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Abstract

Seagrass meadows of Posidonia oceanica (P.O.) are key coastal habitats in the

Mediterranean, yet they remain difficult and costly to survey frequently with traditional

field methods. This thesis develops and evaluates a remote sensing and deep learning

workflow that enables routine, spatially explicit mapping of P.O. from freely available

satellite imagery. The work aligns with the broader aims of the POSEIDON initiative

to support European directives through reproducible, non-destructive, georeferenced

monitoring of priority marine habitats.

The study focuses on the Capo Testa Marine Protected Area in northern Sardinia.

Level-2A Sentinel-2 multispectral images from 2015 to 2024 were processed and used

to train semantic segmentation models. Two architectures were considered, U-Net and

DeepLabv3, each coupled with ResNet encoders. Model performance was assessed on

held-out data. The resulting classifier achieved an overall accuracy of about 88% for

discriminating P.O. from spectrally similar substrates and water.

Multi-temporal classification and change detection analysis indicate a net loss of

about 8% in meadow extent between 2015 and 2024, with spatially heterogeneous

patterns that are consistent with a combination of local anthropogenic pressures (for

example anchoring and coastal works) and climate-related stressors (warming, turbidity

variability, and storm exposure).

The proposed pipeline is cost-effective in terms of time, scalable, and transferable

to other Mediterranean sites. It can underpin operational monitoring and planning

while reducing dependence on intensive field campaigns. The study also highlights

the value of targeted ground truth through field visits, underwater photography, and

photogrammetry to calibrate and validate models and to refine change attribution.

Keywords: Posidonia Oceanica; Remote Sensing; Sentinel-2; semantic

segmentation; Deep Learning; U-Net; DeepLabv3; ResNet; change detection.
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Chapter 1: Introduction

1.1 Posidonia oceanica

P.O. is a marine flowering plant belonging to the family Posidoniaceae, and is strictly

endemic to the Mediterranean Sea. Unlike algae, it is a true phanerogam with roots,

rhizomes, stems, leaves, flowers, and fruits (Hemminga et al., 2000; Damiana, 2023).

This species forms extensive underwater meadows, sometimes referred to as the “forests

of the Mediterranean,” that can persist for thousands of years due to their very slow

growth rate (on the order of centimeters per year) (Telesca et al., 2015).

The morphology of Posidonia is characterized by ribbon shaped leaves, which can

reach up to 1 to 2 meters in length, and a complex rhizome system. Horizontal

rhizomes spread laterally, anchoring the plant through roots, while vertical rhizomes

accumulate organic matter and form the so-called matte, a dense biogenic structure

made of intertwined living and dead rhizomes that stabilizes sediments and modifies

the sea bottom (Pergent et al., 1994; Boudouresque et al., 2009) (Figure 1.1).

Reproduction occurs primarily through clonal growth, but flowering and fruiting events

have been increasingly recorded in recent decades, possibly stimulated by warming

trends (Danovaro et al., 2019).

Figure 1.1: Morphological structure of P.O., showing roots, rhizomes, leaves, flowers, and
fruit (Damiana 2023).
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Posidonia meadows colonize both rocky and sandy substrates, from the surface

down to depths exceeding 40-50 meters, depending on the clarity of the water. Due to

their ecological significance, they are recognized as habitats of community importance

under the EU Habitats Directive (92/43/EEC) and benefit from strict protection under

multiple Mediterranean conventions (Danovaro et al., 2019).

From an ecological perspective, these meadows are considered the Mediterranean

equivalent of coral reefs in tropical seas: they provide habitat and nursery grounds for

numerous species, produce large amounts of oxygen (up to 15 L O2 per m
2 per day), and

act as a major sink of carbon dioxide (Boudouresque et al., 2017; Waycott et al., 2009).

The dense leaf canopy buffers the wave energy, while the matte structure prevents

coastal erosion and contributes to the stability of the coastline (Figure 1.2). Even dead

leaves that accumulate as banquettes along beaches continue to play an ecological role,

protecting beaches from erosion and offering habitat for small organisms.

Figure 1.2: P.O. meadow and ecological role in the Mediterranean (adapted from Danovaro
et al. 2019).

1.2 Background and motivation

P.O. forms dense underwater meadows that rank among the most representative and

ecologically significant ecosystems of the Mediterranean due to their spatial extent,

structural complexity, and exceptional longevity (Buia et al., 2004). Beyond their

ecological role, these meadows are crucial for coastal engineering and management

because of the services they provide to human societies.
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From an engineering perspective, P.O. helps stabilize sediments, attenuate wave

energy, and regulate water quality. The meadows act as natural filters for suspended

particles, produce oxygen, and serve as efficient carbon sinks. In fact, they sequester

carbon dioxide at rates up to ten times higher than temperate forests and fifty times

higher than tropical forests on an equivalent area basis (Buia et al., 2004). These

features make Posidonia a key ally in efforts to mitigate climate change and preserve

coastal resilience.

1.3 Ecological and environmental significance

The ecological functions of Posidonia meadows extend well beyond physical protection

of coastlines. They support a remarkably rich biodiversity, serving as breeding and

nursery grounds for more than 1,400 marine species, ranging from invertebrates to

commercially valuable fish (Boudouresque et al., 2006). The persistence of such

ecosystems supports fisheries, tourism, and overall coastal productivity.

Due to its long lifespan and extremely slow growth rate, P.O. is highly sensitive to

environmental disturbances. Even small-scale damage can require decades to recover.

These characteristics make it a valuable biological indicator of ecosystem health,

and its importance has been formally acknowledged in European and Mediterranean

conservation frameworks, including the Barcelona Convention (Lopez y Royo et al.,

2010).

1.4 Impacts of climate change and anthropogenic

stressors

Despite their ecological importance and natural resilience, Posidonia meadows are

increasingly vulnerable to human and climate pressures. Anthropogenic stressors

include mechanical damage caused by anchoring, dredging, and trawling; chronic

pollution from coastal settlements and industry; increased turbidity due to sediment

resuspension; and habitat fragmentation linked to urbanization (Boudouresque et al.,

2006).

On top of these pressures, climate change intensifies existing vulnerabilities. Rising

sea surface temperatures can affect photosynthetic efficiency and trigger mortality

during prolonged marine heat waves. Ocean acidification has potential effects on

seagrass epiphyte interactions. Altered storm regimes increase physical disturbance,

while sea level rise and coastal erosion may shift the depth range of meadows, forcing

regression at their deeper distribution limits. In some regions of the Mediterranean,

annual meadow loss has been estimated at up to 5% (Francour et al., 1999; Milazzo et
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al., 2004), a rate that far exceeds the natural growth capacity of this species. Without

effective protection and restoration, such trends could lead to irreversible ecological

damage.

1.5 The need for monitoring and assessment

Given these threats, accurate and regular monitoring of Posidonia meadows is essential.

Traditional field surveys, although highly accurate at local scales, are labor intensive,

costly, and limited in coverage. In contrast, remote sensing offers a scalable solution,

enabling the observation of seagrass dynamics across regional and decadal time scales.

Satellite platforms such as Sentinel-2 and Landsat provide multispectral imagery with

sufficient spatial and temporal resolution to support systematic monitoring.

Recent advances in computational techniques further enhance these opportunities.

Deep learning models, particularly convolutional neural networks (CNNs) and

architectures such as U-Net and DeepLab, have demonstrated remarkable success in

semantic segmentation tasks. Their application to benthic habitat mapping enables

precise classification of submerged vegetation, quantification of temporal changes, and

ultimately, data driven management of marine protected areas. For environmental

engineers and planners, these tools provide a pathway toward more proactive and

sustainable coastal management strategies.

1.6 Aim and structure of the thesis

The overarching aim of this thesis is to develop and apply a deep learning-based

framework for the classification and multitemporal assessment of P.O. meadows using

high-resolution multispectral satellite imagery. The study focuses on selected coastal

sites in southern Italy, areas where the species remains widespread but is exposed to

significant human and climatic pressures.

The specific objectives are:

1. Preprocess and harmonize Sentinel-2 imagery for selected coastal sites.

2. Train and validate deep learning models for accurate classification of Posidonia

meadows.

3. Quantify decadal-scale changes in meadow extent between 2015 and 2024.

4. Interpret these changes within the broader context of climate stressors and

anthropogenic impacts.

The remainder of this thesis is structured as follows:
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• Chapter 2 reviews the ecological role of Posidonia, remote sensing approaches,

and applications of deep learning in environmental monitoring.

• Chapter 3 introduces the study areas, datasets, and preprocessing workflow.

• Chapter 4 details the methodology for deep learning classification and validation.

• Chapter 5 presents the results of classification and change detection, interpreting

them in light of ecological and climate pressures.

• Chapter 6 concludes with the main findings, implications for conservation and

management, and recommendations for future research.

5



Chapter 2: Literature Review

2.1 Introduction to the literature review

The purpose of this chapter is to situate the present research within the broader

scientific context of monitoring and mapping P.O. meadows. While the ecological

importance and vulnerability of these ecosystems have been outlined in Chapter 1, it

is now necessary to examine how previous studies have approached their observation,

mapping, and long-term assessment. In particular, the literature highlights both the

urgency of protecting these habitats and the technological innovations that enable

large-scale monitoring.

This review is structured around four thematic areas. The first section synthesizes

previous studies on P.O., with particular emphasis on patterns of distribution, reported

decline, and the motivations for systematic spatial monitoring. The second section

examines the use of remote sensing technologies for seagrass mapping, tracing the

progression from early aerial and sonar surveys to the current use of multispectral

and hyperspectral satellite platforms. The third section explores the development of

deep learning techniques for semantic segmentation, highlighting their advantages over

traditional classification methods in environmental applications. Finally, the fourth

section reviews research that integrates satellite imagery with deep learning approaches

for seagrass habitat classification, with a specific focus on Mediterranean case studies.

Together, these perspectives provide a foundation for understanding the state of the

art in seagrass mapping and justify the methodological choices adopted in this thesis.

By synthesizing ecological insights with engineering-relevant monitoring approaches,

the review highlights how modern computational methods can support more accurate,

efficient, and scalable assessments of P.O. meadows.

2.2 Studies on P.O.

Research on P.O. has extended well beyond biology, increasingly addressing the need for

systematic observation and spatial monitoring. European legislation, most notably the

Habitats Directive (Council Directive 92/43/EEC) and theWater Framework Directive,
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provides a regulatory foundation that has spurred regional and national initiatives to

map seagrass meadows and assess their conservation status (Montefalcone, 2009).

Scientific studies have documented that disturbances such as anchoring, dredging,

and the spread of invasive species (e.g., Caulerpa taxifolia) are linked to meadow

regression across various Mediterranean sites (Boudouresque et al., 2006). More

recent analyses also point to the influence of sediment extraction and rising sea

surface temperatures, which can exacerbate local losses. While these findings originate

primarily from ecological research, they underline the necessity of reliable, spatially

explicit information on meadow distribution.

For coastal engineers and environmental planners, such data are indispensable in

marine spatial planning, environmental impact assessments, and habitat restoration

efforts. Because traditional field-based surveys are labor intensive and spatially

limited, growing attention has been directed toward satellite-based mapping as a

complementary and scalable approach. This methodological shift is central to

the present thesis, which builds on these earlier insights by applying advanced

computational tools to monitor changes in P.O. meadows.

2.3 Remote sensing for seagrass mapping

2.3.1 General applications of remote sensing

Remote sensing (RS) has substantially advanced the monitoring of submerged

vegetation by enabling spatially extensive and repeatable observations. Early

seagrass mapping relied on Landsat and IKONOS imagery, later complemented

by higher-resolution platforms such as WorldView-2/3 and the free, high-revisit

Sentinel-2 constellation. Methodological baselines include depth-invariant transforms

and water-column corrections to stabilize benthic reflectance (Sagawa et al., 2010),

while recent systematic reviews emphasize that Sentinel-2 dominates contemporary

seagrass monitoring and Landsat remains essential for multi-decadal change analysis

(Campillo-Tamarit et al., 2025). In practice, supervised machine learning approaches

(e.g., Random Forest, SVM) and spectral indices (e.g., NDVI, NDWI, EVI) are widely

used, with performance contingent on water clarity, depth, and the integration of

ancillary datasets such as bathymetry and turbidity (Huete, 2004; Mederos-Barrera

et al., 2022).

2.3.2 Applications to P.O.

Because P.O. is endemic to the Mediterranean, many RS-based studies have focused

on this region. Using Landsat 8 OLI, (Borfecchia et al., 2019) mapped meadows
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along Mediterranean coasts, while (D. Traganos et al., 2018) demonstrated robust

detection with Sentinel-2 MSI, highlighting the benefits of high revisit frequency and

visible-to-near-infrared spectral bands. Higher spatial resolution further improves

boundary delineation: (Dattola et al., 2018) compared Sentinel-2 and Landsat-8 with

MIVIS and WorldView-2, showing finer delineation of meadows, and (Topouzelis et

al., 2018) integrated OBIA with Landsat-8 to refine seagrass mapping in Greek waters.

Very high-resolution imagery has also enabled the delineation of deep limits, with

(Poursanidis et al., 2018) mapping meadows to 38-45 m depth in Crete at accuracies

above 90%.

For long-term perspectives, (Telesca et al., 2015) analyzed meadow status and

pressures across Mediterranean basins, and (Cingano et al., 2024) applied two decades

of Landsat data with Random Forest in Italian lagoons, reporting a net increase in

cover driven by Nanozostera noltei. Beyond Italy, (Davies et al., 2024) used a neural

network classifier on Sentinel-2 time-series to track intertidal seagrass dynamics across

six Western European sites, capturing distinct trajectories and phenological gradients.

Other comparative studies showed that, under some conditions, machine learning

applied to uncorrected imagery can outperform traditional water-column correction

(Mederos-Barrera et al., 2022). Together, these studies demonstrate the potential of

multispectral archives to capture both spatial extent and temporal dynamics of P.O.

and other seagrasses.

2.4 Deep learning for semantic segmentation and

environmental mapping

Deep learning (DL) has become a cornerstone of modern image analysis, offering

significant advantages over traditional classifiers by automatically learning multiscale

features from raw data. In the context of environmental monitoring, its most

relevant application is semantic segmentation, the classification of each pixel into

a specific class. This approach enables fine-grained mapping of heterogeneous

landscapes and seascapes, capturing both local details and broader contextual patterns.

Architectures such as Fully Convolutional Networks, U-Net, and DeepLab have

established themselves as robust tools for segmentation tasks across domains ranging

from medical imaging to remote sensing (Ronneberger et al., 2015a; Chen et al., 2017a).

In marine environments, these methods have been increasingly applied to the

detection and monitoring of seagrass meadows. For instance, Sentinel-2 based deep

learning workflows have demonstrated rapid and accurate mapping of P.O. cover,

enabling both short- and long-term assessments of human and climatic pressures

(Chowdhury et al., 2024). Studies using underwater imagery further show that neural
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networks can discriminate P.O. patches under challenging optical conditions (Burguera,

2020). These applications highlight the potential of DL to complement traditional

monitoring by delivering scalable, data-driven habitat classifications.

Among the available architectures, U-Net has gained particular prominence due to

its encoder–decoder structure with skip connections, which is effective for preserving

spatial detail in high-resolution imagery. Variants that incorporate backbones such as

ResNet or EfficientNet further enhance feature extraction capacity. Since this thesis

employs a U-Net-based model for the classification of P.O. meadows, a more detailed

description of the architecture and training strategy is provided in Chapter 4.

2.5 Integrating remote sensing and deep learning

in seagrass monitoring

2.5.1 Deep learning for satellite-based seagrass Classification

Deep learning has improved both accuracy and transferability in seagrass mapping from

satellite data. In Italy, (Scarpetta et al., 2022) applied U-Net to high-resolution imagery

along the Apulian coast, achieving reliable pixel-wise classification of P.O. with limited

training data. Advances in land cover segmentation also inform marine applications:

(Maurya et al., 2023) developed a 33-layer modified U-Net for Sentinel-2, achieving

higher IoU scores than standard U-Net and DeeplabV3+. At broader scales, (Peng

et al., 2025) introduced SGDenseNet, a DenseNet-based model trained on Caribbean

data and validated globally, outperforming OBIA and shallow-learning methods and

demonstrating the feasibility of low-cost, generalizable seagrass products.

2.5.2 Multi-sensor integration and operational frameworks

Beyond single-sensor classification, multisensor integration provides new opportunities

for seagrass monitoring. At site scale, (Rende et al., 2020) combined Pléiades imagery,

UAV orthophotos, multibeam bathymetry, and underwater photogrammetry in an

object-based framework, achieving accuracies above 95-99%. At operational scale,

(Chowdhury et al., 2024) demonstrated a pipeline combining Sentinel-2, ACOLITE

preprocessing, and DL to map meadows in the Balearic and Maltese Islands between

2017 and 2021, with accuracy up to 92% and transferability across sites. Larger

benchmarking efforts in the Mediterranean have tested multiple DL architectures across

multi-scene datasets, such as the CAMELE framework proposed by (Giménez-Romero

et al., 2024). On a continental scale, (Dimosthenis Traganos et al., 2018) used Google

Earth Engine with Sentinel-2 and SVM to map 2,510 km2 of meadows in the Aegean

and Ionian Seas, showing the feasibility of low-cost, cloud-based monitoring. Similar
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continental-to-global DL frameworks continue to emerge, with examples in Western

Europe (Davies et al., 2024) and the Caribbean (Peng et al., 2025). Lessons from

large-area terrestrial land cover projects reinforce the importance of OBIA, ancillary

layers, and scalable workflows for national and continental mapping (Maxwell et al.,

2019).

2.5.2.1 Alignment with national research initiatives

A particularly relevant initiative is the POSEIDON Project (Ceccherelli et al., 2024),

which is a research project of Italia Domani - Piano Nazionale di Ripresa e Resilienza

(PNRR) and carried out by a consortium that includes researchers from the Politecnico

di Torino. The project combines satellite archives (Landsat, Sentinel-2) with UAV

imaging and acoustic surveys to deliver multi-scale, multi-temporal products for P.O.

meadows and banquettes, including a webGIS and ecological models in support of

conservation and marine spatial planning. The approach developed in this thesis

leveraging Sentinel-2 and deep learning for multitemporal mapping aligns with and

complements the goals of POSEIDON led by the PoliTo and other collaborators.
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Chapter 3: Materials and

Methods

3.1 Introduction

This chapter presents the practical methodology developed to identify and classify

meadows of P.O. using satellite-based imagery and deep learning techniques. Building

on the conceptual and technical foundations laid in Chapter 2 which outlined the

ecological role of P.O., the capabilities of remote sensing, and the promise of deep

learning in environmental applications, this section now shifts the focus to the

operational framework adopted in this study.

Given the increasing availability of high-resolution multispectral data, particularly

from the Sentinel-2 satellite constellation, and the maturity of convolutional neural

networks for image analysis, the workflow designed for this thesis combines both

domains. This integration is particularly valuable for mapping seagrass meadows in

shallow coastal areas, where underwater reflectance patterns can be highly variable due

to factors such as water depth, turbidity, and seabed composition.

The methodology follows a structured sequence of phases. It begins with the

selection and preprocessing of satellite images, including spatial resampling and the

delineation of the areas of interest. This is followed by the design and implementation

of a supervised deep learning model, based on the U-Net architecture, which has

proven effective for pixel-level classification. To optimize the performance of the model,

particular attention is given to training strategies that address challenges such as class

imbalance, overfitting, and spectral noise. Finally, the results are evaluated using both

spatial accuracy metrics and classification performance indicators.

In addition, this chapter provides a detailed description of the coastal areas selected

for the study: specific marine zones along the southern and northeast coasts of Sardinia,

Italy, which were chosen because of their ecological importance and the availability of

supporting data. These include both protected marine areas and ecologically sensitive

sites, as identified by regional conservation frameworks.

Subsequent sections outline each component of the workflow, from data acquisition
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to model evaluation, providing a transparent and reproducible methodology for remote

sensing-based monitoring of P.O.. This chapter forms the technical backbone of the

thesis, laying the groundwork for the analysis and discussion presented in Chapters 4

and 5.

3.2 Study areas

Sardinia, the second largest island in the Mediterranean Sea, lies just south of mainland

Italy and is surrounded by the Tyrrhenian and western Mediterranean waters. Its

unique geographical position, combined with a rugged coastline and extensive shallow

waters, makes it one of Italy’s most ecologically and economically important regions.

The island is known for its rich biodiversity, pristine beaches, and a growing tourism

industry that attracts millions of visitors each year. However, in addition to its natural

beauty, Sardinia faces significant ecological challenges arising from climate change,

recreational boating, commercial shipping, and coastal development.

(a) Itlay (b) Sardinia

(c) North of Sardinia (d) Capo Testa

Figure 3.1: Study area: Sardinia (Italy) and the Capo Testa peninsula (approx. 41.24 N,
9.14 E). Source: Google Earth; accessed Sep 2025.

In recognition of its environmental importance and the growing anthropogenic

pressures, six Marine Protected Areas (MPAs) have been established in Sardinia under

regional and national frameworks. These are:

• Capo Carbonara Marine Protected Area
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• Tavolara – Punta Coda Cavallo Marine Protected Area

• Asinara Island Marine Protected Area

• Capo Caccia – Isola Piana Marine Protected Area

• Sinis Peninsula – Mal di Ventre Island Marine Protected Area

• Capo Testa – Punta Falcone Marine Protected Area

Figure 3.1 shows the geographical location of Sardinia in the Mediterranean Sea.

Among these, the Capo Testa – Punta Falcone Marine Protected Area, located

along the northern coast of Sardinia, was selected as the primary case study for this

research. Established by ministerial decree in 2018 and managed by the Municipality

of Santa Teresa Gallura, this MPA spans over 5,000 hectares and encompasses a wide

range of marine and coastal environments representative of the Gallura region’s natural

heritage (Capo Testa – Punta Falcone MPA, 2024).

This protected area is subdivided into four zones with varying degrees of protection

and access:

• Zone A – Full reserve

• Zone B – General reserve

• Zone Bs – Special general reserve

• Zone C – Partial reserve

In addition to its national designation, Capo Testa is also part of a Site of

Community Importance (SCI ITB010007), incorporated into the EU Natura 2000

ecological network and subject to a dedicated management plan under the Habitats

Directive (Regione Autonoma della Sardegna, 2025). This layered conservation status

highlights the ecological relevance of the area and underscores the need for robust

monitoring strategies.

The presence of clear waters, varying benthic substrates, and known meadows of

P.O. make Capo Testa particularly well suited for satellite-based mapping approaches.

The combination of ecological value, regulatory protection, and data availability was

central to its selection for this study. Figure 3.2 shows the spatial extent of the Capo

Testa MPA and the surrounding region used in the analysis.
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Figure 3.2: Zoning Map of Capo Testa Punta Falcone Marine Protected Area, Sardinia,
Italy.(source: Area Marina Protetta Capo Testa Punta Falcone).

3.3 Satellite data and sources

Satellite remote sensing has become an indispensable tool in environmental monitoring,

offering a broad range of data products that support applications in land use planning,

agriculture, water quality assessment, disaster response, and coastal ecosystem analysis.

The variety of satellite systems currently in operation includes both passive and active

sensors, with spatial, spectral, and temporal resolutions tailored to specific scientific

and operational needs. Platforms such as Landsat, MODIS, WorldView, and Sentinel

offer users the ability to monitor Earth’s surface consistently and repeatedly over time.

Among these, the Copernicus Earth Observation Program stands out as one of
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the most comprehensive initiatives currently available. Developed and managed by

the European Commission in partnership with the European Space Agency (ESA),

Copernicus provides free and open access to satellite data from a growing constellation

of Sentinel missions. Each Sentinel satellite series is designed for a particular type of

observation: Sentinel-1 focuses on radar imaging, Sentinel-2 provides high-resolution

optical imagery, Sentinel-3 collects ocean and land surface measurements, and other

missions target atmospheric, climate, and emergency management applications.

The Sentinel-2 mission, which is central to this study, was launched in 2015 with

the first satellite (Sentinel-2A), followed by Sentinel-2B in 2017. Together, these

twin satellites orbit the Earth in a sun-synchronous configuration, allowing for global

land coverage approximately every five days. The mission delivers high-resolution

multispectral imagery suitable for vegetation, water bodies, and land cover mapping,

and is especially well suited to coastal and marine studies due to its inclusion of

water-penetrating spectral bands. Data can be accessed through the Copernicus Data

Space Ecosystem (Copernicus Data Space Ecosystem, 2025).

Sentinel-2 data is available in two processing levels: Level-1C and Level-2A.

Level-1C products contain top-of-atmosphere (TOA) reflectance values and require

atmospheric correction to derive surface reflectance. In contrast, Level-2A products are

already corrected for atmospheric effects and provide surface reflectance at the bottom

of the atmosphere. Given the objectives of this research, which involve detecting subtle

variations in underwater vegetation reflectance, only Level-2A products were used

to ensure consistency and minimize preprocessing efforts (European Space Agency,

2025a).

Each downloaded Sentinel-2 Level-2A product contains data in three resolution

folders: R10m, R20m, and R60m, corresponding to spatial resolutions of 10, 20, and

60 meters, respectively. These folders contain georeferenced image tiles of different

spectral bands, which can be selectively used or resampled depending on the analytical

requirements (ESA Sentinel Wiki, 2025).

The Sentinel-2 mission provides 13 spectral bands, each designed to capture specific

reflectance features of the Earth’s surface:

• 10m resolution: B2 (Blue), B3 (Green), B4 (Red), B8 (NIR)

• 20m resolution: B5, B6, B7 (Red Edge), B8A (Narrow NIR), B11, B12 (SWIR)

• 60m resolution: B1 (Coastal aerosol), B9 (Water vapor), B10 (Cirrus) – B10

is not typically used in surface analysis

To achieve a uniform input resolution for our deep learning model, all 20 m and 60

m bands were resampled to 10 m resolution using bilinear interpolation. This approach
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allows for a consistent pixel size across input features and simplifies the integration of

multiple bands in the classification pipeline.

For the purposes of temporal analysis, this study focused on four distinct time

epochs, selecting imagery from the month of September in the years 2015, 2018, 2021,

and 2024. September was chosen to represent post summer conditions, where sea

states are typically calm, water clarity is high, and vegetation is still active. This

temporal spacing allows for the observation of long-term trends in the spatial extent

and reflectance characteristics of P.O. meadows. The scene of each year was carefully

selected to ensure minimal cloud cover, low turbidity, and suitable solar elevation angles

(Figure 3.3).

Figure 3.3: Copernicus Browser Visualise, September 2018

The availability of consistent and high-resolution Sentinel-2 imagery across these

four temporal epochs offered a solid foundation for multitemporal classification of

submerged vegetation. However, raw satellite data alone are not directly suitable

for model training or analysis. It was therefore necessary to select specific bands for

each year, resample all layers to a common spatial resolution, and spatially clip the

scenes to match the study area boundaries. These steps were performed using ArcGIS

Pro, where multiband composite images were created and exported for classification.

The following section describes in detail the preprocessing procedures applied to the

selected Sentinel-2 images prior to their integration into the deep learning workflow.
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3.4 Preprocessing workflow

To prepare the satellite data for classification, a structured preprocessing pipeline was

implemented using ArcGIS Pro. Each of the four temporal epochs was managed in a

separate ArcGIS project to ensure consistency and clarity throughout the procedure.

3.4 illustrates the workflow for preparing data for deep learning training, covering the

process from initial image preprocessing to the generation of training chips.

Figure 3.4: Diagram of preparing training data for deep learning.

For each year, the relevant Sentinel-2 Level-2A image was loaded into the project

environment. To maximize spatial detail, all available bands from the three resolution

levels were included: Bands 2, 3, 4, and 8 from the R10m folder; Bands 1, 5, 6, 7, 8A,

11, and 12 from the R20m folder; and Band 9 from the R60m folder. As all bands need

to share a common resolution for multiband analysis, the rasters at 20 m and 60 m

resolution were resampled to 10 m using ArcGIS Pro’s “Resample” tool.

Among the available interpolation methods, the “Nearest” resampling technique

was chosen. This method assigns the value of the nearest input cell to the output cell

without altering the original pixel values, making it ideal for categorical or spectral

classification tasks. Moreover, it preserves the spectral integrity of the bands, which is

essential when analyzing vegetation reflectance in shallow marine environments (Esri,

2025a).

To manage file size and focus on ecologically relevant areas, a study area boundary

was defined and applied across all rasters using the “Clip Raster” tool. This process
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extracts only the portion of each band that intersects the area of interest, reducing

data volume and ensuring all subsequent processing is spatially consistent.

In addition to spectral data, a bathymetry layer was incorporated to enhance

the model’s capacity to distinguish between submerged substrates. While traditional

bathymetric mapping relies on acoustic systems such as single-beam or multi-beam

echo sounders (SBES/MBES), these methods face limitations in shallow, dynamic

coastal zones due to high operational costs and restricted accessibility. Airborne

LiDAR, though useful, often suffers from similarly high costs and limited spatial

coverage. As an alternative, satellite-derived bathymetry (SDB) techniques offer a

rapid, low-cost means of estimating water depth across large areas by leveraging

multispectral reflectance data. Recent studies have demonstrated the effectiveness of

SDB using open Sentinel-2 imagery, especially when paired with additional altimetry

or validation data (Bernardis et al., 2023).

Figure 3.5: Schematic illustration of Sentinel-2 and ICESat-2 satellite altimetry reference
levels used in satellite-derived bathymetry estimation. Adapted from (Bernardis et al., 2023).

In our study, a bathymetric raster was obtained from the Marine Geospatial

Information Coastal Database (MaGIC) developed by the Italian Institute for

Environmental Protection and Research (ISPRA) in collaboration with other national

entities (ISPRA and partners, 2025). This dataset, which is part of a broader coastal

mapping and management initiative, provides depth estimates for Italy’s marine areas
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derived from a combination of multibeam, singlebeam, and LIDAR surveys, integrated

with other validated hydrographic sources. Incorporating this bathymetric layer

alongside the spectral bands of Sentinel-2 enhances the model’s ability to distinguish

P.O. meadows from other benthic substrates that may have similar spectral responses

but occur at different depths. Depth information is particularly valuable in complex

coastal zones, where water column effects and bottom type variability can confound

purely spectral classification.

Once all input rasters (12 spectral bands and 1 bathymetric band) were prepared,

they were combined into a single composite image using the “Composite Bands” tool in

ArcGIS Pro. The bands were added in the following order: B01, B11, B12, B02, B03,

B04, B05, B06, B07, B08, B8A, B09, and Bathymetry. This consistent band stacking

order was maintained across all years to ensure uniformity during model training and

classification.

The resulting 13-band composite rasters, resampled to 10 m resolution, clipped to

the study area, and standardized across four time periods, served as the final input for

the deep learning classification workflow described in the next sections.

3.4.1 Water masking using the sentinel-2 scene classification

layer

One of the key products of the Sentinel-2 Level-2A (L2A) dataset is the Scene

Classification Layer (SCL), a thematic raster that assigns each pixel to a specific land

cover or condition class. The SCL is generated at 20 m resolution by the Sen2Cor

processor during atmospheric correction and accompanies each L2A product (Monks,

2023).

Table 3.1: Sentinel-2 Level-2A Scene Classification Layer (SCL) classes and pixel values
(Monks, 2023).

Value Class Description

0 No Data

1 Saturated or defective pixel

2 Dark area pixels

3 Cloud shadows

4 Vegetation

5 Not vegetated (bare soil, land)

6 Water

7 Unclassified

8 Cloud medium probability

9 Cloud high probability

10 Thin cirrus

11 Snow or ice
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The SCL is designed to assist in cloud masking, land cover separation, and other

pre-processing tasks. For marine habitat mapping, it is particularly useful for isolating

water pixels from land and cloud-affected areas before classification. The layer includes

class codes ranging from 0 to 11, each representing a different surface condition or object

(Table 3.1).

In this study, the SCL raster was used to create a binary mask of water pixels

(class value = 6). Since the SCL is distributed at 20 m resolution, it was resampled

to 10 m using the nearest neighbour technique to preserve discrete class values and

ensure alignment with the multispectral composite raster. The masking procedure for

each acquisition date was as follows:

1. Add the SCL raster: Load the *_SCL_20m.jp2 file for the selected Sentinel-2

scene into ArcGIS Pro.

2. Resample to 10 m: Apply the Resample tool (technique: Nearest) to match

the spatial resolution of the composite raster.

3. Create a binary mask: Use the Raster Calculator to assign a value of 1 to

water pixels (SCL = 6) and NoData to all others:

Con("SCL_10m" == 6, 1)

4. Apply the mask: Multiply the composite raster by the binary mask, or use

Extract by Mask, to retain only water-covered areas.

This procedure effectively removed land, cloud, and shadow pixels from the

classification domain, ensuring that subsequent deep learning analysis focused

exclusively on submerged regions.

3.4.2 Ground truth data

As part of the Poseidon project, researchers from the Department of Environment,

Land and Infrastructure Engineering (DIATI) at Politecnico di Torino carried out a

detailed mapping of seagrass meadows around Culuccia Island. In order to maintain

methodological consistency and ensure that our results are comparable, we adopted

the same classification scheme and general assumptions used in their work.

In that study, the ground truth dataset was organized into six distinct habitat

classes:

1. Posidonia Degradata - Matte morta (Degraded Posidonia - dead matte)

2. Posidonia su matte-sabbia (Posidonia on matte-sand)

3. Posidonia su roccia (Posidonia on rock)
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4. No Posidonia - Sabbia (No Posidonia - sand)

5. No Posidonia - Sedimenti vari (No Posidonia - mixed sediments)

6. Mare Profondo (Deep sea)

For our analysis, we prepared a ground truth shapefile covering the entire study

area, ensuring that every location was assigned to one of these six classes. This was

essential to avoid gaps or undefined regions, as any missing class assignments could

compromise the training of the deep learning model.

The workflow for building this dataset began with defining the likely spatial extent

of P.O.. Since the species is predominantly found in shallow waters, a polyline was

drawn at the 20 m depth contour. Any areas located beyond this line, where no other

habitat information was available, were assigned to theMare Profondo (deep sea) class.

To define the Posidonia-related classes, we used an existing shapefile of P.O.

meadows obtained from the European Marine Observation and Data Network

(EMODnet) Seabed Habitats portal (European Marine Observation and Data

Network (EMODnet), 2025). This dataset provides mapped distributions of P.O.

across the Mediterranean, compiled from multiple national and regional monitoring

programmes. From this dataset, the three relevant classes were extracted: Posidonia

Degradata-Matte morta, Posidonia su matte-sabbia, and Posidonia su roccia.

Additional data were obtained from the National Research Council of Italy’s (CNR)

GeoNetwork portal (Consiglio Nazionale delle Ricerche (CNR), 2025), specifically from

the record available at: http://libeccio.bo.ismar.cnr.it:8080/geonetwork/

pnrr/api/records/115e1ddb-0fc5-4b09-a437-ba64f5d0eaff. From this dataset,

the No Posidonia - Sabbia class was extracted.

Finally, the remaining areas within the study boundary that were not covered by any

of the above layers were classified as No Posidonia - Sedimenti vari. This step ensured

that the final ground truth shapefile represented a complete and seamless classification

of the study area, ready for use in training and validating the classification model.

The final ground truth layer, covering the entire study area without gaps, is shown in

Figure 3.6.
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Figure 3.6: Ground truth habitat classification for the study area, based on six classe

3.4.3 Training sample definition

With the ground truth shapefile completed and the final 13-band composite raster

prepared (Section 3.4), the next step was to create the training dataset required for

deep learning classification. This was carried out in ArcGIS Pro using the Training

Samples Manager tool, accessible from the Imagery tab under Classification Tools.

The Training Samples Manager provides an interactive environment for creating,

editing, and managing training samples, which are pixel-based representations of known

land cover or habitat classes. These samples form the reference dataset used to train

supervised classification models, including deep learning approaches (Esri, 2025b). The

tool allows the user to:

• Digitize polygons or rectangles directly on the imagery.

• Assign each sample to a predefined class from a user-defined schema.

• Review and edit samples to ensure accuracy and remove errors.

• Track the number of samples collected per class.

For this study, the six habitat classes defined in Section 3.5 were adopted: Posidonia

degradata – matte morta, Posidonia su matte sabbia, Posidonia su roccia, No Posidonia
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– sabbia, No Posidonia – sedimenti vari, and Mare profondo. Using the composite

raster as the base image and the ground truth layer as a spatial guide, multiple training

polygons were collected for each class.

To maximize the representativeness of the training set, sample collection followed

these principles:

• Ensure coverage of the full spectral variability within each class, including

differences due to water depth, substrate type, and lighting.

• Avoid boundary areas between classes to reduce the likelihood of mixed pixels.

• Distribute samples across the full spatial extent of the study area.

Once the desired number of samples was obtained, the Training Samples Manager

exported them as a labeled raster dataset, with each pixel assigned to its respective

class code. This labeled raster formed the core input for the deep learning model

training described in Chapter 4.

Figure 3.7: Example of training samples created in ArcGIS Pro’s Training Samples Manager
for the six habitat classes.
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Chapter 4: Deep Learning

4.1 Introduction: from artificial intelligence to

deep learning

Artificial Intelligence (AI) is a broad domain of computer science focused on building

systems capable of tasks that traditionally require human intelligence, such as language

processing, visual recognition, autonomous decision-making, and prediction. AI is

now embedded in everyday technologies including virtual assistants, recommendation

systems, medical diagnostics, and climate modeling. In environmental sciences, AI has

emerged as a powerful tool for processing the vast amounts of data generated by remote

sensing and monitoring systems.

Within AI, two subfields have gained particular importance: Machine Learning

(ML) and Deep Learning (DL). Machine learning refers to algorithms that

learn patterns from data and improve their performance over time, often relying

on hand-crafted features designed by experts. Deep learning, by contrast, employs

multi-layered neural networks that can automatically learn hierarchical features

directly from raw data, making it particularly effective for high-dimensional and

complex inputs such as images.

Figure 4.1: Conceptual relationship between Artificial Intelligence, Machine Learning, and
Deep Learning.
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Figure 4.1 illustrates the hierarchical relationship between these concepts. AI forms

the broadest category, encompassing all computational approaches designed to emulate

aspects of intelligence. ML is a subset of AI focused on data-driven learning. DL is

a further subset of ML, distinguished by the use of neural networks with many layers

that extract features and perform predictions in an integrated manner.

A closely related and rapidly emerging field isGeoAI, which represents the intersection

of geospatial sciences, artificial intelligence, and remote sensing (Figure 4.2). GeoAI

combines spatial science, AI (especially machine learning and deep learning), data

mining, and high-performance computing to extract knowledge from large geospatial

datasets. These technologies provide new opportunities for handling and analyzing

spatial data more efficiently, improving accuracy in environmental monitoring, and

developing integrative frameworks that connect GIS with other scientific domains

(Alastal et al., 2022).

Figure 4.2: Conceptual framework of GeoAI (Alastal et al., 2022).

In the context of this thesis, DL is used for semantic segmentation, the

pixel-wise classification of satellite images. This is crucial for mapping P.O. meadows,

where spectral similarity to sand or other substrates makes traditional classification

approaches insufficient. Using DL architectures such as U-Net and DeepLabv3 within

GIS environments, We can obtain relatively accurate spatial maps of seagrass meadows

that support both ecological monitoring and coastal engineering applications.

4.2 Deep learning fundamentals

4.2.1 Historical background

Deep learning (DL) emerged from the study of artificial neural networks (ANNs), which

were originally inspired by simplified models of the brain’s information processing

(Ramachandran et al., 2021). Early milestones include McCulloch and Pitts’ formal
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neuron model (1940s) and Rosenblatt’s Perceptron (1950s), one of the first trainable

learning machines (Tappert, 2019). Later, the use of error backpropagation enabled

multi-layer networks, but practical progress accelerated only when large labeled

datasets and fast computation became available. A turning point came with AlexNet,

a deep convolutional neural network (CNN) that dramatically improved ImageNet

performance and demonstrated the practical power of deep models for large-scale image

recognition (Krizhevsky et al., 2017). Since then, better software, GPUs/accelerators,

and systematic engineering have made DL the dominant approach for many perception

tasks (Watson et al., 2022; Armeniakos et al., 2022).

4.2.2 Artificial neural networks (ANNs)

An ANN is a stack of layers composed of units (neurons). A neuron takes a weighted

sum of its inputs, adds a bias, and applies a nonlinear activation (e.g., ReLU). Layer

by layer, the network transforms raw inputs into progressively more abstract features.

Training proceeds by:

1. Forward pass: compute predictions given current weights.

2. Loss: measure the discrepancy between predictions and targets.

3. Backward pass: compute gradients by backpropagation.

4. Update: adjust weights with an optimizer (e.g., SGD, Adam).

This end-to-end learning features from data, distinguishes DL from pipelines that rely

on manual feature engineering (Pakela et al., 2022; Ramachandran et al., 2021).

4.2.3 Convolutional neural networks (CNNs)

Convolutional Neural Networks (CNNs) are a class of deep learning models specifically

designed for image and spatial data. Unlike traditional fully connected neural networks,

CNNs exploit the spatial structure of images through localized connections and weight

sharing, which reduces the number of parameters and makes them more efficient for

high-dimensional inputs (Watson et al., 2022; Pakela et al., 2022). A CNN is typically

composed of several key layers:

• Convolutional layers: apply small filters (kernels) to extract local features

such as edges, corners, or textures.

• Activation functions (e.g., ReLU): introduce non-linearity to enable the

learning of complex patterns.
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• Pooling layers: downsample feature maps, reducing their spatial size while

retaining important information.

• Fully connected layers: combine extracted features to form a global

representation, usually for classification tasks.

Through multiple stacked convolutional and pooling layers, CNNs progressively

transform raw input images into high-level feature representations (Figure 4.3). This

hierarchical learning enables the network to first detect low-level features (edges,

colors), then intermediate features (shapes, textures), and finally high-level concepts

(objects or regions of interest). Such properties have made CNNs the standard in

modern computer vision tasks such as classification, object detection, and semantic

segmentation (Krizhevsky et al., 2017; Watson et al., 2022).

Figure 4.3: Schematic of a CNN (Mallick, 2016).

4.2.4 Kernels, stride, and padding in CNNs

The fundamental operation in CNNs is the convolution, where a small matrix of

numbers (called a kernel or filter) slides across the input image. At each position, the

kernel values are multiplied by the underlying pixel values and summed to produce a

new value in the output feature map. This process enables the network to highlight

specific visual characteristics in the image, such as edges or textures (Jain, 2019).

Different kernels extract different features. For example, one kernel may blur the

image, another may sharpen it, and another may detect edges. During training, the

network learns the optimal kernel weights for the task at hand. Figure 4.4 shows

examples of commonly used kernels.
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Figure 4.4: Examples of different kernels and their effects on an image, including Gaussian
blur, sharpen, and edge detection. Source: adapted from (Jain, 2019).

Figure 4.5: Illustration of padding in convolution. Source: adapted from (Mallick, 2016).

Two additional parameters control the convolution process:

• Stride: determines the number of pixels the kernel moves at each step. A stride

of 1 results in high-resolution feature maps; larger strides reduce spatial resolution

and computation.

• Padding: adds artificial pixels (often zeros) around the borders of the input to

preserve spatial dimensions and avoid information loss at the edges (Figure 4.5).

An example of the convolution operation is shown in Figure 4.6. Here, a 3 × 3

kernel is applied to a region of the source image, producing a single output value in

the destination layer.

28



Figure 4.6: Example of a convolution operation using a 3 × 3 kernel applied to a source
image region. Source: adapted from (Mallick, 2016).

Finally, pooling layers (such as max pooling) are often applied after convolution

to downsample the feature maps. Pooling reduces computation, makes the model

more efficient, and adds robustness by retaining only the most significant responses.

Together, convolution, activation, padding, stride, and pooling enable CNNs to learn

complex visual patterns in a structured and efficient way.

4.3 U-Net architecture

4.3.1 Architectures in deep learning

In deep learning, an architecture defines the arrangement of layers and the flow

of information in a model. Different architectures are optimized for different tasks:

for example, classification networks (e.g., VGG, ResNet) map an image to a single

class label, while segmentation architectures predict a label for each pixel. In this

context, U-Net represents one of the most widely used encoder–decoder architectures

for semantic segmentation, originally proposed for biomedical imaging (Ronneberger

et al., 2015b) and later adapted for remote sensing and satellite imagery (Anonymous,

2020).

4.3.2 Encoder–decoder design

The U-Net follows a symmetric encoder–decoder structure:

• Encoder (contracting path): progressively reduces spatial dimensions using

repeated convolutional layers and pooling, capturing increasingly abstract

features. This is similar to a standard CNN feature extractor.
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• Decoder (expansive path): progressively upsamples feature maps using

transpose convolutions (up-convs) to restore spatial resolution and generate dense

predictions at the pixel level.

• Skip connections: a key innovation of U-Net is the direct transfer of feature

maps from the encoder to the decoder at corresponding scales. These skip

connections preserve fine-grained spatial information that would otherwise be

lost during downsampling, significantly improving localization accuracy.

Figure 4.7 shows a U-Net architecture, characterized by a symmetric

encoder–decoder structure with skip connections linking corresponding layers.

Figure 4.7: Architecture of the U-Net model for image segmentation. Adapted from
(Ronneberger et al., 2015b).

4.3.3 Role of U-Net in semantic segmentation

Unlike image classification, semantic segmentation requires assigning a class to every

pixel in the image. The encoder captures global context, while the decoder reconstructs

fine detail. By combining low-level features (edges, textures) with high-level semantic

features (object identity), U-Net enables accurate delineation of objects, even in cases of

complex boundaries (Ronneberger et al., 2015b; Esri Developer, 2023; GeeksforGeeks,

2023b).

4.3.4 Variants and backbones

Since its introduction, U-Net has inspired numerous variants:

• ResU-Net: integrates residual connections (from ResNet) to improve gradient

flow and training stability.
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• Dense U-Net: incorporates dense connectivity (from DenseNet) to promote

feature reuse.

• Efficient U-Net: uses EfficientNet as a backbone to balance accuracy and

efficiency.

In practice, the encoder can be replaced by different pre-trained classification networks

(e.g., ResNet, EfficientNet) to leverage transfer learning. In our work, we use a U-Net

with a DeepLabv3 backbone for semantic segmentation of P.O..

4.4 Semantic segmentation and backbones

4.4.1 Semantic segmentation

Semantic segmentation is the process of assigning a class label to every pixel in an

image, effectively producing a dense classification map. This is distinct from image

classification, which assigns a single label to the entire image, and object detection,

which localizes objects with bounding boxes. Semantic segmentation is particularly

important in environmental remote sensing, where it enables the delineation of habitats,

land cover types, or vegetation patches at a fine spatial scale.

For this thesis, semantic segmentation is essential for accurately mapping P.O.

meadows, whose reflectance often overlaps with sandy or rocky substrates. Traditional

classification approaches struggle with this spectral similarity, while semantic

segmentation models can exploit both local texture and contextual information to

produce precise pixel-wise maps.

4.4.2 DeepLabv3 architecture

One of the most influential semantic segmentation architectures is DeepLabv3,

proposed by Chen et al. (2017b). Its central innovation is the use of atrous (dilated)

convolutions, which allow convolutional filters to capture larger context without

reducing the resolution of feature maps. This approach improves the model’s ability

to balance fine spatial detail with global context.

DeepLabv3 also integrates Atrous Spatial Pyramid Pooling (ASPP), which

applies atrous convolutions with multiple dilation rates in parallel. This design allows

the network to capture features at multiple scales, a crucial advantage for images where

objects vary in size and shape (Datature, 2023; Berŕıos, 2020). By combining local and

global information, DeepLabv3 achieves high accuracy in segmentation benchmarks and

has become a standard in many applied fields, including medical imaging, autonomous

driving, and remote sensing.
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Figure 4.8: Architecture of DeepLabv3, Adapted from (Chen et al., 2017b).

Figure 4.8 illustrates the use of atrous convolutions and Atrous Spatial Pyramid

Pooling (ASPP) to capture multi-scale contextual features.

4.4.3 Backbones in semantic segmentation

DeepLabv3, like other modern segmentation models, separates its design into two

components:

• Architecture: the overall framework (e.g., DeepLabv3, U-Net), which defines

how features are extracted, processed, and upsampled for pixel-level predictions.

• Backbone: the feature extractor used as the encoder. Typically, well-established

image classification networks such as ResNet, Xception, or EfficientNet serve this

role, providing powerful hierarchical representations of input images.

Among the different backbones available, Residual Networks (ResNet) have

become one of the most widely adopted in semantic segmentation models. ResNet

introduces residual connections, which allow the input of a layer to bypass one or

more intermediate layers and be added directly to the output. This design addresses

the problem of vanishing gradients, enabling the training of very deep networks without

performance degradation.

Different ResNet variants (ResNet-18, ResNet-34, ResNet-50, ResNet-101,

ResNet-152) vary in depth and complexity, trading off between computational cost

and feature representation power. Shallower networks (e.g. ResNet-18, ResNet-34) are

faster and less memory intensive, while deeper networks (e.g. ResNet-101, ResNet-152)

capture richer and more abstract features but require more resources (Code, 2023).

In this thesis, ResNet backbones were selected due to their proven robustness,

availability of pre-trained weights, and compatibility with architectures such as

DeepLabv3 and U-Net. This modularity ensures flexibility: the architecture

(e.g. DeepLabv3) defines how segmentation is performed, while the backbone (e.g.

ResNet-50) extracts the essential multiscale features from raw imagery.
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Figure 4.9: Comparison of ResNet architectures of varying depths, showing the number and
type of residual blocks in each stage. Source: adapted from ResNet tutorial (Code, 2023).

As illustrated in Figure 4.9, deeper ResNet variants provide more powerful feature

extraction at the cost of higher computational demand. Table 4.1 summarizes the

main characteristics of the commonly used ResNet backbones. This comparison

highlights the trade-off between model complexity and performance and explains why

intermediate variants (e.g. ResNet-50) are often selected as a balance between accuracy

and efficiency in semantic segmentation tasks.

Table 4.1: Comparison of commonly used ResNet backbone variants. Deeper models capture
richer features but require more computational resources.

Backbone Layers Parameters (M) Advantages Limitations

ResNet-18 18 ∼11M Fast, lightweight Limited feature depth

ResNet-34 34 ∼21M Good balance of speed/accuracy Less powerful than deeper models

ResNet-50 50 ∼25M Strong feature extraction, widely used Higher computational cost

ResNet-101 101 ∼44M Captures very rich features Slower training and inference

ResNet-152 152 ∼60M Very deep representation capacity Computationally expensive

The column “Parameters (M)” indicates the approximate number of trainable

parameters in millions. Models with more parameters have higher representational

capacity, but also demand greater computational resources and training data.

4.5 Exporting training data for deep learning

After defining the training samples, the next step in our workflow was to use the

Export Training Data for Deep Learning tool in ArcGIS Pro. This tool prepares

image chips and their corresponding labels in a format suitable for deep learning

frameworks such as PyTorch or TensorFlow. Since deep learning models cannot be
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trained directly on full-resolution satellite images, the tool automatically slices the

input raster and annotation layers into smaller tiles, ensuring that the training dataset

is both manageable and consistent.

The tool requires several key parameters:

• Tile Size (X, Y): defines the width and height of each extracted tile. We

tested tile sizes of 10, 20, 30, and 40 pixels. A size of 30 × 30 produced the

most accurate results, as it provided sufficient spatial context without excessively

reducing the number of training samples.

• Stride (X, Y): determines the degree of overlap between adjacent tiles. To

ensure boundary regions were adequately captured, we set the stride equal to

half of the tile size (e.g. stride = 15 when tile size = 30).

• Metadata Format: specifies how training labels are stored. We selected

Classified Tiles, in which each image tile is paired with a corresponding labeled

tile. This format is specifically suited for semantic segmentation tasks.

The combination of tile size and stride is particularly critical: smaller tiles (10,

20 pixels) captured fine detail but lacked larger spatial context, while larger tiles (40

pixels) increased computational cost and reduced the diversity of training patches. The

choice of 30 × 30 with stride = 15 achieved the best balance between capturing

detail and providing context, leading to improved segmentation performance.

4.6 Training deep learning models

After exporting the chips (Section 4.5), model training was organised as a sequence of

controlled experiments rather than a single run. We began with the 2015 scene and

first trained on the full study area shown in Fig. 3.6. This gave many samples but led

to very long runtimes and strong spectral variability across the bay. Depth, turbidity,

and substrate change between sectors, so the same class can look different from place

to place. After several trials we restricted the domain to a smaller rectangle that still

included all six classes (Fig. 4.10). This sub-area reduced training time, improved

consistency, and made it easier to isolate the effect of each design choice.

To study the impact of sampling, we prepared three training-sample sets: (i) many

small polygons, (ii) fewer but larger polygons, and (iii) a mixed set combining both.

For each sample set we exported four datasets that differed only in chip size (10, 20,

30, and 40 pixels); all other inputs were kept identical (band stack, bathymetry layer

and masks). This design let us test one factor at a time while controlling the rest.

Model testing focused on two semantic segmentation families, DeepLabv3 and

U-Net, with ResNet encoders (mainly ResNet-34 and ResNet-50). In each run we
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Figure 4.10: Sub-area used for controlled training experiments. The rectangle is drawn on
the ground truth map represented in Fig. 3.6.

changed a single element (chip size, validation split, class weighting, or oversampling)

and kept the remaining settings fixed (batch size, band order, preprocessing).
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Table 4.2: An example of Recorded Metrics for 2015 dataset classification

Test Architecture Backbone Tile Stride W1 W2 W3 W4 W5 W6 Padding Accuracy Kappa

1 U-net ResNet50 10 5 60 10 9 4 5 1 4 0.75 0.67

F1-Score 0 0.104 0.055 0.397 0.204 0.696

2 U-net ResNet50 10 5 500 150 2 60 50 50 4 0.701 0.61

F1-Score 0 0.205 0.484 0.727 0.502 0.293

3 DeepLabv3 ResNet34 10 5 500 150 2 60 50 50 4 0.717 0.632

F1-Score 0.072 0.342 0.454 0.558 0.489 0.287 1 0.758 0.678

4 U-net ResNet50 10 5 4.8152 1.9418 0.4318 34.0506 0.7893 0.6006 4 0.69 0.61

F1-Score 0.053 0.342 0.357 0.727 0.62 0.327 1 0.742 0.665

5 DeepLabv3 ResNet34 10 5 4.8152 1.9418 0.4318 34.0506 0.7893 0.6006 4 0.739 0.662

F1-Score 0.094 0.354 0.354 0.6 0.593 0.394 2 0.733 0.655

1 0.752 0.679

6 DeepLabv3 ResNet34 30 15 40.8152 1.9418 0.4318 34.0506 0.7893 6.006 4 0.825 0.77

F1-Score 0 0.439 0.431 0.75 0.612 0.402 7 0.815 0.758

14 0.819 0.763

7 DeepLabv3 ResNet34 30 15 40.8152 4.9418 0.4318 30.0506 0.7893 6.006 2 0.812 0.754

F1-Score 0.411 0.449 0.341 0.644 0.633 0.178 3 0.815 0.758

14 0.819 0.762

8 DeepLabv3 ResNet34 30 15 42.8152 5.9418 0.5318 28.0506 0.7893 7.006 2 0.847 0.797

F1-Score 0 0.287 0.361 0.75 0.664 0.346 7 0.85 0.802

14 0.866 0.823

9 DeepLabv3 ResNet34 30 15 40.8152 5.9418 1.4318 28.0506 0.8893 8.006 2 0.847 0.797

F1-Score 0 0.4179 0.3816 0.4615 0.6574 0.318 7 0.85 0.802

14 0.866 0.823

10 DeepLabv3 ResNet34 30 15 40.8152 4.9418 0.4318 30.0506 0.7893 6.006 4 0.8825 0.8433

F1-Score 0.0982 0.4383 0.5937 0.7 0.8066 0.4529 7 0.8539 0.8045

14 0.8793 0.8386

4.6.1 Class weights and oversampling

To keep the training focused on Posidonia habitats, we balanced the loss with class

weights and combined this with selective oversampling. The initial weights were

computed automatically by the script provided in the Appendix: the code counts

the pixels of each class and assigns weights from their frequency (rarer classes receive

larger weights). We treated these as a first guess and then adjusted them per dataset

(2015, 2018, 2021, 2024) after short pilot runs, because both spatial patterns and class

proportions change across years and the weights have a strong impact on the outcome.

Across all years, the three seagrass classes (1–3) were given higher weights than

the others, and Posidonia degradata - matte morta (class 1) consistently received the

largest weight. This class is rarer and more fragmented; without extra emphasis the

model tended to underfit it. In parallel, we oversampled the seagrass classes during

mini-batch construction so that they appeared more often during training.
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We also ran sensitivity checks while keeping the rest of the settings fixed. Examples

include setting the weight of one class temporarily to 1 while leaving the others

unchanged, oversampling only class 1, and in other tests using oversampling classes 1–5.

These tests were useful to understand interactions between weighting and sampling,

but they did not yield a single trend that held in every year. The final choice of weights

and oversampled classes was therefore made per dataset, guided by validation Dice and

visual checks of the predicted maps.

4.6.2 Chip size and validation split

The chip size parameter in training must be compatible with the image tiles exported in

Section 4.5. To evaluate the effect of context size on model performance, we tested chip

sizes of 10, 20, 30, and 40 pixels. Results indicated that a size of 30 pixels provided

the best balance between detail and context, and this configuration was adopted for

the final models.

The validation split determines the fraction of training data reserved for validation.

We tested splits of 20%, 25%, and 30%. A split of 20% was selected as the optimal

setting, ensuring a sufficiently large validation set while retaining most data for

training.

4.6.3 Learning rate scheduling

The learning rate sets the step size of each update. A fixed value can be too small

(slow) or too large (unstable), so we used a multi-phase decay: start higher to capture

coarse structure, then reduce it to refine the solution. All runs followed the schedule in

Table 4.3. This gave fast early convergence and smoother validation curves, and kept

the protocol consistent so that differences across tests could be linked to other factors.

Table 4.3: Learning rate schedule used during training.

Epochs 1400 1100 800 600 400
Learning rate 4.0× 10−4 3.0× 10−4 2.0× 10−4 1.0× 10−4 5.0× 10−5

4.6.4 Monitored metrics and optimization

We tracked four indicators during training: overall accuracy, Dice (F1) score, training

loss, and validation loss. After each phase of the learning-rate schedule, we reviewed

the curves and saved the best checkpoint based on validation Dice, supported by a quick

visual check of the predicted maps. These signals guided small, targeted changes to

the hyperparameters (e.g., class weights, oversampling choice, chip size and validation

split) so that we improved generalization without inflating runtime.
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The configuration that proved most reliable on the 2015 pilot was then used as a

starting point for 2018, 2021, and 2024, with light adjustments only when the validation

metrics or map inspection suggested a mismatch. The Python script used for training

and logging these metrics is included in the Appendix.
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Chapter 5: Classification and

Results

5.1 Introduction

This chapter presents the results of the classification of P.O. across the study area

for the four reference years: 2015, 2018, 2021, and 2024. The outputs are reported

in a structured way, following the sequence of the workflow described in the previous

chapter.

The chapter first introduces the spectral signatures extracted for Capo Testa Island,

which illustrate the reflectance patterns of Posidonia compared with other benthic

classes across different spectral bands. These signatures provided a first indication of

the separability of classes and helped to interpret the subsequent classification results.

The next part focuses on the classification process itself. Each yearly raster was

generated using the Classify Pixels Using Deep Learning tool in ArcGIS Pro, which

applied the trained deep learning package (.dlpk). Specific technical considerations,

such as the role of the padding parameter, are discussed since they affect how image

tiles are processed at the borders. The training process also produced diagnostic plots,

including training loss, validation loss, accuracy, and F1 score, which are reported in

a 2× 2 figure layout for each year.

The accuracy of the classification outputs was then assessed within ArcGIS Pro

using three tools from the Image Analyst toolbox: Create Accuracy Assessment Points,

Update Accuracy Assessment Points, and Compute Confusion Matrix. The resulting

confusion matrix provided detailed insight into model performance by reporting

correctly and incorrectly classified pixels for each class. From this matrix, key

evaluation indices such as User’s Accuracy, Producer’s Accuracy, and the Kappa

coefficient were derived.

Finally, a multi-temporal analysis was conducted to compare the classification

results across different years. This allowed the detection of spatial changes in the extent

of P.O. meadows, identifying areas of possible regression or expansion and providing

the basis for change detection analysis.
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5.2 Spectral signatures

The spectral profiles for Capo Testa Island were generated from the composite raster

using the Spectral Profile Chart tool in ArcGIS Pro (ESRI, 2024). This tool extracts

pixel values across multiple bands for user-defined training samples and displays them

as curves, providing an effective way to visualize the separability of classes.

Figure 5.1 shows the spectral signatures obtained for the six defined classes: (1)

Posidonia Degradata - Matte morta, (2) Posidonia su matte-sabbia, (3) Posidonia su

roccia, (4) No Posidonia - Sabbia, (5) No Posidonia - Sedimenti vari, and (6) Mare

Profondo. Each colored line corresponds to the mean spectral response of one class,

with the error bars representing the range of reflectance values observed within the

selected samples.

The x-axis represents the 13 input layers used in the composite raster: Sentinel-2

bands B01, B11, B12, B02, B03, B04, B05, B06, B07, B08, B8A, B09, and

the bathymetry layer. These were arranged in the specific order adopted during

preprocessing. The y-axis corresponds to the reflectance values recorded for each band,

expressed as scaled digital numbers. ArcGIS Pro calculates these values by averaging

the pixel intensities from the selected training areas across all bands, which explains

why the majority of values cluster in the range of approximately 1000–1200.

Overall, the profiles highlight key differences among the six classes. For instance,

Posidonia-related classes show distinctive patterns in the visible and near-infrared

regions compared with sandy or deep-water classes, which generally exhibit flatter

responses. The inclusion of the bathymetric band at the end further enhances the

ability to distinguish shallow benthic features from deeper marine areas. These

spectral differences provided the physical foundation for the subsequent deep learning

classification.

Figure 5.1: Spectral profiles extracted for six benthic classes in Capo Testa Island.
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5.3 Performance metrics:

definitions and computation

To evaluate the performance of the classification models, a set of standard metrics was

considered. These metrics quantify how well the model predicted the class membership

of each pixel, both during the training process and in the final evaluation stage. Since

many readers may not be familiar with these measures, a short explanation is provided

here.

5.3.1 Accuracy

Accuracy is one of the simplest and most widely used measures of classification

performance. It is defined as the proportion of correctly classified pixels out of the

total number of pixels:

Accuracy =
TP + TN

TP + TN + FP + FN
(5.1)

where TP and TN denote true positives and true negatives, and FP and FN

denote false positives and false negatives, respectively.

Two types of accuracy are reported in this thesis:

• Overall Accuracy: the percentage of all pixels correctly classified across all

classes.

• Per-Class Accuracy: the accuracy computed separately for each class, which

highlights whether certain classes were more difficult for the model to predict.

5.3.2 Dice coefficient / F1 score

The Dice coefficient (also referred to as the F1 Score in classification tasks) is

particularly useful in segmentation problems where class imbalance is common. It

combines precision (the fraction of predicted positives that are correct) and recall (the

fraction of true positives that were detected).

Precision =
TP

TP + FP
(5.2)

Recall =
TP

TP + FN
(5.3)

F1 Score =
2 · Precision · Recall
Precision + Recall

(5.4)
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The F1 Score ranges from 0 (worst performance) to 1 (perfect classification). In

this work, the Dice coefficient is equivalent to the F1 Score and was used to quantify

segmentation quality.

5.3.3 Training and validation loss

During training, the model optimizes a loss function, which measures the difference

between the predicted class probabilities and the ground truth labels. For semantic

segmentation, the most common loss functions are variations of the cross-entropy loss.

The cross-entropy loss for one pixel can be written as:

L = −
CX
c=1

yc · log(ŷc) (5.5)

where C is the number of classes, yc is the ground-truth label (1 if the pixel belongs

to class c, 0 otherwise), and ŷc is the predicted probability for class c.

Two curves are tracked during training:

• Training Loss: computed on the training dataset after each epoch, reflecting

how well the model fits the data it has seen.

• Validation Loss: computed on a separate validation dataset, indicating how

well the model generalizes to unseen data.

5.3.4 Epoch-level and final metrics

For each epoch of training, the model produces four key outputs: training loss,

validation loss, accuracy, and F1 Score. These metrics evolve across epochs, allowing

the detection of convergence, underfitting, or overfitting.

At the end of training, the model also reports final performance metrics

(Precision, Recall, and F1 Score) for each class. These values are computed on the

validation set by aggregating predictions across all images. In practice, this means

that after the last epoch the model evaluates all validation pixels, counts the total

TP , FP , and FN for each class, and then applies the formulas above. Thus, while the

epoch-level curves show the evolution of performance during training, the final reported

numbers represent a single, global evaluation across the full validation dataset.

5.4 Pixel classification using deep learning

In the previous chapter, the training of the deep learning model was described in detail.

The outcome of that process for each reference year was a set of .dlpk files. A deep

learning package (.dlpk) is an archive that contains three essential components:
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• the trained network weights obtained after optimization,

• the model definition (architecture and metadata), and

• auxiliary information such as preprocessing parameters and class definitions.

In other words, the .dlpk encapsulates everything required for deployment of a trained

model in ArcGIS Pro or other compatible environments. These packages are produced

automatically when exporting a trained model from Python, ensuring reproducibility

and portability.

In the previous chapter, the training of the deep learning model was described in

detail. The outcome of that process for each reference year was a set of .dlpk files. A

deep learning package (.dlpk) is an archive that contains three essential components:

• the trained network weights obtained after optimization,

• the model definition (architecture and metadata), and

• auxiliary information such as preprocessing parameters and class definitions.

In other words, the .dlpk encapsulates everything required for deployment of a

trained model in ArcGIS Pro or other compatible environments. These packages

are produced automatically when exporting a trained model from Python, ensuring

reproducibility and portability.

As discussed in Section 4.4.1, semantic segmentation performs a pixel-wise

classification of the image, producing a dense map in which every pixel is assigned to a

class. An alternative approach would be object-based image analysis (OBIA),

which groups pixels into homogeneous objects and then assigns a class label to

each object. Object-based methods are widely used in terrestrial remote sensing,

especially when the goal is to classify land cover types with distinct boundaries such

as agricultural fields, urban blocks, or forest stands.

However, this approach is less suitable for underwater environments. The

boundaries of Posidonia meadows are often irregular and gradual rather than forming

clear objects. In addition, the spectral differences between seagrass, sand, and algae

can be very subtle, and the water column further reduces contrast. Segmenting the

seafloor into meaningful objects under these conditions is challenging and can easily

introduce classification errors. Pixel-based classification is therefore more appropriate,

as it allows the model to exploit fine-scale spectral and textural information at the

level of individual pixels. This enables a more precise delineation of meadow edges and

small patches, which is essential for monitoring subtle changes in seagrass distribution

over time.
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5.4.1 Classify pixels using deep learning tool in ArcGIS Pro

Once the .dlpk was prepared, the next step was to apply it to the satellite images

in ArcGIS Pro using the Classify Pixels Using Deep Learning tool (Esri, 2024). This

geoprocessing tool takes a raster dataset as input, divides it into manageable tiles,

applies the deep learning model to each tile, and assembles the results into a classified

raster. Each output pixel is assigned to one of the predefined classes according to the

network’s prediction.

The tool provides several parameters that directly influence the quality and

consistency of the classification:

• Model (.dlpk file): the trained deep learning package produced during

training. Each year had its own .dlpk, ensuring consistency between training

and inference.

• Tile Size: defines the size of the image patches that the raster is divided into.

The tile size must be consistent with what was used during training, otherwise

the receptive field of the network may be incorrectly applied.

• Batch Size: determines how many tiles are processed at once during

classification. This value should also remain compatible with the setting used

during training to maintain computational efficiency and avoid memory errors.

• Padding: ensures that border pixels within each tile are classified correctly by

including additional neighborhood context.

5.4.2 The role of padding

Padding is particularly important in convolutional neural networks because

convolutions require neighboring pixels to compute a valid output. Without

padding, edge pixels lack sufficient context, leading to reduced output size and

possible misclassification along tile borders.

The output size O of a convolutional layer can be computed as (GeeksforGeeks,

2025):

O =
(W −K + 2P )

S
+ 1 (5.6)

where W is the input size, K is the kernel size, P is the padding, and S is the stride.

If no padding is applied (P = 0), the output shrinks, while with padding the output

can maintain the same size as the input.

Two main strategies are commonly used:

• Valid Padding (no padding): convolution is only applied where the kernel

fully overlaps the image. This reduces output size and discards edge pixels.
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• Same Padding (zero padding): additional pixels (typically zeros) are added

around the image border so that the output size matches the input size, preserving

edge information.

Figure 5.2 illustrates this principle. The top row shows a convolution on a 6 × 6

input with a 3×3 kernel and stride = 1, without padding. The result is a smaller 4×4

output where edge pixels are ignored. The bottom row shows the same input with

padding = 1. Here, the image expands to 8 × 8 before convolution, and the output

maintains the original 6× 6 size while preserving border information.

Figure 5.2: Effect of padding on convolution. Adapted from GeeksforGeeks (GeeksforGeeks,
2025).

In the ArcGIS Pro implementation, padding is applied at the tile level. Large

rasters are divided into smaller tiles for processing, but without padding, predictions

at tile edges would be based on incomplete context, leading to visible seams in the

final mosaic. By adding padding, each tile is expanded so that all border pixels are

predicted with full neighborhood information. After inference, the padded border is

discarded, and the central predictions are retained, producing a seamless classification

across the entire raster.
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5.5 Model training and classification results

5.5.1 Results for 2015

5.5.1.1 Training and Validation Curves

The evolution of the training process for 2015 is illustrated in Figure 5.3, which reports

the training loss, validation loss, accuracy, and Dice Score (F1). These curves reflect

both the convergence properties of the network and its capacity to generalize.

The training loss decreased sharply during the first few hundred epochs, stabilizing

at values around 0.25. This pattern indicates efficient early learning, consistent with

the ability of convolutional layers to rapidly capture low-level spatial features. The

validation loss followed a nearly identical trend and reached a similar plateau, which

suggests that the model did not overfit substantially to the training data. The absence

of divergence between the two loss curves confirms stable optimization and adequate

regularization.

(a) Training loss (b) Validation loss

(c) Accuracy (d) Dice Score (F1)

Figure 5.3: Training and validation performance curves for the 2015 dataset.

Accuracy improved rapidly to above 85% and then increased gradually to approach

90%. However, this metric primarily reflects the dominance of background or majority

classes, and therefore must be interpreted with caution in an imbalanced classification

problem. For this reason, the Dice Score provides a more meaningful indicator of
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segmentation quality.

The Dice Score evolved more gradually than accuracy and reached values close

to 0.38 after 4000 epochs. While this value is lower than the overall accuracy, it

provides a more realistic measure of segmentation quality because it balances precision

and recall, which is particularly important for minority classes such as fragmented

Posidonia patches.

Interestingly, the Dice curve did not rise monotonically but showed phases of decline

followed by renewed increases. This behavior corresponds to the learning rate schedule

applied during training (Table 4.3). Each time the learning rate was smoothly reduced

(from 4.0 × 10−4 down to 5.0 × 10−5), the optimizer effectively “reset” its step size.

At the beginning of each new phase, the Dice Score often dropped slightly as the

model adjusted to the smaller learning rate, before improving again as the optimization

stabilized.

This effect is typical when staged learning rates are used: higher values help

the model explore the loss landscape broadly, while lower values encourage finer

adjustments. The temporary decreases in Dice reflect the transition between these

two regimes rather than a loss of generalization. Over the long run, the gradual

upward trend indicates that the model benefited from the schedule, improving its

ability to delineate class boundaries despite the inherent noise of underwater imagery.

The fluctuations observed are expected in ecological classification tasks, where class

imbalance and spectral overlap make pixel-level segmentation highly variable.

Taken together, the curves demonstrate that the network achieved stable

convergence without evidence of severe overfitting. The moderate Dice values highlight

the difficulty of distinguishing spectrally similar benthic substrates, but the consistent

improvement across epochs suggests that the trained model captured relevant features

for subsequent classification of the 2015 imagery.

5.5.1.2 Classified raster map

The classified raster for 2015, together with the corresponding ground truth map, is

presented in Figure 5.4. The model was trained using the configuration summarized

in Table 5.1, and the final output achieved an overall accuracy of 0.8825 with a Kappa

coefficient of 0.8433.
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Table 5.1: Training settings and performance metrics for the 2015 classification.

Parameter Value

Architecture DeepLabv3

Backbone ResNet-34

Tile size 30

Stride 15

Padding 4

Validation split 0.20

Oversampled classes [1, 2, 3]

Class weights (40.8152, 4.9418, 0.4318, 30.0506, 0.7893, 6.006)

Accuracy 0.8825

Kappa 0.8433

Each pixel in the study area was assigned to one of the six predefined classes.

The classification reveals the spatial structure of P.O. meadows along the Capo Testa

coastline, as well as the distribution of sandy and sedimentary substrates. The

class Mare Profondo (dark blue) dominates the deeper offshore zones, where water

depth prevents seagrass development and reduces the effectiveness of optical detection.

Moving toward the coastline, extensive areas were classified as Posidonia su roccia

(yellow), indicating meadows attached to rocky substrates, which is consistent with

the geomorphology of Capo Testa.

Broad patches of Posidonia su matte–sabbia (orange) were also identified, marking

areas where meadows colonize sandy or matte substrates. Smaller but distinct regions

ofPosidonia Degradata – Matte morta (magenta) are visible, corresponding to degraded

or partially regressed meadow structures. The non-Posidonia classes are mainly

concentrated in transitional zones: No Posidonia – Sabbia (light blue) outlines shallow

sandy areas along the coast, while No Posidonia – Sedimenti vari (green) appears more

fragmented and interspersed with vegetated zones, reflecting the natural heterogeneity

of the seabed.

Overall, the 2015 classification depicts a heterogeneous coastal landscape composed

of dense Posidonia meadows, degraded patches, and unvegetated substrates. The

comparison with the ground truth map highlights both the strengths and the limitations

of the model in separating spectrally similar benthic classes, particularly in shallow

transitional areas.
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(a) Classified raster (2015).

(b) Ground truth model.

Figure 5.4: Classified raster for 2015 compared with the ground truth map.
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5.5.2 Results for 2018

5.5.2.1 Training and validation curves

The training process for 2018 (Figure 5.5) showed stable convergence, with both

training and validation losses decreasing smoothly and reaching plateaus without large

divergence. Accuracy remained consistently high, close to 88–89%, very similar to the

2015 run.

The Dice Score, however, plateaued at slightly lower values than in 2015, around

0.34–0.35. This suggests that while the classifier maintained strong overall accuracy, it

struggled more with the finer balance between precision and recall in minority classes.

The curve also showed more pronounced fluctuations after epoch 2000, which may be

linked to spectral variability in the 2018 imagery (e.g., water clarity or acquisition

conditions).

(a) Training loss (b) Validation loss

(c) Accuracy (d) Dice Score (F1)

Figure 5.5: Training and validation performance curves for the 2018 model.

5.5.2.2 Classified raster map

The classified raster for 2018 is shown in Figure 5.6. The best classification for this

year was obtained with the settings in Table 5.2, yielding an overall accuracy of 0.8667

and a kappa of 0.8217.
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Table 5.2: Training settings and performance metrics for the 2018 classification.

Parameter Value

Architecture DeepLabv3

Backbone ResNet-34

Batch size 16

Tile (chip) size 30

Stride 15

Padding 14

Validation split 0.20

Oversampled classes [1, 2, 3]

Class weights (40.8152, 5.9418, 1.4318, 28.0506, 0.8893, 8.006)

Accuracy 0.8667

Kappa 0.8217

A visible artifact in this product is the narrow stripe along the northern frame.

This is a perimeter tiling effect, not a seabed feature. When a tile touches the scene

boundary, the network does not receive full spatial context outside the image. That

missing context, together with zero padding at the edge, can bias predictions and

produce a uniform band that is wrongly labeled. During the first iterations of the

study, such seamlines appeared on several tile borders and degraded the map quality.

We reduced these artifacts by using overlap (stride smaller than chip), setting a larger

padding (14), and prioritizing the central area of each tile when mosaicking the outputs.

The residual stripe in 2018 is much smaller than in early trials, and in later years it is

nearly absent.

Separately, errors were also present at true class boundaries, driven by mixed pixels

at 10 m, limited context near transitions, and class imbalance. Tuning the class weights

and using padding helped sharpen these boundaries, which explains the cleaner edges

seen in later results.

From an ecological perspective, the 2018 map is broadly consistent with 2015 but

with some local changes. The extent of Posidonia su matte-sabbia (orange) expanded

in the southern sector, while areas of Posidonia Degradata - Matte morta (magenta)

appear more continuous in the northeast. Shallow rocky meadows (Posidonia su roccia,

yellow) remain dominant along the coastline, although boundaries with No Posidonia

- Sabbia (light blue) are less sharp than in 2015, consistent with the slightly lower

accuracy. Fragmented patches of No Posidonia - Sedimenti vari (green) persist between

sandy and vegetated zones, reflecting small-scale seabed variability.

Overall, the 2018 classification confirms that the model can separate the main

classes while also showing the two main sources of error that guided our later
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improvements: perimeter tiling artifacts at the scene edge and confusion at true class

boundaries. Targeted adjustments to overlap, padding, and class weights were essential

to reduce both effects in subsequent years.

Figure 5.6: Classified raster for 2018 showing the spatial distribution of six benthic classes
in Capo Testa Island.

5.5.3 Results for 2021

5.5.3.1 Training and validation curves

The training dynamics in 2021 (Figure 5.7) show a slightly different behavior compared

with the earlier years. Both training and validation losses reached stable plateaus again,

but the Dice Score ended lower, around 0.26. This is noticeably weaker than 2015 and

2018, and it points to difficulties in segmenting minority classes. In fact, the Dice curve

kept climbing slowly across the epochs but never reached the levels of previous runs.

Accuracy, on the other hand, stayed consistently high (around 88–89%), which

again confirms the imbalance issue: the network predicted the dominant classes reliably

but struggled with finer separations between seagrass and non-vegetated sediments.

This year’s curves make it clear that overall accuracy alone would give a misleading

impression of performance.
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(a) Training loss (b) Validation loss

(c) Accuracy (d) Dice Score (F1)

Figure 5.7: Training and validation performance curves for the 2021 model.

5.5.3.2 Classified raster map

The 2021 classification (Figure 5.8) was produced with the settings reported in

Table 5.3, which led to an overall accuracy of 0.8697 and a Kappa coefficient of 0.8261.

Table 5.3: Training settings and performance metrics for the 2021 classification.

Parameter Value

Architecture DeepLabv3

Backbone ResNet-34

Batch size 16

Tile (chip) size 30

Stride 15

Padding 14

Validation split 0.20

Oversampled classes [1, 2, 3]

Class weights (10.8023, 2.6791, 0.8081, 30.7181, 0.8919, 0.6144)

Accuracy 0.8698

Kappa 0.8261

The map depicts a different balance of classes compared with 2015 and 2018. Areas
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labeled as Posidonia su matte-sabbia (orange) expanded considerably in the southeast,

while No Posidonia - Sedimenti vari (green) became more widespread across the central

part of the bay. Interestingly, the patches of Posidonia Degradata - Matte morta

(magenta) shrank compared with previous years, suggesting either genuine regression

of degraded zones or classification bias.

Rocky meadows (Posidonia su roccia, yellow) still dominate shallow zones, but their

boundaries with sandy classes (light blue) appear less sharply defined, which may be

a reflection of the weaker Dice performance noted in the training results.

Overall, the 2021 raster shows a shift in class proportions, with more heterogeneous

non-Posidonia substrates and less degraded matte. This will be important to

cross-check against field references and the accuracy assessment in the next section.

Figure 5.8: Classified raster for 2021 showing the spatial distribution of six benthic classes
in Capo Testa Island.

5.5.4 Results for 2024

5.5.4.1 Training and validation curves

The 2024 curves (Figure 5.9) show that the model converged smoothly, with both

training and validation losses decreasing toward stable values and no evidence of

divergence. Accuracy remained close to 88% throughout, while the Dice Score

plateaued at about 0.28, slightly higher than 2021 but still below the values obtained

in 2015.
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One noticeable improvement in this run was the stability of the loss curves:

fluctuations were smaller than in 2018 and 2021, indicating that the optimization

process was more consistent. The Dice Score continued to increase steadily across

epochs, suggesting the model was still learning finer boundary representations late in

training.

(a) Training loss (b) Validation loss

(c) Accuracy (d) Dice Score (F1)

Figure 5.9: Training and validation performance curves for the 2024 model.

5.5.4.2 Classified raster map

The 2024 classification (Figure 5.10) was generated using the settings listed in Table 5.4,

which provided the best overall performance of the study. The model achieved an

accuracy of 0.8889 and a Kappa coefficient of 0.8504, both higher than in previous

years.

In addition to the numerical results, a clear qualitative improvement is evident in

the map itself. Unlike the 2015 and 2018 outputs, the 2024 raster no longer exhibits

the misclassified “border seams” at the edges of the tiles. The padding strategy

proved effective, eliminating these artifacts and yielding smoother, more natural class

transitions.

Spatially, the classification shows patterns broadly consistent with earlier years

but with sharper boundaries. Large areas of Posidonia su roccia (yellow) continue

to dominate shallow coastal zones, while Posidonia su matte–sabbia (orange) remains

concentrated in the southeast. Fragmented patches of No Posidonia – Sedimenti vari
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(green) are still scattered across the bay, and degraded matte (magenta) is present but

more localized.

Overall, the 2024 raster appears cleaner and more reliable than previous outputs,

making it a particularly robust basis for multi-temporal comparison of seagrass

dynamics.

Table 5.4: Training settings and performance metrics for the 2024 classification.

Parameter Value

Architecture DeepLabv3

Backbone ResNet-34

Batch size 16

Tile (chip) size 30

Stride 15

Padding 14

Validation split 0.20

Oversampled classes [1, 2, 3]

Class weights (15.2898, 2.8490, 0.9003, 33.6082, 0.9633, 0.9616)

Accuracy 0.8889

Kappa 0.8504

Figure 5.10: Classified raster for 2024 showing the spatial distribution of six benthic classes
in Capo Testa Island.
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5.6 Accuracy assessment of classification

To evaluate how reliable the classification outputs were, we performed an accuracy

assessment, which is one of the most common and recommended methods for thematic

map validation. Accuracy assessment measures the quality of the classified map by

comparing it against a reference dataset, in our case the ground truth model. The

comparison is summarized in a Classification Error Matrix, also known as a Confusion

Matrix (Maxwell et al., 2019).

5.6.1 Workflow in ArcGIS Pro

Before starting the accuracy assessment, a preprocessing step was necessary. The

classified rasters generated by the deep learning model were stored as 32-bit images,

which are not compatible with the accuracy assessment tools in ArcGIS Pro. To

resolve this, the Reclassify tool was applied to convert the pixel depth from 32-bit to

8-bit integers. This step ensured that each class was represented by a unique integer

value, making the raster suitable for subsequent accuracy evaluation.

Once the raster was reclassified, the workflow proceeded through three main stages

using tools from the ArcGIS Pro Image Analyst toolbox:

1. Create Accuracy Assessment Points: this tool was applied to the reclassified

raster to generate a random stratified sample of points (ESRI, 2025b). We set

the parameter to generate 300 points, distributed across the classes, although

the final output contained 315 points due to the internal balancing algorithm of

ArcGIS Pro. The output was a point layer (Figure 5.11) with an attribute table

that contained two key fields:

• Classified: the class value of the pixel in which the point was located,

assigned directly from the reclassified raster. This field contained integer

codes corresponding to the thematic classes.

• GrndTruth: initially set to -1 for all points, representing an undefined

reference class.

2. Update Accuracy Assessment Points: the GrndTruth field was updated

using the ground truth shapefile. To automate this step, a Python attribute

rule was implemented in ArcGIS Pro (Data Design → Attribute Rules). This

script ensured that each point inherited the correct reference class label from the

ground truth dataset. At the end of this step, each point had two values: one

representing the predicted class (Classified) and one representing the actual

class (GrndTruth).
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3. Compute Confusion Matrix: finally, the two fields (Classified vs.

GrndTruth) were compared using the Compute Confusion Matrix tool. This

produced a classification error matrix that summarized the correctly classified

points (diagonal values) and misclassifications (off-diagonal values), from which

accuracy indices were derived.

Figure 5.11: Accuracy assessment points generated with the Create Accuracy Assessment
Points tool in ArcGIS Pro.

5.6.2 The confusion matrix concept

The confusion matrix is a square table in which rows represent the ground truth

(reference) data and columns represent the predicted classes. Correct classifications

are found along the diagonal of the matrix, while off-diagonal values represent

misclassifications.

From this matrix, several indices can be derived:

• User’s Accuracy (U Accuracy): the proportion of correctly classified samples

among all samples assigned to a given class (sensitive to commission error).

• Producer’s Accuracy (P Accuracy): the proportion of correctly classified

samples among all reference samples of a given class (sensitive to omission error).

• Overall Accuracy (OA): the total proportion of correctly classified samples
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across all classes. It is defined as:

OA =

Pk
i=1 nii

N
(5.7)

where nii are the diagonal elements (correct classifications), k is the number of

classes, and N is the total number of samples.

• Kappa Coefficient (κ): a measure of agreement between classification and

reference data adjusted for random chance. It is defined as:

κ =
N

Pk
i=1 nii −

Pk
i=1(ni+ · n+i)

N2 −
Pk

i=1(ni+ · n+i)
(5.8)

where ni+ is the total number of samples in row i (reference class i) and n+i is

the total number of samples in column i (predicted class i).

Results for 2015

The accuracy assessment for the 2015 classification is presented in Table 5.5. The

confusion matrix compares the predicted classes (columns) with the ground truth

reference classes (rows). Values on the diagonal represent correctly classified samples,

while off-diagonal values correspond to misclassifications.

Table 5.5: Confusion matrix and accuracy indices for 2015.

ClassValue C 1 C 2 C 3 C 4 C 5 C 6 Total U Accuracy Kappa

C 1 10 0 0 0 0 1 11 0.9090 0

C 2 0 36 6 0 0 0 42 0.8571 0

C 3 0 3 91 1 8 6 109 0.8348 0

C 4 0 0 0 3 1 0 4 0.7500 0

C 5 0 0 2 0 65 0 67 0.9701 0

C 6 1 1 5 0 2 73 82 0.8902 0

Total 11 40 104 4 76 80 315 0 0

P Accuracy 0.9090 0.9000 0.8750 0.7500 0.8552 0.9125 0 0.8825 0

Kappa 0 0 0 0 0 0 0 0 0.8433

The overall accuracy for 2015 was 88.3%, with a Kappa coefficient of 0.84, which

indicates strong agreement between the classification and the ground truth dataset.

To illustrate how to read the confusion matrix, consider the class C3: Posidonia

su roccia. The reference dataset contained 104 points for this class (row total). Of

these, 91 points were correctly classified as C3 (diagonal entry), while the remaining

points were misclassified: 3 points as C2 (Posidonia su matte–sabbia), 1 point as C4

(No Posidonia – Sabbia), 8 points as C5 (No Posidonia – Sedimenti vari), and 6 points

as C6 (Mare Profondo). In other words, the row shows how the reference class was

distributed across predicted categories.
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Columns, on the other hand, represent how many points the classifier assigned

to each predicted class. For example, column C3 contains 104 points predicted as

Posidonia su roccia, but only 91 of them were truly C3 in the ground truth. This

explains why User’s Accuracy for C3 is 83.5% (proportion of correctly classified points

among all predictions for that class), while Producer’s Accuracy for C3 is 87.5%

(proportion of correctly identified points among all ground truth samples for that

class).

Among all classes, No Posidonia – Sedimenti vari (C5) showed the highest User’s

Accuracy (97.0%), while No Posidonia – Sabbia (C4) performed worst, with both User’s

and Producer’s Accuracies around 75.0%. This reflects the challenge of distinguishing

sandy areas from spectrally similar mixed substrates.

Results for 2018

The accuracy assessment for the 2018 classification is presented in Table 5.6. The

confusion matrix compares the classified outputs (columns) with the ground truth

reference classes (rows). Correct classifications are on the diagonal, while off-diagonal

entries represent misclassifications.

Table 5.6: Confusion matrix and accuracy indices for 2018.

ClassValue C 1 C 2 C 3 C 4 C 5 C 6 Total U Accuracy Kappa

C 1 9 0 1 0 0 2 12 0.7500 0

C 2 2 33 2 0 0 2 39 0.8462 0

C 3 0 5 91 0 7 4 107 0.8505 0

C 4 0 0 0 1 0 0 1 1.0000 0

C 5 0 0 0 2 67 0 69 0.9710 0

C 6 0 2 10 1 2 72 87 0.8276 0

Total 11 40 104 4 76 80 315 0 0

P Accuracy 0.8182 0.8250 0.8750 0.2500 0.8816 0.9000 0 0.8667 0

Kappa 0 0 0 0 0 0 0 0 0.8217

The overall accuracy for 2018 was 86.7%, with a Kappa coefficient of 0.82,

indicating strong agreement between the classification and the reference dataset.

If we ignore C4 which is not well represented, the best performance was observed for

C5: No Posidonia – Sedimenti vari, with a User’s Accuracy of 97.1% and a Producer’s

Accuracy of 88.2%. This suggests that this class was both reliably detected when

present and rarely confused with others. C3: Posidonia su roccia also showed good

performance, with Producer’s Accuracy of 87.5% and User’s Accuracy of 85.0%.

On the other hand, C4: No Posidonia – Sabbia had very limited representation

in the reference data (only one point) and therefore achieved an artificially perfect

User’s Accuracy of 100%, but with little statistical significance. C1: Posidonia
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Degradata – Matte morta showed lower reliability, with User’s Accuracy of 75.0% due

to misclassifications into Mare Profondo (C6).

Overall, the 2018 classification performed slightly weaker than 2015, particularly

for minority classes, but still maintained robust agreement for the dominant categories.

Results for 2021

Table 5.7 shows the confusion matrix for 2021. As before, rows correspond to ground

truth classes and columns to the classified outputs.

Table 5.7: Confusion matrix and accuracy indices for 2021.

ClassValue C 1 C 2 C 3 C 4 C 5 C 6 Total U Accuracy Kappa

C 1 7 0 0 0 0 0 7 1.0000 0

C 2 2 34 1 0 0 0 37 0.9189 0

C 3 0 4 82 0 0 5 91 0.9011 0

C 4 0 0 0 1 0 0 1 1.0000 0

C 5 0 1 11 3 76 1 92 0.8261 0

C 6 2 1 10 0 0 74 87 0.8506 0

Total 11 40 104 4 76 80 315 0 0

P Accuracy 0.6364 0.8500 0.7885 0.2500 1.00 0.9250 0 0.8698 0

Kappa 0 0 0 0 0 0 0 0 0.8261

The 2021 classification reached an overall accuracy of 87.0% with a Kappa

coefficient of 0.83, confirming solid agreement between predictions and ground truth.

Unlike 2015 and 2018, performance was more uneven across classes. Some

categories, such as C1: Posidonia Degradata – Matte morta and C4: No Posidonia

– Sabbia, were perfectly matched to the reference data, but this is partly due to their

small sample sizes (7 and 1 points, respectively). Larger classes give a clearer picture:

C2: Posidonia su matte–sabbia and C3: Posidonia su roccia both performed strongly,

with User’s Accuracies above 90%.

By contrast, C5: No Posidonia – Sedimenti vari showed more misclassifications,

especially into vegetated classes, and achieved only 82.6% User’s Accuracy. Similarly,

C6: Mare Profondo was sometimes confused with rocky areas (C3), lowering its

reliability to about 85%.

In summary, the 2021 results were consistent with previous years in terms of

overall accuracy, but they highlighted the persistent difficulty of distinguishing mixed

sedimentary zones from adjacent seagrass or rocky habitats. These patterns underscore

the role of spectral overlap in reducing classification precision for transitional seabed

types.
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Results for 2024

Table 5.8 presents the confusion matrix for 2024. Rows are reference (ground truth)

classes, and columns are the predicted outputs.

Table 5.8: Confusion matrix and accuracy indices for 2024.

ClassValue C 1 C 2 C 3 C 4 C 5 C 6 Total U Accuracy Kappa

C 1 7 0 0 0 0 0 7 1.0000 0

C 2 1 33 0 0 0 1 35 0.9429 0

C 3 1 4 94 0 4 4 107 0.8785 0

C 4 0 0 0 1 0 0 1 1.0000 0

C 5 0 0 2 3 70 0 75 0.9333 0

C 6 2 3 8 0 2 75 90 0.8333 0

Total 11 40 104 4 76 80 315 0 0

P Accuracy 0.6364 0.8250 0.9038 0.2500 0.9211 0.9375 0 0.8889 0

Kappa 0 0 0 0 0 0 0 0 0.8504

The 2024 classification achieved an overall accuracy of 88.9% with a Kappa

coefficient of 0.85, which is the strongest agreement across all four years.

Performance was particularly high for C5: No Posidonia – Sedimenti vari and C2:

Posidonia su matte–sabbia, both with User’s Accuracies above 93% and Producer’s

Accuracies exceeding 82%. This suggests that by 2024, the model was more reliable in

separating mixed substrates from adjacent classes.

C3: Posidonia su roccia also performed well, with a Producer’s Accuracy above

90%, though still subject to confusion with Mare Profondo (C6). Indeed, most of

the remaining misclassifications occurred between C3 and C6, reflecting the spectral

similarity of rocky seabeds at greater depths.

Minor classes such as C1: Posidonia Degradata – Matte morta and C4: No

Posidonia – Sabbia again appeared perfectly classified, though the small number of

reference points makes these values less representative statistically.

In summary, the 2024 results confirmed robust model performance, with more

balanced accuracies across the main benthic classes and fewer boundary effects

compared to previous years.

5.7 Multi-temporal change detection

5.7.1 Methodological approach

To investigate temporal shifts in benthic habitats, and particularly the distribution of

P.O., a post-classification change detection was performed in ArcGIS Pro using the

Change Detection Wizard with the categorical change option (ESRI, 2025a). This

method directly compares thematic rasters from different years on a pixel-by-pixel
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basis, quantifying which areas remained stable and which transitioned from one class

to another.

The analysis was carried out for three consecutive periods (2015–2018, 2018–2021,

2021–2024) as well as for the full interval from 2015 to 2024. The choice of a

post-classification approach ensured that differences between years were attributed to

genuine class transitions rather than to sensor-specific spectral variability.

5.7.2 Change maps

Figures 5.12 to 5.14 illustrate the detected changes for each period, with each color

corresponding to a specific transition between benthic classes. These maps allow a

visual assessment of where seagrass meadows have contracted, expanded, or remained

stable, and highlight specific coastal sectors where Posidonia has been replaced by sand

or mixed sediments.

Figure 5.12: Change detection map for 2015–2018.

63



Figure 5.13: Change detection map for 2018–2021.

Figure 5.14: Change detection map for 2021–2024.
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Figure 5.15: Long-term change detection map for 2015–2024.

5.7.3 Numerical assessment of climate change

To quantify long-term changes in benthic habitats, a post-classification comparison

was performed between 2015 and 2024 using the Tabulate Area tool in ArcGIS Pro.

The result is presented as a transition matrix (Table 5.9), where rows represent the

reference classes in 2015 and columns the classes in 2024. Diagonal values correspond

to stable areas, while off-diagonal values indicate transitions between classes. Both row

and column sums are reported to provide the total extent of each class in 2015 and

2024 respectively. Values are expressed in km2.

Table 5.9: Transition matrix (km2) showing class changes between 2015 and 2024.

2015 / 2024
Posidonia
Degradata

Posidonia
Matte sabbia

Posidonia
Roccia

No Posidonia
Sabbia

No Posidonia
Sedimenti vari

Mare
Profondo

Row Total
(2015)

Posidonia Degradata 0.038 0.005 0.007 0.000 0.000 0.005 0.056

Posidonia
Matte-sabbia

0.005 0.270 0.093 0.000 0.007 0.011 0.385

Posidonia Roccia 0.002 0.022 1.209 0.000 0.164 0.173 1.571

No Posidonia Sabbia 0.000 0.000 0.000 0.002 0.007 0.000 0.008

No Posidonia
Sedimenti vari

0.000 0.008 0.077 0.001 0.605 0.016 0.707

Mare Profondo 0.013 0.002 0.093 0.000 0.016 1.693 1.817

Column Total
(2024)

0.058 0.307 1.479 0.003 0.799 1.898 4.544
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Table 5.10: Total class areas (km2) in 2015 and 2024.

Class 2015 Area (km2) 2024 Area (km2)

Posidonia Degradata 0.056 0.058

Posidonia Matte-sabbia 0.385 0.307

Posidonia Roccia 1.571 1.479

No Posidonia - Sabbia 0.008 0.003

No Posidonia - Sedimenti vari 0.707 0.799

Mare Profondo 1.817 1.898

Total Posidonia (C1-C3) 2.012 1.844

Total Non-Posidonia (C4-C6) 2.532 2.700

The decadal analysis indicates that Posidonia meadows in the study area have

undergone a modest but measurable decline, shrinking from just above two square

kilometers in 2015 to about 1.84 km2 in 2024. This corresponds to a loss of roughly

8% over the ten year period. Although small in absolute terms, such a reduction

is ecologically significant because Posidonia is one of the slowest growing seagrass

species, with expansion typically occurring at only a few centimeters per year. Losses

are therefore far more likely to persist and accumulate over time than to be rapidly

compensated by natural recovery.

From a climate change perspective, this contraction is consistent with broader

expectations for Mediterranean seagrass meadows. Rising sea surface temperatures

can impair photosynthetic efficiency and cause thermal stress during marine

heatwaves. Increased storminess enhances sediment resuspension and turbidity,

reducing underwater light availability and thereby constraining growth at deeper

meadow edges. Sea level rise and coastal erosion may further shift depth distributions,

forcing meadows to retreat from their lower limits. In parallel, local pressures such as

anchoring, dredging, and coastal development compound these climate driven stresses,

accelerating regression.

It is important to recognize that part of the observed change may also reflect

methodological limitations. Differences in water clarity between satellite acquisitions,

edge effects in transitional habitats, and classification uncertainties can all contribute

to apparent gains or losses in mapped cover. Nevertheless, the overall trend detected

here aligns with the ecological understanding that Posidonia is far more likely to

regress under current climate forcing than to expand. In the discussion chapter, these

uncertainties will be revisited, but the evidence points toward a gradual weakening

of meadow extent in the study area, consistent with regional scale reports of climate

related stress on Mediterranean seagrasses.
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Chapter 6: Discussion

6.1 Comparative performance across epochs

Across the four epochs, the workflow delivered stable maps of Posidonia. Performance

rose as the setup matured. The 2024 run was the best: user’s accuracy reached 0.8889

(kappa 0.8504), slightly better than 2015 at 0.8825. The 2018 and 2021 results fell

between these two and were consistent with the same overall design.

As detailed in the Results chapter, two issues were present and then progressively

reduced: perimeter seamlines at the image frame, and errors at true class boundaries.

We limited seamlines by using tile overlap and padding and also reduced boundary

errors mainly by tuning class weights while keeping enough context with padding.

Together these steps produced cleaner maps over time: from 2018 to 2024 the frame

stripes almost disappeared and the transitions sharpened, with 2024 showing the

cleanest borders and a small accuracy gain over 2015.

6.2 Change detection across epochs

Changes in Posidonia usually occur over long time scales. A longer record would give

a clearer view of climate and human impacts, but this was not available. To highlight

the overall signal with the data at hand, we focused on the widest interval, comparing

the first and last epochs (2015 vs. 2024) and did not interpret the shorter intermediate

periods.

Using post-classification comparison, the total area of Posidonia classes in the study

site decreased from 2.012 km2 in 2015 to 1.844 km2 in 2024. This is a net loss of

0.168 km2, which corresponds to about 8.3% of the 2015 extent. As noted in the

Results chapter, we reduced false change by masking a thin rim near the image frame,

enforcing a minimum mapping unit, and ignoring isolated single-pixel flips.

These figures should be read as an estimate rather than a definitive rate of decline.

Uncertainty in change maps is higher than in single-year maps because errors can

accumulate from both dates. More confidence would require a longer time series,

water-column (depth) correction based on accurate bathymetry, tighter control of
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seasonal and illumination differences, and additional ground truth to validate detected

gains and losses.

6.3 Hyperparameters and model selection

The training of the first model (2015) took the longest because we started without prior

guidance. Once that model was tuned, we reused its configuration as a baseline for

later years. This reduced search time and made training more stable.The best results

came from a simple and reliable combination of model and training choices. For this

task and imagery, the settings below were consistently strong across years.

Table 6.1: Best configuration

Architecture Backbone Batch size Chip size Stride Padding* Val. split Oversampled classes

Best config DeepLabv3 ResNet-34 16 30 15 14 0.20 [1, 2, 3]

* For 2015, a padding of 4 worked better.

Among all the choices, class weights were the hardest to get right. With six classes,

the search space is large, and the class balance changes with year, water clarity, and

substrate. We also saw that small weight changes sometimes could move accuracy by

a noticeable margin, especially near edges and in degraded matte. Limited compute

meant some trainings took one to two days, so we had to make careful, incremental

changes instead of broad sweeps.This meant many trials were needed to reach a stable

set of weights for each year.

6.4 Limitations and challenges

• Spatial resolution. Sentinel-2 at 10m works for regional mapping, but it cannot

fully resolve very narrow fringes or small fragmented patches.

• Bathymetry and optics. Depth and water clarity shape bottom reflectance.

Better bathymetry would allow depth normalization and reduce confusion in

deeper or turbid waters.

• Ground truth. Limited field data constrained model calibration and validation.

Underwater photos and photogrammetry are costly and time consuming but

provide precise labels. Within the POSEIDON project, researchers of Politecnico

di Torino have already collected this type of information at Culuccia island,

setting an important precednt for integrating field campaigns with remote sensing

workflows (Figure 6.1).
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• Temporal span. Sentinel-2 starts in 2015, so trend length is short. Adding

older archives would help separate short-term variability from long-term change.

• Compute budget. Long training times reduced how many model, loss, and

schedule options we could try.

Figure 6.1: Recent field activity of the Politecnico di Torino DIRECT team at Culuccia
Island. Source: Politecnico di Torino.

6.5 Implications

This workflow is a practical option for regional seagrass monitoring. It is cost-effective,

based on open imagery, and repeatable over time, which helps build consistent series

for management. The work is aligned with the goals of the POSEIDON initiative on

climate impacts to Posidonia, and it is consistent with the aims of FAIR under the

National Recovery and Resilience Plan.

6.6 Recommendations for future work

• Sharper imagery. Add higher-resolution satellites to better capture narrow

edges and reduce boundary errors.

• Depth-aware correction. Combine multispectral data with accurate

bathymetry to normalize for depth and optics, improving class separability.
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• Richer labels. Plan targeted field campaigns (photos, photogrammetry) to label

difficult classes and transitions.

• Longer timelines. Bring in pre-2015 archives and cross-check Sentinel-2 with

other platforms to strengthen trends.

• Smarter training. Use HPC and principled search (e.g., Bayesian optimization)

and try imbalance-aware losses (e.g., focal, Dice variants) to reduce manual weight

tuning.

• Transfer and robustness. Test the recipe on new sites and measure how much

re-tuning is needed.
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Chapter 7: Conclusions

7.1 Summary of contributions

P.O. meadows in the Mediterranean, widely reported to store more CO2 per unit

area than many forests, are vital to the marine ecosystem yet vulnerable to warming

and human pressure. This thesis developed and tested a practical workflow that

integrates freely available Sentinel–2 imagery with deep learning to map and monitor

P.O. meadows. The approach was applied to the Capo Testa Marine Protected Area

for 2015–2024. Semantic segmentation models were trained and validated, producing

reliable maps of seagrass extent that illustrate both the promise and the current limits

of Earth observation for underwater habitat monitoring. By leveraging multispectral

and multitemporal data, the study contributes methods and tools that support the

development of new techniques for seafloor mapping and, more broadly, for marine

conservation.

The results show that a remote sensing pipeline can quantify decadal changes

in seagrass cover at regional scale. The method offers a cost–effective and

reproducible complement to field campaigns, and it aligns with initiatives that promote

non–destructive, georeferenced monitoring of priority habitats.

7.2 Key findings

• Multispectral Sentinel–2 imagery combined with modern semantic segmentation

effectively separates seagrass from surrounding substrates.

• Application to a 2015–2024 time series reveals measurable changes in meadow

extent at Capo Testa. While modest, these changes are ecologically meaningful

and consistent with combined anthropogenic and climate pressures.

• Sentinel–2 remains a useful base for long–term monitoring thanks to its spatial

resolution, shallow–water spectral bands, and continuous availability since 2015.

• The workflow is likely usable in other parts of the island, as long as the bottom

types (sand vs. rock), the seagrass structure and density, the depth range, and
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the water optics (clarity, color, sun–glint) are similar to those in the training area.

If these factors change noticeably, a small amount of re-tuning (for example, class

weights or a short fine-tuning pass) may be needed to keep accuracy.

7.3 Closing remark

Open satellite data combined with a focused deep learning workflow can track changes

in Posidonia oceanica at regional scale with useful accuracy. This is not a replacement

for field surveys, but it helps target where and when to sample, reducing costs and

effort. With modest additions such as better bathymetry, a bit more ground truth,

and stronger computing, the same approach can be extended to nearby coasts that

have similar water optics and seabed types. Used this way, it can support routine,

evidence-based monitoring for conservation and coastal planning. A multidisciplinary

view that links geomatics, biology, and ecology will remain essential for interpreting

maps and connecting patterns with their drivers.
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Chapter A: Appendix

1

2

3 # Calculate Weights

4

5 import os

6 import numpy as np

7 import rasterio

8 from collections import Counter

9 # Set your label folder path

10 labels_folder = r"F:\Payam\21_05_Poseidon\N2\export\TS2\TS2Tile10\labels"

11 label_arrays = []

12 # Load all label rasters into memory

13 for filename in os.listdir(labels_folder):

14 if filename.endswith(".tif"):

15 path = os.path.join(labels_folder, filename)

16 with rasterio.open(path) as src:

17 label = src.read(1)

18 label_arrays.append(label)

19 # Flatten and count class frequencies

20 all_labels = np.concatenate([arr.flatten() for arr in label_arrays])

21 class_counts = dict(Counter(all_labels))

22 # Calculate pixel counts and class weights for class IDs 1 to 6

23 pixel_counts = []

24 print("Class Distribution (only among labeled pixels):")

25 for class_id in range(1, 7):

26 count = class_counts.get(class_id, 0)

27 pixel_counts.append(count)

28 percentage = (count / len(all_labels)) * 100 if len(all_labels) > 0

else 0,→

29 print(f"Class {class_id}: {count} pixels ({percentage:.2f}%)")

30 # Compute inverse-frequency class weights

31 total_labeled_pixels = sum(pixel_counts)
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32 num_classes = len(pixel_counts)

33 class_weights = [

34 total_labeled_pixels / (num_classes * count) if count > 0 else 0

35 for count in pixel_counts

36 ]

37 # Optionally normalize weights (so they sum to number of classes)

38 normalize = False

39 if normalize:

40 weight_sum = sum(class_weights)

41 class_weights = [w * num_classes / weight_sum for w in class_weights]

42 # Output final weights

43 print("\n✓ Final Class Weights:")

44 for i, weight in enumerate(class_weights, start=1):

45 print(f"Class {i}: {weight:.4f}")

46

47

48 # Train Deep Learning Model

49

50 # Import necessary libraries

51 from arcgis.learn import UnetClassifier, prepare_data

52 import matplotlib.pyplot as plt

53 from sklearn.metrics import classification_report,

precision_recall_fscore_support,→

54 import pandas as pd

55 import numpy as np

56 import torch

57 import os

58 import time

59 # Start timing

60 start_time = time.time()

61 # Define paths

62 training_data_path =

r"F:\Payam\11.09.2018\CapoTesta2_11.09.2018\Export\Tile30",→

63 model_save_path =

r"F:\Payam\11.09.2018\CapoTesta2_11.09.2018\Result\T30DeeplabW1",→

64 # Step 1: Define Optimized Class Weights

65 class_weights = torch.tensor([w1, w2, w3, w4, w5, w6], dtype=torch.float32)

66 # Step 2: Define Class Mapping

67 class_map = {

68 1: "Posidonia Degradara-Matte morta",

69 2: "Posidonia su matte-sabbia",
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70 3: "Posidonia su roccia",

71 4: "No Posidonia - Sabbia",

72 5: "No Posidonia - Sedimenti vari",

73 6: "Mare Profondo",

74 }

75 print("Class Mapping (Excluding Class 0):")

76 for class_id, class_name in class_map.items():

77 print(f"Class {class_id}: {class_name}")

78 # Step 3: Prepare Data with Balanced Oversampling

79 data = prepare_data(

80 training_data_path,

81 batch_size=16,

82 chip_size=30,

83 val_split_pct=0.2,

84 class_mapping=class_map,

85 class_balancing=True,

86 class_weights=class_weights.tolist(),

87 oversample=True,

88 oversample_classes=[1, 2, 3]

89 )

90 # Step 4: Initialize the Model

91 device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

92 print(f"Using device: {device}")

93 model = UnetClassifier(data, model='deeplabv3')

94 model.learn.model.to(device)

95 # Training

96 train_losses = []

97 epoch_train_losses = []

98 valid_losses = []

99 accuracies = []

100 dice_scores = []

101 print("Starting training...")

102 lr_schedule = [(1400, 4e-4), (1100, 3e-4), (800, 2e-4), (600, 1e-4), (400,

5e-5)],→

103 total_epochs = 0

104 for epochs, lr in lr_schedule:

105 model.fit(epochs=epochs, lr=lr)

106 recorder = model.learn.recorder

107 train_losses.extend(recorder.losses)

108 valid_losses.extend(recorder.val_losses[-epochs:])

109 for metric_tuple in recorder.metrics[-epochs:]:
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110 accuracies.append(metric_tuple[0])

111 dice_scores.append(metric_tuple[1])

112 batches_per_epoch = len(recorder.losses) // (total_epochs + epochs)

113 for e in range(total_epochs, total_epochs + epochs):

114 start_idx = e * batches_per_epoch

115 end_idx = (e + 1) * batches_per_epoch

116

epoch_train_losses.append(np.mean(recorder.losses[start_idx:end_idx])),→

117 total_epochs += epochs

118 print("Training complete!")

119 # Step 6: Evaluation with Corrected Label Mapping

120 print("Evaluating model performance...")

121 y_true, y_pred = [], []

122 model.learn.model.eval()

123 with torch.no_grad():

124 for xb, yb in data.valid_dl:

125 xb = xb.to(device)

126 yb = yb.to(device)

127 preds = model.learn.model(xb)

128 preds = torch.argmax(preds, dim=1).cpu().numpy()

129 yb = yb.cpu().numpy().squeeze(1)

130 mask = yb > 0

131 mapped_preds = preds[mask] + 1 # Shift predicted classes to match

label IDs (1{6),→

132 y_true.extend(yb[mask].flatten())

133 y_pred.extend(mapped_preds.flatten())

134 # Compute Metrics

135 labels = list(class_map.keys())

136 label_names = [class_map[i] for i in labels]

137 precision, recall, f1, _ = precision_recall_fscore_support(

138 y_true, y_pred, labels=labels, zero_division=0

139 )

140 metrics_df = pd.DataFrame({

141 "Class": label_names,

142 "Precision": precision,

143 "Recall": recall,

144 "F1-Score": f1

145 })

146 print("\nModel Performance Metrics:")

147 print(metrics_df)

148 output_path = os.path.join(model_save_path, "model_metrics_final.html")
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149 metrics_df.to_html(output_path, index=False)

150 print(f"Metrics saved to: {output_path}")

151 # Step 7: Save Model

152 os.makedirs(model_save_path, exist_ok=True)

153 model.learn.model.cpu()

154 torch.save(model.learn.model.state_dict(), os.path.join(model_save_path,

"model_final.pth")),→

155 print(f"Model saved at: {model_save_path}/model_final.pth")

156 model.save(model_save_path, compute_metrics=False,

save_inference_file=True),→

157 # Step 8: Graphs

158 print("Creating training graphs...")

159 epochs_x = range(1, len(valid_losses) + 1)

160 plt.figure(figsize=(10, 6))

161 plt.plot(epochs_x, epoch_train_losses, label='Training Loss (avg per

epoch)'),→

162 plt.title('Training Loss Over Epochs')

163 plt.xlabel('Epochs')

164 plt.ylabel('Loss')

165 plt.legend()

166 plt.grid(True)

167 plt.savefig(os.path.join(model_save_path, 'training_loss.png'))

168 plt.close()

169 plt.figure(figsize=(10, 6))

170 plt.plot(epochs_x, valid_losses, label='Validation Loss', color='orange')

171 plt.title('Validation Loss Over Epochs')

172 plt.xlabel('Epochs')

173 plt.ylabel('Loss')

174 plt.legend()

175 plt.grid(True)

176 plt.savefig(os.path.join(model_save_path, 'validation_loss.png'))

177 plt.close()

178 plt.figure(figsize=(10, 6))

179 plt.plot(epochs_x, accuracies, label='Accuracy', color='green')

180 plt.title('Accuracy Over Epochs')

181 plt.xlabel('Epochs')

182 plt.ylabel('Accuracy')

183 plt.legend()

184 plt.grid(True)

185 plt.savefig(os.path.join(model_save_path, 'accuracy.png'))

186 plt.close()
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187 plt.figure(figsize=(10, 6))

188 plt.plot(epochs_x, dice_scores, label='Dice Score', color='red')

189 plt.title('Dice Score Over Epochs')

190 plt.xlabel('Epochs')

191 plt.ylabel('Dice Score')

192 plt.legend()

193 plt.grid(True)

194 plt.savefig(os.path.join(model_save_path, 'dice_score.png'))

195 plt.close()

196 print("All training graphs saved successfully!")

197 elapsed_time = time.time() - start_time

198 print(f"Elapsed time: {elapsed_time:.2f} seconds.")

199
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