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Abstract

Climate change poses severe threats to human populations worldwide, with
particularly strong impacts on health. Extreme events are becoming more frequent,
intense, and prolonged as a consequence of global warming.

Among these, heat waves represent one of the most direct manifestations, with
significant health implications.

This thesis focuses on the Mediterranean basin, identified as a ’climate change
hotspot’ due to its warming rates higher than other zones, and high population
density.

An ensemble of nine climate models from the Coupled Model Intercomparison
Project Phase 6 (CMIP6) was employed to assess future temperature trends under
two Shared Socioeconomic Pathways (SSP2-4.5 and SSP5-8.5) and three time horizons
(short: 2021-2040, medium: 2041-2060, long: 2081-2100), and compared with the
historical baseline (1981-2010). Daily maximum near surface air temperature (tasmax)
was chosen as indicator of heat waves. Future temperature distributions were combined
with a Relative Risk (RR) function to estimate excess mortality, defined as the
percentage increase relative to baseline mortality.

Hazard was determined from deviations above the Optimum Temperature (Topt),
vulnerability with the RR function, while exposure was considered through population
data, since climate risk assessment derives from interactions among these three factors.

Ensemble mean and uncertainty among models were determined, showing higher
uncertainty values along coastlines. In addition, some cities were analyzed, selected
for their different locations, climatic conditions and population.

The results confirm an increase in mortality due to heat, reaching values of 3%
with respect to baseline mortality, under the SSP5-8.5 long-term scenario. Areas at
higher risk were identified through a synthetic index, which allows the combination
of future population exposure and future excess mortality.

This analysis adopts a method already used in the literature, though not previously
applied to such extended regions, providing insights into the health implications of
global warming in one of the world’s most vulnerable regions and offering a framework
that could be developed in future studies.
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Chapter 1

Introduction

Climate change has been described as ’the biggest global health threat of the 21st

Century’, putting the lives and well being of billions of people worldwide at increased
risk [1].

According to the Intergovernmental Panel on Climate Change (IPCC) Sixth
Assessment Report (AR6), approximately 3.3 to 3.6 billion people live in contexts
that are highly vulnerable to climate change [2].

Global temperature is the most commonly used metric to summarize the state of
the climate [3], since it has increased substantially compared to preindustrial levels,
as shown in Figure 1.1 [4].

Figure 1.1: Observed global mean surface temperature (GMST) from IPCC datasets,
relative to the average temperature of 1850–1900 in each dataset. Source: Figure 1.12
in [5].

Global warming has contributed to an increase in the frequency, intensity, and
duration of extreme heat events, or heatwaves [1], which are typically measured by
temperature extremes.

Exposure to heat has devastating effects on human health, contributing to increased
morbidity (illness) and mortality in different geographical locations [1].
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In this context, the Mediterranean Basin has been identified as one of the regions
most affected by future climate change impacts [6].

Extreme climate events alone are not sufficient to assess the consequences of
climate change, as the severity of impacts is strongly influenced by the exposure and
vulnerability of affected systems [7].

Therefore, climate change impacts are most appropriately quantified through a
risk assessment approach, which considers the interactions among extreme events,
exposure, and vulnerability [7].

1.1 Climate Risks

Climate risks are defined as the potential for adverse consequences for human or
ecological systems, including impacts on lives, health, well being, infrastructures, and
services [8].

In the context of climate change, risks result from dynamic interactions between
climate-related hazard, with the exposure of affected human or ecological systems,
and their vulnerability [8].

This framework is illustrated in Figure 1.2, which determines the role of natural
climate variability and anthropogenic changes, as well as the exposure and vulnerability
of human society and natural ecosystems in determining climate risks [7].

Figure 1.2: Schematic representation of the components of climate risks, showing
interactions between hazard, exposure and vulnerability. Source: Figure SPM.1 in [7].

According to IPCC definitions, these three elements can be described as follows:

• Hazard refers to the potential occurrence of natural or human-induced physical
events that may cause health impacts [8];

• Exposure indicates the presence of people, livelihoods, species or ecosystems
that could be adversely affected [8];

• Vulnerability represents the propensity or predisposition of exposed elements to
be adversely affected [8].

2



Introduction

Currently, no universally accepted risk analysis method exists for all phenomena
and uses; the choice of the method depends on their relevance, utility, and available
resources [9].

Three main approaches are commonly used for risk assessment: deterministic,
semi-quantitative, probabilistic [9].

Deterministic methods consider the impacts of defined risk events to determine
whether consequences are manageable. They are particularly useful when a full
stochastic approach is not feasible due to limited data. They are not completely
reliable, as they consider only a subset of potential events, but their performance in
preventing impacts from hazard is generally good and, in some cases, better than
other methods [9]. They may be referred to as a scenario test, a stress test, or a
reverse stress test [9].

• Scenario test, where a defined event or series of events is postulated and the
consequences are assessed;

• Stress test, with pre-agreed assumptions of risk, for example implied within a
business plan which are stressed and challenged to determine their impact on
results;

• Reverse stress test, where events or combinations of events are postulated that
could cause insolvency of the firm [9].

If properly presented, they can be clear, transparent, and understandable [9].
Semi-quantitative approaches categorise risks using comparative scores rather

than explicit probability or measurable consequences. They are more rigorous than
purely qualitative methods but do not constitute a full quantitative risk analysis.
Semi-quantitative methods can illustrate comparative risk and consequences in an
accessible way to users. A risk matrix is used to communicate a semi-quantitative
assessment: a combination of two dimensions of risk, severity and likelihood, which
allows a simple visual comparison of different risks. Severity is estimated from minor
to catastrophic, and likelihood from rare to almost certain. These methods can be a
useful stepping stone toward a full quantitative system, particularly where detailed
data are lacking. They provide a framework to capture subjective opinions, challenge
them, and identify areas requiring additional analytical effort [9].

Probabilistic risk analysis typically associates probability distributions to frequency
and severity elements of hazards and then runs many simulated events or years to
assess the likelihood of loss at different levels. These methods are widely adopted by
the insurance industry, especially for complex or catastrophic natural hazard risks.
The main advantage is that they consider frequency and severity together in a more
comprehensive and complex way than other methods, while the main limitation is
the difficulty in obtaining complex data on hazard, exposure, and vulnerability [9].
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1.2 Extreme Heat Events

Extreme heat events are periods of abnormally high ambient temperatures [10], often
referred to as heat waves, although the two terms are not strictly equivalent.

The IPCC defines heatwaves as periods of unusually hot weather, typically char-
acterized with reference to a relative temperature threshold, and lasting from a few
days to months [8]. This threshold is often determined using a percentile of daily
maximum temperatures, or a fixed value [11].

In this thesis, the analysis focuses on extreme heat events, without considering a
minimum number of consecutive hot days.

Extreme heat is among the most significant natural disasters globally, after floods,
storms, and earthquakes in terms of impacts. In recent years, the frequent occurrence
of extreme heat events has caused substantial adverse effects, particularly on human
health [12].

Extreme heat events can be analyzed using the risk assessment framework, identi-
fying and defining the three key determinants: hazard, exposure, and vulnerability.

Heat hazards include the frequency, intensity, and spatial extent of extreme heat
events, as well as their potential socioeconomic, environmental, and health impacts,
which are closely associated with rising ambient temperatures [12].

Temperature values are commonly used to quantify the risks for human populations
due to extreme heat events [12].

The frequency and intensity of hot extremes have increased globally since 1950,
while those of cold extremes have decreased [13]. The number of hot days and nights,
as well as the duration, frequency, and intensity of extreme heat events is projected
to increase over most land areas [13]. Although the magnitude of these trends varies
depending on the region, spatial and temporal scales, and the metric considered, the
evidence of a global warming effect is robust and consistent. In particular, increases
in the intensity and frequency of hot extremes are almost always associated with
higher temperatures and more extreme heat days [13].

The risk posed by extreme heat, as for other extreme climate events, is a function
of the severity of the hazard and the exposure and vulnerability of the population
[7]. Extreme heat events do not necessarily lead to extreme impacts, if exposure and
vulnerability are low [7].

Heat exposure describes the frequency and intensity of human exposure to extreme
heat, reflecting the degree to which individuals are in hazardous environments or
potentially dangerous situations [12]. The key to assessing heat exposure is to identify
and quantify this degree of exposure, using primary indicators, including the urban
built environment and economic factors. Temperatures vary depending on land use or
land cover type, with particularly elevated values in urban areas. Urbanization and
the Urban Heat Island (UHI) effect have extended the duration of urban heat events,
increasing the likelihood of residents being exposed to extreme heat [12]. Areas with
high population density and low greenspace coverage exhibit the highest levels of
exposure. Identifying these areas helps identify vulnerable regions and populations,
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facilitating the development of targeted mitigation strategies [12].
Heat vulnerability refers to the degree of risk faced by specific regions or popula-

tions due to a lack of resources to effectively cope with or mitigate negative impacts
of extreme heat [12]. Vulnerability results from both internal and external factors.
Internal vulnerability includes population characteristics and health conditions, such
as age, gender, and physiological state. This is particularly relevant for groups such
as the elderly, children, pregnant women, and individuals with chronic diseases. This
vulnerability is exacerbated in densely populated areas owing to the urban heat island
effect and limited cooling resources. External vulnerability encompasses factors such
as economic status, educational level, living conditions, and the distribution of critical
infrastructure [12].

1.3 Mediterranean Region

The Mediterranean Basin is recognized as a ’climate change hotspot’, due to the
projected increase in climate hazards, in combination with high regional vulnerability
and exposure [14].

The region lies in a transition zone between the arid climate of North Africa
and the typical temperate and rainy climate of central Europe, and it is affected by
interactions between mid-latitude and tropical processes [15].

Even relatively minor modifications of the general circulation - such as shifts in the
location of mid-latitude storm tracks, or sub-tropical high pressure cells - can lead to
substantial changes in the climate (Figure 1.3). Indeed, the Mediterranean region has
shown large climate shifts in the past, and has been identified as a prominent hotspot
in future climate change projections. The Mediterranean climate is characterized by
mild and wet winters and hot dry summers [15].

Winter climate is mostly dominated by the westward movement of storms origi-
nating over the Atlantic, and impinging upon the Western European coasts, and in
addition to this, also Mediterranean storms can be produced internally [15]. During
summer, high pressure and descending motions dominate over the region, leading to
dry conditions, particularly over the Southern part of the region; summer variability
has been found to be connected with both the Asian and the African monsoons [15].

In addition to planetary scale processes and teleconnections, the climate of the
Mediterranean is affected by local processes, induced by the complex physiography of
the region, and the presence of a large body of water, the Mediterranean Sea [15].
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Figure 1.3: Climate and natural land ecosystems in the Mediterranean Basin, based
on Köppen-Geiger climate types, for the baseline climate (a, 1985–2014) and the
future climate (b, 2076–2100). Source: Figure CCP4.4 in [14].

The Mediterranean Sea is the largest of the semi-enclosed European seas, covering
2.6 million km2, corresponding to 0.82% of the world’s ocean surface [16].

Surrounded by 22 different countries, along 46000 km of coastlines, the region
hosts around 500 million people living across three continents, Africa, Asia and
Europe [16].

The countries in the Mediterranean Basin hosted approximately 542 million people
in 2020, and this number is projected to increase to 657 million by 2050, and 694
million by 2100, according to the IPCC projections [14].

Moreover, in 1950, only 23.7% of the population lived in countries of the south,
and this number increased to 41.2% in 2000, 43.6% in 2020, and is projected to reach
55.5% in 2050 and 64.6% in 2100 [14].
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Figure 1.4: The Mediterranean region topography and bathymetry (colour bar in
metres), main urban areas (population in thousands for 2020, container ports (millions
of TEU [twenty-foot container equivalent units] in 2017. Source: Figure CCP4.1 in
[14].

The annual mean temperatures of the basin are now 1.4°C above preindustrial
levels and higher than the global mean warming [17]. So, the region is undergoing a
warming trend, with longer and warmer summers and with consequent increase in
the frequency and severity of heat waves [17].

With significant gaps in the socio-economic levels among the Mediterranean
countries, particularly between the North and South, and in parallel with population
growth and migration, the region is also facing increasing water demand under
conditions of decrease in water availability and quality, ecosystems degradation and
increased risk for forest fires [17].

These factors contribute to increasing vulnerability of the Mediterranean pop-
ulation to health risks. Since health impacts largely arise due to exposure and
vulnerability, they are enhanced by climate change. These additional climate-related
stressors create increased risks and make the communities of the Mediterranean Basin
more vulnerable [17].

In the Mediterranean Basin, the three determinants of risks - hazard, exposure,
vulnerability - interact explaining why the region is considered among the most
affected by climate change [18].

Heat waves and temperature extremes are projected to intensify, with the regional
average warming exceeding the global mean value by 20%. This trend causes changes
in all other climate system components: in last decades, dry conditions have also
become more frequent, with a large reduction of glaciers across high mountains of
the Mediterranean [18]. Total annual precipitation is expected to decrease over most
of the region, with dry conditions further enhanced by increasing evapotranspiration
over land [18]. At the same time, increasing extreme events will become more frequent
over large part of the Mediterranean [18].

Mediterranean mean sea level is projected to be, at the end of the 21st century, in
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the range from 20 to 110 cm higher than at the end of the 20th century, depending
on the level of anthropogenic emissions [18]. Widespread seawater warming and
acidification will continue, with marine heat waves becoming longer, more intense
and with increasing spatial extent [18].

Climate models also project that the Hadley Cell circulation will change, with the
tropics expanding, and the mid-latitude westerlies and associated storm tracks will
likely shift poleward [18]. Hadley circulation is a direct, thermally driven overturning
cell in the atmosphere, consisting of poleward flow in the upper troposphere, subsiding
air into the subtropical anticyclones, return flow as part of the trade winds near the
surface, and with rising air near the equator in the so-called Inter-tropical Convergence
Zone [8].

This is expected to enhance subsidence and reduce storminess at the latitudes of
the Mediterranean region, with a resulting reduction in precipitation [18].

Projected changes in extreme temperature indicators suggest that the frequency
and severity of heat extremes will increase. According to projections, summer daily
maximum temperature is expected to increase up to 7°C by the end of the 21st

century in comparison with the recent past. Besides warmer daytime temperature
maxima, parts of the Mediterranean will likely face an increase of more than 60%
in the number of tropical nights. Increase of warm temperature extremes will be
dramatic particularly in summer and with a 4°C global warming almost all nights will
be warm and there will be no cold days. Warming is projected to be milder in winters
and much stronger during summers. This is mainly attributed to land-atmosphere
interactions and the transition to drier conditions [18].

As previously indicated, about 500 million people live in this area, and this trend is
projected to increase in next decades, with differences in population distribution [14].
One-third of the Mediterranean population (about 150 million people) currently lives
close to the sea, often in growing urban regions and with infrastructure vulnerable to
sea level rise. Future exposure to sea level rise is related to demographic growth. All
future projections indicates an increase of coastal population in the Mediterranean
region to 2050. By 2100, coastal population could grow by up to 130%, mostly in the
south. Overall, countries in the southeastern Mediterranean are most vulnerable to
coastal risks, but the exposure is also high in the northern Mediterranean [14]. The
coastal population growth projected until 2050 mostly occurs in southern Mediter-
ranean countries, with Egypt, Libya, Morocco and Tunisia being the most exposed
countries to future sea level rise [14].

Mediterranean cities are growing due to increasing population and socio-economic
change, notably on the coasts of southern countries [18]. Impacts of climate change
on urban areas are expected to be disproportionally high due to a concentration of
population and assets – especially in high-risk prone areas - in combination with
hazard-amplifying conditions [18].

The vulnerability of population to the impacts of environmental and climate
change is strongly influenced by population density, level of economic development,
food availability, income level and distribution, local environmental conditions, pre-
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existing health status, and the quality and availability of public health care [18].
Vulnerable Mediterranean populations include the elderly, the poor, and people with
pre-existing or chronic medical conditions, displaced people, pregnant women and
babies. People who are disadvantaged due to a lack of shelter, clean water, energy or
food are more at risk from extreme events [18].

Heat waves are responsible for high mortality rates causing tens of thousands
of premature deaths, especially in large cities and among the elderly. Heat-related
morbidity and mortality has been partially reduced in recent years by more efficient
protection of people [18].

Most Mediterranean cities are compact and densely populated and have experi-
enced strong impacts from extremely high temperatures on their population [18]. In
recent decades, mortality rates due to heat stress have been reduced through national
plans and alert systems that have raised risk awareness and avoidance among the
population [18].

Urban areas along the Mediterranean coast are especially affected by climate
change impacts on health, because these areas concentrate people and assets [18].
Urban areas often intensify climate-related hazards, in this case, hotter temperatures
during extreme heat events, due to the urban heat island effect [18].

The European population at risk for heat stress is expected to increase (4%
annually) in the coming years and could increase to 20 or to 48% by 2050, depending
on different combinations of socio-economic scenarios. Vulnerability varies between
regions, and the Mediterranean region will be among the most affected [18].
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Chapter 2

Data and Methods

This chapter presents the data sources and the methodological framework adopted to
assess projected health risks for the population in the Mediterranean Basin related to
extreme heat events. According to the IPCC definition, climate risk results from the
interactions of three components: hazard, vulnerability, and exposure.

Consequently, in this study, the risk to the population is expressed in terms of
excess mortality, derived from the combination of these factors. Hazard is character-
ized by future temperature distributions, vulnerability is represented by a Relative
Risk function to obtain excess mortality, and exposure information is added using
population data.

2.1 CMIP6 Climate Models

Climate models are complex computer codes designed to simulate past, present, and
future climate variability. They can be broadly defined as digital reproductions of
the Earth system, aimed at reproducing the processes and interactions among its
components [19].

The modelling framework represents climate variables on a three-dimensional
grid of cells in the Earth’s atmosphere, surface, and oceans (Figure 2.1). The three
dimensions correspond to two horizontal directions (latitude and longitude), and
one vertical direction. Each cell is characterized by specific horizontal and vertical
resolutions, which determine the level of spatial detail provided by the model [20].

10
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Figure 2.1: Schematic representation of a three-dimensional grid of cells, each one
represented by mathematical equations governing material and energy fluxes. Source:
[20].

Also known as General Circulation Models (GCMs), climate models use mathemat-
ical equations derived from fundamental laws of physics, fluid motion, and chemistry,
to characterize how energy and matter interact in space and time. These equations
are solved for each point of the grid, and the outputs are passed to neighboring
cells, resulting in a representation of the exchange of mass and energy over time. In
addition to spatial resolution, models are also characterized by temporal resolution,
which depends on the size of the time steps: the smaller the time step, the more
detailed the results [20].

While GCMs focus primarily on physical processes within the climate system,
including atmospheric circulation models coupled with ocean circulation models [20],
Earth System Models (ESMs) have been developed to extend this framework by
incorporating biogeochemical processes and human actions that interact with the
climate system [21].

ESMs additionally include representation of land surfaces, sea ice, aerosols, cloud
physics, precipitation, evaporation and other water fluxes. This represents a major
step forward in simulating the Earth’s system [21].

Climate models provide a fundamental source of data for projecting possible future
climate conditions [20].

The models used in this study belong to the Coupled Model Intercomparison
Project Phase 6 (CMIP6), an international initiative that coordinates multi-model
simulations from more than 50 modelling centers around the world. Outputs are
publicly available through the Earth System Grid Federation (ESGF), enabling model
comparison at a global level and improving knowledge about the climate system [22].

Among the different Model Intercomparison Project (MIP) experiments, historical
simulations and future projections are considered in this analysis [22]. The former,
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covering the period 1850-2014, are based on reconstructions of external forcings
derived on observations. Future projections, instead, rely on forcings provided by the
Integrated Assessment Models (IAMs), which harmonize them to ensure consistency
with the historical baseline and across different forcings [22].

The sixth phase of CMIP introduces alternative scenarios, describing possible
evolutions of anthropogenic drivers of climate change and consistent with socio-
economic development. These are the Shared Socioeconomic Pathways (SSPs), which
describe trajectories of future society development under the assumptions of no
additional climate policy [23].

Unlike the Representative Concentration Pathways (RCPs), which formed the basis
for climate projections in CMIP Phase 5 and consisted of four pathways describing
land use and emission of greenhouse gases and air pollutants up to 2100, the SSPs
represent a new set of scenarios for emissions and land use, produced using Integrated
Assessment Models (IAMs) and based on pathways of societal development [23].

They are denoted as SSPsx,y, where x identifies the specific socioeconomic path-
way, and y indicates the global average radiative forcing level reached beyond 2100.
Radiative forcings can be defined as changes in the net radiative flux, caused by
changes in drivers of climate, such as changes in CO2 concentrations or in the output
of the Sun [8].

Among the available scenarios (Figure 2.2), two were selected for this analysis:

• SSP2-4.5, representing an intermediate pathway, with a stabilization of the
radiative forcing at 4.5 W m−2 by the end of the century;

• SSP5-8.5, which is the highest emission pathway, producing a radiative forcing
of 8.5 W m−2 by 2100 [23].

As the first number in each SSP indicates the general socioeconomic pathway (ranging
from 1 to 5), the selected scenarios are based on the following assumptions: SSP2
represents the central pathway, in which trends continue their historical patterns
without substantial deviations, without extreme land use and aerosol pathways; SSP5
assumes an energy intensive, fossil based economy and is the only scenario with
emissions high enough to produce a radiative forcing of 8.5 W m−2 by 2100 [23].

Figure 2.2: Scenario matrix showing combinations of socioeconomic development
pathways and climate outcome expressed as radiative forcings. Source: [23].
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Following the IPCC Assessment Report 6 (AR6) definition, these future scenarios
were divided into three time horizons: [5]

• Short-term: 2021-2040;

• Medium-term: 2041-2060;

• Long-term: 2081-2100.
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2.2 Materials

For this study, among the available datasets, NEX-GDDP-CMIP6 was selected [24].
This dataset provides a set of global, high-resolution and bias corrected climate change
projections derived from CMIP6, suitable for evaluating climate change impacts at
local scales.

Downscaling of GCM outputs is required due to two main limitations of global
simulation results. First, GCMs employ relatively coarse resolution grid (few degrees),
which limits their ability to capture spatial details; second, they can exhibit local
biases in spatial characteristics [24].

To address these limitations, the dataset is adjusted using Bias-Correction Spatial
Disaggregation (BCSD) statistical method for downscaling [25]. This algorithm
compares the original GCM outputs with corresponding climate observations over
a common reference period and uses resulting information to adjust future climate
projections. It uses spatial detail provided by observational datasets to interpolate
the GCM outputs to higher-resolution grids. Development of the NEX-GDDP-CMIP6
utilized 0.25-degree daily-averaged data for each variable [24].

The dataset is distributed by the NASA Center for Climate Simulations (NCCS)
and is publicly accessible at their official site [26]. Since the data are already bias-
corrected, no additional adjustments were applied in this analysis. The dataset
provides climate projections for the period 2015-2100, covering four SSP scenarios:
SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5, with historical observations for the
period 1950-2014. In this study, the historical baseline period 1981-2010 was adopted
as reference.

Among the 35 GCMs available in this dataset, nine were selected, as shown in
Table 2.1, to ensure representation of different modelling centers.

Maximum daily near-surface air temperature (tasmax) was selected among the
nine available climate variables, as required by the methodological framework adopted
in this study [27].
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Table 2.1: List of the nine Global Climate Models (GCMs) used in this study.

Model Modelling Centre Resolution
(lon×lat)

ACCESS-CM2 Commonwealth Scientific and Industrial
Research Organisation (CSIRO), Australia

1.875°×1.25°

BCC-CSM2-MR Beijing Climate Centre (BCC), China 1.125°×1.125°
CanESM5 Canadian Centre for Climate Modelling

and Analysis (CCCma), Canada
2.8°×2.8°

CMCC-CM2-SR5 Fondazione Centro Euro-Mediterraneo sui
Cambiamenti Climatici (CMCC), Italy

1.25°×1.0°

EC-Earth3 EC-Earth Consortium, Europe 1.0°×1.0°
FGOALS-g3 Chinese Academy of Sciences (CAS),

China
2.0°×2.25°

IPSL-CM6A-LR Institut Pierre-Simon Laplace (IPSL),
France

2.5°×1.25°

MIROC6 Model for Interdisciplinary Research on
Climate (MIROC), Japan

1.4°×1.4°

MPI-ESM1-2-HR Max Planck Institute for Meteorology
(MPI), Germany

0.94°×0.94°

While climate data characterize the hazard, risk assessment also requires infor-
mation about exposure. Among the available global population datasets, gridded
projections from the World Bank Climate Change Knowledge Portal (CCKP) were
selected for this study (available at their official website [28]).

This dataset is consistent with the SSP scenarios used for climate projections,
and has the same spatial resolution as NEX-GDDP (0.25◦ × 0.25◦).

Although climate projections follow the standard IPCC time horizons (2021-2040,
2041,2060, 2081-2100), the CCKP population data are provided for slightly shifted
periods (2020-2039, 2040-2059, 2080-2099).

The main characteristics of the population dataset are summarized in Table 2.2.

Table 2.2: Population dataset characteristics.

Variable Description
Population Count Number of inhabitants per grid cell

Population Density Inhabitants per km2
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2.3 Study Area

The geographical domain of the analysis is the Mediterranean Basin, bounded by
30◦N-47◦N and 10◦W-40◦E, shown in Figure 2.3.

Figure 2.3: Map of the Mediterranean Basin study area, showing the focus cities
with red markers.

Within this domain, the study focuses on different cities, selected to capture
different climatic, geographic, and urban conditions across the region. The focus
cities are:

• Turin, located in north-west part of Italy, is the fourth largest Italian urban
area. Alpine mountains favour a limited circulation of foehn winds, conferring
to the city a complex mosaic of microclimates [29].

• Rome is located along the western coast of the Italian peninsula. Characterized
by temperate climate, with hot and dry summers, the atmospheric circulation
is governed by the sea-breeze from the southwest [30].

• Madrid is located in the center of Spain, with altitudes ranging from 846 m in
the north to 543 m in the southeast. These values, with the distance from the
sea, cause a climate with scarce precipitation, and hot, dry summers [31].

• Barcelona is located along the coastline, and is one of the most densely popu-
lated urban area of the Mediterranean region with a population of 1.6 million
inhabitants [32].

• Istanbul is characterized by Mediterranean climate, with hot summers, and not
too cold winters. It is a densely populated metropolis, characterized by high
concentration of buildings, with limited green spaces [33].

• Cairo is a densely populated megacity, characterized by increasing frequency and
duration of heat waves, despite the common occurrence of high daily maximum
temperatures [34].

• Athens’ climate is mild, with dry and hot summers; it is a coastal city located
in the Mediterranean [35].
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• Belgrade is characterized by continental climate, influenced minimally by the
sea, and showing increasing trend in temperature values [36].

Coastal cities were selected for their population growth: Rome, Athens and Barcelona
increased less than twofold between 1950-2010, and in the same period, Istanbul grew
15-fold, while Cairo approximately 4-fold [16].

Heat waves are responsible for high mortality rates causing tens of thousands of
premature deaths, especially in large cities and among the elderly. Most Mediterranean
cities are compact and densely populated, and have experienced strong impacts from
extremely high temperatures on their population [18].

17



Data and Methods

2.4 Methodology

This section describes the methodology adopted in this study to assess future excess
mortality, quantifying the risks to Mediterranean population associated with extreme
heat events.

The approach integrates the three components of climate risk. First, the hazard is
quantified by projecting future temperature distributions, relative to historical data
(Optimum Temperature, Topt). Second, population vulnerability is assessed using a
Relative Risk function, linking increasing temperatures with health impacts.

2.4.1 Optimum Temperature

As previously described, the first step of the analysis involves the evaluation of the
climate hazard, here represented by future distributions of daily maximum temperature
tasmax. A central element of this step is the definition of the Optimum Temperature
(Topt), which represents the threshold above which heat begins to pose significant risk
to human health.

Following epidemiological studies for temperate climates [37], Topt was defined as
the 84th percentile of the historical distribution of the daily maximum temperature
(1981-2010). The choice of this value was based on the study followed for this analysis
[27], which found that the optimum temperature can be estimated using the 80-85th

percentile of daily maximum temperatures. The Topt estimated (based on cities in
Japan), corresponded to the mean value, and in most cases, it was around the 84th

percentile [27]. To repeat the study applying it to the Mediterranean region, the same
value for Topt was selected. This value is aligned with another study [37], which found
slightly different values, depending on the considered country (79th percentile for
Italy, 78th percentile for Spain). In fact, the definition of Topt as the 84th percentile
provides a standardized approach, but it may not capture differences at local level [37].
Optimum temperature value differs regionally among cities and regions, according to
their climate [38].

2.4.2 Probability Distribution of Future Temperatures

To quantify the heat hazard, the distribution of projected daily maximum temperatures
was evaluated relative to Topt.

For each grid cell, Probability Density Functions (PDFs) of daily maximum
temperature were constructed by dividing the observed temperature range into 100
equally spaced bins and computing normalized histograms [27].

This approach provides an intuitive representation of the hazard: by comparing
historical and future PDFs, one can directly visualize both the increasing probability
of exceeding Topt and the shifting occurrence of extreme temperatures.

The analysis was performed using a multi-model approach, by computing the mean
of temperatures (Topt) across the selected models and quantifying spatial variability
using the Coefficient of Variation (CV).
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The CV, also known as relative standard deviation, is a dimensionless statistical
metric that expresses the degree of dispersion of values relative to the mean. Mathe-
matically, it is defined as the ratio between the standard deviation (σ) and the mean
(µ) and is commonly reported as a percentage.

CV = σ

µ
× 100

Where the standard deviation (σ) quantifies the spread of data around the average,
while the mean (µ) represents the central tendency of the data set [39].

2.4.3 Relative Risk function

The health implications of exceeding Topt were quantified using a Relative Risk
(RR) function, linking mortality to the deviation from the optimum temperature
∆T = T − Topt.

The RR function was initially defined as a stepwise relationship from epidemi-
ological studies and then smoothed using a Piecewise Cubic Hermite Interpolating
Polynomial (PCHIP). This ensures monotonicity and prevents unrealistic oscillations,
producing a curve that is statistically sound and epidemiologically plausible [27].

Only positive deviations from Topt were considered, as cold-related mortality was
outside the scope of this study.

Figure 2.4 shows a Relative Risk function, highlighting how even moderate
deviations above Topt can lead to a sharp increase in mortality risk.

Figure 2.4: Relative risk of excess mortality as a function of deviation from optimum
temperature. The vertical dashed line indicates Topt.

The graph shows the relation between positive deviations from the optimum
temperature (x-axis), and the Relative Risk (y-axis). The risk remains close to 1.00
for temperature below Topt, rapidly increasing above this threshold. The risk rapidly
increases for small deviations from optimum temperature, reaching a maximum value
of 1.10 for an increase of 10°C from Topt value. Then, the curve remains stable at 1.10
for increasing temperature values, reflecting saturation of relative risk for extreme
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temperatures. In this study, the delay effect is not considered, and the function
reflects the maximum instantaneous increase, rather than distributed effects [27].

It is important to consider that the RR function is based on limited epidemiological
studies, and its extrapolation to the Mediterranean region may introduce uncertainty,
representing a weakness for the followed method [27].

2.4.4 Excess mortality estimation

Excess mortality was estimated for each grid cell by combining the probability density
function of temperature exceeding the optimum value, Topt, with the corresponding
relative risk function.

For each grid cell, excess mortality is defined as:

M(lat, lon) =
Ø
bins

PDF (T ) · RR(T − Topt − 1) · ∆T.

It was estimated for each grid cell by combining the probability density function
of temperatures with the corresponding relative risk function, weighting each bin by
its width, ∆T .

The calculation was repeated across the nine selected models, two emission
scenarios, and three time horizons. Ensemble mean and Coefficient of Variation were
computed to capture both central estimates and associated uncertainty.

To account for exposure, excess mortality grids were combined with population
density maps. This integration highlights areas where heat effects are amplified by
high number of inhabitants, identifying regions at higher risk.

To provide a metric to capture both projected excess mortality and population
exposure, a synthetic index was developed. For each grid cell, two variables were
considered: mean excess mortality (%) and population density (log10). Each variable
was standardized using Z-scores, using the following formula:

Z = X − µ

σ

where X is the observed measurement, µ is the mean of all measurements, and σ

is the standard deviation. Standardization ensures comparability between variables
with different units. Z-scores were computed separately for excess mortality and
population density, and then aggregated. The final index is obtained by summing the
two variables attributing equal weight.

Cells with positive Z-score values represent regions where both excess mortality
and population density are above the mean, while negative values indicate areas with
lower combined risk [40].

This approach differs from the Heat Vulnerability Index (HVI), widely used in
the literature, which typically considers demographic and socioeconomic factors, such
as age distribution, poverty, health conditions, or access to green areas [41].

In contrast, the proposed index represents a simplification, focusing on the direct
interaction between hazard and exposure, expressed as population density. This
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simplified formulation neglects important vulnerability factors, which are important
to define how different people could adapt to increasing temperatures [41].

The proposed risk index is simple and directly linked to the number of people
exposed: vulnerability has previously been considered with the Relative Risk function,
and resulting index shows the relation between excess mortality and number of
inhabitants per km2.

By excluding socioeconomic and demographic factors, the index may underestimate
the risk in different areas, neglecting percentage of elderly population, or urban areas
with limited adaptive capacity.

In addition, the assumption of equal weight for mean excess mortality and popu-
lation density is a simplification, whereas the contribution of these two factors may
contribute in different ways to the final risk.

The methodology applied in this thesis can be classified as a semi-quantitative
risk assessment approach, with excess mortality quantified under different climate
scenarios and time horizons, combining hazard, exposure, and vulnerability according
to the IPCC framework.
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Results

This chapter presents the main results of the analysis, with a particular focus on
the relationships between historical optimum temperature (Topt), projected future
temperature distributions, and associated risks for the Mediterranean Basin. The
results are organized in two sections. The first examines the combination of hazard and
vulnerability, while the second provides a risk assessment, considering also population
exposure.

3.1 Historical Optimum Temperature and Future Distri-
butions

As described in the previous chapter, the 84th percentile of historical (1981-2010)
daily maximum temperature (Topt) was adopted as a reference value, representing
the threshold above which the risk related to heat begins to increase [27].

Figure 3.1: Mean value of the historical 84th percentile of daily maximum tempera-
ture.

Figure 3.1 shows that mean historical Topt exhibits clear spatial heterogeneity
across the Mediterranean Basin. Values reach up to 40° C in North Africa and
the eastern part of the domain, while most continental European regions remain
below 30°C. These differences reflect regional climatic conditions and population
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acclimatization. In addition to climate, topography, demography, urban structure
influence Topt values [38].

Populations are to some extent acclimatised and, as far as their socio-economic
conditions allows, behaviourally and technically adapted to their local climate, even to
extremes [38]. The level of acclimatisation to temperature is significantly determined
by regular exposure to a certain temperature [38].

Figure 3.2: Coefficient of Variation (CV) of the historical 84th percentile of daily
maximum temperature.

The CV (Figure 3.2) indicates relatively low variability among models in coastal
areas. In contrast, inland regions - including the Iberian Peninsula, the Alps and the
Balkans - show higher CV values, reaching 2% and highlighting increased inter-model
variability.

These patterns provide a measure of confidence in the multi-model mean, helping
to identify regions where projections are more or less robust [42]. Overall, the majority
of the domain exhibits high model agreement, with higher variability confined to
specific inland hotspots.

To better understand future hazard at urban scale, the Probability Density
Functions (PDFs) and the corresponding Cumulative Distribution Functions (CDFs)
of projected daily maximum temperatures were computed for the cities selected in
Section 2.3.

While PDFs describe the probability of occurrence of specific temperature values,
CDFs provide the probability of exceeding a given temperature threshold, in this case
Topt.

For each city, the PDF is presented alongside its corresponding CDF. Within each
panel, SSP2-4.5 is shown on the left, and SSP5-8.5 on the right side, including their
respective time horizons (short, medium, long term), together with the historical
temperature distribution and Topt, indicated by a dashed line.

The Southern Mediterranean and middle east, including cities of Cairo and
Istanbul, exhibit the strongest warming trend, particularly under SSP5-8.5 for the
long-term horizon.

The PDFs for Cairo (Figure 3.3) show marked shift toward higher temperatures,
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with the CDFs (Figure 3.4) showing significant increase in the probability of exceeding
Topt, which passes from 15% of historical period, to 40% for the worst case. This
trend reflects the rapid warming of the region, with increasing magnitude, duration
and frequency of heat waves [43].

Figure 3.3: PDFs of daily maximum temperature for Cairo: on the left SSP2-4.5,
on the right SSP5-8.5.

Figure 3.4: CDFs of daily maximum temperature for Cairo: on the left SSP2-4.5,
on the right SSP5-8.5.

Istanbul shows similar patterns, even if the PDFs (Figure 3.5) show different
temperature distributions compared to Cairo, reflecting cooler climatic conditions.
The probability of exceeding Topt is slightly lower (Figure 3.6), and corresponds to
about 37% for the same worst scenario.
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Figure 3.5: PDFs of daily maximum temperature for Istanbul: on the left SSP2-4.5,
on the right SSP5-8.5.

Figure 3.6: CDFs of daily maximum temperature for Istanbul: on the left SSP2-4.5,
on the right SSP5-8.5.

Considering Mediterranean cities influenced by the sea, Barcelona and Athens
show moderate warming trends compared to previously discussed cities.

Both cities are characterized by a typical Mediterranean climate - Barcelona in
the western Mediterranean basin [32], and Athens in the eastern part [35] - and
both are highly urbanized, which enhances the Urban Heat Island (UHI) effect.
Projected trends indicate an increase in extreme temperature events, with the number
of heatwaves days expected to rise from two days during 1961–1990 to approximately
40 days for 2071–2100 in Barcelona [32]. The PDFs of Barcelona and Athens show
similar temperature distributions, with Athens showing higher PDF values in the
30°C-40°C range, highlighting generally hotter climatic conditions.
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Figure 3.7: PDFs of daily maximum temperature for Barcelona: on the left SSP2-4.5,
on the right SSP5-8.5.

Figure 3.8: CDFs of daily maximum temperature for Barcelona: on the left SSP2-4.5,
on the right SSP5-8.5.

Figure 3.9: PDFs of daily maximum temperature for Athens: on the left SSP2-4.5,
on the right SSP5-8.5.
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Figure 3.10: CDFs of daily maximum temperature for Athens: on the left SSP2-4.5,
on the right SSP5-8.5.

Northern and central European cities such as Turin, Madrid, Belgrade and Rome
also exhibit the Urban Heat Island effect. However, they are located inland, and are
less influenced by the sea.

The PDFs show similar trends for Turin (Figure 3.11), Madrid (Figure 3.13) and
Rome (Figure 3.17), while Belgrad (Figure 3.15) displays a comparable warming
pattern under the SSP5-8.5 scenario, particularly for the long-term horizon. Belgrade
is the city that shows the most evident changes in the PDFs, compared to the historical
distribution (Figure 3.15), with a marked shift to temperatures above the Topt. The
shapes and slopes of the CDFs are similar for these cities. Considering inland urban
areas, CDFs reach similar values of probability of exceeding the threshold, with
differences related to the distance from the historical line.

Figure 3.11: PDF of daily maximum temperature for Turin: on the left SSP2-4.5,
on the right SSP5-8.5.
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Figure 3.12: CDF of daily maximum temperature for Turin: on the left SSP2-4.5,
on the right SSP5-8.5.

Figure 3.13: PDF of daily maximum temperature for Madrid: on the left SSP2-4.5,
on the right SSP5-8.5.

Figure 3.14: CDF of daily maximum temperature for Madrid: on the left SSP2-4.5,
on the right SSP5-8.5.
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Figure 3.15: PDF of daily maximum temperature for Belgrade: on the left SSP2-4.5,
on the right SSP5-8.5.

Figure 3.16: CDF of daily maximum temperature for Belgrade: on the left SSP2-4.5,
on the right SSP5-8.5.

Figure 3.17: PDF of daily maximum temperature for Rome: on the left SSP2-4.5,
on the right SSP5-8.5.
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Figure 3.18: CDF of daily maximum temperature for Rome: on the left SSP2-4.5,
on the right SSP5-8.5.
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3.2 Excess mortality and Population Exposure

The assessment of risk for the Mediterranean population due to heat was extended to
quantify potential impacts on human health, expressed in terms of excess mortality,
as a percentage and relative to baseline mortality.

A multi-model approach, consistent with the one used for Topt, was applied to
estimate excess mortality across selected scenarios and time horizons.

Figures 3.19 and 3.20 illustrate the spatial distribution of mean excess mortality
and its associated uncertainty, quantified through the Coefficient of Variation.

Figure 3.19: Mean of excess mortality (%) for the two scenarios (SSP2-4.5 in
the first row, SSP5-8.5 in the second row) and the three time horizons: short (first
column), medium (second column) and long term (third column).

Figure 3.19 indicates a generally homogeneous increase in mean excess mortality,
reaching approximately 1.0-1.5% for the long term horizon under the SSP2-4.5 scenario,
and up to 3% under SSP5-8.5. Although the graphs indicate a clear increasing trend,
regional differences are not strongly pronounced, with excess mortality remaining
relatively stable across other time horizons and for SS2-4.5, with significant increase
evident for the long term SSP5-8.5 scenario.

Figure 3.20 shows the Coefficient of Variation of excess mortality across models,
serving as a measure of uncertainty.

The greatest uncertainty occurs along coastlines, reflecting the increased sensitivity
of these regions to local climate variability and model differences. The SSP5-8.5
scenario exhibits higher uncertainty, particularly for the long-term horizon.

Coastal variability may be also influenced by local scale processes, including wind,
storms, and wave activity, which are subject to significant multi-model uncertainty.
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Figure 3.20: CV of excess mortality (%) for the two scenarios (SSP2-4.5 in the first
row, SSP5-8.5 in the second row) and the three time horizons: short (first column),
medium (second column) and long term (third column) with red marker indicating
zones of higher uncertainties.

The focus of the analysis was the assessment of potential impacts related to heat
on the Mediterranean population. To this end, excess mortality data were combined
with population data, to identify areas at higher risk. Population density (expressed
as base 10 logarithm) at each grid point was compared to excess mortality. Results
presented in Appendix A, suggest no clear or significant trends between these two
variables.

Scatter plots for selected urban areas (Figure 3.21) provide an examination of the
relationship between historical climate conditions (Topt on the x-axis), population
size (represented by marker size) and future excess mortality.

Figure 3.21: Population of considered cities as a function of Topt and mean excess
mortality (%) for the two scenarios (SSP2-4.5 in the first row, SSP5-8.5 in the second
row) and the three time horizons: short (first column), medium (second column) and
long term (third column). Marker size proportional to city population.

Southern cities, such as Cairo, exhibits higher Topt value, ranging from approxi-
mately 25°C to a maximum of about 35°C (Cairo), as highlighted previously (Figure
3.1). However, the projected excess mortality remains moderate for SSP2-4.5 scenario.
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In contrast, European cities, such as Madrid, Rome, Turin, and Belgrade, with
lower optimum temperature value exhibit higher excess mortality, particularly under
SSP5-8.5 scenario in the long-term horizon.

In general, under SSP5-8.5, a marked increase in excess mortality is projected
for all cities, with Madrid showing the highest values (about 2.4%) in the long term.
Overall, excess mortality values across all cities ranges between 1.5%-2.5% under the
long term SSP5-8.5 scenario, consistent with spatial pattern shown previously.

The synthetic Z-score maps combine excess mortality with population density,
providing a spatial representation of areas at risk. In the short-term, positive values
of the index are concentrated mostly in densely populated urban areas, with negative
values particularly visible in the internal zones of North Africa and in Greek islands.

Figure 3.22: Z-score to combine excess mortality with population density for short-
term and two scenarios: SSP2-4.5 on the left and SSP5-8.5 on the right.

In the medium term, areas with positive values expand slightly, with the most
visible change in North Africa, with values near zero in the internal part of the
continent.

Figure 3.23: Z-score to combine excess mortality with population density for medium-
term and two scenarios: SSP2-4.5 on the left and SSP5-8.5 on the right.

In the long-term, especially under SSP5-8.5 scenario, all cells show positive values,
with only a few negative zones remaining. This highlights a widespread increase in
risk.
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Figure 3.24: Z-score to combine excess mortality with population density for long-
term and two scenarios: SSP2-4.5 on the left and SSP5-8.5 on the right.

These results highlight areas at higher risk, corresponding to urban centers where
projected excess mortality intersects with high population exposure. They reflect
future projections, showing the impacts of temperature extreme events on densely
populated urban centers and coastal rgeions [14].

The comparison between SSP2-4.5 and SSP5-8.5 scenarios underlines the critical
role of mitigation pathways, demonstrating that under the lower emission trajectories,
projected risks are substantially reduced.

It is important to note that areas with higher uncertainty (with high CV values,
Figure 3.20) correspond to zones with lower Z-scores, particularly along North African
coastlines and some Greek islands.

34



Chapter 4

Discussions and Conclusions

Climate change represents one of the most crucial challenges for the future of the
Mediterranean Basin, due to both its pace and magnitude. The region is particularly
vulnerable to the impacts of a warming climate, most evident in the form of prolonged
and more intense extreme heat events [14].

All Mediterranean countries are affected by climate change impacts [14], with
significant implications for human health [18].

The region has been identified as a climate change hotspot, with projected warming
rates approximately 20% above the global mean, reaching 50% in the summer period
[18]. This is combined with high population exposure and vulnerability [11].

Accelerated warming trends translate into a wide range of interconnected risks
for the Mediterranean Basin. Prolonged and stronger extreme heat events increase
also drought and coastal flooding; uncertainties in the timing, duration, intensity,
and interval between extreme climatic events put some sectors at particular risk in
the region [14].

Southeastern Mediterranean countries are particularly vulnerable to coastal risk,
but the exposure may become high also in the northern part of the region [14].

In terms of people, North African countries are the most exposed to sea level rise,
and among these, Egypt is particularly exposed with several coastal cities at risk of
inundation [14].

Overall, sea level rise is projected to increase the risk of coastal flooding, and this
is amplified by climate change, particularly in river deltas [14].

Also inland areas are at risk: increasing heat waves, combined with drought and
land use change, increase the likelihood of large and severe fires [14]. In addition,
desertification occurs in large parts of the region, generally due to unsustainable
land use. Increasing drought is projected to exacerbate desertification in North
Africa and, under high warming, also in southern Spain [14]. Irrigation needs could
increase by 25% in northern and two-fold in southeastern Mediterranean, with arid
and southern areas at risk of insufficient water resources by 2100 [14]. Seawater
intrusion is projected to cause additional risks in coastal aquifers, with severe impacts
on agricultural productivity [14].

Within this complex spectrum of interconnected climate risks, this thesis focuses
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specifically on the impacts of increasing heat on human health. Direct effects of
extreme heat events on morbidity and mortality for population constitute one of the
most urgent threats, already observable in current climate conditions, and projected
to intensify in the coming decades.

By adopting the IPCC risk framework, this study translates the concepts of
hazard, exposure, and vulnerability into an operational assessment. The risk caused
by increasing heat is quantified in terms of excess mortality under different climate
scenarios (SSP2-4.5 and SSP5-8.5) and time horizons (short, medium, and long term).

The results confirm the documented increase in health risks due to extreme heat
events in the Mediterranean [14]. Results show projected increases in the excess
mortality, under both emission scenarios, with the strongest effects visible under
SSP5-8.5 in the long term horizon. This poses evidence on the need for adaptation
measures.

The focus on the Mediterranean cities provides additional insights, highlighting
slightly different projections across selected urban centers. Madrid emerges as partic-
ularly at risk, with excess mortality reaching about 2.5% under SSP5-8.5 scenario in
the long-term. Other European cities, such as Rome, Turin, and Belgrade, also show
significant increases in excess mortality. Southern Mediterranean cities, including
Cairo and Athens, exhibit high baseline temperature but comparatively lower pro-
jected excess mortality, maybe due to differences in population acclimatization and
vulnerability.

The spatial analysis of risk demonstrates that densely populated urban centers
act as hotspots of heat impacts. The use of a synthetic Z-score, integrating excess
mortality with population density allows for a clear identification of the most exposed
areas. Also in this case, SSP5-8.5 scenario under long-term horizon shows a diffused
increase in the risk, with reduced regional differences.

Excess mortality maps are smoothed and do not allow the identification of detailed
regional differences. This limitation arises because excess mortality is determined as a
combination of hazard (future temperature distribution), and population vulnerability
(Relative Risk function), and then aggregated as multi-model mean.

Despite this, regional differences can be observed in the scatter plot for selected
cities and in maps showing the synthetic index results.

Uncertainty analysis, based on the Coefficient of Variation (CV) across models,
identifies regions where projections are less robust, particularly along coastlines and
islands. This is especially relevant considering that approximately one-third of the
Mediterranean population is concentrated along its coastal regions [18]. In fact, about
250 million people reside in coastal hydrological basins, with 120 million inhabitants
concentrated in coastal regions in the southern part of Mediterranean [18].

Results can be used to identify regions at higher risks to increasing temperatures,
considering that extreme heat events affect urban centers and coastal regions, causing
health risks for vulnerable groups [14].

The analysis did not consider population percentage of more vulnerable groups,
providing a generalized assessment of excess mortality, with respect to baseline data.
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Adapting to increasing temperature impacts involves local urban health adaptation
plans, which need to be integrative and assess infrastructures, urban areas, and the
implementation of early warning systems [14].

In conclusion, this semi-quantitative risk assessment highlights that increasing
heat will pose severe threats to human health in the Mediterranean Basin, confirming
its status as one of the most exposed climate hotspot worldwide.
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Appendix A

Appendix A

Figure A.1: Population density (log10) related to excess mortality mean (%): SSP2-
4.5 in the first row, SSP5-8.5 in the second row and the three time horizons: short
(first column), medium (second column) and long term (third column).
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