, 0)T is not a Nash

equilibrium for the game.

Remark 3.5.2. Let us consider the game P = (G, w, η), with αi = α, βi = β, defined
on the equally weighted (of weight g) ring graph of n nodes, with n even. Assume
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that players have equal income wi = w > 0.It is interesting to study if there are
specialized equilibria. For the topology of the graph, since the set of contributors C

must be a maximal independent set, the only possible specialized equilibria are those
where contributors and non-contributors alternate.

Let us consider, for example, C = {even nodes} and −C = {odd nodes}. Then,
contributors must behave as isolated nodes: (qC)i = βw

α+β . Then for Proposition 3.5.1,
the action profile q ∈ χw such that qi = βw

α+β for every i ∈ C is a Nash equilibrium if
for every j ∈ −C it holds

Ø
h∈C

Gjh
βhwh

αh + βh
≥ βjwj

αj

For the game P, it is equivalent to

Ø
h∈C

Gjh
βw

α + β
≥ βw

α

Then,

1. for the equally weighted directed ring graph, every contributor has exactly one
specialist neighbor. Thus, that the condition becomes

g
βw

α + β
≥ βw

α

which is equivalent to
g ≥ α + β

α

In conclusion, if g ≥ α+β
α , then the specialized profile

q∗ = (0,
βw

α + β
, 0, ...,

βw

α + β
)

is a Nash equilibrium for the game.

2. for the equally weighted undirected ring graph, every contributor has exactly
two specialist neighbors. Thus, that the condition becomes

2g
βw

α + β
≥ βw

α

which is equivalent to
2g ≥ α + β

α

In conclusion, if 2g ≥ α+β
α , then the specialized profile

q∗ = (0,
βw

α + β
, 0, ...,

βw

α + β
)

is a Nash equilibrium for the game.

Since the result does not depend on what nodes contribute, it is possible to partition
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the nodes as C = {odd nodes} and −C = {even nodes} and obtain, under the same
condition, another specialized equilibrium:

q∗ = ( βw

α + β
, 0,

βw

α + β
, ..., 0)

Remark 3.5.3. Let us consider the game P = (G, w, η), with αi = α, βi = β, defined
on the equally weighted (of weight g) star graph of n nodes. For the topology of
the graph, since the set of contributors C must be a maximal independent set, there
are only two possible specialized equilibria: the one where the central node (node
1) contributes and the other free-ride and the one where the central node does not
contribute and the others are specialists.

1. Consider the specialized profile q ∈ χW where C = {1} and −C = {2, ..., n},
so that q1 = βw

α+β . Then for Proposition 3.5.1, the action profile q is a Nash
equilibrium if for every j ∈ −C it holds

Ø
h∈C

Gjh
βhwh

αh + βh
≥ βjwj

αj

in the case where C = {1}, it is equivalent to

g
βw

α + β
≥ βw

α

which leads to the condition
g

α

α + β
≥ 1

If it is satisfied, then
q∗ = ( βw

α + β
, 0, ..., 0)T

is a specialized Nash equilibrium for the game.

2. Consider the specialized profile q ∈ χW where C = {2, ..., n} and −C = {1}, so
that qi = βw

α+β for every i ∈ −C. Then for Proposition 3.5.1, the action profile
q is a Nash equilibrium if for 1 ∈ −C it holds

Ø
h∈C

G1h
βhwh

αh + βh
≥ β1w1

α1

in the case where C = {1}, it is equivalent to

(n − 1)g βw

α + β
≥ βw

α

which leads to the condition

(n − 1)g ≥ α + β

α
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If it is satisfied, then
q∗ = (0,

βw

α + β
, ...,

βw

α + β
)T

is a specialized Nash equilibrium for the game.
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Chapter 4

Uniqueness, contractivity and
stability results

In this chapter, the main results of this work, concerning the uniqueness and asymp-
totic behavior of equilibrium profiles, are presented.

First, for the general version of the public good game, we prove a sufficient
condition for the uniqueness of the Nash equilibrium. In the game with value
functions satisfying L, this condition relates uniqueness and the lowest eigenvalue of
the symmetrization of the per-row rescaled adjacency matrix Ḡ.

Afterwards, we study the limit behavior of the discrete and continuous-time
best response dynamics of the game. In the general setting, we provide a sufficient
condition that guarantees the contractivity of the discrete-time dynamics. This result
ensures the uniqueness of the Nash equilibrium and the global asymptotical stability
of the best response dynamics to it, both in discrete and continuous time.

Moreover, concerning the stability of the internal equilibrium for the game with
value functions under L+ on undirected graphs, we establish that, if it exists, it is
stable for the discrete-time dynamics if and only if contractivity holds, while for the
continuous-time dynamics it is stable if and only if the uniqueness condition is true.

Finally, for the continuous-time dynamics, we study the stability of Nash equilib-
rium profiles when contractivity is not guaranteed. The results concern the stability
of equilibria for the continuous-time dynamics under two main hypothesis: the value
functions satisfy the linearity property L and the per-row rescaled adjacency matrix
Ḡ is symmetric. We first prove that the system converges globally to the unique
Nash equilibrium also when the weaker uniqueness condition is satisfied. In addition,
when the equilibrium is not necessarily unique, we establish that the continuous-time
best response dynamics globally converges to the set of Nash equilibria and action
profiles that are local maximum points of the associated functional P are locally
asymptotically stable equilibria.

Let us start with a preliminary example that serves as a motivation to the main
results of the following sections. Some of the findings concerning the uniqueness and
stability of equilibria that are empirically obtained, in fact, will be generalized later.

Example 4.0.1. Complete graph of 3 nodes
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Consider the public good game P = (G, w, η(α, β)), where G = (N , E , G) is the
equally weighted complete graph of 3 nodes, w ∈ Rn

>0 the income vector with players
sharing equal income, i.e., wi = w > 0 for every i, and η the Cobb-Douglas value
functions with equal parameters αi = α, βi = β ∈ (0, 1), ηi(w − qi, qi + (Gq)i) =
(w − qi)α(qi + (Gq)i)β. To simplify the calculations, let us assume that α + β = 1
and wi = 1 for every i.

We refer to the adjacency matrix G having with equal weights Gij = γ
2α :

G =


0 γ

2α
γ

2α
γ

2α 0 γ
2α

γ
2α

γ
2α 0


The synchronous best response function is

F(q) = [


β

β

β

− γ

2


0 1 1
1 0 1
1 1 0

 q]+

Analitically, we derive the following results on the equilibrium profiles:

• If γ < 2
There exists a unique fixed point of F and so a unique equilibrium, which is the
internal one of equally contributing agents

q∗ = ( β

1 + γ
,

β

1 + γ
,

β

1 + γ
)

• If γ > 2
The internal equilibrium q∗ = ( β

1+γ , β
1+γ , β

1+γ ) is still present, but others arise:
- specialized equilibria:

q∗
s1 = (β, 0, 0), q∗

s2 = (0, β, 0), q∗
s3 = (0, 0, β)

- equilibria with 2 contributing nodes:

q∗
12 = ( 2β

2 + γ
,

2β

2 + γ
, 0), q∗

23 = (0,
2β

2 + γ
,

2β

2 + γ
), q∗

13 = ( 2β

2 + γ
, 0,

2β

2 + γ
)

Let us study the behavior of the best response dynamics to understand the nature of
the Nash equilibria as γ varies. We rely on some simulations of the continuous and
discrete-time dynamical systems. Recall their form:

q(t + 1) = F(q(t)) = [


β

β

β

− γ

2


0 1 1
1 0 1
1 1 0

 q(t)]+

is the discrete-time best response dynamics, while
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q̇(t) = F(q(t)) − q(t) = [


β

β

β

− γ

2


0 1 1
1 0 1
1 1 0

 q(t)]+ − q(t)

is the one in continuous time. Empirically, we verify that the asymptotic behavior
of the dynamical systems depends on the value of γ; in particular, three phases are
observed, corresponding to the intervals γ < 1, 1 < γ < 2 and γ > 2.

• If γ < 1
The simulations, reported in Figure 4.1, show that the two dynamical systems
converge to the unique Nash equilibrium q∗ = ( β

1+γ , β
1+γ , β

1+γ ) from any starting
point q(0) ∈ χw. This indicates that q∗ is globally asymptotically stable both
for the discrete and continuous-time dynamics.

(a) discrete-time dynamics simulation for
various random starting points q0

(b) continuous-time dynamics simulation
for various starting points q0

Figure 4.1: Best response dynamics simulations in discrete and continuous time for
γ < 1: the system always converges to the unique equilibrium q∗

• If 1 < γ < 2
The unique equilibrium is still q∗ = ( β

1+γ , β
1+γ , β

1+γ ), but its asymptotic behavior
is different in the two cases. Looking for the fixed points of F2, we find that a
limit cycle of the form

C = (0, 0, 0) ↔ (β, β, β)

emerges for the discrete-time dynamics. In Figure 4.2, it is possible to see
that, while q∗ is still stable for the continuous-time dynamics, the discrete-time
dynamical system does not converge to the Nash equilibrium, but rather to the
limit cycle.
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(a) discrete-time dynamics simulation for
various random starting points q0: conver-
gence to the limit cycle

(b) continuous-time dynamics simulation
for various random starting points q0: con-
vergence to the equilibrium

Figure 4.2: Best response dynamics simulations in discrete and continuous time for
1 < γ < 2: a different behavior is observed in the discrete and continuous time cases

• If γ > 2
In this case, in addition to the internal q∗ = ( β

1+γ , β
1+γ , β

1+γ ), other equilibrium
profiles arise:
- specialized equilibria:

q∗
s1 = (β, 0, 0), q∗

s2 = (0, β, 0), q∗
s3 = (0, 0, β)

- equilibria with 2 contributing nodes:

q∗
12 = ( 2β

2 + γ
,

2β

2 + γ
, 0), q∗

23 = (0,
2β

2 + γ
,

2β

2 + γ
), q∗

13 = ( 2β

2 + γ
, 0,

2β

2 + γ
)

As before, we analitically derive the existence of the limit cycle in the discrete-
time dynamics:

C : (0, 0, 0) ↔ (β, β, β)

The simulations help in understanding the nature of the equilibria and of the
limit cycle. First, it is possible to observe in Figures 4.3, 4.4 that the internal
equilibrium is unstable both in the discrete and continuous-time dynamical
systems.
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(a) discrete-time dynamics simulation for
a random q0 not close to the equilibria:
convergence to the limit cycle

(b) discrete-time dynamics simulation for
q0 close to the equilibrium points: conver-
gence to the specialized equilibria

Figure 4.3: Best response dynamics simulation in discrete time for γ > 2: conver-
gence to the limit cycle or to a specialized equilibrium

Second, from the simulation of the discrete-time best response dynamics (in
Figure 4.3), we observe that when the system starts from a random configuration
q(0) that is not close to one of the specialized equilibria, it will converge to
the limit cycle, that attracts most of the domain (often in one step). If the
dynamics begins close enough to a specialized equilibrium, it converges to it.

(a) continuous-time dynamics simulation
for q0 = (q1, q2, q3) and q1 > q2, q3: con-
vergence to the specialized equilibrium
such that q1 = β

(b) continuous-time dynamics simulation
for q0 = (q1, q2, q3) and q2 = q3, q1 <
q2, q3: convergence to the equilibrium such
that q2 = q3 = 2β

2+γ

Figure 4.4: Best response dynamics simulation in continuous time for γ > 2:
convergence to a non internal equilibrium

Finally, the continuous-time dynamics simulation is visible in Figure 4.4: it
shows that the internal equilibrium only attracts the bisector, that is an invariant
set of null measure:

q∗ attracts {q1 = q2 = q3}

which proves its instability. The attraction basins of the specialized equilibria
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are hinted by the simulations:

q∗
s1 = (β, 0, 0) attracts {(q1, q2, q3) : q1 > q2, q3}

q∗
s2 = (0, β, 0) attracts {(q1, q2, q3) : q2 > q1, q3}

q∗
s3 = (0, 0, β) attracts {(q1, q2, q3) : q3 > q2, q1}

q∗
23 = (0,

2β

2 + γ
,

2β

2 + γ
) attracts {(q1, q2, q3) : q1 < q2 = q3}

q∗
13 = ( 2β

2 + γ
, 0,

2β

2 + γ
) attracts {(q1, q2, q3) : q2 < q1 = q3}

q∗
12 = ( 2β

2 + γ
,

2β

2 + γ
, 0) attracts {(q1, q2, q3) : q3 < q1 = q2}

The observed behavior suggests that the specialized equilibria q∗
s1, q∗

s2, q∗
s3 are

locally asimptotically stable, while equilibria with 2 contributors q∗
12, q∗

13, q∗
23

attract measure zero sets, so are unstable.

We now prove that the uniqueness and asymptotic behavior of equilibrium profiles
emerging from the example are also supported by a more general theory.

4.1 Uniqueness of the Nash equilibrium

Let us first provide a technical result that guarantees the uniqueness of the Nash
equilibrium in the general game setting. The proof relies on the theory on uniqueness
of equilibrium profiles for concave games by Rosen [20].

Lemma 4.1.1. Consider a public good game P = (G, w, η). If for every q ∈ χw and
every vector v ∈ Rn, there exists a vector r ∈ Rn

>0 such that it holds

−
nØ

i=1

Ø
j ̸=i

vi(rik
′
i(wi + (Gq)i)Gij)vj −

nØ
i=1

Ø
j ̸=i

vi(rjk′
j(wj + (Gq)j)Gji)vj <

nØ
i=1

2v2
i ri

(4.1)
then the Nash equilibrium is unique.

Proof. Consider a game with generalized quadratic utilities of Proposition (3.2.5)

ūi(q) = −q2
i

2 + wiqi − ki(wi + (Gq)i)qi

Given q ∈ χw and the vector r ∈ Rn
>0, construct the matrix H(q, r) ∈ Rn

≥0 defined as

H(q, r)i,i = ri
∂2ūi

∂q2
i

(q) = −ri

and
H(q, r)i,j = ri

∂2ūi

∂qi∂qj
(q) = −rik

′
i(wi + (Gq)i)Gij
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Denote its symmetrization as Hs = H(q, r) + H(q, r)T . Then

Hs(q, r)ij = −rik
′
i(wi + (Gq)i)Gij − rjk′

j(wj + (Gq)j)Gji and Hs(q, r)ii = −2ri

For hypothesis it holds that for every v ∈ Rn, there exists a vector r ∈ Rn
>0 st

−
nØ

i=1

Ø
j ̸=i

vi(rik
′
i(wi + (Gq)i)Gij)vj −

nØ
i=1

Ø
j ̸=i

vi(rjk′
j(wj + (Gq)j)Gji)vj <

nØ
i=1

2v2
i ri

Notice that the left hand side is equivalent to

nØ
i=1

Ø
j ̸=i

vi(−rik
′
i(wi + (Gq)i)Gij − rjk′

j(wj + (Gq)j)Gji)vj =
nØ

i=1

Ø
j ̸=i

viH
s(q, r)ijvj

and the right hand side is equivalent to

nØ
i=1

2v2
i ri = −

nØ
i=1

viH
s(q, r)iivi

Which leads to
nØ

i=1

Ø
j ̸=i

viH
s(q, r)ijvj +

nØ
i=1

viH
s(q, r)iivi =

nØ
i=1

nØ
j=1

viH
s(q, r)ijvj < 0

Writing it in vector form, we get that Hs is negative definite:

vHs(q, r)vT < 0

Then, for Rosen’s equilibrium criterion, the equilibrium for the game with utilities
ūi is unique. Since the best response functions are the same for Proposition 3.2.5,
the Nash equilibrium is unique also for the public good games with utilities ui(q) =
ηi(wi − qi, qi + (Gq)i).

Despite the difficulty in verifying the uniqueness condition of Lemma 4.1.1 for the
game with general value functions, if property L is satisfied, the sufficient condition
for the uniqueness of the Nash equilibrium simplifies to a bound on the lowest
eigenvalue of the symmetrization of the per-row rescaled adjacency matrix Ḡ.

Theorem 4.1.2. Consider the public good game P = (G, w, η), with value functions
satisfying the linearity property L for some k̄ = (k̄i)n

i=1 ∈ (0, 1)n. Denote the
symmetrization of Ḡ as Ḡs = Ḡ+ḠT

2 . If −λḠs

min < 1, then the Nash equilibrium is
unique.

Proof. For Lemma 4.1.1, if for every q ∈ χw and every vector v ∈ Rn, there exists a
vector r ∈ Rn

>0 such that (4.1) holds, then the Nash equilibrium is unique. For L,
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k′
i(wi + (Gq)i) = k̄i > 0, then the condition of the Lemma reduces to

−
nØ

i=1

Ø
j ̸=i

vi(rik̄iGij)vj −
nØ

i=1

nØ
j ̸=i

vi(rj k̄jGji)vj <
nØ

i=1
2v2

i ri

Taking ri = 1 for every i, we get

−
nØ

i=1

Ø
j ̸=i

vi(k̄iGij)vj −
nØ

i=1

nØ
j ̸=i

vi(k̄jGji)vj <
nØ

i=1
2v2

i

using the definition of Ḡ, we get

−
nØ

i=1

Ø
j ̸=i

vi(Ḡij)vj −
nØ

i=1

nØ
j ̸=i

vi(Ḡji)vj <
nØ

i=1
2v2

i

writing it in vector form

−vT Ḡv − vT ḠT v <
nØ

i=1
2v2

i

Define the symmetrization of Ḡ, Ḡs = Ḡ+ḠT

2 . Then the uniqueness condition is
equivalent to

−vT Ḡsv <
nØ

i=1
v2

i = ||v||22

Now notice that, in general, it holds

−vT Ḡsv ≤ −λḠs

min||v||22

Then, a sufficient condition for Lemma 4.1.1 to hold is −λḠs

min < 1, thus if it is
satisfied, the Nash equilibrium is unique.

Theorem 4.1.2 provides a generalization to the uniqueness condition of Bramoullé
and Kranton [10], to the case of directed graph G and heterogeneous k̄i. Moreover, it
is interesting to notice that our condition also mirrors the uniqueness condition of
Allouch [16] in the more general setting of weighted, directed graphs. In particular,
the alternative, more restrictive condition −k̄maxλGs

min < 1, is exactly Allouch’s
condition extended to the weighted and directed case.

Corollary 4.1.3. Consider the public good game P = (G, w, η). Assume G is an
undirected graph and that the value functions satisfy the strong linearity property L+

for some k̄ ∈ (0, 1). If
−λG

mink̄ < 1

then the Nash equilibrium is unique.

Proof. The strong linearity property L+ implies that

Ḡ = k̄G
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so that
Ḡs = k̄(G + GT

2 )

Being the graph undirected, the adjacency matrix G is symmetric and Ḡs = Ḡ.
Moreover, λḠ

min = k̄λG
min. Then, the condition for the equilibrium to be unique of

Theorem 4.1.2 simplifies to
−λG

mink̄ < 1

In Corollary 4.1.3 we derive exactly the sufficient condition for the uniqueness of
the Nash equilibrium of Bramoullé and Kranton [10].

4.2 Contractivity of the discrete-time best response dy-
namics

We derive a sufficient condition that relies on the fact that the synchronous best
response function is Lipschitz continuous in the Ḡ-norm. This guarantees the
contractivity of the synchronous best response function if the dominant eigenvalue of
Ḡ is bounded by 1. The uniqueness and global asymptotical stability of the Nash
equilibrium both for the discrete and continuous-time best response dynamics directly
follow from this result.

Moreover, for the game with value functions under L+ on undirected graphs,
we prove that, if it exists, the internal equilibrium is stable for the discrete-time
dynamics if and only if contractivity holds.

To derive the theory on the contractivity of the discrete-time best response
dynamics, let us first notice that for every i, the function ki is Lipschitz continuous
on (0, +∞). This means that there exists a positive k̄i > 0 such that for every
z1, z2 ∈ (0, +∞), with z1 ̸= z2, it holds

|ki(z1) − ki(z2)| ≤ k̄i|z1 − z2|

Using the formula for the derivative of ki given by (A.5) of Lemma A.0.1, it is possible
to explicitly derive the Lipschitz constant for every i:

k̄i = max
z>0

k′
i(z)

For the general game setting, define the matrix Ḡ as the adjacency matrix where
every row is rescaled by the corresponding Lipschitz constant: Ḡij = k̄iGij , Ḡii = 0.
Notice that when the linearity property holds, this definition of Ḡ is equivalent to
the previous one.

Denote (λḠ, vḠ) the dominant eigenpair of Ḡ and recall the definition of the
Ḡ-norm for a general vector x ∈ Rn: ||x||Ḡ = qn

i=1 vḠ
i |xi|
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Proposition 4.2.1. Given a public good game P = (G, w, η), the synchronous best
response function F is Lipschitz continuous in the Ḡ-norm, that is for every couple
of public good provision vectors q, q̃ ∈ χw, q ̸= q̃

||F(q) − F(q̃)||Ḡ ≤ L||q − q̃||Ḡ

where L = λḠ is the Lipschitz constant.

Proof. Notice that, for Lemma 2.1.1, ||Ḡ||Ḡ = λḠ. Then, for every couple of vectors
of public good provisions q, q̃ ∈ χw such that q ̸= q̃, the following chain of equalities
and inequalities holds

||F(q) − F(q̃)||Ḡ =
nØ

i=1
vḠ

i |Bi(q−i) − Bi(q̃−i)|

=
nØ

i=1
vḠ

i |ki(wi + (Gq̃)i) − ki(wi + (Gq)i)| ≤
nØ

i=1
vḠ

i k̄i|wi + (Gq̃)i − wi − (Gq)i|

=
nØ

i=1
vḠ

i |(k̄iG(q̃ − q))i| =
nØ

i=1
vḠ

i |k̄i

nØ
j=1

Gij(q̃ − q)j |

=
nØ

i=1
vḠ

i |
nØ

j=1
Ḡij(q̃ − q)j | =

nØ
i=1

vḠ
i |(Ḡ(q̃ − q))i|

= ||Ḡ(q̃ − q)||Ḡ ≤ ||Ḡ||Ḡ||q − q̃||Ḡ = λḠ||q − q̃||Ḡ

Theorem 4.2.2. Consider a public good game P = (G, w, η). If λḠ < 1, then the
synchronous best response function F is contractive in the Ḡ-norm, that is for every
couple of public good provision vectors q, q̃ ∈ χw, q ̸= q̃

||F(q) − F(q̃)||Ḡ ≤ L||q − q̃||Ḡ

where L = λḠ < 1 is the contraction constant.

Proof. The thesis follows directly from Proposition 3.2.3 and the hypothesis λḠ <

1.

Corollary 4.2.3. For the public good game P = (G, w, η), if λḠ < 1, then the Nash
equilibrium is unique and the discrete-time best response dynamics globally converges
to it.

Proof. To prove the uniqueness, assume that both q, q̃ ∈ χw are equilibrium profiles
for the game. Then, they are fixed points of the discrete-time best response dynamics,
that is F(q) = q and F(q̃) = q̃. Thus, it must hold that

||F(q) − F(q̃)||Ḡ = ||q − q̃||Ḡ
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which contradicts the contractivity result of Theorem 4.2.2, unless q = q̃.
For the global asymptotical convergence to the unique equilibrium, recall that for
λG < 1, the synchronous best response function F is a contraction, thus the discrete-
time best response dynamics q(t + 1) = F(q(t)) converges to its unique fixed point
for the Banach fixed-point theorem for any starting point q(0) ∈ χw.

Let us now focus on the game P = (G, w, η) with value functions satisfying the
linearity property L for some k̄ = (k̄i)n

i=1 ∈ (0, 1)n and derive some implications of
the contractivity of the discrete-time best response dynamics.

Remark 4.2.1. Notice that the contractivity of the best response implies the unique-
ness of the equilibrium, while vice versa does not hold in general. Moreover, if the
value functions ηi satisfy the linearity property L for every i and Ḡ is symmetric,
contractivity of the discrete-time dynamics implies the uniqueness condition of Theo-
rem 4.1.2. To prove it, notice first that, in general, if an eigenvalue of Ḡ is positive
λḠ

i > 0, then it satisfies:
−λḠ

i < 0 < 1

Assume now that the contractivity condition λḠ < 1 holds; it is equivalent to

max
i=1,...,n

|λḠ
i | < 1

then for every i
|λḠ

i | < 1

If λḠ
i < 0, then |λḠ

i | < 1 implies

0 < −λḠ
i < 1

Then we have proved that if the contractivity condition holds, then it is true that
−λḠ

i < 1 which implies that also −λḠ
min < 1, that is the uniqueness condition for

linear ki of Proposition 4.1.2.

Example 4.2.1. Cobb-Douglas value functions (cont.)
For the game P = (G, w, η(α, β)), with αi = α, βi = β, for Theorem 4.2.2, the
condition for the contractivity of the synchronous best response function becomes

λG α

α + β
< 1

if it is satisfied, it guarantees for the uniqueness and global asymptotical stability of
the Nash equilibrium both in discrete and continuous time.

Example 4.2.2. Consider again the public good game P = (G, w, η(α, β)), with
equal parameters αi = α, βi = β, defined on the unweighted undirected star graph G
of 5 nodes, of example 3.4.7. The contractivity condition is satisfied, since λG α

α+β =
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0.55 < 1. Thus, the internal Nash equilibrium

q∗ = β

α + β
( α

α + β
λw + 1)(( α

α + β
G + I)−1)2 = (0.33, 0.17, 0.17, 0.17, 0.17)T

is the unique equilibrium and it is globally asymptotically stable.

Example 4.2.3. Consider again the public good game P = (G, w, η(α, β)), with
equal parameters αi = α, βi = β, defined on the unweighted undirected line graph G
of 4 nodes of example 3.4.10. Since the contractivity condition λG α

α+β = 0.69 < 1
is satisfied, the internal equilibrium is the unique equilibrium and it is globally
asymptotically stable.

Remark 4.2.2. Consider the public good game P = (G, w, η), with equal parameters
αi = α, βi = β and G = (N , E , G) the unweighted directed line graph of n nodes.
Assume that players have equal income wi = w. Then, there exists always a unique
globally asymptotically stable Nash equilibrium with the form:

q∗
n−i = βw

α + β

iØ
j=0

(−1)j( α

α + β
)j

for i = 0, ..., n − 1
To prove it, it is enough to see that the contractivity condition is always verified.

For the unweighted directed line graph, the adjacency matrix is the upper diagonal
matrix

G =



0 1 0 ... 0
0 0 1 0 ... 0

0 0 0 . . . ...
...

...
... 1

0 0 ... ... ... 0


For Perron Frobenius theorem, for the spectral radius it holds

0 ≤ λG ≤ 1

So that
0 ≤ λG α

α + β
≤ α

α + β
< 1

Then for Corollary 4.2.3, there exists a unique Nash equilibrium for the game that is
globally asymptotically stable. The form is given by Remark 3.4.2.

Remark 4.2.3. Let us focus on the condition for the global asymptotical stability
of the unique equilibrium for regular graphs. Consider the game P = (G, w, η), with
αi = α, βi = β, defined on a general equally weighted (of weight g) regular graph,
where all nodes have degree d ≥ 1. For Perron-Frobenius theorem, the spectral radius
has bounds

min
i

nØ
j=1

Gij ≤ λG ≤ max
i

nØ
j=1

Gij
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Since the graph is equally weighted and regular of degree d,
qn

j=1 Gij = dg for every i.
Then, λG = dg and the condition for the contractivity of the best response of Theorem
4.1.2 is

dg
α

α + β
< 1

For example,

1. For the equally weighted directed circle graph, the adjacency matrix is the upper
diagonal matrix

G =



0 g 0 ... 0
0 0 g 0 ... 0

0 0 0 . . . ...
...

...
... g

g 0 ... ... ... 0


Being the spectral radius λG = g, if g α

α+β < 1, then the unique Nash equilibrium
is globally asymptotically stable. The unique equilibrium is found using Remark
3.4.1: q∗ ∈ χw st

q∗
i = βw

α(1 + g) + β

Notice that the contractivity condition is always guaranteed for the unweighted
graph where g = 1, since α

α+β < 1 for α, β ∈ (0, 1).

2. For the equally weighted undirected circle graph, the adjacency matrix is

G =



0 g 0 g

g 0 g

0 g 0 . . .
. . . . . . g

g g 0


Being the spectral radius λG = 2g, if 2g α

α+β < 1, then contractivity implies the
global stability of the unique equilibrium. The unique equilibrium can be found
using Remark 3.4.1: q∗ ∈ χw st

q∗
i = βw

α(1 + 2g) + β

Thus, for examples 3.4.5 and 3.4.9, the internal equilibrium is the unique Nash
and it is globally asymptotically stable. The same holds for the specialized
equilibrium of example 3.5.5.

Considering the game defined on an undirected graph, with value functions satis-
fying L+, let us now prove another result on the stability of the internal equilibrium
when the contractivity is not satisfied. In particular, for the discrete-time dynamics,
the internal equilibrium is stable if and only if the dynamics is contractive.
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Proposition 4.2.4. Consider the public good game P = (G, w, η) with value functions
satisfying the strong linearity property L+ for k̄ ∈ (0, 1) and assume that G is an
undirected graph. If there exists an internal equilibrium q∗ ∈ χw, then for the discrete-
time dynamics, q∗ is stable if and only if λGk̄ < 1. Otherwise, if λGk̄ ≥ 1, it is
unstable.

Proof. Let us denote the spectrum of G σ(G) = {λG
1 , λG

2 , ..., λG
n } ⊂ R. Then the

spectrum of Ḡ is σ(Ḡ) = k̄σ(G) = {k̄λG
1 , k̄λG

2 , ..., k̄λG
n }. To study the stability of

the internal equilibrium it is possible to use a linearization of the best response
dynamics, since the saturation is no longer necessary in a neighborhood of q∗. For
the discrete-time dynamics

q(t + 1) = F(q(t)) = b − Ḡq(t)

the stability depends on the eigenvalues of −Ḡ; recall that

σ(−Ḡ) = {−k̄λG
i }n

i=1

The internal equilibrium is stable if and only if for every i it holds

| − k̄λG
i | < 1

that is equivalent to
|λG

i | <
1
k̄

Since, for definition of dominant eigenvalue, for every i it holds

|λG
i | ≤ max

i=1,...,n
|λG

i | = λG

then q∗ ∈ χw is stable if and only if

λGk̄ < 1

q∗ is unstable if there exists i such that

| − k̄λG
i | ≥ 1

that is equivalent to
k̄|λG

i | ≥ 1

so it is enough if it is true for the largest eigenvalue in modulus, i.e.,

λGk̄ ≥ 1

Example 4.2.4. Cobb-Douglas value functions (cont.)
For the game P = (G, w, η(α, β)), with αi = α, βi = β, defined on a directed graph
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G, when contractivity is not guaranteed, i.e., λG α
α+β ≥ 1, for Proposition 4.2.4, if

there exists an internal equilibrium q∗ ∈ χw, then it is unstable for the discrete-time
dynamics.

Let us see two examples.

Example 4.2.5. Consider again the public good game P = (G, w, η(α, β)), with
αi = α, βi = β, defined on the unweighted undirected circle graph G of 5 nodes of
example 3.4.9. Now consider the equally weighted adjacency matrix

G = 2



0 1 0 0 1
1 0 1 0 0
0 1 0 1 0
0 0 1 0 1
1 0 0 1 0


Take again α = 1

4 , β = 1
3 and income vector w = (5, 4, 4, 4, 5)T . In this case the

uniqueness condition is not satisfied, since −λG
min

α
α+β = 1.39 ≥ 1, but there exists

the internal equilibrium
q∗ = (1, 1.13, 0.32, 1.13, 1)T

Since the contractivity condition is not satisfied, i.e., λG α
α+β = 1.71 ≥ 1, for Propo-

sition 4.2.4 q∗ is unstable in discrete time. Taking α = 1
4 , β = 2

3 , the uniqueness
condition −λG

min
α

α+β = 0.88 < 1 holds and the unique equilibrium is the internal one:

q∗ = (2.29, 0.18, 2.71, 0.18, 2.29)T

Still, since:
λG α

α + β
= 1.09 ≥ 1

q∗ is unstable for the discrete-time dynamics.

Example 4.2.6. Consider again the public good game P = (G, w, η(α, β)), with
αi = α, βi = β, defined on the unweighted undirected line graph of 4 nodes of example
3.4.10. Now consider the equally weighted adjacency matrix

G = 2


0 1 0 0
1 0 1 0
0 1 0 1
0 0 1 0


Take again α = 1

4 , β = 1
3 and income vector w = (2, 3, 3, 2)T . In this case the

uniqueness condition is not satisfied, as −λG
min

α
α+β = 1.39 ≥ 1, but there exists the

internal equilibrium
q∗ = (0.58, 0.65, 0.65, 0.58)T

Since the contractivity condition does not hold, i.e., λG α
α+β = 1.39 ≥ 1, for Proposi-

tion 4.2.4 q∗ is unstable for the discrete-time best response dynamics.
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4.3 Stability of equilibria for the continuous-time dy-
namics

In this section we prove that the contractivity of the discrete-time best response
dynamics also ensures uniqueness and global stability to the equilibrium for the
continuous-time dynamics. In addition, we establish that, under the linearity property
L, global stability of the equilibrium is guaranteed also under the weaker uniqueness
condition if Ḡ is symmetric.

In this setting, we further study the stability of equilibrium profiles when unique-
ness may not hold and we demonstrate that the continuous-time best response
dynamics globally converges to the set of Nash equilibria. In addition, action profiles
that are local maximum points of an associated functional P are locally asymptotically
stable equilibria for the game.

Finally, for the game with value functions under L+ on undirected graphs, we
establish that, if there exists an internal equilibrium, for the continuous-time dynamics
it is stable if and only if the uniqueness condition is true.

Theorem 4.3.1. For the public good game P = (G, w, η), if λḠ < 1, then the
Nash equilibrium is unique and the continuous-time best response dynamics globally
converges to it.

Proof. From Corollary 4.2.3, the Nash equilibrium q∗ ∈ χw is unique. To prove its
stability, define the functional L : Rn → Rn having the form

L(q) = ||q∗ − q||Ḡ =
nØ

i=1
vḠ

i |q∗
i − qi|

Then, L is continuous and positive definite with respect to q∗ since L(q) ≥ 0 and
L(q) = 0 if and only if q = q∗. Let us prove that it is decreasing along the trajectories
of the continuous-time best response dynamics. To do so notice that L(q(t)) is the
composition of two Lipschitz continuous functions and thus it is Lipschitz continuous;
this implies that, in particular, L is absolutely continuous in t. Define the function

σi = sign(qi − q∗
i ) =


+1 if qi − q∗

i > 0

0 if qi − q∗
i = 0

−1 if qi − q∗
i < 0

Then, almost everywhere the derivative of L with respect to t is defined and satisfies:

L̇(q(t)) = d

dt
L(q(t)) =

nØ
i=1

vḠ
i

d

dt
|qi(t) − q∗

i |

=
nØ

i=1
vḠ

i σi
d

dt
(qi(t) − q∗

i ) =
nØ

i=1
vḠ

i σi(Bi(q−i) − qi)
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Since q∗ is an equilibrium, it holds for every i that Bi(q∗
−i) = q∗

i , thus

L̇(q(t)) =
nØ

i=1
vḠ

i σi(Bi(q−i) − Bi(q∗
−i) + q∗

i − qi)

=
nØ

i=1
vḠ

i (σi(Bi(q−i) − Bi(q∗
−i)) − σi(qi − q∗

i ))

Being σi = sign(qi − q∗
i ) ∈ {+1, 0, −1} we have that σi(qi − q∗

i ) = |qi − q∗
i |, thus we

get

L̇(q(t)) =
nØ

i=1
vḠ

i σi(Bi(q−i) − Bi(q∗
−i)) −

nØ
i=1

vḠ
i |qi − q∗

i |

Estimating the first term as

nØ
i=1

vḠ
i σi(Bi(q−i) − Bi(q∗

−i)) ≤
nØ

i=1
vḠ

i |Bi(q−i) − Bi(q∗
−i)|

We obtain
L̇(q(t)) ≤

nØ
i=1

vḠ
i |Bi(q−i) − Bi(q∗

−i)| −
nØ

i=1
vḠ

i |qi − q∗
i |

For the definition of the Ḡ-norm and for the contractivity of F it is true that

L̇(q(t)) ≤ ||F(q)−F(q∗)||Ḡ−||q−q∗||Ḡ ≤ λḠ||q−q∗||Ḡ−||q−q∗||Ḡ = (λḠ−1)||q−q∗||Ḡ

Then it holds
L̇(q(t)) ≤ −(1 − λḠ)L(q(t))

and, for the contractivity constraint, 1 − λḠ > 0. The convergence to q∗ is global
and exponential since for every q ∈ χw, q ̸= q∗

d

dt
logL(q(t)) = L̇(q(t))

L(q(t)) ≤ −(1 − λḠ)

which implies
log(L(q(t))) ≤ log(L(q(0))) − (1 − λḠ)t

and so
L(q(t)) ≤ L(q(0))e−(1−λḠ)t

Thus from every action profile q ∈ χw, L converges exponentially to zero, and so the
dynamics globally converges to the unique Nash equilibrium q∗.

Notice that our sufficient condition for the uniqueness and global stability of the
Nash equilibrium of Theorem 4.3.1 implies the one derived by Gharesifard et al. [17].
Moreover, we extend their framework to include best response functions thar are
non-necessarily linear saturated.

We now show that there is global asymptotical stability of the continuous-time
best response dynamics also under weaker assumptions on the spectrum of Ḡ. In
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particular, if Ḡ is symmetric and the uniqueness condition of Theorem 4.1.2 holds,
that is −λḠ

min < 1, then the Nash equilibrium is globally asymptotically stable for the
continuous-time dynamics. To prove it, let us introduce the functional P : χw → R

such that
P (q) = −1

2qT (I + Ḡ)q + bT q

and state the following preliminary Lemma.

Lemma 4.3.2. Consider the public good game P = (G, w, η), with value functions
satisfying the linearity property L for some k̄ = (k̄i)n

i=1 ∈ (0, 1)n. Assume Ḡ is a
symmetric matrix. Then,

Ṗ (q(t)) ≥ 0

and q∗ ∈ χw is a Nash equilibrium for the game if and only if

Ṗ (q∗) = 0

Proof. The derivative of P with respect to t is then

Ṗ (q(t)) = dP (q(t))
dt

= (b − Ḡq(t) − q(t))T ([b − Ḡq(t)]+ − q(t))

which can be written as

Ṗ (q(t)) =
nØ

i=1

∂P (q(t))
∂qi

q̇i(t) =
nØ

i=1
hi(q)

with hi(q) = (−qi + bi − (Ḡq)i)([bi − (Ḡq)i]+ − qi).
Let us see that for every i and for every q ∈ χw, it holds hi(q) ≥ 0, and hi(q) = 0 for
every i if and only if q is a Nash equilibrium:

• If bi ≤ (Ḡq)i, then [bi − (Ḡq)i]+ = 0 and:

hi(q) = qi(qi − bi + (Ḡq)i) ≥ q2
i ≥ 0

Moreover hi(q) = 0 if and only if qi = 0, i.e., if agent i is playing his best
response.

• If bi ≥ (Ḡq)i, then:

hi(q) = (−qi + bi − (Ḡq)i)2 ≥ 0

Moreover hi(q) = 0 if and only if qi = bi − (Ḡq)i ≥ 0, i.e., if agent i is playing
his best response.

Then Ṗ (q(t)) = qn
i=1 hi(q) ≥ 0 and Ṗ (q(t)) = qn

i=1 hi(q) = 0 if and only if hi(q) = 0
for every i, which is equivalent to q being a Nash equilibrium.

Theorem 4.3.3. Consider the public good game P = (G, w, η), with value functions
satisfying the linearity property L for some k̄ = (k̄i)n

i=1 ∈ (0, 1)n. Assume Ḡ is a
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symmetric matrix and −λḠ
min < 1. Then, the continuous-time best response dynamics

globally converges to the unique Nash equilibrium.

Proof. For Proposition 4.1.2, the condition −λḠ
min < 1 ensures the uniqueness of the

equilibrium q∗ ∈ χw. From Lemma 4.3.2, we know that −P is decreasing along the
trajectories of the dynamics, that is −Ṗ (q(t)) < 0 for q ̸= q∗. Then, being χw a
compact set, from LaSalle’s Invariance Principle1 it follows that the continuous-time
best response dynamics globally converges to the largest invariant set such that
Ṗ (q(t)) = 0, which is exactly q∗.

Theorem 4.3.3 generalizes the stability result for the unique Nash equilibrium of
Bramoullé et al. [9] to weighted graphs. Moreover, it mirrors the contribution by
Allouch [16] for the stability of the unique Nash equilibrium.

Remark 4.3.1. Summing up, in some cases the behavior of the two best response
dynamics for the game P = (G, w, η) with value functions satisfying the linearity
property L is different. As long as the contractivity condition λḠ < 1 is satisfied,
there exists a unique Nash equilibrium that is globally stable for both the discrete and
continuous-time dynamics. If Ḡ is symmetric, when this condition is violated but
uniqueness still holds, that is −λḠ

min < 1, then the Nash equilibrium is still stable for
the continuous-time dynamics, while it can become unstable for the one in discrete
time. Thus, if the lowest and greatest eigenvalue are different in modulus, there exists
a "stability gap", that is a range of values of the lowest eigenvalue where the two
dynamics behave differently. On the other hand, when the smallest eigenvalue, in
modulus, coincides with the spectral radius, the two conditions become equivalent and
the dynamics have the same asymptotic behavior. We provide more detailed examples
of this gap considering the complete graph in Section 4.4.

We further discuss the stability of equilibria for the continuous-time dynamics
when uniqueness is not guaranteed and the matrix Ḡ is symmetric. In particular, we
prove that the best response dynamics always converges to the set of Nash equilibria
and that the set of strict maximum points of P are stable equilibria. Finally, we
observe that, when the uniqueness condition is not satisfied, stable equilibria are
non-internal.

Proposition 4.3.4. Consider the public good game P = (G, w, η), with value func-
tions satisfying the linearity property L for some k̄ = (k̄i)n

i=1 ∈ (0, 1)n. If Ḡ is a
symmetric matrix, then, the continuous-time best response dynamics globally converges
to the set of Nash equilibria.

Proof. From Lemma 4.3.2, we know that −P is decreasing along the trajectories of
the dynamics, that is −Ṗ (q(t)) ≤ 0 and Ṗ (q∗) = 0 if and only if q∗ is an equilibrium.

1Refer to Teorema 3.5 of [21]
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Then, the compact set E = {q ∈ χw : Ṗ (q) = 0} coincides with the set of Nash
equilibria of the game. It follows from LaSalle’s invariance principle that the union
of compact and invariant subsets of E, which is exactly the set of Nash equilibria, is
attractive in χw. Thus, the continuous-time dynamics globally converges to the set
of Nash equilibria of the game for any initial public good profile q(0) ∈ χw.

With Proposition 4.3.4 we recover the result of Gharesifard et al. [17] on the
convergence of piece-wise linear saturated best response dynamics to the set of
equilibrium profiles.

Proposition 4.3.5. Consider the public good game P = (G, w, η), with value func-
tions satisfying the linearity property L for some k̄ = (k̄i)n

i=1 ∈ (0, 1)n. Assume Ḡ

is a symmetric matrix and consider a public good provision profile q∗ ∈ χw that is
a strict local maximum of the functional P on χw, i.e., there exists ϵ > 0 and a
neighborhood of q∗, Bq∗(ϵ) = {q ∈ χw : ||q∗ − q|| < ϵ}, such that for every q ∈ Bq∗(ϵ)
it holds P (q∗) > P (q). Then, q∗ is a locally asymptotically stable equilibrium for the
continuous-time best response dynamics.

Proof. Let us see that for Proposition 2.3.6 q∗ is a Nash equilibrium: being it a
maximum point of P , in every direction P can not increase, i.e., for every i,

∂P

∂qi
(q∗) ≤ 0

Moreover, along the positive components, i.e., where q∗
i > 0, stationarity must hold:

∂P
∂qi

(q∗) = 0. Thus, also condition

q∗
i

∂P

∂qi
(q∗) = 0

holds for every i. Thus, q∗ is a Nash equilibrium for the game with quadratic utilities.
Then, for 3.2.5 it is also a Nash equilibrium for the public good game under L.

To prove its stability, define the functional V : χw → χw st

V (q) = P (q∗) − P (q)

Then, V is continuous and positive definite with respect to q∗ in Bq∗(ϵ): in fact

V (q∗) = 0

and for q ̸= q∗

V (q) = P (q∗) − P (q) > 0

for definition of strict local maximum of P . Moreover, for Lemma 4.3.2, V is non-
increasing along the trajectories of the continuous-time best response dynamics, i.e.,
V̇ (q(t)) ≤ 0. Then, V is a weak Lyapunov function for q∗. For the 1st Lyapunov
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theorem2, q∗ is a stable equilibrium. It follows from the LaSalle’s invariance principle,
that the union of compact and invariant subsets of E = {q ∈ χw : V̇ (q(t)) = 0}, which
is exactly q∗, is attractive in χw. Thus, the continuous-time dynamics converges to
q∗ for any initial public good profile q(0) ∈ Bq∗(ϵ) and q∗ is locally asympotically
stable.

Proposition 4.3.5 recovers one implication of the equivalence for stable equilibria
established in [10].

Considering the game defined on an undirected graph, with value functions satis-
fying L+, let us now prove another result on the stability of the internal equilibrium.
In particular, for the continuous-time dynamics, the internal equilibrium is stable if
and only if the uniqueness condition holds.

Proposition 4.3.6. Consider the public good game P = (G, w, η) with value functions
satisfying the strong linearity property L+ for k̄ ∈ (0, 1) and assume that G is an
undirected graph. If there exists an internal equilibrium q∗ ∈ χw, then for the
continuous-time dynamics q∗ is stable if and only if −λG

mink̄ < 1. Otherwise, if
−λG

mink̄ ≥ 1, it is unstable.

Proof. Let us denote the spectrum of G σ(G) = {λG
1 , λG

2 , ..., λG
n }. Then the spectrum

of Ḡ is σ(Ḡ) = k̄σ(G) = {k̄λG
1 , k̄λG

2 , ..., k̄λG
n }. To study the stability of the internal

equilibrium it is possible to use a linearization of the best response dynamics, since
the saturation is no longer necessary in a neighborhood of q∗. For the continuous-time
dynamics

q̇(t) = F(q(t)) − q(t) = b − Ḡq(t) − q(t) = b − (Ḡ + I)q(t)

the stability depends on the eigenvalues of −Ḡ − I; recall that

σ(−Ḡ − I) = {−k̄λG
i − 1}n

i=1

The internal equilibrium is stable if and only if for every i it holds

−k̄λG
i − 1 < 0

that is equivalent to
λG

i > −1
k̄

Since for every i it holds
λG

min = min
i=1,...,n

λG
i ≤ λG

i

then q∗ ∈ χw is stable if and only if

λG
min > −1

k̄

2Refer to Teorema 3.1 of [21]
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ie if and only if
−λG

mink̄ < 1

q∗ is unstable if there exists i such that

−k̄λG
i − 1 ≥ 0

that is equivalent to
λG

i ≤ −1
k̄

so it is enough if it is true for the smallest eigenvalue, i.e.,

−λG
mink̄ ≥ 1

Proposition 4.3.6 is consistent with the results concerning the stability of equilibria
for the continuous-time dynamics established in [9] and [16].

Remark 4.3.2. Given an internal equilibrium q∗ ∈ χw for the game P = (G, w, η)
with value functions satisfying the strong linearity property L+ for k̄ ∈ (0, 1), notice
again that, if the contractivity condition is violated, i.e., λGk̄ ≥ 1, and there exists
an internal equilibrium q∗ ∈ χw, then for Proposition 4.2.4 q∗ is unstable in the
discrete-time dynamics. Nonetheless, if the uniqueness condition still holds, i.e.,
−λG

mink̄ < 1, then for Proposition 4.3.6, it is stable in continuous time, since stability
depends on the value of the lowest eigenvalue of G.

Example 4.3.1. Cobb-Douglas value functions (cont.)
For the game P = (G, w, η(α, β)), with equal parameters αi = α, βi = β, defined
on a directed graph G, when contractivity is not guaranteed, i.e., λG α

α+β ≥ 1, for
Proposition 4.3.6, if there exists an internal equilibrium q∗ ∈ χw, then it is stable for
the continuous-time dynamics as long as −λG

min
α

α+β < 1.

Let us see two examples.

Example 4.3.2. Consider again the public good game P = (G, w, η(α, β)), with
αi = α, βi = β, defined on the unweighted undirected circle graph G of 5 nodes of
example 4.2.5. As previously seen, there exists the internal equilibrium

q∗ = (1, 1.13, 0.32, 1.13, 1)T

which is unstable for the discrete-time dynamics. Since the uniqueness condition is
not satisfied, i.e., −λG

min
α

α+β = 1.39 ≥ 1, for Proposition 4.3.6 it is also unstable in
continuous time.
Taking α = 1

4 , β = 2
3 , the uniqueness condition now holds, as −λG

min
α

α+β = 0.88 < 1,
and the unique equilibrium is the internal one:

q∗ = (2.29, 0.18, 2.71, 0.18, 2.29)T
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In this case, the opposite behavior is observed in the two dynamics, since:

λG α

α + β
= 1.09 ≥ 1

implies the instability of q∗ in discrete time, while

−λG
min

α

α + β
= 0.88 < 1

allows to conclude that the internal equilibrium q∗ is stable in continuous time.

Example 4.3.3. Consider again the public good game P = (G, w, η(α, β)), with
αi = α, βi = β, defined on the unweighted undirected line graph G of 4 nodes of
example 4.2.6. We already noticed that the uniqueness condition is not satisfied, but
there exists the internal equilibrium

q∗ = (0.58, 0.65, 0.65, 0.58)T

The internal equilibrium is unstable in both the dynamics, since:

λG α

α + β
= 1.39 ≥ 1

implies the instability in discrete time for Proposition 4.2.4, while

−λG
min

α

α + β
= 1.39 ≥ 1

implies the instability in continuous time for Proposition 4.3.6. Notice that in this
case the lowest and greatest eigenvalue are equal in modulus, i.e., λG = |λG

min| = 3.24,
thus the two dynamics always have the same behavior: take for example, α = 1

4 , β = 2
3 .

The contractivity condition holds and the unique equilibrium is the internal one:

q∗ = (0.85, 1.11, 1.11, 0.85)T

which is globally asymptotically stable in both the dynamics.

4.4 Comparison of discrete- and continuous-time dynam-
ics: the example of the complete graph

We present a final focus on the "stability gap" of the two dynamical systems, that
is a range of values in which there exists a unique Nash equilibrium profile for the
game, but the discrete and continuous-time dynamical systems may present opposite
behaviors with respect to it. We concentrate on the study of the complete graph,
which is often used in real-world applications. First, we recall the 3 nodes example
4.0.1 and motivate the previously observed behavior with the theoretical results;
afterwards, we generalize the example to the complete graph of n nodes and finally
we observe the particular behavior of the simpler graph of 2 nodes.
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Example 4.4.1. Complete graph of 3 nodes (cont.)
Let us reconsider the game defined on the complete equally weighted graph of 3 nodes of
example 4.0.1 and motivate the experimental results with the developed theory. Being
the spectrum of G σ(G) = { γ

α , − γ
2α , − γ

2α}, and k̄ = α, the condition for uniqueness
of the equilibrium of Theorem 4.1.2 is γ < 2, while contractivity of the synchronous
best response, for Theorem 4.2.2, is guaranteed if γ < 1. The so-found intervals
coincide with the ones that were observed through the simulations. In particular:

• If γ < 1:
The uniqueness condition is satisfied and there exists a unique Nash equilibrium
q∗ = ( β

1+γ , β
1+γ , β

1+γ ). It is globally asymptotically stable for the discrete-time
dynamics for Corollary 4.2.3, and for the continuous-time dynamics for Theorem
4.3.1.

• for 1 < γ < 2:
The equilibrium is still unique and its behavior is verified by the theory: for
Proposition 4.3.3, q∗ is still stable for the continuous-time dynamics, while, for
Proposition 4.2.4, in discrete-time it is unstable.

• for γ > 2:
As the uniqueness condition is violated, stability of the internal equilibrium q∗ is
lost both for the discrete and continuous-time dynamical systems, according to
Propositions 4.3.6 and 4.2.4. For these values of γ, together with the internal
equilibrium, equilibria that are specialized and with 2 contributing nodes arise.
Despite not being able to predict their asymptotic behavior for the discrete-
time dynamical system using the main findings of this chapter, we know from
Proposition 4.3.4 that the one in continuous time globally converges to the set
of Nash equilibria.

Let us now turn to the more general n × n case.

Example 4.4.2. Complete graph of n nodes
Consider the public good game P = (G, w, η(α, β)), where G = (N , E , G) is the
equally weighted complete graph of n nodes, w ∈ Rn

>0 the income vector such that
wi = w > 0 for every i, and η the Cobb-Douglas value functions with equal parameters
αi = α, βi = β ∈ (0, 1), ηi(w − qi, qi + (Gq)i) = (w − qi)α(qi + (Gq)i)β. To simplify
the calculations, let us assume that α + β = 1 and wi = 1 for every i.

We refer to the adjacency matrix G having with equal weights Gij = g = γ
α(n−1)

for all i ̸= j. The best response for every agent is

Bi(q−i) = [β − αg
Ø
j ̸=i

qj ]+ = [β − γ

n − 1
Ø
j ̸=i

qj ]+

and the synchronous best response function is:
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F(q) = [


β
...
β

− αGq]+ = [


β
...
β

− γ

n − 1(1 − I)q]+

where 1 = 1n×n is the n × n matrix of ones.
Being the spectrum of G σ(G) = { γ

α , − γ
α(n−1) , ..., − γ

α(n−1)}, and k̄ = α, the
condition for uniqueness of the equilibrium, for Theorem 4.1.2, is γ < n − 1, while
contractivity of the synchrnous best response dynamics is guaranteed, for Theorem
4.2.2, if γ < 1.

• If γ < 1
The unique Nash equilibrium is the internal one q∗ ∈ χw where all nodes
contribute equally to the public good, with provision:

q∗
i = β

α(1 + g(n − 1)) + β
= β

α(1 + γ
α(n−1)(n − 1)) + β

= β

1 + γ

for Corollary 4.2.3 and Theorem 4.3.1 q∗ is globally asymptotically stable both
for the discrete and continuous-time dynamics.

• If 1 < γ < n − 1
The equilibrium is still unique and it is again the internal one with equally
contributing nodes

q∗ = ( β

1 + γ
, ...,

β

1 + γ
)

For Proposition 4.3.3, it is still stable for the continuous-time dynamics, while
Proposition 4.2.4 implies that in discrete-time is is unstable.

• If γ > n − 1
Even though the internal equilibrium q∗ = ( β

1+γ , ..., β
1+γ ) of equally contributing

nodes still exists, the uniqueness condition is violated. Thus, it is interesting to
study whether equilibria with C ̸= N are present.

– Being the graph complete, the only possible type of specialized equilibria
are those where one node contributes and the others free-ride. Let us
consider, for example, node 1 to be the only contributor, then q1 = β and
the candidate equilibrium is the action profile

q = (β, 0, .., 0)

It is a Nash equilibrium if for every non-contributor the condition of
Remark 3.5.1 is satisfied:

γ

α(n − 1) ≥ 1
α
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which is equivalent to
γ ≥ n − 1

Then, for γ > n − 1 there are n specialized equilibria of the form q∗
i = β

and q∗
j = 0 for all j ̸= i. Notice that specialized equilibria are also present

if γ = n − 1.

– Let us now consider the case in which two nodes i and j contribute and
the others free ride. Then,

qi = β − γ

n − 1qj > 0 and qj = β − γ

n − 1qi > 0

It’s easy to see that for γ ̸= n − 1 then qi = qj = β(n−1)
n−1+γ . It is a Nash

equilibrium if it satisfies (3.14):

α


g g
...

...
g g

 β(n − 1)
n − 1 + γ

A
1
1

B
≥ β


1
...
1


that is equivalent to

α
γ

α(n − 1)
β(n − 1)
n − 1 + γ


1 1
...

...
1 1


A

1
1

B
= γβ

n − 1 + γ


2
...
2

 ≥ β


1
...
1


component-wise, it must hold:

2γ

n − 1 + γ
≥ 1

which is equivalent to
γ ≥ n − 1

Then, if γ > n − 1

q∗ = (0, ..., 0,
β(n − 1)
n − 1 + γ

, 0, ..., 0,
β(n − 1)
n − 1 + γ

, 0, ..., 0)

is a Nash equilibrium and there exist
A

n

2

B
equilibria where 2 nodes con-

tribute and the others free-ride on their provision.

– In general, if 1 < k < n nodes contribute and n − k free-ride, then for two
generic i, l ∈ C

qi = β − αg
nØ

j=1
qj = β − αg

Ø
j∈C

qj + αgqi
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and
ql = β − αg

Ø
j∈C

qj + αgql

then
qi − ql = αg(qi − ql)

then for αg ̸= 1, i.e., γ ̸= n − 1 all contributors must provide the same
amount at equilibrium: qi = ql for every i, l ∈ C and the candidate
equilibrium has the form, for every i ∈ C:

qi = β(n − 1)
n − 1 + γ(k − 1)

For q to be an equilibrium, (3.14) must be verified:

α


g ... g
... ...

...
g ... g

 β(n − 1)
n − 1 + γ(k − 1)


1
...
1



= α
γ

α(n − 1)
β(n − 1)

n − 1 + γ(k − 1)


1 ... 1
... ...

...
1 ... 1




1
...
1

 ≥ β


1
...
1


component-wise:

γk

n − 1 + γ(k − 1) ≥ 1

which is equivalent to
γ ≥ n − 1

Then, for γ > n − 1

q∗ = ( β(n − 1)
n − 1 + γ(k − 1) , ..,

β(n − 1)
n − 1 + γ(k − 1) , 0, ..., 0)

is a Nash equilibrium and there are
A

n

k

B
equilibria where 1 < k < n nodes

contribute and all the others free-ride on their provisions.

To summarize, for the complete equally weighted graph of n nodes, there exist al-
ways an equilibrium of equally contributing nodes, which is unique for γ < n−1.
Moreover, for γ < 1, it is globally asymptotically stable in both the discrete and
continuous-time dynamics; for 1 < γ < n − 1 the unique equilibrium is still
locally stable for the continuous-time dynamics, while it becomes unstable for the
one in discrete time. If γ > n−1, the internal equilibrium is unstable in both the
dynamics and new equilibrium profiles arise: n specialized equilibria where only

one node contributes, and
qn

k=2

A
n

k

B
internal equilibria where k = 2, .., n − 1
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nodes contribute and n − k free-ride.

Focus now on the complete graph of 2 nodes. It is exemplifying of the case in
which the greatest and smallest eigenvalue of the adjacency matrix are equal in
modulus. As a consequence, the uniqueness and contractivity conditions coincide
and the discrete and continuous-time dynamics do not exhibit the "stability gap". To
enrich the study and hint a direction for further investigations, we provide also some
simulations of the dynamical systems.

Example 4.4.3. Complete graph of 2 nodes
Let us consider the public good game P = (G, w, η(α, β)) defined on the equally
weighted complete graph of 2 nodes with adjacency matrix

G =
A

0 γ
α

γ
α 0

B

The synchronous best response function is

F(q) = F(q1, q2) = (B1(q2), B2(q1)) = ([β − γq2]+, [β − γq1]+)

Being the spectrum of G σ(G) = { γ
α , − γ

α}, the greatest and lowest eigenvalue are equal
in modulus, thus the condition for uniqueness of the equilibrium of Theorem 4.1.2
and contractivity of the synchronous best response of Theorem 4.2.2 are equivalent;
since k̄ = α, it must be verified that γ < 1. Then:

• If γ < 1:
the unique Nash equilibrium is the internal one of equally contributing nodes

q∗ = ( β

1 + γ
,

β

1 + γ
) > 0

as it can be seen in Figure 4.5a.

• If γ > 1:
there are 3 Nash equilibria:

q∗
1 = ( β

1 + γ
,

β

1 + γ
) > 0, q∗

2 = (0, β), q∗
3 = (β, 0)

as we can see in Figure 4.5b. In particular, q∗
1 is the internal equilibrium of

equally contributing nodes and q∗
2 and q∗

3 are specialized equilibria.

• If γ = 1:
there are infinitely many equilibria, corresponding to the curve q2 = β − q1 for
0 ≤ q1 ≤ β (see Figure 4.5c). The equilibria are then all those of the form

q∗ = (β − c, c) for 0 ≤ c ≤ β
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Figure 4.5: Comparison of best response curves as γ varies

Let us study the behavior of the best response dynamics to understand the nature of
the Nash equilibria as γ varies. We rely on the results of Sections 4.2 and 4.3 and
also report some simulations of the continuous- and discrete-time dynamical systems.
Recall their form:

q(t + 1) = F(q(t)) = [
A

β

β

B
− γ

A
0 1
1 0

B
q(t)]+

is the discrete-time best response dynamics, while

q̇(t) = F(q(t)) − q(t) = [
A

β

β

B
− γ

A
0 1
1 0

B
q(t)]+ − q(t)

is the one in continuous time.

• If γ < 1:
Then, the unique Nash equilibrium q∗ = ( β

1+γ , β
1+γ ) is globally asymptotically sta-

ble, for the discrete-time dynamics for Corollary 4.2.3, and for the continuous-
time dynamics for Theorem 4.3.1. An example of simulation of the discrete-time
and continuous-time dynamical systems is reported in Figures 4.6a and 4.6b:
as expected, both the dynamics converge to q∗ from any starting point q(0).
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(a) discrete-time dynamics simulation for
various random starting points q0

(b) continuous-time dynamics simulation
for various starting points q0

Figure 4.6: Best response dynamics simulations in discrete and continuous time for
γ < 1: the dynamics always converges to the unique equilibrium q∗
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It is also interesting to notice that the experimental speed of convergence of the
discrete-time dynamical system to the equilibrium, as expected from the theory,
is exponential. It can be seen in Figure 4.7 that the log distance of the sequence
from the equilibrium decreases linearly.
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Speed of convergence to the equilibrium

Figure 4.7: Experimental speed of convergence to the equilibrium of the discrete-
time dynamics for γ < 1: linear decreasing of the log distance

• If γ > 1:
Since the lowest and greatest eigenvalue are equal in modulus, for Propositions
4.2.4 and 4.3.6, the internal equilibrium q∗

1 is unstable in both the dynamics.
Studying the fixed points of F2, we find that for the discrete-time dynamical
system there are three limit cycles for F (see also Figure 4.8a):

C1 : (0, 0) ↔ (β, β)

C2 : (0,
β

1 + γ
) ↔ ( β

1 + γ
, β)

C3 : ( β

1 + γ
, 0) ↔ (β,

β

1 + γ
)
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Figure 4.8: Best response dynamics simulations in discrete time for γ > 1: limit
cycles in discrete time and attraction basins in continuous time

The simulations, reported in Figure 4.9b) of the discrete-time dynamical system,
show the instability of the central equilibrium q∗

1, and reveal that the specialized
equilibria q∗

2 and q∗
3 are locally asymptotically stable. In particular:

q∗
2 attracts [0,

β

1 + γ
) × ( β

1 + γ
, 1]

and
q∗

3 attracts ( β

1 + γ
, 1] × [0,

β

1 + γ
)

From the simulations it is also possible to understand the limit behavior and
attractivity of the limit cycles: it is interesting to notice that the attraction
bassin of C1 represents a very large portion of the domain:

C1 attracts [0,
β

1 + γ
) × [0,

β

1 + γ
) ∪ ( β

1 + γ
, 1] × ( β

1 + γ
, 1]

C2 attracts [0,
β

1 + γ
) × {q2 = β

1 + γ
} ∪ {q1 = β

1 + γ
} × ( β

1 + γ
, 1]

C3 attracts {q1 = β

1 + γ
} × [0,

β

1 + γ
) ∪ ( β

1 + γ
, 1] × {q2 = β

1 + γ
}

In the continuous-time framework, the limit cycles disappear, since the best
response function is not synchronous anymore. This lost of synchronicity
pushes again the system to a different behavior with respect to the discrete-time
dynamics; the results of the simulations are reported in Figure 4.9a: as a
consequence of the disappearing of the limit cycles, the attraction basin of the
equilibria are larger:

q∗
1 attracts {(q1, q2) ∈ [0, 1]2 : q1 = q2}
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thus proving its instability also in continuous time. While

q∗
2 attracts {(q1, q2) : q1 ∈ [0, 1], q2 > q1}

q∗
3 attracts {(q1, q2) : q1 ∈ [0, 1], q2 < q1}

which hints the local asymptotical stability of the specialized equilibria q∗
2 and q∗

3.
These attraction basin also define three invariant sets of the dynamical system.

(a) Continuous-time dynamics simulation
for γ > 1: there are no limit cycles

(b) Continuous-time dynamics simulation
for γ > 1: q∗

2 and q∗
3 are locally asymptot-

ically stable and q∗
1 attracts the bisector

Figure 4.9: Best response dynamics simulations in continuous time for γ > 1:
the internal equilibrium is unstable and the dynamics converges to the specialized
equilibria
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Chapter 5

Efficiency analysis and
interventions

In this chapter, we introduce two efficiency metrics that may help evaluate the
performance of action profiles of the game: the total aggregate welfare and the total
aggregate public good provision.

We also discuss two potential avenues for modifying the game so that equilibrium
profiles change according to some criterion. In the first case, one may consider using
subsidies to shift equilibria toward higher total public good provision or a larger
number of contributors. In the second case, a possible approach involving income
redistribution suggests to modify the income vector in such a way that the unique
equilibrium for the game coincides with the one maximizing total aggregate welfare.
These approaches draw on the setting proposed by [18].

5.1 Efficiency metrics

It may be worth evaluating the efficiency of a strategic configuration of the game with
respect to two main aspects: the satisfaction of agents and the amount of provided
public good, when playing that action.

For the game P = (G, w, η), the total aggregate welfare of a public good provision
profile q ∈ χw is defined as

U(q) =
nØ

i=1
ui(q)

According to this definition, an action qu ∈ Rn
≥0 is said to be a social optimum for

the game P if it maximizes the total aggregate welfare U on the action space χw, i.e.,

qu ∈ argmax
q∈χw

U(q)

The total aggregate public good provision of a public good profile q ∈ χw for the
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game P = (G, w, η) is defined as

Q(q) =
nØ

i=1
qi

Thus U(q) measures the total utility of agents in the game when playing q, while
Q(q) is the sum of public good provisions of each agent in the game. One could be
interested in measuring the goodness of a public good provision vector q in terms of
both metrics: the first one evaluates how much the agents in the game are satisfied
when playing q, while the second one focuses merely on the total public good provided,
which could be more useful in terms of reaching a goal total provision.

We now consider the particular case of the game with Cobb-Douglas value
functions P = (G, w, η(α, β)), with ηi(wi − qi, qi + (Gq)i) = (wi − qi)αi(qi + (Gq)i)βi

and αi, βi ∈ (0, 1).
Even when there exist social optimum vectors, there is no guarantee that they

will be Nash equilibria for the game. In the next sections, we will see how to modify
the game in such a way that a desired social optimum is a Nash equilibrium.

5.2 Subsidies

In general, the Nash equilibria of the game are not guaranteed to be good in terms
of the predefined metrics. When aiming to increase the total public good provision
at equilibrium of the agents involved in the game or to increase the number of
contributing agents at equilibrium, the following approach can be adopted.

Let us define a new game based on a strategy of subsidies that encourages agents
to provide a larger amount of public good. Define, for every agent i, P i

q ∈ (0, 1],
representing the incentive to her public good provision qi. The constraint xi +qi = wi

becomes xi + P i
qqi = wi. Then, writing the private good in terms of the public good,

xi = wi − P i
qqi the utility maximization can be reformulated as

max
0≤qi≤ws

i

us
i (q) = max

0≤qi≤
wi
P i

q

(wi − P i
qqi)αi(qi + (Gq)i)βi

where us
i (q) = (wi − P i

qqi)αi(qi + (Gq)i)βi is the utility and ws
i = wi

P i
q

> wi is the
maximum amount of public good in the subsidized game. The action space is
χs

w = [0, ws
1] × · · · × [0, ws

n]

Proposition 5.2.1. The subsidized game Ps = (G, ws, ηs(α, β)), with ws
i = wi

P i
q

and
value functions

ηs
i (ws

i − qi, qi + (Gq)i) = (P i
q(ws

i − qi))αi(qi + (Gq)i)βi

with αi, βi ∈ (0, 1) is a public good game. Moreover, the value functions of Ps satisfy
property L with

k̄i = αi

αi + βi
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Proof. The proof follows directly from the fact that the value functions of the
subsidized game correspond to the Cobb-Douglas value functions of the original game,
rescaled times a factor (P i

q)αi > 0 and with new income vector with components
ws

i = wi
P i

q
:

ηs
i (ws

i − qi, qi + (Gq)i) = (P i
q(ws

i − qi))αi(qi + (Gq)i)βi

= (P i
q)αi(wi − qi)αi(qi + (Gq)i)βi = (P i

q)αiηi(ws
i − qi, qi + (Gq)i)

Since the rescaling of the income vector and of the value functions does not affect
the fulfillment of the game hypothesis, the subsidized game with value functions ηs

i

is still a public good game.

To derive the relation for ki, recall that for every i it is the unique solution, for a
given z > 0, to:

ηs
i (ki(z), z − ki(z)) = max

0≤x≤z
ηs

i (x, z − x)

Then, ki(z) is obtained by solving

dηi

dx
(x, z − x) = (P i

q)αiαix
αi−1(z − x)βi − (P i

q)αiβix
αi(z − x)βi−1 = 0

which implies
x = ki(z) = αiz

αi + βi

In the case of the subsidized game Ps, Ḡ = [ α
α+β ]G as in P , while bs

i = ws
i (1−k̄i) =

βiwi

(αi+βi)P i
q
. Thus, from Proposition 3.2.6, the best response Bs

i : χs
−i → χs

i is uniquely
determined for every agent i and has the form:

Bi(q−i) = [ βiwi

(αi + βi)P i
q

− αi

αi + βi
(Gq)i]+

Denote Pq = (P i
q)n

i=1. As before, to simplify the notation, we use for operations on
the vectors of constants α, β, w, Pq, Px the scalar notation, referring to the operations
as applied component-wise, for example βw

(α+β)Pq
= ( βiwi

(αi+βi)P i
q
)n
i=1. The synchronous

best response vectorial function is then F(q) : χs
w → χs

w:

Fs(q) = [ βw

(α + β)Pq
− α

α + β
Gq]+

The characterization of the set of Nash equilibria is obtained from Proposition 3.3.2:
q∗ ∈ χw is a Nash equilibrium if and only if

q∗T (I + [ α

α + β
]G)q∗ = ( βw

(α + β)Pq
)T q∗

and
q∗ + [ α

α + β
]Gq∗ ≥ βw

(α + β)Pq
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An equivalent characterization stressing the partition into contributing and non-
contributing agents is given by Proposition 3.3.3: q∗ ∈ χs

w is a Nash equilibrium if
and only if there exists a partition of the agents N = C ∪ −C, C non empty, such
that q∗--

C
= qC and q∗--

−C
= 0 and qC satisfies

(I + [ α

α + β
]CGC)qC = ( βw

(α + β)Pq
)C

and
[ α

α + β
]−CG−C,CqC ≥ ( βw

(α + β)Pq
)−C

It is clear then that the set of the equilibria of the subsidized game Ps is different
from those of the original P. In particular, in the subsidized game contributors
provide a higher amount of public good at equilibrium thanks to the incentive P i

q ≤ 1.
Let us see an example that highlights this increment.

Example 5.2.1. Consider, for example, the simple case of the complete unweighted
graph of n nodes with agents sharing equal income wi = w and constants αi = α, βi =
β. The unique Nash equilibrium q∗ in the original game formulation consists of n
equally contributing nodes, providing an amount of public good q∗

i = βw
β+αn . Simply

adding equal subsidies P i
q = Pq < 1 to the provision of public good, the unique Nash

equilibrium is shifted to qs∗ such that qs
i

∗ = βw
(β+αn)Pq

. Since Pq < 1, q∗
i < qs

i
∗, so for

every agent the amount of public good at equilibrium is higher. Thus, Q(q∗) = n βw
β+αn

and Q(qs∗) = n βw
(β+αn)Pq

, which implies that the total aggregate public good provision
increased of a positive amount: Q(qs∗) − Q(q∗) = n

βw(1−Pq)
(β+αn)Pq

> 0

Subsidies can also be used to incentivize free-riding individuals to provide a
positive amount of public good. Consider, for example, the case in which the unique
equilibrium profile of the game is specialized. In some contexts, it may be preferable
for the game to converge to an internal equilibrium, in which all agents contribute
to the public good; to achieve such an equilibrium, a strategy could be subsidizing
non-contributors. Let us see some examples.

Example 5.2.2. Consider the public good game defined on the undirected un-
weighted line graph of 3 nodes. Take α = (1

4 , 1
3 , 1

6)T , β = (1
5 , 1

2 , 1
4)T and income

vector w = (3, 2, 3)T . Then, the unique Nash equilibrium is the specialized profile
q∗ = (1.33, 0, 1.8)T . How to subsidize node 2 to make it a contributor? A strategy
could be the following. For the characterizing equation (3.18) of non-contributors,
2 ∈ −C since

α2
α2 + β2

G2,CqC ≥ β2w2
α2 + β2

making G2,C explicit, we get

α2
α2 + β2

(G21q∗
1 + G23q∗

3) ≥ β2w2
α2 + β2

Thus, in the subsidized game we could take P 2
q such that the best response of node 2
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for q∗
−2 is non zero, which means

[ β2w2
(α2 + β2)P 2

q

− α2
α2 + β2

(Gq∗)2]+ > 0

doing the computations, we get the following condition for P 2
q :

P 2
q <

β2w2
α2(Gq∗)2

Substituting the values of the equilibrium of the non subsidized game, we get P 2
q < 0.96.

Thus, we can define the corresponding subsidized game, i.e., with same α, β, w, and
Pq = (1, 0.95, 1)T ; the unique Nash equilibrium is now

q∗
s = (1.32, 0.02, 1.79)T

which is very close to the previous q∗, but node 2 contributes. Increasing the subsidy,
that is choosing a smaller P 2

q , for example, P 2
q = (1, 0.7, 1)T , in the unique equilibrium

q∗
s = (0.92, 0.75, 1.5)T also the provision of node 2 increases.

Example 5.2.3. Consider the public good game defined on the star graph of
5 nodes. Take α = (3

4 , 1
4 , 1

4 , 1
4 , 1

4)T , β = (2
5 , 5

8 , 3
8 , 5

8 , 3
8)T and income vector w =

(5, 3, 2, 3, 2)T . Then, the unique Nash equilibrium is the specialized profile q∗ =
(0, 2.14, 1.2, 2.14, 1.2)T . To subsidize node 1 to make it a contributor, a strategy could
be the following. For the characterizing equation (3.18) of non-contributors, 1 ∈ −C

since
α1

α1 + β1
G1,CqC ≥ β1w1

α1 + β1

Thus, in the subsidized game we could take P 1
q such that the best response of node 1

for q∗
−1 is non zero, which means

[ β1w1
(α1 + β1)P 1

q

− α1
α1 + β1

(Gq∗)1]+ > 0

doing the computations, we get the following condition for P 1
q :

P 1
q <

β1w1
α1(Gq∗)1

Substituting the values of the equilibrium of the non subsidized game, we get P 1
q < 0.67.

Thus, we can define the corresponding subsidized game with Pq = (0.66, 1, 1, 1, 1)T ;
the unique Nash equilibrium is now

q∗
s = (0.09, 2.12, 1.16, 2.12, 1.16)T

in which node 1 contributes.

The previous examples hint that subsidizing non-contributors could move the
game to a unique internal equilibrium in the case of one free-riding agent. It is
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interesting to see what happens if there are more than one non-contributing nodes in
the equilibrium profile of the non-subsidized game.

Example 5.2.4. Consider the public good game defined on the undirected circle of 4
nodes. Take α = (2

2 , 1
4 , 4

5 , 1
3)T , β = (1

3 , 1
2 , 1

4 , 2
5)T and income vector w = (2, 1, 2, 1)T .

Then, the unique Nash equilibrium is the specialized profile q∗ = (0, 0.67, 0, 0.55)T .
How to choose P 1

q and P 3
q such that nodes 1 and 3 contribute? Let us follow the strategy

of the previous examples and derive a bound for the subsidies of non-contributors, to
make their best response for the previous equilibrium non zero. For node 1 we get

P 1
q <

β1w1
α1(Gq∗)1

= 0.82

while for node 3
P 3

q <
β3w3

α3(Gq∗)3
= 0.52

Replicating the approach of the previous examples, we can define the corresponding
subsidized game with Pq = (0.8, 1, 0.5, 1)T . However, for this game, the unique equi-
librium is q∗

s = (0.74, 0.14, 0.85, 0)T , thus the strategy of subsidizing all contributors
is not efficient in this case, since it shifts too much the game equilibrium.

Let us try to only incentivize one of the two non-contributors. Subsidizing node
1, i.e., taking, Pq = (0.8, 1, 1, 1)T , in the new equilibrium q∗

s = (0.05, 0.65, 0, 0.51)T ,
node 1 contributes while agent 3 still does not. On the other hand, providing a
subsidy only to node 3, i.e., taking Pq = (1, 1, 0.5, 1)T , the new game equilibrium
q∗

s = (0.33, 0.37, 0.57, 0.14)T is internal.

This example suggests that subsidizing only "the most non contributor", that is
the agent who requires a higher incentive not to free-ride, may be enough to make
everyone contribute.

Example 5.2.5. Consider the public good game defined on the undirected line
of 5 nodes. Take α = (1

4 , 1
3 , 1

6 , 2
5 , 3

4)T , β = (1
5 , 1

2 , 1
4 , 2

3 , 1
3)T and income vector w =

(2, 3, 2, 3, 2)T . Then, the unique Nash equilibrium is the specialized profile q∗ =
(0, 1.8, 0, 1.88, 0)T . How to choose P 1

q , P 3
q and P 5

q such that nodes 1, 3, 5 contribute?
Let us follow the strategy of the previous examples and derive a bound for the subsidies
of non-contributors, to make their best response for the previous equilibrium non zero.
For node 1 we get

P 1
q <

β1w1
α1(Gq∗)1

= 0.89

for node 3
P 3

q <
β3w3

α3(Gq∗)3
= 0.82

for node 5
P 5

q <
β5w5

α5(Gq∗)5
= 0.47

Let us see what is the outcome for different strategies of incentives: take P i
q =

bound − 0.05
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• subsidizing agent 1: Pq = (0.84, 1, 1, 1, 1)T gives

q∗
s = (0.07, 1.77, 0, 1.88, 0)T

• subsidizing agent 3: Pq = (1, 1, 0.77, 1, 1)T gives

q∗
s = (0, 1.75, 0.13, 1.83, 0)T

• subsidizing agent 5: Pq = (1, 1, 1, 1, 0.42)T gives

q∗
s = (0, 1.8, 0, 1.8, 0.23)T

• subsidizing agents 1, 3: Pq = (0.84, 1, 0.77, 1, 1)T gives

q∗
s = (0.12, 1.69, 0.16, 1.82, 0)T

• subsidizing agents 1, 5: Pq = (0.84, 1, 1, 1, 0.42)T gives

q∗
s = (0.07, 1.77, 0, 1.79, 0.23)T

• subsidizing agents 3, 5: Pq = (1, 1, 0.77, 1, 0.42)T gives

q∗
s = (0, 1.7, 1.19, 1.69, 0.29)T

• subsidizing all agents 1, 3, 5: Pq = (0.84, 1, 0.77, 1, 0.42)T gives the internal
equilibrium

q∗
s = (0.14, 1.65, 0.23, 1.68, 0.31)T

On the contrary, in the last example providing an incentive only to some non-
contributors is not enough, and all free-riders must be subsidized to obtain the
internal equilibrium.

Thus, the naive strategies experimented in the examples do not provide a gen-
eralizable way to shift the unique specialized equilibrium of a game to an internal
one through incentives to non-contributing nodes. The difficulty probably lies in the
high dependency of the equilibrium profiles on the network of interconnections, as
well as on the different parameters αi, βi.

Proposition 5.2.2. For the subsidized game Ps, at equilibrium, for every contributing
agent i ∈ C the ratio of private provision and aggregate public good consumption is
linear if the incentive P i

q :
xs

i

qs
i + (Gqs)i

= αi

βi
P i

q

Proof. Every contributing agent i ∈ C at equilibrium provides as amount of public
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good qs
i > 0 that is an internal maximum of his utility, which means that it holds

∂us
i

∂qi
(qs) = 0

Since

∂us
i

∂qi
(q) = (wi − P i

qqi)αi−1(qi + (Gq)i)βi−1(−αiP
i
q(qi + (Gq)i) + βi(wi − P i

qqi))

It is equivalent to
αiP

i
q(qs

i + (Gqs)i) = βi(wi − qs
i P i

q)

Recalling that the amount of private good in the subsidized game is xs
i = (wi − qs

i P i
q),

we get that the condition for contributing agents to be at equilibrium is exactly

xs
i

qs
i + (Gqs)i

= αi

βi
P i

q

Let us now see how this ratio is related to the social optimum for the non
subsidized game.

Proposition 5.2.3. qu is the social optimum of the non-subsidized game P, if and
only if the ratio of aggregate public allocation and private provision for contributing
nodes i ∈ C satisfies

qu
i + (Gqu)i

xu
i

= Mi
βi

αi

where
Mi = 1 +

nØ
j=1

Gj,i
βj

βi

uj(qu)/(qu
j + (Gqu)j)

ui(qu)/(qu
i + (Gqu)i)

Proof. The social optimum maximizes the total aggregate welfare U(q). This is
equivalent for every i ∈ C to:

∂U

∂qi
(qu) = 0

Doing the computations

∂U

∂qi
(q) = ∂

∂qi

nØ
j=1

uj(q) =
Ø
j ̸=i

∂uj(q)
∂qi

+ ∂ui(q)
∂qi

= 0

It is equivalent to

(wi − qi)αi−1(qi + (Gq)i)βi−1(−αi(qi + (Gq)i) + βi(wi − qi))

=
nØ

j=1
Gj,iβj(wj − qj)αj (qj + (Gq)j)βj−1

substituting the expression of the utility ui(q) = (wi − qi)αi(qi + (Gq)i)βi and
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xi = wi − qi, we get:

−αi(qi + (Gq)i) + βixi =
nØ

j=1
Gj,iβj

uj(qu)/(qu
j + (Gqu)j)

ui(qu)/(qu
i + (Gqu)i)

rearranging the terms, we get

−αi

βi

(qi + (Gq)i)
xi

+ 1 =
nØ

j=1
Gj,i

βj

βi

uj(qu)/(qu
j + (Gqu)j)

ui(qu)/(qu
i + (Gqu)i)

from which we obtain the thesis.

Proposition 5.2.4. If qu > 0 social optimum of the non subsidized game P, then
qs∗ = qu Nash equilibrium of the subsidized game with incentives:

P i
q = βiwi

qu
i (αi + βi) + αi(Gqu)i

Proof. Given qu ∈ χw social optimum of the non subsidized game P, we want that,
for every agent i in the subsidized game, qu

i is her best response. For every agent i,
playing qu

i > 0 as best response for qu
−i in the subsidized game is equivalent to

qu
i = [ βiwi

(αi + βi)P i
q

− αi

αi + βi
(Gqu)i]+ = βiwi

(αi + βi)P i
q

− αi

αi + βi
(Gqu)i > 0

From this relation we derive the form of P i
q that makes agent i provide exactly qu

i :

P i
q(αi + βi)qu

i = βiwi − αi(Gqu)iP
i
q

which is equivalent to

P i
q(qu

i (αi + βi) + αi(Gqu)i) = βiwi

from which we get the thesis.

Example 5.2.6. Consider the simple case of the non-subsidized game P = (G, w, η)
defined on the unweighted undirected line of two nodes. The adjacency matrix is

G =
A

0 1
1 0

B
. Take α = (1

4 , 1
3)T , β = (1

5 , 1
2) and income vector w = (2, 3)T . The

condition for the contractivity of the best response equilibrium is satisfied since
λḠ = 0.47 < 1, thus the equilibrium is unique and globally asymptotically stable. For
the non subsidized game, it is the specialized profile

q∗ = (0, 1.8)T

Let us now consider the aggregate welfare U(q) = u1(q) + u2(q). For the unique
equilibrium of the non subsidized game the aggregate welfare is

U(q∗) = 2.76
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Plotting U on χw = [0, 2] × [0, 3], it is evident that it is concave (see Figure 5.1), and
thus has a unique maximum, the social optimum

qu = (1.12, 1.68)T

Using Proposition 5.2.4, we define the subsidized game Ps = (G, ws, ηs) with incentives

P 1
q = β1w1

qu
1 (α1 + β1) + α1(Gqu)1

= β1w1
qu

1 (α1 + β1) + α1qu
2

= 0.43

and
P 2

q = β2w2
qu

2 (α2 + β2) + α2(Gqu)2
= β2w2

qu
2 (α2 + β2) + α2qu

1
= 0.85

Then, the unique globally asymptotically stable equilibrium of the subsidized game is

q∗
s = qu

having aggregate welfare
U(q∗

s) = U(qu) = 3.03

Figure 5.1: Aggregate welfare U for the line of two nodes, with social optimum qu,
equilibrium q∗ of P and q∗

s of Ps

5.3 Redistribution

Consider an external planner with redistributive capacity: given a total amount
of income W , she must choose how to split it among nodes to maximize the total
aggregate welfare. Since the utilities depend on w, U can be seen as a function of
the income vector, U(w) = qn

i=1 ui(w). Then, the redistribution problem can be
formulated as finding the optimal w∗ st

w∗ ∈ argmax
w∈Rn

>0

U(w)
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st
nØ

i=1
wi = W

Assuming that the contractivity condition holds, λḠ < 1, we know that for every
income vector w > 0 there exists a unique globally asymptotically stable equilibrium.
Then, if U is concave in w, a unique maximum w∗ of the total aggregate welfare exists
and choosing as income vector w∗ the game globally converges to it. Let us see some
simple examples for the game with Cobb-Douglas value functionsP = (G, w, η(α, β)).
We begin with the case of two nodes.

Example 5.3.1. Consider the redistribution problem on the unweighted complete
graph (undirected line) of two nodes, where the contractivity condition is satisfied.
Thus, there exists a unique globally asymptotically stable equilibrium for the game
P = (G, w, η(α, β)) for every income vector w ∈ R2

>0. Given the total amount of
income W , we are interested in the form of U as the income vector w varies. Under
the constraint w1 + w2 = W , for the game with two agents, the aggregate welfare
actually depends only on w1:

U(w) = U(w1, W − w1) = u1(w1) + u2(W − w1)

So, for every vector w = (w1, W − w1), we compute the unique Nash equilibrium for
the game and evaluate the total aggregate welfare on the equilibrium point.

Let us take W = 5 and see some examples. Starting with the game P =
(G, w, η(α, β)) in which αi = α, βi = β, consider different cases; As w1 ∈ [0, W ]
varies, the unique equilibrium takes different forms. In Figure 5.2, it is possible to
see the aggregate welfare U as a function of the income vector, colored depending on
the set of contributors at equilibrium.

• For α = β = 0.5 the maximum of aggregate welfare is U∗ = U(w∗) = 3.42,
reached for the two symmetric and imbalanced income vectors w∗

1 = (1.06, 3.94)T

and w∗
2 = (3.94, 1.06), where the Nash equilibrium is, respectively, the specialized

profile q∗
1 = (0, 1.97)T and q∗

2 = (1.97, 0)T .

• In the case α = 0.2 < β = 0.7, U∗ = U(w∗) = 4.5 is attained at income
vectors w∗

1 = (0.52, 4.48)T and w∗
2 = (4.48, 0.52)T , where the Nash equilibrium

is, respectively, the specialized q∗
1 = (0, 3.48)T and q∗

2 = (3.48, 0)T .

• For α = 0.8 > β = 0.1, the maximum aggregate welfare is U∗ = U(w∗) = 3.52,
reached for w∗

1 = (1.88, 3.12)T and w∗
2 = (3.12, 1.88), where the Nash equilibrium

is, respectively, the specialized profile q∗
1 = (0, 0.35)T and q∗

2 = (0.35, 0)T .
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Figure 5.2: Aggregate welfare U(w) as a function of w1, W − w1 for various values
of the parameters α, β in the game P on the directed line of 2 nodes

A similar behavior is also observed for the game P = (G, w, η(α, β)) with different
values of αi, βi for the two nodes. The plot of the aggregate welfare in this more
general case is reported in Figure 5.3.

• When α = (0.25, 0.33)T , β = (0.2, 0.5)T , the unique maximum of the aggregate
welfare is U∗ = U(q∗) = 3.03, reached at w∗ = (0.64, 4.36), where the Nash
equilibrium is the specialized q∗ = (0, 2.62)T .

• symmetrically, when α = (0.33, 0.25)T , β = (0.5, 0.2)T , the unique maximum of
the aggregate welfare is still U∗ = U(q∗) = 3.03, reached at w∗ = (4.36, 0.64),
where the Nash equilibrium is the specialized q∗ = (2.62, 0)T .
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Figure 5.3: Aggregate welfare U(w) as a function of w1, W − w1 for various values
of the parameters αi, βi in the game P on the directed line of 2 nodes

In all the cases, U is concave on each set of contributors, but not globally.
Moreover, the maximum of the total aggregate welfare is obtained when only one node
contributes, thus when the unique Nash equilibrium is specialized.

Let us now extend the previous example to the complete graph of three nodes.

Example 5.3.2. Consider the redistribution problem on the unweighted complete
graph of three nodes, where the contractivity condition is satisfied. Thus, there exists
a unique globally asymptotically stable equilibrium for the game P = (G, w, η(α, β))
for every income vector w ∈ R3

>0. Given the total amount of income W , we are
interested in the form of U as the income vector w varies. Under the constraint
w1 + w2 + w3 = W , for the game with three agents, we have that the aggregate welfare
actually depends only on w1, w2:

U(w) = U(w1, w2, W − w1 − w2) = u1(w1) + u2(w2) + u3(W − w1 − w2)

So, for every vector w = (w1, w2, W − w1 − w2), we compute the unique Nash
equilibrium for the game and evaluate the total aggregate welfare on the equilibrium
point.

Let us take W = 5 and see some examples. Consider first the game P =
(G, w, η(α, β)) in which αi = α, βi = β; as (w1, w2) ∈ [0, W ] × [0, W ] varies, the
unique equilibrium takes different forms. The plots show the aggregate welfare U as a
function of the income vector under the constraint.

• In the symmetric case where α = β = 0.5, reported in Figure 5.4, the unique
maximum of the aggregate welfare is U∗ = U(w∗) = 4.04, reached when the
income vector is the imbalanced w∗ = (3.62, 0.70, 0.67)T or one of its 6 perturba-
tions, and the Nash is the specialized profile where the node with highest income
is the only contributor and provides q∗

i = 1.81, in this case q∗ = (1.81, 0, 0).
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(a) Aggregate welfare plot for α = β = 0.5 (b) Aggregate welfare plot colored wrt
contributor sets for α = β = 0.5
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Figure 5.4: Aggregate welfare U(w) as a function of w1, w2, W − w1 − w2 for
α = β = 0.5 in the game P on the directed line of 3 nodes

• In the case α = 0.2 < β = 0.7, reported in Figure 5.5, the aggregate welfare
has maximum value U∗ = U(w∗) = 6.08, with imbalanced income vector
w∗ = (0.34, 0.34, 4.33)T (or one of its 3 perturbations) and Nash the specialized
profile q∗ = (0, 0, 3.37)T (or one of its 3 perturbations).
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(a) Aggregate welfare plot for α = 0.2 <
β = 0.7

(b) Aggregate welfare plot colored wrt
contributor sets for α = 0.2 < β = 0.7
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wrt contributor sets for α = 0.2 < β = 0.7

Figure 5.5: Aggregate welfare U(w) as a function of w1, w2, W − w1 − w2 for
α = 0.2 < β = 0.7 in the game P on the complete graph of 3 nodes

• In the case α = 0.8 > β = 0.1, reported in Figure 5.6, the maximum of the
aggregate welfare U∗ = U(w∗) = 3.77 is obtained with income vector w∗ =
(1.21, 1.21, 2.58)T (or one of its 3 perturbations), where the Nash equilibrium is
the specialized q∗ = (0, 0, 0.29)T (or one of its 3 perturbations).
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(a) Aggregate welfare plot for α = 0.8 >
β = 0.1

(b) Aggregate welfare plot colored wrt
contributor sets for α = 0.8 > β = 0.1
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Figure 5.6: Aggregate welfare U(w) as a function of w1, w2, W − w1 − w2 for
α = 0.8 > β = 0.1 in the game P on the complete graph of 3 nodes

In all the cases, U is concave on each set of contributors, but not globally. Moreover,
the maximum of the total aggregate welfare is obtained with a strongly imbalanced
income vector, which leads to only one contributing node at equilibrium.

Let us also see what happens in the more general game P = (G, w, η(α, β)) with
different parameters αi, βi. Consider, for example, α = (0.33, 0.25, 0.66)T ; β =
(0.5, 0.2, 0.75)T ; . The plot of the aggregate welfare is reported in Figure 5.7. In
this case the maximum of U is unique and it is U∗ = U(q∗) = 4.99, obtained with
income vector w∗ = (0.30, 0.17, 4.53)T , where the unique Nash equilibrium is again
specialized, q∗ = (0, 0, 2.4)T
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(a) Aggregate welfare plot for α =
(0.33, 0.25, 0.66)T ; β = (0.5, 0.2, 0.75)T ;

(b) Aggregate welfare plot col-
ored wrt contributor sets for α =
(0.33, 0.25, 0.66)T ; β = (0.5, 0.2, 0.75)T ;
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Figure 5.7: Aggregate welfare U(w) as a function of w1, w2, W − w1 − w2 for
α = (0.33, 0.25, 0.66)T ; β = (0.5, 0.2, 0.75)T ; in the game P on the complete graph of
3 nodes

Let us now see a less symmetric example and consider the undirected line of three
nodes.

Example 5.3.3. Consider the redistribution problem on the unweighted undirected
line of three nodes, where the contractivity condition is satisfied. Thus, there exists
a unique globally asymptotically stable equilibrium for the game P = (G, w, η(α, β))
for every income vector w ∈ R3

>0. Given the total amount of income W , we are
interested in the form of U as the income vector w varies. Under the constraint
w1 + w2 + w3 = W , the aggregate welfare actually depends only on w1, w2:

U(w) = U(w1, w2, W − w1 − w2) = u1(w1) + u2(w2) + u3(W − w1 − w2)

So, for every vector w = (w1, w2, W − w1 − w2), we compute the unique Nash
equilibrium for the game and evaluate the total aggregate welfare on the equilibrium
point.

Let us take W = 5 and see some examples. Consider the game P = (G, w, η) in
which αi = α, βi = β; as (w1, w2) ∈ [0, W ] × [0, W ] varies, the unique equilibrium
takes different forms. The plots report the aggregate welfare U as a function of the
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income vector under the constraint.

• In the symmetric case where α = β = 0.5, reported in Figure 5.8, the maximum
of aggregate welfare is U∗ = U(w∗) = 4.04, reached for w∗ = (0.71, 3.59, 0.71)T

where the Nash equilibrium is the specialized q∗ = (0, 1.79, 0)T .

(a) Aggregate welfare plot for α = β = 0.5 (b) Aggregate welfare plot colored wrt
contributor sets for α = β = 0.5
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Figure 5.8: Aggregate welfare U(w) as a function of w1, w2, W − w1 − w2 for
α = β = 0.5 in the game P on the undirected line of 3 nodes

• In the case α = 0.2 < β = 0.7, reported in Figure 5.9,the maximum of the
aggregate welfare is U∗ = U(w∗) = 6.08, reached for w∗ = (0.35, 4.29, 0.35)T

where the Nash equilibrium is the specialized q∗ = (0, 3.34, 0)T .
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(a) Aggregate welfare plot for α = 0.2 <
β = 0.7

(b) Aggregate welfare plot colored wrt
contributor sets for α = 0.2 < β = 0.7
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(c) Aggregate welfare scatter plot colored
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Figure 5.9: Aggregate welfare U(w) as a function of w1, w2, W − w1 − w2 for
α = 0.2 < β = 0.7 in the game P on the undirected line of 3 nodes

• In the case α = 0.8 > β = 0.1, reported in Figure 5.10, the maximum of the
aggregate welfare is U∗ = U(w∗) = 3.72, reached for w∗ = (1.58, 1.81, 1.61)T

where the Nash equilibrium is the internal q∗ = (0.001, 0.2, 0.01)T .

102



Efficiency analysis and interventions

(a) Aggregate welfare plot for α = 0.8 >
β = 0.1

(b) Aggregate welfare plot colored wrt
contributor sets for α = 0.8 > β = 0.1

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

w
1

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
w

2
2D scatter of U colored wrt contributor set at eq

C={1,3}

C={1,2,3}

(c) Aggregate welfare scatter plot colored
wrt contributor sets for α = 0.8 > β = 0.1

Figure 5.10: Aggregate welfare U(w) as a function of w1, w2, W − w1 − w2 for
α = 0.8 > β = 0.1 in the game P on the undirected line of 3 nodes

In the first two cases, where α ≤ β, the maximum welfare at equilibrium is obtained
with an imbalanced income vector w∗, that pushes the node with highest income to be
the only contributor at equilibrium. In the third case, where α > β, the total income
W is more equally spread between the nodes at w∗; indeed, even though the Nash
equilibrium is internal in this case, the contributions to the public good at equilibrium
are imbalanced.

The previous examples hint that the total aggregate welfare U is not concave
of the set of possible income vectors, but it may be possible to prove that it is
concave on each set of vectors w that results in a subset of contributing agents at
equilibrium. Moreover, the initial investigation suggests that the income vectors
maximizing the total aggregate welfare may be multiple for a given redistribution
problem, are imbalanced in the amount of income provided to each individual and
often correspond to a specialized equilibrium profile, where the only contributing
node is the one with higher income.

It may be interesting to further study whether these preliminary observations
can be established in general or under particular hypothesis on the graph and on the
value function parameters αi, βi.
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Chapter 6

Conclusions

Public goods lie at the core of many social, economic, and political processes. Defined
as non-rivalrous and non-excludable resources, they are often enjoyed only by a subset
of the population and are thus referred to as local. Since benefits are shared, each
person faces the difficult choice of whether to contribute or to rely on others’ efforts.
This makes it relevant to ask under which conditions cooperation can be expected,
and when instead people act selfishly, relying on others’ contributions.

This thesis investigates local public good provision through the lens of networked
game theory, aiming to understand how interconnections influence contributions, the
properties of equilibrium outcomes, and the possibility to improve their efficiency
through external interventions.

We consider network games defined on weighted and directed graphs. Heteroge-
neous agents, differing in income level, preference structure, and effort cost, must
allocate income between private consumption and contributions to a public good.
Every player benefits from her own provision of private good and from her and
her neighbors’ provision of public good through the value function. Of particular
importance is the linearity property of value functions, which simplifies the analysis
and allows for a tractable characterization of equilibria. The thesis establishes contri-
butions concerning the existence, uniqueness, and stability of Nash equilibria in this
framework. As a preliminary step, we derive and analyze best response functions
and their monotonic, saturated structure.

First, we prove the existence of Nash equilibria for the general game and character-
ize equilibrium profiles when the linearity property holds. Also, we derive conditions
ensuring the presence of two relevant types: internal and specialized equilibria.

Second, we obtain a sufficient condition for the uniqueness of the Nash equilibrium
in the general game setting. Under the linearity property, it reduces to a bound on
the lowest eigenvalue of the symmetrized per–row rescaled adjacency matrix.

Third, we study the asymptotic behavior of both the discrete- and continuous-time
best response dynamics. A sufficient condition for the contractivity of the synchronous
best response function, based on a Lipschitz property, ensures the uniqueness of the
equilibrium and the global asymptotical stability of the two dynamical systems to it.
This condition, consisting in constraining the dominant eigenvalue of the per–row

104



Conclusions

rescaled adjacency matrix, relates once again the game equilibrium and the spectrum
of the graph. We then focus on the asymptotic behavior of the continuous-time
dynamics under weaker assumptions and prove the global stability of the equilibrium
when the less restrictive uniqueness condition holds.

The final part of the thesis explores the possible inefficiency of equilibrium
outcomes. We propose two efficiency metrics -total aggregate welfare and aggregate
public good provision- to evaluate equilibrium performance and suggest two potential
intervention strategies: subsidies to incentivize higher provisions and number of
contributing agents and redistribution to reallocate income across players to move
the system towards socially optimal equilibria.

An important feature of the developed model is that it unifies and extends
previous results, generalizing the analysis to directed and weighted networks with
heterogeneous agents and nonlinear utilities. Building on strategies from [13], [10]
and [16], it exploits quadratic utilities and exact potential games to characterize
equilibrium profiles, study continuous-time dynamics, and formulate uniqueness
and stability conditions. Overall, the results either generalize prior findings or
confirm them from a broader framework. A key novelty lies in linking uniqueness
and stability through the contractivity of the synchronous best response function,
extending previous results to more complex network structures.

This thesis highlights the crucial role of network structure in shaping collective
outcomes. Weighted and directed connections allow for heterogeneous and asymmetric
externalities, reflecting many real-world situations. Spectral conditions for uniqueness
and contractivity link mathematical properties of the network to agents’ behavior,
while applying to a broad framework with diverse agents and nonlinear utilities.
From a practical perspective, the insights of this work help in understanding group
behavior when facing problems such as vaccination campaigns, the coordination
of community projects, or the diffusion of innovations and information in social
networks. At the same time, the research presents limitations. The focus on value
functions under the linearity property restricts the setting, but makes a more precise
analysis possible. The study of symmetric networks in some cases limits the use of
the results in more general directed settings. The assumption of perfectly rational
agents with full information may not always be realistic. These restrictions suggest
caution in interpreting the results, while also pointing to opportunities for further
research.

Future work could investigate the discrete-time dynamics when not contractive,
including the possibility of limit cycles arising. Another natural direction is the
relaxation of the linearity property and the subsequent study of equilibria for more
general classes of value functions. Additionally, the proposed intervention strategies
could serve as starting points for developing practical methods to improve efficiency,
and further studies could examine how network modifications, such as adding,
removing, or reweighting links, affect equilibrium outcomes.

In conclusion, this thesis contributes to the understanding of local public good
provision in networked environments by formalizing a general model, establishing
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results on equilibrium existence, uniqueness, and stability, and proposing preliminary
mechanisms to enhance efficiency. Beyond its technical contributions, the work
highlights the deep connection between network structure and collective behavior,
and opens the way to future studies at the intersection of game theory, network
science, and public economics.
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Constrained maximization of
concave functions

In this section, we derive some general mathematical results that do not concern the
game directly and that will be used to make proofs.

Initially, in a technical Lemma, we first prove that there exists a unique function
solving a constrained maximization problem for the value function and then we
characterize the first derivative of such function. Finally, we define the linearity
property of the value function.

Lemma A.0.1. Let η : R2
≥0\{(0, 0)} → R be a C2, strictly concave function st

∀x, y ≥ 0
∂η(0, y)

∂x
≥ ∂η(0, y)

∂y
(A.1)

∂η(x, 0)
∂x

≤ ∂η(x, 0)
∂y

(A.2)

then, there exists a unique function k : (0, +∞) → (0, +∞), k ∈ C1 st

η(k(z), z − k(z)) = max
(x,y): st x+y=z,z>0

η(x, y) (A.3)

k(z) ≤ z ∀ z > 0 (A.4)

k′(z) =
∂2η
∂y2 (k(z), z − k(z)) − ∂2η

∂x∂y (k(z), z − k(z))
∂2η
∂x2 (k(z), z − k(z)) − 2 ∂2η

∂x∂y (k(z), z − k(z)) + ∂2η
∂y2 (k(z), z − k(z))

(A.5)

Proof. For z > 0, consider the function ρ : [0, z] → R, defined as ρ(x) = η(x, z −x). It
follows from the assumptions on η that ρ is of class C2 and strictly concave. Moreover,

ρ′(x) = ∂η

∂x
(x, z − x) − ∂η

∂y
(x, z − x)

Then, for assumptions (A.1) and (A.2) it holds ρ′(0) ≥ 0 and ρ′(z) ≤ 0. Standard
calculus arguments imply that ρ has a unique maximum point, that is a stationary
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point. We call such a point k(z):

ρ(k(z)) = max
x∈[0,z]

ρ(x)

which, for the definition of ρ, is equivalent to the optimization problem (A.3). This
defines the function k : (0, +∞) → (0, +∞), having the property k(z) ≤ z.

We are now left with proving the regularity of k. To do this, we introduce the function
of two variables f : D → R, with D = {(x, z) : z > 0, x ∈ [0, z]} ⊂ R2. f is defined as

f(x, z) = dη

dx
(x, z − x) = ∂η

∂x
(x, z − x) − ∂η

∂y
(x, z − x)

Notice that for every z > 0, by previous considerations, it holds that f(k(z), z) = 0.
Moreover, f is of class C1 and

∂f

∂x
(x, z) = ∂

∂x
(∂η

∂x
(x, z − x) − ∂η

∂y
(x, z − x)) =

= ∂2η

∂x2 (x, z − x) − 2 ∂2η

∂x∂y
(x, z − x) + ∂2η

∂y2 (x, z − x) = vT Hη(x, z − x)v

where Hη is the Hessian matrix of η and v =
A

1
−1

B
. Then, for the strict concavity

of η, for every (x, z) ∈ D
∂f

∂x
(x, z) < 0

We can apply the Implicit function theorem and deduce that k is C1 on its domain
and

k′(z) = −
∂f
∂z (k(z), z)
∂f
∂x (k(z), z)

since

∂f

∂z
(x, z) = ∂

∂z
(∂η

∂x
(x, z − x) − ∂η

∂y
(x, z − x)) = ∂2η

∂x∂y
(x, z − x) − ∂2η

∂y2 (x, z − x)

Explicitly writing k′

k′(z) =
∂2η
∂y2 (k(z), z − k(z)) − ∂2η

∂x∂y (k(z), z − k(z))
∂2η
∂x2 (k(z), z − k(z)) − 2 ∂2η

∂x∂y (k(z), z − k(z)) + ∂2η
∂y2 (k(z), z − k(z))

the proof is complete.

We now consider an extension of Lemma A.0.1 that is particularly useful in
certain applications.

Lemma A.0.2. Let η : R2
≥0\{(0, 0)} → R be a continuous function, C2 on (0, +∞),

satisfying the following properties:
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1. for every (x, y) ∈ (0, +∞)2

vT Hη(x, z − x)v < 0 (A.6)

where Hη is the Hessian matrix of η and v =
A

1
−1

B

2. for every x > 0, y > 0 the following limit conditions hold:

lim
ϵ→0+

∂η(ϵ, y)
∂x

− ∂η(ϵ, y)
∂y

≥ 0 (or + ∞) (A.7)

lim
ϵ→0+

∂η(x, ϵ)
∂x

− ∂η(x, ϵ)
∂y

≤ 0 (or − ∞) (A.8)

then, there exists a unique function k : (0, +∞) → (0, +∞), k ∈ C1 st

η(k(z), z − k(z)) = max
(x,y): st x+y=z,z>0

η(x, y)

k(z) ≤ z ∀ z > 0

k′(z) =
∂2η
∂y2 (k(z), z − k(z)) − ∂2η

∂x∂y (k(z), z − k(z))
∂2η
∂x2 (k(z), z − k(z)) − 2 ∂2η

∂x∂y (k(z), z − k(z)) + ∂2η
∂y2 (k(z), z − k(z))

Proof. The proof of Lemma A.0.1 still holds for the less restrictive hypothesis on η.
In particular, assumption (A.6) is equivalent to the strict concavity of the function
x Ô−→ η(x, z − x), while (A.7) and (A.8) are extensions of (A.1) and (A.2).

Remark A.0.1. Notice that if for every x, y ≥ 0 it holds

∂2η

∂y2 (x, y) − ∂2η

∂x∂y
(x, y) < 0

then k′(z) > 0, ie k is a strictly increasing function.
To prove it, recall that

k′(z) =
∂2η
∂y2 (k(z), z − k(z)) − ∂2η

∂x∂y (k(z), z − k(z))
∂2η
∂x2 (k(z), z − k(z)) − 2 ∂2η

∂x∂y (k(z), z − k(z)) + ∂2η
∂y2 (k(z), z − k(z))

and that the denominator is negative since it can be written as

vT Hη(x, z − x)v

for v =
A

1
−1

B
. Then k′(z) ≥ 0 if the numerator is also negative. It is the case if for
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every x, y ∈ R2
≥0\{(0, 0)} it holds

∂2η

∂y2 (x, y) ≤ ∂2η

∂x∂y
(x, y)

Definition A.0.1. Let η : R2
≥0\{(0, 0)} → R be a C2, strictly concave function st for

every x, y ≥ 0
∂η(0, y)

∂x
≥ ∂η(0, y)

∂y

and
∂η(x, 0)

∂x
≤ ∂η(x, 0)

∂y

Denote k the function k : (0, +∞) → (0, +∞), k ∈ C1 st

η(k(z), z − k(z)) = max
(x,y): st x+y=z,z>0

η(x, y)

η is said to satisfy the linearity property L if there exists k̄ > 0 st k′(z) = k̄.

Remark A.0.2. The same definition is also valid if η satisfies the less restrictive
hypothesis of Lemma A.0.2.

Proposition A.0.3. η satisfies the linearity property L if and only if there exists
k̄ > 0 st A

0
−1

BT

Hη(x, y)
A

1
−1

B
= k̄

A
1

−1

BT

Hη(x, y)
A

1
−1

B

Proof. Recall the expression of k′(z) (see Lemma A.0.1, eq (A.5)):

k′(z) =
∂2η
∂y2 (k(z), z − k(z)) − ∂2η

∂x∂y (k(z), z − k(z))
∂2η
∂x2 (k(z), z − k(z)) − 2 ∂2η

∂x∂y (k(z), z − k(z)) + ∂2η
∂y2 (k(z), z − k(z))

Then, if η satisfies L for k̄ > 0 then k′(z) = k̄, which can be written as

∂2η

∂y2 (x, y) − ∂2η

∂x∂y
(x, y) = k̄(∂2η

∂x2 (x, y) − 2 ∂2η

∂x∂y
(x, y) + ∂2η

∂y2 (x, y))

Using the vector notation and the Hessian matrix of η, we get an equivalent definition
of the property L:

A
0

−1

BT

Hη(x, y)
A

1
−1

B
= k̄

A
1

−1

BT

Hη(x, y)
A

1
−1

B
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Examples of value functions

In this section we provide results on some particular forms that the value functions
may assume and that satisfy the game hypothesis. In addition, we make a few
examples of value functions using both the general hypothesis and these results and
derive their best response functions.

Let us consider some particular cases of value functions ηi that guarantee that
the game with utilities ui(q) = ηi(wi − qi, qi +(Gq)i) is a public good game. Together,
we provide some practical examples.

Proposition B.0.1. Consider a game defined on a graph G = (N , E , G), an income
vector w ∈ Rn

>0, and value functions ηi : R2
≥0\{(0, 0)} → R of the form ηi(x, y) =

fi(x)gi(y), with fi, gi : [0, +∞) → [0, +∞) twice continuously differentiable, strictly
increasing, strictly concave and st fi(0) = gi(0) = 0 for every i. Then, the game
P = (G, w, η) with utilities ui(q) = ηi(wi − qi, qi + (Gq)i) is a public good game. ki(z)
for every i and for z > 0 is obtained through the relation

f ′
i(x)gi(z − x) − fi(x)g′

i(z − x) = 0

Proof. In general, ηi is not strictly concave in R2
≥0\{(0, 0)}, so let us verify that the

less restrictive assumptions of Remark 3.1.1 hold. For every i

• ηi continuous function, C2 on (0, +∞), being fi and gi twice continuously
differentiable and positive.

• the hessian matrix is Hηi(x, y) =
C
f ′′

i (x)gi(y) f ′
i(x)g′

i(y)
f ′

i(x)g′
i(y) fi(x)g′′

i (y)

D
, so for every (x, y) ∈

(0, +∞)2 and for v =
A

1
−1

B
it holds:

vT Hηi(x, y)v = f ′′
i (x)gi(y) − 2f ′

i(x)g′
i(y) + fi(x)g′′

i (y) < 0

• hypothesis (3.5) and (3.6) are satisfied: for every x, y > 0

lim
ϵ→0+

∂ηi(ϵ, y)
∂x

− ∂ηi(ϵ, y)
∂y

= ∂ηi

∂x
(0, y) − ∂ηi

∂y
(0, y)
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= gi(y)f ′
i(0) − fi(0)g′

i(y) = gi(y)f ′
i(0) ≥ 0

and
lim

ϵ→0+

∂ηi(x, ϵ)
∂x

− ∂ηi(x, ϵ)
∂y

= ∂ηi

∂x
(x, 0) − ∂ηi

∂y
(x, 0) = gi(0)f ′

i(x) − fi(x)g′
i(0) = −fi(x)g′

i(0) ≤ 0

• finally, we verify (3.8): for every (x, y) ∈ R2
≥0\{(0, 0)}

∂2ηi

∂y2 (x, y) − ∂2ηi

∂x∂y
(x, y) = fi(x)g′′

i (y) − f ′
i(x)g′

i(y) < 0

So, we have proved that the game with value functions ηi(x, y) = fi(x)gi(y) is a
Public good game.
To derive the relation for ki, recall that it is the unique solution, for a given z > 0,
to:

ηi(k(z), z − k(z)) = max
0≤x≤z

ηi(x, z − x)

Then, ki(z) is obtained by solving

dηi

dx
(x, z − x) = f ′

i(x)gi(z − x) − fi(x)g′
i(z − x) = 0

Proposition B.0.2. Consider a game defined on a graph G = (N , E , G), an income
vector w ∈ Rn

>0, and value functions ηi : R2
≥0\{(0, 0)} → R of the form ηi(x, y) =

fi(x) + gi(y), with fi, gi : [0, +∞) → [0, +∞) strictly increasing, strictly concave and
st for every x, y ≥ 0 f ′

i(0) ≥ g′
i(y) and g′

i(0) ≥ f ′
i(x). Then, the game the game

P = (G, w, η) with utilities ui(q) = ηi(wi − qi, qi + (Gq)i) is a public good game. ki(z)
for every i and for z > 0 is obtained through the relation

f ′
i(x) − g′

i(z − x) = 0

Proof. First, let us see that the value functions satisfy all the assumptions. For every
i

• ηi is twice continuously differentiable and strictly concave: the hessian matrix

is Hηi(x, y) =

 ∂2ηi

∂x2
∂2ηi
∂x∂y

∂2ηi
∂x∂y

∂2ηi

∂y2

 =
C
f ′′

i (x) 0
0 g′′

i (y)

D
, so that is eigenvalues are

f ′′
i (x) < 0 and g′′

i (y) < 0.

• hypothesis (3.2) and (3.3) are satisfied: for every x, y > 0

∂ηi

∂x
(0, y) − ∂ηi

∂y
(0, y) = f ′

i(0) − g′
i(y) ≥ 0

and
∂ηi

∂x
(x, 0) − ∂ηi

∂y
(x, 0) = f ′

i(x) − g′
i(0) ≤ 0
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• finally, we verify (3.8): for every (x, y) ∈ R2
≥0\{(0, 0)}

∂2ηi

∂y2 (x, y) − ∂2ηi

∂x∂y
(x, y) = g′′

i (y) < 0

So, we have proved that the game with value functions ηi(x, y) = fi(x) + gi(y) is a
Public good game.

To derive the relation for ki, recall that it is the unique solution, for a given z > 0,
to:

ηi(k(z), z − k(z)) = max
0≤x≤z

ηi(x, z − x)

Then, ki(z) is obtained by solving

dηi

dx
(x, z − x) = f ′

i(x) − g′
i(z − x) = 0

Remark B.0.1. If fi(x) = gi(x), then the assumptions f ′
i(0) ≥ g′

i(y) and g′
i(0) ≥

f ′
i(x) for every x, y ≥ 0 follow directly from the concavity of the functions.

Example B.0.1. Sum of square roots value function
Consider a game defined on a graph G = (N , E , G), an income vector w ∈ Rn

>0, and
value functions ηi : R2

≥0\{(0, 0)} → R of the form:

η(x, y) =
√

x + 1 +
ð

y + 1

The value function can be written as η(x, y) = f(x)+g(y), with f(x) = g(x) =
√

x + 1.
Being f and g strictly increasing and concave and st f ′(0) ≥ g′(y) and g′(0) ≥ f ′(x)
for every x, y ≥ 0, for Proposition B.0.2, the game P = (G, w, η) is a public good
game. k(z) is obtained by solving f ′(x) − g′(z − x) = 0:

1
2
√

x + 1
− 1

2
√

z − x + 1
= 0

that is equivalent to
z − x + 1 − (x + 1) = 0

which implies
x = k(z) = z

2
Example B.0.2. Sum of logarithms value function
Consider a game defined on a graph G = (N , E , G), an income vector w ∈ Rn

>0, and
value functions ηi : R2

≥0\{(0, 0)} → R of the form:

η(x, y) = log(x + 1) + log(y + 1)

The value function can be written as u(x, y) = f(x) + g(y), with f(x) = g(x) =

113



Appendix B

log(x + 1). Being f and g strictly increasing and concave and st f ′(0) ≥ g′(y) and
g′(0) ≥ f ′(x) for every x, y ≥ 0, for Proposition B.0.2 the game P = (G, w, η) is a
public good game. k(z) is obtained by solving f ′(x) − g′(z − x) = 0:

1
x + 1 − 1

z − x + 1 = 0

which implies
x = k(z) = z

2
Now, let us see two examples of value functions that do not take one of the forms

presented above and for which we directly prove the fulfillment of the less restrictive
game hypothesis of Remark 3.1.1.

Example B.0.3. Logarithm of sum value function
Consider a game defined on a graph G = (N , E , G), an income vector w ∈ Rn

>0, and
value functions ηi : R2

≥0\{(0, 0)} → R of the form:

ηi(x, y) = log(xy + 1)

In general, ηi is not strictly concave in R2
≥0\{(0, 0)}, so let us verify that the less

restrictive assumptions of Remark 3.1.1 hold.

• ηi continuous function, C2 on (0, +∞).

• The hessian matrix is Hηi(x, y) =

− y2

(xy+1)2
1

(xy+1)2

1
(xy+1)2 − x2

(xy+1)2

, so for every (x, y) ∈

(0, +∞)2 and for v =
A

1
−1

B
it holds:

vT Hηi(x, y)v = − y2

(xy + 1)2 − 2
(xy + 1)2 − x2

(xy + 1)2 < 0

• hypothesis (3.5) and (3.6) are satisfied: for every x, y > 0

lim
ϵ→0+

∂ηi(ϵ, y)
∂x

− ∂ηi(ϵ, y)
∂y

= ∂ηi(0, y)
∂x

− ∂ηi(0, y)
∂y

= y ≥ 0

and
lim

ϵ→0+

∂ηi(x, ϵ)
∂x

− ∂ηi(x, ϵ)
∂y

= ∂ηi(x, 0)
∂x

− ∂ηi(x, 0)
∂y

= −x ≤ 0

• finally, we verify (3.8): for every (x, y) ∈ R2
≥0\{(0, 0)}

∂2ηi

∂y2 (x, y) − ∂2ηi

∂x∂y
(x, y) = − x2

(xy + 1)2 − 1
(xy + 1)2 < 0

So, we have proved that the game with value functions η(x, y) = log(xy + 1) is a
Public good game.
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To derive the relation for ki, recall that for every i it is the unique solution, for a
given z > 0, to:

ηi(ki(z), z − ki(z)) = max
0≤x≤z

ηi(x, z − x)

Then, ki(z) is obtained by solving

dηi

dx
(x, z − x) = z − 2x

zx − x2 + 1 = 0

which implies
x = ki(z) = z

2
Then, for Proposition 3.2.2, for every i the best response is uniquely defined and has
the form:

Bi(q−i) = [wi − ki(wi + (Gq)i)]+ = [wi − wi + (Gq)i

2 ]+ = [wi

2 − 1
2(Gq)i]+
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