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Abstract

The increasing global demand for food, feed and flexible crops is exerting un-

precedented pressure on the global hydrological cycle through landscape conversion
and increasing irrigation demand, which altogether contribute to the alteration of
land-atmosphere feedbacks. These feedbacks influence evaporation and precipitation
patters through atmospheric flows. Atmospheric moisture flows connect sources of
evaporation to sinks of precipitation, from local to regional and continental scale, up to
thousands of kilometres away. Terrestrial sources of evaporation are crucial for global
food production, regulating precipitation and climate patterns by redistributing water
and latent heat. At the same time, the alteration of evapotranspiration dynamics
from these sources is mainly driven by land-use conversion for pasture (cattle meat
production), and feed crops (such as soy, and maize) and agricultural practises, such
as irrigation.
Current water use assessment disregard these feedbacks and the role played by atmo-
spheric moisture connection in redistributing evaporation from agricultural parcels
to precipitation in downwind areas. This understanding is particularly key to better
assess the water-related implication of pivotal crops such as soy, maize and wheat
which account for 33% of global harvested land and the 30% of global water footprint
of crop production. Addressing this gap, this thesis aims to advance the understanding
of how evapotranspiration from agricultural areas contributes to precipitation whether
or not to other agricultural area. It emblematically presents the cases of soy, maize
and wheat.

The first part of this thesis updates actual evapotranspiration estimates for soy,
maize and wheat production for the period 2008-2017 by means of the agro-hydrological
model waterCROP, which solves the daily soil water balance on a global 5 arc-minute
grid, with global coverage for both irrigated and rainfed conditions. In the present
work, the model is updated to a newer version, made consistent with daily climatic
data from ERADH reanalysis.

In the second part, the evapotranspiration estimates are combined with atmospheric
connections by means of the RECON dataset, a 4D matrix of annual moisture flow
connections between any cell in the world at the spatial resolution of 0.5°. In the
present work, each cultivated cell of soy, maize and wheat is linked to its blue and green
evapotranspiration shed (i.e. the downwind area receiving precipitation from irrigated
or rainfed crop production). Evaporation sheds are finally classified according to their
land use category to analyse potential synergies and trade-off between land and water
use between the sites at the origin of evaporation and at the fate of precipitation.

By characterizing these connections, the thesis sheds light on the hidden global
links between cultivated land and downwind areas. Ultimately, this thesis contributes
toward a more comprehensive evaluation of the interplay between water and land use
at the site of production with atmospheric feedbacks with local and distant link in
the global water cycle.
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Chapter 1

Introduction

1.1 Background and research gaps

Food, land use, and water are deeply interconnected. Agriculture stands at the
centre of this nexus because it both depends on and reshapes freshwater resources,
atmospheric flows, and land use. For this reason food production is among the largest
driver of global environmental change. Agriculture occupies about 40% of the world’s
land, it accounts for up to 30% of global greenhouse gas emissions, and consumes
around 70% of freshwater resources [1].

According to FAO, by 2050 agriculture will need to produce nearly 50% more food,
fibre, and biofuel compared to 2012 levels [2]. Diets therefore represent a critical
link between human health and environmental sustainability. Current dietary trends,
combined with a projected global population of about 10 billion by 2050, are expected
to intensify risks for both people and the planet [1].

Over the past 50 years, food production and dietary patterns have undergone
profound transformations. While important progress has been achieved, such as
reductions in hunger, improvements in life expectancy, and declines in infant and child
mortality, new challenges have emerged. Diets increasingly feature high-calorie, heavily
processed, and animal-source foods, placing mounting pressure on natural resources.
These trends are driven by rapid urbanisation, rising incomes, and persistent barriers
to accessing nutritious foods [3].

Projections indicate significant increases in global meat consumption: poultry
consumption will increase by 21%, sheep by 16%, beef by 13%, and pig meat by 5% by
2034. Nearly 45% of this growth will occur in upper middle-income countries, driven
by population and income expansion. For instance, Africa’s population is expected to
grow from 1.5 to 1.8 billion within the next decade, resulting in a 33% increase in
regional meat consumption [3].

Numerous studies show that animal-source foods have far greater environmental
impacts than plant-based foods across indicators such as greenhouse gas emissions [4],
land use, energy consumption [1], and water use [5]. Figure 1.1 compares environmental
effects by serving size, highlighting that ruminant meat has the highest impact among
all food types. Future projections further suggest that environmental pressures will
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intensify by 2050. While different food groups vary in their impacts, animal products
consistently stand out as one of the most resource-intensive (Figure 1.2).

The EAT-Lancet Commission offers guidance on the necessary transformation
of the global food system, calling for a substantial increase in the consumption of
plant-based foods and a marked reduction in the consumption of animal-source foods.
This transition is essential both to reduce environmental pressures and to improve
human health outcomes [1].

Foodgroup  —e— Plant-based foods -@-Fish ~—e— Dairyandeggs - Meat

Ruminant meat (28 g) EL L . I 4 e
Pork (289)4 i - red L =t -t !
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Environmental effect

Figure 1.1: Environmental effects per serving of food produced in global food
systems. Circles indicate mean values, and bars indicate standard deviations. Some
results are missing for fish due to limited data in certain impact categories [1].

The growing global demand for food, feed, and flexible crops is placing unprece-
dented pressure on the hydrological cycle. Landscape conversion and rising irrigation
needs are altering land-atmosphere feedbacks and reshaping moisture transport pat-
terns [6]. Understanding these feedbacks between cropland water use and atmospheric
processes is crucial for evaluating both agricultural sustainability and hydro-climatic
risks.

Internal renewable water resources from rivers and aquifers, commonly referred
to as blue water [7], are being extracted at rates that already exceed sustainable
thresholds in several regions. Between 2000 and 2018, global per capita internal
renewable water resources declined by about 20% [8]. These pressures are amplified
by population growth, urban expansion, and the intensification of agriculture. In
2010, global water withdrawals were distributed as follows: 69% for agriculture, 12%
for municipal use, and 19% for industry [2]. Therefore, agriculture is by far the
largest user of freshwater, and within this share, a significant portion is devoted to
feed crops that indirectly sustain livestock production. This adds complexity to the
water-food nexus, since dietary choices strongly influence both the spatial distribution
and intensity of water demand.

Yet most of the water used in food production is not blue water but green water [9],
which includes terrestrial precipitation, evaporation, and soil moisture [10]. Between
1996 and 2005, the global water footprint of crop production was about 7,404 billion

2
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Figure 1.2: Environmental effects in 2010 and 2050 by food groups on various Earth
systems based on business-as-usual projections for consumption and production [1].

cubic meters per year, of which 78% was green, 12% blue, and 10% grey [9]. While
water footprint assessments quantify the volume of water consumed, they remain
indicators of use rather than impact: they do not track how evapotranspired water
re-enters the cycle, whether it returns as precipitation on the same crop, on other
crops, or in entirely different regions.

Many regions experiencing chronic water scarcity relative to their populations
rely heavily on agricultural commodity imports, effectively importing virtual water.
Virtual Water Trade refers to the international or intra-national exchange of goods
expressed in terms of the water embedded in their production: when goods are traded,
the water physically consumed in the production area is virtually transferred to the
region of consumption [11]. This line of research extends the water footprint concept to
global supply chains, but both frameworks largely neglect the atmospheric component
of water redistribution.

The origin and fate of precipitation are central to this perspective. Moisture
tracking research has revealed that evapotranspiration sources and precipitation
sinks are connected by atmospheric flows operating over thousands of kilometres [12,
13]. For example, the Amazon contributes 2-6% of rainfall to downwind regions in
South America [14], highlighting the stabilizing role of intact ecosystems. Similar
dynamics have been observed in Africa and Asia, where forests and wetlands act as
rainfall sources. Globally, about 56% of terrestrial precipitation originates from the
evapotranspiration of forests and other natural ecosystems, while rainfed agriculture
contributes roughly 5% [2]. The remaining 39% of rainfall becomes surface runoff
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(feeding rivers and lakes) or recharges groundwater aquifers [2]. These fluxes underpin
the renewable freshwater resources on which societies depend. A portion of this water
is withdrawn through infrastructure and diverted to different uses: much of it is
eventually returned to rivers or aquifers, whereas water consumed through irrigation
re-enters the atmosphere via evapotranspiration. The key question, therefore, is where
and when this water returns as rainfall, and whether it supports agriculture again
(green water) or replenishes blue water stocks such as aquifers and rivers.

Land-use change, also driven by food production, plays a critical role in shaping
these fluxes. It has been demonstrated that land-use change can cause significant
precipitation changes but only minor effects on runoff within the same basins [15],
making it especially relevant for green water availability. Food-driven deforestation
and land-use changes disrupt atmospheric fluxes by reducing evapotranspiration and
inducing precipitation anomalies in downwind areas [14]. For instance, Amazonian
deforestation, driven by soybean expansion, has caused precipitation declines in
croplands in Argentina [16, 17]. Among agricultural commodities driving deforestation,
cattle meat ranks first, while soybeans and maize, primary cattle feed components,
rank fourth and fifth, respectively [18]. Consequently, dietary choices significantly
influence not only freshwater use but also invisible atmospheric water fluxes.

Land-use change encompasses not only deforestation and cropland expansion, but
also the transition from rainfed to irrigated agriculture. Irrigation withdraws large
volumes of blue water, while also enhancing blue evapotranspiration fluxes into the
atmosphere, thereby modifying local and downwind precipitation patterns [6]. While
the total agricultural area has changed only modestly since 2000, the balance has
shifted: land under permanent and irrigated crops has increased, while permanent
meadows and pastures have declined substantially [8].

Current approaches often overlook the role of crops as distinct evaporative agents.
Water footprint studies quantify consumption but not the atmospheric pathways
through which evapotranspired water returns to precipitation. As presented in Figure
1.2, freshwater use and cropland use are treated as separate indicators, although they
are deeply interconnected. Moisture tracking research maps these atmospheric flows,
yet does not link them to specific crop types or to internal crop recycling. As a result,
no global analysis has yet mapped crop-specific evapotranspiration sheds, nor traced
how agricultural water use contributes to downwind rainfall and which land systems
ultimately benefit from this recycled moisture.

1.2 Goal

This thesis addresses a critical gap in the literature by explicitly linking crop water
use to atmospheric moisture recycling. It develops a framework that integrates crop-
specific evapotranspiration, atmospheric moisture tracking, and land-use classification,
with the aim of quantifying how agricultural water use recycles through the atmosphere
and contributes to rainfall patterns worldwide.

Specifically, the work advances the understanding of how evapotranspiration from
agricultural areas contributes to precipitation, both over agricultural land and other



Introduction

surfaces. The analysis focuses on three pivotal crops, soy, maize, and wheat, which
together account for about 33% of global harvested land [19] and roughly 30% of the
global water footprint of crop production [9].

Beyond quantifying the magnitude of these feedbacks, the thesis maps their spatial
distribution, identifying water donor and recipient regions of agricultural evapotran-
spired water. By integrating crop water accounting with moisture tracking, this
approach bridges the gap between field-scale water use and atmospheric-scale precipi-
tation dynamics, providing a global assessment of crop-specific evapotranspiration
sheds and their implications for water resources, land-use planning, and sustainable
agriculture.

1.3 Thesis structure and workflow

This thesis is structured as follows:

Chapter 2 lays out the theoretical foundations, describing the hydrological cycle, key
agro-hydrological variables, and the concepts of moisture recycling, evaporation sheds,
and precipitation sheds. It also reviews existing models for crop water estimation and
atmospheric moisture tracking.

Chapter 3 presents the datasets employed, including global crop distribution maps,
meteorological forcing data, and the RECON moisture connections dataset.

Chapter 4 details the methodological framework. The first part describes the
waterCROP model, which updates crop water use accounting for 2008-2017 by solving
the daily soil water balance on a global 5 arc-minute grid. A new version of the code
was developed to incorporate daily meteorological data and enhance computational
performance. The second part integrates these crop-specific water use estimates
with RECON outputs to derive crop-specific evapotranspiration sheds, annual water
balances, and land-use classifications of sinks.

Chapter 5 presents the key findings, including crop-specific evapotranspiration
sheds, donor-recipient balances, and the classification of precipitation sinks. The
results are visualized through maps and Sankey diagrams to illustrate the redistribution
of agricultural evapotranspired water across various land types.

Finally, Chapter 6 synthesizes the results, highlights their relevance and potential
applications, and outlines the limitations of the current analysis and directions for
future research.

In summary, this thesis contributes a new perspective on agricultural water use by
extending traditional water footprint assessments to include atmospheric feedbacks.
By systematically quantifying how crop evapotranspiration contributes to rainfall, it
provides both conceptual advances for the scientific community and practical insights
for sustainable water and land management.



Chapter 2
Theoretical foundations

This chapter outlines the theoretical framework that underpins the present research.
It begins with an overview of the hydrological cycle. Emphasis is placed on its funda-
mental role in sustaining human societies, with particular attention to agricultural
production, where water availability directly conditions crop growth and productivity.
Subsequently, a set of agro-hydrological variables that are recurrently employed in
this thesis are introduced and rigorously defined, thereby establishing a consistent
terminology for the subsequent analyses. Finally, the discussion focuses on two key
components of the hydrological cycle that are central to this study: (i) the quantifi-
cation of crop evapotranspiration, approached through agro-hydrological modelling
frameworks, and (ii) the estimation of atmospheric moisture fluxes, which provide
insight into large-scale water transport and its implications for regional and global
hydrological balances.

2.1 Hydrological cycle

The global hydrological cycle regulates the functioning of the Earth system and
provides the basis for all life. It regulates climate, enables the cycling of carbon
through biomass production, and governs the transport of nutrients, chemicals, and
pollutants across ecosystems [20, 21]. Conceptually, the hydrological cycle describes
the continuous circulation of water on, above, and below the Earth’s surface. This
circulation is primarily driven by solar radiation and gravity, which together sustain
the transfer of water across its different physical phases and reservoirs, including the
atmosphere, oceans, terrestrial ecosystems, and groundwater.

Water enters the atmosphere via evaporation from oceans, inland water bodies,
and soils, as well as through transpiration from vegetation. Once in the atmosphere,
it is transported as vapour, undergoes condensation, forms clouds, and eventually
returns to the surface as precipitation. Precipitation constitutes the ultimate source
of freshwater and initiates a cascade of fluxes and storages that sustain terrestrial
hydrology. Upon reaching land, precipitation may infiltrate into soils, generating soil
moisture; flow across the surface as runoff, feeding streams, rivers, and wetlands; or
evaporate directly from vegetation canopies, bare soils, and standing water.

6
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Figure 2.1: Main global hydrological flows distinguished into blue and green con-
tributions, depicted with proportional arrows according to volume estimates in the
latest IPCC AR6 Assessment [22]. [20]

The fate of infiltrated water can be further differentiated into green and blue water
(Figure 2.1). Green water refers to the portion of soil moisture that is accessible to
plants within the root zone and subsequently returned to the atmosphere through
transpiration or direct evaporation from soil and vegetation surfaces [7]. Blue water, in
contrast, corresponds to liquid water available in rivers, lakes, reservoirs, and aquifers.
While part of the infiltrated water contributes to green water flows, a fraction percolates
below the root zone, recharging groundwater and sustaining subsurface flows that
eventually feed back into surface water bodies [7]. Distinguishing between stocks and
flows is fundamental: blue water stocks encompass water stored in lakes, reservoirs,
aquifers, glaciers, and snow, while blue water flows include river runoff and subsurface
recharge. Similarly, green water stocks are defined as soil moisture and plant-held
water, whereas green water flows comprise evapotranspiration fluxes. Furthermore,
these categories are highly interconnected; for example, irrigation (blue water flow)
applied to a field increases soil moisture (green water stock), which then sustains
transpiration and evaporation (green water flows). On average, at the global annual
scale, approximately 60% of precipitation over land is partitioned into green water
and 40% into blue water, highlighting the predominance of green water as the main
freshwater resource for ecosystems and agriculture [22].

A central component of the hydrological cycle is evapotranspiration, the combined
flux of evaporation and transpiration. Evapotranspiration links the hydrological and

7
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energy cycles: increasing air temperatures elevate both the atmosphere’s capacity
to hold water vapour and its evaporative demand. Consequently, as global warming
intensifies, land and oceans evaporate more water, reinforcing the greenhouse effect
through the positive feedback of water vapour on surface warming. Evapotranspiration
can itself be partitioned into green and blue components. Green evapotranspiration
is sustained by soil moisture originating from precipitation, whereas blue evapotran-
spiration refers to water consumed by plants that derives from irrigation or other
managed withdrawals from blue water stocks [23, 9].

2.2 Important agro-hydrological variables

Irrigation
Evapotranspiration | Rain
A

v v Runoﬂ

saturation

field capacity /‘

depletion.| .

threshold+=
TA

wilting point
Capillary Deep
Rise Percolation

Figure 2.2: Water balance of the root zone [24].

Agro-hydrology involves multiple variables and coefficients to describe the inter-
actions among soil, plants, and atmosphere. To ensure consistency, the Food and
Agriculture Organization (FAO) provides widely adopted guidelines that establish
a common language and standardized conventions. This thesis follows the FAO
framework when dealing with agro-hydrological modelling, while integrating it with a
few additional relevant concepts.

Figure 2.2 provides a schematic representation of the water balance in the root
zone. It highlights the key fluxes, precipitation, evapotranspiration, irrigation, runoff,
and deep percolation, as well as the variables related to soil moisture that are central
to agro-hydrological modelling. The variables discussed below are directly linked
to the processes shown in the figure, which serves as a useful visual reference for
understanding how each component contributes to the overall soil-plant—atmosphere
system.

The most important variables considered are listed and explained below:

» Potential Evapotranspiration (ETp): The amount of evapotranspiration that
would occur from a reference surface under optimal conditions. The reference
surface is defined as a hypothetical crop with a height of 0.12 m, a surface

8
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resistance of 70 s m~!, and an albedo of 0.23, closely resembling the evaporation
from an extensive, uniformly green grass surface that is actively growing and
adequately watered. This reference crop allows estimation of evapotranspiration
that represents the atmospheric demand for water. ETj is commonly calculated
using the Penman—Monteith equation, which requires meteorological inputs such
as radiation, air temperature, humidity, and wind speed [24].

Total Precipitation (Pror): The total amount of rainfall and other forms of
precipitation that reach the ground over a given period (e.g., daily, monthly).

Soil Moisture (6): The volumetric water content of the soil, typically expressed
as a fraction or percentage.

Drainage or Deep percolation (D): The downward movement of water
beyond the root zone, contributing to groundwater recharge and loss of root zone
water.

Runoff (R): The portion of precipitation or irrigation water that flows over the
land surface without infiltrating into the soil.

Rooting Depth (Z,): The depth of soil actively explored by crop roots, which
affects water uptake capacity. It usually varies with crop type and growth stage.

Total Available Water (T'AW): The amount of water available in the root
zone between field capacity and permanent wilting point.

TAW = (0rc — Owp) - Z,

where fr¢ is the soil moisture at field capacity and 6y p is the soil moisture at
wilting point [24].

Readily Available Water (RAW): The portion of TAW that plants can
extract without experiencing water stress. It is often a fraction of TAW, defined

by a depletion fraction p:
RAW =p-TAW

Crop Evapotranspiration (E£7,): The amount of water evapotranspired by
the crop under optimal (no water stress) conditions, which depends on crop
characteristics.

ET.=k.-ET,

where k. is the crop coefficient.

Actual Crop Evapotranspiration (ET,): The actual amount of water evapo-
transpired by the crop, which depends on water availability and crop characteris-
tics.

ET,=ks-ET.=ks- k.- ETj

where k, is the water stress coefficient and k. is the crop coefficient.

9
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* Root Zone Depletion (Dr): The water deficit relative to field capacity.
Dr(t) = Dr(t — 1) — (Pror(t) — R(t)) — I(t) + ET,(t) + D(t)

where I(t) is the irrigation and Dr(t — 1) is the water deficit of the previous time
step (usually the initial condition is to consider it zero, because at beginning the
root zone is at field capacity).

+ Green Evapotranspiration (ETj.,): The portion of evapotranspiration
sustained by soil moisture derived from precipitation stored in the root zone
(rainwater). It represents the evapotranspiration of green water accessible to
plants [23].

o Blue Evapotranspiration (ETy,.): The portion of evapotranspiration that
relies on irrigation water sourced from surface or groundwater (blue water). It
represents the consumptive use of irrigation water [23].

Elyye = ET, — ETgreen

» Crop Coefficient (k.): A dimensionless factor that represents the ratio of crop
evapotranspiration to reference evapotranspiration, accounting for crop type and
growth stage under optimal (no water stress) conditions.

ET,

ko=t
ET,

= f(crop height, albedo, canopy resistance, soil evaporation)

Since it depends on crop characteristics that change during the growing season,
it is not constant over time [24].

« Water Stress Coefficient (k;): A dimensionless factor (between 0 and 1) that
reduces evapotranspiration due to limited soil water availability [24].

TAW — Dr

ks = T AW — RAW

2.3 Agro-Hydrological models

Agro-hydrological models are essential tools for understanding and quantifying the
interactions between agricultural practices and the water cycle. By simulating pro-
cesses such as soil water dynamics, crop growth, evapotranspiration, and irrigation
management, these models provide valuable insights for water resource management,
crop yield optimization, and sustainability assessments. They are widely applied to
estimate crop water requirements and irrigation scheduling, evaluate the impacts of
land use and climate change on water resources, support decision-making in agri-
cultural planning and water management, and assess the sustainability of cropping
systems in relation to water availability. Beyond practical applications, these models
serve as a critical framework for scientific research and policy development, enabling

10
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evidence-based strategies for sustainable agriculture and resilient water management
under changing climatic and socio-economic conditions.

Several well-established agro-hydrological models have been developed specifically

to simulate crop systems, rather than vegetation in general, and are widely used in
research and practice. Considering the focus of this study on crop evapotranspiration,
particular attention is given to crop-oriented agro-hydrological models.
The AquaCrop model, developed by FAO, focuses on simulating crop growth and yield
under water-limited conditions, emphasizing the effects of water stress on productivity
[25]. CROPWAT, also developed by FAQ, is a simpler model primarily designed to
estimate crop water requirements and irrigation scheduling based on climate, soil, and
crop data [26]. CropSyst is a multi-year, multi-crop, daily time-step cropping systems
simulation model developed to study the effects of climate, soils, and management on
cropping system productivity and the environment. It simulates the soil water and
nitrogen budgets, crop growth and development, crop yield, residue production and
decomposition, soil erosion by water, and salinity [27]. All results obtained in this
thesis relied on the waterCROP model, which is a physically based agro-hydrological
model. It describes the main components of the soil-atmosphere—plant continuum
(such as effective precipitation, leakage, and evapotranspiration) as functions of soil,
crop, and growth stage during the season [28, 29]. While these examples illustrate
some of the most widely used models, it is important to note that many others exist,
varying in complexity, scale, and intended applications, and collectively they have
contributed significantly to improving water management and supporting sustainable
agriculture worldwide.

2.4 Atmospheric moisture recycling

Continental moisture recycling, the process through which terrestrial evapotranspi-
ration returns as precipitation over land, is a fundamental component of the Earth
system [12]. It shapes regional rainfall patterns, influences the spatial propagation of
droughts, and determines whether continental interiors receive sufficient precipitation
to sustain agriculture [14]. Because evapotranspiration flows can travel thousands
of kilometres before re-precipitating, land-use changes such as deforestation or agri-
cultural expansion may alter downwind precipitation regimes, drought severity, and
hydrological dynamics. Although these teleconnections vary over time, they tend to fol-
low consistent spatial patterns, making them a valuable indicator of land—atmosphere
interactions [30].

Estimates indicate that about 45% of terrestrial evapotranspiration contributes to
precipitation over land, underscoring the pivotal role of land surfaces in maintaining
continental rainfall and agricultural productivity [31]. This highlights the need to
explicitly account for atmospheric moisture flows in assessments of water resources and
land management, as land-cover changes can trigger cascading impacts on regional
and global hydrological stability. This thesis aim to further assess the crop-specific
evapotranspiration which contributes to the precipitation over croplands.

The analyses addressed in this study are conducted on a yearly base. While the
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hydrological cycle may not be balanced at local or regional scales within a single
year, it is generally considered closed at the global annual scale [32, 33]. This implies
that the total volume of water evapotranspired over the course of a year (in this
thesis, from croplands) is expected to return to the Earth’s surface as precipitation
within the same year. Although spatial and temporal mismatches may occur, such
as evapotranspiration in one region leading to precipitation in distant or delayed
locations, on average, the global annual water balance remains conserved. The use of
moisture tracking models and the analysis of evaporation sheds are used to investigate
these mismatches.

)R

'-----\

==

ETsouces : |

Psources Pcro Psources Pcro

AL

»

(a) sources (b) crop (c) sinks

Figure 2.3: Schematic representation of the atmospheric branch of the water cycle,
emphasizing two processes: moisture recycling that contributes to cropland precipita-
tion, and moisture recycling resulting from crop evapotranspiration. Adapted from
[14, 34]. Red arrows indicate the water pathway used to assess the contribution of
cropland evapotranspiration to precipitation in downwind areas, with the dashed line
illustrating local moisture recycling within the same region.

As shown in Figure 2.3, water is transported through the atmosphere, precipitates,
and is subsequently re-evaporated from land surfaces. Panel (a) illustrates different
moisture sources (ETgyurees) that contribute to precipitation (Psources), With a focus
on agricultural land shown in panel (b). Cropland evapotranspiration (ET, + ET,)
results in precipitation over croplands (Pe..p), partly returning locally (local moisture
recycling) and partly falling in downwind regions, as shown in panel (c).

2.4.1 Evaporation and Precipitation Shed

In the literature, two complementary concepts are commonly used to describe atmo-
spheric moisture recycling: the evaporation shed and the precipitation shed. Together,
they define the spatial links between evaporation and rainfall. The evaporation shed
(Figure 2.4a) refers to the downwind regions (land or ocean) where precipitation
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originating from evaporation in a given location is expected to fall. Conversely, the
precipitation shed (Figure 2.4b) represents the upwind regions (land or ocean) that
supply the evaporation contributing to precipitation in a given location.

In the context of croplands, these definitions can be adapted as follows: the
evapotranspiration shed indicates the areas where crop evapotranspiration is expected
to return as precipitation, while the precipitation shed identifies the areas from which
the rainfall infiltrating into the soil of croplands originates.

,’/ © \
'..\ »\W 7 Sink Region l'
Terrestrial "~~~ Terrestrial sink Ared -~~~ Oceanic Terrestrial "~~~ Terrestriqj source Ared_ -~~~ Oceanic
Surface <= Crrestrial Sink AT22 - Surface Surface ToA e i e s ( Surface

(a) (b)

Figure 2.4: Schematic representations of (a) evaporation shed and (b) precipitation
shed [20].

2.4.2 Moisture Tracking Models

Moisture recycling models are widely used to trace the movement of water through
the atmosphere. Based on their spatial representation they can be classified as either
Eulerian, which are grid-based, or Lagrangian, which are trajectory-based. In Eulerian
models, moisture is exchanged between discrete grid cells at each time step, whereas
in Lagrangian models, individual air parcels are tracked as their positions evolve over
time [35].

Beyond this fundamental difference, all moisture-tracking approaches require as-
sumptions concerning vertical mixing of moisture, the integration time step, inter-
polation methods, and the spatial and temporal resolution of the forcing dataset.
Consequently, each study must adopt a set of assumptions that balances accuracy in
representing evaporation sheds with computational demands, data availability, and
simulation time [12].

Among the most widely adopted Eulerian approaches is the Water Accounting
Model 2-layers (WAM-2layers), currently available in its third version [36]. This
three-dimensional model simplifies the vertical dimension into two layers and tracks
the transport of atmospheric moisture from sources (surface evaporation) to sinks
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(precipitation), or vice versa. Its spatial resolution directly matches that of the input
forcing data.

A more recent but already widely used alternative is UTrack [12]. UTrack em-
ploys a Lagrangian framework, tracking moisture flows globally at a resolution of
0.25°. It provides a comprehensive database of atmospheric moisture pathways, in-
cluding monthly multi-annual means for the period 2008-2017. UTrack is forced
with ERAB hourly atmospheric reanalysis data (0.25° horizontal resolution) and uses
three-dimensional fields on 25 tropospheric pressure levels, thereby capturing detailed
patterns of moisture transport.

The dataset employed in this thesis is RECON [37], a global atmospheric moisture
connections dataset in NetCDF format. RECON is a post-processed version of UTrack,
providing annual moisture flow volumes (in cubic meters) between evaporation sources
and precipitation sinks. It offers global coverage at 0.5° resolution, averaged over
2008-2017. While the monthly resolution of UTrack is lost, RECON enforces the
closure of the hydrological cycle at the annual scale, ensuring consistency between
global evapotranspiration and precipitation.

2.5 Land and water use changes effects on atmo-
spheric moisture flows

Agricultural production, along with its hydrological consequences, expanded dramati-
cally during the 20th century and is projected to continue rising throughout the 21st
century. This expansion is clearly visible in the trends of areas dedicated to pasture,
cultivated land, particularly irrigated cropland, the volumes of water withdrawn for
irrigation, and the quantities of fertilizers applied. Agriculture represents both a key
driver of land-use change and a critical component of the global water cycle [6]. In
this thesis, within the broader interconnection between agriculture and the water
cycle, particular emphasis is placed on crop-specific evapotranspiration and its role in
moisture recycling.

Human-driven land-use changes affect nearly every component of the hydrological
cycle [38]. Such changes influence how precipitation is distributed, how water infiltrates
soils, moves through rivers and streams, or accumulates as surface flooding. They also
alter the return of moisture to the atmosphere through evaporation and transpiration.
Because the water cycle is highly interconnected, even localized changes can cascade
through the system, ultimately reshaping freshwater availability at regional and global
scales [22].

An emblematic example of land-use change related to the agricultural sector is
deforestation. Clearing forests reduces soil moisture, evaporation, and local rainfall,
while also triggering regional temperature shifts that influence precipitation regimes.
Vegetation regulates these processes through transpiration, the uptake and release of
water via stomata. As described in Section 2.4, about 45% of terrestrial precipitation
originates from land evapotranspiration. Thus, changes in vegetation cover not only
reshape infiltration and runoff but also directly affect atmospheric moisture recycling.

Agricultural expansion is a leading driver of deforestation: between 2001 and 2022,
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an estimated 86% of global deforestation was linked to crop and cattle production [39].
Feed is the main connection between livestock and land use, both directly through
grazing and indirectly through the consumption of cultivated grains and forage [40].
According to FAOSTAT, around 40% of global cereal production in 2022 was used
for animal feed, a proportion that has been steadily increasing. This diversion of
cropland to feed livestock amplifies pressures on both land and water resources.

Water use is reshaped not only by cropland expansion but also by the transition
from rainfed to irrigated agriculture. Although irrigation may not drive a physical
“land-use change,” it substantially increases pressures on the water cycle. Irrigation
withdraws large volumes of blue water, while also enhancing blue evapotranspiration
fluxes into the atmosphere, thereby modifying local and downwind precipitation
patterns [6].

Improved land and water management strategies, such as reforestation, sustainable
irrigation, and conservation agriculture, offer pathways to reduce climate impacts
while adapting to adverse changes already underway. Overall, evidence shows that
changes in land use and land cover alter the water cycle at local, regional, and global
scales, reshaping precipitation, evaporation, flooding, groundwater dynamics, and
freshwater availability [22].
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Chapter 3

Data source and processing

3.1 Climate Data

Originally, the waterCROP model was based on the CRU TS v. 2.0 high-resolution
gridded dataset, which provides long-term averages, with a monthly temporal res-
olution and a spatial resolution of 5 arc-minutes [41]. The model simulates daily
conditions by interpolating monthly data, as explained in detail in Subsection 4.1.2.

To ensure consistency with the RECON dataset, which will be combined with
waterCROP results to identify sink regions, an update of the climatology was necessary.
The RECON dataset is based on monthly ERASH data from 2008 to 2017 with a
spatial resolution of 0.5°. Since ERA5 data [42] are also available at daily resolution,
the waterCROP model was modified to use actual daily data instead of relying on
interpolation from monthly values.

The data were downloaded directly from the Copernicus Climate Data Store
using their API. Downscaling to match the desired spatial resolution was performed
using Climate Data Operators (CDO), which provides more than 600 operators to
manipulate and analyse climate data. The processing employed the CDO function
remap, selecting a conservative remapping method that preserves the integral of
dataset values over the domain during interpolation.

While CRU TS data represent statistical averages accounting for the stochastic
nature of precipitation, ERAb5 data were used without any averaging. As explained
later, the updated daily version of the waterCROP model runs over the entire period
to derive an average yearly crop behavior, rather than calculating it directly from an
averaged climatology.

Since the daily ERAb data are heavy and the simulation which involved their use
requires the use of HPC, monthly averages were also calculated starting from the
previously downscale version of the daily data. The processing employed the CDO
function ymonmean which calculate the mean for each month of each year.
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3.2 Crop Data

In this thesis, all analyses were conducted on three major crops—wheat, maize, and
soy—which together occupied about 33% of global harvested areas. Rainfed and
irrigated harvested areas were sourced from the MapSPAM 2010 v2.0 dataset provided
by the International Food Policy Research Institute (IFPRI) [19]. This dataset has
global coverage, includes 42 crops, and has a spatial resolution of 5 arc-minutes.

To represent specific crops, the waterCROP model requires crop-specific data as
input. The sowing dates and the length of the growing period (LG P) were obtained
from the global dataset MIRCA2000 [43], which has a spatial resolution of 5 arc-
minutes and distinguishes between rainfed and irrigated production.

The daily crop coefficient k. is used in the calculation of actual evapotranspiration.
The model computes k. on a daily basis following predefined curves [28], which are
divided into four stages: initial phase, development stage, midseason, and late season.
Each stage has a specific length, and the corresponding constant values were adopted
from Allen et al. (1998) [24]. Moreover, the length of each stage is expressed as a
fraction of the LGP, with values defined according to Mekonnen and Hoekstra (2011)
9] for different climatic regions.

The daily water stress coefficient £ ; also contributes to the calculation of actual
evapotranspiration. For irrigated production, £, ; is set equal to 1 throughout the
growing period, while for rainfed production it is computed daily following Tuninetti
et al. (2015) [28]. Its calculation uses 30 arc-second maps of available water content
(AW C) from FAO/ITASA/ISRIC/ISSCAS/JRC (2012) [44], aggregated to match the
spatial resolution of the model. Additional inputs to calculate k; ; include precipitation
(as described above), rooting depth Z, and the depletion fraction p, both from Allen
et al. (1998) [24]. The rooting depth is assumed to be maximal in rainfed areas and
minimal in irrigated areas.

3.3 RECON dataset

As presented in Subsection 2.4.2; this thesis adopted the global atmospheric mois-
ture connections NetCDF dataset called RECON [31] to connect the crop-specific
evapotranspiration to their sink areas. The dataset is open-source and can be easily
download [37] but it easy heavy, so also its use requires the use of HPC. Since it offers
global coverage at 0.5° resolution, while waterCROP has a finer resolution, all the
output after the combination of this two will have a resolution of 0.5°.

3.4 Land use datasets

To maintain consistency with the data, the same harvested areas used to run the
waterCROP model were also employed to characterize the regions identified as sinks.
Since the original MapSPAM 2010 v2.0 dataset [19] has a spatial resolution of 5
arc-minutes, it was aggregated to match the output coarser resolution of 0.5°. This
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aggregation was performed using the CDO function gridboxsum, which generates

each output cell by summing the hectares of the corresponding 6 x 6 input cells.

The ISIMIP3 land-sea masks [45] were used to estimate the volume of water
evaporated from crop cultivations that does not precipitate over land but instead

falls over the oceans. The dataset has a spatial resolution of 0.5° consistent with the

RECON dataset, and therefore requires no additional processing. The mask assigns a

value of NaN to ocean-covered cells and a value of 1 to land-covered cells.

Data summary with scale, resolution, reference period and source.

Table 3.1
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Chapter 4

Methods

A N
>

- Crop Green and -
Blue ET _,| Crop Sinks location | Crop Sinks land
waterCROP RECON dataset use analysis
model

Sankey
Global maps Global maps

Figure 4.1: Flowchart describing the methodology adopted in this thesis.

The methodology developed in this work has been proposed to produce and investigate
the location of water sinks of water which originate from specific crop cultivations.
Figure 4.1 illustrate the overview of the methods followed to reach the desired results.
Each section will be breaked down in the following paragraphs. Most of the analysis
were performed using HPC, since the simulations deal with heavy input files.
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4.1 Crop Green and Blue Evapotranspiration eval-
uation with the waterCROP model

Crop Green and Blue ET
waterCROP model

>

ERAS daily Potential Downscaling and daily hydrological balance for both
Evapotranspiration and monthly average d rainfed and irrigated conditions
Total Precipitation
\_/ o
sum on the whole

growing period

Q global year specific Green and ¢
Other inputs Blue ET

and Harvested Areas

from MapSPAM

Global ETgreen and
ETblue for each crop
with 5 src-min resolution

|

Output processing I
[ From .mat to .txt and .nc Upscal.mg Process

Global maps obtained
with QGIS

Figure 4.2: Flowchart describing the methods to obtain crop green and blue evapo-
transpiration adopting the waterCROP model.

The goal of this first part of the thesis is to update production-based water accounting
for the period 2008-2017. To accomplish this goal was used the waterCROP model [28,
29], a physically-based Agro-Hydrological model which solves soil water balance on a
daily basis running on a global grid of 5 arc-minute resolution. It describes the main
components of the soil-atmosphere-plant continuum (such as effective precipitation,
leakage, evapotranspiration, etc.) as a function of soil, crop, and period during the
growing season. The model maps average annual water use for both food and feed
crops. Each crop has maps of actual green and blue evapotranspiration, and irrigation
demand evaluated to compensate for soil water stress over the whole growing period.
This step enables the identification of how much water enters the atmosphere through
evapotranspiration and where, providing the basis to assess the destination of that
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water within the hydrological cycle.

4.1.1 Hydrological balance

e

ORI
|

Precipitation ! }

I..I.!p

Evapotranspiration

Water storage f

Figure 4.3: Water balance components of the waterCROP model: Total Precipita-
tion Pror, Runoff R, Actual Evapotranspiration ET,, and Crop Water Demand (or
Irrigation) 1. Z, ini,Zrmae: stand for initial rooting depth, maximum rooting depth
respectively. Adapted from [29]

The waterCROP model was run to estimate crop evapotranspiration over a single
growing season. It simulates the daily hydrological balance to estimate the daily actual
evapotranspiration, ETj, ; [%}, for each day of the growing period. All details of the
daily estimation remain unchanged from the original model. Figure 4.3 summarizes
all the variables considered in the daily water balance. Few assumption are made
and must be taken into account while examinating the results. On the first day of
the growing period the soil is considered to be at field capacity, the crop is far from
water stress condition. In the irrigated areas, it is assumed that the field never suffer
water stress, so each time the deficit at the end of the day is higher than the Readily
Available Soil Water (RAW or 6*) and the Total Precipitation Pror of that day is
not enough to bring it back to a lower value, the difference is closed by Irrigation I.
The daily values E'T}, ; are then summed over the growing season to obtain the annual
evapotranspiration, ET, cp [mm], for a specific year. This value is subsequently
averaged with results from other years to produce the annual average.

4.1.2 Daily model

The original model has a 360-days calendar and each month have the same length (30
days) and was runned with a average climatology computed on a 30-years time period.
It evaluates the hydrological balance daily, but the Potential Evapotranspiration ETj
and the Total Precipitation Pror are obtained from monthly data. Specifically the
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E'Ty is obtained placing the monthly average value on the 15th day of the month
and assuming a linear behaviour between them, while the monthly cumulative P, is
evenly distributed on the 30 days for each month.

The new version of the model developed for this thesis uses actual daily data, as
presented in the Section 3.1. The model run for all the years of the selected period, in
this case 2008-2017, and then average all the years, in order to obtain a mean crop
behaviour. This shift from monthly to daily data implicate that other changes need
to be done. Since the sowing dates file is based on a 360-days calendar, the new code
convert those information in a 365-days calendar, taking also into account the leap
years.

This new version of the code handles large input datasets and therefore requires
substantial computational time and memory. To evaluate whether this level of detail
was necessary for the scope of the thesis, the daily and monthly versions of the
model were compared at the annual scale, since evapotranspiration ET' values are
ultimately aggregated yearly. The results show that the discrepancy is negligible, with
a correlation higher than 0.98 between the two versions (Figure 4.4). For this reason,
the simulations presented in this thesis were carried out with the monthly model, with
minor adjustments.

To further assess the differences in terms of spatial distribution, a series of global
maps was produced (Figure 4.5), displaying the relative difference defined as:

6[—] _ ETdaily,i[mS] — ETmonthly,i[mS]
’ ETdaily,i [mi’)]

Assuming the daily version of the model to be more accurate, the monthly version
appears to underestimate irrigation requirements in certain regions (e.g., the USA,
Ukraine, France, and Spain), while overestimating them in Italy, Greece, India,
North Korea, and Japan. The Green ET shows only minor differences, with notable
exceptions such as the Virginia region in the USA. Overall, the differences in Total
ET largely mirror the behaviour of Green E'T', as Blue ET is considerably smaller.

Nevertheless, the daily version remains relevant, since its higher temporal resolution
would significantly affect results aggregated at the monthly scale, even if the annual
totals remain nearly unchanged.

4.1.3 Cell insights

To better illustrate the behaviour of the model in daily simulations, a series of plots
was generated. These plots visualize the daily evolution over the growing period for a
single grid cell, under both rainfed and irrigated conditions. Specifically, they include:

« the crop coefficients,

o the rooting depth, compared against the Readily Available Soil Water (RAW or
6*) and the Total Available Soil Water (T AW or Oy p),

o the daily hydrological balance in the soil (depletion D, evolution) and in the
atmosphere (evapotranspiration, ET', evolution).
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Figure 4.4: Scatter plot and correlation of annual ET obtained with the daily and
monthly models. Results are based on wheat cultivations averaged over 2008-2017.

In addition, two further plots summarize the dynamics over an entire hydrological
year. The first highlights the timing and potential overlap of rainfed and irrigated
growing seasons, while the second presents the evolution of green and blue evapotran-
spiration (ET') from the total harvested area of the cell throughout the year. The
annual plots are aligned with the hydrological calendar: in the Northern Hemisphere
they begin on October 1°°, whereas in the Southern Hemisphere they begin on July
15t

Figures 4.6 to 4.9 show the plots described above, intended to demonstrate the
model’s functioning. The selected grid cells correspond to two distinct regions:
Piedmont in Italy and Minas Gerais in Brazil. Further details about these case study
cells are reported in Table 4.1. Simulations were performed withe the monthly version
of the model for both cases in 2008, focusing on wheat cultivation.

In Figures 4.6 and 4.8 (a) and (b), it can be observed that the crop coefficient
dynamics are similar between the rainfed and irrigated cases, even when the two
cultivations do not occur in the same period of the year, as in the Piedmont case,
but instead span different lengths of the growing period. However, the coefficients
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Figure 4.5: Relative difference between the annual ET" obtained with the daily and
monthly models. Results are based on wheat cultivations averaged over 2008-2017.
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Table 4.1: Characteristics of cells selected as case study.

Data H Piedmont Minas Gerais
Coordinates (WGS84) éfgé??)g%?EN ig";g’gg;”\if
Climatic region Temperate (Oceanic)  Tropic

AW C[mm/m] 60 150

Rainfed Harvested Area [ha] 11.1 37.3

Irrigated Harvested Area [ha] || 18.5 1.3

Rainfed Sowing Date 15 Oct 15 May
Irrigated Sowing Date 15 Apr 15 May
Rainfed LG P[days] 270 150

Irrigated LG'P|days] 150 150

do not follow the same progression across the two locations. For example, the case
studies exhibit different initial k. values and durations of the initial stage, reflecting
the distinct climatic regions to which they belong.

Figures 4.6 and 4.8 (¢) and (d) show that only a small portion of the total rooting
depth is actually relevant for plant evapotranspiration. Although maximum rooting
depth is globally defined by [24], the RAW and T AW values also depend on the
AW C, which explains why the maximum values reached in the two locations differ.

The depletion evolution, shown in Figures 4.6 and 4.8 (e) and (f), is closely tied
to the local climate inputs. In Piedmont, the rainfed growing season coincides with
the rainy period, preventing water stress, whereas in Minas Gerais wheat cultivation
under rainfed conditions experiences water stress.

The atmospheric hydrological balance (Figures 4.6 and 4.8 (g) and (h)) reflects the
processes occurring in the root zone, highlighting the partitioning of evapotranspiration
between green and blue water.

Finally, Figures 4.7 and 4.9 illustrate the alternation and varying lengths of rainfed
and irrigated growing seasons, as well as the additional water required to avoid stress
conditions in the two different regions.

4.1.4 Other general updates

In the new version of the model it is possible to directly add the latitude and longitude
of the area of interest as inputs, instead of the rows and columns of the grid. The
code directly source from the input files the dimension of the grid, determining the
spatial resolution of the results without any input from the user. It means that the
code could run also with other resolution if all the input files are consistent in the
dimensions. Finally a few lines were changed to make the code faster, shorter and
more efficient.
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Figure 4.6: Cell Insights - Wheat Piedmont.
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Figure 4.7: Cell Insights over an entire hydrological year - Wheat Piedmont.
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Figure 4.8: Cell Insights - Wheat Minas Gerais.
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Figure 4.9: Cell Insights over an entire hydrological year - Wheat Minas Gerais.
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4.1.5 Output volumes in NetCDF format

To facilitate the combination with the RECON dataset, it is more convenient to
have the results in term of volume instead of height per unit area. To convert the
evapotranspiration the following formula was applied.

3 mm m?

)= 7. 2] a0
In the following steps, the obtained results need to be processed using CDO and
python, for this reason the outputs of the waterCROP model must be saved in a
NetCDF format. A Matlab function A.1 was written to achieve this goal. The function
allow to choose the variable that must be saved, the name of the NetCDF file, the
missing value, the cell size and the unit. By default the reference system is WGS84

with latitude from -90° to 90° and longitude from -180° to 180°.

4.1.6 Results upscaling process

|
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(a) 5 arc-minutes resolution. (b) 0.5 deg resolution.

Figure 4.10: Visual difference between the waterCROP results (a) and the upscaled
version (b).

The waterCROP model provides outputs at a finer spatial resolution compared
to the datasets used later in this work. To combine the waterCROP results with
the RECON dataset, an upscaling procedure is required. Since the outputs are
expressed as volumes (cubic meters of water) per grid cell, the upscaling is performed
by aggregating these volumes into larger cells. In line with the processing of harvested
areas, the CDO function gridboxsum was applied, which generates each output cell
by summing the cubic meters of water from the corresponding 6 x 6 input cells.

Figure 4.10 illustrates the difference between the original waterCROP outputs
(a) and the post-processed upscaled version (b). Although the coarser resolution
implies a loss of spatial detail, it ensures conservation of the total volume of water
evapotranspired by crops (see details in Table 5.4). Because the data represent volumes
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obtained by summation, a consistent visual comparison between the two maps requires
scaling. Therefore, the colorbar of panel (b) is set to correspond to the colorbar of
panel (a) multiplied by 36, which is the number of original cells aggregated into one
upscaled cell.

4.2 Crop-specific evaporation sheds to map water

sinks

/ Crop Sinks location
RECON dataset

fraction of the total Actual Evapotranspiration
due to crop Green and Blue ET

each non-zero cell

cell specific Evaporation Sheds from
both Green and Blue ET

J

RECON datasct with

Y

ERAS annual Actual
Evapotranspiration and
Total Precipitation

sum to obtain the cumulative mean
annual evaporation shed for the crop

\ /

Global ETgreen and
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Global annual
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Actual Evapotranspiration
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Output processing

From .mat to .txt and .nc U[)S('allllg process

Global maps obtained
with QGIS

Figure 4.11: Flowchart describing the methods to obtain crop-specific evapotranspi-
ration sheds adopting the RECON dataset.

The objective of this part of the thesis is to combine crop water use estimates
with the outputs of moisture-tracking models, in order to disentangle the associated
evapotranspiration (E7T") sheds and identify the areas that receive the water evaporated
or transpired by crops. The aim is to locate these sinks and then classify their land
use, as will be explained in Section 4.3.
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By adopting the RECON database, each cultivated pixel can be associated with

its precipitation shed (i.e., the pixels where the rainfall infiltrating into the soil is
expected to originate) and its evapotranspiration shed (i.e., the pixels where the
crop evapotranspiration is expected to fall as precipitation). This approach opens
new possibilities for quantifying the upstream—downstream implications of land-use
changes (such as deforestation, crop switching, or conversion from rainfed to irrigated
cultivation) on atmospheric water dynamics.
This thesis focuses on developing a methodology to derive the evapotranspiration shed
of each cultivated pixel, quantifying the volumes of precipitation attributable to crop
evapotranspiration, and then identify the types of land ultimately sustained by this
recycled water.

4.2.1 Sink maps realization

To obtain cumulative sheds that allow the identification of crop-specific water sinks, a
Python workflow was developed to process and analyse the outputs of the waterCROP
model in combination with the RECON dataset. The code can be applied either to a
selected region or at the global scale.

The first step is to harmonize the longitude coordinates across datasets. Both
ERA5 and RECON use a longitude convention from 0° to 360°, meaning that the
upper-left corner of the grid corresponds to latitude +90°, longitude 0°. Conversely,
the waterCROP outputs (see Section 4.1.5) use a longitude convention from —180° to
180°, where the upper-left corner corresponds to latitude +90°, longitude —180°. To
ensure consistency, the two vertical halves of the waterCROP matrices were swapped.

Since the RECON dataset provides the moisture flow associated with the entire
vegetated surface of each grid cell, the calculation must isolate only the portion
attributable to the specific cultivated crop under analysis. For this reason, the first
part of the code computes a fraction matrix of actual evapotranspiration (ET,) in
volumetric terms, using data from waterCROP. This fraction scales the RECON
moisture flow to the crop level:

ETaJ' [m3]

ETrac iong | 7| = &= 1 a1
hractons [ =] ETgras; [m3]

Two separate loops (for green and blue ET)) iterate over the non-zero elements of
the fraction matrices. For each grid cell, the code extracts the corresponding shed from
RECON and accumulates it to build the global cumulative sheds. During this process,
the code computes the geographic coordinates of the sinks, retrieves the moisture
flow values (expressed as integer units in RECON), and applies the conversion to
volumetric units according to De Petrillo et al. (2025) [31].

Because the calculations involve global-scale summations of small fractions of
volumes per each cell, extended precision is required. The code uses float128
arithmetic to minimize rounding errors and ensure mass conservation.

To illustrate the procedure, evaporation sheds were also computed for a single grid
cell considering wheat cultivations (Figure 4.12). It is important to note that the
Blue shed is plotted on a different scale to enhance visibility.
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Then, the cumulative evaporation sheds for both green and blue ET" were obtained
by summing across all cultivated cells. These cumulative sheds provide the total ET
shed for subsequent analyses. The results are saved as new NetCDF files, ensuring
reproducibility and proper metadata storage.

4.2.2 Statistical relationship between crop evapotranspiration
and sheds

A statistical comparison was carried out between crop evapotranspiration estimated
with the waterCROP model and the corresponding crop-specific evapotranspiration
shed. The objective is to assess how water redistributes itself as precipitation after
being transferred to the atmosphere. As illustrated in Figure 4.12, evapotranspiration
from a single grid cell is dispersed over a wider region, but a statistical comparison was
necessary to evaluate whether this effect is balanced when all sheds are aggregated.

All analyses were performed by comparing values expressed in mm/m?. The vol-
umes from both outputs were converted into evapotranspiration depths by distributing
the volume over the cell area. This conversion was carried out using the inverse of the
equation presented in Section 4.1.5.

The scatter density plots in Figure 4.13 show that waterCROP output values span
a wider range of evapotranspiration depths, while the evapotranspiration shed is
characterized by generally lower values, with a strong concentration near zero. It is
also evident that the two variables exhibit only a weak correlation, with coefficients
ranging from 0.29 to 0.40. In other words, atmospheric processes largely dissolve the
direct relationship between evapotranspiration in a given cell and the precipitation
that can be attributed back to it. Following this analysis, we expect to observe in
the Results Section (5) that high local evapotranspiration from crops will not be fully
compensated by the precipitation returning to land. Instead, values are smoothed:
lower in magnitude but distributed over a broader area, consistent with the behaviour
observed for individual sheds.

4.2.3 Post-processing

Further analyses were conducted on the crop-specific evapotranspiration sheds, combin-
ing these results with annual total precipitation volumes and crop evapotranspiration
volumes previously assessed. The aim was to evaluate agriculture’s contribution to
overall precipitation and its role in recycling water within the same crop cultivations.

To better capture the relative importance of agriculture in the local water balance,
a series of maps was produced showing, for each grid cell, the fraction of annual
precipitation attributable to a specific crop:

ET3h€d7i [mg]
Pfractionvi[_] - W

where ETpcq; is the precipitation in cell 7 attributable to evapotranspiration from
the crop, and Py, is the total annual precipitation in that cell obtained from ERA5
data [42].
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Figure 4.12: Crop-specific ET sheds of a single grid cell.

34



Methods

400

ET,: r = 0.3915 350
300

250

- ET sheds

200

150

T, [mm/m?|

E

100

50

ET, [mm/m?] - waterCROP

(a) Green ET scatter density plot.

- ET sheds

ET), [mm/m?)

(b) Blue ET scatter density plot.

ETy: r = 0.2982

ET;, [mm/m?] - waterCROP

400

ET,y: v = 0.3987

ET,y, [mm/m?] - ET sheds

ET, [mm/m?) - waterCROP

250

200

150

(c) Total ET scatter density plot.

400

350

300

Figure 4.13: Density scatter plot comparing crop evapotranspiration estimates with
crop-specific evapotranspiration sheds. The color bar represents point density, and

both axes are shown on a logarithmic scale.

To assess whether a crop in a given cell contributes more water to the atmosphere
than it receives back from its own global evapotranspiration volume, two metrics were
defined: the annual Evapotranspiration Difference (ETy;sr) and the Crop Recycling

Ratio (CRR):

ET4iri = ETvatercrori — ETshed -

ETyatercROPi—ETshed, i

Acrop
Acell

CRRZ — ETwaterCROP,i

—1

Y

Acrop
Acell

ETyatercropi > 0
ETwaterCROP,i S 0

where all ET terms are expressed in m?, and areas are in hectares. The shed
contribution is scaled by the fraction of the cell covered by the crop, ensuring that
only the water returning to the same cultivated area is considered.
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Finally, to verify mass conservation, global ET" volumes derived from the sheds
were compared against the total ET inputs. Since the global annual water cycle is
closed, any mismatch quantifies the residual error in the workflow.

4.3 Land use classification of crop water sinks

/ Crop Sinks land use analysis \

s A
estimation of the total area in hectares of each
cell of the world

fraction of the total area of the cells
occupied by rainfed or irrigated crops

Harvested Areas from

A 4

MapSPAM 2010 v2.0

and land sea mask y
from ISIMIP3 ( ] . )
volume of water which precipitate on a cell
subdivided by each land use analysed
(N J
y
'd N\

arrangement of Sankey Diagram
nodes, sources, targets and values

Global annual
precipitation due to crop
Actual Evapotranspiration Land use Outputs
(both Green and Blue)
with 0.5° resolution

Sankey Diagrams

Figure 4.14: Flowchart describing the methods to obtain the land use classification
of crop water sinks.

The land-use analysis of crop-specific sinks was performed with a dedicated Python
code. Its purpose is to quantify how ET fluxes from each crop are redistributed across
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different land types, namely other agricultural areas, non-agricultural land, and the
ocean, and to represent these fluxes in the form of a Sankey diagram.

In the present implementation, the analysis focuses on agricultural areas of the
three crops modelled with waterCROP. However, the method can be expanded in
the future to classify all land-use types of the sinks by integrating more detailed
land-use datasets, provided they remain consistent with the harvested areas used in
waterCROP. As described in Chapter 3, a land—sea mask was applied to separate
terrestrial surfaces from the ocean.

The first step in determining how much water precipitates on a specific land type
is to compute the fractional coverage of each land type within every grid cell. This
requires the calculation of the total cell area, approximating Earth as a sphere of
radius R = 6371 km. The surface area of a latitude-longitude grid cell is:

Aceni = R? Alon [sin(lat,,) — sin(lat, )]

where Alon is the longitudinal resolution of the matrix in radians and lat,,, lat, 1
are the latitudinal bounds of the i-th grid cell. The result, computed in m?, is
converted into hectares to match the units of harvested area data.

The land-use fractions are then calculated as:

- Alandtype,i[ha]
fl[ ]_ Acell[ha]

For each grid cell, the water volume that precipitates is multiplied by these fractions,
thereby allocating the moisture fluxes to the different land uses. This procedure also
allows the generation of maps showing the spatial distribution of volumes by land
type.

Finally, the water fluxes are aggregated globally, yielding totals for green and
blue ET precipitating on rainfed cropland, irrigated cropland, the ocean and other
terrestrial surfaces.

These totals, expressed in m?, form the basis of the Sankey diagram. In this
diagram, nodes correspond to crops, land-use categories, and ET types, while links
represent the volumetric flows between them. The output is both visual (the Sankey
plot) and numerical, with the values stored in CSV files for further use.

Since the results of the Sankey diagram depend on the input evaporation sheds, if
the sheds are regional rather than global, the land-use analysis is carried out for the
same specific area.
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Chapter 5

Results

This chapter presents the key findings of the thesis, highlighting both spatial patterns
and hydrological implications of crop-specific evapotranspiration. The analysis begins
with high-resolution maps of evapotranspiration from maize, wheat, and soybean,
revealing how water use varies across regions and crops. These patterns provide the
foundation for understanding how cultivated areas influence atmospheric moisture
flows.

Next, crop-specific evapotranspiration sheds illustrate how water evaporated from
cultivated areas is transported and eventually precipitates downwind. By comparing
the local evapotranspiration from a given crop with the corresponding cumulative
precipitation across the globe, it is possible to evaluate whether the annual water
balance is maintained at the scale of individual cells. Maps of the relative differ-
ences between waterCROP outputs and the cumulative sheds identify regions where
evapotranspiration either exceeds or falls short of the water ultimately returned as
precipitation, offering insight into local versus teleconnected water dynamics.

The analysis then explores the land-use composition of the sink areas, providing
a perspective on which landscapes benefit most from crop-generated moisture and
how agricultural expansion or land management practices might influence these flows.
Finally, the chapter assesses the effects of upscaling from high-resolution waterCROP
outputs to coarser grids on the total annual water volume estimates, highlighting where
aggregation may lead to under- or overestimation and discussing the implications for
interpreting regional and global water budgets.

Overall, this chapter integrates spatial, hydrological, and land-use perspectives
to provide a comprehensive view of how crop cultivation shapes the movement and
redistribution of water in the atmosphere.
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5.1 Crop Green and Blue Evapotranspiration eval-
uation with the waterCROP model

The waterCROP model estimates crop evapotranspiration (ET') over the entire
growing season, both for rainfed and irrigated harvested areas. In previous studies,
ET estimates have often been combined with crop yield data to assess the virtual
water content of agricultural products [28]. In this thesis, however, the model is
employed to quantify crop-specific ET at the global scale in volumetric terms.

The simulations were carried out worldwide using ERA5 climatic data for the
period 2008-2017, focusing on wheat, maize, and soybean. Figures 5.1 to 5.3 present
the resulting annual ET volumes, expressed in millions of cubic meters, showing
how much water enters the atmosphere through crop evapotranspiration. Because
these volumes are computed by multiplying evapotranspiration depth (in mm) by
the harvested area (as described in Section 4.1.5), the spatial patterns are strongly
shaped by the distribution of cultivated land in each grid cell.

Figure 5.1 highlights the widespread extent of maize cultivation at the global level.
The largest E'T' volumes are estimated in the central United States, southern Brazil,
the Po Valley in Italy, the Nile River basin, and northern China.

In general, Blue E'T" values are considerably lower than Green ET', which is why
Total ET tends to mirror the spatial behaviour of Green ET. Nonetheless, exceptions
emerge where irrigation plays a major role. For instance, in the case of wheat
(Figure 5.2), Green ET' (a) is dominant in northern India, while Blue ET' (b) is more
pronounced in the western regions. Here, the two components are of comparable
magnitude, so the spatial distribution of Total ET (c) clearly reflects their combined
influence.

Soybean cultivation is concentrated mainly in the United States, central India,
Brazil, and South America more broadly (Figure 5.3). It should be noted, however,
that irrigated soybean areas are likely underestimated.

Overall, these results provide the baseline for the subsequent analysis of evapotran-
spiration sheds, where the spatial distribution of crop-specific ET will be linked to
downwind precipitation and land-use dynamics.
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Figure 5.1: Annual evapotranspiration from Maize cultivations.
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Figure 5.2: Annual evapotranspiration from Wheat cultivations.
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Figure 5.3: Annual evapotranspiration from Soy cultivations.
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5.2 Crop specific cumulative Evaporation Sheds to
map water sinks

It is well established in the literature that agriculture is sustained not only by direct
water inputs but also by vegetation evapotranspiration, and that land-use changes
can significantly influence rainfall in downwind regions [46, 34, 47]. The innovative
contribution of this work lies in the construction of crop-specific evapotranspiration
sheds, obtained by proportionally summing the contributions of each harvested-area
cell, as detailed in Section 4.2.

Figures 5.4 to 5.6 present the resulting sheds for maize, wheat, and soybean. To
enhance readability, the Blue sheds are plotted on a separate scale: if shown on the
same scale as the Green sheds, their much smaller values would result in poor visibility
and the shed structures would effectively disappear.

Across all sheds, major mountain ranges emerge clearly. Orographic lifting and
rain shadow effects strongly shape precipitation, making the Andes, the Alps, the
Urals, the Himalayas, and the Taihang Mountains stand out in the maps. Beyond
topographic features, atmospheric circulation patterns are also evident: for instance,
cultivations in southern South America contribute to precipitation fluxes directed
toward the South Atlantic Ocean.

The atmosphere also introduces a smoothing effect on evapotranspiration distribu-
tions, as already explained in Section 4.2.2. The distribution of waterCROP ET are
sharply peaked with a steep progression, whereas those of the sheds are smoother,
with lower means and higher standard deviations. This reflects how atmospheric
transport redistributes water over broader areas, dampening localized extremes while
maintaining overall consistency.

The sheds make evident several regionally distinct behaviours. In Europe, maize
(Figure 5.4) and wheat (Figure 5.5) sheds show a marked eastward displacement
relative to the waterCROP source regions (Figures 5.1, 5.2). This implies that reduced
evapotranspiration from Western European crops, for example, due to droughts or
land-use change, could translate into rainfall deficits in Eastern Europe. Local shocks
therefore propagate into downwind regions, highlighting the interconnectedness of
agro-hydrological systems.

In India, although crops are grown throughout the country, much of the precipitation
originating from evapotranspiration converges in the north-east and Nepal. Rivers
such as the Ganges help redistribute this water back to downstream cultivations,
and infiltration recharges aquifers. However, the timescales and sustainability of this
recycling remain open questions.

The comparison between the Po Valley and the Nile Basin illustrates further con-
trasts. Both regions host dense cultivation, but while the Po Valley receives significant
recycled moisture, enhanced by the Alps, the Nile Basin shows low precipitation
feedback from its croplands.

To better capture the relative importance of agriculture in the local water balance,
a series of maps (Figures 5.7 to 5.9) was produced showing, for each cell, the fraction
of annual precipitation attributable to a specific crop.
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These maps provide a powerful diagnostic of agricultural contributions to rainfall.
In some hotspots, maize contributes up to 5% of total annual precipitation: for
example, 3.8% in Minnesota (USA) and nearly 5% in Shanxi and Heilongjiang
(China). Irrigation plays a decisive role in these dynamics. Without irrigation, the
Blue water volumes would follow other pathways; when diverted to fields, they re-enter
the atmosphere at specific locations. For example, in Pakistan, wheat irrigation alone
accounts for around 3.5% of total annual precipitation.

Taken together, these results demonstrate how crop-specific evapotranspiration
sheds connect local cultivation practices to both local and remote rainfall, revealing
critical dependencies between agricultural regions and the atmosphere. They under-
score how changes in land use, irrigation, or climate can reverberate across regions,
reshaping not only local but also downwind hydro-climatic systems.
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Figure 5.4: Annual evapotranspiration shed from Maize cultivations.
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Figure 5.5: Annual evapotranspiration shed from Wheat cultivations.
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Figure 5.6: Annual evapotranspiration shed from Soy cultivations.
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Figure 5.7: Fraction of annual precipitation originated from global Maize cultivations.
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Figure 5.8: Fraction of annual precipitation originated from global Wheat cultiva-
tions.
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Figure 5.9: Fraction of annual precipitation originated from global Soy cultivations.
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5.2.1 Annual crop water balance: donor and recipient areas

To assess whether a crop in a given cell contributes more water to the atmosphere
than it receives back from its own global evapotranspiration volume, two metrics were
defined in Section 4.2.3: the annual Evapotranspiration Difference (ETy;sf) and the
Crop Recycling Ratio (CRR).

Cells with positive C RR values are classified as donor areas, meaning that crops
in these regions export more water to the atmosphere than they regain through
precipitation linked to their own evapotranspiration. Negative values identify recipient
areas, where crops receive more water via atmospheric transport than they locally
release. This effect is particularly pronounced in maps considering only Blue ET,
because rainfed cultivated areas act as recipients of water originating from irrigated
regions.

The scales for positive and negative values are intentionally asymmetric, reflecting
the very different magnitudes of water export and import. A symmetric scale would
obscure these differences and reduce the interpretability of the results.

Notable examples are evident in the maps. In Figure 5.10, the Congo Rainforest
benefits from precipitation originating from maize cultivations. Wheat cultivations in
southern Canada are sustained by moisture from U.S. wheat fields, while wheat fields
in southern China receive precipitation originating from northern China (Figure 5.12).
Large rainfed regions appear as recipients of Blue E'T, whereas intensive irrigation in
India and Pakistan emerges as a net water export, with minimal compensation from
atmospheric recycling.

CRR maps not only illustrate the donors and recipients of water within the
croplands of a given crop but also indicate the extent to which a crop attenuates its
own local evapotranspiration through moisture recycling. Light blue areas exhibit
very low crop recycling, meaning that the contribution of global cultivations to rainfall
in that cell is small relative to its evapotranspiration. Purple areas correspond to
crop recycling higher than 8%, while magenta areas receive more water than they
evapotranspire, classifying them as recipient areas. For instance, wheat cultivations in
southern Canada, eastern Europe, Russia, eastern India, Pakistan, and China benefit
from rainfall originating from other wheat cultivations (Figure 5.13).

This approach enables the identification of regions that act as net exporters or
importers of crop-specific water, highlighting the interdependence between cultivated
areas and the precipitation they help generate downwind. Such insights are crucial for
understanding regional water dynamics and informing irrigation planning and water
management strategies.
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Figure 5.10: Annual difference between maize crop evapotranspiration and the
volume of water redistributed as precipitation originated from the same crop (evapo-
transpiration shed).
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Figure 5.11: Annual Crop Recycling Ratio between maize crop evapotranspiration
and the volume of water redistributed as precipitation originated from the same crop
(evapotranspiration shed).
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Figure 5.12: Annual difference between wheat crop evapotranspiration and the
volume of water redistributed as precipitation originated from the same crop (evapo-
transpiration shed).
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Figure 5.13: Annual Crop Recycling Ratio between wheat crop evapotranspiration
and the volume of water redistributed as precipitation originated from the same crop
(evapotranspiration shed).
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Figure 5.14: Annual difference between soy crop evapotranspiration and the volume
of water redistributed as precipitation originated from the same crop (evapotranspira-
tion shed).
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Figure 5.15: Annual Crop Recycling Ratio between soy crop evapotranspiration
and the volume of water redistributed as precipitation originated from the same crop
(evapotranspiration shed).
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5.3 Land use classification of crop water sinks

The objective of this section is not only to determine where the water originating
from a specific crop re-precipitates, but also to identify the type of land on which it
falls. This analysis helps clarify how crops sustain themselves and other agricultural
systems, revealing the degree to which agricultural moisture is recycled within farming
landscapes. It also highlights which land types may experience increased precipitation
if crop evapotranspiration rises, or reduced precipitation and potential drought if it
declines.

To quantify these flows, the volumes of water precipitating over different land-use
types are aggregated and visualized with Sankey diagrams. These diagrams (Figures
5.16 to 5.18) display how crop-specific evapotranspired water is redistributed across
rainfed and irrigated agricultural areas, other terrestrial surfaces, and the ocean,
providing an intuitive overview of the path of agricultural water in the hydrological
cycle.

The Sankey diagrams reveal that most of the evapotranspired water from crops
re-precipitates over land. This percentage is even higher than the global average
moisture recycling ratio [31], since oceanic evapotranspiration is excluded here and
only cropland sources are considered.

However, due to the smoothing effect of atmospheric transport on evapotranspira-
tion described in Section 5.2, the redistributed volumes are dispersed over much larger
areas than their source regions. As a result, only a small fraction of the precipitation
returns to the same crop type. Among the crops analysed, soy shows the highest
level of self-recycling within its cultivation areas, although the overall percentage
remains low. Furthermore, blue evapotranspiration appears to be more effectively
recycled into agricultural land compared to green evapotranspiration. This pattern
could be further examined by analysing the relative distance and spatial distribution
of irrigated versus rainfed areas.

A more detailed assessment of the “other land” category will require consistent
land-use datasets to further disaggregate this class and better capture the diversity of
terrestrial sinks.
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source crop: maize
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Figure 5.16: Sankey diagram showing the distribution of evapotranspired water
from maize cultivation across different land-use types.

Table 5.1: Tabulated values of evapotranspired water redistribution from maize to
land-use types. These values correspond to the flows illustrated in Figure 5.16.

Sink land use Volume [m?] Percentage [%)]

maize rainfed 1.36E+10 2.22
wheat rainfed 6.28E+09 1.03 5.02
soy rainfed 1.08E410 1.77 6.04
ET Green maize irrigated 2.78E+09 0.46 '
wheat irrigated 2.97E409 0.49 1.02
soy irrigated 4.16E+08 0.07
ocean 1.95E+11 31.96
other land 3.79E+11 62.01
maize rainfed 1.32E4-09 2.31
wheat rainfed 1.07TE+09 1.87 5.83
soy rainfed 9.47TE+08 1.65 7 %9
ET Blue maize irrigated 5.07E+08 0.89 ’
wheat irrigated 5.41E4-08 0.94 1.99
soy irrigated 9.07TE4-07 0.16
ocean 1.28E+10 22.31
other land 4.00E+10 69.87
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source crop: wheat

other land
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Figure 5.17: Sankey diagram showing the distribution of evapotranspired water
from wheat cultivation across different land-use types.

Table 5.2: Tabulated values of evapotranspired water redistribution from wheat to
land-use types. These values correspond to the flows illustrated in Figure 5.17.

Sink land use Volume [m?]

Percentage [%]

maize rainfed 9.06E+409 1.16
wheat rainfed 1.96E+10 2.51 443
soy rainfed 5.88E4-09 0.76 5 06
ET Green maize irrigated 3.03E409 0.39 '
wheat irrigated 8.50E+09 1.09 1.53
soy irrigated 3.93E4-08 0.05
ocean 1.69E+11 21.70
other land 5.63E+11 72.34
maize rainfed 2.20E4-09 1.44
wheat rainfed 2.59E4-09 1.69 4.20
soy rainfed 1.63E+09 1.07 8.49
ET Blue maize irrigated 1.11E4-09 0.72 ’
wheat irrigated 5.36E4-09 3.51 4.29
soy irrigated 8.49E4-07 0.06
ocean 3.17TE+10 20.73
other land 1.08E+11 70.79
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Figure 5.18: Sankey diagram showing the distribution of evapotranspired water
from soy cultivation across different land-use types.

Table 5.3: Tabulated values of evapotranspired water redistribution from soy to
land-use types. These values correspond to the flows illustrated in Figure 5.18.

Sink land use Volume [m?] Percentage [%)]

maize rainfed 9.85E409 2.10
wheat rainfed 4.40E+09 0.94 6.61
soy rainfed 1.68E+410 3.57 718
ET Green maize irrigated 8.94E+08 0.19 '
wheat irrigated 1.44E+09 0.31 0.57
soy irrigated 3.21E408 0.07
ocean 1.86E+11 39.51
other land 2.50E+11 53.33
maize rainfed 4.25E+08 3.02
wheat rainfed 1.54E4-08 1.10 7.06
soy rainfed 4.13E408 2.94 8 59
ET Blue maize irrigated 9.46E+07 0.67 ’
wheat irrigated 5.96E+07 0.42 1.46
soy irrigated 5.20E+07 0.37
ocean 4.35E+09 30.90
other land 8.52E+09 60.58
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5.4 Consistency of total water volumes

An evaluation of the consistency between the waterCROP outputs and the crop-specific
evapotranspiration sheds was conducted. The waterCROP results are considered
reliable, as the model has already been validated through comparisons with the
literature [28]. Assuming a closed annual hydrological cycle, this assessment verifies
whether the shed-based calculations systematically under- or overestimate the total
evapotranspired volumes.

As shown in Table 5.4, the cumulative shed volumes are slightly higher than those
obtained directly from the waterCROP model. However, the discrepancy is very small,
less then 0.05%, indicating that the methodology preserves the overall water balance
with high fidelity.

Table 5.4: Total global water volumes across the different calculation steps, with
the relative difference between them expressed as a percentage. Results indicate
that the cumulative sheds slightly overestimate total volumes compared to the direct
waterCROP estimates, but the discrepancy is minimal, confirming overall conservation
of the water balance.

A B C A—-B B-C A-C
Annual ET Annual ET Annual ET
upscaled shed
[m?] [m?] [m?] (%] (%] (%]

waterCROP gridboxsum RECON

5 arc-min 0.5 deg 0.5 deg
Green 6.12E+11 6.12E+11 6.12E+11 0 -0.0431 -0.0431
Maize Blue 5.75E+10 5.75E+10 5.76E+10 1.33E-14 -0.0437 -0.0437
Total 6.70E+11 6.70E+411 6.70E+11 0 -0.0431 -0.0431
Green 7.81E+11 7.81E+11 7.81E+11 -3.13E-14 -0.0438 -0.0438
Wheat Blue 1.53E+11 1.53E+11 1.53E+11 -4.00E-14 -0.0449 -0.0449
Total 2.80E412 2.80E+12 2.80E+12 -1.74E-14 -0.0440 -0.0440
Green 4.69E+11 4.69E+411 4.70E+11 -6.50E-14 -0.0398 -0.0398
Soy Blue 1.41E+10 1.41E+10 1.41E+410 0 -0.0357 -0.0357
Total 4.84E+11 4.84E+411 4.84E+11 -6.31E-14 -0.0397 -0.0397

62



Chapter 6

Conclusions

Agriculture is deeply intertwined with the hydrological cycle, not only through direct
water inputs such as precipitation and irrigation, but also through the recycling of
water via crop evapotranspiration. Previous studies have shown that land-use changes
and vegetation feedbacks can significantly influence rainfall patterns in downwind
regions, but a crop-specific and globally consistent quantification of these processes
has remained limited. To provide a broader perspective on what happens to the green
water accounted for in the water footprint of crops, and how this water re-enters the
cycle and can be reused, this thesis developed and applied the waterCROP model
in combination with the RECON dataset. The aim was to explore how major crops
contribute to atmospheric moisture recycling and to map where this recycled water
subsequently precipitates.

The approach integrated global crop distribution datasets, actual evapotranspira-
tion (distinguishing between green and blue), and a Lagrangian moisture tracking
framework. This combination enabled the construction of crop-specific evapotranspira-
tion sheds, crop-specific water balances, and land-use classifications of water sinks on
an annual basis. By systematically linking source areas of crop evapotranspiration to
downwind precipitation, the method advances the understanding of how agricultural
water use contributes to the global water cycle.

Crop-specific evapotranspiration sheds were mapped for maize, wheat, and soybean.
These revealed clear geographical patterns shaped by topography and large-scale
atmospheric circulation, showing how agricultural water vapour released in one region
supports rainfall in distant areas. Notably, atmospheric transport smooths out the
intensity of evapotranspiration inputs, redistributing water more evenly across larger
regions. Cumulative precipitation fractions attributable to crop evapotranspiration
were also quantified. In some regions, a single crop contributes up to 5% of annual
precipitation (e.g., maize in Minnesota and in parts of China). Irrigation (Blue ET)
emerged as a major source of precipitation, with examples such as wheat irrigation
in Pakistan contributing more than 3% of annual rainfall locally. By summing
contributions from all crops, the overall importance of agriculture becomes even
clearer. Figures 6.1 show that 5% of contribution is frequently exceeded: with peaks
of 8.2% in North America, 5.8% in Argentina, 5.2% in Ukraine, 5.7% in Romania and
Moldova, 6% in Egypt, 5.7% in northern Kazakhstan, 7.8% in India and Pakistan,
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Figure 6.1: Fraction of annual precipitation originated from global Maize, Wheat
and Soy cultivations.
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Figure 6.2: Crop Recycling Ratio of maize, wheat and soy.

65



Conclusions

and up to 9.8% in China.

Donor and recipient areas (Figure 6.2) were identified for each crop through an
annual water balance analysis. Rainfed croplands often act as recipients, benefitting
from irrigation-fed donor regions. For instance, cultivations in southern Canada
receives water recycled from cultivations in the USA, while intensive irrigation in
South Asia emerges as a net exporter of water vapour, not fully compensated, but
with a relevant contribution from crop recycling.

Wheas

Figure 6.3: Chord diagram showing the distribution of annual evapotranspired water
from maize, wheat and soy cultivation across different land-use types. 6.51% falls
again on croplands of these three crops, 65.74% on other land and 28.75% on oceans.

Land-use classification of sinks demonstrated that most crop evapotranspired water
precipitates back on land rather than the ocean. However, due to the atmospheric
smoothing effect, only a small fraction falls back on the same crop type, with soy
showing the highest, though still limited, self-recycling potential. Sankey diagrams
provided a visual representation of how agricultural water is redistributed across
rainfed cropland, irrigated cropland, other land types, and the ocean. By combining
these land-use classifications, a chord diagram was created (Figure 6.3), summarizing
all the Sankey diagrams presented in Section 5.3. This visualization highlights the
limited extent of water recycling within the same crop type and, more generally, the
small fraction of evapotranspired water that returns to cropland. Overall, only 6.51%
of water evapotranspired from maize, wheat, and soy precipitates again on croplands
of these three crops, while 65.74% falls on other land (including croplands of different
crops), and 28.75% ends up in the oceans.

These findings offer several important insights. First, they underscore that agri-
culture is not only a consumer of water but also a driver of regional and global
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precipitation dynamics. Second, they highlight how local changes in land use or irri-
gation practices can propagate far beyond the field scale, altering water availability in
distant regions. Finally, they demonstrate the need to integrate atmospheric moisture
recycling into assessments of agricultural sustainability and water management.

At the scientific level, the framework and datasets developed in this thesis provide
a basis for refining global water-use estimates by incorporating crop-specific feedbacks.
For policy and management, the identification of donor and recipient areas can inform
transboundary water governance and help evaluate the unintended consequences
of irrigation expansion or land-use change. More broadly, the results contribute
to ongoing discussions on food—water—climate interdependencies, emphasizing the
importance of considering atmospheric water flows in sustainable agriculture strategies.

In conclusion, this thesis advances the understanding of crop-specific moisture
recycling by quantifying how agricultural evapotranspiration contributes to rainfall
across the globe. By filling the gap between field-scale water use and atmospheric-scale
precipitation dynamics, it provides a novel perspective on the role of agriculture in
shaping the global water cycle, offering both conceptual insights and practical tools
for future research and water management.

6.1 Limitations

While the present work provides new insights into agriculture as a driver of regional
and global precipitation dynamics, several limitations need to be acknowledged.

First, the analysis relies on annual averages of evapotranspiration and precipitation.
As described in Section 4.1, evapotranspiration values were aggregated at the yearly
scale to ensure consistency with the RECON dataset. This choice smooths out seasonal
dynamics, which are particularly relevant for crops whose evapotranspiration peaks
may or may not coincide with rainfall seasons. As a result, water recycled from one
crop and precipitating onto another could fall outside its cultivation period. Capturing
seasonal differences would therefore be important to assess whether crop water use
reinforces or counteracts local rainfall regimes in downwind cultivated areas.

Finally, the propagation of uncertainties affects all stages of the analysis. Both the
derivation of crop-specific evapotranspiration sheds (Section 4.2) and the classifica-
tion of precipitation sinks by land-use type (Section 4.3) rely on multiple datasets
and modelling steps, each introducing potential errors. Systematically quantifying
and propagating these uncertainties remains a necessary step for strengthening the
robustness of the results.

6.2 Future developments

Building on the results of this thesis, several directions for future research emerge.
First, the classification of precipitation sinks could be refined by including a broader
set of land-use categories. In Section 4.3, the current analysis distinguishes between
irrigated and rainfed croplands of the three main crops analysed, other terrestrial
areas, and the ocean. Expanding this classification to additional land types would
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allow a more detailed assessment of how agricultural evapotranspiration supports
different ecosystems.

Second, it would be valuable to disentangle the contribution of local moisture
recycling from that of long-range atmospheric transport. Section 5.2 highlighted
the smoothing effect of atmospheric transport on evapotranspiration signals, but a
clearer separation between local and transported components would help to clarify
the relative importance of nearby versus remote feedbacks.

Third, future work should investigate not only the sinks of crop evapotranspiration,
but also the sources of precipitation sustaining agricultural areas. The Lagrangian
atmospheric tracking model adopted in this study already provides the necessary
data to map precipitation origins. This could be extended to build crop-specific
precipitation sheds, thereby identifying what water sources are feeding agriculture.

Finally, a broader integration with land-use change driven by dietary habits would
represent a significant research advancement. As introduced in the background,
deforestation, often linked to global dietary patterns and demand for specific crops,
plays a crucial role in shaping both water availability and atmospheric moisture flows.
Extending the present framework to consider how dietary choices, from single crops
to animal feed and protein sources, influence precipitation patterns would enable a
direct connection between food systems and hydro-climatic impacts.

Understanding how everyday human choices, such as dietary preferences, shape
precipitation patterns and trigger consequences thousands of kilometres away would
be crucial for informing both individuals and decision-makers.
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Appendix A

waterCrop model

/% Note: when you start using the script you should modify the path
/4 to the folder, both for input and for output data.

clear all
clc

close all

tic

4% Inputs

% simulation performed over the following years
period = [2008 2017];

/i Folders to reach input files

% folder with the tif file which define climatic regions
cartella_climate = 'path/to/climatic/regions';

% folder with monthly global ETO
cartella_ETO = 'path/to/ETO';

% folder with monthly global Precipitation
cartella_Pre = 'path/to/Pre';

% folder with global crop coefficients
cartella_kc = 'path/to/kc';

/4 folder with available water contents
cartella_awc = 'path/to/awc';
% Input climatic regions

cd(cartella_climate)
climatic_zone_file = 'thclil.tif';
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82

83

waterCrop model

climate = imread(climatic_zone_file);
/4 Defines climatic regions: each cell has a value between 1 and 10 which
/i corresponds to a different climatic region

ROWS=[1,imfinfo(climatic_zone_file) .Height];
COLS=[1,imfinfo(climatic_zone_file).Width];

% Coordinates input

/4 Latitude and longitude should be written in degrees. The code works both
/4 with two scalar values or with two vectors contatining the start and

% the end of the region.

/4 tnput

lat = [44.76 44.76]; 7 cell in Piedmont
lon = [7.51 7.51];

lat = [90 -89.99]; 7 WORLD

lon = [-180 179.99];

% grid resolution
lat_res = 180 / ROWS(2); 7 5 arcmin in degrees
lon_res = 360 / COLS(2);

% transform the lat and lon into indeces
ind_row = floor(-(1/lat_res)*lat + ROWS(2)/2) +1
ind_col = floor((1/lon_res)*lon + COLS(2)/2) +1
A% Crop selection
raccolto=1:40;
for r = 3:3 /
r
switch raccolto(r)
Y Y S First growing season
case 1 JMaize
cartella='path/to/grow_season_I';
cartella_risultati='QOutput';

mkdir(cartella_risultati)

area_irrigata='area_ir.mat';
area_rainfed='area_rf.mat';

data_semina='semina_rf.mat';
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84 data_semina_irr='semina_ir.mat';
85 lgp='1lgp_rf.mat';

86 lgp_irr='lgp_ir.mat';

87

88 coeff colturale='kc_maize';

89

920 rd_ini=O . 3; Z [m]

91 rd_max_rainfed=1.7; /fao 56 tab 22 pag 190
92 rd_max_irrigated=1;

93 depl_fraction=0.55;

94

95 case 2 /Rice

96 cartella='path/to/grow_season_I';
97 cartella_risultati='Output';

98

99 mkdir (cartella_risultati)

100

101 area_irrigata='area_ir.mat';

102 area_rainfed='area_rf.mat';

103

104 data_semina='semina_rf.mat';

105 data_semina_irr='semina_ir.mat';
106 lgp='1lgp_rf.mat';

107 lgp_irr='lgp_ir.mat';

108

109 coeff_colturale='rice';

110

111 rd_ini=0.3;

112 rd_max_rainfed=1; Jfao 56 tab 22 pag 190
113 rd_max_irrigated=0.5;

114 depl_fraction=0.2;

115

116 case 3 /Wheat

117 cartella='path/to/grow_season_I';
118 cartella_risultati='Output';

119

120 mkdir(cartella_risultati)

121

122 area_irrigata='area_ir.mat'; 7 [hal
123 area_rainfed='area_rf.mat';

124

125 coeff_colturale='wheat'; / name of the Excel sheet
126

127 data_semina='semina_rf.mat';

128 data_semina_irr='semina_ir.mat';
129 lgp='1lgp_rf.mat';

130 lgp_irr='lgp_ir.mat';

131

132 rd_ini=0.3; 7 [m]

71



133

134

135

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

159

160

161

162

163

164

165

166

167

168

170

171

172

173

174

175

176

177

178

179

181

waterCrop model

rd_max_rainfed=1.8; 7 [m] JSiebert and doll
rd_max_irrigated=1.5; J [m]
depl_fraction=0.55;

case 4 /Soy
cartella='path/to/grow_season_I';
cartella_risultati='Output';

mkdir(cartella_risultati)
coeff_colturale='kc_soybean';

area_irrigata='area_ir.mat';
area_rainfed='area_rf.mat';

data_semina='semina_rf.mat';
data_semina_irr='semina_ir.mat';
lgp="1lgp_rf.mat';
lgp_irr='lgp_ir.mat';

rd_ini=0.3;

rd_max_rainfed=1.30; /Siebert and doll
rd_max_irrigated=0.60;
depl_fraction=0.50;

end

/4 Crop characteristics

cd(cartella)

/4 cultivated area with 5r5 minutes of arc resolution
/4 two rasters, area rainfed and irrigated area
area_irr=importdata(area_irrigata); / [ha]
area_rain=importdata(area_rainfed); / [hal
area_tot=area_irr+area_rain; / [ha]

% sowing date with 5z5 minutes of arc resolution in a 360days
/4 calendar

day_plant_modified_O=importdata(data_semina);
day_plant_modified_irr_O=importdata(data_semina_irr);

/4 length of growing period of the crop

/4 calculated as data_raccolta-data_semina (harvest date - sowing date)
lgp_ini=importdata(lgp);

lgp_ini_irr=importdata(lgp_irr) ;

/4 crop coefficient and length of growing phases in percentages
/i Hoekstra wvalues, function of the 10 climatic regions
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182 cd(cartella_kc)

183 kc=x1lsread('kc_global NEWCROPS_def.xlsx',coeff_colturale,'C17:126');
184

185 /4 sotl water capacity

186 cd(cartella_awc)

187 awc_final=importdata('awc_mmalm.mat');

188

189/ Initialization

190

191 4 initialization of matrices of final results
192 ETc_tot_rain=zeros(ROWS(2),COLS(2)); /7 Crop Evapotranspiration
193 ETc_tot_irr=zeros(ROWS(2),COLS(2));

194

195 4 RAINFED: only precipitation

16 /4 Total Evapotranspiration is Green Evapotranspiration
197/ effective evapotranspiration: ETc*ks

108 ETa_tot=zeros(ROWS(2),COLS(2));

199} precipitation totally infiltrated in the soil
200 Ptot_rf=zeros(ROWS(2),COLS(2));

200 Ptot_gr_seas_rf=zeros(ROWS(2),COLS(2));

202

203, IRRIGATED

200 I_tot=zeros(ROWS(2),COLS(2));

205 ETgreen_tot=zeros(ROWS(2),COLS(2));

206 ETblue tot=zeros(ROWS(2),COLS(2));

207 J coincide with ETa because k_s=1

208 CWU_tot=zeros(ROWS(2),COLS(2));

200 J precipitation totally infiltrated in the soil
210 Ptot_ir=zeros(ROWS(2),COLS(2));

211 Ptot_gr_seas_ir=zeros(ROWS(2),COLS(2));

212

213 ETO_tot_rf=zeros(ROWS(2),COLS(2));

214 ETO_tot_ir=zeros(ROWS(2),COLS(2));

215

216

217 4/ Here starts the code that run for each year

218

210 for y=period(1,1):period(1,2) A run for each year
220 yy = y-period(1,1)+1; /4 index which goes from 1 to number of years

221
220 ) 15 it a leap year?
223 if mod(y,4) == 0

224 ndays = 366; [/ Leap year

225 days_in_months365 = [31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31];
226 else

227 ndays = 365; / Non-leap year

228 days_in_months365 = [31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31];
229 end

230
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231

232} Input global datly ETO and Precipitation
233

234 J Input raster of Global Daily Mean ETO.
235§ Spatial resolution: 5 minutes of arc

236 cd(cartella_ETO)

237 f£ileETO = ['dailyETO_' num2str(y) '_WC.nc'];
233 ETO_orig = ncread(fileETO, 'pev');

239 ETO = pagetranspose(ETO_orig); /% to have the array with rows,cols,days
220 ETO = ETO*(-1000)*24; 4 from m/h to mm/day

241

242 ETO(ETO < 0) = NaN;

243

244} Input raster of Global Cumulative Daily Precipitation [mm].
25} Spatial resolution: 5 minutes of arc

2146 cd(cartella_Pre)

2147 filePre = ['dailyPre_' num2str(y) '_WC.nc'];

248 Pre_orig = ncread(filePre, 'tp');

249 Pre = pagetranspose(Pre_orig);

250 Pre = Prex1000%24; % from m to mm

251

252} Conversion from 360days calendar to 365days

253/ (or 366 for leap years) for SOWING DATES

254

255 day_plant_modified = day_plant_modified_O;

256 day_plant_modified_irr = day_plant_modified_irr_O;
257

258 ) Define the number of days in each month for a year
250 days_in_months360 = 30*ones(1,12);

260

261/ Create a cumulative sum of days in the months

262 cum_days365 = cumsum(days_in_months365) ;

263 cum_days360 = cumsum(days_in_months360) ;

264

265§ Initialize an array to store converted days (same size as dates_360)
266 dates_365 = zeros(ROWS(2), COLS(2));

267 dates_365_irr = zeros(ROWS(2), COLS(2));

268

269 for i = 1:ROWS(2)

270 for j = 1:C0OLS(2)

271 day_360 = day_plant_modified(i, j);

272 day_360_irr = day_plant_modified_irr(i, j);

273

274 /4 Find the month for the given day

275 mon = find(cum_days365 >= day_360, 1);

276 mon_irr = find(cum_days365 >= day_360_irr, 1);

277

278 if mon ==

279 day_of_year = day_360; / If it's the first month
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else
day_of_year = day_360 +
cum_days365(mon-1) - cum_days360(mon-1);
end

if mon_irr ==
day_of_year_irr
else
day_of_year_irr = day_360_irr +
cum_days365(mon_irr-1) - cum_days360(mon_irr-1);

day_360_irr; / If it's the first month

end

/4 Store the converted day
dates_365(i, j) = day_of_year;
dates_365_irr(i, j) = day_of_year_irr;
end
end

day_plant_modified = dates_365;
day_plant_modified_irr = dates_365_irr;

TIBBRIBBIB BB I DI s 1 1ahs s 1o Ta s 1 1o s 1 1o s s 1o 2o s e Do 15 1 1o 25 s 1o 2 15 1 o 15 s 1o s s o 1 25 0 25 1 o

A% Calcultations start here

for m = ind_row(1):1:ind_row(2) % read along the rows
for n = ind_col(1):1:ind_col(2) /% read along the columns

if area_tot(m,n)>0 && climate(m,n)>0 &&
awc_final(m,n) && ETO(m,n,1)>=0 && Pre(m,n,1)>=0

ETO_daily=squeeze(ETO(m,n,:));
Pre_tot_daily=squeeze(Pre(m,n,:));
4k build kc and lgp based on the climatic zone
sel_climate = climate(m,n);
if sel_climate ~= 0
kc_ini=kc(sel_climate,1);
kc_mid=kc(sel_climate,?2);
kc_end=kc(sel_climate,3);
lgp_2=round(lgp_ini(m,n) .*kc(sel_climate,5));

lgp_3=round(lgp_ini(m,n) .*kc(sel_climate,6));
lgp_4=round(lgp_ini(m,n).*kc(sel_climate,7));
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329 lgp_1=1gp_ini(m,n)-1gp_2-1gp_3-1gp_4;

330

331

332 lgp_2_irr=round(lgp_ini_irr(m,n).*kc(sel_climate,5));
333 lgp_3_irr=round(lgp_ini_irr(m,n) .*kc(sel_climate,6));
334 lgp_4_irr=round(lgp_ini_irr(m,n).*kc(sel_climate,7));
335 lgp_1_irr=1gp_ini_irr(m,n)-1gp_2_irr-lgp_3_irr-lgp_4_irr;
336

337 else

338 kc_ini=0;

339 kc_mid=0;

340 kc_end=0;

341 1lgp_1=0;

342 lgp_2=0;

343 lgp_3=0;

344 lgp_4=0;

345 lgp_1_irr=0;

346 lgp_2_irr=0;

347 lgp_3_irr=0;

348 lgp_4_irr=0;

349 end

351 4% build kc in the rainfed and in the irrigated case

352 1gp=lgp_1+1gp_2+1gp_3+1lgp_4;

353 lgp_irr=1gp_1_irr+lgp_2_irr+lgp_3_irr+lgp_4_irr;

354  kc_crop=zeros(lgp,1);

355 kc_crop_irr=zeros(lgp_irr,1);

356

357/ Rainfed

358 kc_crop(l:1gp_1)=kc_ini;

350 for i=lgp_1+1:1gp_1+1gp_2

360 kc_crop(i)=(kc_mid-kc_ini)/lgp_2*(i-1lgp_1)+kc_ini;

361 end

362 kc_crop(lgp_2+1lgp_1+1:1gp_2+1lgp_1+1lgp_3)=kc_mid;

363 for i=lgp_2+1gp_1+1+1gp_3:1gp

364 kc_crop(i)=(kc_end-kc_mid) /1gp_4*(i-1lgp_3-1lgp_2-1lgp_1)+kc_mid;
365 end

366

367

ses 4 Irrigated

360 kc_crop_irr(l:1gp_1_irr)=kc_ini;

sro  for i=lgp_1_irr+1:1gp_1_irr+lgp_2_irr

371 kc_crop_irr(i)=(kc_mid-kc_ini)/1gp_2_irr*(i-lgp_1_irr)+kc_ini;
372 end

373 kc_crop_irr(lgp_2_irr+lgp_1_irr+1:1gp_2_irr+lgp_1_irr+lgp_3_irr)=kc_mid;
sra  for i=lgp_2_irr+lgp_1_irr+1+lgp_3_irr:lgp_irr

375 kc_crop_irr(i)=(kc_end-kc_mid) /1gp_4_irr*
376 (i-1gp_3_irr-1gp_2_irr-1lgp_1_irr)+kc_mid;
377 end
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378

a9/ function to calculate the temporal variability of the crop rooting depth
ss0 /4 wvalues from FAO 56 tabella 22, pag 163. Two wvalues are given.
381

382

383 /4 in the RAINFED scenario the mazimum depth was selected

ssa  rd=zeros(lgp,1);

385 rd(1)=rd_ini;

3s6 for i=2:1gp_1+1lgp_2

387 rd(i)=rd_ini+(rd_max_rainfed-rd_ini)/(lgp_1+lgp_2)*i;

388 end

s3s9 rd(lgp_1+lgp_2+1:1gp)=rd_max_rainfed;

390

301/ in the IRRIGATED scenarto the minimum depth was selected

302 rd_irrigated=zeros(lgp_irr,1);

393 rd_irrigated(1)=rd_ini;

394 for i=2:1gp_1_irr+lgp_2_irr

395 rd_irrigated(i)=rd_ini+(rd_max_irrigated-rd_ini)./
396 (lgp_1_irr+lgp_2_irr)x*i;
397 end

39s rd_irrigated(lgp_1_irr+lgp_2_irr+1:1gp_irr)=rd_max_irrigated;
399

400 J calculate TAWC in the RAINFED scenario

101 tawc=zeros(lgp,1);

402 for i=1:1gp

403 %4 taw [mm(water)/m(soildepth)]
404 tawc(i,1)=awc_final(m,n).*rd(i,1);
405 end

406

407 J calculate TAWC in the IRRIGATED scenarto
108 tawc_irrigated=zeros(lgp_irr,1);

409 for i=1:1gp_irr

410 % [mm(water)/m(sotldepth)]
411 tawc_irrigated(i,1)=awc_final(m,n) .*rd_irrigated(i,1);
412 end

413

a1a / definition of the deplietion fraction wvector
a5/ values from FAO 56

416} this parameter was constidered constant throughtout the whole growing
a7 ) period

418

419} Rainfed

420 f=zeros(lgp,1);

421 f(1l:1gp)=depl_fraction;

422

423} Irrigated

424 f_irr=zeros(lgp_irr,1);

425 f_irr(l:1gp_irr)=depl_fraction;

426
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427} estiamtion of RAWC in the RAINFED scenario
428} rawc=tawc*fraction

420 rawc=zeros(lgp,1);

430 for t=1:1gp

431 rawc(t,1)=tawc(t,1) .*xf(t);

432 end

433

43¢} estiamtion of RAWC in the IRRIGATED scemnario

435 rawc_irrigated=zeros(lgp_irr,1);

436  for t=1:1gp_irr

437 rawc_irrigated(t,l)=tawc_irrigated(t,1) .*f_irr(t);
438 end

439

440

a1 /) tnitialization of hydrological balance matrices
12 deficit_start=zeros(lgp,1);

443 deficit_start_i=zeros(lgp_irr,1); /4 I balance
124 deficit_st_irrigated = zeros(lgp_irr,1); /4 II balance

445

116 deficit_end=zeros(lgp,1);

a7 deficit_end_i=zeros(lgp_irr,1); 7 I balance
113 deficit_end_irrigated = zeros(lgp_irr,1); /4 II balance

449

450 surplus=zeros(lgp,1);

451 surplus_i=zeros(lgp_irr,1);

452

453 ETc_daily=zeros(1lgp,1);

454 ETc_daily_irr=zeros(lgp_irr,1);
455

as6 ) rainfed

457 ETa_daily=zeros(1lgp,1);

459 ) irrigated

s60 ETgreen_daily=zeros(lgp_irr,1);
461 CWU_daily=zeros(lgp_irr,1);

162 ETblue_daily=zeros(lgp_irr,1);

464 ks_rain=zeros(lgp,1);

465 ks=zeros(lgp_irr,1);

166 ks_irrigated = zeros(lgp_irr,1);

467

16s Pre_eff_daily=zeros(lgp,1);

169 Pre_eff_daily_i=zeros(lgp_irr,1);

470 Pre_tot_daily_growing_season = zeros(lgp,1);

a1 Pre_tot_daily_growing season_IR = zeros(lgp_irr,1);
472

a3 I=zeros(lgp_irr,1);

ara ) Initialization of vectors for daily ETO during the crop growing phases.
a5 ETO_rf=zeros(lgp,1);
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ETO_ir=zeros(lgp_irr,1);

ETgreen_year=zeros(ndays, 1) ;
ETblue_year=zeros(ndays,1);

4% Hydrological balances

% RAINFED

/i For each cell estimation of daily ETc, ETa, ETgreen, CWU and ETblue.

/4 Sum each day to have the total corresponding to the whole growing period.
if area_rain(m,n)>0 && day_plant_modified(m,n)>0

day_start=day_plant_modified(m,n);
day_rain=day_plant_modified(m,n)+1; 7 2nd day of the gs

ETc_daily(1,1)=kc_crop(l,1)*ET0_daily(day_start,1);

% HYDROLOGICAL BALANCE to compute ks

deficit_start(1,1)=0;

ETa_daily(1,1)=ETc_daily(1,1);
deficit_end(1,1)=ETa_daily(l,1)+deficit_start(1l,1);
ks_rain(i,1)=1;

Pre_eff_daily(1l,1)=Pre_tot_daily(day_start,1);
Pre_tot_daily_growing season(l,1)= Pre_tot_daily(day_start,1);
surplus(1,1)=0;

ETO_rf(1,1)=ETO_daily(1,1);

Z first balance rainfed

for i=2:1gp

ETO_rf(i,1)=ET0_daily(day_rain,1);
ETc_daily(i,1)=kc_crop(i,1) .*ET0_daily(day_rain,1);
Pre_tot_daily_growing season(i,1)= Pre_tot_daily(day_rain,1);

if deficit_end(i-1,1)-Pre_tot_daily(day_rain,1)<0
deficit_start(i,1)=0;
surplus(i,1)=Pre_tot_daily(day_rain,1)-deficit_end(i-1,1);
/4 surplus is runoff, what does mot infiltrate

else

deficit_start(i,1)=deficit_end(i-1,1)-Pre_tot_daily(day_rain,1);

surplus(i,1)=0;

end

if Pre_tot_daily(day_rain,1)>0
Pre_eff_daily(i,1)=Pre_tot_daily(day_rain,1)-surplus(i,1);
else
Pre_eff_daily(i,1)=0;
end
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if deficit_start(i,1)>=rawc(i,1)
ks_rain(i,1)=(tawc(i,1)-deficit_start(i,1))/
(tawc(i,1)-rawc(i,1));

else ks_rain(i,1)=1;

end

if ks _rain(i,1)>1
ks_rain(i,1)=1;
end

if ks_rain(i,1)<0
ks_rain(i,1)=0;
end

ETa_daily(i,1)=ks_rain(i,1)*ETc_daily(i,1);
deficit_end(i,1)=deficit_start(i,1)+ETa_daily(i,1);

day_rain=day_rain+1;

if day_rain>=ndays /4 last day of the year
day_rain=1; /4 first day of the year
end

end

ETa_tot(m,n) = ETa_tot(m,n) + sum(ETa_daily,'omitnan');

ETc_tot_rain(m,n) = ETc_tot_rain(m,n) + sum(ETc_daily, 'omitnan');
ETO _tot_rf(m,n) = ETO_tot_rf(m,n) + sum(ETO_rf,'omitnan');
Ptot_rf(m,n) = Ptot_rf(m,n) + sum(Pre_eff_daily, 'omitnan');
Ptot_gr_seas_rf(m,n) = Ptot_gr_seas_rf(m,n) +
sum(Pre_tot_daily_growing_season, 'omitnan');

end

4% Cell Insights Plots RAINFED
if isempty(lat) == 0 && isempty(lon) ==

% coefficients

figure (1)
plot(l:1:1gp,kc_crop,"LineWidth",2)
hold on
plot(l:1:1gp,ks_rain,"LineWidth",2)
grid on
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xlabel ({'Growing period [days]', },'Interpreter','latex')

x1im([1 1gp]l)

ylabel('[-]','Interpreter','latex')

ylim([0 1.21)

title(['(a) Coefficients RAINFED - ','Lat: ',num2str(lat(1)),
" Lon: ',num2str(lon(1)), ' - Year ', num2str(y)],
'Interpreter', 'latex')

legend('Crop Coefficient $k_c$','Stress Coefficient $k_s$',
'Location', 'sw', 'Interpreter', 'latex')

set(gcf, 'Units', 'centimeters', 'Position', [1 1 16 10]);

ax = gca;

ax.TickLabelIlnterpreter = 'latex';
print(gcf, 'coefficients_rf.svg', '-dsvg', '-r300');
hold off

% rooting depth
figure (2)
plot(l:1:1gp,-rd*1073, 'Color"', '#7E2F8E',"LineWidth",2,
'DisplayName', 'Rooting depth ($Z_r$)')
hold omn
plot(l:1:1gp,-rawc, 'Color', '#EE510E',"LineWidth",2,
'DisplayName', 'Readily Available soil Water ($RAW$ or $\theta*$)')
plot(l:1:1gp,-tawc, 'Color', '#A2142F',"LineWidth",2,
'DisplayName', 'Total Available soil Water ($TAW$ or $\theta_ {WP}$)')
grid on
xlabel('Growing period [days]','Interpreter','latex')
x1im([1 1gpl)
ylabel(' [mm]','Interpreter','latex')
ylim([-2000 0]1)
title(['(c) Rooting depth RAINFED - ','Lat: ',num2str(lat(1)),
" Lon: ',num2str(lon(1)), ' - Year ', num2str(y)],
'Interpreter','latex')
legend('Location', 'southoutside', 'Interpreter', 'latex')
set(gcf, 'Units', 'centimeters', 'Position', [1 1 16 10]);
ax = gca;

ax.TickLabelIlnterpreter = 'latex';
print(gcf, 'root_rf.svg', '-dsvg', '-r300');
hold off

% deficit
figure (3)
plot(l:1:1gp,-deficit_start, 'Color', '#EDB120',"LineWidth",2,
'DisplayName', 'Depletion at the beginning of the day')
hold on
plot(l:1:1gp,-deficit_end, 'Color', '#006B08',"LineWidth",2,
'DisplayName', 'Depletion at the end of the day')
plot(l:1:1gp,-rawc, 'Color', '#EE510E',"LineWidth",2,
'DisplayName', 'Readily Available soil Water ($RAW$ or $\thetax$)')
plot(l:1:1gp,-tawc, 'Color', '#A2142F',"LineWidth",2,
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623 'DisplayName', 'Total Available soil Water ($TAW$ or $\theta_{WP}$)')
624 grid on

625 xlabel ('Growing period [days]','Interpreter','latex')

626 x1im([1 1gpl)

627 ylabel(' [mm]','Interpreter', 'latex')

628 ylim([-300 0]1)

629 title([' (e) Hydrological balance in the soil RAINFED - ',

630 'Lat: ',num2str(lat(1)), ' Lon: ',num2str(lon(1)), ' - Year ',
631 num2str(y)], 'Interpreter', 'latex')

632 legend('Location', 'southoutside', 'Interpreter', 'latex')

633 set(gcf, 'Units', 'centimeters', 'Position', [1 1 16 10]);

634 ax = gca;

635 ax.TickLabelInterpreter = 'latex';

636 print(gcf, 'depletion_rf.svg', '-dsvg', '-r300');

637 hold off

638

639 figure (4)

640 plot(l:1:1gp,Pre_eff_daily, 'Color', '#006B08',"LineWidth",2,

641 'DisplayName', 'Effective Daily Precipitation $P$') / dark green
642 hold on

643 plot(1:1:1gp,ETO_rf, 'Color','#A2142F',"LineWidth",2,

644 'DisplayName', 'Potential Evapotranspiration $ET_0$')

65 plot(1:1:1gp,ETc_daily, 'Color','#EES10E',"LineWidth",?2,

646 'DisplayName', 'Crop Evapotranspiration $ET_c$')

647 plot(l:1:1gp,ETa_daily, 'Color','#EDB120',"LineWidth",2,

648 'DisplayName', 'Actual Evapotranspiration $ET_a$')

649 fi11([1:1:1gp 1lgp:-1:1]1, [(ETa_daily); zeros(length(ETa_daily),1)],
650 [0.4660 0.6740 0.1880], 'FaceAlpha',0.3,

651 '"EdgeColor',"none", 'DisplayName', '$ET_{greenl}$')

652 grid on

653 xlabel('Growing period [days]','Interpreter','latex')

654 x1lim([1 1gpl)

655 ylabel(' [mm/day]','Interpreter','latex')

656 ylim ([0 9]1)

657 title(['(g) Hydrological balance in the atmosphere RAINFED - ',
658 'Lat: ',num2str(lat(1)),'Lon: ',num2str(lon(1)), ' - Year ',
659 num2str(y)], 'Interpreter', 'latex')

660 legend('Location', 'nw', 'Interpreter','latex')

661 set(gcf, 'Units', 'centimeters', 'Position', [1 1 16 10]);

662 ax = gca;

663 ax.TickLabelInterpreter = 'latex';

664 print(gcf, 'balance_rf.svg', '-dsvg', '-r300');

665 hold off

666

667 end

668
669 AIRRIGATED

670
671 if area_irr (m,n)>0 &% day_plant_modified_irr(m,n)>0
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672

673 day_start_irr=day_plant_modified_irr(m,n);

674 day_irr=day_plant_modified_irr(m,n)+1;

675

676 deficit_start_i(1,1)=0;

677 ks(1,1)=1;

678 ks_irrigated(l,1)=1;

679 ETc_daily_irr(1,1)=kc_crop_irr(1,1) .*ETO_daily(day_start_irr,1);
680

681 Pre_eff_daily_i(1,1)=Pre_tot_daily(day_start_irr,1);

682 Pre_tot_daily_growing_season_IR(1,1)=Pre_tot_daily(day_start_irr,1);
683

684 surplus_i(1,1)=0;

685 CWU_daily(1,1)=ETc_daily_irr(1,1); % no irrigation on the first day
686 ETgreen_daily(1,1)=CWU_daily(1,1); 7 only green ET

687 deficit_end_i(1,1)=CWU_daily(l,1)+deficit_start_i(1,1);

688 ETblue_daily(1,1)=0;

689 I(1,1) = 0;

690 deficit_st_irrigated(1,1) = 0;

691 deficit_end_irrigated(l,1) =

692 deficit_st_irrigated(1,1)+CWU_daily(1,1)-I(1,1);

693

694 ETO_ir(1,1)=ETO_daily(day_start_irr,1);

695

696 for i=2:1gp_irr

697 ETO_ir(i,1)=ET0_daily(day_irr,1);

698 ETc_daily_irr(i,1)=kc_crop_irr(i,1) .*ETO_daily(day_irr,1);
699 Pre_tot_daily_growing_season_IR(i,1)= Pre_tot_daily(day_irr,1);
700

701 if deficit_end_i(i-1,1)-Pre_tot_daily(day_irr,1)<0

702 deficit_start i(i,1)=0;

703 surplus_i(i,1)=Pre_tot_daily(day_irr,1)-

704 deficit_end_i(i-1,1);

705 Pre_eff_daily_i(i,1)=deficit_end_i(i-1,1);

706 else

707 deficit_start _i(i,1)=deficit _end i(i-1,1)-

708 Pre_tot_daily(day_irr,1);

709 surplus_i(i,1)=0;

710 Pre_eff_daily_i(i,1)=Pre_tot_daily(day_irr,1);

711 end

712

713 if deficit_start_i(i,l1)>=rawc_irrigated(i,1)

714 /i water stress, so irrigation

715 ks(i,1)=(tawc_irrigated(i,1)-deficit_start_i(i,1))/
716 (tawc_irrigated(i,1)-rawc_irrigated(i,1));

717

718 else

719 ks(i,1)=1;

720 end
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721

722

723 if ks(i,1)>1

724 ks(i,1)=1;

725 end

726

727 if ks(i,1)<0

728 ks(i,1)=0;

729 end

730 ETgreen_daily(i,1)=ks(i,1)*ETc_daily_irr(i,1);

731 deficit_end_i(i,1)=deficit_start_i(i,1)+ETgreen_daily(i,1);

732
733 /4 balance with irrigation
73¢  deficit_st_irrigated(i,l)=deficit_end_irrigated(i-1,1)

735 -Pre_tot_daily(day_irr,1);
736 if deficit_st_irrigated(i,1)<0
737 deficit_st_irrigated(i,1)=0;
738 end

739
720 if deficit_st_irrigated(i,l)>=rawc_irrigated(i,1)
741

742

743 Yfmmmmm VERSIONE 1.1=============m—m——mmm e~
744 /4 irrigation to have ks=1

745 I(i,1)=deficit_st_irrigated(i,l)-rawc_irrigated(i,1);

746 e

747

78} ks_irrigated(i,1) = 1;

740 deficit_st_irrigated(i,1) = deficit_st_irrigated(i,1) - I(i,1);

750 ks_irrigated(i,1)=(tawc_irrigated(i,1)-deficit_st_irrigated(i,1))/

751 (tawc_irrigated(i,1)-rawc_irrigated(i,1));

752

753 else

754 I(i,1)=0;

755 ks_irrigated(i,1)=(tawc_irrigated(i,1)-deficit_st_irrigated(i,1))/
756 (tawc_irrigated(i,1)-rawc_irrigated(i,1));

757 end

758

759 if ks_irrigated(i,1)>1
760 ks_irrigated(i,1)=1;
761 end

762

763 if ks_irrigated(i,1)<0

764 ks_irrigated(i,1)=0;

765 end

766

767 A VERSIONE 1.1-————==——=——————————————————————
768 CWU_daily(i,1)=ks_irrigated(i,1)*ETc_daily_irr(i,1);

769 deficit_end_irrigated(i,l)=deficit_st_irrigated(i,1)+CWU_daily(i,1);
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ETblue_daily(i,1)=CWU_daily(i,1)-ETgreen_daily(i,1);

day_irr=day_irr+1;

if day_irr>=ndays % last day of the year
day_irr=1; /4 first day of the year
end
end

ETgreen_tot(m,n) = ETgreen_tot(m,n) + sum(ETgreen_daily, 'omitnan');

CWU_tot(m,n) = CWU_tot(m,n) + sum(CWU_daily, 'omitnan');

ETblue_tot(m,n) = ETblue_tot(m,n) + sum(ETblue_daily, 'omitnan');

I tot(m,n) = I _tot(m,n) + sum(I,'omitnan');

ETc_tot_irr(m,n) = ETc_tot_irr(m,n) + sum(ETc_daily_irr, 'omitnan');

ETO_tot_ir(m,n) = ETO_tot_ir(m,n) + sum(ETO_ir,'omitnan');

Ptot_ir(m,n) = Ptot_ir(m,n) + sum(Pre_eff_daily_i,'omitnan');

Ptot_gr_seas_ir(m,n) = Ptot_gr_seas_ir(m,n) +
sum(Pre_tot_daily_growing_season_IR, 'omitnan');

end

4k Cell Insights Plots IRRIGATED
if isempty(lat) == 0 && isempty(lon) ==

/4 coefficients

figure (5)

plot(l:1:1gp_irr,kc_crop_irr,"LineWidth",2)

hold omn

plot(l:1:1gp_irr,ks_irrigated,"LineWidth",2)

plot(l:1:1gp_irr,ks,"LineWidth",2)

grid on

xlabel('Growing period [days]','Interpreter','latex')

x1lim([1 lgp_irr])

ylabel('[-]','Interpreter', 'latex')

ylim([0 1.21)

title(['(b) Coefficients IRRIGATED - ','Lat: ',num2str(lat(1)),
'Lon: ',num2str(lon(1)), ' - Year ',
num2str(y)], 'Interpreter', 'latex')

legend('Crop Coefficient $k_c$','Stress Coefficient $k_s$',
'Stress Coefficient $k_s$ without Irrigation',
'Location', 'sw', 'Interpreter', 'latex')

set(gcf, 'Units', 'centimeters', 'Position', [1 1 16 10]);
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ax = gca;

ax.TickLabelInterpreter = 'latex';

print(gcf, 'coefficients_ir.svg', '-dsvg', '-r300');
hold off

/% rooting depth

figure (6)

plot(l:1:1gp_irr,-rd_irrigated*1073, 'Color', '#7E2F8E',"LineWidth",2,
'DisplayName', 'Rooting depth')

hold on

plot(l:1:1gp_irr,-rawc_irrigated, 'Color', '#EE510E',"LineWidth",2,
'DisplayName', 'Readily Available soil Water ($RAW$ or $\thetax$)')

plot(l:1:lgp_irr,—tawc_irrigated,'Color‘,'#A2142F',”LineWidth“,Q,
'DisplayName', 'Total Available soil Water ($TAW$ or $\theta_{WP}$)')

grid on

xlabel ('Growing period [days]','Interpreter','latex')

x1lim([1 1lgp_irr])

ylabel(' [mm]','Interpreter', 'latex')

y1lim([-2000 01)

title(['(d) Rooting depth IRRIGATED - ','Lat: ',num2str(lat(1)),'
Lon: ',num2str(lon(1)), ' - Year ',
num2str(y)], 'Interpreter', 'latex')

legend('Location', 'southoutside', 'Interpreter', 'latex')

set(gcf, 'Units', 'centimeters', 'Position', [1 1 16 10]);
ax = gca;

ax.TickLabelIlnterpreter = 'latex';

print(gcf, 'root_ir.svg', '-dsvg', '-r300');

hold off

/4 deficit

figure (7)

plot(l:1:1gp_irr,-deficit_st_irrigated, 'Color', '#EDB120',"LineWidth",2,
'DisplayName', 'Depletion at the beginning of the day')

hold on

plot(l:1:lgp_irr,—deficit_end_irrigated,'Color‘,'#006B08',”LineWidth“,2,
'DisplayName', 'Depletion at the end of the day')

plot(l:1:lgp_irr,—rawc_irrigated,'Color‘,'#EESlOE',”LineWidth“,Q,
'DisplayName', 'Readily Available soil Water ($RAW$ or $\thetax$)')

plot(l:1:1gp_irr,-tawc_irrigated, 'Color','#A2142F',"LineWidth",2,
'DisplayName', 'Total Available soil Water ($TAW$ or $\theta_ {WP}$)')

grid on

xlabel ('Growing period [days]','Interpreter','latex')

xlim([1 1lgp_irr])

ylabel(' [mm] ', 'Interpreter','latex')

ylim([-300 0])

stitle(['(f) Hydrological balance in the soil IRRIGATED - ',
'Lat: ',num2str(lat(1)),' Lon: ',num2str(lon(1l)), ' - Year ',
num2str(y)], 'Interpreter', 'latex')

legend('Location', 'southoutside', 'Interpreter', 'latex')
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868 set(gcf, 'Units', 'centimeters', 'Position', [1 1 16 10]);

869 ax = gca;

870 ax.TickLabelInterpreter = 'latex';

871 print(gcf, 'depletion_ir.svg', '-dsvg', '-r300');

872 hold off

873

874 figure (8)

875 plot(l:1:1gp_irr,Pre_eff_daily_i, 'color','#006B08"',"LineWidth",2,
876 'DisplayName', 'Effective Daily Precipitation $P$')

877 hold on

878 plot(l:1:1gp_irr,ETO_ir, 'color', '#A2142F',"LineWidth",2,

879 'DisplayName', 'Potential Evapotranspiration $ET_0$')

880 plot(l:1:1gp_irr,ETc_dai1y_irr,‘color‘,‘#EDB120',"LineWidth",2,'
881 DisplayName', 'Crop Evapotranspiration $ET_c (= ET_a)$')

882 fi11([1:1:1gp_irr 1gp_irr:-1:1], [(ETgreen_daily+ETblue_daily) ;
883 f1ip(ETblue_daily)], [0.4660 0.6740 0.1880],

884 'FaceAlpha',0.3, 'EdgeColor',"none",

885 'DisplayName', '$ET_{greenl}$')

886 fill([1:1:1gp_irr 1lgp_irr:-1:1], [ETblue_daily;

887 zeros(length(ETblue_daily),1)], [0 0.4470 0.7410],

888 'FaceAlpha',0.3, 'EdgeColor', "none",

889 'DisplayName', '$ET_{blue}$')

890 plot(l:1:1gp_irr,I,'color', '#2D95DA',"LineWidth",2,

891 'DisplayName', 'Irrigation $I$')

892 grid on

893 xlabel('Growing period [days]','Interpreter','latex')

894 x1im([1 lgp_irr])

895 ylabel(' [mm/day]','Interpreter', 'latex')

896 ylim ([0 9]1)

807 Atitle([' (h) Hydrological balance in the atmosphere IRRIGATED - ',
898 'Lat: ',num2str(lat(1)),'Lon: ',num2str(lon(1)), ' - Year ',
899 num2str(y)], 'Interpreter','latex')

900 legend('Location', 'nw', 'Interpreter', 'latex')

901 set(gcf, 'Units', 'centimeters', 'Position', [1 1 16 10]);

902 ax = gca;

903 ax.TickLabelIlnterpreter = 'latex';

904 print(gcf, 'balance_ir.svg', '-dsvg', '-r300');

905 hold off

906

907 end

908 /4 Annual Plot
909
o0 1if isempty(lat) == 0 && isempty(lon) ==

911

912 % beginning of the hydrological year

913 if m<1080

914 /4 morth hemisphere —--> 1st of October (274th day of the year)
915 water_year = datetime(y, 10, 1);

916
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else
/i south hemisphere —--> 1st of July (182th day of the year)
water_year = datetime(y, 7, 1);

end

dates = [(water_year + caldays(O:ndays-1)) (water_year +
caldays(0:ndays-1))1];

time_rain = day_plant_modified(m,n):1:(day_plant_modified(m,n)+1gp-1);

date_rain = dates(time_rain + ndays - day(water_year, 'dayofyear'));

time_irr = day_plant_modified_irr(m,n):1:
(day_plant_modified_irr(m,n)+lgp_irr-1);

date_irr = dates(time_irr + ndays - day(water_year, 'dayofyear'));

figure (9)

% if the growing period reach the end of the water year, it starts
/4 again from the beginning

4 rainfed
if ndays - find(dates==date_rain(1),1) < 1lgp

/4 Split the dates and data at the end of the year
split_index = find(date_rain == dates(end));

/4 Data for the end of the year

date_rain_end = date_rain(l:split_index);
Pre_eff_daily_end = Pre_eff_daily(l:split_index);
ETO_rf_end = ETO_rf(l:split_index);

ETc_daily_end = ETc_daily(l:split_index);
ETa_daily_end = ETa_daily(l:split_index);

% Data for the beginning of the year

date_rain_start = date_rain(split_index+1:end);
Pre_eff_daily_start = Pre_eff_daily(split_index+1:end);
ETO_rf_start = ETO_rf(split_index+1:end);
ETc_daily_start = ETc_daily(split_index+1:end);
ETa_daily_start = ETa_daily(split_index+1:end);

/% Plot end of the year data
plot(date_rain_end, Pre_eff_daily_end, 'Color', '#006B08',
"LineWidth", 2, 'DisplayName',
'RAINFED Effective Daily Precipitation P')
hold on
plot(date_rain_end, ETO_rf_end, 'Color', '#A2142F',
"LineWidth", 2, 'DisplayName',
'RAINFED Potential Evapotranspiration ET_0')
plot(date_rain_end, ETc_daily_end, 'Color', '#EE510E',
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"LineWidth", 2, 'DisplayName',

'"RAINFED Crop Evapotranspiration ET_c')
plot(date_rain_end, ETa_daily_end, 'Color', '#EDB120',

"LineWidth", 2, 'DisplayName',

'RAINFED Actual Evapotranspiration ET_a')
fill([date_rain_end flip(date_rain_end)], [ETa_daily_end;

zeros(length(ETa_daily_end), 1)]', [0.4660 0.6740 0.1880],

'FaceAlpha', 0.5, 'EdgeColor', "none",

'DisplayName', 'RAINFED ET green')

/# Plot beginning of the year data

plot(date_rain_start, Pre_eff_daily_start, 'Color', '#006B08',
"LineWidth", 2, 'HandleVisibility', 'off')

plot(date_rain_start, ETO_rf_start, 'Color', '#A2142F',
"LineWidth", 2, 'HandleVisibility', 'off')

plot(date_rain_start, ETc_daily_start, 'Color', '#EE510E',
"LineWidth", 2, 'HandleVisibility', 'off')

plot(date_rain_start, ETa_daily_start, 'Color', '#EDB120',
"LineWidth", 2, 'HandleVisibility', 'off')

fill([date_rain_start flip(date_rain_start)],
[ETa_daily_start; zeros(length(ETa_daily_start), 1)]',
[0.4660 0.6740 0.1880], 'FaceAlpha', 0.5,
'EdgeColor', "none", 'HandleVisibility', 'off')

else

plot(date_rain,Pre_eff_daily, 'Color', '#006B08',
"LineWidth",2, 'DisplayName’,
'RAINFED Effective Daily Precipitation P')
hold on
plot(date_rain,ETO_rf, 'Color','#A2142F',
"LineWidth",2, 'DisplayName',
'RAINFED Potential Evapotranspiration ET_0')
plot(date_rain,ETc_daily, 'Color', '#EE510E',
"LineWidth",2, 'DisplayName’,
'RAINFED Crop Evapotranspiration ET_c')
plot(date_rain,ETa_daily, 'Color', '#EDB120',
"LineWidth",2, 'DisplayName',
'RAINFED Actual Evapotranspiration ET_a')
fill([date_rain flip(date_rain)], [(ETa_daily);
zeros(length(ETa_daily),1)], [0.4660 0.6740 0.1880],
'FaceAlpha',0.5, 'EdgeColor', "none",
'DisplayName', 'RAINFED ET green')

end
%4 irrigated

if ndays - find(dates==date_irr(1),1) < lgp_irr
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/4 Split the dates and data at the end of the year
split_index_irr = find(date_irr == dates(end));

/% Data for the end of the year

date_irr_end = date_irr(l:split_index_irr);
Pre_eff_daily_i_end = Pre_eff_daily_i(l:split_index_irr);
ETO_ir_end = ETO_ir(l:split_index_irr);
ETc_daily_irr_end = ETc_daily_irr(1l:split_index_irr);

I _end = I(l:split_index_irr);

ETgreen_daily_end = ETgreen_daily(l:split_index_irr);
ETblue_daily_end = ETblue_daily(l:split_index_irr);

/# Data for the beginning of the year

date_irr_start = date_irr(split_index_irr+l:end);
Pre_eff_daily_i_start = Pre_eff_daily(split_index_irr+l:end);
ETO_ir_start = ETO_ir(split_index_irr+1l:end);
ETc_daily_irr_start = ETc_daily_irr(split_index_irr+1l:end);
I_start = I(split_index_irr+l:end);

ETgreen_daily_start = ETgreen_daily(split_index_irr+1l:end);
ETblue_daily_start = ETblue_daily(split_index_irr+l:end);

% Plot end of the year data
plot(date_irr_end, Pre_eff_daily_i_end,':', 'Color', '#006B08',
"LineWidth", 2, 'DisplayName',
'"IRRIGATED Effective Daily Precipitation P')
hold omn
plot(date_irr_end, ETO_ir_end,':', 'Color', '#A2142F',
"LineWidth", 2, 'DisplayName',
'"IRRIGATED Potential Evapotranspiration ET_0')
plot(date_irr_end, I,':', 'Color', '#2D95DA',
"LineWidth", 2, 'DisplayName',
'"TIRRIGATED Crop Evapotranspiration ET_c')
plot(date_irr_end, ETc_daily_irr_end,':', 'Color', '#EDB120',
"LineWidth", 2, 'DisplayName',
"TIRRIGATED Actual Evapotranspiration ET_a')
fill([date_irr_end flip(date_irr_end)],
[(ETgreen_daily_end+ETblue_daily_end); flip(ETblue_daily_end)],
[0.4660 0.6740 0.1880], 'FaceAlpha',0.3,
'EdgeColor',"none", 'DisplayName','IRRIGATED ET green')
fill([date_irr_end flip(date_irr_end)], [ETblue_daily_end;
zeros(length(ETblue_daily_end),1)], [0 0.4470 0.7410],
'FaceAlpha',0.3, 'EdgeColor','"none",
'DisplayName', 'IRRIGATED ET blue')

/4 Plot beginning of the year data

plot(date_irr_start, Pre_eff_daily_i_start,':', 'Color', '#006B08',
"LineWidth", 2, 'HandleVisibility', 'off')

plot(date_irr_start, ETO_ir_start,':', 'Color', '#A2142F',
"LineWidth", 2, 'HandleVisibility', 'off')
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plot(date_irr_start, I,':', 'Color', '#2D95DA',
"LineWidth", 2, 'HandleVisibility', 'off')

plot(date_irr_start, ETc_daily_irr_start,':', 'Color', '#EDB120',
"LineWidth", 2, 'HandleVisibility', 'off')

fill([date_irr_start flip(date_irr_start)],
[(ETgreen_daily_start+ETblue_daily_start);
flip(ETblue_daily_start)], [0.4660 0.6740 0.1880],
'FaceAlpha',0.3, 'EdgeColor',"none", 'HandleVisibility',

fill([date_irr_start flip(date_irr_start)],
[ETblue_daily_start; zeros(length(ETblue_daily_start),1)],
[0 0.4470 0.7410], 'FaceAlpha',0.3, 'EdgeColor','"none",
'HandleVisibility', 'off')

else

plot(date_irr,Pre_eff_daily_i,':','color', '#006B08"',

"LineWidth",2, 'DisplayName’,

'"TIRRIGATED Effective Daily Precipitation P')
plot(date_irr,ETO_ir,':','color', '#A2142F',

"LineWidth",2, 'DisplayName’,

'"IRRIGATED Potential Evapotranspiration ET_0')
plot(date_irr,ETc_daily_irr,':','color', '#EDB120',

"LineWidth",2, 'DisplayName',

'"IRRIGATED Crop Evapotranspiration ET_c (= ET_a)')
fill([date_irr flip(date_irr)], [(ETgreen_daily+ETblue_daily);

f1lip(ETblue_daily)], [0.4660 0.6740 0.1880], 'FaceAlpha',0.3,

'EdgeColor',"none", 'DisplayName','IRRIGATED ET green')
fill([date_irr flip(date_irr)], [ETblue_daily;

zeros(length(ETblue_daily),1)], [0 0.4470 0.7410],

'FaceAlpha',0.3, 'EdgeColor', "none",

'DisplayName', 'IRRIGATED ET blue')
plot(date_irr,I,':','color', '#2D95DA"',"LineWidth",2,

'DisplayName', 'Irrigation')

end

grid on

xlabel(['Year ', num2str(y)],'Interpreter','latex')
xlim([water_year water_year+years(l)-days(1)])

xticks([1 31 61 91 121 151 181 211 241 271 301 331 360])
xticklabels (tickmonths) ;

ylabel(' [mm/day]"','Interpreter','latex')

ylim([0 91)

title(['(a) Daily $ETa$ - ','Lat: ',num2str(lat(1l)),’

',num2str(lon(1))], 'Interpreter', 'latex')

legend('Location', 'north', 'Interpreter', 'latex')

Lon:
set (gcf,
ax = gca;

'"Units', 'centimeters', 'Position', [1 1 18 10]);
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1113 ax.TickLabelInterpreter = 'latex';
1114 print(gcf, 'annual.svg', '-dsvg', '-r300');
1115 hold off

1116
1117
1ms 4 Obtain daily year normalized values
1119

1120

1121 ETgreen_year(time_rain,1) = ETa_daily(l:end,1) *

1122 area_rain(m,n) / area_tot(m,n);

1123 ETgreen_year(time_irr,1) = ETgreen_year(time_irr,1) +

1124 (ETgreen_daily(l:end,1) * area_irr(m,n) / area_tot(m,n));
1125 ETblue_year(time_irr,1) = (ETblue_daily(l:end,1) =*

1126 area_irr(m,n) / area_tot(m,n));

1127

1128 last = water_year:datetime(y,12,31);

1129 first = datetime(y+1,1,1):(water_year+years(1)-1);

1130

1131 VA plot

1132 figure(lO)

1133

1134 fill([last flip(last)], [(ETgreen_year(day(water_year, 'dayofyear')
1135 :end, 1) +ETblue_year(day(water_year, 'dayofyear'):end,1));
1136 f1lip(ETblue_year (day(water_year, 'dayofyear'):end,1))],

1137 [0.4660 0.6740 0.1880], 'FaceAlpha',0.5,'EdgeColor',"none",
1138 'DisplayName', 'ET green')

1139 hold on

1140 fill([last flip(last)], [ETblue_year(day(water_year, 'dayofyear')
1141 :end,1); zeros(ndays-day(water_year, 'dayofyear')+1,1)],

1142 [0 0.4470 0.7410], 'FaceAlpha',0.5,'EdgeColor',"none",

1143 'DisplayName', 'ET blue')

1144 fill([first flip(first)], [(ETgreen_year(l:day(water_year, 'dayofyear')
1145 -1,1)+ETblue_year(1l:day(water_year, 'dayofyear')-1,1));

1146 flip(ETblue_year(1l:day(water_year, 'dayofyear')-1,1))1],

1147 [0.4660 0.6740 0.1880], 'FaceAlpha',0.5,

1148 'EdgeColor',"none", 'HandleVisibility', 'off')

1149 fill([first flip(first)], [ETblue_year(l:day(water_year,'dayofyear')
1150 -1,1); zeros(day(water_year, 'dayofyear')-1,1)],

1151 [0 0.4470 0.7410],'FaceAlpha',0.5,

1152 'EdgeColor',"none", 'HandleVisibility', 'off')

1153 grid on

1154 xlabel(['Year ', num2str(y)], 'Interpreter','latex')

1155 xlim([water_year water_year+years(l)-days(1)])

1156 xticks([water_year:30:water_year+360-1])

1157 xticklabels (tickmonths) ;

1158 ylabel(' [mm/day]','Interpreter','latex')

1159 ylim ([0 9])

1160 title(['(b) Daily $ETa$ normalized with cultivated areas - ',
1161 'Lat: ',num2str(lat(1)),'Lon: ',num2str(lon(1))],
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waterCrop model

'Interpreter', 'latex')
legend('Location', 'north', 'Interpreter', 'latex')
set(gcf, 'Units', 'centimeters', 'Position', [1 1 18 10]);

ax = gca;
ax.TickLabelIlnterpreter = 'latex';
print(gcf, 'annual_vol.svg', '-dsvg', '-r300');
hold off
end
end
end
end

clear day_plant_modified
clear day_plant_modified_irr
end

% Averaging on the number of years
/4 Since the variables were summed all together, to obtain the mean <t
/4 is sufficient to divide them by the number of years.

/4 rainfed

ETa_tot = ETa_tot /yy;

ETc_tot_rain = ETc_tot_rain /yy;
ETO_tot_rf = ETO_tot_rf /yy;

Ptot_rf = Ptot_rf /yy;

Ptot_gr_seas_rf = Ptot_gr_seas_rf /yy;

/4 trrigated

ETgreen_tot = ETgreen_tot /yy;

CWU_tot = CWU_tot /yy;

ETblue_tot = ETblue_tot /yy;

I_tot = I_tot /yy;

ETc_tot_irr = ETc_tot_irr /yy;
ETO_tot_ir = ETO_tot_ir /yy;

Ptot_ir = Ptot_ir /yy;

Ptot_gr_seas_ir = Ptot_gr_seas_ir /yy;

/% Final ET

VOL_GREEN = ETa_tot .* area_rain .* 10 + ETgreen_tot .* area_irr .* 10;
VOL_BLUE = ETblue_tot .* area_irr .x* 10;

VOL_TOT = VOL_GREEN + VOL_BLUE;

4% Dounload ET results

mkdir(cartella_risultati)

cd(cartella_risultati)

copyfile("path/to/nc_from_watercrop.m",
fullfile(cartella_risultati,"nc_from_watercrop.m"));
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1211 copyfile("path/to/txt_per_QGis.m",

1212 fullfile(cartella_risultati,"txt_per_QGis.m"));

1213

1214 save('ETa_rain.mat','ETa_tot')

1215

1216 save('VOL_GREEN.mat','VOL_GREEN')

1217

1218/ Save into tzxt files to open on QGIS

1219 txt_per_QGis(ETa_tot, 'ETa_rain','-9999','0.0833333','2")
1220 txt_per_QGis(VOL_GREEN, 'VOL_GREEN','-9999','0.0833333"','2")
1221/ man, cell size, digits

1222

1223/ Save into NetCDF files

1224 nc_from_watercrop(VOL_GREEN, 'VOL_GREEN',-9999, 0.0833333,"m~3")
1225

1226

1227 end

1228

1220 elapsed_time = toc /i seconds

A.1 From waterCrop results to NetCDF files

1 function nc_from_watercrop(var, name, nodata, cellsize, unit)
2 4 var: 2D matriz

3 % name: base filename, add as a string (without extension)
4 % modata: missing value, add as a number (e.g., -9999)
5 /4 cellsize: grid resolution, add as a number (e.g., 0.0833333 degrees)
6 4 unit: string with unit

7

8 [nrows, ncols] = size(var);

9

10 /4 Define lower-left corner

11 x1llcorner = -180;

12 yllcorner = -90;

13

14 /% Compute 1D coordinate vectors (cell centers)

15 lon = xllcorner + (0:ncols-1) * cellsize + cellsize/2;
16 lat = yllcorner + (O:nrows-1) * cellsize + cellsize/2;
17

18 % Flip data to match lat orientation

19 var = flipud(var);

20

21 /4 Create NetCDF

22 ncFile = [name, '.nc'];

23 ncid = netcdf.create(ncFile, 'CLOBBER');

24

25 /4 Define dimensions
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waterCrop model

end

netcdf.defDim(ncid,
netcdf.defDim(ncid,

dimid_lon
dimid_lat

/% Define coordinate wvariables

'"lon', ncols);
'lat', nrows);

lon_id = netcdf.defVar(ncid, 'lon',

lat_id

/4 Add attributes to coordinates

netcdf .defVar(ncid, 'lat',

'double', dimid_lomn);
'double', dimid_lat);

netcdf.putAtt(ncid, lon_id, 'standard_name', 'longitude');
netcdf.putAtt(ncid, lon_id, 'units', 'degrees_east');

netcdf.putAtt(ncid, lat_id, 'standard_name', 'latitude');
netcdf.putAtt(ncid, lat_id, 'units', 'degrees_north');

% Define CRS wariable

crs_id = netcdf.defVar(ncid, 'crs',

netcdf.putAtt(ncid, crs_id, 'grid_mapping name', 'latitude_longitude');

int', [1);

netcdf.putAtt(ncid, crs_id, 'epsg_code', int32(4326));
netcdf.putAtt(ncid, crs_id, 'semi_major_axis', 6378137.0);
netcdf.putAtt(ncid, crs_id, 'inverse_flattening', 298.257223563);

/4 Define main data vartable

var_id = netcdf.defVar(ncid, name,
netcdf.defVarFill(ncid, var_id, false, nodata);

'double', [dimid_lon, dimid_lat]);

netcdf.putAtt(ncid, var_id, 'long name', name);
netcdf.putAtt(ncid, var_id, 'units', unit);
netcdf.putAtt(ncid, var_id, '_FillValue', nodata);
netcdf.putAtt(ncid, var_id, 'coordinates', 'lon lat');
netcdf.putAtt(ncid, var_id, 'grid_mapping', 'crs');

/ Global attributes

netcdf.putAtt(ncid, netcdf.getConstant('NC_GLOBAL'),

'title', [name ' raster'l);

netcdf.putAtt(ncid, netcdf.getConstant('NC_GLOBAL'),

'Conventions', 'CF-1.6');
netcdf .endDef (ncid) ;

/ Write coordinate data

netcdf.putVar(ncid, lon_id, lon);
netcdf.putVar(ncid, lat_id, lat);
netcdf.putVar(ncid, var_id, var');

netcdf.close(ncid);

fprintf ('Wrote CF-compliant geo2d NetCDF: %s\n', ncFile);
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Appendix B
Cumulative E'T sheds code

import numpy as np

import xarray as Xxr

import matplotlib.pyplot as plt
import cartopy.crs as ccrs

import cartopy.feature as cfeature
from netCDF4 import Dataset

import os

import subprocess

## GETTING READY

# Input Configuration
crop = "wheat"

# Input files

# Everything must have the same spatial resolution

# and the same reference system

moist_input_file = "RECON_moisture_flows_0.5.nc"
ERA5_eta_input_file = "RECON_ERA5_avgYear_0.5_volumes.nc"

# waterCrop results files upscaled
WC_etg_input_file = "VOL_GREEN_sum.nc"
WC_etb_input_file = "VOL_BLUE_sum.nc"

# Case study coordinates in a system lon=0,360 lat=90,-90

#cs_lat = np.array([44.76]) #cell in Piedmont
#cs_lon = np.array([7.51])

#cs_lat = np.array([-16.17]) #cell in Minas Gerats
#cs_lon = np.array([313.42])

#cs_lat = np.array([])

96



35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

s

78

79

80

81

82

83

Cumulative ET sheds code

#cs_lon = np.array([])

# To run the global analysis assign np.nan to the case study coordinates
cs_lat = np.nan
cs_lon = np.nan

# Constants
ymax = 122079329.40990189
ymin = 10%*-3

# Load dataset

dataset = xr.open_dataset(moist_input_file)
dataset_ERA5_eta = xr.open_dataset (ERA5_eta_input_file)
dataset_etg = xr.open_dataset(WC_etg_input_file)
dataset_etb = xr.open_dataset(WC_etb_input_file)

# Eztract lat/lon values from RECON
sinklats = dataset["sinklat"].values
sinklons = dataset["sinklon"].values
sourcelats = dataset["sourcelat"].values
sourcelons = dataset["sourcelon"].values

# Matriz initialization

ROWS = dataset["sourcelat"].shape[0] # dataset dimensions
COLS = dataset["sourcelon"].shape[0]

# those will be the cumulative evaporation shed for the crop
ET_shed_g = np.zeros((ROWS, COLS), dtype=np.floatl128)
ET_shed_b = np.zeros((ROWS, COLS), dtype=np.floatl128)
ET_shed = np.zeros((ROWS, COLS), dtype=np.float128)

# Case study cell index
if not np.any(np.isnan(cs_lat)) or not np.any(np.isnan(cs_lon)):
# Compute coordinates element-wise
ind_lat -(ROWS/180) * cs_lat + ROWS/2
ind lon (COLS/360) * cs_lon
cs = np.round(np.array([ind_lat,ind_lon])).astype(int)

e e et
## PART 1 - OBTAIN FRACTION MATRIX OF ETa

# CHANGE REFERENCE SYSTEM OF WC RESULTS

# Flip latitude (reverse the lat coordinate)

# In the .nc file from WC the lat range is -90,90 deg

dataset_etb = dataset_etb.reindex(lat=dataset_etb.lat[::-1])
dataset_etg = dataset_etg.reindex(lat=dataset_etg.lat[::-1])
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Cumulative ET sheds code

# Reshape the matriz from waterCrop to have the origin in lon=0deg

# Important to have it consistent with ERA5 matriz

# green
temp = np.zeros((ROWS, COLS))

temp = dataset_etg['VOL_GREEN'] .values

ETg_fromWC = np.zeros((ROWS, COLS))
ETg_fromWC[:,0:360] = temp[:,360:720]
ETg_fromWC[:,360:720] = templ[:,0:360]
# blue

temp = np.zeros((ROWS, COLS))

temp = dataset_etb['VOL_BLUE'] .values
ETb_fromWC = np.zeros((ROWS, COLS))
ETb_fromWC[:,0:360] = templ[:,360:720]
ETb_fromWC[:,360:720] = templ[:,0:360]

# Extract ERAS5 wvalues

ETa_fromERAS5 = dataset_ERA5_etal['ERA5_ET_averageyear'].values

# Calculating the J of that evaporation which then

# m-3

# m-3

# contribute to Green ET of the specific crop
# ETgreen fraction of the total ETa of each cell

ETa_gweight = ETg_fromWC / ETa_fromERAb

# ETblue fraction of the total ETa of each cell

ETa_bweight = ETb_fromWC / ETa_fromERA5

b b e e i

## PART 2 - LOOPS TO OBTAIN CUMULATIVE SHEDS

# Get the indices of mon-zero elements if no case study
if np.any(np.isnan(cs_lat)) or np.any(np.isnan(cs_lon)):

green_no_zero = np.argwhere(ETa_gweight != 0)
blue_no_zero = np.argwhere(ETa_bweight != 0)

else:
green_no_zero = np.array([1])
blue_no_zero = np.array([1])

# Process each non-zero element (or only the case study)

# 1) GREEN ET SHED
for index in green_no_zero:

if np.any(np.isnan(cs_lat)) or np.any(np.isnan(cs_lon)):
i, j = index # Indexz pair for rTow and column

else:
# case study coordinates
i = cs[0]
j = cs[1]
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# Get moisture flow

ms_4d = dataset["moisture_flow"].isel(sourcelat=i,sourcelon=j).values
# reshape moisture flow array

moisture_flow = np.squeeze(ms_44d)

# Convert to cubic meters
evaporation_shed = np.where(
moisture_flow == O,
0,
10 ** (((moisture_flow - 1) / 254) *
(np.loglO(ymax) - np.loglO(ymin)) + np.loglO(ymin))

# To obtain the cumulative shed
ET_shed_g = ET_shed_g + evaporation_shed*ETa_gweight[i, j]

print("Green loop completed.")

# 2) BLUE ET SHED
for index in blue_no_zero:
if np.any(np.isnan(cs_lat)) or np.any(np.isnan(cs_lon)):
i, j = index # Indexz pair for rTow and column
else:
i

cs[0]
cs[1]

# Get moisture flow
ms_4d = dataset["moisture_flow"].isel(sourcelat=i,sourcelon=j).values
moisture_flow = np.squeeze(ms_4d)

# Convert to cubic meters
evaporation_shed = np.where(
moisture_flow == 0,
0,
10 ** (((moisture flow - 1) / 254) =
(np.loglO(ymax) - np.loglO(ymin)) + np.loglO(ymin))

# To obtain the cumulative shed
ET_shed_b = ET_shed_b + evaporation_shed*ETa_bweight[i, j]
print("Blue loop completed.")

# Total ET SHED
ET_shed = ET_shed_g + ET_shed_b

b b S oo
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182 ## PART 3 - SAVE RESULTS

183

184 # Folder where you want to save the new NetCDF files

185 if np.any(np.isnan(cs_lat)) or np.any(np.isnan(cs_lon)):

186 output_folder = f'/RECON/output/{crop}/'
187 else:
188 output_folder = f'/RECON/output/{crop}_{cs_lat}_{cs_lon}/'

189

190 # Create the output directory if it does not ezxist
191 os.makedirs(output_folder, exist_ok=True)

192

193 # Open the RECON NetCDF file to read grid dimensions
194 with Dataset(ERA5_eta_input_file, 'r') as ERA5_nc:

195 # Read grid dimensions (latitude & longitude)
196 latitudes = ERA5_nc.variables['lat'][:]

197 longitudes = ERA5_nc.variables['lon'][:]

198 # Number of latitude points

199 n_lat = len(latitudes)

200 # Number of longtitude points

201 n_lon = len(longitudes)

202

203 # Specify results to save and the output file names

204 results = [ET_shed_g, ET_shed_b, ET_shed]

205 file_names_final = ['ET_shed_g.nc', 'ET_shed_b.nc', 'ET_shed.nc']

206

207 # Transform the results array of arrays in a single 3d array

208 results_3d = np.stack(results, axis=0)

200 # Change again the system to lon -180,180

210 results_180_3d = np.zeros((len(results),ROWS,COLS), dtype=np.floatl28)

211 results_180_3d[:,:,0:360] = results_3d[:,:,360:720]

212 results_180_3d[:,:,360:720] = results_3d[:,:,0:360]

213 # Reshape the 3d array in an array of arrays

214 results_180 = [results_180_3d[i] for i in range(results_180_3d.shape[0])]
215

216 # Loop through each matriz shifted and save it to a

217 # NetCDF file with the -180,180 reference system

218 for k, (matrix, file_name) in enumerate(zip(results_180, file_names_final)):

219 full_path = os.path.join(output_folder, file_name)

220

221 with Dataset(full_path, 'w', format='NETCDF4') as new_nc:

222 # Create dimensions

223 new_nc.createDimension('lat', n_lat)

224 new_nc.createDimension('lon', n_lon)

225

226 # Create coordinate variables

227 lat_var = new_nc.createVariable('lat', latitudes.dtype, ('lat',))
228 lon_var = new_nc.createVariable('lon', longitudes.dtype, ('lon',))
229

230 # Write coordinates data
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Cumulative ET sheds code

latitudes
np.ma.arange(-180,180,0.5)

lat_varl[:]
lon_var([:]

# Add CF-compliant attributes to coordinate wvariables
lat_var.units = 'degrees_north'

lat_var.standard_name = 'latitude'

lat_var.long_name = 'Latitude'’

lon_var.units = 'degrees_east'
lon_var.standard_name = 'longitude'
lon_var.long_name = 'Longitude'

# Create data variable
data_var = new_nc.createVariable('volume',np.float64,('lat’
data_var[:, :] = matrix

# Add attridbutes to data wvariable
data_var.units = 'm~3'
data_var.description = f'Cumulative {file_name} for {crop}'

,'lon'))

print (f"Cumulative shed {k+1} saved to {file_name} with WGS84 grid.")

B B B

## PART 4 - PLOTS

# Define lat/lon grid

lats
lons

np.arange (90, -90, -0.5)
np.arange (0, 360, 0.5)

# Colormap with NalN as white

blues_cmap = plt.cm.get_cmap("Blues").copy()
blues_cmap.set_bad(color='white')

reds_cmap = plt.cm.get_cmap("Reds").copy()
reds_cmap.set_bad(color='white')

# Actual plots

# ET-SHED PLOT
plt.figure(figsize=(10, 8))
plt.axes(projection=ccrs.PlateCarree())

ax =

vmin
vmax

np.percentile(ET_shed[ET_shed > 0], 10)
np.nanmax (ET_shed)

# convert to float to support mp.nan
ET_shed_nan = ET_shed.astype(float)
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Cumulative ET sheds code

# Set wvalues below 10th percentile to NalN
ET_shed_nan[ET_shed_nan < vmin] = np.nan

im = ax.imshow(
ET_shed_nan,
extent=[lons.min(), lons.max(), lats.min(), lats.max()],
origin="'upper',
vmin=vmin,
vmax=vmax,
cmap=reds_cmap,
transform=ccrs.PlateCarree()

# Add features
ax.coastlines()
ax.add_feature(cfeature.BORDERS, linestyle=':"')
if not np.any(np.isnan(cs_lat)) or not np.any(np.isnan(cs_lon)):
ax.plot(cs_lon, cs_lat, marker='o', color='red', markersize=3,
transform=ccrs.PlateCarree(), label='Source Location')

# Title and colorbar

ax.set_title(f"Annual precipitation originating from {crop} ET")
plt.colorbar(im, label="moisture flow [m$~3$]", orientation="vertical")
plt.xlabel("Longitude")

plt.ylabel("Latitude")

ax.legend(loc="lower left")

# Save plot to specified folder as SVG
plt.savefig(os.path.join(output_folder, 'ET_shed_plot.svg'),
format='svg', bbox_inches='tight')

plt.show()
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Appendix C

Sinks land-use classification

code

import numpy as np

import xarray as Xr

import matplotlib.pyplot as plt
import cartopy.crs as ccrs

import cartopy.feature as cfeature
from netCDF4 import Dataset

import os

import plotly.graph_objects as go
import pandas as pd

## GETTING READY

# Input Configuration

cropWC = "soy"

# the one analysed

crops_tot = ["maize", "wheat", "soy"]

# Input files

input_files = {

"land": "landseamask_water-global.nc",

"maize_rf": "maize_rf_Obdeg.nc",

"wheat_rf": "wheat_rf_0bdeg.nc",

"soy_rf": "soybean_rf_0bdeg.nc",

"maize_ir": "maize_ir_Obdeg.nc",

"wheat_ir": "wheat_ir_Obdeg.nc",

"soy_ir": "soybean_ir_0b5deg.nc",

"ET_shed_g": f"/RECON/output/{cropWC}/ET_shed_g.nc",
"ET_shed_b": £"/RECON/output/{cropWC}/ET_shed_b.nc"
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Sinks land-use classification code

# Folder where you want to save the new files

output_folder = f'/land use_classification/output/{cropWC}/'

if not os.path.exists(output_folder):
os.makedirs (output_folder)

# Open all datasets im a loop and store in a dictionary
datasets = {}
for key, filepath in input_files.items():

datasets[key] = xr.open_dataset(filepath)

# Dataset dimensions (spatial resolution)
ROWS = datasets["ET_shed_g"]["lat"].shape[0]
COLS = datasets["ET_shed_g"]["lon"].shape[0]

# Load land mask to obtainm the oceans
land = datasets["land"] ["mask"] .values
ocean = np.where(land == 1, 0, 1)

# Replace '1' with 0, because where there ts land, there is 0O ocean
# Replace '-' with 1, because where there ts no land, there is the ocean

fraction_ocean = ocean

# Load area arrays into lists, stack into np array (n_crops z ROWS z COLS)

area_rf list, area_ir list = [1, []
for crop in crops_tot:

area_rf_list.append(datasets[f"{crop}_rf"]["area_rf"].values)
area_ir_list.append(datasets[f"{crop}_ir"]["area_ir"].values)

area_rf = np.array(area_rf_list)
area_ir = np.array(area_ir_list)

# Flip vertically (reverse rows) for all crops in area_rf and area_=ir

area_rf = np.flip(area_rf, axis=1)
area_ir = np.flip(area_ir, axis=1)

# Open the cumaltive ET sheds

ET_shed_g = datasets["ET_shed_g"] ["volume"].values
ET_shed_b = datasets["ET_shed_b"]["volume"].values
ET_shed = ET_shed_g + ET_shed_b
B
## PART 1 - CALCULATE ha PER EACH CELL OF THE WORLD

# Earth radius (meters)
R = 6371e3
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Sinks land-use classification code

# Grid resolution in degrees
lat_res = 180 / ROWS
360 / COLS

lon_res

# Latitude and longitude edges

lat_edges = np.linspace(90, -90, ROWS + 1)

# latitude resolution (e.g., 0.5deg)
# longitude resolution

lon_edges = np.linspace(-180, 180, COLS + 1)

# Preallocate area matriz (ROWS x COLS)
area_cell = np.zeros((ROWS, COLS))

# Loop over latitude bands (rows)

for i in range(ROWS):
# Latitude edges in radians for this band
latl = np.deg2rad(lat_edges[i])
lat2 = np.deg2rad(lat_edges[i + 1])

# Longitudinal width in radians
dlon = np.deg2rad(lon_res)

# Area of the cell (same for all longitudes at this latitude)
# area in m2
cell_area_m2 = R**2 * dlon * (np.sin(latl) - np.sin(lat2))
# convert to ha
= cell _area m2 / le4d

cell_area_ha

# Fill the entire row (all longitudes at this latitude)
:] = cell_area_ha

area_celll[i,

e g

## PART 2 - OBTAIN FRACTION MATRIX OF CULTIVATED AREAS

# Fraction matrices element-wise division with broadcasting:

fraction_rf =
fraction_ir =

area_rf / area_cell

area_ir / area_cell

# shape: n_crops = ROWS = COLS

e i g

## PART 3 - WATER WHICH WILL FALL ON SPECIFIC CROPS

# Map crop water wvolumes:

map_crop_g_rf
map_crop_b_rf

map_crop_g_ir
map_crop_b_ir

ET_shed_g
ET_shed_b

ET_shed_g
ET_shed_b

*
*

*

fraction_rf
fraction_rf

fraction_ir
fraction_ir
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Sinks land-use classification code

# Map water that go into the ocean
map_ocean_g = ET_shed_g * fraction_ocean
map_ocean_b ET_shed_b * fraction_ocean

b
## PART 4 - VOLUMES OF WATER PER CROP

# Total volumes of water involved

ETVOL_shed_g = np.nansum(ET_shed_g)

ETVOL_shed_b = np.nansum(ET_shed_b)

ETVOL_crop_g = [np.nansum(map_crop_g_rf, axis=(1,2)),
np.nansum(map_crop_g_ir, axis=(1,2))]

ETVOL_crop_b = [np.nansum(map_crop_b_rf, axis=(1,2)),
np.nansum(map_crop_b_ir, axis=(1,2))]

ETVOL_ocean = [np.nansum(map_ocean_g), np.nansum(map_ocean_b)]

ETVOL_other_ land [
ETVOL_shed_g - np.nansum(ETVOL_crop_g) - ETVOL_ocean[0],
ETVOL_shed_b - np.nansum(ETVOL_crop_b) - ETVOL_ocean[1]

# Necessary to build the Sankey Diagram
labels_1 = [f'source crop: {cropWC}'] + ["ET GREEN", "ET BLUE"] +
[f"{c} rainfed" for c¢ in crops_tot] +
[f"{c} irrigated" for c in crops_tot] +
["ocean" , "other land"]
sources_1 = [0, O,
1 * np.ones(2 * len(crops_tot) + 2),
2 * np.ones(2 * len(crops_tot) + 2)]
(1, 2,
np.arange (3, 2 * len(crops_tot) + 5),
np.arange(3, 2 * len(crops_tot) + 5)]
values_1 = [
ETVOL_shed_g,
ETVOL_shed_b,
ETVOL _crop_g,
ETVOL_ocean([0],
ETVOL_other_ land[0],
ETVOL_crop_b,
ETVOL_ocean[1],
ETVOL _other land[1]

targets_1

]
labels = []
sources = []
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Sinks land-use classification code

179 targets = []

180 flat_list = []

181 values = []

182

183 # Convert array to list and extend
184 for item in labels_1:

185 if isinstance(item, np.ndarray):
186 labels.extend(item.tolist())
187 else:

188 labels.append(item)

189
190 for item in sources_1:

191 if isinstance(item, np.ndarray):
192 sources.extend(item.tolist())
193 else:

194 sources.append (item)

195

196 for item in targets_1:

197 if isinstance(item, np.ndarray):
198 targets.extend(item.tolist())
199 else:

200 targets.append(item)

201
202 # Flatten numpy array into list and extend
203 for item in values_1:

204 if isinstance(item, np.ndarray):

205 values.extend(item.tolist())

206 elif isinstance(item, list):

207 values.extend(item)

208 else:

209 values.append(item)

210

211 if isinstance(item, (up.float64, float)):

212 flat_list.append(float(item))

213 elif isinstance(item, list):

214 for arr in item:

215 flat_list.extend(arr.flatten() .tolist())
216 else:

217 raise TypeError(f"Unexpected type: {type(item)}")

218

219 # Conwvert to numpy array

220 values = np.array(flat_list)

221

222

223 sources_int = [int(x) for x in sources]

224

D e
226

227 ## PART 5 - SAVE IN A .CSV FILE
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Sinks land-use classification code

# Create a DataFrame with each wvector as a column

df = pd.DataFrame ({

o)

'Source': sources_int,
'Target': targets,

'Value': values

# Save DataFrame to CSV (without indezx)
df .to_csv(os.path. join(output_folder,

f'{cropWC}_table.csv'),index=False)

# Save the same CSV file, but with labels instead of numbers

source_label =
targets_label =

np.array(labels) [sources_int]

np.

array(labels) [targets]

# Create a DataFrame with each wvector as a column
df _1 = pd.DataFrame ({

'Source': source_label,

'Target': targets_label,

i)

'Value': values

# Save DataFrame to CSV (without index)
df_1.to_csv(os.path.join(output_folder,

f'{cropWC}_table_labels.csv'),index=False)

b b e b i

## PART 6 - SANKEY DIAGRAMS

node colors = [

fig

"#DC3220",
"#006B08" ,
"#0C51B5" ,
"#EE510E",
"#EDB120",
"$#44AA99" ,
"#EE510E",
"#EDB120",
"HAANAQO"
"#2D95DA" ,
"EAALAQO"

BHORH R R OWH W R R W WHR

red
green
blue
maize
wheat
S0y
matze
wheat
soy
ocean
other land

= go.Figure(data=[go.Sankey(

node=dict(
pad=20,

thickness=30,

108



277

278

279

281

282

283

284

285

287

288

289

290

291

292
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296

Sinks land-use classification code

line=dict(color="black", width=0.5),
label=labels,
color=node_colors

),

link=dict(
source=sources_int,
target=targets,
value=values

)

)1

fig.update_layout(
font=dict(family="Times New Roman, serif", size=14, color="black"),
width=900,
height=600,
margin=dict(1=50, r=50, t=70, b=50)

fig.write_image(os.path. join(output_folder,
f'{cropWC}_sankey.svg'), scale=2)
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