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Abstract 

The rapid growth of EOL and used products has intensified the need for circular 

manufacturing strategies that enable reuse and remanufacturing of products. One of the 

most critical challenges in this context is the visual inspection of EOL/used products to 

determine reusability. Traditional approaches rely either on manual inspection, which 

is often slow, inconsistent, and dependent on individual judgment, or on automated 

inspection systems based on rule-based image processing, which lack adaptability to 

new defect types, new products, and changing environmental conditions. This thesis 

addresses these challenges in the electronics domain by developing an AI-based 

classification method to classify burnt PCBs from reusable printed circuit boards (PCBs). 

A dataset is developed by combining burnt and good PCB images collected from 

literature, online sources, and manually verified cases with synthetic images generated 

using generative AI tools such as ChatGPT (DALL·E) and Gemini. Data integrity is 

ensured through perceptual hashing and deep feature filtering with a pre-trained 

ResNet50 model to remove duplicate and augmented images. Finally, six targeted 

augmentation pipelines are also applied to introduce realistic variations in geometry, 

lighting, occlusion, noise, background, and compression. 

Several state-of-the-art deep learning architectures are fine-tuned on this dataset using 

transfer learning with pre-trained ImageNet weights. CNNs demonstrated the strongest 

performance: YOLOv11 and ResNet50 both achieve 98% accuracy with perfect precision 

for burnt PCBs, while EfficientNetB3 follows closely with an F1-score of 0.96 and perfect 

precision on good PCBs. In contrast, larger CNNs such as ResNet152 (F1 = 0.77) and 

EfficientNetB7 (F1 = 0.90) show weaker generalization despite their higher capacity. 

DeiT achieves competitive performance with an F1-score of 0.92, whereas the self-

supervised DINO variants underperform (F1 = 0.72 for ViT, 0.54 for CaIT backbones). 

These findings highlight that in data-scarce industrial domains, lightweight CNNs 

outperform deeper or more complex models.  

The results demonstrate that AI-based visual inspection can significantly improve PCB 

reuse decisions in remanufacturing.  
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Chapter 1  

Introduction 

1.1. Motivation 

The amount of waste from electrical and electronic equipment (WEEE) generated 

globally increased by 82% from 2010 to 62 Mt in 2022, and is anticipated to reach 82 Mt 

by 2030 [1]. This growing e-waste problem calls for more sustainable and circular 

approaches in manufacturing. Remanufacturing has become an essential strategies for 

reducing waste, conserving resources, and minimizing environmental impact.  85% of 

the raw material and 55% of the energy can be saved through remanufacturing 

compared to the production of new parts [2]. 

AI has evolved over the years. The features of AI, such as data analytics, optimization 

algorithms, and image processing, can be applied to make CE more efficient. AI covers a 

wide range of techniques such as ML, DL, natural language processing, CV, and RL. These 

technologies help AI to match up with human intelligence and perform tasks such as 

pattern recognition, image recognition, sentiment analysis, language translation, facial 

recognition, and robotics control. These characteristics of AI have a huge impact on the 

transition of the traditional linear economics model of production and consumption to 

CE through closed-loop continuous resource recycling. The complex challenges of 

resource efficiency and sustainability can be addressed through AI to a considerable 

extent [3][4].  This motivates exploring how AI can be applied specifically to the visual 

inspection of used PCBs. This thesis aims to develop a method that uses AI to classify 

whether a PCB has surface burns or not, a curricle first step to determine its reusability. 

This kind of solution can support more efficient remanufacturing, reduce waste, and 

contribute to smarter circular manufacturing practices. 

1.2. Problem Statement 

One of the biggest challenges in remanufacturing is the amount of manual work involved 

in inspecting and sorting returned products [5]. Consequently, even if a company 

successfully implements remanufacturing processes, they are often carried out in low-

wage countries [6]. A highly critical and value-adding step is the selection of returning 

used products, which requires initial visual inspection by workers who then make 
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technological and economic decisions regarding the reusability or remanufacturability 

of the returning used products [7]. For example, when printed circuit boards (PCBs) 

come back for reuse, usually workers visually inspect each one to decide whether it can 

still be used or burned and can not be reused/remanufactured. This process is time-

consuming and also dependent on human judgment, especially when it comes to 

identifying issues like burn marks or physical damage. Although automation can help 

reduce costs and make remanufacturing more efficient, there’s still a lot of uncertainty 

involved [8] due to the strict rules based on algorithmic automation. The quality of 

returned products varies [9], and most come in small batches [10]. Because of that, it’s 

hard to standardize the inspection process in the context of automation, and companies 

often require human flexibility and adaptability[6].  

1.3. Objectives 

This thesis aims to develop a computer-vision-based Printed Circuit Board (PCB) 

classification system using AI to distinguish between burnt and good PCBs, assessing 

their suitability for reuse in a circular manufacturing framework. To achieve the goal, the 

first objective is to collect a dataset of Good PCBs and Burnt PCBs, then clean and prepare 

the data to improve quality and remove any repeated images. Next, we employ data 

augmentation techniques to create more realistic variations of the images, including 

different lighting conditions, rotations, backgrounds, and noise levels, thereby increasing 

the dataset's size and diversity. Once we have cleaned the dataset, a suitable DL 

classification model will be trained, validated using metrics such as accuracy, precision, 

recall, confusion matrix, and confidence analysis, and tested to distinguish between 

burnt and good PCBs. Finally, the classification pipeline is assessed for its scalability and 

potential to support resource-efficient practices in remanufacturing.  

1.4. Thesis Structure 

This thesis is organized as follows: Chapter 1 introduces the goals, motivation, and 

objectives. Chapter 2 reviews existing research in AI-based CV and state-of-the-art DL 

models. Chapter 3 explains data preparation, training, evaluation, and detailed DL model 

architectures. Chapter 4 presents the methodology, covering dataset collection, 

preprocessing, training, and evaluation. Chapter 5 reports results with metrics and 

visualizations. Chapter 6 discusses and interprets the results, highlighting limitations 

and future directions. Finally, Chapter 7 concludes with the key findings. 
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Chapter 2  

Literature Review 

2.1. Circular Economy and Strategies 

Across 114 definitions, CE is most frequently described as a process of reduce, reuse, and 

recycle activities, whereas it is oftentimes not highlighted that CE necessitates a systemic 

shift[11]. Later work, based on 221 Definitions of CE, conceptualized the conservation of 

product, material, and resource value across cycles. In other words, it is a regenerative 

economic system that replaces the EOL/used products concept with reusing, recycling, 

and remanufacturing products or materials throughout the supply chain for sustainable 

development [12].  

Figure 2.1 shows that 5.22 Gt of raw materials processed in the EU originate from natural 

resource extraction, 1.51 Gt from imports. 4.75 Gt of raw materials processed were used 

to make products; however, only 1.02 Gt from recycling and backfilling. The rest were 

mainly exported or used for producing energy. Moreover, the EU's overall circularity rate 

(the share of recycled materials in total material use) is 11.8 %, which means the 

European Union still relies on a linear economy [13] and aiming to increase it to 22.4% 

by 2030 [14]. 

 

Figure 2.1: Material flows EU 2023 in Gigatonnes  [15] 



4 

A meta-analysis of comparative life cycle assessment on mechanical products finds that 

remanufacturing can reduce global warming potential to 28.5% and primary energy 

consumption to 25.9% of new manufacture on average [16]. 

Global E-Waste Monitor reported that 62 million tonnes of e-waste were produced in 

2022, and the generation of e-waste is on track to rise to 82 million tonnes in 2030. Waste 

electrical and electronic equipment (WEEE) poses a serious issue due to its complex mix 

of materials, making recycling both difficult and resource-intensive [1], [17]. 

Several scholars and organizations have proposed a broader set of strategies to 

operationalize circularity. Among the most widely adopted is the R9 framework, which 

extends beyond the traditional 3Rs to include nine complementary strategies as 

explained in Figure 2.2. These strategies, when combined, provide a hierarchical 

approach to conserving resources, prioritizing value retention at the highest possible 

level before resorting to material recycling or energy recovery [18] [19]. 

 

Figure 2.2: Circular economy strategies [20] 

2.1.1. The Remanufacturing Process 

Remanufacturing is defined as a manufacturing process in which end-of-life products are 

rebuilt to be used in a new lifecycle. Unlike recycling, which mainly focuses on material 

recovery, remanufacturing restores full functionality and can also manufacture an 

upgraded product comparable to or better than a new product [21]. Remanufacturing 

distinguishes itself from reconditioning or repair because it is the process that can 

compete with a new product in terms of quality [22]. There are also international 
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standards to define remanufacturing processes, which include BS8887-2:2009 [23], 

ANSI RIC001.2-2021 [24], and the latest publication issued by the German Institute, DIN 

SPEC 91472:2023 [25]. The general remanufacturing processes are shown in Figure 2.3.  

 

Figure 2.3: Remanufacturing Process [26]   

The key sequences of operations involved in remanufacturing differ depending on the 

constraints and requirements of the product and the industry [27]. An overview of the 

remanufacturing process’s key operations for different industries are given in Table 2.1. 

Table 2.1: Remanufacturing Processes Across Diverse Industries 

Industry / Scope Key Processes in Remanufacturing Reference 

Generic Industrial 
Remanufacturing 

Cores → Inspection and cleaning → Disassembly → 
Component Reprocessing → Reassembly → Testing 

[26][28] 

Automotive  

(General framework) 

Cores → Cores Cleaning → Disassembly → Cleaning → 
Inspection and Sorting → Refurbishment → Reassembly → 
Testing 

[29] [30] 
[31] [32] 

Industrial Equipment 
(Design phases) 

Design & development → Product Collection → Disassembly 
→ Condition assessment and sorting → cleaning → Repair → 
Re-assembly → Testing 

[33] 

Industrial Electronics 
(PCBs, EEE, etc.) 

Inspection → Disassembly → Cleaning → Troubleshooting → 
Component replacement/refurbishment → Reassembly → 
Testing 

[34] [35] 

Appliances Industry 
Inspection → Disassembly → Parts 
replacement/refurbishment → Cleaning → Reassembly → 
Final testing 

[36] [37] 

Despite its significant environmental and economic benefits, remanufacturing faces 

persistent challenges such as end-of-life product sourcing, component variability, and 
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unpredictable failure rates that hinder process efficiency. To address these issues, 

functional requirements and associated performance measures have been defined. One 

of these functional requirements is the supply of cores and their inspection [38]. 

2.2. Inspection of Used/EOL parts 

Inspection is defined as the testing of the conformity of the relevant characteristics of a 

product by observation, measurement, or functional testing  [39]. Inspection is an 

essential part of  the remanufacturing process, as illustrated in Table 2.1. EOL products 

and their components must be carefully examined to identify visible defects or damage 

[40].  The uncertain condition of returned products constitutes a major source of 

complexity in remanufacturing, distinguishing it significantly from linear manufacturing 

[41]. Additionally, unlike conventional manufacturing, where sampling-based inspection 

methods are used, remanufacturing requires 100% inspection of all components to 

guarantee that the final product meets quality and performance specifications [42]. 

During the initial inspection, products are typically classified into three categories: (1) 

reusable, (2) remanufacturable, and (3) non-remanufacturable [43].  

2.2.1. Visual Inspection 

The remanufacturing process typically begins with an initial visual inspection to 

determine whether a returned product can proceed further in the process chain. For this 

purpose, remanufacturers often define core acceptance criteria that outline the 

conditions under which a product or its subassemblies are considered suitable for 

remanufacturing [44]. Therefore, these criteria vary across companies and product 

types, specifying tolerances for mechanical and electrical defects, permissible levels of 

corrosion, and the acceptable extent of wear, disassembly, or missing components. 

Despite such guidelines, inspection outcomes are still largely qualitative, since they rely 

on the operator’s sensory perception and judgment. In practice, the inspector assesses 

the product’s reusability based on observable characteristics and, when necessary, 

supplements this with haptic inspection [45]. From a methodological perspective, visual 

inspection is regarded as a non-dimensional inspection method, as performed along the 

process of remanufacturing, as it does not provide measurable data but instead produces 

results based on subjective human evaluation. While this makes it low-cost, it also 

introduces a high degree of variability and dependence on operator expertise, which is a 

known limitation in the remanufacturing industry. 
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2.2.2. Automated Visual Inspection 

Manual visual inspection by a worker is susceptible  to errors and can reach error rates 

of up to 30% [46]. Extensive research has recently been conducted on automated 

systems for visual inspection because it improve the accuracy and efficiency of 

inspection. At a fundamental level, these systems typically comprise a light source, an 

image acquisition unit/vision sensor systems, and a processing module (Figure 2.4) [47].  

 

Figure 2.4: Automated Visual Inspection System[48] 

The acquisition system generates digital signals in various formats, including binary, 

grayscale, color images, depth maps, and point clouds. Each type of data has a specific 

purpose: binary images detect object presence, grayscale images analyze texture, color 

images identify surface defects, and point clouds are used for geometric inspections [49]. 

Moreover, automated visual inspection is an image processing approach that involves 

various techniques for modifying captured images of an object to make a reasonable 

decision based on the photos. The methods involve filtering, projection, learning, hybrid, 

and other algorithm-based automated visual inspection systems [50]. 

Automated inspection reduces process complexity, improves material utilization, and 

minimizes non-remanufacturable parts. It ensures better value recovery, consistent 

quality, and lower costs. Additionally, automation increases process throughput and 

accuracy, enhances worker safety by reducing risks, and shortens factory lead times, 

making the overall remanufacturing process more efficient [51]. 

2.2.3. AI-based Visual Inspection 

Rigid rule-based algorithms used in automated inspection lack adaptability to new or 

complex defect types, especially under variable lighting conditions, surface textures, or 

product orientations. As a result, their performance drops in a realistic environment. To 

overcome these variable issues in Industry 4.0, AI-based algorithms are used in visual 

inspection, which relies on data-driven models to automatically learning features and 

patterns directly from image data (defective and non-defective samples), instead of 
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depending on pre-defined rulesm, enabling the system to perform accurate 

classification, localization, or segmentation of faults [52]. Additionally, AI-based 

inspection systems are based on the same fundamental hardware configuration as 

automated inspection (vision sensors and a processing computer system).  

2.3. AI-Based PCB Inspection: Datasets and Models 

The field of Printed Circuit Board (PCB) inspection has undergone a significant 

transformation through the integration of DL CV. These advancements range across 

multiple inspection domains, including defect detection on bare boards, component 

localization on assembled boards, and anomaly detection.  Each domain benefits from 

specialized datasets and leading AI models that push the boundaries of speed and 

accuracy.  

The first step for DL model is the requirement of a dataset. Existing datasets for DL based 

PCB visual analysis mainly contain good or defective PCBs. The PCB-DSLR dataset [53] is 

the first publicly available dataset to facilitate research on CV-based PCB analysis, 

comprising 748 images of PCBs (165 different PCBs, 3 to 5 images per PCB) captured 

under representative conditions using a professional DSLR camera at a recycling facility. 

The images are annotated for bounding boxes for 2048 unique labeled ICs, 9313 labeled 

ICs in total.  The other publicly available dataset at [54] includes 480 images of 80 

different PCBs, but consists of low-quality images that are inadequate for analysis at the 

detail level. The authors in another work [55] performed text recognition on both boards 

and its components. The dataset used by them consists of 860 PCB segments with text. 

However, no specific details were available on the number of boards used. PCB-METAL 

[56] provides PCB high-resolution image dataset that can be utilized for DL based 

component analysis. The dataset consists of 984 high-resolution images of 123 unique 

PCBs with bounding box annotations for ICs(5844), Capacitors(3175), Resistors(2670), 

and Inductors(542). The dataset is useful for image-based PCB analysis, such as 

component detection, PCB classification, circuit design extraction, etc. PCBA-Defect [57] 

dataset for defect detection and classification, containing a PCB dataset containing 1386 

images with 6 kinds of defects (missing hole, mouse bite, open circuit, short, spur, and 

spurious copper), 1742 for the use of detection and classification of PCB using a CNN, 

achieving 99.40% average precision. DeepPCB [58] contains 1,500 image pairs with 

annotations, including positions of 6 common types of PCB defects. Experiment results 

validate the effectiveness and efficiency of the proposed CNN-based model by the author, 

namely group pyramid pooling, achieving 98.6% mAP at 62 FPS on the DeepPCB dataset. 



9 

FICS-PCB dataset [59] collected at the SeCurity and AssuraNce lab at the University of 

Florida, and it is designed to support the evaluation of automated PCB visual inspection 

systems.  This dataset consists of 9,912 PCB sample images collected from a DSLR camera 

and a digital optical microscope, and the annotation results in 77,347 component images. 

This dataset was used for performance evaluation on state-of-the-art PCB component 

classification methods. PCB-Vision [60] contains Multiscene RGB-Hyperspectral PCB 

dataset includes 53 hyperspectral data cubes and their corresponding 53 RGB images of 

PCBs, collected under industrial-like conditions with dual segmentation annotations. 

The Multi-Perspective and Illumination PCB (MPI-PCB) [61] dataset contains 1742 

images with dimensions of 4096 × 2816 pixels showing an unmodified PCB. 

After the literature review of the PCB dataset, the next step is DL models, which have 

been used for PCB visual inspections. A defect detection network based on Coordinate 

Feature Refinement (CFR) [62] proposed by modifying the YOLOv5s framework. The 

model integrates four CFR modules to adaptively suppress conflicting multi-scale 

features, uses a Content-Aware ReAssembly of Features (CARAFE) upsampler for better 

semantic aggregation, and adds an extra detection layer for tiny objects. The method was 

tested on PCB dataset containing 1,386 images across six defect classes, expanded to 

8,316 samples after augmentation. The approach achieved a mAP of 97.9%, 

outperforming YOLOv4 (85.3%), YOLOv7 (94.7%), and EfficientNet (78.2%), while 

maintaining a compact model size of 32.8 MB and real-time speed of 52.7 FPS. The 

improvements were particularly significant for small defect types such as spurs, mouse 

bites, and open circuits, making it suitable for industrial real-time PCB defect detection. 

[63] studied a PCB surface defect detection network, YOLO-HMC, based on YOLOv5, 

introducing a single-detection head approach, achieving  mean average precision of 

98.6%. This framework also trains fewer parameters, 5.94 million as compared to 

YOLOb8, 30.07 million parameters. The model integrates HorNet in the backbone for 

enhanced feature extraction, CARAFE, and multiple convolutional block attention 

module modules that detect defects from highly similar PCB backgrounds.  

An enhanced YOLOv5s framework named YOLO-MBBi [64] was introduced for PCB 

surface defect detection. The improvements include the use of MBConv modules from 

EfficientNetB0 in the backbone, CBAM attention to strengthen feature learning, BiFPN 

for multiscale feature fusion, depth-wise convolutions to reduce computation, and 

replacement of the CIoU loss with SIoU loss. The method was evaluated on the PKU-

Market-PCB dataset (1,200 images, six defect types) and the DeepPCB dataset (1,500 
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pairs of normal and defect images). On PKU-Market-PCB, the model achieved 95.3% 

mAP50, 95.8% precision, and 94.6% recall at 48.9 FPS, while reducing FLOPs to 12.8 G, 

lower than YOLOv7’s 103.2 G. On DeepPCB, it reached a mAP50 of 99.0%, precision of 

98.7%, and recall of 97.5%, with an inference speed of 69.5 FPS. Compared to Faster R-

CNN, YOLOv4, YOLOv7, and the baseline YOLOv5s, YOLO-MBBi consistently achieved 

higher detection accuracy with much lower computational complexity, making it well-

suited for industrial PCB inspection. 

A transformer-based detection model named MFAD-RTDETR [65] extends RT-DETR 

with modules designed for small PCB defect detection. It incorporates a Detail Feature 

Retainer (DFR) for local detail preservation, Visual State Space (VSS) for efficient global 

attention, Deformable Attention for precise localization, and a Multi-Frequency 

Aggregate Diffusion (MFAD) paradigm for fine-grained multi-scale feature fusion. On the 

Peking University PCB dataset (1,386 images, six defect types), the model achieved 

97.0% mAP, with an F1-score of 0.955 and an 18.2% parameter reduction compared to 

RT-DETR. Detection accuracy was strong for missing holes (AP 99.5%) and remained 

above 92% for other defect types, outperforming YOLOv5, YOLOv8, and Faster R-CNN.   

The REDef-DETR [66] model introduced an efficient and real-time transformer-based 

detector for industrial surface defects, including PCB inspection. It extends RT-DETR by 

adding three modules: a Multi-scale Contextual Information Dilated (MCID) module with 

large kernel convolutions to expand the receptive field, a Feature Enhancement with 

Cascaded Group Attention (FECA) module to improve semantic feature extraction, and a 

Content-Aware Efficient Feature Fusion (CEFF) module for multi-scale fusion using a 

content-aware mechanism with discrete wavelet transforms. The model was evaluated 

on NEU-DET (steel defects) and PCB-DET (693 PCB images, six defect types). On PCB-

DET, REDef-DETR achieved 98.0%mAP at 79.4 FPS, outperforming RT-DETR (96.1%), 

YOLOv8m (97.3%), and DsP-YOLO (95.8%). Detection accuracy for missing holes and 

missing bites exceeded 99% AP, while other defect types remained above 96% AP.  

An inspection method based on EfficientDetD1 [67] with an EfficientNetB1 backbone 

was proposed for PCB surface defect detection. The model integrates BiFPN for 

bidirectional multi-scale feature fusion, K-means clustering for optimized anchor ratios, 

and focal loss to tackle class imbalance. The method was evaluated on the HRIPCB 

dataset (693 images, six defect types). It achieved 89.5%  mAP and  a recall of 70.1% and 

a detection speed of 47.3 FPS when the batch size was increased, while requiring only 

0.9 GB GPU memory. Compared to Faster R-CNN and RetinaNet, EfficientDet achieved 
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similar accuracy with much lower computational cost, making it attractive for real-time 

industrial PCB inspection. 

The CS-ResNet [68] model was designed for PCB cosmetic defect detection by extending 

ResNet with a cost-sensitive adjustment layer to handle class imbalance and different 

misclassification costs. It was trained on the PCB dataset (40,706 images) and achieved 

sensitivity of 0.89, G-mean of 0.91, and the lowest total misclassification cost, while 

maintaining a fast detection speed of 0.007s per image.  

A study compared VGG16, InceptionV3, and ResNet50 for PCB defect image classification 

using a dataset containing defective and non-defective images [69]. Among the three 

models, ResNet50 achieved the highest classification accuracy of 95.7%, with precision 

of 97.3%, sensitivity of 93.9%, specificity of 97.4%, and F1-score of 95.6%. After applying 

data augmentation, the ResNet50 performance further improved to 97.8% accuracy, 

99.8% precision, 95.8% sensitivity, 99.8% specificity, and 97.7% F1-score. To enhance 

small defect recognition, the architecture was modified by integrating Res2Net modules 

into the residual blocks. The improved ResNet50 achieved 98.3% accuracy and 98.7% 

sensitivity, while recognition accuracy for small defects increased substantially from 

33.9% to 88.4%. These results confirm that ResNet50, particularly with Res2Net 

enhancements, provides superior feature extraction and defect classification 

performance for PCB images compared to other CNN models. 

A lightweight transformer framework called Lite-DETR [70] designed for the detection 

of surface tiny defects of PCB. The model is based on RT-DETR and introduces a 

Lightweight Efficient Backbone Network (LEBN) optimized from ResNet-18, an Image 

Feature Augmentation Module (IFAM) to improve generalization, and a Refined Cross-

Scale Feature Fusion Module (RCFFM) for effective multi-scale defect representation. To 

improve bounding box matching, a hybrid WMPDIoU loss (Wasserstein distance + 

MPDIoU) was employed. Evaluation was carried out on the HRIPCB dataset (693 PCB 

images, six defect types) and the DeepPCB dataset (1,500 images, six defect types). Lite-

DETR achieved a  99.0% mAP on HRIPCB and 99.2% on DeepPCB, outperforming 

YOLOv7, YOLOv8, YOLOv9, and RT-DETR, with an F1-score of 0.97. The model contained 

only 5.2M parameters (74% fewer than RT-DETR) and maintained an inference speed of 

25–30 ms per image, making it both highly accurate and computationally efficient for 

industrial deployment.  
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The reviewed literature shows that AI-based PCB inspection has been dominated by 

supervised detection and segmentation models, focusing on defect localization or 

component recognition. A variety of improved CNN and transformer-based architectures 

(e.g., YOLO variants, DET-based models, EfficientDet, and ResNet adaptations) have 

achieved high accuracies on public datasets such as DeepPCB, HRIPCB, PCB-METAL, and 

FICS-PCB. However, all existing datasets are limited to standard defect categories or 

good PCBs, and there is no publicly available dataset containing burnt boards. 

Additionally, modified architectures are complex to use and not available publicly to 

train. Furthermore, self-supervised methods have not been applied to PCB-level 

condition assessment [71]. This gap in both data and methodology justifies the work 

presented in this thesis, which introduces and evaluates AI models for the classification 

of good versus burnt PCBs within a circular manufacturing context. 

2.4. AI in Computer Vision for Classification 

The application of AI in CV has progressed rapidly, particularly in image classification 

tasks that can be used for industrial applications such as medical diagnostics, industrial 

quality control, and autonomous navigation.  

Due to the insufficient amount of input data, as well as the need to speed up the 

development process, the Transfer Learning principle is applied in a designed system 

(section 3.2.4). The following AI-based classification models, pretrained on large 

datasets, can thus be adapted for PCB visual inspection. 

2.4.1. CNN-Based Models 

Multiple CNN-based models are built to improve computational efficiency compared to 

fully connected networks. They can be divided into two categories: two-stage methods 

(e.g., Faster R-CNN) and one-stage methods (e.g., YOLO series). CNN architectures differ 

mainly in their depth (number of layers), kernel or filter sizes, scaling strategies, and the 

incorporation of residual connections, and are trained on the ImageNet dataset for 

transfer learning. Figure 2.5 illustrates CNN architectures along with their Top-1 

accuracy (model prediction with the highest probability) on the ImageNet dataset [72], 

as well as the number of parameters and computational operations required.  

Figure 2.6 [73] shows the performance of these models on the COCO dataset [74]. 

YOLOv11 uses fewer parameters than other models, which means it’s lighter and faster 

to run. Also, despite its smaller size, it achieves a higher mean average precision (mAP) 

on the COCO dataset. 
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Figure 2.5: Comparison of CNN-based DL Models [75] 

2.4.2. Transformer-based models 

Transformer-based models differ from CNNs by replacing convolutional filters with 

patch embeddings and self-attention mechanisms, enabling the capture of both local and 

long-range dependencies across the image. Their variations are mainly defined by 

embedding size, number of attention heads, hierarchical design, and windowing 

strategies. These models are trained on large datasets such as ImageNet-1k or ImageNet-

21k [76], either in supervised or hybrid training schemes. Table 2.2 summarized 

transformer architectures, comparing their Top-1 accuracy and model size. 

Table 2.2: Transformers-based Models Comparison 

Transformer  Sub-models / Variants 
Parameters 

(M) 

Top-1 

Accuracy 

(ImageNet-1k) 

ViT  [76] 
ViT-Tiny (Ti/16), ViT-Small (S/16), ViT-
Base (B/16), ViT-Large (L/16), ViT-Huge 
(H/14) 

5.7M / 22M / 
86M / 307M / 

632M 
72.0% - 88.0% 

DeiT [77] DeiT-Tiny, DeiT-Small, DeiT-Base 5M / 22M / 86M 74.0% – 85.2% 

Swin Transformer 
[78] 

Swin-Tiny, Swin-Small, Swin-Base, Swin-
Large 

29M / 50M / 
88M / 197M 

81.3% - 87.3% 

Swin Transformer 
V2 [79] 

Swin-B, Swin-L, Swin-G 88M / 197M / 3B 87.1% - 90.17% 

CaiT   [80] CaiT-S24, CaiT-M36, CaiT-M48 
47M / 270M / 

356M 
82.7% - 86.5% 

CCT (Compact 
Convolutional 

Transformer) [80] 

CCT-Tiny, CCT-Small, CCT-Base, CCT-
Large 

3M / 12M / 45M 
/ 150M 

75% - 85. 4% 
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Figure 2.6: Comparison of YOLO Family [73] 
 

2.4.3. Self-Supervised Learning models 

SSL models are designed to reduce dependence on large label datasets by learning visual 

representations from unlabeled images. SSL models are evaluated using linear 

classification on ImageNet or through fine-tuning on downstream tasks, where they 

achieve competitive accuracy compared to fully supervised methods.  Table 2.3 

summarize SSL models with ViT backbone only ( Appendix B.5 describes a detailed 

comparison of all SSL models and respective backbones) and their performance in terms 

of  Top-1 accuracy under linear evaluation and k-Nearest Neighbors (K-NN).  

Table 2.3: SSL Methods with ViT Backbone comparison 

Method Backbone Parameters (M) Linear k-NN 

BYOL  ViT-S 21 71.4 66.6 

MoCoV2 ViT-S 21 72.7 66.3 

SwAV ViT-S 21 73.5 66.4 

DINO ViT-S/ViT-B 21/85 77/80.1 74.5/77.4 

 

2.5. Approaches to Address Limited Training Data in AI 

A major challenge in training DL models is the need for large, diverse datasets to achieve 

high performance and prevent overfitting. In practice, especially in specialized fields, 

large labeled datasets are often unavailable. To address these issues, data augmentation 

and synthetic data generation using generative AI are effective strategies used in DL 

models. 
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2.5.1. Data Augmentation 

Data augmentation artificially increases the size of the dataset by extracting more 

information from it, and helps reduce overfitting and improve the performance of 

models [81]. Table 2.4 summarizes selected works that demonstrate the use of and 

effectiveness of augmentation in enhancing model performance. 

Table 2.4: Data Augmentation in deep learning 

Domain / 

Study 

Augmentation 

Techniques 
Purpose 

Model 

Performance 
Reference 

Visual 
inspection - 
Reman 
(Automotive) 

Geometric (Flip, Perspective, 
Shift, Scale, Rotate) 
Colour (Colour Jitter, RGB 
Shift, Grayscale Conversion, 
HSV Shift) 
Noise (ISO Noise, Gaussian 
Noise) 
Blurring (Random, Gaussian) 
Contrast (CLAHE, Gamma) 

Increase the 
size of the 
dataset  

Best model 
accuracy 93.9% 

[82] 

(Autonomous 
Driving) 
Situation 
Awareness 

Geometric Transformation 
Colour Transformation 
Blur Transformation 
Noise Transformation 

Increase 
model 
accuracy for 
unknown data 

Achieved 
model accuracy 
92.3% 

[83] 

Image 
classification 
(ImageNet 
subset) 

Rotation, Flipping, Cropping, 
Shading with a hue, 
NeuralNET Augmentation 

Increase the 
accuracy of 
classification 
tasks 

Accuracy 
improved to 
77.0% from 
70.5% 
compared to no 
augmentation 

[84] 

Medical 
imaging  
(Chest X-rays) 

Rotation, flipping, 
Downscale, Normalization 

Increase the 
performance 
of the model  

Achieves an F1 
score of 0.435. 

[85] 

Medical image 
data 
augmentation 
techniques 

Geometric Transformations, 
Cropping, Occlusion, 
Intensity Operations, Noise 
Injection, Filtering 

Increase the 
size of the 
dataset  

 Model 
performance 
improved by 
up to 12 – 47%  

[86] 

Image 
classification  
(Augmentation 
Strategies) 

Mix-up, Cutout, Auto 
Augment 

Improve 
generalization 

On ImageNet 
and CIFAR-10, 
performance 
increases by 
0.4% and 0.6% 
respectively 

[87] 

Image 
classification  

Traditional, GAN-based 
synthetic data 

Improve 
robustness, 
reduce 
overfitting 

Accuracy 
increases from 
85.5% to 
91.5% 

[81] 

 

2.5.2. Synthetic data generation using generative AI 

Generative AI models, particularly text-to-image diffusion models, are not limited to 

modifying existing datasets but can also create new samples that reflect the statistical 

properties of real-world data. Recent work has applied this approach to the ImageNet-

1K dataset [88], where synthetic images were generated and combined with real data for 

training. The results show that while models trained only on synthetic data perform 
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worse than those trained on real images, combining the two sources leads to higher 

accuracy. As shown in Table 2.5, models trained on generated images perform worse 

than those trained on real datasets; however, combining them increases accuracy [89]. 

Table 2.5: Accuracy of DL models trained on real, AI-gen, and combined datasets [89] 

Model 
Real Data 

Accuracy (%) 

Generated Data 

Accuracy (%) 

Real + Generated 

Accuracy (%) 
∆ Performance  

ResNet-50 76.39 69.24 78.17 1.78 

ResNet-152 78.59 72.38 80.15 1.56 

ViT-S/16 79.89 71.88 81.00 1.11 

DeiT-B 81.79 74.55 82.84 1.05 

DeiT-L 82.22 74.6 83.05 0.83 

 

Recent research conducted by Google and MIT has demonstrated that synthetic images 

generated through generative AI diffusion models can be effectively used for training DL 

models. Table 2.6 shows that models trained on synthetic images achieved accuracy 

comparable to, and in some cases higher than, those trained with real datasets, with 

reported improvements of around 1–4%. The study highlighted that a model trained 

with only 20 million synthetic images was able to surpass the performance of a 

counterpart trained with 50 million real images, proving that generative AI data not only 

improves accuracy but also provides significant data efficiency [90]. 

Table 2.6: Accuracy improvement with Generative AI Images [90] 

Model Real Data Accuracy Synthetic Data Accuracy ∆ Performance  

SimCLR  60.40% 62.00% 1.60% 

MAE  51.80% 56.00% 4.20% 

StableRep 70.30% 73.50% 3.20% 

StableRep  71.90% 74.50% 2.60% 

These findings highlight that AI-generated data can provide additional diversity and 

support better generalization across both convolutional networks and transformer-

based model. 

2.5.3. Image editing software-based dataset creation  

Researchers have employed image-editing software (Adobe Photoshop) to generate 

synthetic datasets for DL. In [91], a large dataset of manipulated facial images was 

created by  Photoshop. In [92], artificial defects were introduced onto PCB images using 

Photoshop, producing a dataset of 693 boards with 2953 annotated defects. Using this 

dataset, a skip-connected convolutional autoencoder achieved 98% accuracy in defect 

classification, confirming the utility of synthetic data in PCB quality assurance.
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Chapter 3  

State-of-the-Art 

This chapter describes the state-of-the-art methods that will be used, based on the 

literature review, focusing on addressing the key challenges outlined in the problem 

statement. This section presents the best DL classification methodologies that will be 

employed to achieve the objectives of this thesis. Additionally, it offers a detailed 

overview of these approaches to determine which model is the most suitable for the 

specific research context after analyzing the results.   

3.1. AI Taxonomy 

AI is the ability of computer systems to perform tasks that require human intelligence to 

think and learn. It includes techniques that allow machines to perceive their 

environment, reason over data, and make decisions. AI has enabled the design of 

production systems, automation, predictive maintenance, defect detection, quality 

control, and enhanced decision-making in the context of Industry 4.0.  

3.1.1. Machine Learning 

ML is a subfield of AI that uses statistics to enable computers to learn and make 

predictions or decisions from data without being explicitly programmed. The main 

objective of ML is to allow computers to learn from experience and improve performance 

over time. A computer program is said to learn from experience for some tasks if its 

performance at tasks improves with experience. ML has different strategies explained as 

follows: 

a) Supervised learning uses labeled datasets to train the algorithms, where each 

dataset is associated with a label or outcome. The algorithm learns to develop a 

relation of the input data to the corresponding output data by minimizing the 

error between its predictions and the true data. Examples of supervised learning 

algorithms include linear regression, logistic regression, decision trees, support 

vector machines (SVM), Random Forest (RF), K-Nearest Neighbors (K-NN), and 

neural networks. 

b) Unsupervised Learning uses unlabeled datasets to train the algorithms to 

identify hidden patterns or groupings, or correlations in the data. Unsupervised 
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learning techniques include clustering algorithms (K-means clustering, Gaussian 

mixture models, fuzzy and hierarchical clustering) and dimensionality reduction 

strategies (principal component analysis, Independent component analysis, and 

Singular value decomposition). 

c) By using a dataset that includes both labeled and unlabeled data to train the 

algorithm and combines aspects of supervised and unsupervised learning. The 

algorithm leverages the labeled data to guide its learning process, while also 

exploiting the unlabeled data to discover additional patterns or information. 

Semi-supervised learning is useful when labeled data is limited or expensive to 

obtain.  

3.1.2. Deep Learning 

DL is a subset of ML that has artificial neural networks with multiple layers to learn from 

large datasets. DL algorithms compose numerous nonlinear transformations. These 

transformations help the algorithm in learning hierarchical representations of data. 

These hierarchical representations enable DL models to capture intricate patterns and 

relationships in the data, leading to state-of-the-art performance in various tasks such as 

image recognition, speech recognition, natural language processing, and many others. 

Figure 3.1 shows the underlying conceptual operation of DL where hidden layers 

undergo iterative processing. Simple information that machines can understand is the 

main focus at first, and as more layers are explored, the foundation is progressively built 

upon. At each subsequent layer, new information is integrated with the existing 

knowledge, resulting in a cumulative representation of the input data by the final layer. 

 

Figure 3.1: Deep Learning Model Examples [93] 
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3.2. DL Model Development Steps 

DL model development follows a structured workflow that starts with data collection, 

where relevant datasets are gathered for training. This is followed by data preparation, 

including cleaning, class organization, augmentation, and dataset splitting. The next 

stage involves model training and validation to optimize the learning process. Evaluation 

is then performed to assess performance using defined metrics. Finally, the model is 

deployed in the industry/real word to make predictions or decisions [94]. 

3.2.1. Data Acquisition 

Data acquisition is the first and critical step in developing DL models, as the quality and 

diversity of data directly affect model performance. For DL-based models for CV, this 

involves collecting images that represent all classes with realistic variations. Existing 

datasets from literature or open sources are often used as a starting point [72].  

Furthermore, data can be gathered through web searches or domain-specific case 

studies, followed by manual verification to ensure reliability. Additionally, in many 

applications, synthetic data generation using generative models is widely adopted to 

enrich datasets and balance classes [95]. A general decision flow chart of the data 

collection is shown in Figure 3.2. 

 

Figure 3.2: Decision flow chart for data collection [95] 

Specifically, images are capturing a high-quality frame from the scene using a sensor 

(digital cameras, industrial vision systems, scanners, specialized imaging devices, etc.). 

The captured image is a digital numerical representation of that scene, and its accuracy 

depends on factors such as lighting, focal length, and quantum efficiency, etc. Proper 

lighting is crucial for high-quality image acquisition, as poor lighting can significantly 

degrade results. Image quality can also be affected by noise and camera distortions [96]. 
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3.2.2. Data Augmentation 

DL models heavily rely on large datasets to learn effectively and avoid overfitting, a 

condition where the network memorizes the training data instead of generalizing, 

resulting in high variance. If the dataset is not large enough, data augmentation is applied 

to artificially increase the diversity and size of the training dataset by applying 

transformations to input images [95] (Table 3.1). 

Table 3.1: Types of Image Augmentation [97] [98] 

Augmentation Type Description Augmentation Methods 

Geometric 
Transformations 

Change the spatial arrangement of 
pixels without altering colour or 
texture 

Rotation, Translation, Scaling, Flipping, 
Cropping, Shearing, Perspective 
warping 

Photometric / Colour 
Transformations 

Modify pixel intensity values while 
keeping spatial structure intact 

Brightness, Contrast, Saturation 
adjustment, Hue shift, Colour jittering, 
random shadow 

Noise and Blur 
Injection & Filtering 

Add or remove random variations 
in pixel values 

Gaussian noise, Salt-and-pepper noise, 
Gaussian and Motion blur, Sharpening 
filters 

Occlusion & Region 
Manipulation 

Hide or replace parts of the image 
to enhance feature learning 

Cutout, Random Erasing, Hide-and-seek 
patches, Mix-up, CutMix 

Synthetic & 
Generative 
Augmentation 

Create new images from learned 
distributions or style transfers 

GAN-generated images, Diffusion 
models, Neural Style Transfer, 
Inpainting, 

Image Quality & 
Compression  

Reduce image quality to mimic 
real-world low-quality inputs 

JPEG compression artifacts, WebP 
compression, Bit-depth reduction 

 

3.2.3. Dataset Preparation  

After being captured, the dataset is commonly divided into three subsets: training (70–

80%), validation (10–15%), and test (10–15%). The training set is used to optimize 

model weights and biases, the validation set supports hyperparameter tuning and model 

selection, and the test set provides an unbiased evaluation of final performance [99]. 

After splitting, the data is preprocessed to ensure they meet the model's input 

specifications. Without the correct format, the model will not learn properly or may train 

on incorrect weights, leading to lower accuracy. This involves mapping the pixel 

intensity values into multi-dimensional tensors, where each channel corresponds to a 

specific color component (e.g., RGB, grayscale). DL models, such as CNNs or ViT, operate 

directly on these tensor representations, learning hierarchical feature maps from raw 

pixel data [100]. Table 3.2 lists the most common image preprocessing techniques.  
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Table 3.2: Image Pre-processing technique for DL Inputs [101] 

Pre-processing  Description 

Resizing 
Adjusts all images to a fixed resolution to match the model’s input layer size, 
typically using interpolation methods  

Normalization 
Scales pixel intensity values to a defined range (0–1) or standardizes them 
to have a zero mean and unit variance, thereby improving gradient stability 
during training. 

Colour space 
conversion 

Transforms images between colour spaces (RGB, grayscale, etc) using 
defined mathematical transformations  

Channel reordering Rearranges image dimensions to match DL framework requirements  

Noise reduction 
Applies filtering techniques (Gaussian blur, median filtering, etc.) to 
suppress random variations caused by sensor noise or environmental  

 

3.2.4. Model Training Process 

Once the dataset has been collected and preprocessed, the next step is training the DL 

model. This process involves the iterative adjustment of the model’s weights and biases 

to minimize a predefined loss function, which measures the difference between 

predicted and actual values.  The training loop for each batch involves four principal 

stages as shown in Figure 3.3. These steps are repeated iteratively across all batches and 

epochs until the model converges. 

 

Figure 3.3: Forward and Backward Propagation in Neural Networks [102] 

a) Forward Propagation 

Forward propagation is the process of passing input data through the layers of a neural 

network to compute the predicted output. Each layer applies a linear transformation 

followed by a non-linear activation function, enabling to learn complex patterns [102], 

[103]. The common activation functions used in DL models are described in Table 3.3. 
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Table 3.3: Common Activation Functions [104] 

Activation 
Function 

Description Equation 

Sigmoid 
Map input to (0, 1), which is interpreted 
as probabilities; used in binary 
classification. 

σ(x)  =  
1

(1  +  𝑒−𝑥)
 

Tanh 
Maps input to (−1, 1); zero-centered; 
useful for hidden layers 

tanh(x)   =  
(ex  −  e−x)

 (𝑒𝑥   +  𝑒−𝑥)
 

ReLU 
Outputs 𝑥 if positive, else 0; efficient 
and widely used in hidden layers 

𝑅𝑒𝐿𝑈(𝑥)  =  𝑚𝑎𝑥(0, 𝑥) 

GELU 
Smoothly gates inputs based on 
Gaussian probability; common in 
Transformer models 

𝐺𝐸𝐿𝑈(𝑥) = 0.5 ∗ 𝑥 ∗ (1 + 𝑒𝑟𝑓 (
𝑥

√2
)) 

Softmax 
Converts scores to probabilities 
summing to 1; used for multi-class 
outputs 

𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝑥𝑖) =
𝑒𝑥𝑖

∑ 𝑒𝑥𝑗𝑘
𝑗=1

 

b) Loss Function 

The loss function (cost function or objective function) measures the difference between 

the predicted output value and the actual value. It provides a quantitative signal that 

guides the optimization process during training by indicating how well or poorly the 

model is performing [103]. For classification tasks, common loss functions are  listed in 

Table 3.4. 

Table 3.4: Loss Function for Classification [103] 

Loss Function Description Equation 

Binary Cross-
Entropy  

Measures the error between the 
predicted probability value and the 
actual binary value; used for binary 
classification 

𝐿 = −(𝑦 ∗ 𝑙𝑜𝑔(𝑝) + (1 − 𝑦) ∗ 𝑙𝑜𝑔(1 − 𝑝)) 

Categorical 
Cross-Entropy 

Extension of binary cross-entropy for 
multi-class classification with one-hot 
encoded labels 

𝐿 = −𝑠𝑢𝑚𝑖=1
𝐾 𝑦𝑖 ∗ 𝑙𝑜𝑔(𝑝𝑖) 

Sparse 
Categorical 
Cross-Entropy 

Multi-class loss function using integer 
labels instead of one-hot encoding; 
more memory efficient. 

𝐿 = −𝑙𝑜𝑔(𝑝𝑦) 

c) Backward Propagation 

Backward propagation is the process of computing the gradients of the loss function with 

respect to all trainable parameters in a neural network by moving backward from the 

output layer to the input layer. Its goal is to reduce the difference between the model’s 

predicted output and the actual output by adjusting the weights and biases in the 

network. It allows the optimizer to update these parameters in the direction that 

minimizes the loss [102]. 
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d) Optimisation 

Parameter updates are performed by optimisation algorithms that use the computed 

gradients to minimise the loss function. The update is performed iteratively according to 

an update rule, which is influenced by hyperparameters such as the learning rate, 

momentum, or weight decay. The learning rate within this rule controls the magnitude 

of each update and plays a crucial role in convergence speed and stability [105]. Table 

3.5 shows common optimisation algorithms used in DL, outlining their core principles 

and corresponding mathematical formulations. 

Table 3.5: Optimization Algorithms in Deep Learning [106] [107] [105] [108] 

Optimizer Description Update Rule  

Stochastic 
Gradient 
Descent (SGD) 

Updates parameters in the direction 
opposite of the gradient of the loss 
function with respect to the 
parameters.  
 
Uses only a subset (batch) of data to 
approximate the true gradient, 
improving computational efficiency. 

θ𝑡+1 = θ𝑡 − η ∇θ𝐽(θ𝑡) 

SGD with 
Momentum 

Extends SGD by accumulating a 
velocity vector to accelerate updates 
in consistent gradient directions, 
helping escape local minima and 
damp oscillations. 

𝑣𝑡 = β𝑣𝑡−1 + η ∇θ𝐽(θ𝑡) 
 

θ𝑡+1 = θ𝑡 − 𝑣𝑡 

AdaGrad 

Adapt and update the learning rate 
for each parameter based on the 
sum of historical squared gradients, 
allowing larger updates for non 
critical parameters and smaller 
updates for frequently. 

θ𝑡+1 = θ𝑡 −
η

√𝐺𝑡 + ϵ
 ∇𝜃𝐽(𝜃𝑡) 

RMSProp 

Similar to AdaGrad but uses an 
exponentially decaying average of 
squared gradients to prevent 
aggressive decay of learning rates. 
Effective for non-stationary 
objectives. 

𝑔𝑡 = ∇θ𝐽(θ𝑡) 
 

𝐸[𝑔2]𝑡 = β𝐸[𝑔2]𝑡−1 + (1 − β)(∇𝜃𝐽(𝜃𝑡))2 
 

θ𝑡+1 = θ𝑡 −
η

√𝐸[𝑔2]𝑡 + ϵ
 ∇𝜃𝐽(𝜃𝑡) 

Adam 

Combines momentum and RMSProp 
by maintaining both first (mean) 
and second (variance) moment 
estimates of gradients.  
 
It adapts learning rates individually 
for each parameter. 

𝑚𝑡 = β1𝑚𝑡−1 + (1 − β1)(∇𝜃𝐽(𝜃𝑡)) 
 

𝑣𝑡 = β2𝑣𝑡−1 + (1 − β2)(∇𝜃𝐽(𝜃𝑡))2 
 

𝑚𝑡̂ =
𝑚𝑡

1 − β1
𝑡 ,  𝑣𝑡̂ =

𝑣𝑡

1 − β2
𝑡  

 

θ𝑡+1 = θ𝑡 −
η 𝑚𝑡̂

√𝑣𝑡̂ + ϵ
 

AdamW 

Variant of Adam that decouples 
weight decay from gradient-based 
parameter updates, improving 
generalization in many DL 
 tasks. 

θ𝑡+1 = θ𝑡 − η (
𝑚𝑡̂

√𝑣𝑡̂ + ϵ
+ λθ𝑡) 
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e) Iteration Across Batches and Epochs 

Modern neural networks have millions of parameters, and training a model on the entire 

dataset at once is impractical. Instead, the data is divided into smaller subsets known as 

batches. Processing one batch and updating the parameters refers to one iteration, while 

an epoch is a complete pass through the entire training dataset. [109]. 

f) Validation 

Validation is performed after each epoch during model training, which evaluates 

performance (losses and accuracy) on a separate dataset not used for weight updates. It 

helps in tuning hyperparameters, early stopping to prevent overfitting and the best 

checkpoint  [110].  

g) Fine-Tuning 

Fine-tuning is the process of adapting a pre-trained model and weights to a new task on 

a customer dataset. Instead of training from scratch, the model starts with parameters 

learned from a large, generic dataset and is then updated using the customer dataset 

(Figure 3.4). This approach reduces training time, requires fewer data samples, and often 

achieves better generalisation [111]. The fine-tuning process typically involves [112]: 

a) Pre-trained model that has been trained on a large, diverse dataset is loaded. 

b) Initial layers, which capture basic features (e.g., edges, textures), are frozen, 

while later layers are updated to adjust new weights based on the new task. 

c) The classification head is updated to the number of classes in the new dataset. 

d) Fine-tuning often uses a smaller learning rate to avoid overwriting pre-trained 

knowledge while gradually adapting the model to the target domain. 

 

Figure 3.4: Fine-Tuning [113] 
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3.3. Evaluation DL Model 

Evaluating the performance of a DL  model involves three key steps: selecting 

appropriate metrics, analyzing training dynamics, and validating real-world 

applicability. These aspects are discussed in the following sections. 

3.3.1. Monitoring Training Dynamics 

Model training is monitored per epoch using training and validation loss, along with 

accuracy, to assess learning behavior [114]. Training loss indicates how well the model 

is learning the training data, while validation loss shows how well it generalizes 

to unseen data. Three common patterns are: a) Good convergence (both losses/accuracy 

decrease and remain close, showing good generalization). b) Overfitting (training loss 

decreases but validation loss rises, indicating the model is memorizing data, instead of 

generalizing), c) Underfitting (both losses remain high, showing poor learning) 

 

Figure 3.5: Different training and validation loss behaviors [114] 

3.3.2. Performance Metrics 

The performance of DL models is evaluated using the following [114] and Table 3.6; 

a) A confusion matrix is a simple table used to represent the predicted results of a 

classification task. It shows the predictions made by the model by showing 

counts of true positives, true negatives, false positives, and false negatives where 

true if the predict the truth, false if it doesn’t; positive means the model predicted 

the target class, and negative means the model predicted the non-target class. 

b) Inference time indicates how fast a model can make predictions on new data. It 

is an important factor for real-time or industrial applications. A model with high 

accuracy but slow inference may not be suitable for time-sensitive environments. 

c) t-SNE is used to visualize high-dimensional feature vectors in two or three 

dimensions. It helps analyze how well the model separates different classes in 

the feature space, especially useful in evaluating learned representations in self-

supervised or embedding-based models [115]. 
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Table 3.6:  Evaluation Metrics: Precision, Recall, F1-Score, and Accuracy 

Metrics Detail Equation 

 

Precision 

Precision indicates how well the model has 

predicted favorable outcomes, and it is the 

ratio of correctly predicted positives to the 

total predicted positives 

𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

Recall 

it is the ratio of correctly predicted positives 

to all actual positives. It shows how well the 

model recognize good examples. 

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

F1- Score 

It is a measure that combines recall and 

precision. It shows a well-rounded 

assessment of the model’s accuracy, 

especially when dealing with imbalanced 

datasets where one class has more 

instances than the other. 

2 ∗
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

Accuracy 
It measures the percentage of correct 

predictions out of the total predictions 

𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝑅 + 𝐹𝑁
 

 

3.4. Network Topologies in DL for Image Classification 

The following sections provide an overview of the main DL topologies applied to image 

classification, covering CNN, ViT, and SSL methods. 

3.4.1. Convolutional Neural Network   

CNNs are utilized in various CV tasks, including image classification, object detection, and 

facial recognition. CNNs are composed of multiple layers, including an input layer, 

several convolutional and pooling (hidden) layers, and a fully connected output layer, as 

shown in Figure 3.6. The network updates optimal weights and biases during training to 

extract features from the input data and make predictions [93].  

The convolution layer is a mathematical procedure to extract the features. Sliding the 

filters over the input data and calculating the dot product between the filter and the 

input’s overlapping region at each point .  The convolutional layer can extract a wide 
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variety of features from the input by applying many filters in parallel, which hels the 

network build hierarchical representations of the data. Additionally, non-linearity is 

applied in the layer through activation functions.  

 

Figure 3.6: Convolutional Neural Network [116] 

Furthermore, CNNs often include additional layers within the convolutional layer, such 

as batch normalization layers that normalize the activations to enhance training stability 

and convergence, and pooling layers that reduce the feature maps to decrease 

computational effort and enhance translation consistency [117].  

Mathematically, the convolution for one output feature map is given by: 

𝐻𝑞  = 𝑓(∑ 𝑋𝑝 ∗ 𝑊𝑞.𝑝 + 𝑏𝑞

𝑃

𝑝=1

) (3.1) 

Max Pooling is used in CNNs to reduce the spatial dimensions (width and height) of the 

input feature maps while retaining the most important information. It involves sliding a 

two-dimensional filter over each channel of a feature map and summarizing the features 

within the region covered by the filter. For each feature, a max-pooling layer takes the 

maximum value of a feature for each subregion of the image (generally 2x2). Althrough 

average-pooling is possible, max pooling is more common, especially not in early stages. 

Pooling allows translation invariance: the same input pattern will be detected, whatever 

its position in the input image[118]. 

CNNs use fully connected layers, placed at the end of a network to perform regression, 

classification, or other tasks from extracted features. Each neuron in the fully connected 

layer connects to every neuron in the previous layer, creating a dense network to learn 

complex nonlinear  between features relationships. [119]. 
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3.4.2. Transformers and Vision Transformers 

The original transformers [120] are a type of  DL architecture for natural language 

processing tasks. They are based on an attention mechanism to determine the 

importance of different parts of the input to make predictions. This design allows them 

to process all elements of the sequence in parallel, making them highly efficient. 

Transformers are composed of an input layer, a series of encoder and decoder blocks, 

and an output layer, as shown in Figure A.6. Each block contains a multi-head self-

attention mechanism, which enables the model to focus on different parts of the input 

simultaneously, and a feed-forward network that processes the attended information. 

Residual connections and normalization layers are also included to improve stability and 

training efficiency. A linear and a softmax layer are added to the final decoder output. 

The detailed architecture of the transformer is shown in Appendix A.6. 

ViT [121] uses the same architecture for image classification by treating an image as a 

sequence of patches. This allows the model to capture global context across the entire 

image, unlike CNNs, which operate on local receptive fields. As shown in Figure 3.7, ViT 

includes patch embedding, positional embedding, transformer encoder blocks, and a 

classification head to generate final predictions. 

Patch embedding converts an image into a sequence of tokens suitable for transformer 

processing. The image is divided into fixed-size non-overlapping patches, each patch is 

flattened into a vector, and then mapped to a fixed-dimensional embedding space 

through a trainable linear projection. 

 

Figure 3.7: Vision Transformer architecture [121] 
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Transformers lack a sense of spatial order; positional encoding is incorporated to patch 

embeddings to provide information about their relative positions of patches in the image. 

These encodings can be fixed, using predefined sinusoidal patterns, or learned as 

trainable parameters. This encoding allows the model to determine the relative and 

absolute positions of image patches. 

The encoder processes the embedded patch (token) sequence through a series of 

identical layers, each containing multi-head self-attention and a feed-forward network, 

connected via residual connections and layer normalization. 

Self-attention allows each patch token to incorporate information from all other patches 

in the image. Each token is transformed into three vectors: Query (𝑄), Key (𝐾), and Value 

(𝑄) through learned linear projections given as; 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 (𝑄, 𝐾, 𝑉)  = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄𝐾𝑇

√𝑑𝑘

)𝑉 (3.2) 

where 𝑑𝑘 is the dimension of the key vectors. The softmax ensures that attention weights 

sum to one, providing a normalized measure of importance for each token. Instead of 

performing attention once, ViT use a number of attention heads in parallel. Each head 

learns to focus on different aspects of the input. 

 

Figure 3.8: Self Attention Mechanism [122] 

After attention, each token is processed independently by a position-wise feed-forward 

network using an activation function. It applies the same linear transformation with the 

same weights to each element in the sequence. This increases the model’s capacity to 

learn complex transformations of the token embeddings. 

Residual connections and layer normalization are included in each encoder layer to 

enhance stability and learning efficiency. The residual connections allow the original 
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token representations to bypass the sublayer, ensuring important information is 

preserved and gradients can flow effectively through deep networks.  

Layer normalization standardizes the token features before each sublayer, keeping their 

scale consistent and preventing training instability. Together, these operations help the 

encoder maintain information across layers, support faster convergence, and improve 

overall model performance. 

The classification head converts the high-dimensional feature representation extracted 

by the transformer into a format suitable for classification. After the final encoder layer, 

the embedding corresponding to the classification token is used as the image 

representation. This is passed through a multilayer perceptron head (typically one or 

two linear layers) to map the embedding to the number of output classes. 

𝑦 = 𝑥𝑐𝑙𝑎𝑠𝑠𝑊𝑐𝑙𝑎𝑠𝑠 +  𝑏 (3.3) 

During inference, a softmax activation is applied to produce class probabilities 

3.4.3. Self-Supervised Learning 

While CNNs and ViTs represent the main architectural structures in DL, SSL is a training 

approach that enables these networks to learn feature representations from unlabeled 

data. SSL creates supervision directly from the input data through pretext tasks. 

Common methods of SSL are 

a) Contrastive learning methods such as SimCLR , where the model learns to bring 

augmented views of the same image closer while pushing apart views of different 

images [123]. 

b) Teacher–student methods such as DINO , where a student network matches the 

representation of a teacher network across augmented inputs [124]. 

These methods are applied on CNN or transformer backbones and have shown 

strong results in image classification. 

3.5. Foundational DL Models for Classification 

DL-based image classification has been developed using several well-established 

architectures that extend the general principles of CNNs, ViTs, and SSL into practical 

model designs. These models represent the state-of-the-art for CV tasks (section 2.4). 

The following sections provide an overview of key models and highlight their design 

concepts. 
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3.5.1. ResNet (Residual Networks) 

Initial CNN-based models have a small number of layers; however, when adding more 

layers, vanishing gradient arises, a typical DL issue. This results in the gradient becomes 

either zero or overly large. Therefore, the training and test error percentage increase as 

the number of layers increases [125]. Figure 3.9 showes that a 20-layer CNN architecture 

performs better on training and testing datasets than a 56-layer CNN architecture. 

ResNet [126] enabling the training of extremely deep architectures without the 

vanishing problem that occurs when using many layers. The core concept in ResNet is 

residual learning, implemented through residual blocks. This approach allows the 

network to focus on learning the residual mapping rather than the full transformation, 

simplifying optimization and improving accuracy in deeper models.  

The principle of residual learning assumes that directly fitting a desired mapping is more 

challenging than fitting the residual. ResNet formulates the mapping as; 

𝑦 = 𝐹(𝑥) +  𝑥 (3.4) 

where 𝐹(𝑥) is the learned residual function and  𝑥 is the identity mapping from the input 

block.  The operation " +  𝑥"  is implemented by a skip connection that performs an 

identity mapping to connect the input of the subnetwork with its output. 

 

Figure 3.9: Comparison of 20-layer vs 56-layer architecture [126] 

 This connection is known as a residual connection, as shown in Figure 3.10. This 

addition enables gradients to propagate more effectively through deep networks, 

preventing vanishing gradients and allowing stable training of very deep architectures. 

ResNet Architecture 

The ResNet architecture consists of three main parts: an initial feature extraction layer, 

followed by several stages of residual blocks, and a final classification layer [125]. The 

detailed architecture is shown in Appendix A.1. 
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Figure 3.10: Residual learning block [126] 

I. The network starts with a large 7 x 7 convolution layer containing  64 filters and 

a stride of 2, followed by batch normalization and a ReLU activation function that 

processes the input image and captures basic patterns (edge and textures etc) . 

This is followed by a pooling layer that reduces the image size and keeps the most 

important information.  

II. After the initial layer, the network consists of multiple residual blocks. Each block 

has convolution layers, batch normalization, and ReLU activation, along with a 

skip connection that adds the input to its output. This helps the network learn 

more effectively and allows very deep models to be trained. There are two main 

types of residual blocks, either Basic Block or Bottleneck Block, each with specific 

convolution layers and functions for learning features, as shown in Figure 3.11. 

III. At the end of the network, a Global Average Pooling (GAP) layer reduces each 

feature map to a single value. These values are then passed into a fully connected 

layer, which produces the final class scores. 

 

 

Figure 3.11: Basic Block and Bottleneck Block in ResNet [127] 

ResNet Versions 

ResNet models mainly differ in how deep they are and how many residual blocks they 

have in each stage. ResNet-18 and ResNet-34 use the Basic Block, while ResNet-50, 
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ResNet-101, and ResNet-152 use the Bottleneck Block. They all have the same type of 

first convolution layer, pooling, and final global average pooling with a fully connected 

layer. However, the number of residual blocks is different for each model, which lets 

them learn more detailed and complex features. The deeper the model, the higher the 

number of parameters it will learn during training [125]. The ResNet variants' detail of 

blocks is shown in Appendix B.1. 

3.5.2. EfficientNet 

EfficientNet[128] is a DL model developed to achieve higher accuracy while requiring 

fewer parameters and reduced computational resources compared to other models. 

EfficientNet models are based on compound scaling method that systematically and 

proportionally scales the network’s depth, width, and input resolution. This allows the 

architecture to achieve better accuracy and efficiency than traditional scaling strategies, 

which often modify only one of these dimensions. 

High-resolution images require deeper networks to capture large-scale features with 

more pixels. Additionally, wider networks are needed to capture the finer details present 

in these high-resolution images. The compound scaling method modifies a CNN by 

increasing the dimensions of the network depth, width, and input resolution.  

Figure 3.12 shows (a) is a baseline network example; (b) to (d) are conventional scaling 

methods to increase one dimension of network width, depth, or resolution; (e) is the 

compound scaling method that uniformly scales all three dimensions with a fixed ratio, 

explained as below: 

a) Depth scaling increases the number of layers, which allows the model to capture 

more complex patterns and features and generalize better. This enhances the 

network’s capacity to model intricate patterns, but must be balanced to avoid 

unnecessary computational and the vanishing gradient problem 

b) Width increases the number of channels in each convolutional layer, enabling the 

network to process more fine-grained features at each stage. However, extra-

wide models are unable to capture higher-level features. 

c) Resolution scaling increases the input image resolution, providing more detailed 

information for identifying fine-grained patterns. However, higher resolution 

increases the computational requirements. 

d) The compound scaling coefficient method uniformly scales all three dimensions 

(depth, width, and resolution) in a proportional manner using a predefined 

compound coefficient ɸ. 
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depth = αϕ,  width = βϕ,  resolution = γϕ (3.5) 

𝛼 ⋅ 𝛽2 ⋅ 𝛾2 ≈ 2  

α ≥ 1,  β ≥ 1,  γ ≥ 1  

Here, 𝛼, β, and γ are constants determined through an empirical grid search or 

optimization process [128]. 

 

Figure 3.12: Model Scaling methods [128] 

EfficientNet Architecture 

The EfficientNet architecture consists of three main parts: an initial feature extraction 

layer, a series of MBConv (Mobile Inverted Bottleneck Convolution) stages, and a final 

classification layer [129]. The detailed architecture is shown in Appendix A.2. 

The network begins with a 3×3 convolution layer with 32 filters and a stride of 2, 

followed by batch normalization and the activation function. This layer processes the 

input image and captures low-level features such as edges, corners, and basic textures. 

The resulting feature maps are passed to the first MBConv stage for further processing. 

After the initial convolution layer, the network is composed of multiple MBConv blocks 

as shown in Figure A.2. The MBConv block is an evolved inverted residual block. Each 

MBConv block contains multiple layers.  

• The first is the expansion layer, which is a 1×1 convolution that increases the 

number of channels to expand the feature representation, followed by batch 

normalization and a non-linear activation function.  

• The second is the depthwise convolution, which is a 3×3 convolution applied to 

each channel, followed by batch normalization and a non-linear activation to 
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extract spatial features while reducing computational cost compared to standard 

convolutions.  

• A Squeeze-and-Excitation (SE) block, which uses global average pooling to 

reduce the spatial dimensions of the feature map to a single channel, followed by 

two fully connected layers, is added after depthwise convolution (Figure A.2) . 

• The last layer is the projection layer, which is a 1×1 convolution that reduces the 

number of channels back to the original desired output size. Batch normalization 

is applied, but no activation is used here. 

• Skip connections are used when the input and output dimensions are the same, 

allowing information to bypass certain layers and improving gradient flow. 

After the last MBConv stage, a convolution layer is applied to further refine the features. 

This is followed by a Global Average Pooling layer, which reduces each feature map to a 

single value. A dropout layer is applied for regularisation, and finally, a fully connected 

layer produces the class scores for classification. 

EfficientNet Versions 

The EfficientNet family includes eight primary models, named EfficientNetB0 through 

EfficientNetB7. These variants are based on a single core network architecture (B0), 

developed using the compound scaling method, which proportionally increases network 

depth, width, and input resolution in a balanced way.  Appendix  B.2 shows EfficientNet 

model versions, input resolution, parameters, and Top-1 accuracy (conventional 

accuracy, which measures the proportion of classes in the dataset where the model's 

single highest-probability prediction exactly matches the expected target label) and 

Floating Point Operation (FLOP) on ImageNet [130].  

3.5.3. DeiT (Data-Efficient Image Transformer) 

ViT showed good results for image classification tasks; however, it required massive 

labeled datasets for effective training (like Google’s JFT-300M with 300 million images 

[131]). DeiT [132] enabling ViT based models to be trained effectively on small datasets 

by introducing a distillation mechanism where a teacher-student learning method 

incorporates a distillation token, which helps the model learn from a teacher network.   

In DeiT, knowledge distillation is integrated directly into the transformer architecture 

through an additional distillation token. This token is processed in parallel with the 

standard classification token and interacts with all image patch tokens via the self-

attention mechanism. At the output, two separate classification heads are used: one for 

the classification token and one for the distillation token. This setup enables the model 
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to learn both from the ground-truth labels and from a teacher model’s predictions. The 

primary purpose of this distillation is to transfer the biases and efficient feature 

extraction capabilities of a high-performing CNN teacher to the transformer student. 

Two types of distillation are used, explained below[133]; 

a) Soft distillation uses the probability distribution of the teacher model as a 

training target for the distillation token. Instead of matching only the correct 

class, the model learns to match the entire output distribution from the teacher, 

which contains information about class similarities. It minimizes the Kullback-

Leibler divergence [134] between the softmax of the student and the softmax of 

the teacher model.  Let 𝑍𝑠 the logits of the student model, 𝑍𝑡  be the logits of the 

teacher model, 𝜏 the temperature for the distillation, λ the coefficient balancing 

the Kullback–Leibler divergence loss (KL), and the cross-entropy loss (𝐿𝐶𝐸) on 

ground truth labels (y), and ψ the softmax function. The distillation objective is: 

𝐿𝑔𝑙𝑜𝑏𝑎𝑙 = (1 − λ) 𝐿𝐶𝐸(ψ(𝑍𝑠), 𝑦) + 𝜆 𝜏2 KL! (𝜓! (
𝑍𝑠

𝜏
) ,  𝜓! (

𝑍𝑡

𝜏
)) (3.6) 

b) Hard-label distillation takes a simpler approach; it uses the teacher’s top-1 

predicted class as an additional training target for the student. The loss equally 

weights the standard ground-truth prediction and the teacher’s label. Let  𝑦𝑡 be 

the hard decision of the teacher, the objective associated with this hard-label 

distillation is: 

𝐿𝐻𝑎𝑟𝑑𝐷𝑖𝑠𝑡𝑖𝑙𝑙𝑔𝑙𝑜𝑏𝑎𝑙 =
1

2
 𝐿𝐶𝐸(ψ(𝑍𝑠), 𝑦)  +

1

2
 𝐶𝐸(𝜓(𝑍𝑠), 𝑦𝑡) (3.7) 

DeiT Architecture 

The backbone of DeiT is a vision transformer encoder, which processes image 

information through a sequence of self-attention and feed-forward layers. However, 

DeiT incorporates a distillation token in addition to the standard classification token, 

enabling it to simultaneously learn from dataset labels and from the knowledge of a pre-

trained teacher model. The overall architecture can be divided into four main 

components [135]. The detailed architecture is shown in Appendix A.3. 

The input image is divided into non-overlapping patches, each flattened and projected 

into a fixed-dimensional embedding same as in ViT. Two learnable tokens, the 

classification token and the distillation token, are add along with the patch sequence. 

Positional embeddings are added to all tokens to maintain spatial information. The 

classification token is used for supervised classification with dataset labels, while the 
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distillation token is for learning from the teacher model’s predictions. Positional 

embeddings are added to all tokens to preserve spatial relationships before they are fed 

into the transformer backbone. 

I. All the tokens (patches, classification, and distillation) are processed by 

transformer encoder layers, which are the same as the ViT encoder (explained in 

section 3.4.2). Both tokens interact with all patch tokens through MHSA, allowing 

them to gather information from the entire image.  

II. A high-performing CNN-based teacher model processes the same input image in 

parallel. The teacher produces logits that serve as targets for the distillation 

token output. This supervision is implemented through either soft distillation 

(matching the teacher’s probability distribution) or hard-label distillation 

(matching the teacher’s predicted class). The teacher model is fixed during 

training to transfer knowledge consistently to the student transformer. 

III. After the final encoder layer, the classification token is passed through a 

classification head to produce predictions based on the dataset labels. 

Meanwhile, the token is also passed through a separate head to produce outputs 

supervised by the teacher model’s predictions. This dual-head output structure 

optimizes classification accuracy and teacher-guided knowledge distillation. 

DeiT Version 

The DeiT family includes multiple model sizes that vary in depth, embedding dimension, 

and number of attention heads are illutrated in Appendix B.3. 

3.5.4. DINO (Self-Distillation with No Labels) 

DINO [124] is a self-supervised learning method that uses ViT or CNNs as a backbone to 

learn without labeled data, based on a self-distillation architecture. A major challenge in 

self-supervised learning is collapse, where the network produces constant or same 

outputs for all inputs. DINO addresses this by introducing a self-distillation framework 

in which the student is trained to predict the output distribution of the teacher using 

different augmented views of the same image. 

Self-distillation is based on a teacher–student framework, where both networks share 

the same architecture: ViT or CNN as backbone and a projection head; however, they 

have different parameters [124]. 

I. Student Network is updated using standard gradient backpropagation. It 

receives as input both global views (large crops) and local views (small crops) of 
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the same image. By predicting the teacher’s outputs from these diverse views, 

the student learns to capture global semantic information as well as part-to-

whole relationships. 

II. Teacher network processes only the global views of the input image. The teacher 

parameters 𝜃𝑡  are updated as an exponential moving average (EMA) of the 

student parameters 𝜃𝑠: 

θ𝑡 ← 𝑚 ⋅ θ𝑡 + (1 − 𝑚) ⋅ θ𝑠 (3.8) 

Where 𝑚 is the momentum coefficient, progressively increased during training. 

This EMA update and  integrating knowledge from past student states: 

θ𝑡 = ∑(1 − 𝑚)

𝑡

𝑘=0

⋅ 𝑚𝑘 ⋅ θ𝑠,𝑡−𝑘 (3.9) 

Additionally, to prevent collapse and maintain stability, DINO combines centering and 

sharpening operations on the teacher outputs [136]. A center vector 𝑐 is also maintained 

for the teacher outputs to prevent dimensional collapse: 

𝑐 ← 𝑚𝑐 ⋅ 𝑐 + (1 − 𝑚𝑐) ⋅
1

𝐵
∑ 𝑔𝜃𝑡 (𝑥𝑖)

𝐵

𝑖=1

 (3.10) 

where 𝑚𝑐 is the center momentum, 𝐵 is the batch size, and 𝑦𝑡,𝑖 is the teacher's output for 

the 𝑖-th sample. This normalization ensures that the teacher outputs remain balanced 

across dimensions and do not collapse. Furthermore, sharpening is applied by using a 

lower temperature parameter for the teacher compared to the student to make the 

distribution more peaked. The probability distributions are then computed as: 

𝑃𝑠 = 𝜓 (
𝑍𝑠

𝜏𝑠
) ,  𝑃𝑡 = 𝜓 (

𝑍𝑡 − 𝑐

𝜏𝑡
) (3.11) 

where 𝑍𝑠 and 𝑍𝑡  are the logits of the student and teacher networks. Sharpening makes 

the teacher's outputs more peaked and discriminative, providing stronger supervision 

to the student. The DINO objective is formulated as the cross-entropy loss between the 

teacher and student probability distributions [137]: 

ℒDN = − ∑ 𝑃𝑡(𝑖)

𝐶

𝑖=1

log 𝑃𝑠 (𝑖) (3.12) 

The complete loss function incorporates multiple views of the same image is given as: 
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ℒDN = ∑ ∑ 𝐻(𝑃𝑡(𝑥), 𝑃𝑠(𝑥′))

𝑥′∈𝒱
𝑥′≠𝑥

𝑥∈{𝑥1
𝑔

,𝑥2
𝑔

}

 
(3.13) 

Where 𝒱 = {𝑥1
𝑔

, 𝑥2
𝑔

, 𝑥1
𝑙 , … , 𝑥𝑁

𝑙 }, 𝑔 denoates global views and 𝑙 denotes local views 

DINO Architecture 

The architecture can be divided into the following main components [124]. The detailed 

architecture is shown in Appendix A.8. 

I. In DINO, each training image is augmented into multiple crops. Two large global 

crops and several smaller local crops are generated using strong data 

augmentations. These crops are then converted into non overlapping patches, 

linearly projected into embeddings, and combined with a learnable classification 

token. Positional embeddings are added to maintain spatial structure. 

II. The augmented crops are passed through a backbone. This backbone can be 

either ViTs or CNNs. The backbone is implemented within a MultiCropWrapper, 

which ensures that both global and local crops are processed consistently. This 

wrapper allows multiple views of the same image to be forwarded in a single 

pass, an essential element of DINO’s efficiency. 

III. The output of the backbone is fed into a projection head (DINO head). This head 

is a multi-layer perceptron with multiple layers, batch normalization, and weight 

normalization on the last layer. It projects the high-dimensional transformer 

features into a lower-dimensional space where self-distillation is applied.  

IV. The teacher and student heads produce probability distributions via a softmax 

function with temperature scaling. The teacher's output is additionally centered 

and sharpened before being used as the training target for the student. The 

resulting features are aligned across global-to-global and local-to-global view 

pairs through the distillation loss. 

3.5.5. YOLO (You Only Look Once) 

YOLO [138] real-time object detection algorithm in computer vision is renowned for its 

simplicity and speed. These models predict bounding boxes and class probabilities 

directly from full images instead of dividing the image into regions and processing them 

separately. It tackles object detection or classification as a regression-based problem. 

YOLO divides the image into an SxS grid of cells. Each grid cell predicts a single object, 

with the corresponding class probabilities. The division is based on the spatial layout of 
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the image, meaning that each grid cell represents a specific region of the image. Each 

bounding box is represented by a set of elements: (x, y, w, h), where (x, y)  are the 

coordinates of the bounding box’s in center point relative to the grid cell, and(w, h) 

represent the width and height of the bounding box relative to the whole image. For 

every bounding box, YOLO furthermore forecasts a confidence score that represents the 

model’s level of assurance that the box includes an object and its degree of localization 

accuracy. The confidence score indicates the probability (P) that an object is inside the 

box as well as the precision of the box’s location.  

  Confidence score =  P(Object)  ∗ IoUPred,truth  (3.14) 

Where IoUPred,truth  (Intersection over Union) measures the overlap between the 

predicted bounding box and the ground truth box. Ranges from 0 (no overlap) to 1 

(perfect overlap). If a bounding box has a high IoU with the ground truth, it is considered 

a good prediction. 

Additionally, in the YOLO model,  each box predicts the likelihood of various object 

classes, assuming an object is present.  These class probabilities are then combined with 

the bounding box confidence to determine the most likely object type within each 

detected region. 

𝐶𝑙𝑎𝑠𝑠 𝑆𝑐𝑜𝑟𝑒𝑖 = P(𝐶𝑙𝑎𝑠𝑠𝑖) ∗ IoUPred,truth ∗ P(Object)   (3.15) 

YOLO’s final output is represented as a matrix of a specific shape, given as below, 

𝑆 ∗ 𝑆 ∗ (𝐵 ∗ 5 + 𝐶)  (3.16) 

where: S is the grid size. The estimated number of bounding boxes for each grid cell is B. 

C is the number of classes. Each grid cell predicts bounding boxes, along with their 

confidence scores and class probabilities as shown in Figure 3.13. 

After the acquisition of the bounding boxes, confidence intervals, and class probabilities. 

YOLO applies non-maximum suppression (NMS) to remove duplicate detection of the 

same object. NMS suppresses overlapping bounding boxes by selecting the one with the 

highest confidence score and discarding others that have significant overlap with it. 

 

YOLO is trained on labeled datasets using a loss function that uses sum-squared error 

between the predictions and the ground truth to calculate loss. It combines localization 

loss, confidence loss, and classification loss [139]. The classification loss 
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( 𝐿𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛(θ) ) is used to ensure each cell predicts the correct class and is 

the MSE between the ground truth(𝑝𝑖̂(𝑐)) and prediction(𝑝𝑖(𝑐)). 

𝐿𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛(θ) = ∑ 1𝑖
𝑜𝑏𝑗

∑(𝑝𝑖(𝑐) − 𝑝𝑖̂(𝑐))
2

𝐶

𝑐=1

𝑆2

𝑖=0

 (3.17) 

The localization loss (𝐿𝑙𝑜𝑐𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛(𝜃)) minimizes the MSE between the coordinates of the 

ground truth bounding box( 𝑥𝑖̂, 𝑦𝑖̂, 𝑤𝑖̂, ℎ𝑖̂) and the predicted bounding box (𝑥𝑖 , 𝑦𝑖 , 𝑤𝑖, ℎ𝑖 ). 

𝐿𝑙𝑜𝑐𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛(𝜃) = ∑ ∑ 1𝑖𝑗
𝑜𝑏𝑗[(𝑥𝑖 − 𝑥𝑖̂)

2 + (𝑦𝑖 − 𝑦𝑖̂)
2]

𝐵

𝑗=0

𝑆2

𝑖=0

+ ∑ ∑ 1𝑖𝑗
𝑜𝑏𝑗

[(√𝑤𝑖 − √𝑤𝑖̂)
2

+ (√ℎ𝑖 − √ℎ𝑖̂)

2

]

𝐵

𝑗=0

𝑆2

𝑖=0

 

(3.18) 

Confidence loss minimizing the MSE between the predicted confidence score of the 

cell 𝐶𝑖, and the IoU between the ground truth bounding box and the predicted one 𝐶𝑖̂. 

𝐿𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒(θ) = ∑ ∑ 1𝑖𝑗
𝑜𝑏𝑗

(𝐶𝑖𝑗 − 𝐶𝑖𝑗̂)
2

𝐵

𝑗=0

𝑆2

𝑖=0

+ λ𝑛𝑜𝑜𝑏𝑗 ∑ ∑ 1𝑖𝑗
𝑛𝑜𝑜𝑏𝑗

(𝐶𝑖𝑗 − 𝐶𝑖𝑗̂)
2

𝐵

𝑗=0

𝑆2

𝑖=0

 (3.19) 

Finally, the loss function is optimized using backpropagation and SGD. 

 

Figure 3.13: YOLO working explained [139]  

Yolo Architectural 

YOLO models' algorithm has backbone, neck, and head, three main components. The 

backbone is a CNN that has been pre-trained on a large-scale image classification dataset, 

responsible for feature extraction from the input image. The neck refines and combines 

these features, and the head makes the final predictions, including bounding boxes, 

objectness scores, and class probabilities[140].  
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 YOLOv11 architecture consists of three core components: Backbone, Neck, and Head, is 

the latest model in YOLO variants [141]. This network includes  C3k2 (Cross Stage Partial 

with kernel size 2) block, SPPF (Spatial Pyramid Pooling - Fast), and C2PSA 

(Convolutional block with Parallel Spatial Attention), along with standard convolutional 

blocks. The architectures of these additional blocks are shown in Figure A.5. The detailed 

architecture is shown in Appendix A.4 

The backbone of YOLOv11 acts as the main feature extractor, capturing both low and 

high level semantic information from input images. It includes convolutional layers, 

SPPF, and C2PSA Blocks and C3K2 blocks for efficient convolutional downsampling. This 

improves computational efficiency by using two smaller convolutional layers instead of 

one large layer, as in YOLOv8[142], enabling faster processing while preserving 

representational quality. The SPPF module effectively captures features across various 

object scales of images. Additionally, the C2PSA block is added after the SPPF. This block 

introduces spatial attention mechanisms, allowing the network to focus more precisely 

on important regions within the image and thereby enhancing detection accuracy, 

especially for small or occluded objects. [143]. 

The neck is responsible for merging features from different scales and passing them to 

the head for final prediction. This is typically achieved through the upsampling and 

concatenation of feature maps from multiple layers, enabling the model to effectively 

capture multi-scale contextual information. It has C3K2 block to improve processing 

speed and C2PSA module to increase spatial attention mechanism[144]. 

The head of YOLOv11 is responsible for generating the final predictions in terms of object 

detection and classification. It processes the feature maps passed from the neck, 

ultimately outputting bounding boxes and class labels for objects within the image. The 

C3K2 blocks are integrated into multiple processing pathways within the head to 

efficiently refine feature maps at various depths. To further enhance feature extraction, 

Convolution-Batch-Normalization blocks are incorporated following the C3K2 units. 

These CBS blocks contribute to high-precision detection by extracting relevant features, 

stabilizing the learning process through batch normalization, and introducing non-

linearity via the SiLU activation function. This combination improves overall model 

convergence and  accuracy, particularly in complex visual environments [145]. 

 Appendix B.4 shows different YOLOv11 classification models scales (nano, small, 

medium, large, and extra-large) to balance speed, memory usage, and accuracy on 

ImageNet [72]. 
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Chapter 4  

Methodology  

This chapter describes the methodology adopted to develop AI-based classification for 

identifying burns on used PCBs as part of a circular manufacturing process to support 

sustainable practices. The overall flow is described in the flow Chart below, 

 

Figure 4.1: Methodology flow chart 

4.1. Data Acquisition 

To train the AI-based classification model, a dataset for each classification is required, 

with the same number of images per class, to prevent the model from being biased 

towards the major class [146]. The acquisition process focused on ensuring diversity of 

samples across all classes. Table 4.1 summarizes the overall distribution of images 

collected from different sources before preprocessing.  
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Table 4.1: Raw Collected Dataset Statistics by Source 

Dataset Source Type Specific Source Burnt_PCB Good_PCB 

Existing Datasets 
Literature 0 373 

RoboFlow 772 165 

Websearch Images 
Google Images 110 30 

Flickr 0 145 

AI-generated Dataset 
ChatGPT 30 10 

Google Gemini 30 25 

Self-Captured Original 9 4 

Total Images 951 752 

The detailed description of each category is presented in the following subsections. 

4.1.1. Existing DataSets 

First, as described in the literature review, good PCB datasets are collected from 

published research articles during the review phase. The majority of publicly available 

datasets described in the section 2.3 are of defective PCBs. PCB-DSLR, MPI-PCB, 

FICS_PCB, and PCB-METAL datasets are initially considered, which contain PCB without 

defects. Images in these datasets represent samples of non-defective PCB boards that 

have previously been used for training AI models. 

However, there are no datasets available in any publication containing Burnt PCB 

images. To address this gap, several online platforms containing different types of 

datasets for data science and ML are reviewed. However, there are no such PCBs datasets 

available containing burnt PCBs images.  For example, Ultralytics [146] provides various 

datasets to facilitate CV tasks. Eleven various datasets are available for classification; 

however, they do not contain any burnt_PCB.  

Roboflow [147] is an open-source online platform that hosts various image datasets for 

DL tasks. Seven different PCB-related datasets are available on Roboflow, containing a 

total of 772 images of only burnt_PCBs. However, these datasets have duplicate images 

or augmented images of the same PCB. As part of the preprocessing step (section 6.2 Data 

Processing), such images are removed, resulting in a final subset of 251 unique burnt 

PCB images used for training. In addition, one dataset comprising 165 Good PCB images 

is also acquired from Roboflow. 

4.1.2. WebSearch datasets 

To further expand the dataset, in addition to the literature review, good PCB images are 

downloaded from web-based platforms, including Google Images and Flickr [148], using 

relevant search queries. Flickr is reliable for DL models' image collection used in 

literaurre [91] . Images with high visual quality and clear labels are prioritized. 
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Burnt PCB images are also downloaded from Google images search to compensate for 

the low data set availability by searching “Burnt PCB” and visually inspecting each image. 

However, despite these efforts, almost all burnt PCB images could only be sourced from 

Google Images, resulting in a total of 110 images, which is insufficient to train a model. 

4.1.3. AI-Generated Datasets 

Although real images are collected from existing datasets and web sources, the 

availability of burnt PCB images remained limited and unbalanced compared to Good 

PCBs. To address this issue, as described in the literature review (section 4.5.2 Synthetic 

data generation using generative AI), AI-based tool can be used to generate images. 60 

burnt_PCB images (examples are shown in ) are artificially generated using two AI tools, 

including a) ChatGPT (via DALL·E) and b) Google Gemini (used between April and August 

2025). Burnt PCB image generation process is guided using descriptive text prompts to 

simulate realistic damage scenarios. Example prompts included: 

• "Generate a realistic Image printed circuit board with localized burn marks on 

one side to train an AI classification model to classify bunt PCBs and good PCBs." 

 

Figure 4.2: Examples of artificially generated burnt PCB images 

Additionally, although the dataset from literature and websearch already contained a 

large number of Good PCB images, an additional 35 good PCB images (examples are 

shown in Figure 4.3) are generated using the same tools. This ensures that both classes 

maintain consistency in data diversity. Previous studies have shown that including 

synthetic data for all target classes, rather than only for the minority class, can improve 

model generalization and reduce class-specific bias [89]. Similar to burnt PCB image 

generation, the good PCB image generation process is guided using prompts such as: 

• "Generate  realistic high-resolution image of a clean PCB to train AI model." 

Generated images are visually inspected to ensure quality and relevance. Unrealistic 

outputs and duplicates are removed. The selected images are then integrated into the 

dataset to complement the limited real-world samples obtained from Roboflow, creating 

a more comprehensive training set for the classification task. 
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`  

Figure 4.3: Examples of artificially generated good PCB images 

4.1.4. Self Capture (Case Study PCB Dataset) 

Four images of a washing machine PCB are captured from both sides of the board nd 

included in good PCB dataset, which serves as the basis for a case study to evaluate 

whether the PCB is burnt or not in future testing. Since actual burnt samples of the same 

PCB were not available, 9 synthetic burnt versions are generated using Photoshop to 

simulate these boards in a burnt condition. Examples are shown in Figure 4.4 

 

Figure 4.4: Synthetic burnt PCB from original PCB 

4.2. Data Preprocessing  

After collecting the data, a multi-stage data preprocessing pipeline is implemented to 

ensure that the dataset contains no repetitive or augmented images of the same image. 

Datasets downloaded from Roboflow contained augmented and duplicate images, which 

are necessary to remove to make the dataset unique to train the AI model. After applying 

the two techniques described below, 487 duplicate or augmented images are removed 

from the initial 772 images. 

4.2.1.  Duplicate Image Removal using Perceptual Hashing 

Initially, image filtering is carried out using perceptual hashing [149]. Perceptual hashing 

generates a compact fingerprint of an image that reflects its overall visual structure. This 

detects duplicate or near-duplicate images that may only differ due to resizing, 

compression, or minor noise. Applying perceptual hashing ensures that exact or trivially 

altered copies are removed, keeping the dataset clean and preventing redundancy in 

training. Images with visually similar structures generate similar hash values, and then 
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based on these hash detects duplicates and near-duplicate images. A Python script 

(Appendix A.1) is developed using the imagehash and PIL libraries. It computes the 

pHash for each image and compares the computed hash against other images in the 

dataset. A similarity threshold of 2 is used to determine whether two images are similar. 

As described and proved by [150], threshold 2 is best to remove duplicates, higher 

numbers started catching false positives; images that had similar fingerprints but are too 

different visually. By implementing this approach, out of 772 images, 383 unique images 

are retained after removing duplicates. 

4.2.2. Deep Feature-Based Filtering using Deep learning Model 

Despite applying perceptual hashing, several augmented images remained in the dataset. 

To address this, after perceptual hashing, DL is used to enhance near-duplicate detection 

robustness [151] such as texture, angle, and lighting conditions. Reseach [152] has 

shown that ResNet50 model is highly effective for image duplication detection, achieving 

a precision of 0.952.  In this study, DL based filtering approach is implemented using a 

pre-trained ResNet50 model (Python code in Appendix D.2). It extracts features from 

each image using a pre-trained ResNet50 and compares each image's features with a 

threshold of 0.95. It means that any image with morethan 95% similarity to an existing 

one is considered a duplicate and excluded. One study on Fitzpatrick17k (one of the 

largest datasets publicly available of clinical skin disease) images dataset revealed that 

images with similarity ≥ 0.95 are duplicates with 98.4% precision, demonstrating 

reliable removal of  redundant images while minimizing false positives [153] and 

effectively removing 133 duplicate images out of 383. 

4.2.3. Final Dataset 

After dataset preprocessing, 439 images remained. To balance the two classes, 

Burnt_PCB and Good_PCB, an additional 55 images from the literature are included to 

maintain class balance and dataset diversity, as summarized inTable 4.2. 

Table 4.2: Summary of the Final Dataset of PCB 

Dataset Source Type Specific Source Burnt_PCB Good_PCB 

Existing Datasets 
Literature 0 55 

RoboFlow 250 165 

Websearch Images 
Google Images 110 25 

Flickr 0 145 

AI-generated Dataset 
ChatGPT 30 10 

Google Gemini 30 25 

Self-Captured Original 9 4 

Total Images 429 429 
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4.3. Data Splitting 

One of the requirements of DL classification models is to divide the cleaned dataset into 

different folders: a) Training, b) Validation, and c) Test dataset. This separation ensures 

that the model is trained on training dataset, tuned and optimized on validation dataset, 

and finally evaluated on a completely unseen test dataset to provide a realistic measure 

of its generalization ability. In principle, 

𝐷 = 𝐷𝑡𝑟𝑎𝑖𝑛  ∪  𝐷𝑣𝑎𝑙 ∪  𝐷𝑡𝑒𝑠𝑡 ,          𝐷𝑡𝑟𝑎𝑖𝑛  ∩  𝐷𝑣𝑎𝑙 ∩  𝐷𝑡𝑒𝑠𝑡 =  ∅ 

Investigating the impact of train/validation split ratio on the performance of  pre-trained 

models with custom datasets shows that 70% of the dataset images for the training task 

give the best performance [154].  A Python code (Appendix D.3) is used to automate the 

splitting process, whereby 304 (~ 71%) of the images are randomly assigned to the 

training set, 100 (~23%) to the validation set, and the remaining 25 images to the test 

set. This structured and randomized data splitting process reduces the risk of overfitting 

and supports the fair evaluation of the trained model on unknown validation data.  

4.4. Data Augmentation 

The primary objectives of applying data augmentation (Aug) are described in the section 

3.2.2 Data Augmentation. Furthermore, in the literature review (section 2.5.1 data 

augmentation),  multiple case studies have been mentioned where data augmentation 

has been applied (Table 2.4).  

For the PCB dataset in this case study, six different augmentation pipelines are applied, 

with each pipeline generating five augmented images per original, and a seventh 

combined pipeline generating twenty images, resulting in 50 augmented images per 

original image. The Albumentations [155] library for augmentation, OpenCV for image 

processing, TQDM for progress visualization, and UUID for generating unique file names   

are implementated using Python (Appendix D.4). 

a) To account for rotation and positional variation during PCB inspection, 

Geometrical augmentations (Rotations, flips, transposes, and perspectives) 

transformations are applied. These transformations simulate situations where 

PCBs are placed at inconsistent angles or slightly tilted due to manual handling 

or uneven conveyor alignment. By including these variations, the model is 

trained to perform classification regardless of the orientation,  perspective, or 

placement of cameras.  
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b) To account for PCBs image capture while in motion, or under low-quality imaging 

hardware that introduces noise; Augmentation of blur, Gaussian blur, and 

Gaussian noise are applied. These augmentations help the model train to blur 

visuals caused by any movements, as well as grainy textures caused by low-

qualityimages or environmental interference.  

c) To account for inconsistent environmental conditions (lighting, shadows, or 

reflective surfaces), augmentations of brightness and contrast variation, hue-

saturation shifts, RGB channel shifts, sharpening, and histogram equalization 

(CLAHE) are used. These adjustments train the model to detect burnt areas when 

lighting conditions affect the color intensity, brightness, or contrast of images. 

d) In some cases, PCBs might be temporarily occluded during inspection, for 

example, by a worker’s hand, a label, or another object, or sometimes a PCB with 

a slot/window design. To account for these issues, augmentation cutout (coarse 

dropout) and grid dropout are applied to randomly hide sections of the image. 

This trains the model for classifying PCBs when some parts of the board are not 

fully visible, or a special slot-designed PCB. 

e) The collected dataset primarily consists of PCB images without any background, 

whereas in real-world scenarios, PCBs are captured against a background. To 

account for these variations and improve model robustness, augmentation 

techniques involving white background (for this thesis, during deployment, PCB 

will be captured against a white background), padding are applied. This 

approach ensures that the model focuses on learning discriminative PCB features 

rather than overfitting to specific background textures or border regions.  

f) To account for the effect of compression and low-quality imaging from camera 

systems, augmentations of JPEG compression and image downscaling are 

applied. These transformations train the model to maintain accuracy when image 

quality is reduced due to storage constraints or camera low quality  capturing. 

   

Figure 4.5: Aug examples a) Original b) geometrical  c) Lighting effect 

a) b) C) 
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Figure 4.6: Aug examples a)Noise b) Background texture c) Occlusion and shadow 

    

Figure 4.7: Aug examples  a) Compression b) and c) Mixed 

4.5. Training DL Models 

The state-of-the-art models described in the section 3.5 are trained on the prepared 

dataset using the configurations in Table 4.3. These hyperparameters are chosen to 

balance convergence, stability, and computational efficiency, following common practice 

for pre-trained vision models and the official recipes used for Transformers. All models 

are initialized from ImageNet  pretrained weights [156] and during training, both the 

best-performing weights and the final checkpoint weights are saved. 

AdamW is selected because decoupled weight decay improves generalization during 

fine-tuning; a base learning rate of 1e-4 is the standard, stable choice for pretrained 

backbones. Cosine annealing allows the rate to decay smoothly, providing fast learning 

early on and careful refinement later. The same has been used in DL models based visual 

inspection of automotive parts in the remanufacturing process [82].  Epochs are set to 

50 to complete the schedule without unnecessary runtime, batch sizes are set by GPU 

memory, and workers are chosen to keep data loading from bottlenecking training. 

Checkpointing stores both the best validation model and the final epoch for 

reproducibility. Input resolutions and transforms follow each backbone’s expected 

recipe: ResNet and EfficientNet use their customary sizes with ImageNet statistics, DeiT 

a) 

a) 

b) 

b) 

C) 

C) 
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uses its patch-aligned resolution, DINO ViT uses a single-crop SSL pipeline, and DINO 

CaIT uses the canonical multi-crop SSL with per-iteration schedules for learning rate, 

teacher momentum, and weight decay.  

Table 4.3: Model Training Configuration Summary 

Parameter 
YOLOv11

x-cls 
ResNet 

50 
ResNet 

152 
EfficientNet 

B3 
EfficientNet 

B7 

DeiT
-

Base 

DINO  
(ViT-
S/16) 

DINO  
(CaIT 

XXS-24) 

Input size 224×224 
128×12

8 
128×12

8 
300×300 300×300 224×224 224×224 128×128 

Loss CE CE CE CE CE CE CE CE 

Base LR Auto 
1.00E-

04 
1.00E-

04 
1.00E-04 1.00E-04 1.00E-04 1.00E-04 1.00E-04 

Optimizer   AdamW AdamW AdamW AdamW AdamW AdamW AdamW 

Momentum 
betas=(0.
9, 0.999) 

betas=(
0.9, 

0.999) 

betas=(
0.9, 

0.999) 

betas=(0.9, 
0.999) 

betas=(0
.9, 

0.999) 

betas=(0
.9, 

0.999) 

betas=(0.9
, 0.999) 

betas=(0
.9, 

0.999) 

LR 
scheduler 

Internal 

CosineA
nnealing

LR 
(eta_mi
n=1e-6) 

CosineA
nnealin

gLR 
(eta_mi
n=1e-6) 

CosineAnne
alingLR 

(eta_min=1e
-6) 

CosineA
nnealing

LR 
(eta_min
=1e-6) 

CosineA
nnealing

LR 
(eta_min
=1e-6) 

CosineAnn
ealingLR 

(eta_min=
1e-6) 

CosineA
nnealing

LR 
(eta_min
=1e-6) 

Epochs 50 50 50 50 50 50 50 20 

Batch size 8 32 32 32 8 32 32 0 

Workers 8 8 8 8 8 8 8 8 

Checkpoints best + last 
best + 

last 
best + 

last 
best + last 

best + 
last 

Epoch-
10 + 
final 

best + last 
best + 

last 

Python codes used to train these models are given in Appendix D.1 to Appendix D.10. 

Additionally, hardwarestep nd Python libraries used to train these models are described 

in Appendix Appendix C and Appendix C.2. 

4.6. Evaluation of DL Models 

The models are evaluated on the test set using the best weights during training and  by 

metrics (section 3.3) include accuracy, precision, recall, and F1 score, confusion matrix, 

and PR curve are computed to assess models' performance. The metrics have been 

reported in the literature of PCB CV visual inspection model evaluations [157]. 

Accuracy provides the overall percentage of correctly classified PCBs, offering a quick 

benchmark of model performance. Precision shows how many predictions for a class are 

correct, while recall shows how many actual samples of that class are detected. The F1-

score combines precision and recall, making it easier to judge models when both types 

of errors matter. The confusion matrix visualizes misclassifications for each class, 

providing a clear view of where the model struggles. Finally, precision–recall curves 

evaluate robustness across confidence thresholds, showing how performance changes 

depending on the strictness of decision boundaries.      
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Chapter 5  

Result 

5.1. Training/learning behaviour of the models  

The training or learning behaviour of the models is evaluated based on training loss, 

validation loss, and validation accuracy across different epochs. Figure 5.1, Figure 5.2 

and Figure 5.3 present the respective curves for a comprehensive side-by-side 

comparison of all models, while the detailed graphs along with learning rate per epoch 

and training time for each model are provided in Appendix  E.  

The YOLOv11 classification model shows a rapid decrease in training loss, approaching 

zero from 0.25 after about 30 epochs. Validation loss fluctuates slightly in the early phase 

as weights adapt from the pretrained initialization but stabilizes after 20 epochs and 

remains constant beyond 35 epochs. Validation accuracy peaks around 99% and 

stabilizes after 20 epochs, indicating effective feature learning for distinguishing burnt 

and good PCBs without signs of overfitting. 

 

Figure 5.1: Training Loss per epoch of all Models 

The ResNet50 model demonstrates a sharp decrease in training loss from 0.7 at the first 

epoch to nearly zero by epoch 30, where it remains stable. In contrast, the validation loss 

increases gradually until 30 epochs and fluctuates. After epoch 30, it suddenly drops to 
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around 0.4 and becomes relatively stable, indicating the model has generalized the 

features. Despite this divergence and fluctuation, the validation accuracy rises rapidly, to 

99% within 15 epochs, and remains close to 99.9% until the end of training. The 

ResNet152 model shows a rapid decrease in training loss, dropping from 0.05 at the first 

epoch to nearly zero by epoch 30. Validation loss fluctuates more strongly than in 

ResNet50, with occasional peaks up to 0.7, but generally remains in the range of 0.1 and 

0.3 after 20 epochs. Despite these variations, validation accuracy improves quickly, 

surpassing 99% within 10 epochs and stabilizing around 100% by the end of training.  

 

Figure 5.2: Validation Loss per epoch of all Models 

The EfficientNetB3 model shows a steep decline in training loss, decreasing from 0.07 in 

the first epoch to nearly zero by epoch 20, where it remains constant. The validation loss 

exhibits notable fluctuations, ranging mostly between 0.07 and 0.22, with peaks during 

the middle training phase and gradual stabilization near 0.1 in later epochs. Validation 

accuracy starts around 98% and varies throughout training between 96.5% and 99%, 

without settling into a stable plateau.  The EfficientNetB7 model records a sharp 

decrease in training loss, reducing from 0.07 at the first epoch to nearly zero by epoch 

15, where it stabilizes. The validation loss fluctuates throughout training, ranging from 

0.08 to 0.15, with a peak of approximately 0.26 observed around epoch 17. Validation 

accuracy starts at nearly 97% and exhibits fluctuations between 95.5% and 99% without 

a stable plateau until the end of training. 

The DeiT model shows a sharp decrease in training loss, reducing from 0.05 at the first 

epoch to nearly zero by epoch 20, where it stabilizes. The validation loss displays 
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fluctuations in the early epochs and then increases steadily after epoch 25, reaching 

values of about 0.4 at epoch 50. Validation accuracy starts at 93%, varies in the first 20 

epochs, and then stabilizes between 97% and 98%.  

The DINO-ViT fine-tuned model shows a sharp reduction in training loss, decreasing 

from about 0.5 at the first epoch to nearly zero by epoch 40. Validation loss follows an 

opposite trend, starting around 0.35 and steadily rising across training, reaching about 

1.6 at epoch 50.  Validation accuracy peaks near 90% around epoch 20, before declining 

and stabilizing around 86% in later epochs. 

The DINO-CaIT fine-tuned model shows a steady decrease in training loss, dropping from 

about 0.45 in the first epoch to near 0.05 by epoch 20. Validation loss starts around 0.3, 

fluctuates in early epochs, and then rises gradually, reaching about 0.75 by the end. 

Validation accuracy remains relatively stable throughout training, fluctuating between 

82% and 86% without a clear upward trend. 

 

Figure 5.3: Top-1 Accuracy per epochs for all models 

Overall, all models converge rapidly in training, with losses approaching zero within 20–

30 epochs and training accuracy nearing 100%. CNN-based models show relatively 

stable validation trends with early accuracy saturation. The transformer-based model 

displays stronger fluctuations in validation loss and accuracy across epochs. SSL-based 

models achieve smooth convergence in training but exhibit steadily rising validation loss 

and less stable validation accuracy, highlighting their different training dynamics.  
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5.2. Classification Performance 

To evaluate model classification performance, confusion matrices are analyzed on both 

the validation set (normalized percentages) and the test set (absolute counts), as shown 

in Figure 5.4and Figure 5.5 respectively.  These confusion matrices combine the results 

of all trained models into one confusion matrix for easier comparison. A confusion matrix 

is normally a 2×2 table that shows how well a model distinguishes between two classes; 

in this case, Burnt PCB and Good PCB. The four large boxes represent the four possible 

outcomes: a) Top-left: Burnt PCBs correctly identified as burnt (true positives), b) Top-

right: Burnt PCBs wrongly identified as good (false negatives), c) Bottom-left: Good PCBs 

wrongly identified as burnt (false positives), and Bottom-right: Good PCBs correctly 

identified as good (true negatives). Inside each large box, the diagonal positions contain 

values for each model, showing how well model performed for that particular outcome.  

 

Figure 5.4: Normalized confusion matrix of all Models (Validation dataset) 
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YOLOv11 validation performance is almost perfect, with 100% accuracy on burnt PCBs 

and 99% on good PCBs. On the test set, it correctly classifies 23 burnt PCBs and all good 

PCBs, demonstrating robust generalization and balanced performance. 

ResNet-50 achieves balanced validation accuracy of 96% for burnt PCBs and 97% for 

good PCBs. On the test set, it correctly classifies 24 burnt PCBs and all 25 good PCBs, with 

just one burnt board misclassified as good. This highlights ResNet-50 as one of the most 

reliable models, showing stable generalization across both datasets. On the other hand, 

the ResNet-152 model, having a higher number of trainable parameters, reaches 97% for 

burnt PCBs and 94% for good PCBs on validation datasets, with slightly higher errors on 

the good class. On the test set, it correctly classifies 24 burnt PCBs but only 15 good PCBs, 

indicating reduced performance on unseen data. 

 

Figure 5.5: Confusion Matrix of all Models (Test Dataset) 
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On the validation set, EfficientNetB3 achieves 95% accuracy for burnt PCBs and 90% for 

good PCBs, misclassifying 5% and 10% respectively. On the test set, it correctly classifies 

25 burnt PCBs and 23 good PCBs, with only 2 good boards misclassified as burnt. On the 

other hand, EfficientNetB7, validation performance is nearly perfect, with 99% accuracy 

for both burnt and good PCBs. On the test set, the model correctly identifies all 25 burnt 

PCBs, but only 20 out of 25 good PCBs, with 5 misclassified as burnt.  

DeiT achieves 99% accuracy on burnt PCBs and 97% on good PCBs in validation. On the 

test set, it classifies all 25 burnt PCBs correctly; however, it only classifies 21 good PCBs 

correctly. This shows excellent detection of burnt boards, but a sensitivity for good PCBs. 

DINO-ViT validation results show 98% accuracy on burnt PCBs, but only 83% on good 

PCBs, with 17% of good boards misclassified. On the test set, it correctly classifies all 25 

burnt PCBs but only 12 good PCBs, with 13 misclassified as burnt.  t-SNE before fine-

tuning, burnt and good PCBs showed substantial overlap, reflecting weak class 

separability. After fine-tuning, two clearer clusters emerged. However, some good PCB 

embeddings remained mixed within the burnt cluster (Figure 5.6), reflecting a strong 

bias toward burnt classification and weak recognition of good PCBs. 

 

Figure 5.6: DINO-ViT t-SNE a) before and b) after finetuning 

DINO-CaiT achieved 96% accuracy for burnt PCBs on validation but only 71% for good 

PCBs, with nearly one-third of good boards misclassified. Test results confirmed this 

imbalance: 24 burnt PCBs are correctly classified, but only 4 good PCBs were predicted 

correctly, while 21 are incorrectly labeled as burnt. t-SNE of DINO-CaIT before fine-

tuning shows that good PCBs have a separate cluster; however, good PCBs also have 

substantial overlap with burnt PCBs, reflecting weak class separability. After fine-tuning, 

two clearer clusters emerged. However, some good PCB embeddings remained mixed 

within the burnt cluster (Figure 5.7), confirming unstable classification and limited 

generalization. 

b) a) 
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Figure 5.7: DINO-CaiT t-SNE a) before and b) after finetuning 

5.3. Models Overall Performance Metrics Comparison 

Table 5.1 summarizes the overall performance of all models in terms of classification 

performance metrics, overall accuracy, inference time per image, and frames per second.  

YOLOv11 and ResNet50 both achieve near-perfect results, with precision, recall, and F1-

scores of approximately 0.98 across classes. For burnt PCBs, both models maintain 

perfect precision (1.0) and high recall (0.96), while for good PCBs, they achieve perfect 

recall (1.0) and precision near 0.96. The balance between the two classes indicates that 

both models rarely misclassify burnt as good or vice versa, making them the most 

reliable for practical deployment. Their symmetry across precision and recall ensures 

that neither false positives nor false negatives dominate, which is particularly valuable 

in high-stakes industrial classification. ResNet152 exhibits clear weaknesses compared 

to ResNet50. While it attains a strong recall for burnt PCBs (0.96), its precision drops to 

0.71. For good PCBs, precision is high (0.94), but recall falls drastically to 0.60, meaning 

many good boards are misclassified as burnt. WA F1-score of only 0.77, significantly 

lower than its shallower counterpart.  

EfficientNetB3 achieves balanced and strong results, with WA of 0.96 across precision, 

recall, and F1 score. It identifies burnt PCBs with perfect recall (1.0) and good PCBs with 

perfect precision (1.0), showing a well-calibrated distribution of errors. EfficientNetB7, 

while still competitive, performs less consistently. It achieves perfect recall for burnt 

PCBs but only 0.80 recall for good PCBs, resulting in an overall F1-score of 0.90. This 

indicates that B7 is biased towards burnt PCB and misclassifies good boards. 

The DeiT-Base transformer delivers competitive performance, with weighted precision, 

recall, and F1-scores around 0.92. It achieves perfect precision for good PCBs (1.0), 

meaning it rarely produces false positives, but recall is lower (0.84), indicating missed 

a) b) 
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detections of good boards. For burnt PCBs, recall is strong (0.91), but precision drops 

slightly to 0.86. These results highlight that DeiT prioritizes precision over recall, which 

may be preferable in contexts where false alarms are less costly than missed defects. 

Table 5.1: Comparison of all Models' Performance Metrics (Test dataset) 

Model Class Precision Recall 
F1-

Score 
Accuracy 

IT 
(ms) 

FPS 

YOLOv11 

Burnt_PCB 1 0.96 0.98 

98% 23.3 43 Good_PCB 0.96 1 0.98 

WA 0.98 0.98 0.98 

ResNet50 

Burnt_PCB 1 0.96 0.98 

98% 3.04 328 Good_PCB 0.96 1 0.98 

WA 0.98 0.98 0.98 

ResNet152 

Burnt_PCB 0.71 0.96 0.81 

78% 36.2 28 Good_PCB 0.94 0.6 0.73 

WA 0.82 0.78 0.77 

EfficientNetB3 

Burnt_PCB 0.93 1 0.96 

96% 15.6 64 Good_PCB 1 0.92 0.96 

WA 0.96 0.96 0.96 

EfficientNetB7 

Burnt_PCB 0.83 1 0.91 

90% 19.4 52 Good_PCB 1 0.8 0.89 

WA 0.92 0.9 0.9 

DeiT-Base 

Burnt_PCB 0.86 1 0.86 

92% 13.5 74 Good_PCB 1 0.84 0.91 

WA 0.93 0.92 0.92 

DINO  
(ViT-S/16) 

Burnt_PCB 0.65 1 0.80 

74% 7.8 128 Good_PCB 1 0.48 0.64 

WA 0.83 0.74 0.72 

DINO  
(CaIT-xxs/24) 

Burnt_PCB 0.56 0.79 0.71 

60% 11.3 88 Good_PCB 0.86 0.24 0.38 

WA 0.71 0.6 0.54 

SSL DINO models perform considerably weaker. DINO-ViT achieves moderate precision 

(0.83) but poor recall (0.74), with particularly weak detection of good PCBs (recall 0.48). 

This indicates a tendency to miss many good boards while being conservative in 

predictions. DINO-CaIT performs worst overall, with a weighted F1-score of only 0.54. 

Its recall for good PCBs is especially low (0.24), meaning that nearly three-quarters of 

good boards are misclassified as burnt. Such instability suggests that without substantial 

fine-tuning or larger pretraining datasets, SSL-based models struggle to generalize 

reliably in this classification task. 

Figure 5.8 shows Precision–Recall curves and F1-Confidence curves. YOLOv11, 

ResNet50, and EfficientNetB3 maintained near-perfect precision (>0.95) across the full 
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recall range, reflecting a strong balance between sensitivity and specificity. DeiT-Base 

and EfficientNetB7 also demonstrated stable performance, though with slightly lower 

precision at high recall values. In contrast, ResNet152, DINO-ViT, and particularly DINO-

CaiT displayed weaker PR behavior. DINO-CaiT’s curve dropped sharply, indicating poor 

balance between precision and recall and confirming its tendency to misclassify good 

PCBs as burnt. The F1–Confidence curves further reinforce these findings. YOLOv11, 

ResNet50, and EfficientNetB3 consistently exhibited high F1-scores (>0.95) across 

almost all confidence thresholds, demonstrating robust performance regardless of the 

decision boundary. EfficientNetB7 and DeiT-Base achieved slightly lower but still stable 

F1 values (~0.90). By contrast, ResNet152 and DINO-ViT showed a gradual decline in F1 

as confidence increased, while DINO-CaiT suffered a steep drop, with F1 falling below 0.4 

at moderate confidence thresholds. 

 

Figure 5.8: a) Precision- Recall Curve b) F1-Score - Confidence Curve 

The results show that YOLOv11 and ResNet50 achieved the highest classification 

accuracy (98%), while EfficientNetB3 followed closely with 96%, and DeiT-Base reached 

92%. In contrast, the deeper Reset152 and SSL models (DINO-ViT, DINO-CaiT) 

performed worse, with accuracies of 78%, 74%, and 60%, respectively. 

In terms of computational efficiency, ResNet50 achieves the fastest inference with 3.04 

ms per image, corresponding to 328 FPS, making it the most efficient model. DINO-ViT 

also shows strong efficiency at 7.8 ms (128 FPS), followed by DINO-CaIT at 11.3 ms (88 

FPS) and DeiT at 13.5 ms (74 FPS). EfficientNetB3 and EfficientNetB7 process images at 

15.6 ms (64 FPS) and 19.4 ms (52 FPS), respectively, offering real-time performance with 

moderate latency. YOLOv11 requires 23.3 ms per image (43 FPS), while ResNet152 is the 

slowest, with 36.2 ms per image (28 FPS).  

b) 

a) 
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Chapter 6  

Discussion and Future Work 

This thesis outlines a systematic methodology for the use of DL models for the visual 

inspection of used parts in remanufacturing to assess their reusability. Based on the PCB 

visual inspection case, its challenges have been addressed through the solution approach 

of this thesis, and this approach has been implemented and evaluated. In the following, 

the insights gained are summarized and critically assessed in relation to the research 

deficits (Chapter 2) derived in this thesis. These findings also provide the basis for 

deriving possible future research activities. 

6.1. Suitability of Model Architectures for PCB 

Classification 

The results demonstrate that CNN-based models are highly suitable for the PCB burn 

classification task, with YOLOv11 and ResNet50 achieving the same performance metrics 

(precision, recall, and F1-score). These outcomes confirm the effectiveness of CNNs in 

capturing local texture, edge patterns, and discoloration cues, which are characteristic of 

burnt PCB surfaces. EfficientNetB3 further demonstrated that carefully scaled CNNs can 

balance accuracy and computational efficiency, making them well-suited to resource-

constrained environments. This is consistent with earlier studies in PCB defect detection. 

CNNs are widely used for PCB defect detection due to their end-to-end (from image input 

to final classification ) learning capability and superior accuracy in complex scenarios 

[71]. ResNet152 and EfficientNetB7 are supposed to perform better, as they achieved 

higher accuracy on ImageNet dataset described in section 2.4.1.  ; however, despite their 

increased parameter counts and theoretical representational capacity, they 

underperform relative to their smaller counterparts. 

While ResNet-50 offers phenomenal computational efficiency (3 ms IT, 328 FPS), 

YOLOv11 provides resilience through its multi-scale feature fusion, which is designed for 

object detection, and it can localize small and varied burnt marks better. In PCB 

applications, where defect scale and position vary significantly, this robustness is critical. 

Prior studies in PCB defect detection confirm that YOLO-based models (YOLOv11[158], 

CDI-YOLO [159], YOLO-MBBi [160], YOLO-HMC[161] etc.) are highly accurate (98–99% 
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mAP) and have real-time speed (up to 128 FPS) for PCBs visual inspection-based 

applications. Additionally, the majority of the DL models for automated visual inspection 

in manufacturing and maintenance studies are YOLO based models [162]. 

DeiT from ImageNet pretraining enabled the model to perform an overall 92% accuracy 

and perfect precision on goo_PCB. its reliance on global self-attention mechanisms made 

it less effective at focusing on the localized burnt regions. SSL models, including DINO-

ViT and DINO-CaiT, performed even worse, reflecting their dependency on large-scale 

unlabeled data that is not available in this study. Thus, under the current dataset 

conditions, CNNs are the most suitable architectures for burnt PCB classification. 

6.2. Performance Differences Across Architectures 

Beyond the conceptual suitability of training, performance metrics provide further 

evidence of differences between architectures and their strengths and weaknesses. 

The training and validation curves provide a comparative view of how CNNs and 

transformer-based architectures behave on the PCB classification task. All models 

reduce training loss close to zero, confirming their ability to fit the training set. However, 

the differences emerge when comparing validation loss and accuracy, which 

demonstrate generalization performance (section 4.6). 

Among the CNN-based models, YOLOv11 and EfficientNetB3 achieve consistently high 

top-1 accuracy above 97% while maintaining low and stable validation loss across 

epochs. This stability highlights their ability to balance learning and generalization 

effectively. EfficientNetB7 also performs strongly but with slightly more fluctuations, 

indicating that deeper EfficientNet variants add representational capacity at the expense 

of stability. ResNet50 and ResNet152 display less competitive performance; although 

training losses converge to zero, their validation losses are higher and more variable. 

ResNet50 does stabilize toward the later epochs, suggesting reasonable generalization, 

while ResNet152 suffers from persistent instability, highlighting the limitations of 

deeper residual networks without stronger regularization. 

For the transformer-based models, distinct behaviors are observed between supervised 

and self-supervised variants. DeiT-Base achieves high accuracy comparable to CNNs but 

its validation loss gradually increases before stabilizing at a higher level. This indicates 

that while DeiT effectively learns discriminative features, it is less stable than CNN 

counterparts and more sensitive to training dynamics. In contrast, the SSL variants 

(DINO) perform less favorably. DINO (ViT-S/16) shows the weakest results: although 
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training loss decreases steadily, validation loss rises continuously and accuracy plateaus 

at a much lower level, pointing to overfitting and limited generalization. DINO (CaIT-

xxs24) performs slightly better but still underperforms CNNs and DeiT, with moderate 

accuracy and unstable validation trends. 

Furthermore,  the evaluation on the test dataset further supports the observations 

drawn from training and validation behavior. CNN-based models, both YOLOv11 and 

ResNet50, consistently achieved the highest performance across almost all metrics. 

Their training and validation curves showed stable convergence with minimal 

overfitting, and their confusion matrices revealed a nearly perfect balance between 

burnt and good PCB classification. Recall values for the good_PCB class reached 1.0, 

indicating that these models perfectly classified good_PCBs, meaning that none of the 

reusable boards are misclassified as defective. For the burnt_PCB class, the values are 

0.96, very close to 1.0, resulting in weighted F1-scores of 0.98. This suggests that the 

models may occasionally overlook burnt PCBs. These results indicate that YOLOv11 and 

ResNet50 are not only accurate but also reliable under different operating conditions, 

making them well-suited for tasks where both sensitivity and specificity are critical.  

EfficientNetB3 achieves a strong balance with moderate inference speed, confirming that 

its compound scaling is well-matched to the dataset. In contrast, EfficientNetB7, although 

deeper, shows unstable validation loss and signs of class imbalance. Both achieve perfect 

recall for burnt PCBs but lower recall for good PCBs, indicating an over-sensitivity 

toward defects. This indicates that when they classify a PCB as burnt, the prediction is 

highly reliable, thereby reducing the risk of defective boards being mistakenly returned 

to production. Thus, EfficientNet variants prioritize certainty in defect detection, in 

contrast to YOLOv11 and ResNet50, which maximize recall of usable boards. Both 

perspectives are important: one minimizes unnecessary waste, while the other ensures 

stringent quality assurance. 

ResNet-152 underperforms among the CNN-based models. Although it reduces training 

loss to near zero, its validation loss fluctuates across epochs, reflecting over-

parameterization and overfitting rather than stable generalization. These outcomes 

confirm that greater model depth does not necessarily improve performance in data-

limited, domain-specific tasks.  

In literature, the YOLOv11 [158] achieves 99.2% mAP@0.5, while the transformer-based 

model, LPViT [163] reaches 99.08% accuracy, which is higher for PCB defect detection. 

These figures are not directly comparable for PCB classification models, since mAP 
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measures detection performance and accuracy measures classification, but they both 

reflect state-of-the-art performance levels. In this study, however, transformer-based 

model (DeiT) achieves less accuracy (92%) than CNN-based models. Transformers 

require extensive training data to effectively utilize their global attention mechanisms 

[164], whereas CNNs are inherently better suited to small, domain-specific datasets due 

to their strong inductive bias toward local feature extraction. DeiT-Base showed yet 

another pattern; it achieved a perfect recall of 1.0 for Burnt_PCB, ensuring that no 

defective boards are missed. These results suggest that both EfficientNet and DeiT-Base 

prioritize defect detection, whereas YOLOv11 and ResNet50 favor maximizing recovery 

of reusable boards. This is consistent with the literature in PCB defect detection, where 

CNNs dominate due to their efficiency and robustness on limited datasets [71].  

The SSL approaches, DINO-ViT and DINO-CaiT, are the weakest models in this evaluation. 

While both architectures misclassified a significant good PCBs as burnt, DINO-ViT 

performed slightly better than DINO-CaiT, achieving a weighted F1-score of 0.72 

compared to 0.54. The confusion matrices and t-SNE visualizations confirmed this 

difference: DINO-ViT produced somewhat clearer class clusters after fine-tuning, 

whereas DINO-CaiT embeddings showed heavy overlap between burnt and good 

samples. Despite this relative difference, both models remained unsuitable for PCB burn 

classification in practice. Their limited success is directly linked to the absence of large-

scale unlabeled PCB datasets for pretraining, which are essential for SSL methods to 

achieve generalizable representations [165]. The t-SNE visualizations of DINO 

embeddings further illustrate these limitations. While both CaIT and ViT backbones 

show partial separation between burnt and good boards, the clusters remain diffuse with 

considerable overlap. The ViT backbone exhibits somewhat clearer grouping of the 

Good_PCB class compared to CaIT, yet the Burnt_PCB features are still widely scattered. 

This dispersion confirms that, although DINO captures useful representations, its 

embeddings are not as discriminative as those learned by CNNs, which explains the 

weaker validation stability and test performance observed earlier . 

The F1–confidence and Precision–Recall curves provide additional context. YOLOv11, 

ResNet50, and EfficientNetB3 maintained consistently high F1-scores across confidence 

thresholds, reflecting their robustness across different decision boundaries. 

EfficientNetB7 also followed this trend but with more gradual declines. DeiT-Base 

achieved reasonably stable F1-scores at mid-level thresholds but showed weaker curves 

compared to the CNN-based models. ResNet152 declined steadily as confidence 

increased, further illustrating its unreliability. The DINO variants, particularly CaIT-
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xxs24, degraded sharply in both F1–confidence and PR curves, confirming their poor 

generalization in this task. Overall, the PR curves highlight the near-perfect balance of 

YOLOv11 and EfficientNet models, while ResNet50 remains competitive but less optimal. 

6.3.  Model Applicability for PCB Inspection in Circular 

Economy 

For CE applications, inspection models must minimize both false negatives and false 

positives. A false negative, where a burnt PCB is classified as good, risks sending 

defective components into remanufacturing. A false positive, where a good PCB is 

classified as burnt, reduces reuse rates and increases electronic waste. In this study, 

YOLOv11 and ResNet50 maintain balanced precision and recall values close to 0.98, 

meeting both objectives and enabling more reliable reuse decisions. By reducing 

classification error, CNN models such as YOLOv11 and ResNet50 significantly improve 

inspection reliability. This translates into higher value recovery, as more good PCBs are 

correctly reused and fewer are unnecessarily discarded, aligning with CE goals of 

resource efficiency and waste minimization. 

For integration into remanufacturing, model applicability is critical. The inspection stage 

requires consistent performance under varying conditions of lighting, board layout, and 

defect severity. Although YOLOv11 is the most promising candidate for deployment, 

industrial environments often demand near-zero tolerance for misclassification. To 

further improve reliability, a two-stage hybrid system can be considered: YOLOv11 is 

well-suited as a primary classifier due to its perfect precision on burnt PCBs, ensuring 

that unreusable PCBs are not mistakenly used. EfficientNetB3, with its perfect precision 

on good PCBs, can serve as a secondary verification model for good PCBs detected by 

YOLO models, ensuring that PCB is really a good one. Such a layered approach reduces 

both waste and product risk, increasing reuse rates while maintaining quality standards 

in remanufacturing lines. 

6.4. Implications for Deep Learning in Circular 

Economy Use Cases 

Manual PCB inspection has reported error rates of up to 30%  [166] and is highly 

dependent on operator expertise. Rule-based vision algorithms, while useful for simple 

patterns, struggle to adapt to new or varying defect types[167]. This study demonstrates 

that DL can significantly enhance decision-making in the reusability of used components 
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in reuse and remanufacturing processes.  DL models overcome these limitations by 

learning discriminative features directly from data, yet practical implications must be 

considered 

The primary challenges in used PCB visual inspection stem from the complexity of 

industrial environments and the variability of PCB samples. It is difficult to select an 

optimal model between model size, inference speed, and accuracy.  

• In practical industrial applications, image acquisition systems faced issues such 

as lighting conditions, shadows, and noise in complex environments. These 

issues result in poor-quality PCB images, particularly for small burnt marks. Such 

type of conditions make it difficult to capture focused and high-quality images, 

which are critical for accurate detection. Data scarcity remains the main 

bottleneck. Burnt PCB images are extremely difficult to obtain, requiring 

synthetic generation via DALL·E and Gemini. This highlights a structural 

challenge in CE inspection use cases: the data of interest (damaged parts) is rare 

by definition. 

• Scalability depends on inference efficiency. ResNet50’s extremely low inference 

time and YOLOv11’s robustness confirm that CNNs are deployable in real-time 

inspection. In real-world applications, the environmental conditions vary; hence, 

model robustness is very important to consider before implementation. 

• Transferability of SSL and Transformer models is currently limited in this 

domain, but future industrial data collaborations could unlock their potential. 

• The research underscores the importance of explainability in CE adoption. 

Stakeholders must trust that models are making reliable decisions. While CNNs 

achieve strong performance, integrating interpretability techniques such as 

Grad-CAM [168] for CNNs and attention rollout [169] for transformers would 

help visualize decision pathways and build confidence in industrial adoption. 

In broader CE contexts, the findings underline that AI-based inspection is not only a 

technical contribution but also an enabler of closed-loop resource flows, reducing 

reliance on manual inspection and improving throughput in remanufacturing plants. 

6.5. Limitations of the Work  

While the proposed AI-based classification method for visual inspection of burnt PCBs 

demonstrated strong performance, several limitations of this study must be 
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acknowledged. These limitations highlight areas where the present work falls short and 

provide directions for future improvement. 

The availability of real-world burnt PCB images are limited. As noted in section 2.3, most 

publicly available PCB datasets focus on defects such as missing components or soldering 

issues, while burnt or thermally damaged boards datasets are not available. To address 

this scarcity, synthetic data generation and augmentation pipelines are employed 

(section 4.2). Although this strategy improved class balance and model robustness, it 

may have introduced a domain gap between synthetic and real images. However, 

synthetic data cannot fully replicate the complexity of real industrial burn marks. 

Consequently, model generalizability to highly diverse environments remains uncertain, 

a challenge also noted in surveys on PCB defect detection[71]. 

Similarly, burnt PCB datasets could also be created using conventional image-editing 

tools such as Photoshop, where burn marks from burnt PCB are artificially merged onto 

good PCB images. While such approaches are useful for rapidly expanding datasets, they 

still lack the realism of actual thermal damage in PCBs. Artificially generated burn 

patterns may fail to capture the subtle texture changes, color gradients, and material 

deformations that occur under real burning and high-temperature failure conditions. As 

a result, models trained on such data may inadvertently learn to focus on non-burnt 

regions or background similarities rather than truly discriminative features of burns. 

This limitation is particularly pronounced in transformer-based architectures, which 

rely on global attention mechanisms. Instead of consistently attending to localized burn 

areas, these models may spread attention across visually similar areas of intact boards, 

thereby reducing their discriminative power. In contrast, CNN-based models are 

somewhat more robust to this issue because their local receptive fields inherently 

emphasize fine-grained defect patterns. Nonetheless, reliance on synthetic editing tools 

underscores a critical limitation: without sufficient real burnt PCB images, model 

interpretability and reliability in practical industrial inspection remain uncertain [170]. 

The models are trained and validated on a dataset with controlled backgrounds and 

lighting conditions (section 4.4). In practice, factory environments introduce noise, 

variable illumination, and occlusions, which may degrade performance. While the 

augmentation pipelines simulated some of these conditions, they cannot fully capture 

the variability of real inspection setups. This limitation is consistent with prior findings 

that models often underperform in deployment environments [170]. 
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The results showed that CNN-based architectures (YOLOv11, ResNet50, EfficientNetB3) 

consistently outperformed transformer-based and SSL approaches (DINO-ViT, DINO-

CaiT). One reason is the relatively small dataset size, which favors CNNs due to their 

strong inductive bias toward local features, while transformers typically require large-

scale data for stable convergence [164]. Additionally, larger architectures such as 

ResNet152 and EfficientNetB7 underperformed, suggesting that overparameterization 

reduced stability given the dataset size as described in section 3.5.1 [125]. 

6.6. Future Work 

Extending the current study, future work should pursue several directions to enhance 

the applicability and robustness of PCB classification models in circular manufacturing. 

Firstly, dataset expansion and diversification are essential. Current models are limited 

by the scarcity of labeled burnt-PCB. Generating or collecting varied data across different 

board designs, burn severity levels, lighting conditions, and manufacturing variations 

will improve model generalization. Researchers have proposed using semi-supervised 

learning with data-expanding strategies, combining small, labeled datasets with larger 

unlabeled ones to boost detection performance visually. This method improved mAP by 

4.7% on the DeepPCB dataset and could be adapted for classification tasks [171]. Also, 

techniques using generative models such as Stable Diffusion combined with ControlNet 

have demonstrated effective automatic generation of high-quality synthetic images 

[172]. 

As this study relied partly on images produced through generative AI tools and manual 

image-editing pipelines, it is important to validate whether these samples accurately 

capture the characteristics of real burn marks. Future work should explore embedding-

based evaluation methods, such as t-SNE [173] or UMAP [169] applied to deep feature 

representations, to compare distributions of real burnt PCBs against synthetic or edited 

counterparts. If synthetic samples cluster closely with real burns, this would support 

their reliability; if not, adjustments in the generation process would be necessary. Such 

validation frameworks could ensure that augmented or generated datasets truly 

enhance, rather than mislead, model training. 

Future research should incorporate explainability methods to better understand model 

decision-making. For CNN-based architectures, Class Activation Mapping (Grad-CAM) 

[168] can be applied to visualize which regions of the PCB image contribute most to a 

classification decision. For transformer-based models (e.g., ViT, CaiT), attention rollout 
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or transformer attribution techniques [174] can serve a similar purpose, revealing how 

self-attention layers focus on different parts of the board. These interpretability tools 

would help confirm whether models attend to true burnt regions or are distracted by 

irrelevant background features, thereby increasing trust in real-world deployment. 

Additionally, a layered hybrid inspection approach could combine the strengths of 

multiple models. For example, YOLOv11, noted for its near-perfect recall of burnt PCBs, 

can be used as a primary screener, while EfficientNetB3, with its balanced classification 

ability, could serve as a secondary verifier for borderline cases. Moreover, literature on 

PCB inspection demonstrates that ensemble methods, which merge outputs from 

multiple CNN models (like EfficientDet, Faster R-CNN, and YOLOv5), significantly 

improve detection accuracy and reliability compared to any single model [71].  

Moreover,  model architecture modifications inspired by detection literature can further 

improve performance (YOLOv11[158], CDI-YOLO [159], YOLO-MBBi [160], YOLO-

HMC[161] etc.) as their performance is mentioned in section  2.3. 

Finally, future research should investigate integrating DL based PCB classification with 

robotic inspection systems controlled by reinforcement learning. Recent work in 

remanufacturing demonstrates that RL agents can optimize view planning by 

dynamically adjusting camera poses to maximize defect coverage and classification 

confidence, even without prior knowledge of product geometry [82]. By combining PCB 

classification models studies in this thesis with RL-controlled robotic arms, inspection 

systems could adapt in real time to varying board layouts and defect types. This would 

enable fully automated inspection stations where models continuously improve through 

feedback loops, reducing manual supervision. Such integration would represent a 

significant step toward intelligent, closed-loop quality control systems in circular 

manufacturing. 

Future research should adopt an approach to systematically evaluate which factors most 

influence DL performance in PCB classification i.e. design of experiment. Key parameters 

to consider include augmentation types (rotation, blur, color, synthetic burns), model 

hyperparameters (learning rate, epochs, batch size, optimizer), and architectural 

variables (number of layers, activation functions, depth, width, etc) [175]. This 

structured methodology would provide a principled alternative to trial-and-error tuning, 

ensuring more efficient training and optimized performance under data-limited 

conditions. 
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Chapter 7 Conclusion 

This thesis advanced the role of AI in CE value addition by developing  AI-based CV Visual 

inspection method for used PCBs to support value recovery in remanufacturing. The first 

major objective is the creation of a dedicated dataset, combining collected images from 

literature, online sources, and manually verified results with synthetic images generated 

using tools like ChatGPT (DALL·E), Gemini. To ensure data uniqueness and quality, 

perceptual hashing and deep feature filtering using a pre-trained ResNet50 model are 

applied to remove any duplicates and augmented images.  To further expand and 

diversify the dataset, six augmentation pipelines, covering geometric variation, blur and 

noise, lighting changes, occlusion, background shifts, and compression of images, are 

applied to simulate real inspection conditions. 

For model training, state-of-the-art DL architectures are fine-tuned on this dataset using 

transfer learning. Pre-trained weights from ImageNet dataset are used to classify burnt 

and good PCBs for these DL models. CNN-based models, particularly YOLOv11 and 

ResNet50, achieved the best performance with 98% accuracy and perfect precision for 

burnt PCB. EfficientNetB3 and EfficientNetB7 follow with perfect precision for good 

PCBs; however, EfficientNetB3 achieved better overall accuracy 96% than 

EfficientNetB7.  DeiT reached competitive but lower performance (F1-score 0.92), while 

ResNet152 and DINO variants performed poorly, especially in detecting good PCBs, with 

weighted F1-scores below 0.78. These results confirm that for domain-specific and 

limited datasets, lightweight supervised CNN architectures remain more effective than 

deeper networks or Transformer-based self-supervised methods.  

The final recommendation is to deploy YOLOv11 as the primary classifier for PCB visual 

inspection, and EfficientNetB3 as a verification step for industrial deployment to 

minimize misclassifications. This solution offers high accuracy, robust generalization, 

and real-time inspection capability for automated systems.  

In conclusion, this AI-driven approach adds value to the CE by reducing dependence on 

manual inspection and following strict algorithm-based rules, increasing throughput, 

and enabling resource-efficient reuse decisions in remanufacturing. Future work should 

focus on expanding PCB datasets with greater diversity and exploring advanced DL 

architectures, explainable and trusworthy DL, integation of DL visual inspection with 

automated system and DOE  techiniques to select optimal hyperparameters.
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Appendix A  

State-of-the-Art Models’ Architectures 

The detailed architectures of the DL models described in Chapter 3 State-of-the-art are 

presented here for reference. 

A.1 ResNet Architecture 

 

Figure A.1: ResNet general architecture [125]  

 

A.2  EfficientNet Architecture 

 

Figure A.2: Architecture of EfficientNetB0, MBCConv, and SE Blocks [129] 
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A.3 DeiT Architecture 

 

Figure A.3: DeiT Architecture [135] 

A.4 YOLOv11 Architecture 

 

Figure A.4: YOLOv11 Architecture [176] 
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YOLOv11 architecture has SPPF, C2PSA, and C3k2 blocks. The architecture of these 

blocks is shown as below;  

 

Figure A.5: SPPF, C2PSA and C3K2 blocks architecture [177] 

 

 

A.5 Transformer Architecture 

 

Figure A.6: The Transformer  architecture [120] 
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A.6 ViT Architecture 

 

Figure A.7: Vision Transformer architecture [121] 

 

A.7 CaIT Architecture  

 

Figure A.8: CaiT Architecture [178] 
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A.8 DINO Architecture 

 

Figure A.9: Self-distillation (Student-Teacher framework) [179] 
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Appendix B  

State-of-the-Art DL Models’ Variants 

Each of the models described in Chapter 3 State of the Art, and their model 

variants/version detail tables are described here.  

B.1 ResNet Variants 

Table B.1: Layer Composition of Different ResNet Variants [126] 

 

 

B.2 EfficientNet Variants 

Table B.2: Comparison of EfficientNet Variants [180] 
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Figure B.1: Comparison of EfficientNet-based DL Models [181] 

 

B.3 DeiT Variants 

Table B.3:  Variants of DeiT architecture [132] 

 

 

B.4 YOLOv11 Variants 

Table B.4: YOLOv11 variants comparisons[141] 
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B.5 SSL Methods (with CNN and ViT Backbone) 

 Table B.5: SSL Models and their backbone  
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Appendix C  

Hardware Setup and Python Libraries 

C.1 Hardware & Software Environment 

Table C.1: Hardware and software specifications used for model training 

Component Specification 

CPU 
Intel(R) Core(TM) i9-14900KF, 24 cores, 32 Logical Processors, 
3.2 GHz 

RAM 128 GB (130,915 MB) 

GPU 2 × NVIDIA GeForce RTX 4080 SUPER (16 GB VRAM each) 

PyTorch + 
CUDA 

torch 2.7.1+cu128 (CUDA 12.8) 

Python 
Version 

3.12.7 

Operating 
System 

Microsoft Windows 11 Enterprise LTSC 

 

 

C.2 Python Libraries 

Table C.2: Python libraries with version 

Step Libraries (with Versions) 

Data 
Processing & 
Pre-Filtering 

numpy 1.26.4, pandas 2.2.3, Pillow 11.1.0, opencv-python 
4.12.0.88, ImageHash 4.3., tensorflow 2.19.0, keras 3.10.0, scikit-
learn 1.6.1, os (stdlib), shutil (stdlib) 

Data 
Augmentation 

albumentations 2.0.8, opencv-python 4.12.0.88, tqdm 4.67.1, 
torchvision 0.22.1+cu128, uuid (stdlib) 

Dataset 
Splitting & 
Loading 

torch 2.7.1+cu128, torchvision 0.22.1+cu128, scikit-learn 1.6.1, 
os (stdlib), random (stdlib), shutil (stdlib) 

Model Training 
torch 2.7.1+cu128, torchvision 0.22.1+cu128, timm 1.0.17, 
ultralytics 8.3.171, tqdm 4.67.1, time (stdlib), copy (stdlib), math 
(stdlib) 

Evaluation & 
Metrics 

scikit-learn 1.6.1, torchmetrics 1.7.4, matplotlib 3.10.0, seaborn 
0.13.2, pandas 2.2.3 

Visualization matplotlib 3.10.0, seaborn 0.13.2 

Logging & 
Export 

pandas 2.2.3, openpyxl 3.1.5, csv (stdlib), time (stdlib), os (stdlib) 
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Appendix D  

Python Codes 

D.1 Duplicate Image Filtering using Imageha 

 

Code 4.2.1: Duplicate Image Filtering using Imageha  

import os 
import shutil 
from PIL import Image 
import imagehash 
 
# Input and output folders 
image_folder = 'Roboflow All' 
output_folder = 'Roboflow All Removed Duplicate' 
 
# Create the output folder if it doesn't exist 
os.makedirs(output_folder, exist_ok=True) 
 
# Dictionary to store unique image hashes 
hash_dict = {} 
 
# Set a similarity threshold (lower = stricter) 
similarity_threshold = 2 
 
# Loop through all images 
for filename in os.listdir(image_folder): 
    if filename.lower().endswith(('.png', '.jpg', '.jpeg', '.bmp', '.gif')): 
        filepath = os.path.join(image_folder, filename) 
        try: 
            img = Image.open(filepath) 
            hash_value = imagehash.phash(img) 
 
            is_duplicate = False 
            for existing_hash in hash_dict: 
                distance = hash_value - existing_hash 
                if distance <= similarity_threshold: 
                    is_duplicate = True 
                    print(f"Skipping duplicate: {filename} (similar to {hash_dict[existing_hash]})") 
                    break 
            if not is_duplicate: 
                hash_dict[hash_value] = filename 
                shutil.copy(filepath, os.path.join(output_folder, filename)) 
                print(f"Saved unique: {filename}") 
        except Exception as e: 
            print(f"Error processing {filename}: {e}") 
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D.2 Duplicate Image Filtering using ResNeT50 

 

Code 4.2.2: Duplicate Image Filtering using ResNeT50  

import os 
import cv2 
import numpy as np 
import shutil 
from tensorflow.keras.applications.resnet50 import ResNet50, preprocess_input 
from tensorflow.keras.preprocessing import image 
from sklearn.metrics.pairwise import cosine_similarity 
 
# Load pre-trained ResNet50 model (without top layer) 
model = ResNet50(weights='imagenet', include_top=False, pooling='avg') 
 
# Set your folders (adjust names if needed) 
input_folder = 'Roboflow All_Removed Duplicate' 
output_folder = 'Roboflow Filtered Unique Image' 
 
# Create output folder if it doesn't exist 
os.makedirs(output_folder, exist_ok=True) 
 
# Helper: extract feature vector using ResNet 
def get_feature_vector(img_path): 
    try: 
        img = image.load_img(img_path, target_size=(224, 224)) 
        x = image.img_to_array(img) 
        x = np.expand_dims(x, axis=0) 
        x = preprocess_input(x) 
        features = model.predict(x, verbose=0) 
        return features.flatten() 
    except Exception as e: 
        print(f"Error loading {img_path}: {e}") 
        return None 
 
# Track saved image features 
image_vectors = [] 
 
# Set similarity threshold (0.95 = very similar) 
similarity_threshold = 0.95 
 
# Loop through all images 

for filename in os.listdir(input_folder): 
    if filename.lower().endswith(('.jpg', '.jpeg', '.png', '.bmp')): 
        filepath = os.path.join(input_folder, filename) 
        vec = get_feature_vector(filepath) 
 
        if vec is None: 
            continue 
        is_duplicate = False 
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D.3 Dataset Splitting for Model Training 

 

        # Compare with all previously saved vectors 
        for existing_vec in image_vectors: 
            similarity = cosine_similarity([vec], [existing_vec])[0][0] 
            if similarity >= similarity_threshold: 
                print(f"Skipped duplicate: {filename} (similarity: {similarity:.3f})") 
                is_duplicate = True 
                break 
         
        # If not duplicate, save it 
        if not is_dupliate: 
            image_vectors.append(vec) 
 
            # To ensure filename is safe 
            safe_filename = os.path.basename(filename) 
            dst_path = os.path.join(output_folder, safe_filename) 
 
            try: 
                shutil.copy(filepath, dst_path) 
                print(f"Saved unique: {safe_filename}") 
            except Exception as e: 
                print(f"Error copying {safe_filename}: {e}") 
 

 

 

 

Code 4.3.1: Dataset Splitting for Model Training   

import os 
import random 
import shutil 
 
src_folder = 'PCB_Burnt'       # Source folder with all images 
val_folder = 'val_PCB_Burnt'       # Folder to move 25% randomly selected images 
 
# Make sure val folder exists 
os.makedirs(val_folder, exist_ok=True) 
 
# List all images and randomly pick 100 images 
all_images = os.listdir(src_folder) 
# val_images = random.sample(all_images, 100) 
 
# Move selected images to val folder 
for img in val_images: 
    shutil.move(os.path.join(src_folder, img), os.path.join(val_folder, img)) 
 
print(f"Moved {len(val_images)} images to {val_folder}") 
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D.4 Image Augmentation 

 

Code 4.4.1: Image Augmentation   

import os, cv2, albumentations as A 
from tqdm import tqdm 
import uuid 
 
INPUT_FOLDER = "Final Dataset/train/Good_PCB" 
OUTPUT_FOLDER = "Final Dataset Aug/train/Good_PCB" 
NUM_AUGMENTED_COPIES = 5   
os.makedirs(OUTPUT_FOLDER, exist_ok=True) 
 
image_files = [f for f in os.listdir(INPUT_FOLDER) if f.lower().endswith(('.png', '.jpg', '.jpeg'))] 
 
NUM_IMAGES = len(image_files) 
NUM_PIPELINES = 7 
COPIES_PER_PIPELINE = {"aug1": NUM_AUGMENTED_COPIES,"aug2": 
NUM_AUGMENTED_COPIES,"aug3": NUM_AUGMENTED_COPIES,"aug4": 
NUM_AUGMENTED_COPIES,"aug5": NUM_AUGMENTED_COPIES,"aug6": 
NUM_AUGMENTED_COPIES,"aug7": 20} 
TOTAL_STEPS = NUM_IMAGES * sum(COPIES_PER_PIPELINE.values()) 
 
progress_bar = tqdm(total=TOTAL_STEPS, desc="Applying all augmentations") 
 
for filename in image_files: 
    image_path = os.path.join(INPUT_FOLDER, filename) 
    image = cv2.cvtColor(cv2.imread(image_path), cv2.COLOR_BGR2RGB) 
    h, w, _ = image.shape 
 
# Geometric transformation 
    transforms_1 = A.Compose([ 
 A.PadIfNeeded(min_height=int(h*1.7), min_width=int(w*1.7), 
border_mode=cv2.BORDER_CONSTANT, fill=[255,255,255], p=1.0),  
 A.Rotate(limit=[-90,90], border_mode=cv2.BORDER_CONSTANT, fill=[255,255,255], 
p=1),  
  A.HorizontalFlip(p=0.5),  
 A.VerticalFlip(p=0.5),  
 A.Transpose(p=0.5)]) 
  
# Blur and Noise Augmentation    
     transforms_2 = A.Compose([ 
 A.Blur(blur_limit=[3,7], p=0.5),  
 A.GaussianBlur(blur_limit=(3,7), p=0.5),  
 A.GaussNoise(std_range=(0.1,0.2), noise_scale_factor=1, p=0.5)]) 
  
# Colour Transformation 
transforms_3 = A.Compose([A.RandomBrightnessContrast(p=0.7),  
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A.HueSaturationValue(p=0.7), A.CLAHE(p=0.3),  A.RGBShift(p=0.7), A.Sharpen(alpha=(0.5,0.9), 
lightness=(0.5,1.0), method="kernel", kernel_size=5, sigma=1, p=0.5)]) 
 
# Occlusion & Shadows 
 transforms_4 = A.Compose([ 
 A.CoarseDropout(num_holes_range=(1,2), hole_height_range=(int(h*0.05), 
int(h*0.1)), hole_width_range=(int(w*0.05), int(w*0.1)), fill=225, p=0.5),  
 A.CoarseDropout(num_holes_range=(1,2), hole_height_range=(int(h*0.05), 
int(h*0.1)), hole_width_range=(int(w*0.05), int(w*0.1)), p=0.5),  
 A.RandomShadow(shadow_roi=[0,0,1,1], num_shadows_limit=[1,3], 
shadow_intensity_range=[0.2,0.4], p=1)])     
    
# Background Variation  
   transforms_5 = A.Compose([ 
 A.PadIfNeeded(min_height=int(h*1.3), min_width=int(w*1.3), position="random", 
border_mode=cv2.BORDER_CONSTANT, fill=[255,255,255], p=1.0)]) 
 
# Compression & Sensor downscaling  
    transforms_6 = A.Compose([ 
 A.ImageCompression(quality_range=(20,50), p=1),  
 A.Downscale(scale_range=(0.2,0.5), p=1)]) 
 
# Mixed Augmentation Pipeline 
    transforms_7 = A.Compose([ 
 A.PadIfNeeded(min_height=int(h*1.7), min_width=int(w*1.7), 
border_mode=cv2.BORDER_CONSTANT, fill=[255,255,255], p=1.0), 
 A.Rotate(limit=[-90,90], border_mode=cv2.BORDER_CONSTANT, fill=[255,255,255], 
p=1),  
 A.HorizontalFlip(p=0.5), A.Blur(blur_limit=[3,7], p=0.5),  
 A.GaussianBlur(blur_limit=(3,7), p=0.5),  
 A.GaussNoise(std_range=(0.1,0.2), noise_scale_factor=1, p=0.5),  
 A.RandomBrightnessContrast(p=0.5),  
 A.HueSaturationValue(p=0.5),  
 A.Sharpen(alpha=(0.2,0.5), lightness=(0.5,1.0), p=0.5),  
 A.RandomShadow(shadow_roi=[0,0,1,1], num_shadows_limit=[1,2], 
shadow_intensity_range=[0.2,0.3], p=0.5),  
 A.ImageCompression(quality_range=(20,50), p=0.5)]) 
 
    transformers = {"aug1": transforms_1,"aug2": transforms_2,"aug3": transforms_3,"aug4": 
transforms_4,"aug5": transforms_5,"aug6": transforms_6,"aug7": transforms_7} 
 
    for key, transform in transformers.items(): 
        for i in range(COPIES_PER_PIPELINE[key]): 
            augmented = transform(image=image) 
            aug_image_bgr = cv2.cvtColor(augmented["image"], cv2.COLOR_RGB2BGR) 
 
            unique_id = uuid.uuid4().hex[:8] 
            new_filename = f"{os.path.splitext(filename)[0]}_{key}_{i}_{unique_id}.jpg" 
            cv2.imwrite(os.path.join(OUTPUT_FOLDER, new_filename), aug_image_bgr) 
            progress_bar.update(1) 
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D.5 Model Training Yolov11 

 

 

 

 

 

 

 

 

Code 4.5.1: Model Training Overview  

!pip install ultralytics 
from ultralytics import YOLO 
 
# Load a YOLOv11 classification model 
model = YOLO('yolo11x-cls.pt') 
 
# Train the model 
results = model.train( 
    data='Training AI Model Aug', 
    epochs=50,          
    imgsz=224,         # imgsz 224 YOLOv11 standard for classification  
    batch=8,              
    workers=0          
) 
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D.6 Model Training ResNet50/ResNet152 

For ResNet152, the same training pipeline as that used for ResNet50 as below. The only 

difference lies in model initialization: resnet50 is replaced by resnet152, along with the 

corresponding pretrained weights (ResNet152_Weights.DEFAULT) 

 

Code 4.5.2: Model Training ResNet50/ResNet152  

import os 
import time 
import torch 
import torch.nn as nn 
import pandas as pd 
import matplotlib.pyplot as plt 
from collections import Counter 
from torchvision import datasets, transforms 
from torchvision.models import resnet50, ResNet50_Weights    # For Resnet152, replace it  
from torch.utils.data import DataLoader 
from sklearn.metrics import confusion_matrix, ConfusionMatrixDisplay, classification_report, 
accuracy_score 
from tqdm import tqdm 
from torch.optim.lr_scheduler import CosineAnnealingLR 
 
# imagenet normalization 
mean = [0.485, 0.456, 0.406] 
std  = [0.229, 0.224, 0.225] 
 
# transforms for train, val, test 
transform = { 'train': transforms.Compose([ transforms.Resize((128, 128)), 
transforms.ToTensor(), transforms.Normalize(mean=mean, std=std)]), 
 
    'val': transforms.Compose([ transforms.Resize((128, 128)), transforms.ToTensor(), 
transforms.Normalize(mean=mean, std=std)]), 
 
    'test': transforms.Compose( transforms.Resize((128, 128)), transforms.ToTensor(), 
transforms.Normalize(mean=mean, std=std)])} 
 
# load datasets 
data_dir = "Final Dataset Aug" 
image_datasets = { x: datasets.ImageFolder(os.path.join(data_dir, x), transform[x]) 
    for x in ['train', 'val', 'test']} 
dataloaders = { x: DataLoader(image_datasets[x], batch_size=32, shuffle=True, 
num_workers=8) 
    for x in ['train', 'val', 'test']} 
# class names 
class_names = image_datasets['train'].classes 
print("Classes:", class_names) 
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# count images 
for split in ['train', 'val', 'test']: 
    class_counts = Counter() 
    for _, label in image_datasets[split].imgs: 
        class_counts[class_names[label]] += 1 
    print(f"\n{split.upper()} Set Image Count:") 
    for cls in class_names: 
        print(f"  {cls}: {class_counts[cls]}") 
 
# load resnet50 and modify last layer  
weights = ResNet50_Weights.DEFAULT   # For Resnet152, replace it ResNet152 
model = resnet50(weights=weights)  # For Resnet152, replace it ResNet152 
model = resnet50(weights=weights) 
num_ftrs = model.fc.in_features 
model.fc = nn.Linear(num_ftrs, 2) 
model = model.to(device) 
 
# loss, optimizer, scheduler 
criterion = nn.CrossEntropyLoss() 
num_epochs = 50 
optimizer = torch.optim.AdamW(model.parameters(), lr=1e-4) 
scheduler = CosineAnnealingLR(optimizer, T_max=num_epochs, eta_min=1e-6) 
 
# top-k accuracy function 
def top_k_accuracy(output, target, k=1): 
    with torch.no_grad(): 
        _, pred = output.topk(k, 1, True, True) 
        pred = pred.t() 
        correct = pred.eq(target.view(1, -1).expand_as(pred)) 
        return correct[:k].reshape(-1).float().sum(0) / target.size(0) 
 
# training function 
def train_model(model, criterion, optimizer, scheduler=None, num_epochs=50): 
    records = [] 
    best_val_acc = -1.0 
    total_start = time.time() 
 
    for epoch in range(num_epochs): 
        epoch_start = time.time() 
        print(f"\nEpoch {epoch + 1}/{num_epochs}") 
 
        for phase in ['train', 'val']: 
            model.train() if phase == 'train' else model.eval() 
            running_loss = 0.0 
            running_corrects = 0 
            running_top2_sum = 0.0 
 
            for inputs, labels in tqdm(dataloaders[phase], desc=f"{phase.capitalize()} Phase", 
leave=False): 
                inputs = inputs.to(device) 
                labels = labels.to(device) 
                optimizer.zero_grad() 
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 with torch.set_grad_enabled(phase == 'train'): 
                    outputs = model(inputs) 
                    _, preds = torch.max(outputs, 1) 
 loss = criterion(outputs, labels) 
                    if phase == 'train': 
                        loss.backward() 
                        optimizer.step() 
 
                batch_size = inputs.size(0) 
                running_loss += loss.item() * batch_size 
                running_corrects += torch.sum(preds == labels.data).item() 
                running_top2_sum += (top_k_accuracy(outputs, labels, k=2).item() * batch_size) 
                epoch_loss = running_loss / len(image_datasets[phase]) 
                top1_acc = running_corrects / len(image_datasets[phase]) 
                top2_acc = running_top2_sum / len(image_datasets[phase]) 
 
            print(f"{phase.capitalize()} Loss: {epoch_loss:.4f} | Top-1 Acc: {top1_acc:.4f} | Top-2 
Acc: {top2_acc:.4f}") 
            records.append({ 'Epoch': epoch + 1, 'Phase': phase, 'Loss': epoch_loss, 'Top1_Accuracy': 
top1_acc, 'Top2_Accuracy': top2_acc, 'Learning_Rate': optimizer.param_groups[0]['lr']}) 
 
# save best on validation accuracy 
            if phase == 'val': 
                val_acc = float(top1_acc) 
                if val_acc > best_val_acc: 
                    best_val_acc = val_acc 
                    torch.save(model.state_dict(), best_model_path) 
                    print(f"Saved best model to {best_model_path} (val acc {best_val_acc:.4f})") 
 
        epoch_time = time.time() - epoch_start 
        print(f"Epoch Time: {epoch_time:.2f}s") 
        for i in [-1, -2]: 
            records[i]['Epoch_Time_sec'] = epoch_time 
 
        if torch.cuda.is_available(): 
            mem = torch.cuda.memory_allocated(device) / 1024**2 
            peak = torch.cuda.max_memory_allocated(device) / 1024**2 
            print(f"GPU Mem Used: {mem:.1f} MB | Peak: {peak:.1f} MB") 
            torch.cuda.reset_peak_memory_stats(device) 
 
        if scheduler is not None: 
            scheduler.step() 
    total_time = time.time() - total_start 
    print(f"\nTotal Training Time: {total_time:.2f}s ({total_time/60:.2f} min)") 
    df = pd.DataFrame(records) 
    df.to_excel("training_results.xlsx", index=False) 
    print("Saved: training_results.xlsx") 
    torch.save(model.state_dict(), "resnet50_pcb_model.pth") 
    print("Model saved as resnet50_pcb_model.pth") 
    return model, df 
 
# Train the model 
model, df = train_model(model, criterion, optimizer, scheduler=scheduler, 
num_epochs=num_epochs) 
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D.7 Model Training EfficientNetB3/EfficientNetB7 

For EfficientNetB7, the same training pipeline as that used for EfficientNetB7 is as 

follows. The only difference lies in model initialization: EfficientNetB3 is replaced by 

EfficientNetB7, along with the corresponding pretrained weights. 

 

Code 4.5.3: Model Training EfficientNetB3/EfficientB7  

import os 
import time 
import torch 
import torch.nn as nn 
import pandas as pd 
from tqdm import tqdm 
import torchvision.transforms as transforms 
from torchvision import datasets 
from torchvision.models import efficientnet_b3, EfficientNet_B3_Weights 
from torch.optim.lr_scheduler import CosineAnnealingLR 
 
# dataset paths 
data_dir = "Final Dataset Aug" 
 
# transforms (EfficientNet-B3 input size 300x300) 
transform = transforms.Compose([ 
    transforms.Resize((300, 300)), 
    transforms.ToTensor(), 
]) 
 
# datasets 
train_data = datasets.ImageFolder(root=os.path.join(data_dir, "train"), transform=transform) 
val_data   = datasets.ImageFolder(root=os.path.join(data_dir, "val"),   transform=transform) 
test_data  = datasets.ImageFolder(root=os.path.join(data_dir, "test"),  transform=transform) 
 
# dataloaders 
train_loader = torch.utils.data.DataLoader(train_data, batch_size=32, shuffle=True,  
num_workers=8) 
val_loader   = torch.utils.data.DataLoader(val_data,   batch_size=32, shuffle=False, 
num_workers=8) 
test_loader  = torch.utils.data.DataLoader(test_data,  batch_size=32, shuffle=False, 
num_workers=8) 
 
# model init with pretrained weights and replaceclssifier hed for 2 classes 
weights = EfficientNet_B3_Weights.IMAGENET1K_V1 
model = efficientnet_b3(weights=weights) 
num_ftrs = model.classifier[1].in_features 
model.classifier[1] = nn.Linear(num_ftrs, 2) 
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# training loop with cosine annealing lr 
def train_model(model, criterion, optimizer, num_epochs=50): 
    scheduler = CosineAnnealingLR(optimizer, T_max=num_epochs, eta_min=1e-6) 
    results = [] 
    best_val_acc = 0.0 
    best_model_wts = None 
    total_start = time.time() 
 
    for epoch in range(num_epochs): 
        epoch_start = time.time() 
        model.train() 
        running_loss, correct, total = 0, 0, 0 
 
        print(f"\nEpoch {epoch+1}/{num_epochs}") 
        train_loop = tqdm(train_loader, desc="Training", leave=False) 
 
        for images, labels in train_loop: 
            images, labels = images.to(device), labels.to(device) 
            outputs = model(images) 
            loss = criterion(outputs, labels) 
 
            optimizer.zero_grad() 
            loss.backward() 
            optimizer.step() 
 
            running_loss += loss.item() * images.size(0) 
            _, preds = torch.max(outputs, 1) 
            correct += (preds == labels).sum().item() 
            total += labels.size(0) 
 
            train_acc = correct / total 
            train_loss = running_loss / total 
            train_loop.set_postfix(loss=train_loss, acc=train_acc) 
 
        train_loss = running_loss / len(train_loader.dataset) 
        train_acc = correct / total 
         
        # validation 
        model.eval() 
        val_loss, val_correct, val_total = 0, 0, 0 
        val_loop = tqdm(val_loader, desc="Validation", leave=False) 
 
        with torch.no_grad(): 
            for images, labels in val_loop: 
                images, labels = images.to(device), labels.to(device) 
                outputs = model(images) 
                loss = criterion(outputs, labels) 
 
                val_loss += loss.item() * images.size(0) 
                _, preds = torch.max(outputs, 1) 
                val_correct += (preds == labels).sum().item() 
                val_total += labels.size(0) 
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                val_acc = val_correct / val_total 
                val_avg_loss = val_loss / val_total 
                val_loop.set_postfix(loss=val_avg_loss, acc=val_acc) 
 
        val_loss = val_loss / len(val_loader.dataset) 
        val_acc = val_correct / val_total 
        epoch_time = time.time() - epoch_start 
        current_lr = optimizer.param_groups[0]['lr'] 
 
        print(f"Epoch {epoch+1}/{num_epochs} | Train Loss: {train_loss:.4f} | Val Loss: 
{val_loss:.4f} | " f"Train Acc: {train_acc:.4f} | Val Acc: {val_acc:.4f} | LR: {current_lr:.8f}") 
 
        # keep best weights by val accuracy 
        if val_acc > best_val_acc: 
            best_val_acc = val_acc 
            best_model_wts = model.state_dict() 
 
        # record logs 
        results.append({ 
            "epoch": epoch + 1, 
            "train_loss": train_loss, 
            "val_loss": val_loss, 
            "train_acc": train_acc, 
            "val_acc": val_acc, 
            "learning_rate": current_lr, 
            "epoch_time_sec": epoch_time }) 
        scheduler.step() 
 
    total_time = time.time() - total_start 
    print(f"\nTotal Training Time: {total_time:.2f}s ({total_time / 60:.2f} min)") 
 
    # save last and best models 
    torch.save(model.state_dict(), "efficientnet_b3_last_model.pth") 
    print("Saved last model: efficientnet_b3_last_model.pth") 
    if best_model_wts: 
        torch.save(best_model_wts, "efficientnet_b3_best_model.pth") 
        print("Saved best model (by val acc): efficientnet_b3_best_model.pth") 
 
    # save training logs 
    df = pd.DataFrame(results) 
    df.to_excel("efficientnet_b3_training(LR)_results.xlsx", index=False) 
    print("Saved: efficientnet_b3_training(LR)_results.xlsx") 
 
    return model, df 
 
# loss and optimizer 
criterion = nn.CrossEntropyLoss() 
optimizer = torch.optim.AdamW(model.parameters(), lr=1e-4) 
 
# train 
model, results_df = train_model(model, criterion, optimizer, num_epochs=50) 
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D.8 Model Training DeiT 

 

Code 4.5.4: Model Training DeiT  

import os 
import torch 
import torch.nn as nn 
from torchvision import datasets, transforms 
from torch.utils.data import DataLoader 
import timm 
import pandas as pd 
import matplotlib.pyplot as plt 
from sklearn.metrics import confusion_matrix, classification_report, ConfusionMatrixDisplay 
import numpy as np 
from torch.optim.lr_scheduler import CosineAnnealingLR 
 
# transforms 
transform = transforms.Compose([ 
    transforms.Resize((224, 224)), 
    transforms.ToTensor(), 
    transforms.Normalize([0.5], [0.5])]) 
 
# data 
data_dir =  "Final Dataset Aug" 
train_dataset = datasets.ImageFolder(os.path.join(data_dir, 'train'), transform=transform) 
val_dataset   = datasets.ImageFolder(os.path.join(data_dir, 'val'),   transform=transform) 
test_dataset  = datasets.ImageFolder(os.path.join(data_dir, 'test'),  transform=transform) 
 
# loaders 
train_loader = DataLoader(train_dataset, batch_size=32, shuffle=True,  num_workers=8) 
val_loader   = DataLoader(val_dataset,   batch_size=32, shuffle=False, num_workers=8) 
test_loader  = DataLoader(test_dataset,  batch_size=32, shuffle=False, num_workers=8) 
 
# model 
model = timm.create_model('deit_base_patch16_224', pretrained=True) 
model.head = nn.Linear(model.head.in_features, 2) 
model.to(device) 
 
# epochs, loss, optimizer, scheduler 
num_epochs = 50 
criterion = nn.CrossEntropyLoss() 
optimizer = torch.optim.AdamW(model.parameters(), lr=1e-4) 
scheduler = CosineAnnealingLR(optimizer, T_max=num_epochs, eta_min=1e-6) 
  
# tracking 
train_losses, val_losses = [], [] 
train_accs, val_accs = [], [] 
lr_values = [] 
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# train 
from tqdm import tqdm 
 
for epoch in range(num_epochs): 
    model.train() 
    train_loss, correct_train, total_train = 0.0, 0, 0 
    train_loop = tqdm(train_loader, desc=f"Training Epoch {epoch+1}/{num_epochs}", 
leave=True) 
 
    for inputs, labels in train_loop: 
        inputs, labels = inputs.to(device), labels.to(device) 
        outputs = model(inputs) 
        loss = criterion(outputs, labels) 
 
        optimizer.zero_grad() 
        loss.backward() 
        optimizer.step() 
 
        train_loss += loss.item() * inputs.size(0) 
        _, preds = torch.max(outputs, 1) 
        correct_train += (preds == labels).sum().item() 
        total_train += labels.size(0) 
 
        train_loop.set_postfix(loss=loss.item()) 
 
    epoch_train_loss = train_loss / len(train_loader.dataset) 
    epoch_train_acc  = correct_train / total_train 
    train_losses.append(epoch_train_loss) 
    train_accs.append(epoch_train_acc) 
    
# validation 
    model.eval() 
    val_loss, correct_val, total_val = 0.0, 0, 0 
    val_loop = tqdm(val_loader, desc=f"Validation Epoch {epoch+1}/{num_epochs}", 
leave=True) 
 
    with torch.no_grad(): 
        for inputs, labels in val_loop: 
            inputs, labels = inputs.to(device), labels.to(device) 
            outputs = model(inputs) 
            loss = criterion(outputs, labels) 
 
            val_loss += loss.item() * inputs.size(0) 
            _, preds = torch.max(outputs, 1) 
            correct_val += (preds == labels).sum().item() 
            total_val += labels.size(0) 
 
            val_loop.set_postfix(loss=loss.item()) 
 
    epoch_val_loss = val_loss / len(val_loader.dataset) 
    epoch_val_acc  = correct_val / total_val 
    val_losses.append(epoch_val_loss) 
    val_accs.append(epoch_val_acc) 
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# lr track and print 
    current_lr = optimizer.param_groups[0]['lr'] 
    lr_values.append(current_lr) 
    print(f"Epoch {epoch+1}/{num_epochs}, Train Loss: {epoch_train_loss:.4f}, Val Loss: 
{epoch_val_loss:.4f}, " 
          f"Train Acc: {epoch_train_acc:.4f}, Val Acc: {epoch_val_acc:.4f}, LR: {current_lr:.8f}") 
 
    # checkpoints 
    if (epoch + 1) % 10 == 0: 
        model_path = f"DeiT_Base_Results/deit_epoch_{epoch+1}.pth" 
        torch.save(model.state_dict(), model_path) 
        print(f"Model saved at epoch {epoch+1}: {model_path}") 
 
    if (epoch + 1) == num_epochs: 
        final_model_path = "DeiT_Base_Results/deit_model_final.pth" 
        torch.save(model.state_dict(), final_model_path) 
        print(f"Final model saved at: {final_model_path}") 
 
    # step scheduler 
    scheduler.step() 
 
# save results to Excel 
results_df = pd.DataFrame({ 
    "Epoch": list(range(1, len(train_losses)+1)), 
    "Train_Loss": train_losses, 
    "Val_Loss": val_losses, 
    "Train_Acc": train_accs, 
    "Val_Acc": val_accs, 
    "Learning_Rate": lr_values 
}) 
 
# To ensure output dir exists before saving 
os.makedirs("Results", exist_ok=True) 
results_df.to_excel("Results/Deit_results.xlsx", index=False) 
print("Training log saved to: Results/Deit_results.xlsx") 
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D.9 Model Training DINO-ViT 

 

Code 4.5.5: Model Training DeiT  

import os 
import time 
import torch 
import torch.nn as nn 
import torch.nn.functional as F 
import torchvision.transforms as transforms 
from torchvision import datasets 
from torch.utils.data import DataLoader 
import timm 
from tqdm import tqdm 
import pandas as pd 
 
# DINO-style SSL pretraining  
# strong augmentations 
ssl_transform = transforms.Compose([ 
    transforms.RandomResizedCrop(224, scale=(0.4, 1.0)), 
    transforms.RandomHorizontalFlip(), 
    transforms.ColorJitter(0.4, 0.4, 0.4, 0.1), 
    transforms.RandomGrayscale(p=0.2), 
    transforms.ToTensor(), 
    transforms.Normalize((0.5,), (0.5,))]) 
 
# unlabeled training data path 
train_path_ssl = "Final Dataset Aug/train" 
ssl_dataset = datasets.ImageFolder(train_path_ssl, transform=ssl_transform) 
ssl_loader = DataLoader(ssl_dataset, batch_size=64, shuffle=True, num_workers=4, 
drop_last=True) 
 
# DINO projector head 
class DINOHead(nn.Module): 
    def __init__(self, in_dim, out_dim, nlayers=3, hidden_dim=2048, bottleneck_dim=256): 
        super().__init__() 
        layers = [] 
        for i in range(nlayers): 
            dim_in = in_dim if i == 0 else hidden_dim 
            dim_out = bottleneck_dim if i == nlayers - 1 else hidden_dim 
            layers.append(nn.Linear(dim_in, dim_out)) 
            if i < nlayers - 1: 
                layers.append(nn.BatchNorm1d(dim_out)) 
                layers.append(nn.GELU()) 
        self.mlp = nn.Sequential(*layers) 
        self.last_layer = nn.utils.weight_norm(nn.Linear(bottleneck_dim, out_dim, bias=False)) 
        self.last_layer.weight_g.data.fill_(1.0) 
        self.last_layer.weight_g.requires_grad = False 
 

 



96 

 

    def forward(self, x): 
        x = self.mlp(x) 
        x = F.normalize(x, dim=-1) 
        return self.last_layer(x) 
 
# DINO loss 
class DINOLoss(nn.Module): 
    def __init__(self, out_dim, teacher_temp=0.04, student_temp=0.1, 
center_momentum=0.9): 
        super().__init__() 
        self.teacher_temp = teacher_temp 
        self.student_temp = student_temp 
        self.center_momentum = center_momentum 
        self.register_buffer("center", torch.zeros(1, out_dim)) 
 
    def forward(self, student_output, teacher_output): 
        student_out = student_output / self.student_temp 
        centered_teacher = (teacher_output - self.center.to(teacher_output.device)) / 
self.teacher_temp 
        teacher_out = F.softmax(centered_teacher, dim=-1).detach() 
        loss = -torch.sum(teacher_out * F.log_softmax(student_out, dim=-1), dim=-1).mean() 
        self.center = self.center.to(teacher_output.device) 
        self.center = self.center * self.center_momentum + (1 - self.center_momentum) * 
teacher_output.mean(dim=0, keepdim=True) 
        return loss 
 
# DiNO Backbone (ViT) 
def get_vit_backbone(): 
    model = timm.create_model('vit_small_patch16_224', pretrained=True) 
    return model 
 
# DINO student-teacher wrapper 
class DINOModel(nn.Module): 
    def __init__(self, out_dim=65536): 
        super().__init__() 
        self.backbone = get_vit_backbone() 
        self.teacher_backbone = get_vit_backbone() 
        self.student_head = DINOHead(384, out_dim) 
        self.teacher_head = DINOHead(384, out_dim) 
        for p in self.teacher_backbone.parameters(): 
            p.requires_grad = False 
 
    def forward_student(self, x): 
        tokens = self.backbone.forward_features(x) 
        cls_token = tokens[:, 0] 
        return self.student_head(cls_token) 
 
    def forward_teacher(self, x): 
        with torch.no_grad(): 
            tokens = self.teacher_backbone.forward_features(x) 
            cls_token = tokens[:, 0] 
            return self.teacher_head(cls_token) 
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# init model, loss, optimizer 
model = DINOModel().to(device) 
criterion = DINOLoss(out_dim=65536) 
optimizer = torch.optim.AdamW(model.backbone.parameters(), lr=3e-4) 
epochs_ssl = 50 
 
# cosine-like momentum schedule for EMA teacher update 
momentum_schedule = lambda epoch: 0.996 + (1 - 0.996) * (1 + torch.cos(torch.tensor(epoch 
* 3.14 / epochs_ssl))) / 2 
 
# logs 
records = [] 
total_start_time = time.time() 
 
# train SSL 
for epoch in range(epochs_ssl): 
    epoch_start_time = time.time() 
    model.train() 
    running_loss = 0.0 
 
    for images, _ in tqdm(ssl_loader, desc=f"Epoch {epoch+1}/{epochs_ssl}"): 
        images = images.to(device) 
        student_out = model.forward_student(images) 
        teacher_out = model.forward_teacher(images) 
        loss = criterion(student_out, teacher_out) 
 
        optimizer.zero_grad() 
        loss.backward() 
        optimizer.step() 
 
        model.update_teacher(momentum_schedule(epoch).item()) 
        running_loss += loss.item() 
 
    avg_loss = running_loss / len(ssl_loader) 
    epoch_duration = time.time() - epoch_start_time 
    print(f"Epoch {epoch+1}/{epochs_ssl} | Loss: {avg_loss:.4f} | Time: {epoch_duration:.2f} 
sec") 
    records.append({'Epoch': epoch + 1, 'Loss': avg_loss, 'Time (sec)': epoch_duration}) 

 

total_duration = time.time() - total_start_time 
print(f"Total SSL Training Time: {total_duration/60:.2f} minutes") 
 
# save logs and SSL weights 
df_ssl = pd.DataFrame(records) 
df_ssl.to_excel("dino_training_log.xlsx", index=False) 
print("Training log saved as 'dino_training_log.xlsx'") 
torch.save(model.state_dict(), "dino_vit_small_ssl.pth") 
print("SSL weights saved as 'dino_vit_small_ssl.pth'") 
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# Supervised fine-tuning 
# classifier that reuses DINO backbone 
class DINOClassifier(nn.Module): 
    def __init__(self, dino_model, num_classes=2): 
        super().__init__() 
        self.backbone = dino_model.backbone 
        self.classifier = nn.Linear(384, num_classes) 
 
    def forward(self, x): 
        tokens = self.backbone.forward_features(x) 
        cls_token = tokens[:, 0] 
        return self.classifier(cls_token) 
 
# supervised transforms and loaders 
transform_train = transforms.Compose([ 
    transforms.Resize((224, 224)), 
    transforms.RandomHorizontalFlip(), 
    transforms.ToTensor(), 
    transforms.Normalize((0.5,), (0.5,))]) 
 
transform_eval = transforms.Compose([ 
    transforms.Resize((224, 224)), 
    transforms.ToTensor(), 
    transforms.Normalize((0.5,), (0.5,))]) 
 
train_path = "Final Dataset Aug/train" 
val_path   = "Final Dataset Aug/val" 
test_path  = "Final Dataset Aug/test" 
 
train_data = datasets.ImageFolder(train_path, transform=transform_train) 
val_data   = datasets.ImageFolder(val_path,   transform=transform_eval) 
test_data  = datasets.ImageFolder(test_path,  transform=transform_eval) 
 
train_loader = DataLoader(train_data, batch_size=32, shuffle=True,  num_workers=4) 
val_loader   = DataLoader(val_data,   batch_size=32, shuffle=False, num_workers=4) 
test_loader  = DataLoader(test_data,  batch_size=32, shuffle=False, num_workers=4) 
 
print("Classes:", train_data.classes) 
print("Train size:", len(train_data)) 
print("Val size:", len(val_data)) 
print("Test size:", len(test_data)) 
 

# build fine-tune model from saved SSL 
dino_model = DINOModel().to(device) 
dino_model.load_state_dict(torch.load("dino_vit_small_ssl.pth", map_location=device)) 
model_ft = DINOClassifier(dino_model).to(device) 
 
criterion = nn.CrossEntropyLoss() 
optimizer = torch.optim.AdamW(model_ft.parameters(), lr=1e-4) 
from torch.optim.lr_scheduler import CosineAnnealingLR 
num_epochs = 50 
scheduler = CosineAnnealingLR(optimizer, T_max=num_epochs, eta_min=1e-6) 
best_val_acc = 0.0 

history = [] 

start_time = time.time() 
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for epoch in range(num_epochs): 
    model_ft.train() 
    train_loss_sum, train_correct = 0.0, 0 
    for imgs, labels in tqdm(train_loader, desc=f"Epoch {epoch+1}/{num_epochs} - Training"): 
        imgs, labels = imgs.to(device), labels.to(device) 
        outputs = model_ft(imgs) 
        loss = criterion(outputs, labels) 
        optimizer.zero_grad() 
        loss.backward() 
        optimizer.step() 
        train_loss_sum += loss.item() * imgs.size(0) 
        train_correct += (outputs.argmax(1) == labels).sum().item() 
    train_loss_avg = train_loss_sum / len(train_data) 
    train_acc = train_correct / len(train_data) 
 
    model_ft.eval() 
    val_loss_sum, val_correct = 0.0, 0 
    with torch.no_grad(): 
        for imgs, labels in tqdm(val_loader, desc=f"Epoch {epoch+1}/{num_epochs} - Validation"): 
            imgs, labels = imgs.to(device), labels.to(device) 
            outputs = model_ft(imgs) 
            loss = criterion(outputs, labels) 
            val_loss_sum += loss.item() * imgs.size(0) 
            val_correct += (outputs.argmax(1) == labels).sum().item() 
    val_loss_avg = val_loss_sum / len(val_data) 
    val_acc = val_correct / len(val_data) 
 
    scheduler.step() 
    current_lr = optimizer.param_groups[0]['lr'] 
    print(f"Epoch {epoch+1}: Train_Loss={train_loss_avg:.4f}, Val_Loss={val_loss_avg:.4f}, " 
          f"Train_Acc={train_acc:.3f}, Val_Acc={val_acc:.3f}, LR={current_lr:.6f}") 
 
    if val_acc > best_val_acc: 
        best_val_acc = val_acc 
        torch.save(model_ft.state_dict(), "dino_finetuned_classifier_best.pth") 
        print("Best model saved.") 
 
    if (epoch + 1) % 10 == 0: 
        ckpt_path = f"dino_checkpoint_epoch{epoch+1}.pth" 
        torch.save(model_ft.state_dict(), ckpt_path) 
        print(f"Checkpoint saved: {ckpt_path}") 
 
    history.append({"Epoch": epoch + 1, "Train_Loss": train_loss_avg,"Val_Loss": val_loss_avg, 
"Train_Acc": train_acc,"Val_Acc": val_acc, "Learning_Rate": current_lr}) 
 
end_time = time.time() 
print(f"Total fine-tuning time: {(end_time - start_time)/60:.2f} minutes") 
 
torch.save(model_ft.state_dict(), "dino_finetuned_classifier_final.pth") 
print("Final fine-tuned model saved as: dino_finetuned_classifier_final.pth") 
 
df_ft = pd.DataFrame(history) 
df_ft.to_excel("dino_finetune_metrics.xlsx", index=False) 
print("Saved fine-tuning metrics to: dino_finetune_metrics.xlsx") 
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D.10 Model Training DINO-CaiT 

 

Code 4.5.6: Model Training DINO-CaiT  

import os, sys, time, math, copy, csv, numpy as np, torch, torch.nn as nn, torch.nn.functional 
as F, timm, pandas as pd 
from PIL import Image, ImageFilter, ImageOps 
from torch.utils.data import Dataset, DataLoader 
from torchvision.datasets import ImageFolder 
import torchvision.transforms.v2 as v2 
from tqdm import tqdm 
from torch.optim.lr_scheduler import CosineAnnealingLR 
 
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") 
print("Device:", device.type) 
 
# config 
cfg_ssl = dict(model='cait_xxs24_224', img=128, batch=32, epochs=25, lr=5e-4, wd=0.04, 
mom_t=0.996, 
               out_dim=2048, local=2, wup_t=0.04, tea_t=0.07, wup_t_ep=10, stu_t=0.1, 
center_m=0.9) 
cfg_ft  = dict(model='cait_xxs24_224', img=128, batch=32, classes=2, epochs=50, 
               train='../02. Dataset and Augmentation/01. Final Dataset Aug/train', 
               val  ='../02. Dataset and Augmentation/01. Final Dataset Aug/val', 
               ckpt_dir='checkpoints') 
 
# utils 
def set_seed(s=42): 
    torch.manual_seed(s); np.random.seed(s); torch.cuda.manual_seed_all(s) 
set_seed(42) 
 
class GaussianBlur: 
    def __init__(self, p=0.5, rmin=0.1, rmax=2.0): self.p, self.rmin, self.rmax = p, rmin, rmax 
    def __call__(self, img): 
        if torch.rand(1).item() <= self.p: img = 
img.filter(ImageFilter.GaussianBlur(radius=float(torch.empty(1).uniform_(self.rmin, 
self.rmax)))) 
        return img 
 
class Solarization: 
    def __init__(self, p=0.2): self.p = p 
    def __call__(self, img): return ImageOps.solarize(img) if torch.rand(1).item() <= self.p else 
img 
 
class DataAugmentationDINO: 
    def __init__(self, g_scale, l_scale, l_num, size=128): 
        norm = [0.485, 0.456, 0.406], [0.229, 0.224, 0.225] 
        cj = v2.ColorJitter(0.4, 0.4, 0.2, 0.1) 
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base = [v2.RandomHorizontalFlip(p=0.5), v2.RandomApply([cj], p=0.8), 
v2.RandomGrayscale(p=0.2)] 
        tail = [v2.ToImage(), v2.ToDtype(torch.float32, scale=True), v2.Normalize(*norm)] 
        self.g1 = v2.Compose([v2.RandomResizedCrop(size, scale=g_scale), *base, 
GaussianBlur(1.0), *tail]) 
        self.g2 = v2.Compose([v2.RandomResizedCrop(size, scale=g_scale), *base, 
GaussianBlur(0.1), Solarization(0.2), *tail]) 
        self.l  = v2.Compose([v2.RandomResizedCrop(size, scale=l_scale), *base, 
GaussianBlur(0.5), *tail]) 
        self.ln = l_num 
    def __call__(self, img): 
        crops = [self.g1(img), self.g2(img)] 
        crops.extend(self.l(img) for _ in range(self.ln)) 
        return crops 
 
class PCBUnlabeledDataset(Dataset): 
    def __init__(self, root, transform): self.ds, self.t = ImageFolder(root), transform 
    def __len__(self): return len(self.ds) 
    def __getitem__(self, i): 
        p, _ = self.ds.imgs[i] 
        try: return self.t(Image.open(p).convert("RGB")), 0 
        except Exception as e: 
            print("Bad image:", p, e) 
            dummy = torch.zeros(3, cfg_ssl['img'], cfg_ssl['img']) 
            return [dummy]*(2+cfg_ssl['local']), 0 
 
def cosine_sched(base, final, epochs, iters_per_ep, warmup_ep=0): 
    warm = warmup_ep * iters_per_ep 
    sched = list(np.linspace(0, base, warm)) if warm > 0 else [] 
    rest = epochs * iters_per_ep - len(sched) 
    if rest > 0: 
        t = np.arange(rest) 
        sched += list(final + 0.5*(base-final)*(1 + np.cos(np.pi*t/rest))) 
    return sched 
 
class DINOHead(nn.Module): 
    def __init__(self, in_dim, out_dim, use_bn=False, norm_last=True): 
        super().__init__() 
        h = in_dim 
        self.mlp = nn.Sequential(nn.Linear(in_dim, h), nn.GELU(), nn.BatchNorm1d(h) if use_bn 
else nn.Identity(), 
                                 nn.Linear(h, h), nn.GELU(), nn.BatchNorm1d(h) if use_bn else nn.Identity()) 
        self.last = nn.Linear(h, out_dim, bias=False); self.norm_last = norm_last 
    def forward(self, x): 
        x = self.mlp(x) 
        return F.linear(x, F.normalize(self.last.weight, dim=1)) if self.norm_last else self.last(x) 
 
class MultiCropWrapper(nn.Module): 
    def __init__(self, backbone, head): 
        super().__init__(); backbone.head = nn.Identity(); self.backbone, self.head = backbone, 
head 
    def forward(self, x): 
        if not isinstance(x, list): x = [x] 
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sizes = torch.tensor([inp.shape[-1] for inp in x]); idx = 
torch.cumsum(torch.unique_consecutive(sizes, return_counts=True)[1], 0) 
        out, s = [], 0 
        for e in idx: 
            y = self.backbone(torch.cat(x[s:e])) 
            y = y[0] if isinstance(y, tuple) else y 
            out.append(y); s = e 
        return self.head(torch.cat(out)) 
 
class DINOLoss(nn.Module): 
    def __init__(self, out_dim, ncrops, wup_t, tea_t, wup_ep, nepochs, stu_t, center_m): 
        super().__init__() 
        self.stu_t, self.ncrops, self.center_m = stu_t, ncrops, center_m 
        self.register_buffer("center", torch.zeros(1, out_dim)) 
        self.tea_ts = np.concatenate((np.linspace(wup_t, tea_t, wup_ep), np.ones(nepochs - 
wup_ep)*tea_t)) 
    def forward(self, s_out, t_out, epoch): 
        s = (s_out / self.stu_t).chunk(self.ncrops); t = F.softmax((t_out - 
self.center)/self.tea_ts[epoch], -1).detach().chunk(2) 
        loss, n = 0, 0 
        for i, q in enumerate(t): 
            for v in range(len(s)): 
                if v == i: continue 
                loss += torch.sum(-q*F.log_softmax(s[v], -1), -1).mean(); n += 1 
        self.update_center(t_out); return loss / n 
    @torch.no_grad() 
    def update_center(self, t_out): 
        self.center = self.center*self.center_m + (1-self.center_m)*t_out.mean(0, keepdim=True) 
 
# SSL data 
ssl_dir = "../02. Dataset and Augmentation/01. Final Dataset Aug/train" 
ssl_tf  = DataAugmentationDINO((0.4,1.0), (0.05,0.4), cfg_ssl['local'], cfg_ssl['img']) 
ssl_ds  = PCBUnlabeledDataset(ssl_dir, ssl_tf) 
ssl_dl  = DataLoader(ssl_ds, batch_size=cfg_ssl['batch'], shuffle=True, num_workers=0, 
pin_memory=True) 
print("SSL images:", len(ssl_ds)) 
 
# student and teacher 
student_backbone = timm.create_model(cfg_ssl['model'], pretrained=False, 
img_size=cfg_ssl['img'], num_classes=0) 
emb = student_backbone.embed_dim 
student = MultiCropWrapper(student_backbone, DINOHead(emb, cfg_ssl['out_dim'], 
use_bn=False, norm_last=True)).to(device) 
teacher = copy.deepcopy(student).to(device) 
for p in teacher.parameters(): p.requires_grad = False 
 
# loss and optimizer 
crit = DINOLoss(cfg_ssl['out_dim'], 2+cfg_ssl['local'], cfg_ssl['wup_t'], cfg_ssl['tea_t'], 
cfg_ssl['wup_t_ep'], 
                cfg_ssl['epochs'], cfg_ssl['stu_t'], cfg_ssl['center_m']).to(device) 
opt  = torch.optim.AdamW(student.parameters(), lr=cfg_ssl['lr']*cfg_ssl['batch']/256, 
weight_decay=cfg_ssl['wd']) 
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# logging and checkpoints 
os.makedirs(cfg_ft['ckpt_dir'], exist_ok=True) 
with open('training_log.csv', 'w', newline='') as f: csv.writer(f).writerow(['Epoch','Loss','LR']) 
 
print("Starting SSL pretraining...") 
for ep in range(cfg_ssl['epochs']): 
    student.train(); epoch_loss = 0 
    for i, (imgs, _) in enumerate(tqdm(ssl_dl, desc=f"SSL {ep+1}/{cfg_ssl['epochs']}")): 
        it = ep*niter + i 
        for g in opt.param_groups: 
            g['lr'] = lr_sched[it] 
            if i == 0: g['weight_decay'] = wd_sched[it] 
        imgs = [im.to(device, non_blocking=True) for im in imgs] 
        with torch.no_grad(): t_out = teacher(imgs[:2]) 
        s_out = student(imgs) 
        loss = crit(s_out, t_out, ep) 
        if not math.isfinite(loss.item()): print("Non finite loss"); sys.exit(1) 
        opt.zero_grad(); loss.backward(); torch.nn.utils.clip_grad_norm_(student.parameters(), 
3.0); opt.step() 
        m = mom_sched[it] 
        with torch.no_grad(): 
            for q, k in zip(student.parameters(), teacher.parameters()): k.data.mul_(m).add_((1-
m)*q.data) 
        epoch_loss += loss.item() 
    avg = epoch_loss / niter 
    with open('training_log.csv', 'a', newline='') as f: csv.writer(f).writerow([ep+1, avg, 
opt.param_groups[0]['lr']]) 
    print(f"SSL epoch {ep+1}: loss {avg:.4f}, lr {opt.param_groups[0]['lr']:.6f}") 
    if (ep+1) % 20 == 0 or ep+1 == cfg_ssl['epochs']: 
        torch.save({'student': student.state_dict(), 'teacher': teacher.state_dict(), 'epoch': ep+1, 
'cfg': cfg_ssl}, 
                   os.path.join(cfg_ft['ckpt_dir'], f'dino_checkpoint_{ep+1:04d}.pth')) 
 
# fine-tuning setup 
ckpt_path = os.path.join(cfg_ft['ckpt_dir'], f'dino_checkpoint_{cfg_ssl["epochs"]:04d}.pth') 
backbone = timm.create_model(cfg_ft['model'], pretrained=False, img_size=cfg_ft['img'], 
num_classes=0); backbone.head = nn.Identity() 
tmp_student = MultiCropWrapper(timm.create_model(cfg_ft['model'], pretrained=False, 
img_size=cfg_ft['img'], num_classes=0), 
                               DINOHead(emb, cfg_ssl['out_dim'], use_bn=False, norm_last=True)) 
tmp_student.load_state_dict(torch.load(ckpt_path, map_location=device)['student'], 
strict=False) 
backbone.load_state_dict(tmp_student.backbone.state_dict(), strict=False) 
 
class Classifier(nn.Module): 
    def __init__(self, bb, dim, ncls): super().__init__(); self.bb, self.fc = bb, nn.Linear(dim, ncls) 
    def forward(self, x): 
        y = self.bb(x); y = y[0] if isinstance(y, tuple) else y 
        return self.fc(y) 
model = Classifier(backbone, emb, cfg_ft['classes']).to(device) 
# transforms and loaders for fine-tuning 
def tf_train_val(sz): 
    tr = v2.Compose([v2.Resize((sz, sz)), v2.RandomHorizontalFlip(0.5), v2.ToImage(), 
v2.ToDtype(torch.float32, scale=True), 
                     v2.Normalize([0.485,0.456,0.406],[0.229,0.224,0.225])]) 
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    va = v2.Compose([v2.Resize((sz, sz)), v2.ToImage(), v2.ToDtype(torch.float32, scale=True), 
                     v2.Normalize([0.485,0.456,0.406],[0.229,0.224,0.225])]) 
 
return tr, va 
tr_tf, va_tf = tf_train_val(cfg_ft['img']) 
tr_ds, va_ds = ImageFolder(cfg_ft['train'], tr_tf), ImageFolder(cfg_ft['val'], va_tf) 
tr_dl = DataLoader(tr_ds, batch_size=cfg_ft['batch'], shuffle=True) 
va_dl = DataLoader(va_ds, batch_size=cfg_ft['batch'], shuffle=False) 
print("Classes:", tr_ds.classes, "Train:", len(tr_ds), "Val:", len(va_ds)) 
 
crit_ft = nn.CrossEntropyLoss() 
opt_ft  = torch.optim.AdamW(model.parameters(), lr=1e-4) 
sch     = CosineAnnealingLR(opt_ft, T_max=cfg_ft['epochs'], eta_min=1e-6) 
 
best_acc, hist = 0.0, [] 
for ep in range(cfg_ft['epochs']): 
    model.train(); tr_loss, tr_cor = 0.0, 0 
    for x, y in tqdm(tr_dl, desc=f"FT {ep+1}/{cfg_ft['epochs']} T"): 
        x, y = x.to(device), y.to(device) 
        out = model(x); loss = crit_ft(out, y) 
        opt_ft.zero_grad(); loss.backward(); opt_ft.step() 
        tr_loss += loss.item() * x.size(0); tr_cor += (out.argmax(1) == y).sum().item() 
    tr_loss /= len(tr_ds); tr_acc = tr_cor / len(tr_ds) 
 
    model.eval(); va_loss, va_cor = 0.0, 0 
    with torch.no_grad(): 
        for x, y in tqdm(va_dl, desc=f"FT {ep+1}/{cfg_ft['epochs']} V"): 
            x, y = x.to(device), y.to(device) 
            out = model(x); loss = crit_ft(out, y) 
            va_loss += loss.item() * x.size(0); va_cor += (out.argmax(1) == y).sum().item() 
    va_loss /= len(va_ds); va_acc = va_cor / len(va_ds) 
 
    sch.step(); lr = opt_ft.param_groups[0]['lr'] 
    print(f"FT epoch {ep+1}: train_loss {tr_loss:.4f} val_loss {va_loss:.4f} train_acc {tr_acc:.3f} 
val_acc {va_acc:.3f} lr {lr:.6f}") 
 
    if va_acc > best_acc: 
        best_acc = va_acc 
        torch.save(model.state_dict(), "finetuned_dino_classifier_best.pth") 
        print("Saved best finetuned model") 
 
    if (ep+1) % 10 == 0: 
        torch.save(model.state_dict(), f"checkpoint_epoch_{ep+1}.pth") 
 
    hist.append(dict(Epoch=ep+1, Train_Loss=tr_loss, Val_Loss=va_loss, Train_Acc=tr_acc, 
Val_Acc=va_acc, LR=lr)) 
 
torch.save(model.state_dict(), "finetuned_dino_classifier_final.pth") 
pd.DataFrame(hist).to_excel("finetune_dino_cait_logs.xlsx", index=False) 
print("Done. Final and logs saved.") 
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Appendix E   

State-of-the-Art Models’ Training 

Behaviour 

Training time taken to train the models as per the configuration mentioned in Table 4.3 

and hardware in Appendix Appendix C is shown below Figure E.1. 

 

Figure E.1: Training Time vs Models' Parameters 

 

The graphs Figure E.2 to Figure E.9 show the detailed training behavior of each model. 

 

Figure E.2: YOLOv11 Training loss, val losses, and val accuracy vs Epochs 
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Figure E.3: ResNet50 Training loss, val losses, and val accuracy vs Epochs 

 

 

 

Figure E.4: ResNet152 Training loss, val losses, and val accuracy vs Epochs 

 

 

 

Figure E.5: EfficientNetB3 Training loss, val losses, and val accuracy vs Epochs 
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Figure E.6: EfficientNetB7 Training loss, val losses, and val accuracy vs Epochs 

 

 

 

Figure E.7: DeiT-Base Training loss, val losses, and val accuracy vs Epochs 

 

 

 

Figure E.8: DINO (ViT-S/16) Training loss, val losses, and val accuracy vs Epochs 
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Figure E.9: DINO (CaIT-xx24) Training loss, val losses, and val accuracy vs Epochs 

 

For YOLOv11, the learning rate is automatically initialized and decays over time. For all 

other models, the same learning rate configuration (as described in section 4.5) is 

applied uniformly, with identical initialization, optimizer, and scheduling strategy. 

 

Figure E.10: Learning rate per epoch for all Models



109 

Bibliography 

[1] “The Global E-waste Monitor 2024 - E-Waste Monitor.” Accessed: Aug. 18, 2025. 

[Online]. Available: https://ewastemonitor.info/the-global-e-waste-monitor-

2024/ 

[2] “Plattform Industrie 4.0 - Artificial Intelligence for Circular Economy.” Accessed: 

Jul. 17, 2025. [Online]. Available: https://www.plattform-

i40.de/IP/Redaktion/EN/Use-Cases/536-circular-economy/article-circular-

economy.html 

[3] X. Sun, H. Yu, and W. D. Solvang, “Towards the smart and sustainable 

transformation of Reverse Logistics 4.0: a conceptualization and research 

agenda,” Environmental Science and Pollution Research, vol. 29, no. 46, pp. 69275–

69293, 2022, doi: 10.1007/s11356-022-22473-3. 

[4] S. Raut, N. U. I. Hossain, M. Kouhizadeh, and S. A. Fazio, “Application of Artificial 

Intelligence in Circular Economy: A Critical Analysis of the Current Research,” 

Sustainable Futures, p. 100784, 2025. 

[5] D. Parker, K. Riley, S. Robinson, H. Symington, J. Tewson, and O. Hollins, 

“Remanufacturing Market Study,” p. 67, 2015, Accessed: Jul. 17, 2025. [Online]. 

Available: https://cris.vtt.fi/en/publications/remanufacturing-market-study 

[6] M. A. Seitz and K. Peattie, “Meeting the closed-loop challenge: the case of 

remanufacturing,” Calif Manage Rev, vol. 46, no. 2, pp. 74–89, 2004. 

[7] M. Schlüter et al., “AI-enhanced identification, inspection and sorting for reverse 

logistics in remanufacturing,” Procedia CIRP, vol. 98, pp. 300–305, 2021. 

[8] T. Tolio et al., “Design, management and control of demanufacturing and 

remanufacturing systems,” CIRP Annals, vol. 66, no. 2, pp. 585–609, 2017. 

[9] M. Errington and S. J. Childe, “A business process model of inspection in 

remanufacturing,” Journal of Remanufacturing, vol. 3, no. 1, p. 7, 2013. 

[10] P. Lundmark, E. Sundin, and M. Björkman, “Industrial challenges within the 

remanufacturing system,” in 3rd swedish production symposium 2009, göteborg, 

2009, pp. 132–138. 



110 

[11] J. Kirchherr, D. Reike, and M. Hekkert, “Conceptualizing the circular economy: An 

analysis of 114 definitions,” Resour Conserv Recycl, vol. 127, pp. 221–232, 2017. 

[12] J. Kirchherr, N.-H. N. Yang, F. Schulze-Spüntrup, M. J. Heerink, and K. Hartley, 

“Conceptualizing the circular economy (revisited): an analysis of 221 definitions,” 

Resour Conserv Recycl, vol. 194, p. 107001, 2023. 

[13] A. Mayer, W. Haas, D. Wiedenhofer, F. Krausmann, P. Nuss, and G. A. Blengini, 

“Measuring Progress towards a Circular Economy: A Monitoring Framework for 

Economy-wide Material Loop Closing in the EU28,” J Ind Ecol, vol. 23, no. 1, pp. 

62–76, Feb. 2019, doi: 10.1111/JIEC.12809. 

[14] “Circular material use rate in Europe | European Environment Agency’s home 

page.” Accessed: Aug. 18, 2025. [Online]. Available: 

https://www.eea.europa.eu/en/analysis/indicators/circular-material-use-rate-

in-europe 

[15] “Circular economy flow diagrams.” Accessed: Aug. 17, 2025. [Online]. Available: 

https://ec.europa.eu/eurostat/cache/sankey/circular_economy/sankey.html?ge

os=EU27_2020&unit=G_T&materials=TOTAL&material=TOTAL&highlight=&no

deDisagg=0101000000&flowDisagg=false&language=EN# 

[16] S. Peng, J. Ping, T. Li, F. Wang, H. Zhang, and C. Liu, “Environmental benefits of 

remanufacturing mechanical products: a harmonized meta-analysis of 

comparative life cycle assessment studies,” J Environ Manage, vol. 306, p. 114479, 

2022. 

[17] S. Quinto, N. Law, C. Fletcher, J. Le, S. Antony Jose, and P. L. Menezes, “Exploring 

the E-Waste Crisis: Strategies for Sustainable Recycling and Circular Economy 

Integration,” Recycling, vol. 10, no. 2, p. 72, 2025. 

[18] S. Nazir and F. Doni, “Nexus of circular economy R0 to R9 principles in integrated 

reporting: Insights from a multiple case study comparison,” Bus Strategy Environ, 

vol. 33, no. 5, pp. 4058–4085, 2024. 

[19] “CATEGORISATION SYSTEM FOR THE CIRCULAR ECONOMY A sector-agnostic 

approach for activities contributing to the circular economy Independent Expert 

Report”, doi: 10.2777/172128. 

[20] J. Potting, M. P. Hekkert, E. Worrell, and A. Hanemaaijer, “Circular economy: 

measuring innovation in the product chain,” 2017. 



111 

[21] T. Tolio et al., “Design, management and control of demanufacturing and 

remanufacturing systems,” CIRP Annals, vol. 66, no. 2, pp. 585–609, 2017, doi: 

10.1016/j.cirp.2017.05.001. 

[22] M. MatsumotoDr. and W. IjomahDr., “Remanufacturing,” in Handbook of 

Sustainable Engineering, J. Kauffman and K.-M. Lee, Eds., Dordrecht: Springer 

Netherlands, 2013, pp. 389–408. doi: 10.1007/978-1-4020-8939-8_93. 

[23] British Standards Institute, “BS 8887-2:2009: Design for manufacture,assembly, 

disassembly and end-of-life processing (MADE),” Part 2: Terms and definitions, 

2009, Accessed: Aug. 18, 2025. [Online]. Available: 

https://bsol.bsigroup.com/en/Bsol-Item-Detail-

Page/?pid=000000000030182997 

[24] “Revising RIC001.2-2021: Specifications for the Process of Remanufacturing | 

Reman Standard.” Accessed: Aug. 18, 2025. [Online]. Available: 

https://remanstandard.us/revising-ric001-1-2016-specifications-for-the-

process-of-remanufacturing-2/ 

[25] “DIN SPEC 91472:2023-06, Remanufacturing (Reman)_- Qualitätsklassifizierung 

für zirkuläre Prozesse,” Jun. 2023, doi: 10.31030/3434252. 

[26] J. Zhao, Z. Xue, T. Li, J. Ping, and S. Peng, “An energy and time prediction model for 

remanufacturing process using graphical evaluation and review technique 

(GERT) with multivariant uncertainties,” Environmental Science and Pollution 

Research, pp. 1–13, 2021. 

[27] M. Andrew-Munot, R. N. Ibrahim, and E. Junaidi, “An overview of used-products 

remanufacturing,” Mechanical Engineering Research, vol. 5, no. 1, p. 12, 2015. 

[28] B. Salah et al., “A qualitative and quantitative analysis of remanufacturing 

research,” Processes, vol. 9, no. 10, p. 1766, 2021, doi: 10.3390/pr9101766. 

[29] H. N. W. Gunasekara, J. R. Gamage, and H. K. G. Punchihewa, “Remanufacture for 

sustainability: a comprehensive business model for automotive parts 

remanufacturing,” International Journal of Sustainable Engineering, vol. 14, no. 6, 

pp. 1386–1395, Nov. 2021, doi: 10.1080/19397038.2021.1990437. 

[30] D. P. José et al., “Remanufacturing in Developing Countries–A Case Study in 

Automotive Sector in Ecuador,” Procedia CIRP, vol. 116, pp. 534–539, 2023, doi: 

10.1016/j.procir.2023.02.090. 



112 

[31] H. Gunasekara, J. Gamage, and H. Punchihewa, “Remanufacture for Sustainability: 

A review of the barriers and the solutions to promote remanufacturing,” in 2018 

International Conference on Production and Operations Management Society 

(POMS), 2018, pp. 1–7. doi: 10.1109/POMS.2018.8629474. 

[32] H. Geist and F. Balle, “A circularity engineering focused empirical status quo 

analysis of automotive remanufacturing processes,” Resour Conserv Recycl, vol. 

201, p. 107328, 2024, doi: https://doi.org/10.1016/j.resconrec.2023.107328. 

[33] B. Salah et al., “A qualitative and quantitative analysis of remanufacturing 

research,” Processes, vol. 9, no. 10, p. 1766, 2021, doi: 10.3390/pr9101766. 

[34] A. Alkouh, K. A. Keddar, and S. Alatefi, “Remanufacturing of industrial electronics: 

A case study from the GCC region,” Electronics (Basel), vol. 12, no. 9, p. 1960, 2023. 

[35] E. Sundin, B. Backman, K. Johansen, M. Hochwallner, S. Landscheidt, and S. 

Shahbazi, “Automation Potential in the Remanufacturing of Electric and 

Electronic Equipment (EEE),” in SPS2020, IOS Press, 2020, pp. 285–296. doi: 

10.3233/ATDE200166. 

[36] F. Claudia, P. Emilio, and R. Chiara, “Scaling up a circular business model for 

remanufacturing: A case study of a sustainable value creation strategy for the 

white goods industry,” Bus Strategy Environ, vol. 33, no. 7, pp. 7479–7510, 2024. 

[37] E. Sundin, “An economical and technical analysis of a household appliance 

remanufacturing process,” in Proceedings Second International Symposium on 

Environmentally Conscious Design and Inverse Manufacturing, IEEE, 2001, pp. 

536–541. 

[38] M. Hoffmann, A. Krini, A. Mueller, and S. Knorn, “Remanufacturing production 

planning and control: Conceptual framework for requirement definition,” Journal 

of Remanufacturing, vol. 15, no. 1, pp. 97–126, 2025, doi: 10.1007/s13243-025-

00149-8. 

[39] “DIN 31051:2019-06, Grundlagen der Instandhaltung,” Jun. 2019, doi: 

10.31030/3048531. 

[40] R. T. Lund, “Remanufacturing: the experience of the United States and 

implications for developing countries,” 1984. 



113 

[41] C. Liu et al., “A review on remanufacturing assembly management and 

technology,” The International Journal of Advanced Manufacturing Technology, vol. 

105, no. 11, pp. 4797–4808, 2019, doi: 10.1007/s00170-019-04617-x. 

[42] R. Steinhilper, “Remanufacturing,” 1998. 

[43] M. MatsumotoDr. and W. IjomahDr., “Remanufacturing,” in Handbook of 

Sustainable Engineering, J. Kauffman and K.-M. Lee, Eds., Dordrecht: Springer 

Netherlands, 2013, pp. 389–408. doi: 10.1007/978-1-4020-8939-8_93. 

[44] “Bosch Core acceptance criteria for starter motors,” 2021. 

[45] M. Schlüter et al., “AI-enhanced Identification, Inspection and Sorting for Reverse 

Logistics in Remanufacturing,” Procedia CIRP, vol. 98, pp. 300–305, 2021, doi: 

https://doi.org/10.1016/j.procir.2021.01.107. 

[46] J. E. See, C. G. Drury, A. Speed, A. Williams, and N. Khalandi, “The role of visual 

inspection in the 21st century,” in Proceedings of the Human Factors and 

Ergonomics Society Annual Meeting, SAGE Publications Sage CA: Los Angeles, CA, 

2017, pp. 262–266. doi: 10.1177/154193121360154. 

[47] Z. Ren, F. Fang, N. Yan, and Y. Wu, “State of the Art in Defect Detection Based on 

Machine Vision,” International Journal of Precision Engineering and 

Manufacturing-Green Technology, vol. 9, no. 2, pp. 661–691, 2022, doi: 

10.1007/s40684-021-00343-6. 

[48] Z. Ren, F. Fang, N. Yan, and Y. Wu, “State of the Art in Defect Detection Based on 

Machine Vision,” International Journal of Precision Engineering and 

Manufacturing-Green Technology, vol. 9, no. 2, pp. 661–691, 2022, doi: 

10.1007/s40684-021-00343-6. 

[49] T. S. Newman and A. K. Jain, “A Survey of Automated Visual Inspection,” Computer 

Vision and Image Understanding, vol. 61, no. 2, pp. 231–262, 1995, doi: 

https://doi.org/10.1006/cviu.1995.1017. 

[50] S.-H. Huang and Y.-C. Pan, “Automated visual inspection in the semiconductor 

industry: A survey,” Comput Ind, vol. 66, pp. 1–10, 2015, doi: 

https://doi.org/10.1016/j.compind.2014.10.006. 

[51] C. E. Nwankpa, W. Ijomah, and A. Gachagan, “Design for automated inspection in 

remanufacturing: A discrete event simulation for process improvement,” Clean 



114 

Eng Technol, vol. 4, p. 100199, 2021, doi: 

https://doi.org/10.1016/j.clet.2021.100199. 

[52] C. Nwankpa, S. Eze, W. Ijomah, A. Gachagan, and S. Marshall, “Achieving 

remanufacturing inspection using deep learning,” Journal of Remanufacturing, vol. 

11, no. 2, pp. 89–105, 2021, doi: 10.1007/s13243-020-00093-9. 

[53] C. Pramerdorfer and M. Kampel, “A dataset for computer-vision-based PCB 

analysis,” in 2015 14th IAPR international conference on machine vision 

applications (MVA), IEEE, 2015, pp. 378–381. 

[54] C. Pramerdorfer, “Feature-based PCB Recognition for recycling purposes,” in 

International Conference on Computer Vision Theory and Applications, 2015, 2015. 

[55] W. Li, S. Neullens, M. Breier, M. Bosling, T. Pretz, and D. Merhof, “Text recognition 

for information retrieval in images of printed circuit boards,” in IECON 2014-40th 

Annual Conference of the IEEE Industrial Electronics Society, IEEE, 2014, pp. 3487–

3493. 

[56] G. Mahalingam, K. M. Gay, and K. Ricanek, “Pcb-metal: A pcb image dataset for 

advanced computer vision machine learning component analysis,” in 2019 16th 

International Conference on Machine Vision Applications (MVA), IEEE, 2019, pp. 1–

5. 

[57] W. Huang and P. Wei, “A PCB dataset for defects detection and classification,” arXiv 

preprint arXiv:1901.08204, 2019. 

[58] S. Tang, F. He, X. Huang, and J. Yang, “Online PCB defect detector on a new PCB 

defect dataset,” arXiv preprint arXiv:1902.06197, 2019. 

[59] H. Lu, D. Mehta, O. Paradis, N. Asadizanjani, M. Tehranipoor, and D. L. Woodard, 

“Fics-pcb: A multi-modal image dataset for automated printed circuit board visual 

inspection,” Cryptology ePrint Archive, 2020. 

[60] E. Arbash, M. Fuchs, B. Rasti, S. Lorenz, P. Ghamisi, and R. Gloaguen, “PCB-vision: 

A multiscene rgb-hyperspectral benchmark dataset of printed circuit boards,” 

IEEE Sens J, vol. 24, no. 10, pp. 17140–17158, 2024. 

[61] D. Candido de Oliveira, B. T. Nassu, and M. A. Wehrmeister, “Image-based 

detection of modifications in assembled pcbs with deep convolutional 

autoencoders,” Sensors, vol. 23, no. 3, p. 1353, 2023. 



115 

[62] J. Yang, Z. Liu, W. Du, and S. Zhang, “A PCB defect detector based on coordinate 

feature refinement,” IEEE Trans Instrum Meas, vol. 72, pp. 1–10, 2023. 

[63] M. Yuan, Y. Zhou, X. Ren, H. Zhi, J. Zhang, and H. Chen, “YOLO-HMC: An Improved 

Method for PCB Surface Defect Detection,” IEEE Trans Instrum Meas, vol. 73, pp. 

1–11, 2024, doi: 10.1109/TIM.2024.3351241. 

[64] B. Du, F. Wan, G. Lei, L. Xu, C. Xu, and Y. Xiong, “YOLO-MBBi: PCB surface defect 

detection method based on enhanced YOLOv5,” Electronics (Basel), vol. 12, no. 13, 

p. 2821, 2023. 

[65] Z. Xie and X. Zou, “MFAD-RTDETR: A multi-frequency aggregate diffusion feature 

flow composite model for printed circuit board defect detection,” Electronics 

(Basel), vol. 13, no. 17, p. 3557, 2024. 

[66] D. Li, C. Jiang, and T. Liang, “REDef-DETR: real-time and efficient DETR for 

industrial surface defect detection,” Meas Sci Technol, vol. 35, no. 10, p. 105411, 

2024. 

[67] J. Jin et al., “Defect detection of printed circuit boards using efficientdet,” in 2021 

ieee 6th international conference on signal and image processing (icsip), IEEE, 

2021, pp. 287–293. 

[68] H. Zhang, L. Jiang, and C. Li, “CS-ResNet: Cost-sensitive residual convolutional 

neural network for PCB cosmetic defect detection,” Expert Syst Appl, vol. 185, p. 

115673, 2021, doi: https://doi.org/10.1016/j.eswa.2021.115673. 

[69] J. Zhang, X. Shi, D. Qu, H. Xu, and Z. Chang, “PCB defect recognition by image 

analysis using deep convolutional neural network,” Journal of Electronic Testing, 

vol. 40, no. 5, pp. 657–667, 2024. 

[70] T. Luo et al., “A lightweight defect detection transformer for printed circuit boards 

combining image feature augmentation and refined cross-scale feature fusion,” 

Eng Appl Artif Intell, vol. 155, p. 111128, 2025, doi: 

https://doi.org/10.1016/j.engappai.2025.111128. 

[71] Z. He, Y. Lian, Y. Wang, and Z. Lu, “A comprehensive review of research on surface 

defect detection of PCBs based on machine vision,” Results in Engineering, vol. 27, 

p. 106437, 2025, doi: https://doi.org/10.1016/j.rineng.2025.106437. 



116 

[72] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet: A large-scale 

hierarchical image database,” in 2009 IEEE conference on computer vision and 

pattern recognition, Ieee, 2009, pp. 248–255. 

[73] “Models Supported by Ultralytics - Ultralytics YOLO Docs.” Accessed: Jul. 20, 2025. 

[Online]. Available: https://docs.ultralytics.com/models/ 

[74] “COCO - Common Objects in Context.” Accessed: Jul. 21, 2025. [Online]. Available: 

https://cocodataset.org/#home 

[75] “The History Of Neural Networks - Dataconomy.” Accessed: Aug. 20, 2025. 

[Online]. Available: https://dataconomy.com/2017/04/19/history-neural-

networks/ 

[76] A. Dosovitskiy et al., “An image is worth 16x16 words: Transformers for image 

recognition at scale,” arXiv preprint arXiv:2010.11929, 2020. 

[77] H. Touvron, M. Cord, M. Douze, F. Massa, A. Sablayrolles, and H. Jégou, “Training 

data-efficient image transformers & distillation through attention,” in 

International conference on machine learning, PMLR, 2021, pp. 10347–10357. 

[78] Z. Liu et al., “Swin transformer: Hierarchical vision transformer using shifted 

windows,” in Proceedings of the IEEE/CVF international conference on computer 

vision, 2021, pp. 10012–10022. 

[79] Z. Liu et al., “Swin transformer v2: Scaling up capacity and resolution,” in 

Proceedings of the IEEE/CVF conference on computer vision and pattern 

recognition, 2022, pp. 12009–12019. 

[80] H. Touvron, M. Cord, A. Sablayrolles, G. Synnaeve, and H. Jégou, “Going deeper with 

image transformers,” in Proceedings of the IEEE/CVF international conference on 

computer vision, 2021, pp. 32–42. 

[81] C. Shorten and T. M. Khoshgoftaar, “A survey on Image Data Augmentation for 

Deep Learning,” J Big Data, vol. 6, no. 1, p. 60, 2019, doi: 10.1186/s40537-019-

0197-0. 

[82] J.-P. Kaiser, Autonomous View Planning using Reinforcement Learning-Modeling 

and Application for Visual Inspection in Remanufacturing. 2025. 

[83] J. Nine, A. Shoukat, and W. Hardt, “Towards a Situation-Aware Cloud-Based 

Autonomous Driving System using Object Detection and Rule-Based Techniques,” 



117 

in 2024 International Symposium ELMAR, 2024, pp. 295–299. doi: 

10.1109/ELMAR62909.2024.10694231. 

[84] L. Perez and J. Wang, “The effectiveness of data augmentation in image 

classification using deep learning,” arXiv preprint arXiv:1712.04621, 2017. 

[85] P. Rajpurkar et al., “Chexnet: Radiologist-level pneumonia detection on chest x-

rays with deep learning,” arXiv preprint arXiv:1711.05225, 2017. 

[86] L. Zhang et al., “Generalizing Deep Learning for Medical Image Segmentation to 

Unseen Domains via Deep Stacked Transformation,” IEEE Trans Med Imaging, vol. 

39, no. 7, pp. 2531–2540, 2020, doi: 10.1109/TMI.2020.2973595. 

[87] E. D. Cubuk, B. Zoph, D. Mane, V. Vasudevan, and Q. V Le, “Autoaugment: Learning 

augmentation policies from data,” arXiv preprint arXiv:1805.09501, 2018. 

[88] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet: A large-scale 

hierarchical image database,” in 2009 IEEE conference on computer vision and 

pattern recognition, Ieee, 2009, pp. 248–255. 

[89] Z. Yang, F. Zhan, K. Liu, M. Xu, and S. Lu, “Ai-generated images as data source: The 

dawn of synthetic era,” arXiv preprint arXiv:2310.01830, 2023. 

[90] Y. Tian, L. Fan, P. Isola, H. Chang, and D. Krishnan, “Stablerep: Synthetic images 

from text-to-image models make strong visual representation learners,” Adv 

Neural Inf Process Syst, vol. 36, pp. 48382–48402, 2023. 

[91] S.-Y. Wang, O. Wang, A. Owens, R. Zhang, and A. A. Efros, “Detecting photoshopped 

faces by scripting photoshop,” in Proceedings of the IEEE/CVF International 

Conference on Computer Vision, 2019, pp. 10072–10081. 

[92] J. Kim, J. Ko, H. Choi, and H. Kim, “Printed circuit board defect detection using deep 

learning via a skip-connected convolutional autoencoder,” Sensors, vol. 21, no. 15, 

p. 4968, 2021. 

[93] J. Kaur, M. A. Khan, M. Iftikhar, M. Imran, and Q. E. U. Haq, “Machine learning 

techniques for 5G and beyond,” IEEE Access, vol. 9, pp. 23472–23488, 2021. 

[94] “7 stages of ML model development | Steps in machine learning life cycle | ML 

lifecycle guide | Lumenalta.” Accessed: Aug. 31, 2025. [Online]. Available: 

https://lumenalta.com/insights/7-stages-of-ml-model-development 



118 

[95] Y. Roh, G. Heo, and S. E. Whang, “A survey on data collection for machine learning: 

a big data-ai integration perspective,” IEEE Trans Knowl Data Eng, vol. 33, no. 4, 

pp. 1328–1347, 2019. 

[96] R. Szeliski, Computer vision: algorithms and applications. Springer Nature, 2022. 

[97] C. Shorten and T. M. Khoshgoftaar, “A survey on image data augmentation for deep 

learning,” J Big Data, vol. 6, no. 1, pp. 1–48, 2019. 

[98] J. Ma, C. Hu, P. Zhou, F. Jin, X. Wang, and H. Huang, “Review of image augmentation 

used in deep learning-based material microscopic image segmentation,” Applied 

Sciences, vol. 13, no. 11, p. 6478, 2023. 

[99] H. Bichri, A. Chergui, and M. Hain, “Investigating the Impact of Train/Test Split 

Ratio on the Performance of Pre-Trained Models with Custom Datasets.,” 

International Journal of Advanced Computer Science & Applications, vol. 15, no. 2, 

2024. 

[100] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521, no. 7553, pp. 

436–444, 2015. 

[101] R. C. Gonzalez, Digital image processing. Pearson education india, 2009. 

[102] “Understanding Forward and Backward Propagation in Neural Networks | 

LinkedIn.” Accessed: Aug. 12, 2025. [Online]. Available: 

https://www.linkedin.com/pulse/understanding-forward-backward-

propagation-neural-suresh-beekhani-e0rkf/ 

[103] K. Janocha and W. M. Czarnecki, “On loss functions for deep neural networks in 

classification,” arXiv preprint arXiv:1702.05659, 2017. 

[104] S. R. Dubey, S. K. Singh, and B. B. Chaudhuri, “Activation functions in deep learning: 

A comprehensive survey and benchmark,” Neurocomputing, vol. 503, pp. 92–108, 

2022. 

[105] “Optimizers in Deep Learning. What is an optimizer? | by Musstafa | Medium.” 

Accessed: Aug. 12, 2025. [Online]. Available: 

https://musstafa0804.medium.com/optimizers-in-deep-learning-7bf81fed78a0 

[106] D. Choi, C. J. Shallue, Z. Nado, J. Lee, C. J. Maddison, and G. E. Dahl, “On empirical 

comparisons of optimizers for deep learning,” arXiv preprint arXiv:1910.05446, 

2019. 



119 

[107] R.-Y. Sun, “Optimization for deep learning: An overview,” Journal of the Operations 

Research Society of China, vol. 8, no. 2, pp. 249–294, 2020. 

[108] “Optimization Rule in Deep Neural Networks - GeeksforGeeks.” Accessed: Aug. 12, 

2025. [Online]. Available: https://www.geeksforgeeks.org/deep-

learning/optimization-rule-in-deep-neural-networks/ 

[109] “What is the Difference Between ‘Epoch’ and ‘Iteration’ in Training Neural 

Networks - GeeksforGeeks.” Accessed: Aug. 31, 2025. [Online]. Available: 

https://www.geeksforgeeks.org/data-science/what-is-the-difference-between-

epoch-and-iteration-in-training-neural-networks/ 

[110] E. Lopez, J. Etxebarria-Elezgarai, J. M. Amigo, and A. Seifert, “The importance of 

choosing a proper validation strategy in predictive models. A tutorial with real 

examples,” Anal Chim Acta, vol. 1275, p. 341532, 2023, doi: 

https://doi.org/10.1016/j.aca.2023.341532. 

[111] Z. Han, C. Gao, J. Liu, J. Zhang, and S. Q. Zhang, “Parameter-efficient fine-tuning for 

large models: A comprehensive survey,” arXiv preprint arXiv:2403.14608, 2024. 

[112] “What is Fine-Tuning? - GeeksforGeeks.” Accessed: Aug. 12, 2025. [Online]. 

Available: https://www.geeksforgeeks.org/deep-learning/what-is-fine-tuning/ 

[113] “What is Fine-Tuning? - GeeksforGeeks.” Accessed: Aug. 30, 2025. [Online]. 

Available: https://www.geeksforgeeks.org/deep-learning/what-is-fine-tuning/ 

[114]

 “DL_for_practitioners/03_Evaluation_Datasets/03_1_Metrics_and_Evaluations.i

pynb.” Accessed: Aug. 02, 2025. [Online]. Available: 

https://github.com/hamkerlab/DL_for_practitioners/blob/main/03_Evaluation

_Datasets/03_1_Metrics_and_Evaluations.ipynb 

[115] S. Arora, W. Hu, and P. K. Kothari, “An analysis of the t-sne algorithm for data 

visualization,” in Conference on learning theory, PMLR, 2018, pp. 1455–1462. 

[116] “Decoding CNNs: A Beginner’s Guide to Convolutional Neural Networks and their 

Applications | by Ravjot Singh | Medium.” Accessed: Jul. 16, 2025. [Online]. 

Available: https://ravjot03.medium.com/decoding-cnns-a-beginners-guide-to-

convolutional-neural-networks-and-their-applications-1a8806cbf536 



120 

[117] B. P. Sowmya and M. C. Supriya, “Convolutional neural network (cnn) fundamental 

operational survey,” in International Conference on Innovative Computing and 

Cutting-edge Technologies, Springer, 2020, pp. 245–258. 

[118] “CS231n Deep Learning for Computer Vision.” Accessed: Jul. 16, 2025. [Online]. 

Available: https://cs231n.github.io/convolutional-networks/ 

[119] “What is Fully Connected Layer in Deep Learning? - GeeksforGeeks.” Accessed: Jul. 

16, 2025. [Online]. Available: https://www.geeksforgeeks.org/deep-

learning/what-is-fully-connected-layer-in-deep-learning/ 

[120] A. Vaswani et al., “Attention is all you need,” Adv Neural Inf Process Syst, vol. 30, 

2017. 

[121] A. Dosovitskiy et al., “An image is worth 16x16 words: Transformers for image 

recognition at scale,” arXiv preprint arXiv:2010.11929, 2020. 

[122] S. Khan, M. Naseer, M. Hayat, S. W. Zamir, F. S. Khan, and M. Shah, “Transformers 

in vision: A survey,” ACM computing surveys (CSUR), vol. 54, no. 10s, pp. 1–41, 

2022. 

[123] T. Chen, S. Kornblith, M. Norouzi, and G. Hinton, “A simple framework for 

contrastive learning of visual representations,” in International conference on 

machine learning, PmLR, 2020, pp. 1597–1607. 

[124] M. Caron et al., “Emerging properties in self-supervised vision transformers,” in 

Proceedings of the IEEE/CVF international conference on computer vision, 2021, pp. 

9650–9660. 

[125] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” 

in Proceedings of the IEEE conference on computer vision and pattern recognition, 

2016, pp. 770–778. 

[126] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” 

in Proceedings of the IEEE conference on computer vision and pattern recognition, 

2016, pp. 770–778. 

[127] “How do bottleneck architectures work in neural networks? - Cross Validated.” 

Accessed: Aug. 13, 2025. [Online]. Available: 

https://stats.stackexchange.com/questions/205150/how-do-bottleneck-

architectures-work-in-neural-networks 



121 

[128] M. Tan and Q. Le, “Efficientnet: Rethinking model scaling for convolutional neural 

networks,” in International conference on machine learning, PMLR, 2019, pp. 

6105–6114. 

[129] W. Zhou, J. Ji, Y. Jiang, J. Wang, Q. Qi, and Y. Yi, “EARDS: EfficientNet and attention-

based residual depth-wise separable convolution for joint OD and OC 

segmentation,” Front Neurosci, vol. 17, p. 1139181, 2023. 

[130] “ImageNet.” Accessed: Aug. 14, 2025. [Online]. Available: https://www.image-

net.org/ 

[131] C. Sun, A. Shrivastava, S. Singh, and A. Gupta, “Revisiting unreasonable 

effectiveness of data in deep learning era,” in Proceedings of the IEEE international 

conference on computer vision, 2017, pp. 843–852. 

[132] H. Touvron, M. Cord, M. Douze, F. Massa, A. Sablayrolles, and H. Jégou, “Training 

data-efficient image transformers & distillation through attention,” in 

International conference on machine learning, PMLR, 2021, pp. 10347–10357. 

[133] “Review: Data Efficient Image Transformer (DeiT) | by Sik-Ho Tsang | Medium.” 

Accessed: Sep. 01, 2025. [Online]. Available: https://sh-

tsang.medium.com/review-deit-data-efficient-image-transformer-

b5b6ee5357d0 

[134] G. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge in a neural network,” 

arXiv preprint arXiv:1503.02531, 2015. 

[135] “DeiT: Training data-efficient image transformers & distillation through 

attention.” Accessed: Aug. 16, 2025. [Online]. Available: https://hyoseok-

personality.tistory.com/entry/Paper-Review-DeiT-Training-data-efficient-

image-transformers-distillation-through-attention 

[136] “DINO: Emerging Properties in Self-Supervised Vision Transformers | dino – 

Weights & Biases.” Accessed: Sep. 01, 2025. [Online]. Available: 

https://wandb.ai/self-supervised-learning/dino/reports/DINO-Emerging-

Properties-in-Self-Supervised-Vision-Transformers--VmlldzoxMzM2MTAz 

[137] “Tutorial 6.3: Self-distillation with no labels (DINO).” Accessed: Sep. 01, 2025. 

[Online]. Available: 

https://github.com/hamkerlab/DL_for_practitioners/blob/main/06_3_SSL_DiN

O/06_3_SSL_DINO.ipynb 



122 

[138] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look once: Unified, 

real-time object detection,” in Proceedings of the IEEE conference on computer 

vision and pattern recognition, 2016, pp. 779–788. 

[139] “Real-time Object Detection with YOLO, YOLOv2 and now YOLOv3 | by Jonathan 

Hui | Medium.” Accessed: Jul. 20, 2025. [Online]. Available: https://jonathan-

hui.medium.com/real-time-object-detection-with-yolo-yolov2-28b1b93e2088 

[140] “Know your Neural Network architecture more by understanding these terms | 

by Megha Shroff | Medium.” Accessed: Jul. 20, 2025. [Online]. Available: 

https://medium.com/@shroffmegha6695/know-your-neural-network-

architecture-more-by-understanding-these-terms-67faf4ea0efb 

[141] “Ultralytics YOLO11 - Ultralytics YOLO Docs.” Accessed: Jul. 21, 2025. [Online]. 

Available: https://docs.ultralytics.com/models/yolo11/ 

[142] “Explore Ultralytics YOLOv8 - Ultralytics YOLO Docs.” Accessed: Jul. 21, 2025. 

[Online]. Available: https://docs.ultralytics.com/models/yolov8/ 

[143] R. Khanam and M. Hussain, “Yolov11: An overview of the key architectural 

enhancements. arXiv 2024,” arXiv preprint arXiv:2410.17725, 2024. 

[144] “Mastering All YOLO Models from YOLOv1 to YOLOv12.” Accessed: Jul. 21, 2025. 

[Online]. Available: https://learnopencv.com/mastering-all-yolo-models/ 

[145] J. Huang, K. Wang, Y. Hou, and J. Wang, “LW-YOLO11: a lightweight arbitrary-

oriented ship detection method based on improved YOLO11,” Sensors, vol. 25, no. 

1, p. 65, 2024. 

[146] “Datasets Overview - Ultralytics YOLO Docs.” Accessed: Aug. 28, 2025. [Online]. 

Available: https://docs.ultralytics.com/datasets/ 

[147] “Roboflow Universe: Computer Vision Datasets.” Accessed: Aug. 28, 2025. 

[Online]. Available: https://universe.roboflow.com/ 

[148] “Flickr | The best place to be a photographer online.” Accessed: Aug. 28, 2025. 

[Online]. Available: https://www.flickr.com/ 

[149] “How to Create a Duplicate Image Detection System | by Matt Podolak | TDS 

Archive | Medium.” Accessed: Aug. 28, 2025. [Online]. Available: 

https://medium.com/data-science/how-to-create-a-duplicate-image-detection-

system-a30f1b68a2e3 



123 

[150] “Duplicate image detection with perceptual hashing in Python.” Accessed: Aug. 28, 

2025. [Online]. Available: https://benhoyt.com/writings/duplicate-image-

detection/ 

[151] Y. Jakhar and M. D. Borah, “Effective near-duplicate image detection using 

perceptual hashing and deep learning,” Inf Process Manag, vol. 62, no. 4, p. 104086, 

2025. 

[152] M. H. Mohiuddin and L. Tamilselvan, “IDedupNet: A MobileNetV3-Based Deep 

Learning Framework for Efficient Image Deduplication in Cloud Computing 

Environments,” Informatica, vol. 49, no. 13, 2025. 

[153] K. Abhishek, A. Jain, and G. Hamarneh, “Investigating the quality of dermamnist 

and fitzpatrick17k dermatological image datasets,” Sci Data, vol. 12, no. 1, p. 196, 

2025. 

[154] H. Bichri, A. Chergui, and M. Hain, “Investigating the Impact of Train/Test Split 

Ratio on the Performance of Pre-Trained Models with Custom Datasets.,” 

International Journal of Advanced Computer Science & Applications, vol. 15, no. 2, 

2024. 

[155] “Albumentations: fast and flexible image augmentations.” Accessed: Aug. 28, 

2025. [Online]. Available: https://albumentations.ai/ 

[156] “Models and pre-trained weights — Torchvision 0.23 documentation.” Accessed: 

Sep. 03, 2025. [Online]. Available: 

https://docs.pytorch.org/vision/stable/models.html 

[157] Z. He, Y. Lian, Y. Wang, and Z. Lu, “A comprehensive review of research on surface 

defect detection of PCBs based on machine vision,” Results in Engineering, vol. 27, 

p. 106437, 2025, doi: https://doi.org/10.1016/j.rineng.2025.106437. 

[158] M. Dayıoğlu, A. K. Eyüboğlu, and R. Unal, “Performance Analysis of YOLO11 Models 

in PCB Defect Detection Tasks,” Kuzey Ege Teknik Bilimler ve Teknoloji Dergisi, vol. 

2, no. 1, pp. 33–50, 2025. 

[159] G. Xiao, S. Hou, and H. Zhou, “PCB defect detection algorithm based on CDI-YOLO,” 

Sci Rep, vol. 14, no. 1, p. 7351, 2024, doi: 10.1038/s41598-024-57491-3. 

[160] B. Du, F. Wan, G. Lei, L. Xu, C. Xu, and Y. Xiong, “YOLO-MBBi: PCB surface defect 

detection method based on enhanced YOLOv5,” Electronics (Basel), vol. 12, no. 13, 

p. 2821, 2023. 



124 

[161] M. Yuan, Y. Zhou, X. Ren, H. Zhi, J. Zhang, and H. Chen, “YOLO-HMC: An Improved 

Method for PCB Surface Defect Detection,” IEEE Trans Instrum Meas, vol. 73, pp. 

1–11, 2024, doi: 10.1109/TIM.2024.3351241. 

[162] N. Hütten, M. Alves Gomes, F. Hölken, K. Andricevic, R. Meyes, and T. Meisen, “Deep 

learning for automated visual inspection in manufacturing and maintenance: a 

survey of open-access papers,” Applied System Innovation, vol. 7, no. 1, p. 11, 2024. 

[163] K. An and Y. Zhang, “LPViT: a transformer based model for PCB image 

classification and defect detection,” Ieee Access, vol. 10, pp. 42542–42553, 2022. 

[164] A. Dosovitskiy et al., “An image is worth 16x16 words: Transformers for image 

recognition at scale,” arXiv preprint arXiv:2010.11929, 2020. 

[165] A. El-Nouby, G. Izacard, H. Touvron, I. Laptev, H. Jegou, and E. Grave, “Are large-

scale datasets necessary for self-supervised pre-training?,” arXiv preprint 

arXiv:2112.10740, 2021. 

[166] J. E. See, C. G. Drury, A. Speed, A. Williams, and N. Khalandi, “The role of visual 

inspection in the 21st century,” in Proceedings of the Human Factors and 

Ergonomics Society Annual Meeting, SAGE Publications Sage CA: Los Angeles, CA, 

2017, pp. 262–266. doi: 10.1177/154193121360154. 

[167] C. E. Nwankpa, W. Ijomah, and A. Gachagan, “Design for automated inspection in 

remanufacturing: A discrete event simulation for process improvement,” Clean 

Eng Technol, vol. 4, p. 100199, 2021, doi: 

https://doi.org/10.1016/j.clet.2021.100199. 

[168] R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, and D. Batra, “Grad-

cam: Visual explanations from deep networks via gradient-based localization,” in 

Proceedings of the IEEE international conference on computer vision, 2017, pp. 

618–626. 

[169] L. McInnes, J. Healy, and J. Melville, “Umap: Uniform manifold approximation and 

projection for dimension reduction,” arXiv preprint arXiv:1802.03426, 2018. 

[170] Y. Ma, J. Yin, F. Huang, and Q. Li, “Surface defect inspection of industrial products 

with object detection deep networks: a systematic review,” Artif Intell Rev, vol. 57, 

no. 12, p. 333, 2024, doi: 10.1007/s10462-024-10956-3. 



125 

[171] Y. Wan, L. Gao, X. Li, and Y. Gao, “Semi-supervised defect detection method with 

data-expanding strategy for PCB quality inspection,” Sensors, vol. 22, no. 20, p. 

7971, 2022. 

[172] Y. Xu, H. Wu, Y. Liu, and X. Liu, “Printed Circuit Board Sample Expansion and 

Automatic Defect Detection Based on Diffusion Models and ConvNeXt,” 

Micromachines (Basel), vol. 16, no. 3, p. 261, 2025. 

[173] L. van der Maaten and G. Hinton, “Visualizing data using t-SNE,” Journal of machine 

learning research, vol. 9, no. Nov, pp. 2579–2605, 2008. 

[174] S. Abnar and W. Zuidema, “Quantifying attention flow in transformers,” arXiv 

preprint arXiv:2005.00928, 2020. 

[175] R. Arboretti, R. Ceccato, L. Pegoraro, and L. Salmaso, “Design of Experiment-based 

Configuration of Hyperparameters Of An Artificial Neural Network,” in 

Proceedings of the 2020 JSM-Joint Statistical Meetings, 2020, pp. 1735–1743. 

[176] A. T. Khan and S. M. Jensen, “LEAF-Net: A unified framework for leaf extraction 

and analysis in multi-crop phenotyping using YOLOv11,” Agriculture, vol. 15, no. 

2, p. 196, 2025. 

[177] J. Huang, K. Wang, Y. Hou, and J. Wang, “LW-YOLO11: a lightweight arbitrary-

oriented ship detection method based on improved YOLO11,” Sensors, vol. 25, no. 

1, p. 65, 2024. 

[178] H. Touvron, M. Cord, A. Sablayrolles, G. Synnaeve, and H. Jégou, “Going deeper with 

image transformers,” in Proceedings of the IEEE/CVF international conference on 

computer vision, 2021, pp. 32–42. 

[179] M. Caron et al., “Emerging properties in self-supervised vision transformers,” in 

Proceedings of the IEEE/CVF international conference on computer vision, 2021, pp. 

9650–9660. 

[180] M. Tan and Q. Le, “Efficientnet: Rethinking model scaling for convolutional neural 

networks,” in International conference on machine learning, PMLR, 2019, pp. 

6105–6114. 

[181] “EfficientNet: Improving Accuracy and Efficiency through AutoML and Model Scaling.” 

Accessed: Aug. 20, 2025. [Online]. Available: https://research.google/blog/efficientnet-

improving-accuracy-and-efficiency-through-automl-and-model-scaling/ 

  


