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Abstract

The increasing global demand for food, feed and flexible crops is exerting un-
precedented pressure on the global hydrological cycle through landscape conversion
and increasing irrigation demand, which altogether contribute to the alteration of
land-atmosphere feedbacks. These feedbacks influence evaporation and precipitation
patters through atmospheric flows. Atmospheric moisture flows connect sources of
evaporation to sinks of precipitation, from local to regional and continental scale, up to
thousands of kilometres away. Terrestrial sources of evaporation are crucial for global
food production, regulating precipitation and climate patterns by redistributing water
and latent heat. At the same time, the alteration of evapotranspiration dynamics
from these sources is mainly driven by land-use conversion for pasture (cattle meat
production), and feed crops (such as soy, and maize) and agricultural practises, such
as irrigation.
Current water use assessment disregard these feedbacks and the role played by atmo-
spheric moisture connection in redistributing evaporation from agricultural parcels
to precipitation in downwind areas. This understanding is particularly key to better
assess the water-related implication of pivotal crops such as soy, maize and wheat
which account for 33% of global harvested land and the 30% of global water footprint
of crop production. Addressing this gap, this thesis aims to advance the understanding
of how evapotranspiration from agricultural areas contributes to precipitation whether
or not to other agricultural area. It emblematically presents the cases of soy, maize
and wheat.

The first part of this thesis updates actual evapotranspiration estimates for soy,
maize and wheat production for the period 2008–2017 by means of the agro-hydrological
model waterCROP, which solves the daily soil water balance on a global 5 arc-minute
grid, with global coverage for both irrigated and rainfed conditions. In the present
work, the model is updated to a newer version, made consistent with daily climatic
data from ERA5 reanalysis.

In the second part, the evapotranspiration estimates are combined with atmospheric
connections by means of the RECON dataset, a 4D matrix of annual moisture flow
connections between any cell in the world at the spatial resolution of 0.5°. In the
present work, each cultivated cell of soy, maize and wheat is linked to its blue and green
evapotranspiration shed (i.e. the downwind area receiving precipitation from irrigated
or rainfed crop production). Evaporation sheds are finally classified according to their
land use category to analyse potential synergies and trade-off between land and water
use between the sites at the origin of evaporation and at the fate of precipitation.

By characterizing these connections, the thesis sheds light on the hidden global
links between cultivated land and downwind areas. Ultimately, this thesis contributes
toward a more comprehensive evaluation of the interplay between water and land use
at the site of production with atmospheric feedbacks with local and distant link in
the global water cycle.
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Chapter 1

Introduction

1.1 Background and research gaps
Food, land use, and water are deeply interconnected. Agriculture stands at the
centre of this nexus because it both depends on and reshapes freshwater resources,
atmospheric flows, and land use. For this reason food production is among the largest
driver of global environmental change. Agriculture occupies about 40% of the world’s
land, it accounts for up to 30% of global greenhouse gas emissions, and consumes
around 70% of freshwater resources [1].

According to FAO, by 2050 agriculture will need to produce nearly 50% more food,
fibre, and biofuel compared to 2012 levels [2]. Diets therefore represent a critical
link between human health and environmental sustainability. Current dietary trends,
combined with a projected global population of about 10 billion by 2050, are expected
to intensify risks for both people and the planet [1].

Over the past 50 years, food production and dietary patterns have undergone
profound transformations. While important progress has been achieved, such as
reductions in hunger, improvements in life expectancy, and declines in infant and child
mortality, new challenges have emerged. Diets increasingly feature high-calorie, heavily
processed, and animal-source foods, placing mounting pressure on natural resources.
These trends are driven by rapid urbanisation, rising incomes, and persistent barriers
to accessing nutritious foods [3].

Projections indicate significant increases in global meat consumption: poultry
consumption will increase by 21%, sheep by 16%, beef by 13%, and pig meat by 5% by
2034. Nearly 45% of this growth will occur in upper middle-income countries, driven
by population and income expansion. For instance, Africa’s population is expected to
grow from 1.5 to 1.8 billion within the next decade, resulting in a 33% increase in
regional meat consumption [3].

Numerous studies show that animal-source foods have far greater environmental
impacts than plant-based foods across indicators such as greenhouse gas emissions [4],
land use, energy consumption [1], and water use [5]. Figure 1.1 compares environmental
effects by serving size, highlighting that ruminant meat has the highest impact among
all food types. Future projections further suggest that environmental pressures will
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intensify by 2050. While different food groups vary in their impacts, animal products
consistently stand out as one of the most resource-intensive (Figure 1.2).

The EAT-Lancet Commission offers guidance on the necessary transformation
of the global food system, calling for a substantial increase in the consumption of
plant-based foods and a marked reduction in the consumption of animal-source foods.
This transition is essential both to reduce environmental pressures and to improve
human health outcomes [1].

Figure 1.1: Environmental effects per serving of food produced in global food
systems. Circles indicate mean values, and bars indicate standard deviations. Some
results are missing for fish due to limited data in certain impact categories [1].

The growing global demand for food, feed, and flexible crops is placing unprece-
dented pressure on the hydrological cycle. Landscape conversion and rising irrigation
needs are altering land-atmosphere feedbacks and reshaping moisture transport pat-
terns [6]. Understanding these feedbacks between cropland water use and atmospheric
processes is crucial for evaluating both agricultural sustainability and hydro-climatic
risks.

Internal renewable water resources from rivers and aquifers, commonly referred
to as blue water [7], are being extracted at rates that already exceed sustainable
thresholds in several regions. Between 2000 and 2018, global per capita internal
renewable water resources declined by about 20% [8]. These pressures are amplified
by population growth, urban expansion, and the intensification of agriculture. In
2010, global water withdrawals were distributed as follows: 69% for agriculture, 12%
for municipal use, and 19% for industry [2]. Therefore, agriculture is by far the
largest user of freshwater, and within this share, a significant portion is devoted to
feed crops that indirectly sustain livestock production. This adds complexity to the
water-food nexus, since dietary choices strongly influence both the spatial distribution
and intensity of water demand.

Yet most of the water used in food production is not blue water but green water [9],
which includes terrestrial precipitation, evaporation, and soil moisture [10]. Between
1996 and 2005, the global water footprint of crop production was about 7,404 billion
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Figure 1.2: Environmental effects in 2010 and 2050 by food groups on various Earth
systems based on business-as-usual projections for consumption and production [1].

cubic meters per year, of which 78% was green, 12% blue, and 10% grey [9]. While
water footprint assessments quantify the volume of water consumed, they remain
indicators of use rather than impact: they do not track how evapotranspired water
re-enters the cycle, whether it returns as precipitation on the same crop, on other
crops, or in entirely different regions.

Many regions experiencing chronic water scarcity relative to their populations
rely heavily on agricultural commodity imports, effectively importing virtual water.
Virtual Water Trade refers to the international or intra-national exchange of goods
expressed in terms of the water embedded in their production: when goods are traded,
the water physically consumed in the production area is virtually transferred to the
region of consumption [11]. This line of research extends the water footprint concept to
global supply chains, but both frameworks largely neglect the atmospheric component
of water redistribution.

The origin and fate of precipitation are central to this perspective. Moisture
tracking research has revealed that evapotranspiration sources and precipitation
sinks are connected by atmospheric flows operating over thousands of kilometres [12,
13]. For example, the Amazon contributes 2-6% of rainfall to downwind regions in
South America [14], highlighting the stabilizing role of intact ecosystems. Similar
dynamics have been observed in Africa and Asia, where forests and wetlands act as
rainfall sources. Globally, about 56% of terrestrial precipitation originates from the
evapotranspiration of forests and other natural ecosystems, while rainfed agriculture
contributes roughly 5% [2]. The remaining 39% of rainfall becomes surface runoff
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(feeding rivers and lakes) or recharges groundwater aquifers [2]. These fluxes underpin
the renewable freshwater resources on which societies depend. A portion of this water
is withdrawn through infrastructure and diverted to different uses: much of it is
eventually returned to rivers or aquifers, whereas water consumed through irrigation
re-enters the atmosphere via evapotranspiration. The key question, therefore, is where
and when this water returns as rainfall, and whether it supports agriculture again
(green water) or replenishes blue water stocks such as aquifers and rivers.

Land-use change, also driven by food production, plays a critical role in shaping
these fluxes. It has been demonstrated that land-use change can cause significant
precipitation changes but only minor effects on runoff within the same basins [15],
making it especially relevant for green water availability. Food-driven deforestation
and land-use changes disrupt atmospheric fluxes by reducing evapotranspiration and
inducing precipitation anomalies in downwind areas [14]. For instance, Amazonian
deforestation, driven by soybean expansion, has caused precipitation declines in
croplands in Argentina [16, 17]. Among agricultural commodities driving deforestation,
cattle meat ranks first, while soybeans and maize, primary cattle feed components,
rank fourth and fifth, respectively [18]. Consequently, dietary choices significantly
influence not only freshwater use but also invisible atmospheric water fluxes.

Land-use change encompasses not only deforestation and cropland expansion, but
also the transition from rainfed to irrigated agriculture. Irrigation withdraws large
volumes of blue water, while also enhancing blue evapotranspiration fluxes into the
atmosphere, thereby modifying local and downwind precipitation patterns [6]. While
the total agricultural area has changed only modestly since 2000, the balance has
shifted: land under permanent and irrigated crops has increased, while permanent
meadows and pastures have declined substantially [8].

Current approaches often overlook the role of crops as distinct evaporative agents.
Water footprint studies quantify consumption but not the atmospheric pathways
through which evapotranspired water returns to precipitation. As presented in Figure
1.2, freshwater use and cropland use are treated as separate indicators, although they
are deeply interconnected. Moisture tracking research maps these atmospheric flows,
yet does not link them to specific crop types or to internal crop recycling. As a result,
no global analysis has yet mapped crop-specific evapotranspiration sheds, nor traced
how agricultural water use contributes to downwind rainfall and which land systems
ultimately benefit from this recycled moisture.

1.2 Goal
This thesis addresses a critical gap in the literature by explicitly linking crop water
use to atmospheric moisture recycling. It develops a framework that integrates crop-
specific evapotranspiration, atmospheric moisture tracking, and land-use classification,
with the aim of quantifying how agricultural water use recycles through the atmosphere
and contributes to rainfall patterns worldwide.

Specifically, the work advances the understanding of how evapotranspiration from
agricultural areas contributes to precipitation, both over agricultural land and other
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surfaces. The analysis focuses on three pivotal crops, soy, maize, and wheat, which
together account for about 33% of global harvested land [19] and roughly 30% of the
global water footprint of crop production [9].

Beyond quantifying the magnitude of these feedbacks, the thesis maps their spatial
distribution, identifying water donor and recipient regions of agricultural evapotran-
spired water. By integrating crop water accounting with moisture tracking, this
approach bridges the gap between field-scale water use and atmospheric-scale precipi-
tation dynamics, providing a global assessment of crop-specific evapotranspiration
sheds and their implications for water resources, land-use planning, and sustainable
agriculture.

1.3 Thesis structure and workflow
This thesis is structured as follows:

Chapter 2 lays out the theoretical foundations, describing the hydrological cycle, key
agro-hydrological variables, and the concepts of moisture recycling, evaporation sheds,
and precipitation sheds. It also reviews existing models for crop water estimation and
atmospheric moisture tracking.

Chapter 3 presents the datasets employed, including global crop distribution maps,
meteorological forcing data, and the RECON moisture connections dataset.

Chapter 4 details the methodological framework. The first part describes the
waterCROP model, which updates crop water use accounting for 2008–2017 by solving
the daily soil water balance on a global 5 arc-minute grid. A new version of the code
was developed to incorporate daily meteorological data and enhance computational
performance. The second part integrates these crop-specific water use estimates
with RECON outputs to derive crop-specific evapotranspiration sheds, annual water
balances, and land-use classifications of sinks.

Chapter 5 presents the key findings, including crop-specific evapotranspiration
sheds, donor–recipient balances, and the classification of precipitation sinks. The
results are visualized through maps and Sankey diagrams to illustrate the redistribution
of agricultural evapotranspired water across various land types.

Finally, Chapter 6 synthesizes the results, highlights their relevance and potential
applications, and outlines the limitations of the current analysis and directions for
future research.

In summary, this thesis contributes a new perspective on agricultural water use by
extending traditional water footprint assessments to include atmospheric feedbacks.
By systematically quantifying how crop evapotranspiration contributes to rainfall, it
provides both conceptual advances for the scientific community and practical insights
for sustainable water and land management.
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Chapter 2

Theoretical foundations

This chapter outlines the theoretical framework that underpins the present research.
It begins with an overview of the hydrological cycle. Emphasis is placed on its funda-
mental role in sustaining human societies, with particular attention to agricultural
production, where water availability directly conditions crop growth and productivity.
Subsequently, a set of agro-hydrological variables that are recurrently employed in
this thesis are introduced and rigorously defined, thereby establishing a consistent
terminology for the subsequent analyses. Finally, the discussion focuses on two key
components of the hydrological cycle that are central to this study: (i) the quantifi-
cation of crop evapotranspiration, approached through agro-hydrological modelling
frameworks, and (ii) the estimation of atmospheric moisture fluxes, which provide
insight into large-scale water transport and its implications for regional and global
hydrological balances.

2.1 Hydrological cycle
The global hydrological cycle regulates the functioning of the Earth system and
provides the basis for all life. It regulates climate, enables the cycling of carbon
through biomass production, and governs the transport of nutrients, chemicals, and
pollutants across ecosystems [20, 21]. Conceptually, the hydrological cycle describes
the continuous circulation of water on, above, and below the Earth’s surface. This
circulation is primarily driven by solar radiation and gravity, which together sustain
the transfer of water across its different physical phases and reservoirs, including the
atmosphere, oceans, terrestrial ecosystems, and groundwater.

Water enters the atmosphere via evaporation from oceans, inland water bodies,
and soils, as well as through transpiration from vegetation. Once in the atmosphere,
it is transported as vapour, undergoes condensation, forms clouds, and eventually
returns to the surface as precipitation. Precipitation constitutes the ultimate source
of freshwater and initiates a cascade of fluxes and storages that sustain terrestrial
hydrology. Upon reaching land, precipitation may infiltrate into soils, generating soil
moisture; flow across the surface as runoff, feeding streams, rivers, and wetlands; or
evaporate directly from vegetation canopies, bare soils, and standing water.
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Figure 2.1: Main global hydrological flows distinguished into blue and green con-
tributions, depicted with proportional arrows according to volume estimates in the
latest IPCC AR6 Assessment [22]. [20]

The fate of infiltrated water can be further differentiated into green and blue water
(Figure 2.1). Green water refers to the portion of soil moisture that is accessible to
plants within the root zone and subsequently returned to the atmosphere through
transpiration or direct evaporation from soil and vegetation surfaces [7]. Blue water, in
contrast, corresponds to liquid water available in rivers, lakes, reservoirs, and aquifers.
While part of the infiltrated water contributes to green water flows, a fraction percolates
below the root zone, recharging groundwater and sustaining subsurface flows that
eventually feed back into surface water bodies [7]. Distinguishing between stocks and
flows is fundamental: blue water stocks encompass water stored in lakes, reservoirs,
aquifers, glaciers, and snow, while blue water flows include river runoff and subsurface
recharge. Similarly, green water stocks are defined as soil moisture and plant-held
water, whereas green water flows comprise evapotranspiration fluxes. Furthermore,
these categories are highly interconnected; for example, irrigation (blue water flow)
applied to a field increases soil moisture (green water stock), which then sustains
transpiration and evaporation (green water flows). On average, at the global annual
scale, approximately 60% of precipitation over land is partitioned into green water
and 40% into blue water, highlighting the predominance of green water as the main
freshwater resource for ecosystems and agriculture [22].

A central component of the hydrological cycle is evapotranspiration, the combined
flux of evaporation and transpiration. Evapotranspiration links the hydrological and
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energy cycles: increasing air temperatures elevate both the atmosphere’s capacity
to hold water vapour and its evaporative demand. Consequently, as global warming
intensifies, land and oceans evaporate more water, reinforcing the greenhouse effect
through the positive feedback of water vapour on surface warming. Evapotranspiration
can itself be partitioned into green and blue components. Green evapotranspiration
is sustained by soil moisture originating from precipitation, whereas blue evapotran-
spiration refers to water consumed by plants that derives from irrigation or other
managed withdrawals from blue water stocks [23, 9].

2.2 Important agro-hydrological variables

Figure 2.2: Water balance of the root zone [24].

Agro-hydrology involves multiple variables and coefficients to describe the inter-
actions among soil, plants, and atmosphere. To ensure consistency, the Food and
Agriculture Organization (FAO) provides widely adopted guidelines that establish
a common language and standardized conventions. This thesis follows the FAO
framework when dealing with agro-hydrological modelling, while integrating it with a
few additional relevant concepts.

Figure 2.2 provides a schematic representation of the water balance in the root
zone. It highlights the key fluxes, precipitation, evapotranspiration, irrigation, runoff,
and deep percolation, as well as the variables related to soil moisture that are central
to agro-hydrological modelling. The variables discussed below are directly linked
to the processes shown in the figure, which serves as a useful visual reference for
understanding how each component contributes to the overall soil–plant–atmosphere
system.

The most important variables considered are listed and explained below:

• Potential Evapotranspiration (ET0): The amount of evapotranspiration that
would occur from a reference surface under optimal conditions. The reference
surface is defined as a hypothetical crop with a height of 0.12 m, a surface
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resistance of 70 s m−1, and an albedo of 0.23, closely resembling the evaporation
from an extensive, uniformly green grass surface that is actively growing and
adequately watered. This reference crop allows estimation of evapotranspiration
that represents the atmospheric demand for water. ET0 is commonly calculated
using the Penman–Monteith equation, which requires meteorological inputs such
as radiation, air temperature, humidity, and wind speed [24].

• Total Precipitation (PT OT ): The total amount of rainfall and other forms of
precipitation that reach the ground over a given period (e.g., daily, monthly).

• Soil Moisture (θ): The volumetric water content of the soil, typically expressed
as a fraction or percentage.

• Drainage or Deep percolation (D): The downward movement of water
beyond the root zone, contributing to groundwater recharge and loss of root zone
water.

• Runoff (R): The portion of precipitation or irrigation water that flows over the
land surface without infiltrating into the soil.

• Rooting Depth (Zr): The depth of soil actively explored by crop roots, which
affects water uptake capacity. It usually varies with crop type and growth stage.

• Total Available Water (TAW ): The amount of water available in the root
zone between field capacity and permanent wilting point.

TAW = (θF C − θW P ) · Zr

where θF C is the soil moisture at field capacity and θW P is the soil moisture at
wilting point [24].

• Readily Available Water (RAW ): The portion of TAW that plants can
extract without experiencing water stress. It is often a fraction of TAW , defined
by a depletion fraction p:

RAW = p · TAW

• Crop Evapotranspiration (ETc): The amount of water evapotranspired by
the crop under optimal (no water stress) conditions, which depends on crop
characteristics.

ETc = kc · ET0

where kc is the crop coefficient.

• Actual Crop Evapotranspiration (ETa): The actual amount of water evapo-
transpired by the crop, which depends on water availability and crop characteris-
tics.

ETa = ks · ETc = ks · kc · ET0

where ks is the water stress coefficient and kc is the crop coefficient.
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• Root Zone Depletion (Dr): The water deficit relative to field capacity.

Dr(t) = Dr(t − 1) − (PT OT (t) − R(t)) − I(t) + ETa(t) + D(t)

where I(t) is the irrigation and Dr(t − 1) is the water deficit of the previous time
step (usually the initial condition is to consider it zero, because at beginning the
root zone is at field capacity).

• Green Evapotranspiration (ETgreen): The portion of evapotranspiration
sustained by soil moisture derived from precipitation stored in the root zone
(rainwater). It represents the evapotranspiration of green water accessible to
plants [23].

• Blue Evapotranspiration (ETblue): The portion of evapotranspiration that
relies on irrigation water sourced from surface or groundwater (blue water). It
represents the consumptive use of irrigation water [23].

ETblue = ETa − ETgreen

• Crop Coefficient (kc): A dimensionless factor that represents the ratio of crop
evapotranspiration to reference evapotranspiration, accounting for crop type and
growth stage under optimal (no water stress) conditions.

kc = ETc

ET0
= f(crop height, albedo, canopy resistance, soil evaporation)

Since it depends on crop characteristics that change during the growing season,
it is not constant over time [24].

• Water Stress Coefficient (ks): A dimensionless factor (between 0 and 1) that
reduces evapotranspiration due to limited soil water availability [24].

ks = TAW − Dr

TAW − RAW

2.3 Agro-Hydrological models
Agro-hydrological models are essential tools for understanding and quantifying the
interactions between agricultural practices and the water cycle. By simulating pro-
cesses such as soil water dynamics, crop growth, evapotranspiration, and irrigation
management, these models provide valuable insights for water resource management,
crop yield optimization, and sustainability assessments. They are widely applied to
estimate crop water requirements and irrigation scheduling, evaluate the impacts of
land use and climate change on water resources, support decision-making in agri-
cultural planning and water management, and assess the sustainability of cropping
systems in relation to water availability. Beyond practical applications, these models
serve as a critical framework for scientific research and policy development, enabling
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evidence-based strategies for sustainable agriculture and resilient water management
under changing climatic and socio-economic conditions.

Several well-established agro-hydrological models have been developed specifically
to simulate crop systems, rather than vegetation in general, and are widely used in
research and practice. Considering the focus of this study on crop evapotranspiration,
particular attention is given to crop-oriented agro-hydrological models.
The AquaCrop model, developed by FAO, focuses on simulating crop growth and yield
under water-limited conditions, emphasizing the effects of water stress on productivity
[25]. CROPWAT, also developed by FAO, is a simpler model primarily designed to
estimate crop water requirements and irrigation scheduling based on climate, soil, and
crop data [26]. CropSyst is a multi-year, multi-crop, daily time-step cropping systems
simulation model developed to study the effects of climate, soils, and management on
cropping system productivity and the environment. It simulates the soil water and
nitrogen budgets, crop growth and development, crop yield, residue production and
decomposition, soil erosion by water, and salinity [27]. All results obtained in this
thesis relied on the waterCROP model, which is a physically based agro-hydrological
model. It describes the main components of the soil–atmosphere–plant continuum
(such as effective precipitation, leakage, and evapotranspiration) as functions of soil,
crop, and growth stage during the season [28, 29]. While these examples illustrate
some of the most widely used models, it is important to note that many others exist,
varying in complexity, scale, and intended applications, and collectively they have
contributed significantly to improving water management and supporting sustainable
agriculture worldwide.

2.4 Atmospheric moisture recycling
Continental moisture recycling, the process through which terrestrial evapotranspi-
ration returns as precipitation over land, is a fundamental component of the Earth
system [12]. It shapes regional rainfall patterns, influences the spatial propagation of
droughts, and determines whether continental interiors receive sufficient precipitation
to sustain agriculture [14]. Because evapotranspiration flows can travel thousands
of kilometres before re-precipitating, land-use changes such as deforestation or agri-
cultural expansion may alter downwind precipitation regimes, drought severity, and
hydrological dynamics. Although these teleconnections vary over time, they tend to fol-
low consistent spatial patterns, making them a valuable indicator of land–atmosphere
interactions [30].

Estimates indicate that about 45% of terrestrial evapotranspiration contributes to
precipitation over land, underscoring the pivotal role of land surfaces in maintaining
continental rainfall and agricultural productivity [31]. This highlights the need to
explicitly account for atmospheric moisture flows in assessments of water resources and
land management, as land-cover changes can trigger cascading impacts on regional
and global hydrological stability. This thesis aim to further assess the crop-specific
evapotranspiration which contributes to the precipitation over croplands.

The analyses addressed in this study are conducted on a yearly base. While the
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hydrological cycle may not be balanced at local or regional scales within a single
year, it is generally considered closed at the global annual scale [32, 33]. This implies
that the total volume of water evapotranspired over the course of a year (in this
thesis, from croplands) is expected to return to the Earth’s surface as precipitation
within the same year. Although spatial and temporal mismatches may occur, such
as evapotranspiration in one region leading to precipitation in distant or delayed
locations, on average, the global annual water balance remains conserved. The use of
moisture tracking models and the analysis of evaporation sheds are used to investigate
these mismatches.

Figure 2.3: Schematic representation of the atmospheric branch of the water cycle,
emphasizing two processes: moisture recycling that contributes to cropland precipita-
tion, and moisture recycling resulting from crop evapotranspiration. Adapted from
[14, 34]. Red arrows indicate the water pathway used to assess the contribution of
cropland evapotranspiration to precipitation in downwind areas, with the dashed line
illustrating local moisture recycling within the same region.

As shown in Figure 2.3, water is transported through the atmosphere, precipitates,
and is subsequently re-evaporated from land surfaces. Panel (a) illustrates different
moisture sources (ETsources) that contribute to precipitation (Psources), with a focus
on agricultural land shown in panel (b). Cropland evapotranspiration (ETb + ETg)
results in precipitation over croplands (Pcrop), partly returning locally (local moisture
recycling) and partly falling in downwind regions, as shown in panel (c).

2.4.1 Evaporation and Precipitation Shed
In the literature, two complementary concepts are commonly used to describe atmo-
spheric moisture recycling: the evaporation shed and the precipitation shed. Together,
they define the spatial links between evaporation and rainfall. The evaporation shed
(Figure 2.4a) refers to the downwind regions (land or ocean) where precipitation
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originating from evaporation in a given location is expected to fall. Conversely, the
precipitation shed (Figure 2.4b) represents the upwind regions (land or ocean) that
supply the evaporation contributing to precipitation in a given location.

In the context of croplands, these definitions can be adapted as follows: the
evapotranspiration shed indicates the areas where crop evapotranspiration is expected
to return as precipitation, while the precipitation shed identifies the areas from which
the rainfall infiltrating into the soil of croplands originates.

(a) (b)

Figure 2.4: Schematic representations of (a) evaporation shed and (b) precipitation
shed [20].

2.4.2 Moisture Tracking Models
Moisture recycling models are widely used to trace the movement of water through
the atmosphere. Based on their spatial representation they can be classified as either
Eulerian, which are grid-based, or Lagrangian, which are trajectory-based. In Eulerian
models, moisture is exchanged between discrete grid cells at each time step, whereas
in Lagrangian models, individual air parcels are tracked as their positions evolve over
time [35].

Beyond this fundamental difference, all moisture-tracking approaches require as-
sumptions concerning vertical mixing of moisture, the integration time step, inter-
polation methods, and the spatial and temporal resolution of the forcing dataset.
Consequently, each study must adopt a set of assumptions that balances accuracy in
representing evaporation sheds with computational demands, data availability, and
simulation time [12].

Among the most widely adopted Eulerian approaches is the Water Accounting
Model 2-layers (WAM-2layers), currently available in its third version [36]. This
three-dimensional model simplifies the vertical dimension into two layers and tracks
the transport of atmospheric moisture from sources (surface evaporation) to sinks
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(precipitation), or vice versa. Its spatial resolution directly matches that of the input
forcing data.

A more recent but already widely used alternative is UTrack [12]. UTrack em-
ploys a Lagrangian framework, tracking moisture flows globally at a resolution of
0.25°. It provides a comprehensive database of atmospheric moisture pathways, in-
cluding monthly multi-annual means for the period 2008–2017. UTrack is forced
with ERA5 hourly atmospheric reanalysis data (0.25° horizontal resolution) and uses
three-dimensional fields on 25 tropospheric pressure levels, thereby capturing detailed
patterns of moisture transport.

The dataset employed in this thesis is RECON [37], a global atmospheric moisture
connections dataset in NetCDF format. RECON is a post-processed version of UTrack,
providing annual moisture flow volumes (in cubic meters) between evaporation sources
and precipitation sinks. It offers global coverage at 0.5° resolution, averaged over
2008–2017. While the monthly resolution of UTrack is lost, RECON enforces the
closure of the hydrological cycle at the annual scale, ensuring consistency between
global evapotranspiration and precipitation.

2.5 Land and water use changes effects on atmo-
spheric moisture flows

Agricultural production, along with its hydrological consequences, expanded dramati-
cally during the 20th century and is projected to continue rising throughout the 21st
century. This expansion is clearly visible in the trends of areas dedicated to pasture,
cultivated land, particularly irrigated cropland, the volumes of water withdrawn for
irrigation, and the quantities of fertilizers applied. Agriculture represents both a key
driver of land-use change and a critical component of the global water cycle [6]. In
this thesis, within the broader interconnection between agriculture and the water
cycle, particular emphasis is placed on crop-specific evapotranspiration and its role in
moisture recycling.

Human-driven land-use changes affect nearly every component of the hydrological
cycle [38]. Such changes influence how precipitation is distributed, how water infiltrates
soils, moves through rivers and streams, or accumulates as surface flooding. They also
alter the return of moisture to the atmosphere through evaporation and transpiration.
Because the water cycle is highly interconnected, even localized changes can cascade
through the system, ultimately reshaping freshwater availability at regional and global
scales [22].

An emblematic example of land-use change related to the agricultural sector is
deforestation. Clearing forests reduces soil moisture, evaporation, and local rainfall,
while also triggering regional temperature shifts that influence precipitation regimes.
Vegetation regulates these processes through transpiration, the uptake and release of
water via stomata. As described in Section 2.4, about 45% of terrestrial precipitation
originates from land evapotranspiration. Thus, changes in vegetation cover not only
reshape infiltration and runoff but also directly affect atmospheric moisture recycling.

Agricultural expansion is a leading driver of deforestation: between 2001 and 2022,
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an estimated 86% of global deforestation was linked to crop and cattle production [39].
Feed is the main connection between livestock and land use, both directly through
grazing and indirectly through the consumption of cultivated grains and forage [40].
According to FAOSTAT, around 40% of global cereal production in 2022 was used
for animal feed, a proportion that has been steadily increasing. This diversion of
cropland to feed livestock amplifies pressures on both land and water resources.

Water use is reshaped not only by cropland expansion but also by the transition
from rainfed to irrigated agriculture. Although irrigation may not drive a physical
“land-use change,” it substantially increases pressures on the water cycle. Irrigation
withdraws large volumes of blue water, while also enhancing blue evapotranspiration
fluxes into the atmosphere, thereby modifying local and downwind precipitation
patterns [6].

Improved land and water management strategies, such as reforestation, sustainable
irrigation, and conservation agriculture, offer pathways to reduce climate impacts
while adapting to adverse changes already underway. Overall, evidence shows that
changes in land use and land cover alter the water cycle at local, regional, and global
scales, reshaping precipitation, evaporation, flooding, groundwater dynamics, and
freshwater availability [22].
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Chapter 3

Data source and processing

3.1 Climate Data
Originally, the waterCROP model was based on the CRU TS v. 2.0 high-resolution
gridded dataset, which provides long-term averages, with a monthly temporal res-
olution and a spatial resolution of 5 arc-minutes [41]. The model simulates daily
conditions by interpolating monthly data, as explained in detail in Subsection 4.1.2.

To ensure consistency with the RECON dataset, which will be combined with
waterCROP results to identify sink regions, an update of the climatology was necessary.
The RECON dataset is based on monthly ERA5 data from 2008 to 2017 with a
spatial resolution of 0.5°. Since ERA5 data [42] are also available at daily resolution,
the waterCROP model was modified to use actual daily data instead of relying on
interpolation from monthly values.

The data were downloaded directly from the Copernicus Climate Data Store
using their API. Downscaling to match the desired spatial resolution was performed
using Climate Data Operators (CDO), which provides more than 600 operators to
manipulate and analyse climate data. The processing employed the CDO function
remap, selecting a conservative remapping method that preserves the integral of
dataset values over the domain during interpolation.

While CRU TS data represent statistical averages accounting for the stochastic
nature of precipitation, ERA5 data were used without any averaging. As explained
later, the updated daily version of the waterCROP model runs over the entire period
to derive an average yearly crop behavior, rather than calculating it directly from an
averaged climatology.

Since the daily ERA5 data are heavy and the simulation which involved their use
requires the use of HPC, monthly averages were also calculated starting from the
previously downscale version of the daily data. The processing employed the CDO
function ymonmean which calculate the mean for each month of each year.
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3.2 Crop Data
In this thesis, all analyses were conducted on three major crops—wheat, maize, and
soy—which together occupied about 33% of global harvested areas. Rainfed and
irrigated harvested areas were sourced from the MapSPAM 2010 v2.0 dataset provided
by the International Food Policy Research Institute (IFPRI) [19]. This dataset has
global coverage, includes 42 crops, and has a spatial resolution of 5 arc-minutes.

To represent specific crops, the waterCROP model requires crop-specific data as
input. The sowing dates and the length of the growing period (LGP ) were obtained
from the global dataset MIRCA2000 [43], which has a spatial resolution of 5 arc-
minutes and distinguishes between rainfed and irrigated production.

The daily crop coefficient kc is used in the calculation of actual evapotranspiration.
The model computes kc on a daily basis following predefined curves [28], which are
divided into four stages: initial phase, development stage, midseason, and late season.
Each stage has a specific length, and the corresponding constant values were adopted
from Allen et al. (1998) [24]. Moreover, the length of each stage is expressed as a
fraction of the LGP , with values defined according to Mekonnen and Hoekstra (2011)
[9] for different climatic regions.

The daily water stress coefficient ks,j also contributes to the calculation of actual
evapotranspiration. For irrigated production, ks,j is set equal to 1 throughout the
growing period, while for rainfed production it is computed daily following Tuninetti
et al. (2015) [28]. Its calculation uses 30 arc-second maps of available water content
(AWC) from FAO/IIASA/ISRIC/ISSCAS/JRC (2012) [44], aggregated to match the
spatial resolution of the model. Additional inputs to calculate ks,j include precipitation
(as described above), rooting depth Zr and the depletion fraction p, both from Allen
et al. (1998) [24]. The rooting depth is assumed to be maximal in rainfed areas and
minimal in irrigated areas.

3.3 RECON dataset
As presented in Subsection 2.4.2, this thesis adopted the global atmospheric mois-
ture connections NetCDF dataset called RECON [31] to connect the crop-specific
evapotranspiration to their sink areas. The dataset is open-source and can be easily
download [37] but it easy heavy, so also its use requires the use of HPC. Since it offers
global coverage at 0.5° resolution, while waterCROP has a finer resolution, all the
output after the combination of this two will have a resolution of 0.5°.

3.4 Land use datasets
To maintain consistency with the data, the same harvested areas used to run the
waterCROP model were also employed to characterize the regions identified as sinks.
Since the original MapSPAM 2010 v2.0 dataset [19] has a spatial resolution of 5
arc-minutes, it was aggregated to match the output coarser resolution of 0.5°. This
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aggregation was performed using the CDO function gridboxsum, which generates
each output cell by summing the hectares of the corresponding 6 × 6 input cells.

The ISIMIP3 land-sea masks [45] were used to estimate the volume of water
evaporated from crop cultivations that does not precipitate over land but instead
falls over the oceans. The dataset has a spatial resolution of 0.5°, consistent with the
RECON dataset, and therefore requires no additional processing. The mask assigns a
value of NaN to ocean-covered cells and a value of 1 to land-covered cells.

Table 3.1: Data summary with scale, resolution, reference period and source.
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Chapter 4

Methods

Figure 4.1: Flowchart describing the methodology adopted in this thesis.

The methodology developed in this work has been proposed to produce and investigate
the location of water sinks of water which originate from specific crop cultivations.
Figure 4.1 illustrate the overview of the methods followed to reach the desired results.
Each section will be breaked down in the following paragraphs. Most of the analysis
were performed using HPC, since the simulations deal with heavy input files.
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4.1 Crop Green and Blue Evapotranspiration eval-
uation with the waterCROP model

MapSPAM 
2010 v2.0

Figure 4.2: Flowchart describing the methods to obtain crop green and blue evapo-
transpiration adopting the waterCROP model.

The goal of this first part of the thesis is to update production-based water accounting
for the period 2008-2017. To accomplish this goal was used the waterCROP model [28,
29], a physically-based Agro-Hydrological model which solves soil water balance on a
daily basis running on a global grid of 5 arc-minute resolution. It describes the main
components of the soil-atmosphere-plant continuum (such as effective precipitation,
leakage, evapotranspiration, etc.) as a function of soil, crop, and period during the
growing season. The model maps average annual water use for both food and feed
crops. Each crop has maps of actual green and blue evapotranspiration, and irrigation
demand evaluated to compensate for soil water stress over the whole growing period.
This step enables the identification of how much water enters the atmosphere through
evapotranspiration and where, providing the basis to assess the destination of that
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water within the hydrological cycle.

4.1.1 Hydrological balance

Figure 4.3: Water balance components of the waterCROP model: Total Precipita-
tion PT OT , Runoff R, Actual Evapotranspiration ETa and Crop Water Demand (or
Irrigation) I. Zr,ini,Zr,max stand for initial rooting depth, maximum rooting depth
respectively. Adapted from [29]

The waterCROP model was run to estimate crop evapotranspiration over a single
growing season. It simulates the daily hydrological balance to estimate the daily actual
evapotranspiration, ETa,j

è
mm
day

é
, for each day of the growing period. All details of the

daily estimation remain unchanged from the original model. Figure 4.3 summarizes
all the variables considered in the daily water balance. Few assumption are made
and must be taken into account while examinating the results. On the first day of
the growing period the soil is considered to be at field capacity, the crop is far from
water stress condition. In the irrigated areas, it is assumed that the field never suffer
water stress, so each time the deficit at the end of the day is higher than the Readily
Available Soil Water (RAW or θ∗) and the Total Precipitation PT OT of that day is
not enough to bring it back to a lower value, the difference is closed by Irrigation I.
The daily values ETa,j are then summed over the growing season to obtain the annual
evapotranspiration, ETa,LGP [mm], for a specific year. This value is subsequently
averaged with results from other years to produce the annual average.

4.1.2 Daily model
The original model has a 360-days calendar and each month have the same length (30
days) and was runned with a average climatology computed on a 30-years time period.
It evaluates the hydrological balance daily, but the Potential Evapotranspiration ET0
and the Total Precipitation PT OT are obtained from monthly data. Specifically the
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ET0 is obtained placing the monthly average value on the 15th day of the month
and assuming a linear behaviour between them, while the monthly cumulative Ptot is
evenly distributed on the 30 days for each month.

The new version of the model developed for this thesis uses actual daily data, as
presented in the Section 3.1. The model run for all the years of the selected period, in
this case 2008-2017, and then average all the years, in order to obtain a mean crop
behaviour. This shift from monthly to daily data implicate that other changes need
to be done. Since the sowing dates file is based on a 360-days calendar, the new code
convert those information in a 365-days calendar, taking also into account the leap
years.

This new version of the code handles large input datasets and therefore requires
substantial computational time and memory. To evaluate whether this level of detail
was necessary for the scope of the thesis, the daily and monthly versions of the
model were compared at the annual scale, since evapotranspiration ET values are
ultimately aggregated yearly. The results show that the discrepancy is negligible, with
a correlation higher than 0.98 between the two versions (Figure 4.4). For this reason,
the simulations presented in this thesis were carried out with the monthly model, with
minor adjustments.

To further assess the differences in terms of spatial distribution, a series of global
maps was produced (Figure 4.5), displaying the relative difference defined as:

εi[−] = ETdaily,i[m3] − ETmonthly,i[m3]
ETdaily,i[m3] .

Assuming the daily version of the model to be more accurate, the monthly version
appears to underestimate irrigation requirements in certain regions (e.g., the USA,
Ukraine, France, and Spain), while overestimating them in Italy, Greece, India,
North Korea, and Japan. The Green ET shows only minor differences, with notable
exceptions such as the Virginia region in the USA. Overall, the differences in Total
ET largely mirror the behaviour of Green ET , as Blue ET is considerably smaller.

Nevertheless, the daily version remains relevant, since its higher temporal resolution
would significantly affect results aggregated at the monthly scale, even if the annual
totals remain nearly unchanged.

4.1.3 Cell insights
To better illustrate the behaviour of the model in daily simulations, a series of plots
was generated. These plots visualize the daily evolution over the growing period for a
single grid cell, under both rainfed and irrigated conditions. Specifically, they include:

• the crop coefficients,

• the rooting depth, compared against the Readily Available Soil Water (RAW or
θ∗) and the Total Available Soil Water (TAW or θW P ),

• the daily hydrological balance in the soil (depletion Dr evolution) and in the
atmosphere (evapotranspiration, ET , evolution).
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(a) Green ET . (b) Blue ET .

(c) Total ET .

Figure 4.4: Scatter plot and correlation of annual ET obtained with the daily and
monthly models. Results are based on wheat cultivations averaged over 2008-2017.

In addition, two further plots summarize the dynamics over an entire hydrological
year. The first highlights the timing and potential overlap of rainfed and irrigated
growing seasons, while the second presents the evolution of green and blue evapotran-
spiration (ET ) from the total harvested area of the cell throughout the year. The
annual plots are aligned with the hydrological calendar: in the Northern Hemisphere
they begin on October 1st, whereas in the Southern Hemisphere they begin on July
1st.

Figures 4.6 to 4.9 show the plots described above, intended to demonstrate the
model’s functioning. The selected grid cells correspond to two distinct regions:
Piedmont in Italy and Minas Gerais in Brazil. Further details about these case study
cells are reported in Table 4.1. Simulations were performed withe the monthly version
of the model for both cases in 2008, focusing on wheat cultivation.

In Figures 4.6 and 4.8 (a) and (b), it can be observed that the crop coefficient
dynamics are similar between the rainfed and irrigated cases, even when the two
cultivations do not occur in the same period of the year, as in the Piedmont case,
but instead span different lengths of the growing period. However, the coefficients
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(a) Green ET relative difference.

(b) Blue ET relative difference.

(c) Total ET relative difference.

Figure 4.5: Relative difference between the annual ET obtained with the daily and
monthly models. Results are based on wheat cultivations averaged over 2008-2017.
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Table 4.1: Characteristics of cells selected as case study.

Data Piedmont Minas Gerais

Coordinates (WGS84) 44°45’36.0”N
7°30’36.0”E

16°10’00.1”S
46°34’59.9”W

Climatic region Temperate (Oceanic) Tropic
AWC[mm/m] 60 150
Rainfed Harvested Area [ha] 11.1 37.3
Irrigated Harvested Area [ha] 18.5 1.3
Rainfed Sowing Date 15 Oct 15 May
Irrigated Sowing Date 15 Apr 15 May
Rainfed LGP [days] 270 150
Irrigated LGP [days] 150 150

do not follow the same progression across the two locations. For example, the case
studies exhibit different initial kc values and durations of the initial stage, reflecting
the distinct climatic regions to which they belong.

Figures 4.6 and 4.8 (c) and (d) show that only a small portion of the total rooting
depth is actually relevant for plant evapotranspiration. Although maximum rooting
depth is globally defined by [24], the RAW and TAW values also depend on the
AWC, which explains why the maximum values reached in the two locations differ.

The depletion evolution, shown in Figures 4.6 and 4.8 (e) and (f), is closely tied
to the local climate inputs. In Piedmont, the rainfed growing season coincides with
the rainy period, preventing water stress, whereas in Minas Gerais wheat cultivation
under rainfed conditions experiences water stress.

The atmospheric hydrological balance (Figures 4.6 and 4.8 (g) and (h)) reflects the
processes occurring in the root zone, highlighting the partitioning of evapotranspiration
between green and blue water.

Finally, Figures 4.7 and 4.9 illustrate the alternation and varying lengths of rainfed
and irrigated growing seasons, as well as the additional water required to avoid stress
conditions in the two different regions.

4.1.4 Other general updates
In the new version of the model it is possible to directly add the latitude and longitude
of the area of interest as inputs, instead of the rows and columns of the grid. The
code directly source from the input files the dimension of the grid, determining the
spatial resolution of the results without any input from the user. It means that the
code could run also with other resolution if all the input files are consistent in the
dimensions. Finally a few lines were changed to make the code faster, shorter and
more efficient.
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Rainfed Irrigated

(a) Crop Coefficients. (b) Crop Coefficients.

(c) Root depth. (d) Root depth.

(e) Depletion. (f) Depletion.

(g) Hydrological balance in the atmosphere. (h) Hydrological balance in the atmosphere.

Figure 4.6: Cell Insights - Wheat Piedmont.
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(a) Daily ETa.

(b) Daily ETa normalized with cultivated areas.

Figure 4.7: Cell Insights over an entire hydrological year - Wheat Piedmont.
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Rainfed Irrigated

(a) Crop Coefficients. (b) Crop Coefficients.

(c) Root depth. (d) Root depth.

(e) Depletion. (f) Depletion.

(g) Hydrological balance in the atmosphere. (h) Hydrological balance in the atmosphere.

Figure 4.8: Cell Insights - Wheat Minas Gerais.
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(a) Daily ETa.

(b) Daily ETa normalized with cultivated areas.

Figure 4.9: Cell Insights over an entire hydrological year - Wheat Minas Gerais.
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4.1.5 Output volumes in NetCDF format
To facilitate the combination with the RECON dataset, it is more convenient to
have the results in term of volume instead of height per unit area. To convert the
evapotranspiration the following formula was applied.

Va[m3] = ETa

5
mm

m2

6
· A[ha] · 10

C
m2

mm · ha

D
In the following steps, the obtained results need to be processed using CDO and

python, for this reason the outputs of the waterCROP model must be saved in a
NetCDF format. A Matlab function A.1 was written to achieve this goal. The function
allow to choose the variable that must be saved, the name of the NetCDF file, the
missing value, the cell size and the unit. By default the reference system is WGS84
with latitude from -90° to 90° and longitude from -180° to 180°.

4.1.6 Results upscaling process

(a) 5 arc-minutes resolution. (b) 0.5 deg resolution.

Figure 4.10: Visual difference between the waterCROP results (a) and the upscaled
version (b).

The waterCROP model provides outputs at a finer spatial resolution compared
to the datasets used later in this work. To combine the waterCROP results with
the RECON dataset, an upscaling procedure is required. Since the outputs are
expressed as volumes (cubic meters of water) per grid cell, the upscaling is performed
by aggregating these volumes into larger cells. In line with the processing of harvested
areas, the CDO function gridboxsum was applied, which generates each output cell
by summing the cubic meters of water from the corresponding 6 × 6 input cells.

Figure 4.10 illustrates the difference between the original waterCROP outputs
(a) and the post-processed upscaled version (b). Although the coarser resolution
implies a loss of spatial detail, it ensures conservation of the total volume of water
evapotranspired by crops (see details in Table 5.4). Because the data represent volumes
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obtained by summation, a consistent visual comparison between the two maps requires
scaling. Therefore, the colorbar of panel (b) is set to correspond to the colorbar of
panel (a) multiplied by 36, which is the number of original cells aggregated into one
upscaled cell.

4.2 Crop-specific evaporation sheds to map water
sinks

Figure 4.11: Flowchart describing the methods to obtain crop-specific evapotranspi-
ration sheds adopting the RECON dataset.

The objective of this part of the thesis is to combine crop water use estimates
with the outputs of moisture-tracking models, in order to disentangle the associated
evapotranspiration (ET ) sheds and identify the areas that receive the water evaporated
or transpired by crops. The aim is to locate these sinks and then classify their land
use, as will be explained in Section 4.3.

31



Methods

By adopting the RECON database, each cultivated pixel can be associated with
its precipitation shed (i.e., the pixels where the rainfall infiltrating into the soil is
expected to originate) and its evapotranspiration shed (i.e., the pixels where the
crop evapotranspiration is expected to fall as precipitation). This approach opens
new possibilities for quantifying the upstream–downstream implications of land-use
changes (such as deforestation, crop switching, or conversion from rainfed to irrigated
cultivation) on atmospheric water dynamics.
This thesis focuses on developing a methodology to derive the evapotranspiration shed
of each cultivated pixel, quantifying the volumes of precipitation attributable to crop
evapotranspiration, and then identify the types of land ultimately sustained by this
recycled water.

4.2.1 Sink maps realization
To obtain cumulative sheds that allow the identification of crop-specific water sinks, a
Python workflow was developed to process and analyse the outputs of the waterCROP
model in combination with the RECON dataset. The code can be applied either to a
selected region or at the global scale.

The first step is to harmonize the longitude coordinates across datasets. Both
ERA5 and RECON use a longitude convention from 0◦ to 360◦, meaning that the
upper-left corner of the grid corresponds to latitude +90◦, longitude 0◦. Conversely,
the waterCROP outputs (see Section 4.1.5) use a longitude convention from −180◦ to
180◦, where the upper-left corner corresponds to latitude +90◦, longitude −180◦. To
ensure consistency, the two vertical halves of the waterCROP matrices were swapped.

Since the RECON dataset provides the moisture flow associated with the entire
vegetated surface of each grid cell, the calculation must isolate only the portion
attributable to the specific cultivated crop under analysis. For this reason, the first
part of the code computes a fraction matrix of actual evapotranspiration (ETa) in
volumetric terms, using data from waterCROP. This fraction scales the RECON
moisture flow to the crop level:

ETfraction,i [−] = ETa,i [m3]
ETERA5,i [m3]

Two separate loops (for green and blue ET ) iterate over the non-zero elements of
the fraction matrices. For each grid cell, the code extracts the corresponding shed from
RECON and accumulates it to build the global cumulative sheds. During this process,
the code computes the geographic coordinates of the sinks, retrieves the moisture
flow values (expressed as integer units in RECON), and applies the conversion to
volumetric units according to De Petrillo et al. (2025) [31].

Because the calculations involve global-scale summations of small fractions of
volumes per each cell, extended precision is required. The code uses float128
arithmetic to minimize rounding errors and ensure mass conservation.

To illustrate the procedure, evaporation sheds were also computed for a single grid
cell considering wheat cultivations (Figure 4.12). It is important to note that the
Blue shed is plotted on a different scale to enhance visibility.
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Then, the cumulative evaporation sheds for both green and blue ET were obtained
by summing across all cultivated cells. These cumulative sheds provide the total ET
shed for subsequent analyses. The results are saved as new NetCDF files, ensuring
reproducibility and proper metadata storage.

4.2.2 Statistical relationship between crop evapotranspiration
and sheds

A statistical comparison was carried out between crop evapotranspiration estimated
with the waterCROP model and the corresponding crop-specific evapotranspiration
shed. The objective is to assess how water redistributes itself as precipitation after
being transferred to the atmosphere. As illustrated in Figure 4.12, evapotranspiration
from a single grid cell is dispersed over a wider region, but a statistical comparison was
necessary to evaluate whether this effect is balanced when all sheds are aggregated.

All analyses were performed by comparing values expressed in mm/m2. The vol-
umes from both outputs were converted into evapotranspiration depths by distributing
the volume over the cell area. This conversion was carried out using the inverse of the
equation presented in Section 4.1.5.

The scatter density plots in Figure 4.13 show that waterCROP output values span
a wider range of evapotranspiration depths, while the evapotranspiration shed is
characterized by generally lower values, with a strong concentration near zero. It is
also evident that the two variables exhibit only a weak correlation, with coefficients
ranging from 0.29 to 0.40. In other words, atmospheric processes largely dissolve the
direct relationship between evapotranspiration in a given cell and the precipitation
that can be attributed back to it. Following this analysis, we expect to observe in
the Results Section (5) that high local evapotranspiration from crops will not be fully
compensated by the precipitation returning to land. Instead, values are smoothed:
lower in magnitude but distributed over a broader area, consistent with the behaviour
observed for individual sheds.

4.2.3 Post-processing
Further analyses were conducted on the crop-specific evapotranspiration sheds, combin-
ing these results with annual total precipitation volumes and crop evapotranspiration
volumes previously assessed. The aim was to evaluate agriculture’s contribution to
overall precipitation and its role in recycling water within the same crop cultivations.

To better capture the relative importance of agriculture in the local water balance,
a series of maps was produced showing, for each grid cell, the fraction of annual
precipitation attributable to a specific crop:

Pfraction,i[−] = ETshed,i[m3]
Ptot,i[m3]

where ETshed,i is the precipitation in cell i attributable to evapotranspiration from
the crop, and Ptot,i is the total annual precipitation in that cell obtained from ERA5
data [42].
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(a) Green ET shed.

(b) Blue ET shed.

(c) Total ET shed.

Figure 4.12: Crop-specific ET sheds of a single grid cell.

34



Methods

(a) Green ET scatter density plot. (b) Blue ET scatter density plot.

(c) Total ET scatter density plot.

Figure 4.13: Density scatter plot comparing crop evapotranspiration estimates with
crop-specific evapotranspiration sheds. The color bar represents point density, and
both axes are shown on a logarithmic scale.

To assess whether a crop in a given cell contributes more water to the atmosphere
than it receives back from its own global evapotranspiration volume, two metrics were
defined: the annual Evapotranspiration Difference (ETdiff ) and the Crop Recycling
Ratio (CRR):

ETdiff,i = ETwaterCROP,i − ETshed,i · Acrop

Acell

CRRi =


ETwaterCROP,i−ETshed,i·

Acrop
Acell

ETwaterCROP,i
, ETwaterCROP,i > 0

−1, ETwaterCROP,i ≤ 0

where all ET terms are expressed in m3, and areas are in hectares. The shed
contribution is scaled by the fraction of the cell covered by the crop, ensuring that
only the water returning to the same cultivated area is considered.
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Finally, to verify mass conservation, global ET volumes derived from the sheds
were compared against the total ET inputs. Since the global annual water cycle is
closed, any mismatch quantifies the residual error in the workflow.

4.3 Land use classification of crop water sinks

Figure 4.14: Flowchart describing the methods to obtain the land use classification
of crop water sinks.

The land-use analysis of crop-specific sinks was performed with a dedicated Python
code. Its purpose is to quantify how ET fluxes from each crop are redistributed across
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different land types, namely other agricultural areas, non-agricultural land, and the
ocean, and to represent these fluxes in the form of a Sankey diagram.

In the present implementation, the analysis focuses on agricultural areas of the
three crops modelled with waterCROP. However, the method can be expanded in
the future to classify all land-use types of the sinks by integrating more detailed
land-use datasets, provided they remain consistent with the harvested areas used in
waterCROP. As described in Chapter 3, a land–sea mask was applied to separate
terrestrial surfaces from the ocean.

The first step in determining how much water precipitates on a specific land type
is to compute the fractional coverage of each land type within every grid cell. This
requires the calculation of the total cell area, approximating Earth as a sphere of
radius R = 6371 km. The surface area of a latitude–longitude grid cell is:

Acell,i = R2 ∆lon [sin(latn) − sin(latn+1)]

where ∆lon is the longitudinal resolution of the matrix in radians and latn, latn+1
are the latitudinal bounds of the i-th grid cell. The result, computed in m2, is
converted into hectares to match the units of harvested area data.

The land-use fractions are then calculated as:

fi[−] = Alandtype,i[ha]
Acell[ha]

For each grid cell, the water volume that precipitates is multiplied by these fractions,
thereby allocating the moisture fluxes to the different land uses. This procedure also
allows the generation of maps showing the spatial distribution of volumes by land
type.

Finally, the water fluxes are aggregated globally, yielding totals for green and
blue ET precipitating on rainfed cropland, irrigated cropland, the ocean and other
terrestrial surfaces.

These totals, expressed in m3, form the basis of the Sankey diagram. In this
diagram, nodes correspond to crops, land-use categories, and ET types, while links
represent the volumetric flows between them. The output is both visual (the Sankey
plot) and numerical, with the values stored in CSV files for further use.

Since the results of the Sankey diagram depend on the input evaporation sheds, if
the sheds are regional rather than global, the land-use analysis is carried out for the
same specific area.
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Chapter 5

Results

This chapter presents the key findings of the thesis, highlighting both spatial patterns
and hydrological implications of crop-specific evapotranspiration. The analysis begins
with high-resolution maps of evapotranspiration from maize, wheat, and soybean,
revealing how water use varies across regions and crops. These patterns provide the
foundation for understanding how cultivated areas influence atmospheric moisture
flows.

Next, crop-specific evapotranspiration sheds illustrate how water evaporated from
cultivated areas is transported and eventually precipitates downwind. By comparing
the local evapotranspiration from a given crop with the corresponding cumulative
precipitation across the globe, it is possible to evaluate whether the annual water
balance is maintained at the scale of individual cells. Maps of the relative differ-
ences between waterCROP outputs and the cumulative sheds identify regions where
evapotranspiration either exceeds or falls short of the water ultimately returned as
precipitation, offering insight into local versus teleconnected water dynamics.

The analysis then explores the land-use composition of the sink areas, providing
a perspective on which landscapes benefit most from crop-generated moisture and
how agricultural expansion or land management practices might influence these flows.
Finally, the chapter assesses the effects of upscaling from high-resolution waterCROP
outputs to coarser grids on the total annual water volume estimates, highlighting where
aggregation may lead to under- or overestimation and discussing the implications for
interpreting regional and global water budgets.

Overall, this chapter integrates spatial, hydrological, and land-use perspectives
to provide a comprehensive view of how crop cultivation shapes the movement and
redistribution of water in the atmosphere.
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5.1 Crop Green and Blue Evapotranspiration eval-
uation with the waterCROP model

The waterCROP model estimates crop evapotranspiration (ET ) over the entire
growing season, both for rainfed and irrigated harvested areas. In previous studies,
ET estimates have often been combined with crop yield data to assess the virtual
water content of agricultural products [28]. In this thesis, however, the model is
employed to quantify crop-specific ET at the global scale in volumetric terms.

The simulations were carried out worldwide using ERA5 climatic data for the
period 2008–2017, focusing on wheat, maize, and soybean. Figures 5.1 to 5.3 present
the resulting annual ET volumes, expressed in millions of cubic meters, showing
how much water enters the atmosphere through crop evapotranspiration. Because
these volumes are computed by multiplying evapotranspiration depth (in mm) by
the harvested area (as described in Section 4.1.5), the spatial patterns are strongly
shaped by the distribution of cultivated land in each grid cell.

Figure 5.1 highlights the widespread extent of maize cultivation at the global level.
The largest ET volumes are estimated in the central United States, southern Brazil,
the Po Valley in Italy, the Nile River basin, and northern China.

In general, Blue ET values are considerably lower than Green ET , which is why
Total ET tends to mirror the spatial behaviour of Green ET . Nonetheless, exceptions
emerge where irrigation plays a major role. For instance, in the case of wheat
(Figure 5.2), Green ET (a) is dominant in northern India, while Blue ET (b) is more
pronounced in the western regions. Here, the two components are of comparable
magnitude, so the spatial distribution of Total ET (c) clearly reflects their combined
influence.

Soybean cultivation is concentrated mainly in the United States, central India,
Brazil, and South America more broadly (Figure 5.3). It should be noted, however,
that irrigated soybean areas are likely underestimated.

Overall, these results provide the baseline for the subsequent analysis of evapotran-
spiration sheds, where the spatial distribution of crop-specific ET will be linked to
downwind precipitation and land-use dynamics.
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(a) Green ET .

(b) Blue ET .

(c) Total ET .

Figure 5.1: Annual evapotranspiration from Maize cultivations.
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(a) Green ET .

(b) Blue ET .

(c) Total ET .

Figure 5.2: Annual evapotranspiration from Wheat cultivations.
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(a) Green ET .

(b) Blue ET .

(c) Total ET .

Figure 5.3: Annual evapotranspiration from Soy cultivations.
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5.2 Crop specific cumulative Evaporation Sheds to
map water sinks

It is well established in the literature that agriculture is sustained not only by direct
water inputs but also by vegetation evapotranspiration, and that land-use changes
can significantly influence rainfall in downwind regions [46, 34, 47]. The innovative
contribution of this work lies in the construction of crop-specific evapotranspiration
sheds, obtained by proportionally summing the contributions of each harvested-area
cell, as detailed in Section 4.2.

Figures 5.4 to 5.6 present the resulting sheds for maize, wheat, and soybean. To
enhance readability, the Blue sheds are plotted on a separate scale: if shown on the
same scale as the Green sheds, their much smaller values would result in poor visibility
and the shed structures would effectively disappear.

Across all sheds, major mountain ranges emerge clearly. Orographic lifting and
rain shadow effects strongly shape precipitation, making the Andes, the Alps, the
Urals, the Himalayas, and the Taihang Mountains stand out in the maps. Beyond
topographic features, atmospheric circulation patterns are also evident: for instance,
cultivations in southern South America contribute to precipitation fluxes directed
toward the South Atlantic Ocean.

The atmosphere also introduces a smoothing effect on evapotranspiration distribu-
tions, as already explained in Section 4.2.2. The distribution of waterCROP ET are
sharply peaked with a steep progression, whereas those of the sheds are smoother,
with lower means and higher standard deviations. This reflects how atmospheric
transport redistributes water over broader areas, dampening localized extremes while
maintaining overall consistency.

The sheds make evident several regionally distinct behaviours. In Europe, maize
(Figure 5.4) and wheat (Figure 5.5) sheds show a marked eastward displacement
relative to the waterCROP source regions (Figures 5.1, 5.2). This implies that reduced
evapotranspiration from Western European crops, for example, due to droughts or
land-use change, could translate into rainfall deficits in Eastern Europe. Local shocks
therefore propagate into downwind regions, highlighting the interconnectedness of
agro-hydrological systems.

In India, although crops are grown throughout the country, much of the precipitation
originating from evapotranspiration converges in the north-east and Nepal. Rivers
such as the Ganges help redistribute this water back to downstream cultivations,
and infiltration recharges aquifers. However, the timescales and sustainability of this
recycling remain open questions.

The comparison between the Po Valley and the Nile Basin illustrates further con-
trasts. Both regions host dense cultivation, but while the Po Valley receives significant
recycled moisture, enhanced by the Alps, the Nile Basin shows low precipitation
feedback from its croplands.

To better capture the relative importance of agriculture in the local water balance,
a series of maps (Figures 5.7 to 5.9) was produced showing, for each cell, the fraction
of annual precipitation attributable to a specific crop.
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These maps provide a powerful diagnostic of agricultural contributions to rainfall.
In some hotspots, maize contributes up to 5% of total annual precipitation: for
example, 3.8% in Minnesota (USA) and nearly 5% in Shanxi and Heilongjiang
(China). Irrigation plays a decisive role in these dynamics. Without irrigation, the
Blue water volumes would follow other pathways; when diverted to fields, they re-enter
the atmosphere at specific locations. For example, in Pakistan, wheat irrigation alone
accounts for around 3.5% of total annual precipitation.

Taken together, these results demonstrate how crop-specific evapotranspiration
sheds connect local cultivation practices to both local and remote rainfall, revealing
critical dependencies between agricultural regions and the atmosphere. They under-
score how changes in land use, irrigation, or climate can reverberate across regions,
reshaping not only local but also downwind hydro-climatic systems.
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(a) Green ET shed.

(b) Blue ET shed.

(c) Total ET shed.

Figure 5.4: Annual evapotranspiration shed from Maize cultivations.
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(a) Green ET shed.

(b) Blue ET shed.

(c) Total ET shed.

Figure 5.5: Annual evapotranspiration shed from Wheat cultivations.
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(a) Green ET shed.

(b) Blue ET shed.

(c) Total ET shed.

Figure 5.6: Annual evapotranspiration shed from Soy cultivations.
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(a) Green ET contribution.

(b) Blue ET contribution.

(c) Total ET contribution.

Figure 5.7: Fraction of annual precipitation originated from global Maize cultivations.
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(a) Green ET contribution.

(b) Blue ET contribution.

(c) Total ET contribution.

Figure 5.8: Fraction of annual precipitation originated from global Wheat cultiva-
tions.
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(a) Green ET contribution.

(b) Blue ET contribution.

(c) Total ET contribution.

Figure 5.9: Fraction of annual precipitation originated from global Soy cultivations.
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5.2.1 Annual crop water balance: donor and recipient areas
To assess whether a crop in a given cell contributes more water to the atmosphere
than it receives back from its own global evapotranspiration volume, two metrics were
defined in Section 4.2.3: the annual Evapotranspiration Difference (ETdiff ) and the
Crop Recycling Ratio (CRR).

Cells with positive CRR values are classified as donor areas, meaning that crops
in these regions export more water to the atmosphere than they regain through
precipitation linked to their own evapotranspiration. Negative values identify recipient
areas, where crops receive more water via atmospheric transport than they locally
release. This effect is particularly pronounced in maps considering only Blue ET ,
because rainfed cultivated areas act as recipients of water originating from irrigated
regions.

The scales for positive and negative values are intentionally asymmetric, reflecting
the very different magnitudes of water export and import. A symmetric scale would
obscure these differences and reduce the interpretability of the results.

Notable examples are evident in the maps. In Figure 5.10, the Congo Rainforest
benefits from precipitation originating from maize cultivations. Wheat cultivations in
southern Canada are sustained by moisture from U.S. wheat fields, while wheat fields
in southern China receive precipitation originating from northern China (Figure 5.12).
Large rainfed regions appear as recipients of Blue ET , whereas intensive irrigation in
India and Pakistan emerges as a net water export, with minimal compensation from
atmospheric recycling.

CRR maps not only illustrate the donors and recipients of water within the
croplands of a given crop but also indicate the extent to which a crop attenuates its
own local evapotranspiration through moisture recycling. Light blue areas exhibit
very low crop recycling, meaning that the contribution of global cultivations to rainfall
in that cell is small relative to its evapotranspiration. Purple areas correspond to
crop recycling higher than 8%, while magenta areas receive more water than they
evapotranspire, classifying them as recipient areas. For instance, wheat cultivations in
southern Canada, eastern Europe, Russia, eastern India, Pakistan, and China benefit
from rainfall originating from other wheat cultivations (Figure 5.13).

This approach enables the identification of regions that act as net exporters or
importers of crop-specific water, highlighting the interdependence between cultivated
areas and the precipitation they help generate downwind. Such insights are crucial for
understanding regional water dynamics and informing irrigation planning and water
management strategies.
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(a) Green ET difference.

(b) Blue ET difference.

(c) Total ET difference.

Figure 5.10: Annual difference between maize crop evapotranspiration and the
volume of water redistributed as precipitation originated from the same crop (evapo-
transpiration shed).

52



Results

(a) Green Crop Recycling Ratio.

(b) Blue Crop Recycling Ratio.

(c) Total Crop Recycling Ratio.

Figure 5.11: Annual Crop Recycling Ratio between maize crop evapotranspiration
and the volume of water redistributed as precipitation originated from the same crop
(evapotranspiration shed).
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(a) Green.

(b) Blue.

(c) Total.

Figure 5.12: Annual difference between wheat crop evapotranspiration and the
volume of water redistributed as precipitation originated from the same crop (evapo-
transpiration shed).
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(a) Green Crop Recycling Ratio.

(b) Blue Crop Recycling Ratio.

(c) Total Crop Recycling Ratio.

Figure 5.13: Annual Crop Recycling Ratio between wheat crop evapotranspiration
and the volume of water redistributed as precipitation originated from the same crop
(evapotranspiration shed).
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(a) Green.

(b) Blue.

(c) Total.

Figure 5.14: Annual difference between soy crop evapotranspiration and the volume
of water redistributed as precipitation originated from the same crop (evapotranspira-
tion shed).
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(a) Green Crop Recycling Ratio.

(b) Blue Crop Recycling Ratio.

(c) Total Crop Recycling Ratio.

Figure 5.15: Annual Crop Recycling Ratio between soy crop evapotranspiration
and the volume of water redistributed as precipitation originated from the same crop
(evapotranspiration shed).

57



Results

5.3 Land use classification of crop water sinks
The objective of this section is not only to determine where the water originating
from a specific crop re-precipitates, but also to identify the type of land on which it
falls. This analysis helps clarify how crops sustain themselves and other agricultural
systems, revealing the degree to which agricultural moisture is recycled within farming
landscapes. It also highlights which land types may experience increased precipitation
if crop evapotranspiration rises, or reduced precipitation and potential drought if it
declines.

To quantify these flows, the volumes of water precipitating over different land-use
types are aggregated and visualized with Sankey diagrams. These diagrams (Figures
5.16 to 5.18) display how crop-specific evapotranspired water is redistributed across
rainfed and irrigated agricultural areas, other terrestrial surfaces, and the ocean,
providing an intuitive overview of the path of agricultural water in the hydrological
cycle.

The Sankey diagrams reveal that most of the evapotranspired water from crops
re-precipitates over land. This percentage is even higher than the global average
moisture recycling ratio [31], since oceanic evapotranspiration is excluded here and
only cropland sources are considered.

However, due to the smoothing effect of atmospheric transport on evapotranspira-
tion described in Section 5.2, the redistributed volumes are dispersed over much larger
areas than their source regions. As a result, only a small fraction of the precipitation
returns to the same crop type. Among the crops analysed, soy shows the highest
level of self-recycling within its cultivation areas, although the overall percentage
remains low. Furthermore, blue evapotranspiration appears to be more effectively
recycled into agricultural land compared to green evapotranspiration. This pattern
could be further examined by analysing the relative distance and spatial distribution
of irrigated versus rainfed areas.

A more detailed assessment of the “other land” category will require consistent
land-use datasets to further disaggregate this class and better capture the diversity of
terrestrial sinks.
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source crop: maize ET GREEN

ET BLUE
maize rainfed

wheat rainfed

soy rainfed

maize irrigated

wheat irrigated

soy irrigated

ocean

other land

Figure 5.16: Sankey diagram showing the distribution of evapotranspired water
from maize cultivation across different land-use types.

Table 5.1: Tabulated values of evapotranspired water redistribution from maize to
land-use types. These values correspond to the flows illustrated in Figure 5.16.

Sink land use Volume [m3] Percentage [%]

ET Green

maize rainfed 1.36E+10 2.22
5.02

6.04

wheat rainfed 6.28E+09 1.03
soy rainfed 1.08E+10 1.77

maize irrigated 2.78E+09 0.46
1.02wheat irrigated 2.97E+09 0.49

soy irrigated 4.16E+08 0.07
ocean 1.95E+11 31.96

other land 3.79E+11 62.01

ET Blue

maize rainfed 1.32E+09 2.31
5.83

7.82

wheat rainfed 1.07E+09 1.87
soy rainfed 9.47E+08 1.65

maize irrigated 5.07E+08 0.89
1.99wheat irrigated 5.41E+08 0.94

soy irrigated 9.07E+07 0.16
ocean 1.28E+10 22.31

other land 4.00E+10 69.87
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source crop: wheat ET GREEN

ET BLUE
maize rainfed

wheat rainfed

soy rainfed

maize irrigated

wheat irrigated

soy irrigated

ocean

other land

Figure 5.17: Sankey diagram showing the distribution of evapotranspired water
from wheat cultivation across different land-use types.

Table 5.2: Tabulated values of evapotranspired water redistribution from wheat to
land-use types. These values correspond to the flows illustrated in Figure 5.17.

Sink land use Volume [m3] Percentage [%]

ET Green

maize rainfed 9.06E+09 1.16
4.43

5.96

wheat rainfed 1.96E+10 2.51
soy rainfed 5.88E+09 0.76

maize irrigated 3.03E+09 0.39
1.53wheat irrigated 8.50E+09 1.09

soy irrigated 3.93E+08 0.05
ocean 1.69E+11 21.70

other land 5.63E+11 72.34

ET Blue

maize rainfed 2.20E+09 1.44
4.20

8.49

wheat rainfed 2.59E+09 1.69
soy rainfed 1.63E+09 1.07

maize irrigated 1.11E+09 0.72
4.29wheat irrigated 5.36E+09 3.51

soy irrigated 8.49E+07 0.06
ocean 3.17E+10 20.73

other land 1.08E+11 70.79
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source crop: soy ET GREEN

ET BLUE
maize rainfed

wheat rainfed

soy rainfed

maize irrigated

wheat irrigated

soy irrigated

ocean

other land

Figure 5.18: Sankey diagram showing the distribution of evapotranspired water
from soy cultivation across different land-use types.

Table 5.3: Tabulated values of evapotranspired water redistribution from soy to
land-use types. These values correspond to the flows illustrated in Figure 5.18.

Sink land use Volume [m3] Percentage [%]

ET Green

maize rainfed 9.85E+09 2.10
6.61

7.18

wheat rainfed 4.40E+09 0.94
soy rainfed 1.68E+10 3.57

maize irrigated 8.94E+08 0.19
0.57wheat irrigated 1.44E+09 0.31

soy irrigated 3.21E+08 0.07
ocean 1.86E+11 39.51

other land 2.50E+11 53.33

ET Blue

maize rainfed 4.25E+08 3.02
7.06

8.52

wheat rainfed 1.54E+08 1.10
soy rainfed 4.13E+08 2.94

maize irrigated 9.46E+07 0.67
1.46wheat irrigated 5.96E+07 0.42

soy irrigated 5.20E+07 0.37
ocean 4.35E+09 30.90

other land 8.52E+09 60.58
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5.4 Consistency of total water volumes
An evaluation of the consistency between the waterCROP outputs and the crop-specific
evapotranspiration sheds was conducted. The waterCROP results are considered
reliable, as the model has already been validated through comparisons with the
literature [28]. Assuming a closed annual hydrological cycle, this assessment verifies
whether the shed-based calculations systematically under- or overestimate the total
evapotranspired volumes.

As shown in Table 5.4, the cumulative shed volumes are slightly higher than those
obtained directly from the waterCROP model. However, the discrepancy is very small,
less then 0.05%, indicating that the methodology preserves the overall water balance
with high fidelity.

Table 5.4: Total global water volumes across the different calculation steps, with
the relative difference between them expressed as a percentage. Results indicate
that the cumulative sheds slightly overestimate total volumes compared to the direct
waterCROP estimates, but the discrepancy is minimal, confirming overall conservation
of the water balance.

A B C A − B B − C A − C

Annual ET Annual ET
upscaled

Annual ET
shed

[m3] [m3] [m3] [%] [%] [%]
waterCROP gridboxsum RECON

5 arc-min 0.5 deg 0.5 deg

Maize
Green 6.12E+11 6.12E+11 6.12E+11 0 -0.0431 -0.0431
Blue 5.75E+10 5.75E+10 5.76E+10 1.33E-14 -0.0437 -0.0437
Total 6.70E+11 6.70E+11 6.70E+11 0 -0.0431 -0.0431

Wheat
Green 7.81E+11 7.81E+11 7.81E+11 -3.13E-14 -0.0438 -0.0438
Blue 1.53E+11 1.53E+11 1.53E+11 -4.00E-14 -0.0449 -0.0449
Total 2.80E+12 2.80E+12 2.80E+12 -1.74E-14 -0.0440 -0.0440

Soy
Green 4.69E+11 4.69E+11 4.70E+11 -6.50E-14 -0.0398 -0.0398
Blue 1.41E+10 1.41E+10 1.41E+10 0 -0.0357 -0.0357
Total 4.84E+11 4.84E+11 4.84E+11 -6.31E-14 -0.0397 -0.0397
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Chapter 6

Conclusions

Agriculture is deeply intertwined with the hydrological cycle, not only through direct
water inputs such as precipitation and irrigation, but also through the recycling of
water via crop evapotranspiration. Previous studies have shown that land-use changes
and vegetation feedbacks can significantly influence rainfall patterns in downwind
regions, but a crop-specific and globally consistent quantification of these processes
has remained limited. To provide a broader perspective on what happens to the green
water accounted for in the water footprint of crops, and how this water re-enters the
cycle and can be reused, this thesis developed and applied the waterCROP model
in combination with the RECON dataset. The aim was to explore how major crops
contribute to atmospheric moisture recycling and to map where this recycled water
subsequently precipitates.

The approach integrated global crop distribution datasets, actual evapotranspira-
tion (distinguishing between green and blue), and a Lagrangian moisture tracking
framework. This combination enabled the construction of crop-specific evapotranspira-
tion sheds, crop-specific water balances, and land-use classifications of water sinks on
an annual basis. By systematically linking source areas of crop evapotranspiration to
downwind precipitation, the method advances the understanding of how agricultural
water use contributes to the global water cycle.

Crop-specific evapotranspiration sheds were mapped for maize, wheat, and soybean.
These revealed clear geographical patterns shaped by topography and large-scale
atmospheric circulation, showing how agricultural water vapour released in one region
supports rainfall in distant areas. Notably, atmospheric transport smooths out the
intensity of evapotranspiration inputs, redistributing water more evenly across larger
regions. Cumulative precipitation fractions attributable to crop evapotranspiration
were also quantified. In some regions, a single crop contributes up to 5% of annual
precipitation (e.g., maize in Minnesota and in parts of China). Irrigation (Blue ET )
emerged as a major source of precipitation, with examples such as wheat irrigation
in Pakistan contributing more than 3% of annual rainfall locally. By summing
contributions from all crops, the overall importance of agriculture becomes even
clearer. Figures 6.1 show that 5% of contribution is frequently exceeded: with peaks
of 8.2% in North America, 5.8% in Argentina, 5.2% in Ukraine, 5.7% in Romania and
Moldova, 6% in Egypt, 5.7% in northern Kazakhstan, 7.8% in India and Pakistan,
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(a) Green ET contribution.

(b) Blue ET contribution.

(c) Total ET contribution.

Figure 6.1: Fraction of annual precipitation originated from global Maize, Wheat
and Soy cultivations.
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(a) Green Crop Recycling Ratio.

(b) Blue Crop Recycling Ratio.

(c) Total Crop Recycling Ratio.

Figure 6.2: Crop Recycling Ratio of maize, wheat and soy.
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and up to 9.8% in China.
Donor and recipient areas (Figure 6.2) were identified for each crop through an

annual water balance analysis. Rainfed croplands often act as recipients, benefitting
from irrigation-fed donor regions. For instance, cultivations in southern Canada
receives water recycled from cultivations in the USA, while intensive irrigation in
South Asia emerges as a net exporter of water vapour, not fully compensated, but
with a relevant contribution from crop recycling.
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Figure 6.3: Chord diagram showing the distribution of annual evapotranspired water
from maize, wheat and soy cultivation across different land-use types. 6.51% falls
again on croplands of these three crops, 65.74% on other land and 28.75% on oceans.

Land-use classification of sinks demonstrated that most crop evapotranspired water
precipitates back on land rather than the ocean. However, due to the atmospheric
smoothing effect, only a small fraction falls back on the same crop type, with soy
showing the highest, though still limited, self-recycling potential. Sankey diagrams
provided a visual representation of how agricultural water is redistributed across
rainfed cropland, irrigated cropland, other land types, and the ocean. By combining
these land-use classifications, a chord diagram was created (Figure 6.3), summarizing
all the Sankey diagrams presented in Section 5.3. This visualization highlights the
limited extent of water recycling within the same crop type and, more generally, the
small fraction of evapotranspired water that returns to cropland. Overall, only 6.51%
of water evapotranspired from maize, wheat, and soy precipitates again on croplands
of these three crops, while 65.74% falls on other land (including croplands of different
crops), and 28.75% ends up in the oceans.

These findings offer several important insights. First, they underscore that agri-
culture is not only a consumer of water but also a driver of regional and global
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precipitation dynamics. Second, they highlight how local changes in land use or irri-
gation practices can propagate far beyond the field scale, altering water availability in
distant regions. Finally, they demonstrate the need to integrate atmospheric moisture
recycling into assessments of agricultural sustainability and water management.

At the scientific level, the framework and datasets developed in this thesis provide
a basis for refining global water-use estimates by incorporating crop-specific feedbacks.
For policy and management, the identification of donor and recipient areas can inform
transboundary water governance and help evaluate the unintended consequences
of irrigation expansion or land-use change. More broadly, the results contribute
to ongoing discussions on food–water–climate interdependencies, emphasizing the
importance of considering atmospheric water flows in sustainable agriculture strategies.

In conclusion, this thesis advances the understanding of crop-specific moisture
recycling by quantifying how agricultural evapotranspiration contributes to rainfall
across the globe. By filling the gap between field-scale water use and atmospheric-scale
precipitation dynamics, it provides a novel perspective on the role of agriculture in
shaping the global water cycle, offering both conceptual insights and practical tools
for future research and water management.

6.1 Limitations
While the present work provides new insights into agriculture as a driver of regional
and global precipitation dynamics, several limitations need to be acknowledged.

First, the analysis relies on annual averages of evapotranspiration and precipitation.
As described in Section 4.1, evapotranspiration values were aggregated at the yearly
scale to ensure consistency with the RECON dataset. This choice smooths out seasonal
dynamics, which are particularly relevant for crops whose evapotranspiration peaks
may or may not coincide with rainfall seasons. As a result, water recycled from one
crop and precipitating onto another could fall outside its cultivation period. Capturing
seasonal differences would therefore be important to assess whether crop water use
reinforces or counteracts local rainfall regimes in downwind cultivated areas.

Finally, the propagation of uncertainties affects all stages of the analysis. Both the
derivation of crop-specific evapotranspiration sheds (Section 4.2) and the classifica-
tion of precipitation sinks by land-use type (Section 4.3) rely on multiple datasets
and modelling steps, each introducing potential errors. Systematically quantifying
and propagating these uncertainties remains a necessary step for strengthening the
robustness of the results.

6.2 Future developments
Building on the results of this thesis, several directions for future research emerge.

First, the classification of precipitation sinks could be refined by including a broader
set of land-use categories. In Section 4.3, the current analysis distinguishes between
irrigated and rainfed croplands of the three main crops analysed, other terrestrial
areas, and the ocean. Expanding this classification to additional land types would
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allow a more detailed assessment of how agricultural evapotranspiration supports
different ecosystems.

Second, it would be valuable to disentangle the contribution of local moisture
recycling from that of long-range atmospheric transport. Section 5.2 highlighted
the smoothing effect of atmospheric transport on evapotranspiration signals, but a
clearer separation between local and transported components would help to clarify
the relative importance of nearby versus remote feedbacks.

Third, future work should investigate not only the sinks of crop evapotranspiration,
but also the sources of precipitation sustaining agricultural areas. The Lagrangian
atmospheric tracking model adopted in this study already provides the necessary
data to map precipitation origins. This could be extended to build crop-specific
precipitation sheds, thereby identifying what water sources are feeding agriculture.

Finally, a broader integration with land-use change driven by dietary habits would
represent a significant research advancement. As introduced in the background,
deforestation, often linked to global dietary patterns and demand for specific crops,
plays a crucial role in shaping both water availability and atmospheric moisture flows.
Extending the present framework to consider how dietary choices, from single crops
to animal feed and protein sources, influence precipitation patterns would enable a
direct connection between food systems and hydro-climatic impacts.

Understanding how everyday human choices, such as dietary preferences, shape
precipitation patterns and trigger consequences thousands of kilometres away would
be crucial for informing both individuals and decision-makers.

68



Appendix A

waterCrop model

1 % Note: when you start using the script you should modify the path
2 % to the folder, both for input and for output data.
3

4 clear all
5 clc
6 close all
7

8 tic
9 %% Inputs

10

11 % simulation performed over the following years
12 period = [2008 2017];
13 % Folders to reach input files
14

15 % folder with the tif file which define climatic regions
16 cartella_climate = 'path/to/climatic/regions';
17

18 % folder with monthly global ET0
19 cartella_ET0 = 'path/to/ET0';
20

21 % folder with monthly global Precipitation
22 cartella_Pre = 'path/to/Pre';
23

24 % folder with global crop coefficients
25 cartella_kc = 'path/to/kc';
26

27 % folder with available water contents
28 cartella_awc = 'path/to/awc';
29

30

31 % Input climatic regions
32

33 cd(cartella_climate)
34 climatic_zone_file = 'thcli1.tif';
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35 climate = imread(climatic_zone_file);
36 % Defines climatic regions: each cell has a value between 1 and 10 which
37 % corresponds to a different climatic region
38

39 ROWS=[1,imfinfo(climatic_zone_file).Height];
40 COLS=[1,imfinfo(climatic_zone_file).Width];
41

42

43 % Coordinates input
44 % Latitude and longitude should be written in degrees. The code works both
45 % with two scalar values or with two vectors contatining the start and
46 % the end of the region.
47

48

49 % input
50

51 lat = [44.76 44.76]; % cell in Piedmont
52 lon = [7.51 7.51];
53

54 lat = [90 -89.99]; % WORLD
55 lon = [-180 179.99];
56

57 % grid resolution
58 lat_res = 180 / ROWS(2); % 5 arcmin in degrees
59 lon_res = 360 / COLS(2);
60

61 % transform the lat and lon into indeces
62 ind_row = floor(-(1/lat_res)*lat + ROWS(2)/2) +1
63 ind_col = floor((1/lon_res)*lon + COLS(2)/2) +1
64

65 %% Crop selection
66

67 raccolto=1:40;
68 for r = 3:3 %
69 r
70 switch raccolto(r)
71

72 %%%%%%%%%%%%%%%%%%----------------- First growing season
73

74 case 1 %Maize
75 cartella='path/to/grow_season_I';
76 cartella_risultati='Output';
77

78 mkdir(cartella_risultati)
79

80 area_irrigata='area_ir.mat';
81 area_rainfed='area_rf.mat';
82

83 data_semina='semina_rf.mat';
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84 data_semina_irr='semina_ir.mat';
85 lgp='lgp_rf.mat';
86 lgp_irr='lgp_ir.mat';
87

88 coeff_colturale='kc_maize';
89

90 rd_ini=0.3; % [m]
91 rd_max_rainfed=1.7; %fao 56 tab 22 pag 190
92 rd_max_irrigated=1;
93 depl_fraction=0.55;
94

95 case 2 %Rice
96 cartella='path/to/grow_season_I';
97 cartella_risultati='Output';
98

99 mkdir(cartella_risultati)
100

101 area_irrigata='area_ir.mat';
102 area_rainfed='area_rf.mat';
103

104 data_semina='semina_rf.mat';
105 data_semina_irr='semina_ir.mat';
106 lgp='lgp_rf.mat';
107 lgp_irr='lgp_ir.mat';
108

109 coeff_colturale='rice';
110

111 rd_ini=0.3;
112 rd_max_rainfed=1; %fao 56 tab 22 pag 190
113 rd_max_irrigated=0.5;
114 depl_fraction=0.2;
115

116 case 3 %Wheat
117 cartella='path/to/grow_season_I';
118 cartella_risultati='Output';
119

120 mkdir(cartella_risultati)
121

122 area_irrigata='area_ir.mat'; % [ha]
123 area_rainfed='area_rf.mat';
124

125 coeff_colturale='wheat'; % name of the Excel sheet
126

127 data_semina='semina_rf.mat';
128 data_semina_irr='semina_ir.mat';
129 lgp='lgp_rf.mat';
130 lgp_irr='lgp_ir.mat';
131

132 rd_ini=0.3; % [m]
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133 rd_max_rainfed=1.8; % [m] %Siebert and doll
134 rd_max_irrigated=1.5; % [m]
135 depl_fraction=0.55;
136

137 case 4 %Soy
138 cartella='path/to/grow_season_I';
139 cartella_risultati='Output';
140

141 mkdir(cartella_risultati)
142

143 coeff_colturale='kc_soybean';
144

145 area_irrigata='area_ir.mat';
146 area_rainfed='area_rf.mat';
147

148 data_semina='semina_rf.mat';
149 data_semina_irr='semina_ir.mat';
150 lgp='lgp_rf.mat';
151 lgp_irr='lgp_ir.mat';
152

153 rd_ini=0.3;
154 rd_max_rainfed=1.30; %Siebert and doll
155 rd_max_irrigated=0.60;
156 depl_fraction=0.50;
157

158 end
159

160

161 % Crop characteristics
162

163 cd(cartella)
164 % cultivated area with 5x5 minutes of arc resolution
165 % two rasters, area rainfed and irrigated area
166 area_irr=importdata(area_irrigata); % [ha]
167 area_rain=importdata(area_rainfed); % [ha]
168 area_tot=area_irr+area_rain; % [ha]
169

170 % sowing date with 5x5 minutes of arc resolution in a 360days
171 % calendar
172 day_plant_modified_0=importdata(data_semina);
173 day_plant_modified_irr_0=importdata(data_semina_irr);
174

175 % length of growing period of the crop
176 % calculated as data_raccolta-data_semina (harvest date - sowing date)
177 lgp_ini=importdata(lgp);
178 lgp_ini_irr=importdata(lgp_irr);
179

180 % crop coefficient and length of growing phases in percentages
181 % Hoekstra values, function of the 10 climatic regions
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182 cd(cartella_kc)
183 kc=xlsread('kc_global_NEWCROPS_def.xlsx',coeff_colturale,'C17:I26');
184

185 % soil water capacity
186 cd(cartella_awc)
187 awc_final=importdata('awc_mmalm.mat');
188

189 % Initialization
190

191 % initialization of matrices of final results
192 ETc_tot_rain=zeros(ROWS(2),COLS(2)); % Crop Evapotranspiration
193 ETc_tot_irr=zeros(ROWS(2),COLS(2));
194

195 % RAINFED: only precipitation
196 % Total Evapotranspiration is Green Evapotranspiration
197 % effective evapotranspiration: ETc*ks
198 ETa_tot=zeros(ROWS(2),COLS(2));
199 % precipitation totally infiltrated in the soil
200 Ptot_rf=zeros(ROWS(2),COLS(2));
201 Ptot_gr_seas_rf=zeros(ROWS(2),COLS(2));
202

203 % IRRIGATED
204 I_tot=zeros(ROWS(2),COLS(2));
205 ETgreen_tot=zeros(ROWS(2),COLS(2));
206 ETblue_tot=zeros(ROWS(2),COLS(2));
207 % coincide with ETa because k_s=1
208 CWU_tot=zeros(ROWS(2),COLS(2));
209 % precipitation totally infiltrated in the soil
210 Ptot_ir=zeros(ROWS(2),COLS(2));
211 Ptot_gr_seas_ir=zeros(ROWS(2),COLS(2));
212

213 ET0_tot_rf=zeros(ROWS(2),COLS(2));
214 ET0_tot_ir=zeros(ROWS(2),COLS(2));
215

216

217 %% Here starts the code that run for each year
218

219 for y=period(1,1):period(1,2) % run for each year
220 yy = y-period(1,1)+1; % index which goes from 1 to number of years
221

222 % is it a leap year?
223 if mod(y,4) == 0
224 ndays = 366; % Leap year
225 days_in_months365 = [31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31];
226 else
227 ndays = 365; % Non-leap year
228 days_in_months365 = [31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31];
229 end
230
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231

232 % Input global daily ET0 and Precipitation
233

234 % Input raster of Global Daily Mean ET0.
235 % Spatial resolution: 5 minutes of arc
236 cd(cartella_ET0)
237 fileET0 = ['dailyET0_' num2str(y) '_WC.nc'];
238 ET0_orig = ncread(fileET0, 'pev');
239 ET0 = pagetranspose(ET0_orig); % to have the array with rows,cols,days
240 ET0 = ET0*(-1000)*24; % from m/h to mm/day
241

242 ET0(ET0 < 0) = NaN;
243

244 % Input raster of Global Cumulative Daily Precipitation [mm].
245 % Spatial resolution: 5 minutes of arc
246 cd(cartella_Pre)
247 filePre = ['dailyPre_' num2str(y) '_WC.nc'];
248 Pre_orig = ncread(filePre, 'tp');
249 Pre = pagetranspose(Pre_orig);
250 Pre = Pre*1000*24; % from m to mm
251

252 % Conversion from 360days calendar to 365days
253 % (or 366 for leap years) for SOWING DATES
254

255 day_plant_modified = day_plant_modified_0;
256 day_plant_modified_irr = day_plant_modified_irr_0;
257

258 % Define the number of days in each month for a year
259 days_in_months360 = 30*ones(1,12);
260

261 % Create a cumulative sum of days in the months
262 cum_days365 = cumsum(days_in_months365);
263 cum_days360 = cumsum(days_in_months360);
264

265 % Initialize an array to store converted days (same size as dates_360)
266 dates_365 = zeros(ROWS(2), COLS(2));
267 dates_365_irr = zeros(ROWS(2), COLS(2));
268

269 for i = 1:ROWS(2)
270 for j = 1:COLS(2)
271 day_360 = day_plant_modified(i, j);
272 day_360_irr = day_plant_modified_irr(i, j);
273

274 % Find the month for the given day
275 mon = find(cum_days365 >= day_360, 1);
276 mon_irr = find(cum_days365 >= day_360_irr, 1);
277

278 if mon == 1
279 day_of_year = day_360; % If it's the first month
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280 else
281 day_of_year = day_360 +
282 cum_days365(mon-1) - cum_days360(mon-1);
283 end
284

285 if mon_irr == 1
286 day_of_year_irr = day_360_irr; % If it's the first month
287 else
288 day_of_year_irr = day_360_irr +
289 cum_days365(mon_irr-1) - cum_days360(mon_irr-1);
290 end
291

292 % Store the converted day
293 dates_365(i, j) = day_of_year;
294 dates_365_irr(i, j) = day_of_year_irr;
295 end
296 end
297

298 day_plant_modified = dates_365;
299 day_plant_modified_irr = dates_365_irr;
300

301 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
302

303 %% Calcultations start here
304

305

306 for m = ind_row(1):1:ind_row(2) % read along the rows
307 for n = ind_col(1):1:ind_col(2) % read along the columns
308

309 if area_tot(m,n)>0 && climate(m,n)>0 &&
310 awc_final(m,n) && ET0(m,n,1)>=0 && Pre(m,n,1)>=0
311

312 ET0_daily=squeeze(ET0(m,n,:));
313 Pre_tot_daily=squeeze(Pre(m,n,:));
314

315

316 %% build kc and lgp based on the climatic zone
317

318 sel_climate = climate(m,n);
319

320 if sel_climate ~= 0
321

322 kc_ini=kc(sel_climate,1);
323 kc_mid=kc(sel_climate,2);
324 kc_end=kc(sel_climate,3);
325

326 lgp_2=round(lgp_ini(m,n).*kc(sel_climate,5));
327 lgp_3=round(lgp_ini(m,n).*kc(sel_climate,6));
328 lgp_4=round(lgp_ini(m,n).*kc(sel_climate,7));
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329 lgp_1=lgp_ini(m,n)-lgp_2-lgp_3-lgp_4;
330

331

332 lgp_2_irr=round(lgp_ini_irr(m,n).*kc(sel_climate,5));
333 lgp_3_irr=round(lgp_ini_irr(m,n).*kc(sel_climate,6));
334 lgp_4_irr=round(lgp_ini_irr(m,n).*kc(sel_climate,7));
335 lgp_1_irr=lgp_ini_irr(m,n)-lgp_2_irr-lgp_3_irr-lgp_4_irr;
336

337 else
338 kc_ini=0;
339 kc_mid=0;
340 kc_end=0;
341 lgp_1=0;
342 lgp_2=0;
343 lgp_3=0;
344 lgp_4=0;
345 lgp_1_irr=0;
346 lgp_2_irr=0;
347 lgp_3_irr=0;
348 lgp_4_irr=0;
349 end
350

351 %% build kc in the rainfed and in the irrigated case
352 lgp=lgp_1+lgp_2+lgp_3+lgp_4;
353 lgp_irr=lgp_1_irr+lgp_2_irr+lgp_3_irr+lgp_4_irr;
354 kc_crop=zeros(lgp,1);
355 kc_crop_irr=zeros(lgp_irr,1);
356

357 % Rainfed
358 kc_crop(1:lgp_1)=kc_ini;
359 for i=lgp_1+1:lgp_1+lgp_2
360 kc_crop(i)=(kc_mid-kc_ini)/lgp_2*(i-lgp_1)+kc_ini;
361 end
362 kc_crop(lgp_2+lgp_1+1:lgp_2+lgp_1+lgp_3)=kc_mid;
363 for i=lgp_2+lgp_1+1+lgp_3:lgp
364 kc_crop(i)=(kc_end-kc_mid)/lgp_4*(i-lgp_3-lgp_2-lgp_1)+kc_mid;
365 end
366

367

368 % Irrigated
369 kc_crop_irr(1:lgp_1_irr)=kc_ini;
370 for i=lgp_1_irr+1:lgp_1_irr+lgp_2_irr
371 kc_crop_irr(i)=(kc_mid-kc_ini)/lgp_2_irr*(i-lgp_1_irr)+kc_ini;
372 end
373 kc_crop_irr(lgp_2_irr+lgp_1_irr+1:lgp_2_irr+lgp_1_irr+lgp_3_irr)=kc_mid;
374 for i=lgp_2_irr+lgp_1_irr+1+lgp_3_irr:lgp_irr
375 kc_crop_irr(i)=(kc_end-kc_mid)/lgp_4_irr*
376 (i-lgp_3_irr-lgp_2_irr-lgp_1_irr)+kc_mid;
377 end
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378

379 % function to calculate the temporal variability of the crop rooting depth
380 % values from FAO 56 tabella 22, pag 163. Two values are given.
381

382

383 % in the RAINFED scenario the maximum depth was selected
384 rd=zeros(lgp,1);
385 rd(1)=rd_ini;
386 for i=2:lgp_1+lgp_2
387 rd(i)=rd_ini+(rd_max_rainfed-rd_ini)/(lgp_1+lgp_2)*i;
388 end
389 rd(lgp_1+lgp_2+1:lgp)=rd_max_rainfed;
390

391 % in the IRRIGATED scenario the minimum depth was selected
392 rd_irrigated=zeros(lgp_irr,1);
393 rd_irrigated(1)=rd_ini;
394 for i=2:lgp_1_irr+lgp_2_irr
395 rd_irrigated(i)=rd_ini+(rd_max_irrigated-rd_ini)./
396 (lgp_1_irr+lgp_2_irr)*i;
397 end
398 rd_irrigated(lgp_1_irr+lgp_2_irr+1:lgp_irr)=rd_max_irrigated;
399

400 % calculate TAWC in the RAINFED scenario
401 tawc=zeros(lgp,1);
402 for i=1:lgp
403 % taw [mm(water)/m(soildepth)]
404 tawc(i,1)=awc_final(m,n).*rd(i,1);
405 end
406

407 % calculate TAWC in the IRRIGATED scenario
408 tawc_irrigated=zeros(lgp_irr,1);
409 for i=1:lgp_irr
410 %[mm(water)/m(soildepth)]
411 tawc_irrigated(i,1)=awc_final(m,n).*rd_irrigated(i,1);
412 end
413

414 % definition of the deplietion fraction vector
415 % values from FAO 56
416 % this parameter was considered constant throughtout the whole growing
417 % period
418

419 % Rainfed
420 f=zeros(lgp,1);
421 f(1:lgp)=depl_fraction;
422

423 % Irrigated
424 f_irr=zeros(lgp_irr,1);
425 f_irr(1:lgp_irr)=depl_fraction;
426
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427 % estiamtion of RAWC in the RAINFED scenario
428 % rawc=tawc*fraction
429 rawc=zeros(lgp,1);
430 for t=1:lgp
431 rawc(t,1)=tawc(t,1).*f(t);
432 end
433

434 % estiamtion of RAWC in the IRRIGATED scenario
435 rawc_irrigated=zeros(lgp_irr,1);
436 for t=1:lgp_irr
437 rawc_irrigated(t,1)=tawc_irrigated(t,1).*f_irr(t);
438 end
439

440

441 % initialization of hydrological balance matrices
442 deficit_start=zeros(lgp,1);
443 deficit_start_i=zeros(lgp_irr,1); % I balance
444 deficit_st_irrigated = zeros(lgp_irr,1); % II balance
445

446 deficit_end=zeros(lgp,1);
447 deficit_end_i=zeros(lgp_irr,1); % I balance
448 deficit_end_irrigated = zeros(lgp_irr,1); % II balance
449

450 surplus=zeros(lgp,1);
451 surplus_i=zeros(lgp_irr,1);
452

453 ETc_daily=zeros(lgp,1);
454 ETc_daily_irr=zeros(lgp_irr,1);
455

456 % rainfed
457 ETa_daily=zeros(lgp,1);
458

459 % irrigated
460 ETgreen_daily=zeros(lgp_irr,1);
461 CWU_daily=zeros(lgp_irr,1);
462 ETblue_daily=zeros(lgp_irr,1);
463

464 ks_rain=zeros(lgp,1);
465 ks=zeros(lgp_irr,1);
466 ks_irrigated = zeros(lgp_irr,1);
467

468 Pre_eff_daily=zeros(lgp,1);
469 Pre_eff_daily_i=zeros(lgp_irr,1);
470 Pre_tot_daily_growing_season = zeros(lgp,1);
471 Pre_tot_daily_growing_season_IR = zeros(lgp_irr,1);
472

473 I=zeros(lgp_irr,1);
474 % Initialization of vectors for daily ET0 during the crop growing phases.
475 ET0_rf=zeros(lgp,1);
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476 ET0_ir=zeros(lgp_irr,1);
477

478 ETgreen_year=zeros(ndays,1);
479 ETblue_year=zeros(ndays,1);
480

481 %% Hydrological balances
482

483 % RAINFED
484 % For each cell estimation of daily ETc, ETa, ETgreen, CWU and ETblue.
485 % Sum each day to have the total corresponding to the whole growing period.
486 if area_rain(m,n)>0 && day_plant_modified(m,n)>0
487 day_start=day_plant_modified(m,n);
488 day_rain=day_plant_modified(m,n)+1; % 2nd day of the gs
489

490 ETc_daily(1,1)=kc_crop(1,1)*ET0_daily(day_start,1);
491

492 % HYDROLOGICAL BALANCE to compute ks
493 deficit_start(1,1)=0;
494 ETa_daily(1,1)=ETc_daily(1,1);
495 deficit_end(1,1)=ETa_daily(1,1)+deficit_start(1,1);
496 ks_rain(1,1)=1;
497 Pre_eff_daily(1,1)=Pre_tot_daily(day_start,1);
498 Pre_tot_daily_growing_season(1,1)= Pre_tot_daily(day_start,1);
499 surplus(1,1)=0;
500 ET0_rf(1,1)=ET0_daily(1,1);
501 % first balance rainfed
502

503 for i=2:lgp
504 ET0_rf(i,1)=ET0_daily(day_rain,1);
505 ETc_daily(i,1)=kc_crop(i,1).*ET0_daily(day_rain,1);
506 Pre_tot_daily_growing_season(i,1)= Pre_tot_daily(day_rain,1);
507

508

509 if deficit_end(i-1,1)-Pre_tot_daily(day_rain,1)<0
510 deficit_start(i,1)=0;
511 surplus(i,1)=Pre_tot_daily(day_rain,1)-deficit_end(i-1,1);
512 % surplus is runoff, what does not infiltrate
513 else
514 deficit_start(i,1)=deficit_end(i-1,1)-Pre_tot_daily(day_rain,1);
515 surplus(i,1)=0;
516 end
517

518 if Pre_tot_daily(day_rain,1)>0
519 Pre_eff_daily(i,1)=Pre_tot_daily(day_rain,1)-surplus(i,1);
520 else
521 Pre_eff_daily(i,1)=0;
522 end
523

524
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525 if deficit_start(i,1)>=rawc(i,1)
526 ks_rain(i,1)=(tawc(i,1)-deficit_start(i,1))/
527 (tawc(i,1)-rawc(i,1));
528 else ks_rain(i,1)=1;
529 end
530

531 if ks_rain(i,1)>1
532 ks_rain(i,1)=1;
533 end
534

535 if ks_rain(i,1)<0
536 ks_rain(i,1)=0;
537 end
538

539 ETa_daily(i,1)=ks_rain(i,1)*ETc_daily(i,1);
540 deficit_end(i,1)=deficit_start(i,1)+ETa_daily(i,1);
541

542 day_rain=day_rain+1;
543

544 if day_rain>=ndays % last day of the year
545 day_rain=1; % first day of the year
546 end
547

548

549 end
550

551

552 ETa_tot(m,n) = ETa_tot(m,n) + sum(ETa_daily,'omitnan');
553

554 ETc_tot_rain(m,n) = ETc_tot_rain(m,n) + sum(ETc_daily,'omitnan');
555 ET0_tot_rf(m,n) = ET0_tot_rf(m,n) + sum(ET0_rf,'omitnan');
556 Ptot_rf(m,n) = Ptot_rf(m,n) + sum(Pre_eff_daily,'omitnan');
557 Ptot_gr_seas_rf(m,n) = Ptot_gr_seas_rf(m,n) +
558 sum(Pre_tot_daily_growing_season,'omitnan');
559

560

561 end
562

563

564 %% Cell Insights Plots RAINFED
565

566 if isempty(lat) == 0 && isempty(lon) == 0
567

568 % coefficients
569 figure (1)
570 plot(1:1:lgp,kc_crop,"LineWidth",2)
571 hold on
572 plot(1:1:lgp,ks_rain,"LineWidth",2)
573 grid on
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574 xlabel({'Growing period [days]', },'Interpreter','latex')
575 xlim([1 lgp])
576 ylabel('[-]','Interpreter','latex')
577 ylim([0 1.2])
578 title(['(a) Coefficients RAINFED - ','Lat: ',num2str(lat(1)),
579 ' Lon: ',num2str(lon(1)), ' - Year ', num2str(y)],
580 'Interpreter','latex')
581 legend('Crop Coefficient $k_c$','Stress Coefficient $k_s$',
582 'Location','sw','Interpreter','latex')
583 set(gcf, 'Units', 'centimeters', 'Position', [1 1 16 10]);
584 ax = gca;
585 ax.TickLabelInterpreter = 'latex';
586 print(gcf, 'coefficients_rf.svg', '-dsvg', '-r300');
587 hold off
588

589 % rooting depth
590 figure (2)
591 plot(1:1:lgp,-rd*10^3,'Color','#7E2F8E',"LineWidth",2,
592 'DisplayName','Rooting depth ($Z_r$)')
593 hold on
594 plot(1:1:lgp,-rawc,'Color','#EE510E',"LineWidth",2,
595 'DisplayName','Readily Available soil Water ($RAW$ or $\theta*$)')
596 plot(1:1:lgp,-tawc,'Color','#A2142F',"LineWidth",2,
597 'DisplayName','Total Available soil Water ($TAW$ or $\theta_{WP}$)')
598 grid on
599 xlabel('Growing period [days]','Interpreter','latex')
600 xlim([1 lgp])
601 ylabel('[mm]','Interpreter','latex')
602 ylim([-2000 0])
603 title(['(c) Rooting depth RAINFED - ','Lat: ',num2str(lat(1)),
604 ' Lon: ',num2str(lon(1)), ' - Year ', num2str(y)],
605 'Interpreter','latex')
606 legend('Location','southoutside','Interpreter','latex')
607 set(gcf, 'Units', 'centimeters', 'Position', [1 1 16 10]);
608 ax = gca;
609 ax.TickLabelInterpreter = 'latex';
610 print(gcf, 'root_rf.svg', '-dsvg', '-r300');
611 hold off
612

613 % deficit
614 figure (3)
615 plot(1:1:lgp,-deficit_start,'Color','#EDB120',"LineWidth",2,
616 'DisplayName','Depletion at the beginning of the day')
617 hold on
618 plot(1:1:lgp,-deficit_end,'Color','#006B08',"LineWidth",2,
619 'DisplayName','Depletion at the end of the day')
620 plot(1:1:lgp,-rawc,'Color','#EE510E',"LineWidth",2,
621 'DisplayName','Readily Available soil Water ($RAW$ or $\theta*$)')
622 plot(1:1:lgp,-tawc,'Color','#A2142F',"LineWidth",2,
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623 'DisplayName','Total Available soil Water ($TAW$ or $\theta_{WP}$)')
624 grid on
625 xlabel('Growing period [days]','Interpreter','latex')
626 xlim([1 lgp])
627 ylabel('[mm]','Interpreter','latex')
628 ylim([-300 0])
629 title(['(e) Hydrological balance in the soil RAINFED - ',
630 'Lat: ',num2str(lat(1)), ' Lon: ',num2str(lon(1)), ' - Year ',
631 num2str(y)],'Interpreter','latex')
632 legend('Location','southoutside','Interpreter','latex')
633 set(gcf, 'Units', 'centimeters', 'Position', [1 1 16 10]);
634 ax = gca;
635 ax.TickLabelInterpreter = 'latex';
636 print(gcf, 'depletion_rf.svg', '-dsvg', '-r300');
637 hold off
638

639 figure (4)
640 plot(1:1:lgp,Pre_eff_daily,'Color', '#006B08',"LineWidth",2,
641 'DisplayName','Effective Daily Precipitation $P$') % dark green
642 hold on
643 plot(1:1:lgp,ET0_rf, 'Color','#A2142F',"LineWidth",2,
644 'DisplayName','Potential Evapotranspiration $ET_0$')
645 plot(1:1:lgp,ETc_daily, 'Color','#EE510E',"LineWidth",2,
646 'DisplayName','Crop Evapotranspiration $ET_c$')
647 plot(1:1:lgp,ETa_daily, 'Color','#EDB120',"LineWidth",2,
648 'DisplayName','Actual Evapotranspiration $ET_a$')
649 fill([1:1:lgp lgp:-1:1],[(ETa_daily); zeros(length(ETa_daily),1)],
650 [0.4660 0.6740 0.1880],'FaceAlpha',0.3,
651 'EdgeColor',"none",'DisplayName','$ET_{green}$')
652 grid on
653 xlabel('Growing period [days]','Interpreter','latex')
654 xlim([1 lgp])
655 ylabel('[mm/day]','Interpreter','latex')
656 ylim([0 9])
657 title(['(g) Hydrological balance in the atmosphere RAINFED - ',
658 'Lat: ',num2str(lat(1)),'Lon: ',num2str(lon(1)), ' - Year ',
659 num2str(y)],'Interpreter','latex')
660 legend('Location','nw','Interpreter','latex')
661 set(gcf, 'Units', 'centimeters', 'Position', [1 1 16 10]);
662 ax = gca;
663 ax.TickLabelInterpreter = 'latex';
664 print(gcf, 'balance_rf.svg', '-dsvg', '-r300');
665 hold off
666

667 end
668

669 %IRRIGATED
670

671 if area_irr (m,n)>0 && day_plant_modified_irr(m,n)>0
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672

673 day_start_irr=day_plant_modified_irr(m,n);
674 day_irr=day_plant_modified_irr(m,n)+1;
675

676 deficit_start_i(1,1)=0;
677 ks(1,1)=1;
678 ks_irrigated(1,1)=1;
679 ETc_daily_irr(1,1)=kc_crop_irr(1,1).*ET0_daily(day_start_irr,1);
680

681 Pre_eff_daily_i(1,1)=Pre_tot_daily(day_start_irr,1);
682 Pre_tot_daily_growing_season_IR(1,1)=Pre_tot_daily(day_start_irr,1);
683

684 surplus_i(1,1)=0;
685 CWU_daily(1,1)=ETc_daily_irr(1,1); % no irrigation on the first day
686 ETgreen_daily(1,1)=CWU_daily(1,1); % only green ET
687 deficit_end_i(1,1)=CWU_daily(1,1)+deficit_start_i(1,1);
688 ETblue_daily(1,1)=0;
689 I(1,1) = 0;
690 deficit_st_irrigated(1,1) = 0;
691 deficit_end_irrigated(1,1) =
692 deficit_st_irrigated(1,1)+CWU_daily(1,1)-I(1,1);
693

694 ET0_ir(1,1)=ET0_daily(day_start_irr,1);
695

696 for i=2:lgp_irr
697 ET0_ir(i,1)=ET0_daily(day_irr,1);
698 ETc_daily_irr(i,1)=kc_crop_irr(i,1).*ET0_daily(day_irr,1);
699 Pre_tot_daily_growing_season_IR(i,1)= Pre_tot_daily(day_irr,1);
700

701 if deficit_end_i(i-1,1)-Pre_tot_daily(day_irr,1)<0
702 deficit_start_i(i,1)=0;
703 surplus_i(i,1)=Pre_tot_daily(day_irr,1)-
704 deficit_end_i(i-1,1);
705 Pre_eff_daily_i(i,1)=deficit_end_i(i-1,1);
706 else
707 deficit_start_i(i,1)=deficit_end_i(i-1,1)-
708 Pre_tot_daily(day_irr,1);
709 surplus_i(i,1)=0;
710 Pre_eff_daily_i(i,1)=Pre_tot_daily(day_irr,1);
711 end
712

713 if deficit_start_i(i,1)>=rawc_irrigated(i,1)
714 % water stress, so irrigation
715 ks(i,1)=(tawc_irrigated(i,1)-deficit_start_i(i,1))/
716 (tawc_irrigated(i,1)-rawc_irrigated(i,1));
717

718 else
719 ks(i,1)=1;
720 end
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721

722

723 if ks(i,1)>1
724 ks(i,1)=1;
725 end
726

727 if ks(i,1)<0
728 ks(i,1)=0;
729 end
730 ETgreen_daily(i,1)=ks(i,1)*ETc_daily_irr(i,1);
731 deficit_end_i(i,1)=deficit_start_i(i,1)+ETgreen_daily(i,1);
732

733 % balance with irrigation
734 deficit_st_irrigated(i,1)=deficit_end_irrigated(i-1,1)
735 -Pre_tot_daily(day_irr,1);
736 if deficit_st_irrigated(i,1)<0
737 deficit_st_irrigated(i,1)=0;
738 end
739

740 if deficit_st_irrigated(i,1)>=rawc_irrigated(i,1)
741

742

743 %--------------------------VERSIONE 1.1--------------------------------
744 % irrigation to have ks=1
745 I(i,1)=deficit_st_irrigated(i,1)-rawc_irrigated(i,1);
746 %----------------------------------------------------------------------
747

748 % ks_irrigated(i,1) = 1;
749 deficit_st_irrigated(i,1) = deficit_st_irrigated(i,1) - I(i,1);
750 ks_irrigated(i,1)=(tawc_irrigated(i,1)-deficit_st_irrigated(i,1))/
751 (tawc_irrigated(i,1)-rawc_irrigated(i,1));
752

753 else
754 I(i,1)=0;
755 ks_irrigated(i,1)=(tawc_irrigated(i,1)-deficit_st_irrigated(i,1))/
756 (tawc_irrigated(i,1)-rawc_irrigated(i,1));
757 end
758

759 if ks_irrigated(i,1)>1
760 ks_irrigated(i,1)=1;
761 end
762

763 if ks_irrigated(i,1)<0
764 ks_irrigated(i,1)=0;
765 end
766

767 %--------------------------VERSIONE 1.1-------------------------------
768 CWU_daily(i,1)=ks_irrigated(i,1)*ETc_daily_irr(i,1);
769 deficit_end_irrigated(i,1)=deficit_st_irrigated(i,1)+CWU_daily(i,1);
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770 ETblue_daily(i,1)=CWU_daily(i,1)-ETgreen_daily(i,1);
771 %---------------------------------------------------------------------
772

773

774 day_irr=day_irr+1;
775

776 if day_irr>=ndays % last day of the year
777 day_irr=1; % first day of the year
778 end
779 end
780

781

782 ETgreen_tot(m,n) = ETgreen_tot(m,n) + sum(ETgreen_daily,'omitnan');
783 CWU_tot(m,n) = CWU_tot(m,n) + sum(CWU_daily,'omitnan');
784 ETblue_tot(m,n) = ETblue_tot(m,n) + sum(ETblue_daily,'omitnan');
785 I_tot(m,n) = I_tot(m,n) + sum(I,'omitnan');
786 ETc_tot_irr(m,n) = ETc_tot_irr(m,n) + sum(ETc_daily_irr,'omitnan');
787 ET0_tot_ir(m,n) = ET0_tot_ir(m,n) + sum(ET0_ir,'omitnan');
788 Ptot_ir(m,n) = Ptot_ir(m,n) + sum(Pre_eff_daily_i,'omitnan');
789 Ptot_gr_seas_ir(m,n) = Ptot_gr_seas_ir(m,n) +
790 sum(Pre_tot_daily_growing_season_IR,'omitnan');
791

792

793

794 end
795

796

797 %% Cell Insights Plots IRRIGATED
798

799 if isempty(lat) == 0 && isempty(lon) == 0
800

801 % coefficients
802 figure (5)
803 plot(1:1:lgp_irr,kc_crop_irr,"LineWidth",2)
804 hold on
805 plot(1:1:lgp_irr,ks_irrigated,"LineWidth",2)
806 plot(1:1:lgp_irr,ks,"LineWidth",2)
807 grid on
808 xlabel('Growing period [days]','Interpreter','latex')
809 xlim([1 lgp_irr])
810 ylabel('[-]','Interpreter','latex')
811 ylim([0 1.2])
812 title(['(b) Coefficients IRRIGATED - ','Lat: ',num2str(lat(1)),
813 'Lon: ',num2str(lon(1)), ' - Year ',
814 num2str(y)],'Interpreter','latex')
815 legend('Crop Coefficient $k_c$','Stress Coefficient $k_s$',
816 'Stress Coefficient $k_s$ without Irrigation',
817 'Location','sw','Interpreter','latex')
818 set(gcf, 'Units', 'centimeters', 'Position', [1 1 16 10]);
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819 ax = gca;
820 ax.TickLabelInterpreter = 'latex';
821 print(gcf, 'coefficients_ir.svg', '-dsvg', '-r300');
822 hold off
823

824 % rooting depth
825 figure (6)
826 plot(1:1:lgp_irr,-rd_irrigated*10^3,'Color','#7E2F8E',"LineWidth",2,
827 'DisplayName','Rooting depth')
828 hold on
829 plot(1:1:lgp_irr,-rawc_irrigated,'Color','#EE510E',"LineWidth",2,
830 'DisplayName','Readily Available soil Water ($RAW$ or $\theta*$)')
831 plot(1:1:lgp_irr,-tawc_irrigated,'Color','#A2142F',"LineWidth",2,
832 'DisplayName','Total Available soil Water ($TAW$ or $\theta_{WP}$)')
833 grid on
834 xlabel('Growing period [days]','Interpreter','latex')
835 xlim([1 lgp_irr])
836 ylabel('[mm]','Interpreter','latex')
837 ylim([-2000 0])
838 title(['(d) Rooting depth IRRIGATED - ','Lat: ',num2str(lat(1)),'
839 Lon: ',num2str(lon(1)), ' - Year ',
840 num2str(y)],'Interpreter','latex')
841 legend('Location','southoutside','Interpreter','latex')
842 set(gcf, 'Units', 'centimeters', 'Position', [1 1 16 10]);
843 ax = gca;
844 ax.TickLabelInterpreter = 'latex';
845 print(gcf, 'root_ir.svg', '-dsvg', '-r300');
846 hold off
847

848 % deficit
849 figure (7)
850 plot(1:1:lgp_irr,-deficit_st_irrigated,'Color','#EDB120',"LineWidth",2,
851 'DisplayName','Depletion at the beginning of the day')
852 hold on
853 plot(1:1:lgp_irr,-deficit_end_irrigated,'Color','#006B08',"LineWidth",2,
854 'DisplayName','Depletion at the end of the day')
855 plot(1:1:lgp_irr,-rawc_irrigated,'Color','#EE510E',"LineWidth",2,
856 'DisplayName','Readily Available soil Water ($RAW$ or $\theta*$)')
857 plot(1:1:lgp_irr,-tawc_irrigated,'Color','#A2142F',"LineWidth",2,
858 'DisplayName','Total Available soil Water ($TAW$ or $\theta_{WP}$)')
859 grid on
860 xlabel('Growing period [days]','Interpreter','latex')
861 xlim([1 lgp_irr])
862 ylabel('[mm]','Interpreter','latex')
863 ylim([-300 0])
864 %title(['(f) Hydrological balance in the soil IRRIGATED - ',
865 'Lat: ',num2str(lat(1)),' Lon: ',num2str(lon(1)), ' - Year ',
866 num2str(y)],'Interpreter','latex')
867 legend('Location','southoutside','Interpreter','latex')
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868 set(gcf, 'Units', 'centimeters', 'Position', [1 1 16 10]);
869 ax = gca;
870 ax.TickLabelInterpreter = 'latex';
871 print(gcf, 'depletion_ir.svg', '-dsvg', '-r300');
872 hold off
873

874 figure (8)
875 plot(1:1:lgp_irr,Pre_eff_daily_i,'color','#006B08',"LineWidth",2,
876 'DisplayName','Effective Daily Precipitation $P$')
877 hold on
878 plot(1:1:lgp_irr,ET0_ir,'color','#A2142F',"LineWidth",2,
879 'DisplayName','Potential Evapotranspiration $ET_0$')
880 plot(1:1:lgp_irr,ETc_daily_irr,'color','#EDB120',"LineWidth",2,'
881 DisplayName','Crop Evapotranspiration $ET_c (= ET_a)$')
882 fill([1:1:lgp_irr lgp_irr:-1:1],[(ETgreen_daily+ETblue_daily);
883 flip(ETblue_daily)], [0.4660 0.6740 0.1880],
884 'FaceAlpha',0.3,'EdgeColor',"none",
885 'DisplayName','$ET_{green}$')
886 fill([1:1:lgp_irr lgp_irr:-1:1],[ETblue_daily;
887 zeros(length(ETblue_daily),1)], [0 0.4470 0.7410],
888 'FaceAlpha',0.3,'EdgeColor',"none",
889 'DisplayName','$ET_{blue}$')
890 plot(1:1:lgp_irr,I,'color','#2D95DA',"LineWidth",2,
891 'DisplayName','Irrigation $I$')
892 grid on
893 xlabel('Growing period [days]','Interpreter','latex')
894 xlim([1 lgp_irr])
895 ylabel('[mm/day]','Interpreter','latex')
896 ylim([0 9])
897 %title(['(h) Hydrological balance in the atmosphere IRRIGATED - ',
898 'Lat: ',num2str(lat(1)),'Lon: ',num2str(lon(1)), ' - Year ',
899 num2str(y)],'Interpreter','latex')
900 legend('Location','nw','Interpreter','latex')
901 set(gcf, 'Units', 'centimeters', 'Position', [1 1 16 10]);
902 ax = gca;
903 ax.TickLabelInterpreter = 'latex';
904 print(gcf, 'balance_ir.svg', '-dsvg', '-r300');
905 hold off
906

907 end
908 %% Annual Plot
909

910 if isempty(lat) == 0 && isempty(lon) == 0
911

912 % beginning of the hydrological year
913 if m<1080
914 % north hemisphere --> 1st of October (274th day of the year)
915 water_year = datetime(y, 10, 1);
916
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917 else
918 % south hemisphere --> 1st of July (182th day of the year)
919 water_year = datetime(y, 7, 1);
920 end
921

922 dates = [(water_year + caldays(0:ndays-1)) (water_year +
923 caldays(0:ndays-1))];
924

925 time_rain = day_plant_modified(m,n):1:(day_plant_modified(m,n)+lgp-1);
926 date_rain = dates(time_rain + ndays - day(water_year,'dayofyear'));
927 time_irr = day_plant_modified_irr(m,n):1:
928 (day_plant_modified_irr(m,n)+lgp_irr-1);
929 date_irr = dates(time_irr + ndays - day(water_year,'dayofyear'));
930

931

932 figure (9)
933

934 % if the growing period reach the end of the water year, it starts
935 % again from the beginning
936

937 % rainfed
938 if ndays - find(dates==date_rain(1),1) < lgp
939

940 % Split the dates and data at the end of the year
941 split_index = find(date_rain == dates(end));
942

943 % Data for the end of the year
944 date_rain_end = date_rain(1:split_index);
945 Pre_eff_daily_end = Pre_eff_daily(1:split_index);
946 ET0_rf_end = ET0_rf(1:split_index);
947 ETc_daily_end = ETc_daily(1:split_index);
948 ETa_daily_end = ETa_daily(1:split_index);
949

950 % Data for the beginning of the year
951 date_rain_start = date_rain(split_index+1:end);
952 Pre_eff_daily_start = Pre_eff_daily(split_index+1:end);
953 ET0_rf_start = ET0_rf(split_index+1:end);
954 ETc_daily_start = ETc_daily(split_index+1:end);
955 ETa_daily_start = ETa_daily(split_index+1:end);
956

957 % Plot end of the year data
958 plot(date_rain_end, Pre_eff_daily_end, 'Color', '#006B08',
959 "LineWidth", 2, 'DisplayName',
960 'RAINFED Effective Daily Precipitation P')
961 hold on
962 plot(date_rain_end, ET0_rf_end, 'Color', '#A2142F',
963 "LineWidth", 2, 'DisplayName',
964 'RAINFED Potential Evapotranspiration ET_0')
965 plot(date_rain_end, ETc_daily_end, 'Color', '#EE510E',
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966 "LineWidth", 2, 'DisplayName',
967 'RAINFED Crop Evapotranspiration ET_c')
968 plot(date_rain_end, ETa_daily_end, 'Color', '#EDB120',
969 "LineWidth", 2, 'DisplayName',
970 'RAINFED Actual Evapotranspiration ET_a')
971 fill([date_rain_end flip(date_rain_end)], [ETa_daily_end;
972 zeros(length(ETa_daily_end), 1)]', [0.4660 0.6740 0.1880],
973 'FaceAlpha', 0.5, 'EdgeColor', "none",
974 'DisplayName', 'RAINFED ET green')
975

976 % Plot beginning of the year data
977 plot(date_rain_start, Pre_eff_daily_start, 'Color', '#006B08',
978 "LineWidth", 2, 'HandleVisibility', 'off')
979 plot(date_rain_start, ET0_rf_start, 'Color', '#A2142F',
980 "LineWidth", 2, 'HandleVisibility', 'off')
981 plot(date_rain_start, ETc_daily_start, 'Color', '#EE510E',
982 "LineWidth", 2, 'HandleVisibility', 'off')
983 plot(date_rain_start, ETa_daily_start, 'Color', '#EDB120',
984 "LineWidth", 2, 'HandleVisibility', 'off')
985 fill([date_rain_start flip(date_rain_start)],
986 [ETa_daily_start; zeros(length(ETa_daily_start), 1)]',
987 [0.4660 0.6740 0.1880], 'FaceAlpha', 0.5,
988 'EdgeColor', "none", 'HandleVisibility', 'off')
989

990 else
991

992 plot(date_rain,Pre_eff_daily,'Color', '#006B08',
993 "LineWidth",2,'DisplayName',
994 'RAINFED Effective Daily Precipitation P')
995 hold on
996 plot(date_rain,ET0_rf, 'Color','#A2142F',
997 "LineWidth",2,'DisplayName',
998 'RAINFED Potential Evapotranspiration ET_0')
999 plot(date_rain,ETc_daily, 'Color','#EE510E',

1000 "LineWidth",2,'DisplayName',
1001 'RAINFED Crop Evapotranspiration ET_c')
1002 plot(date_rain,ETa_daily, 'Color','#EDB120',
1003 "LineWidth",2,'DisplayName',
1004 'RAINFED Actual Evapotranspiration ET_a')
1005 fill([date_rain flip(date_rain)],[(ETa_daily);
1006 zeros(length(ETa_daily),1)], [0.4660 0.6740 0.1880],
1007 'FaceAlpha',0.5,'EdgeColor',"none",
1008 'DisplayName','RAINFED ET green')
1009

1010 end
1011

1012 % irrigated
1013 if ndays - find(dates==date_irr(1),1) < lgp_irr
1014
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1015 % Split the dates and data at the end of the year
1016 split_index_irr = find(date_irr == dates(end));
1017

1018 % Data for the end of the year
1019 date_irr_end = date_irr(1:split_index_irr);
1020 Pre_eff_daily_i_end = Pre_eff_daily_i(1:split_index_irr);
1021 ET0_ir_end = ET0_ir(1:split_index_irr);
1022 ETc_daily_irr_end = ETc_daily_irr(1:split_index_irr);
1023 I_end = I(1:split_index_irr);
1024 ETgreen_daily_end = ETgreen_daily(1:split_index_irr);
1025 ETblue_daily_end = ETblue_daily(1:split_index_irr);
1026

1027 % Data for the beginning of the year
1028 date_irr_start = date_irr(split_index_irr+1:end);
1029 Pre_eff_daily_i_start = Pre_eff_daily(split_index_irr+1:end);
1030 ET0_ir_start = ET0_ir(split_index_irr+1:end);
1031 ETc_daily_irr_start = ETc_daily_irr(split_index_irr+1:end);
1032 I_start = I(split_index_irr+1:end);
1033 ETgreen_daily_start = ETgreen_daily(split_index_irr+1:end);
1034 ETblue_daily_start = ETblue_daily(split_index_irr+1:end);
1035

1036 % Plot end of the year data
1037 plot(date_irr_end, Pre_eff_daily_i_end,':', 'Color', '#006B08',
1038 "LineWidth", 2, 'DisplayName',
1039 'IRRIGATED Effective Daily Precipitation P')
1040 hold on
1041 plot(date_irr_end, ET0_ir_end,':', 'Color', '#A2142F',
1042 "LineWidth", 2, 'DisplayName',
1043 'IRRIGATED Potential Evapotranspiration ET_0')
1044 plot(date_irr_end, I,':', 'Color', '#2D95DA',
1045 "LineWidth", 2, 'DisplayName',
1046 'IRRIGATED Crop Evapotranspiration ET_c')
1047 plot(date_irr_end, ETc_daily_irr_end,':', 'Color', '#EDB120',
1048 "LineWidth", 2, 'DisplayName',
1049 'IRRIGATED Actual Evapotranspiration ET_a')
1050 fill([date_irr_end flip(date_irr_end)],
1051 [(ETgreen_daily_end+ETblue_daily_end); flip(ETblue_daily_end)],
1052 [0.4660 0.6740 0.1880], 'FaceAlpha',0.3,
1053 'EdgeColor',"none",'DisplayName','IRRIGATED ET green')
1054 fill([date_irr_end flip(date_irr_end)],[ETblue_daily_end;
1055 zeros(length(ETblue_daily_end),1)], [0 0.4470 0.7410],
1056 'FaceAlpha',0.3, 'EdgeColor',"none",
1057 'DisplayName','IRRIGATED ET blue')
1058

1059 % Plot beginning of the year data
1060 plot(date_irr_start, Pre_eff_daily_i_start,':', 'Color', '#006B08',
1061 "LineWidth", 2, 'HandleVisibility', 'off')
1062 plot(date_irr_start, ET0_ir_start,':', 'Color', '#A2142F',
1063 "LineWidth", 2, 'HandleVisibility', 'off')
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1064 plot(date_irr_start, I,':', 'Color', '#2D95DA',
1065 "LineWidth", 2, 'HandleVisibility', 'off')
1066 plot(date_irr_start, ETc_daily_irr_start,':', 'Color', '#EDB120',
1067 "LineWidth", 2, 'HandleVisibility', 'off')
1068 fill([date_irr_start flip(date_irr_start)],
1069 [(ETgreen_daily_start+ETblue_daily_start);
1070 flip(ETblue_daily_start)], [0.4660 0.6740 0.1880],
1071 'FaceAlpha',0.3,'EdgeColor',"none", 'HandleVisibility', 'off')
1072 fill([date_irr_start flip(date_irr_start)],
1073 [ETblue_daily_start; zeros(length(ETblue_daily_start),1)],
1074 [0 0.4470 0.7410],'FaceAlpha',0.3, 'EdgeColor',"none",
1075 'HandleVisibility', 'off')
1076

1077 else
1078

1079 plot(date_irr,Pre_eff_daily_i,':','color','#006B08',
1080 "LineWidth",2,'DisplayName',
1081 'IRRIGATED Effective Daily Precipitation P')
1082 plot(date_irr,ET0_ir,':','color','#A2142F',
1083 "LineWidth",2,'DisplayName',
1084 'IRRIGATED Potential Evapotranspiration ET_0')
1085 plot(date_irr,ETc_daily_irr,':','color','#EDB120',
1086 "LineWidth",2,'DisplayName',
1087 'IRRIGATED Crop Evapotranspiration ET_c (= ET_a)')
1088 fill([date_irr flip(date_irr)],[(ETgreen_daily+ETblue_daily);
1089 flip(ETblue_daily)], [0.4660 0.6740 0.1880],'FaceAlpha',0.3,
1090 'EdgeColor',"none",'DisplayName','IRRIGATED ET green')
1091 fill([date_irr flip(date_irr)],[ETblue_daily;
1092 zeros(length(ETblue_daily),1)], [0 0.4470 0.7410],
1093 'FaceAlpha',0.3,'EdgeColor',"none",
1094 'DisplayName','IRRIGATED ET blue')
1095 plot(date_irr,I,':','color','#2D95DA',"LineWidth",2,
1096 'DisplayName','Irrigation')
1097

1098 end
1099

1100

1101 grid on
1102 xlabel(['Year ', num2str(y)],'Interpreter','latex')
1103 xlim([water_year water_year+years(1)-days(1)])
1104 xticks([1 31 61 91 121 151 181 211 241 271 301 331 360])
1105 xticklabels(tickmonths);
1106 ylabel('[mm/day]','Interpreter','latex')
1107 ylim([0 9])
1108 title(['(a) Daily $ETa$ - ','Lat: ',num2str(lat(1)),'
1109 Lon: ',num2str(lon(1))],'Interpreter','latex')
1110 legend('Location','north','Interpreter','latex')
1111 set(gcf, 'Units', 'centimeters', 'Position', [1 1 18 10]);
1112 ax = gca;
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1113 ax.TickLabelInterpreter = 'latex';
1114 print(gcf, 'annual.svg', '-dsvg', '-r300');
1115 hold off
1116

1117

1118 % Obtain daily year normalized values
1119

1120

1121 ETgreen_year(time_rain,1) = ETa_daily(1:end,1) *
1122 area_rain(m,n) / area_tot(m,n);
1123 ETgreen_year(time_irr,1) = ETgreen_year(time_irr,1) +
1124 (ETgreen_daily(1:end,1) * area_irr(m,n) / area_tot(m,n));
1125 ETblue_year(time_irr,1) = (ETblue_daily(1:end,1) *
1126 area_irr(m,n) / area_tot(m,n));
1127

1128 last = water_year:datetime(y,12,31);
1129 first = datetime(y+1,1,1):(water_year+years(1)-1);
1130

1131 % plot
1132 figure(10)
1133

1134 fill([last flip(last)], [(ETgreen_year(day(water_year,'dayofyear')
1135 :end,1)+ETblue_year(day(water_year,'dayofyear'):end,1));
1136 flip(ETblue_year(day(water_year,'dayofyear'):end,1))],
1137 [0.4660 0.6740 0.1880], 'FaceAlpha',0.5,'EdgeColor',"none",
1138 'DisplayName','ET green')
1139 hold on
1140 fill([last flip(last)], [ETblue_year(day(water_year,'dayofyear')
1141 :end,1); zeros(ndays-day(water_year,'dayofyear')+1,1)],
1142 [0 0.4470 0.7410], 'FaceAlpha',0.5,'EdgeColor',"none",
1143 'DisplayName','ET blue')
1144 fill([first flip(first)], [(ETgreen_year(1:day(water_year,'dayofyear')
1145 -1,1)+ETblue_year(1:day(water_year,'dayofyear')-1,1));
1146 flip(ETblue_year(1:day(water_year,'dayofyear')-1,1))],
1147 [0.4660 0.6740 0.1880],'FaceAlpha',0.5,
1148 'EdgeColor',"none",'HandleVisibility', 'off')
1149 fill([first flip(first)], [ETblue_year(1:day(water_year,'dayofyear')
1150 -1,1); zeros(day(water_year,'dayofyear')-1,1)],
1151 [0 0.4470 0.7410],'FaceAlpha',0.5,
1152 'EdgeColor',"none",'HandleVisibility', 'off')
1153 grid on
1154 xlabel(['Year ', num2str(y)],'Interpreter','latex')
1155 xlim([water_year water_year+years(1)-days(1)])
1156 xticks([water_year:30:water_year+360-1])
1157 xticklabels(tickmonths);
1158 ylabel('[mm/day]','Interpreter','latex')
1159 ylim([0 9])
1160 title(['(b) Daily $ETa$ normalized with cultivated areas - ',
1161 'Lat: ',num2str(lat(1)),'Lon: ',num2str(lon(1))],
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1162 'Interpreter','latex')
1163 legend('Location','north','Interpreter','latex')
1164 set(gcf, 'Units', 'centimeters', 'Position', [1 1 18 10]);
1165 ax = gca;
1166 ax.TickLabelInterpreter = 'latex';
1167 print(gcf, 'annual_vol.svg', '-dsvg', '-r300');
1168 hold off
1169

1170 end
1171

1172 end
1173 end
1174 end
1175

1176 clear day_plant_modified
1177 clear day_plant_modified_irr
1178 end
1179

1180 % Averaging on the number of years
1181 % Since the variables were summed all together, to obtain the mean it
1182 % is sufficient to divide them by the number of years.
1183

1184 % rainfed
1185 ETa_tot = ETa_tot /yy;
1186 ETc_tot_rain = ETc_tot_rain /yy;
1187 ET0_tot_rf = ET0_tot_rf /yy;
1188 Ptot_rf = Ptot_rf /yy;
1189 Ptot_gr_seas_rf = Ptot_gr_seas_rf /yy;
1190

1191 % irrigated
1192 ETgreen_tot = ETgreen_tot /yy;
1193 CWU_tot = CWU_tot /yy;
1194 ETblue_tot = ETblue_tot /yy;
1195 I_tot = I_tot /yy;
1196 ETc_tot_irr = ETc_tot_irr /yy;
1197 ET0_tot_ir = ET0_tot_ir /yy;
1198 Ptot_ir = Ptot_ir /yy;
1199 Ptot_gr_seas_ir = Ptot_gr_seas_ir /yy;
1200

1201 % Final ET
1202 VOL_GREEN = ETa_tot .* area_rain .* 10 + ETgreen_tot .* area_irr .* 10;
1203 VOL_BLUE = ETblue_tot .* area_irr .* 10;
1204 VOL_TOT = VOL_GREEN + VOL_BLUE;
1205

1206 %% Download ET results
1207 mkdir(cartella_risultati)
1208 cd(cartella_risultati)
1209 copyfile("path/to/nc_from_watercrop.m",
1210 fullfile(cartella_risultati,"nc_from_watercrop.m"));
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1211 copyfile("path/to/txt_per_QGis.m",
1212 fullfile(cartella_risultati,"txt_per_QGis.m"));
1213

1214 save('ETa_rain.mat','ETa_tot')
1215

1216 save('VOL_GREEN.mat','VOL_GREEN')
1217

1218 % Save into txt files to open on QGIS
1219 txt_per_QGis(ETa_tot,'ETa_rain','-9999','0.0833333','2')
1220 txt_per_QGis(VOL_GREEN,'VOL_GREEN','-9999','0.0833333','2')
1221 % nan, cell size, digits
1222

1223 % Save into NetCDF files
1224 nc_from_watercrop(VOL_GREEN,'VOL_GREEN',-9999, 0.0833333,"m^3")
1225

1226

1227 end
1228

1229 elapsed_time = toc % seconds

A.1 From waterCrop results to NetCDF files

1 function nc_from_watercrop(var, name, nodata, cellsize, unit)
2 % var: 2D matrix
3 % name: base filename, add as a string (without extension)
4 % nodata: missing value, add as a number (e.g., -9999)
5 % cellsize: grid resolution, add as a number (e.g., 0.0833333 degrees)
6 % unit: string with unit
7

8 [nrows, ncols] = size(var);
9

10 % Define lower-left corner
11 xllcorner = -180;
12 yllcorner = -90;
13

14 % Compute 1D coordinate vectors (cell centers)
15 lon = xllcorner + (0:ncols-1) * cellsize + cellsize/2;
16 lat = yllcorner + (0:nrows-1) * cellsize + cellsize/2;
17

18 % Flip data to match lat orientation
19 var = flipud(var);
20

21 % Create NetCDF
22 ncFile = [name, '.nc'];
23 ncid = netcdf.create(ncFile, 'CLOBBER');
24

25 % Define dimensions
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26 dimid_lon = netcdf.defDim(ncid, 'lon', ncols);
27 dimid_lat = netcdf.defDim(ncid, 'lat', nrows);
28

29 % Define coordinate variables
30 lon_id = netcdf.defVar(ncid, 'lon', 'double', dimid_lon);
31 lat_id = netcdf.defVar(ncid, 'lat', 'double', dimid_lat);
32

33 % Add attributes to coordinates
34 netcdf.putAtt(ncid, lon_id, 'standard_name', 'longitude');
35 netcdf.putAtt(ncid, lon_id, 'units', 'degrees_east');
36

37 netcdf.putAtt(ncid, lat_id, 'standard_name', 'latitude');
38 netcdf.putAtt(ncid, lat_id, 'units', 'degrees_north');
39

40 % Define CRS variable
41 crs_id = netcdf.defVar(ncid, 'crs', 'int', []);
42 netcdf.putAtt(ncid, crs_id, 'grid_mapping_name', 'latitude_longitude');
43 netcdf.putAtt(ncid, crs_id, 'epsg_code', int32(4326));
44 netcdf.putAtt(ncid, crs_id, 'semi_major_axis', 6378137.0);
45 netcdf.putAtt(ncid, crs_id, 'inverse_flattening', 298.257223563);
46

47 % Define main data variable
48 var_id = netcdf.defVar(ncid, name, 'double', [dimid_lon, dimid_lat]);
49 netcdf.defVarFill(ncid, var_id, false, nodata);
50

51 netcdf.putAtt(ncid, var_id, 'long_name', name);
52 netcdf.putAtt(ncid, var_id, 'units', unit);
53 netcdf.putAtt(ncid, var_id, '_FillValue', nodata);
54 netcdf.putAtt(ncid, var_id, 'coordinates', 'lon lat');
55 netcdf.putAtt(ncid, var_id, 'grid_mapping', 'crs');
56

57 % Global attributes
58 netcdf.putAtt(ncid, netcdf.getConstant('NC_GLOBAL'),
59 'title', [name ' raster']);
60 netcdf.putAtt(ncid, netcdf.getConstant('NC_GLOBAL'),
61 'Conventions', 'CF-1.6');
62

63 netcdf.endDef(ncid);
64

65 % Write coordinate data
66 netcdf.putVar(ncid, lon_id, lon);
67 netcdf.putVar(ncid, lat_id, lat);
68 netcdf.putVar(ncid, var_id, var');
69

70 netcdf.close(ncid);
71 fprintf('Wrote CF-compliant geo2d NetCDF: %s\n', ncFile);
72 end
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Cumulative ET sheds code

1 import numpy as np
2 import xarray as xr
3 import matplotlib.pyplot as plt
4 import cartopy.crs as ccrs
5 import cartopy.feature as cfeature
6 from netCDF4 import Dataset
7 import os
8 import subprocess
9

10 ## GETTING READY
11

12 # Input Configuration
13 crop = "wheat"
14

15 # Input files
16 # Everything must have the same spatial resolution
17 # and the same reference system
18 moist_input_file = "RECON_moisture_flows_0.5.nc"
19 ERA5_eta_input_file = "RECON_ERA5_avgYear_0.5_volumes.nc"
20

21 # waterCrop results files upscaled
22 WC_etg_input_file = "VOL_GREEN_sum.nc"
23 WC_etb_input_file = "VOL_BLUE_sum.nc"
24

25

26 # Case study coordinates in a system lon=0,360 lat=90,-90
27

28 #cs_lat = np.array([44.76]) #cell in Piedmont
29 #cs_lon = np.array([7.51])
30

31 #cs_lat = np.array([-16.17]) #cell in Minas Gerais
32 #cs_lon = np.array([313.42])
33

34 #cs_lat = np.array([])
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35 #cs_lon = np.array([])
36

37 # To run the global analysis assign np.nan to the case study coordinates
38 cs_lat = np.nan
39 cs_lon = np.nan
40

41

42 # Constants
43 ymax = 122079329.40990189
44 ymin = 10**-3
45

46 # Load dataset
47 dataset = xr.open_dataset(moist_input_file)
48 dataset_ERA5_eta = xr.open_dataset(ERA5_eta_input_file)
49 dataset_etg = xr.open_dataset(WC_etg_input_file)
50 dataset_etb = xr.open_dataset(WC_etb_input_file)
51

52 # Extract lat/lon values from RECON
53 sinklats = dataset["sinklat"].values
54 sinklons = dataset["sinklon"].values
55 sourcelats = dataset["sourcelat"].values
56 sourcelons = dataset["sourcelon"].values
57

58 # Matrix initialization
59 ROWS = dataset["sourcelat"].shape[0] # dataset dimensions
60 COLS = dataset["sourcelon"].shape[0]
61 # those will be the cumulative evaporation shed for the crop
62 ET_shed_g = np.zeros((ROWS, COLS), dtype=np.float128)
63 ET_shed_b = np.zeros((ROWS, COLS), dtype=np.float128)
64 ET_shed = np.zeros((ROWS, COLS), dtype=np.float128)
65

66 # Case study cell index
67 if not np.any(np.isnan(cs_lat)) or not np.any(np.isnan(cs_lon)):
68 # Compute coordinates element-wise
69 ind_lat = -(ROWS/180) * cs_lat + ROWS/2
70 ind_lon = (COLS/360) * cs_lon
71 cs = np.round(np.array([ind_lat,ind_lon])).astype(int)
72

73

74 #######################################################
75

76 ## PART 1 - OBTAIN FRACTION MATRIX OF ETa
77

78 # CHANGE REFERENCE SYSTEM OF WC RESULTS
79

80 # Flip latitude (reverse the lat coordinate)
81 # In the .nc file from WC the lat range is -90,90 deg
82 dataset_etb = dataset_etb.reindex(lat=dataset_etb.lat[::-1])
83 dataset_etg = dataset_etg.reindex(lat=dataset_etg.lat[::-1])
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84

85 # Reshape the matrix from waterCrop to have the origin in lon=0deg
86 # Important to have it consistent with ERA5 matrix
87 # green
88 temp = np.zeros((ROWS, COLS))
89 temp = dataset_etg['VOL_GREEN'].values # m^3
90 ETg_fromWC = np.zeros((ROWS, COLS))
91 ETg_fromWC[:,0:360] = temp[:,360:720]
92 ETg_fromWC[:,360:720] = temp[:,0:360]
93 # blue
94 temp = np.zeros((ROWS, COLS))
95 temp = dataset_etb['VOL_BLUE'].values # m^3
96 ETb_fromWC = np.zeros((ROWS, COLS))
97 ETb_fromWC[:,0:360] = temp[:,360:720]
98 ETb_fromWC[:,360:720] = temp[:,0:360]
99

100 # Extract ERA5 values
101 ETa_fromERA5 = dataset_ERA5_eta['ERA5_ET_averageyear'].values # m^3
102

103

104 # Calculating the % of that evaporation which then
105 # contribute to Green ET of the specific crop
106 # ETgreen fraction of the total ETa of each cell
107 ETa_gweight = ETg_fromWC / ETa_fromERA5
108 # ETblue fraction of the total ETa of each cell
109 ETa_bweight = ETb_fromWC / ETa_fromERA5
110

111 #######################################################
112

113 ## PART 2 - LOOPS TO OBTAIN CUMULATIVE SHEDS
114

115 # Get the indices of non-zero elements if no case study
116 if np.any(np.isnan(cs_lat)) or np.any(np.isnan(cs_lon)):
117 green_no_zero = np.argwhere(ETa_gweight != 0)
118 blue_no_zero = np.argwhere(ETa_bweight != 0)
119 else:
120 green_no_zero = np.array([1])
121 blue_no_zero = np.array([1])
122

123 # Process each non-zero element (or only the case study)
124

125 # 1) GREEN ET SHED
126 for index in green_no_zero:
127 if np.any(np.isnan(cs_lat)) or np.any(np.isnan(cs_lon)):
128 i, j = index # Index pair for row and column
129 else:
130 # case study coordinates
131 i = cs[0]
132 j = cs[1]
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133

134 # Get moisture flow
135 ms_4d = dataset["moisture_flow"].isel(sourcelat=i,sourcelon=j).values
136 # reshape moisture flow array
137 moisture_flow = np.squeeze(ms_4d)
138

139 # Convert to cubic meters
140 evaporation_shed = np.where(
141 moisture_flow == 0,
142 0,
143 10 ** (((moisture_flow - 1) / 254) *
144 (np.log10(ymax) - np.log10(ymin)) + np.log10(ymin))
145 )
146

147 # To obtain the cumulative shed
148 ET_shed_g = ET_shed_g + evaporation_shed*ETa_gweight[i,j]
149

150 print("Green loop completed.")
151

152 # 2) BLUE ET SHED
153 for index in blue_no_zero:
154 if np.any(np.isnan(cs_lat)) or np.any(np.isnan(cs_lon)):
155 i, j = index # Index pair for row and column
156 else:
157 i = cs[0]
158 j = cs[1]
159

160 # Get moisture flow
161 ms_4d = dataset["moisture_flow"].isel(sourcelat=i,sourcelon=j).values
162 moisture_flow = np.squeeze(ms_4d)
163

164 # Convert to cubic meters
165 evaporation_shed = np.where(
166 moisture_flow == 0,
167 0,
168 10 ** (((moisture_flow - 1) / 254) *
169 (np.log10(ymax) - np.log10(ymin)) + np.log10(ymin))
170 )
171

172 # To obtain the cumulative shed
173 ET_shed_b = ET_shed_b + evaporation_shed*ETa_bweight[i,j]
174

175 print("Blue loop completed.")
176

177 # Total ET SHED
178 ET_shed = ET_shed_g + ET_shed_b
179

180 #######################################################
181

99



Cumulative ET sheds code

182 ## PART 3 - SAVE RESULTS
183

184 # Folder where you want to save the new NetCDF files
185 if np.any(np.isnan(cs_lat)) or np.any(np.isnan(cs_lon)):
186 output_folder = f'/RECON/output/{crop}/'
187 else:
188 output_folder = f'/RECON/output/{crop}_{cs_lat}_{cs_lon}/'
189

190 # Create the output directory if it does not exist
191 os.makedirs(output_folder, exist_ok=True)
192

193 # Open the RECON NetCDF file to read grid dimensions
194 with Dataset(ERA5_eta_input_file, 'r') as ERA5_nc:
195 # Read grid dimensions (latitude & longitude)
196 latitudes = ERA5_nc.variables['lat'][:]
197 longitudes = ERA5_nc.variables['lon'][:]
198 # Number of latitude points
199 n_lat = len(latitudes)
200 # Number of longitude points
201 n_lon = len(longitudes)
202

203 # Specify results to save and the output file names
204 results = [ET_shed_g, ET_shed_b, ET_shed]
205 file_names_final = ['ET_shed_g.nc', 'ET_shed_b.nc', 'ET_shed.nc']
206

207 # Transform the results array of arrays in a single 3d array
208 results_3d = np.stack(results, axis=0)
209 # Change again the system to lon -180,180
210 results_180_3d = np.zeros((len(results),ROWS,COLS), dtype=np.float128)
211 results_180_3d[:,:,0:360] = results_3d[:,:,360:720]
212 results_180_3d[:,:,360:720] = results_3d[:,:,0:360]
213 # Reshape the 3d array in an array of arrays
214 results_180 = [results_180_3d[i] for i in range(results_180_3d.shape[0])]
215

216 # Loop through each matrix shifted and save it to a
217 # NetCDF file with the -180,180 reference system
218 for k, (matrix, file_name) in enumerate(zip(results_180, file_names_final)):
219 full_path = os.path.join(output_folder, file_name)
220

221 with Dataset(full_path, 'w', format='NETCDF4') as new_nc:
222 # Create dimensions
223 new_nc.createDimension('lat', n_lat)
224 new_nc.createDimension('lon', n_lon)
225

226 # Create coordinate variables
227 lat_var = new_nc.createVariable('lat', latitudes.dtype, ('lat',))
228 lon_var = new_nc.createVariable('lon', longitudes.dtype, ('lon',))
229

230 # Write coordinates data
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231 lat_var[:] = latitudes
232 lon_var[:] = np.ma.arange(-180,180,0.5)
233

234

235 # Add CF-compliant attributes to coordinate variables
236 lat_var.units = 'degrees_north'
237 lat_var.standard_name = 'latitude'
238 lat_var.long_name = 'Latitude'
239

240 lon_var.units = 'degrees_east'
241 lon_var.standard_name = 'longitude'
242 lon_var.long_name = 'Longitude'
243

244 # Create data variable
245 data_var = new_nc.createVariable('volume',np.float64,('lat','lon'))
246 data_var[:, :] = matrix
247

248 # Add attributes to data variable
249 data_var.units = 'm^3'
250 data_var.description = f'Cumulative {file_name} for {crop}'
251

252 print(f"Cumulative shed {k+1} saved to {file_name} with WGS84 grid.")
253

254

255 #######################################################
256

257 ## PART 4 - PLOTS
258

259 # Define lat/lon grid
260 lats = np.arange(90, -90, -0.5)
261 lons = np.arange(0, 360, 0.5)
262

263 # Colormap with NaN as white
264 blues_cmap = plt.cm.get_cmap("Blues").copy()
265 blues_cmap.set_bad(color='white')
266 reds_cmap = plt.cm.get_cmap("Reds").copy()
267 reds_cmap.set_bad(color='white')
268

269 # Actual plots
270

271 # ET-SHED PLOT
272 plt.figure(figsize=(10, 8))
273 ax = plt.axes(projection=ccrs.PlateCarree())
274

275 vmin = np.percentile(ET_shed[ET_shed > 0], 10)
276 vmax = np.nanmax(ET_shed)
277

278 # convert to float to support np.nan
279 ET_shed_nan = ET_shed.astype(float)
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280 # Set values below 10th percentile to NaN
281 ET_shed_nan[ET_shed_nan < vmin] = np.nan
282

283

284 im = ax.imshow(
285 ET_shed_nan,
286 extent=[lons.min(), lons.max(), lats.min(), lats.max()],
287 origin='upper',
288 vmin=vmin,
289 vmax=vmax,
290 cmap=reds_cmap,
291 transform=ccrs.PlateCarree()
292 )
293

294 # Add features
295 ax.coastlines()
296 ax.add_feature(cfeature.BORDERS, linestyle=':')
297 if not np.any(np.isnan(cs_lat)) or not np.any(np.isnan(cs_lon)):
298 ax.plot(cs_lon, cs_lat, marker='o', color='red', markersize=3,
299 transform=ccrs.PlateCarree(), label='Source Location')
300

301

302 # Title and colorbar
303 ax.set_title(f"Annual precipitation originating from {crop} ET")
304 plt.colorbar(im, label="moisture flow [m$^3$]", orientation="vertical")
305 plt.xlabel("Longitude")
306 plt.ylabel("Latitude")
307 ax.legend(loc="lower left")
308

309 # Save plot to specified folder as SVG
310 plt.savefig(os.path.join(output_folder, 'ET_shed_plot.svg'),
311 format='svg', bbox_inches='tight')
312

313 plt.show()
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Appendix C

Sinks land-use classification
code

1 import numpy as np
2 import xarray as xr
3 import matplotlib.pyplot as plt
4 import cartopy.crs as ccrs
5 import cartopy.feature as cfeature
6 from netCDF4 import Dataset
7 import os
8 import plotly.graph_objects as go
9 import pandas as pd

10

11

12

13 ## GETTING READY
14

15 # Input Configuration
16 cropWC = "soy" # the one analysed
17 crops_tot = ["maize", "wheat", "soy"]
18

19 # Input files
20 input_files = {
21 "land": "landseamask_water-global.nc",
22 "maize_rf": "maize_rf_05deg.nc",
23 "wheat_rf": "wheat_rf_05deg.nc",
24 "soy_rf": "soybean_rf_05deg.nc",
25 "maize_ir": "maize_ir_05deg.nc",
26 "wheat_ir": "wheat_ir_05deg.nc",
27 "soy_ir": "soybean_ir_05deg.nc",
28 "ET_shed_g": f"/RECON/output/{cropWC}/ET_shed_g.nc",
29 "ET_shed_b": f"/RECON/output/{cropWC}/ET_shed_b.nc"
30 }
31
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32 # Folder where you want to save the new files
33 output_folder = f'/land_use_classification/output/{cropWC}/'
34 if not os.path.exists(output_folder):
35 os.makedirs(output_folder)
36

37

38 # Open all datasets in a loop and store in a dictionary
39 datasets = {}
40 for key, filepath in input_files.items():
41 datasets[key] = xr.open_dataset(filepath)
42

43

44 # Dataset dimensions (spatial resolution)
45 ROWS = datasets["ET_shed_g"]["lat"].shape[0]
46 COLS = datasets["ET_shed_g"]["lon"].shape[0]
47

48 # Load land mask to obtain the oceans
49 land = datasets["land"]["mask"].values
50 ocean = np.where(land == 1, 0, 1)
51 # Replace '1' with 0, because where there is land, there is 0 ocean
52 # Replace '-' with 1, because where there is no land, there is the ocean
53 fraction_ocean = ocean
54

55 # Load area arrays into lists, stack into np array (n_crops x ROWS x COLS)
56 area_rf_list, area_ir_list = [], []
57 for crop in crops_tot:
58 area_rf_list.append(datasets[f"{crop}_rf"]["area_rf"].values)
59 area_ir_list.append(datasets[f"{crop}_ir"]["area_ir"].values)
60

61 area_rf = np.array(area_rf_list)
62 area_ir = np.array(area_ir_list)
63

64 # Flip vertically (reverse rows) for all crops in area_rf and area_ir
65 area_rf = np.flip(area_rf, axis=1)
66 area_ir = np.flip(area_ir, axis=1)
67

68

69 # Open the cumaltive ET sheds
70 ET_shed_g = datasets["ET_shed_g"]["volume"].values
71 ET_shed_b = datasets["ET_shed_b"]["volume"].values
72 ET_shed = ET_shed_g + ET_shed_b
73

74 #######################################################
75

76 ## PART 1 - CALCULATE ha PER EACH CELL OF THE WORLD
77

78 # Earth radius (meters)
79 R = 6371e3
80
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81 # Grid resolution in degrees
82 lat_res = 180 / ROWS # latitude resolution (e.g., 0.5deg)
83 lon_res = 360 / COLS # longitude resolution
84

85 # Latitude and longitude edges
86 lat_edges = np.linspace(90, -90, ROWS + 1)
87 lon_edges = np.linspace(-180, 180, COLS + 1)
88

89 # Preallocate area matrix (ROWS x COLS)
90 area_cell = np.zeros((ROWS, COLS))
91

92 # Loop over latitude bands (rows)
93 for i in range(ROWS):
94 # Latitude edges in radians for this band
95 lat1 = np.deg2rad(lat_edges[i])
96 lat2 = np.deg2rad(lat_edges[i + 1])
97

98 # Longitudinal width in radians
99 dlon = np.deg2rad(lon_res)

100

101 # Area of the cell (same for all longitudes at this latitude)
102 # area in m^2
103 cell_area_m2 = R**2 * dlon * (np.sin(lat1) - np.sin(lat2))
104 # convert to ha
105 cell_area_ha = cell_area_m2 / 1e4
106

107 # Fill the entire row (all longitudes at this latitude)
108 area_cell[i, :] = cell_area_ha
109

110

111 #######################################################
112

113 ## PART 2 - OBTAIN FRACTION MATRIX OF CULTIVATED AREAS
114

115 # Fraction matrices element-wise division with broadcasting:
116 fraction_rf = area_rf / area_cell # shape: n_crops x ROWS x COLS
117 fraction_ir = area_ir / area_cell
118

119

120 #######################################################
121

122 ## PART 3 - WATER WHICH WILL FALL ON SPECIFIC CROPS
123

124 # Map crop water volumes:
125 map_crop_g_rf = ET_shed_g * fraction_rf # broadcast over spatial dims
126 map_crop_b_rf = ET_shed_b * fraction_rf
127

128 map_crop_g_ir = ET_shed_g * fraction_ir
129 map_crop_b_ir = ET_shed_b * fraction_ir
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130

131 # Map water that go into the ocean
132 map_ocean_g = ET_shed_g * fraction_ocean
133 map_ocean_b = ET_shed_b * fraction_ocean
134

135 #######################################################
136

137 ## PART 4 - VOLUMES OF WATER PER CROP
138

139 # Total volumes of water involved
140 ETVOL_shed_g = np.nansum(ET_shed_g)
141 ETVOL_shed_b = np.nansum(ET_shed_b)
142 ETVOL_crop_g = [np.nansum(map_crop_g_rf, axis=(1,2)),
143 np.nansum(map_crop_g_ir, axis=(1,2))]
144 ETVOL_crop_b = [np.nansum(map_crop_b_rf, axis=(1,2)),
145 np.nansum(map_crop_b_ir, axis=(1,2))]
146 ETVOL_ocean = [np.nansum(map_ocean_g), np.nansum(map_ocean_b)]
147

148

149 ETVOL_other_land = [
150 ETVOL_shed_g - np.nansum(ETVOL_crop_g) - ETVOL_ocean[0],
151 ETVOL_shed_b - np.nansum(ETVOL_crop_b) - ETVOL_ocean[1]
152 ]
153

154

155 # Necessary to build the Sankey Diagram
156 labels_1 = [f'source crop: {cropWC}'] + ["ET GREEN", "ET BLUE"] +
157 [f"{c} rainfed" for c in crops_tot] +
158 [f"{c} irrigated" for c in crops_tot] +
159 ["ocean" , "other land"]
160 sources_1 = [0, 0,
161 1 * np.ones(2 * len(crops_tot) + 2),
162 2 * np.ones(2 * len(crops_tot) + 2)]
163 targets_1 = [1, 2,
164 np.arange(3, 2 * len(crops_tot) + 5),
165 np.arange(3, 2 * len(crops_tot) + 5)]
166 values_1 = [
167 ETVOL_shed_g,
168 ETVOL_shed_b,
169 ETVOL_crop_g,
170 ETVOL_ocean[0],
171 ETVOL_other_land[0],
172 ETVOL_crop_b,
173 ETVOL_ocean[1],
174 ETVOL_other_land[1]
175 ]
176

177 labels = []
178 sources = []
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179 targets = []
180 flat_list = []
181 values = []
182

183 # Convert array to list and extend
184 for item in labels_1:
185 if isinstance(item, np.ndarray):
186 labels.extend(item.tolist())
187 else:
188 labels.append(item)
189

190 for item in sources_1:
191 if isinstance(item, np.ndarray):
192 sources.extend(item.tolist())
193 else:
194 sources.append(item)
195

196 for item in targets_1:
197 if isinstance(item, np.ndarray):
198 targets.extend(item.tolist())
199 else:
200 targets.append(item)
201

202 # Flatten numpy array into list and extend
203 for item in values_1:
204 if isinstance(item, np.ndarray):
205 values.extend(item.tolist())
206 elif isinstance(item, list):
207 values.extend(item)
208 else:
209 values.append(item)
210

211 if isinstance(item, (np.float64, float)):
212 flat_list.append(float(item))
213 elif isinstance(item, list):
214 for arr in item:
215 flat_list.extend(arr.flatten().tolist())
216 else:
217 raise TypeError(f"Unexpected type: {type(item)}")
218

219 # Convert to numpy array
220 values = np.array(flat_list)
221

222

223 sources_int = [int(x) for x in sources]
224

225 #######################################################
226

227 ## PART 5 - SAVE IN A .CSV FILE
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228

229 # Create a DataFrame with each vector as a column
230 df = pd.DataFrame({
231 'Source': sources_int,
232 'Target': targets,
233 'Value': values
234 })
235

236 # Save DataFrame to CSV (without index)
237 df.to_csv(os.path.join(output_folder,
238 f'{cropWC}_table.csv'),index=False)
239

240 # Save the same CSV file, but with labels instead of numbers
241 source_label = np.array(labels)[sources_int]
242 targets_label = np.array(labels)[targets]
243

244 # Create a DataFrame with each vector as a column
245 df_l = pd.DataFrame({
246 'Source': source_label,
247 'Target': targets_label,
248 'Value': values
249 })
250

251 # Save DataFrame to CSV (without index)
252 df_l.to_csv(os.path.join(output_folder,
253 f'{cropWC}_table_labels.csv'),index=False)
254

255 #######################################################
256

257 ## PART 6 - SANKEY DIAGRAMS
258

259 node_colors = [
260 "#DC3220", # red
261 "#006B08", # green
262 "#0C51B5", # blue
263 "#EE510E", # maize
264 "#EDB120", # wheat
265 "#44AA99", # soy
266 "#EE510E", # maize
267 "#EDB120", # wheat
268 "#44AA99", # soy
269 "#2D95DA", # ocean
270 "#AA4499" # other land
271 ]
272

273 fig = go.Figure(data=[go.Sankey(
274 node=dict(
275 pad=20,
276 thickness=30,
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277 line=dict(color="black", width=0.5),
278 label=labels,
279 color=node_colors
280 ),
281 link=dict(
282 source=sources_int,
283 target=targets,
284 value=values
285 )
286 )])
287

288 fig.update_layout(
289 font=dict(family="Times New Roman, serif", size=14, color="black"),
290 width=900,
291 height=600,
292 margin=dict(l=50, r=50, t=70, b=50)
293 )
294

295 fig.write_image(os.path.join(output_folder,
296 f'{cropWC}_sankey.svg'), scale=2)
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