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Abstract

This research study develops and validates an inverse identification algorithm
framework that couples Python automation with Abaqus finite-element simulations and
a Levenberg-Marquardt (LM) optimiser to optimise the material behaviour parameters
(Johnson-Cook (J-C) constitutive law and the Taylor-Quinney (T-Q) heat fraction) for
orthogonal cutting of PH martensitic stainless steels. The algorithm loop perturbs
parameters, builds finite-difference sensitivities, updates with LM, and rewrites the
input automatically, resulting in four machining output conditions across five
undeformed chip thicknesses of H,.r = 0.10-0.25millimetres (mm) for the chip
thickness, tool-chip contact length, cutting force, and penetration force. In the absence
of 15-5PH experimental machining data, validation was performed using 17- 4PH
numerical datasets with similar properties. The baseline (pre-optimised) simulation
exhibits large residual error on average, 21.94% (chip thickness), 41.20% (contact
length), 40.21% (cutting force), and 28.37% (penetration force), demonstrating that
uncalibrated parameters are non-predictive for precision machining analysis. After
optimisation, mean errors for the chip thickness, tool-chip contact length, cutting force,
and penetration force were drastically reduced to 0.49%, 4.35%, 0.34%, and 0.14%
respectively, with rapid, monotonic convergence of <5 iterations across all undeformed
Chip Thickness (Hy.fs). Best and worst residual errors were 0.053% for the 0.10mm
Hyer and 4.77% for the 0.25mm H,..;. The resulting single parameter set generalises
from the 2D orthogonal configuration of different cut sections to a 3D validation,
indicating readiness for predictive simulation that requires robust force and chip

geometry, which is relevant for industrial purposes.
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Chapter 1 Introduction

1.1. Background of Machining

Machining is one of the most widely used production techniques in industry for
converting preformed blocks of metal into desired shapes with surface quality and
dimensional accuracy [1]. During this Machining, which is a fundamental
manufacturing process, there is severe deformation of the workpiece material in a very
localized zone. Extreme machining conditions, including very high plastic strains
(typically on the order of 1-4), high strain rates (up to roughly 106 s-1), and intense
heating (temperatures close to melting) in the primary and secondary deformation
zones, are applied to the material during these machining operations, like turning or
milling [2]. These unique conditions lead to material behaviour that is markedly
different from that observed in conventional quasi-static or low-rate material tests. As
a result, standard material property data is not sufficient to describe how metals
respond during machining. A constitutive model law, which is a mathematical model
describing the flow stress of the material as a function of strain, strain rate, and
temperature, is necessary to capture this behaviour for simulation [2]. Calibrating these
constitutive models using experimental data has been used by several authors for metal
cutting simulations. A reliable material behaviour law is crucial for realistic results in
finite element (FE) machining simulations, as the choice of constitutive model has a
significant impact on the accuracy of predictions (forces, chip formation, temperatures,
etc) [2]. Awidely used constitutive model is the Johnson-Cook (J-C) constitutive model,
which incorporates key phenomena such as strain hardening, strain-rate sensitivity,
and thermal softening in a straightforward analytic form and was developed especially
to describe metals under high strains, high strain rates, and high temperatures, and for
this reason, it has been integrated into many commercial machining simulation
software packages [3]. Fundamentally, without an adequate constitutive law calibrated
for extreme machining conditions, numerical simulations cannot accurately reproduce
real cutting behaviour.

In recent years, finite element modelling of machining has become an essential tool for
studying and optimizing manufacturing processes. The ability to simulate the cutting
process enables engineers to predict critical outcomes, such as cutting forces,

temperature fields, chip morphology, residual stresses in the machined part, and tool



wear. These simulations allow for a deeper understanding of the process and allow for
"virtual experimentation" to complement physical trials [2]. Machining simulations are
now frequently used to optimize cutting parameters, select or design cutting tools, and
improve part quality, leading to increased productivity and reduced cost in
manufacturing [2]. To achieve this purpose, the simulations must be accurate and
precise, which in turn requires a suitable constitutive law for the workpiece material.
A major challenge is that direct measurements of material behaviour at machining-level
strain rates and temperatures are difficult, so the constitutive models often involve
some empiricism and must be fit to whatever data is available. At this point, specific

identification methods and data analysis become essential.

1.2. Problem Statement

It can be difficult to determine the proper material behaviour law under machining
conditions. At higher strain rates and temperatures, stress-strain data can be obtained
by conventional high-strain-rate material tests, such as Split Hopkinson Pressure Bar
(SHPB) studies. In the direct approach, these tests would be carried out, and the
constitutive equation would be fitted to the measured data for example, by calibrating
the J-C model constants [2]. However, these tests have limitations: SHPB experiments
typically achieve plastic strains less than 1 and strain rates on the order of 103 - 104 s
1, which fall short of the extreme values encountered in actual cutting which are strains
of 1 - 4 and strain rates up to 106 s'1 [2]. In other words, the deformation regime in
machining far exceeds the regime covered by standard material tests, meaning that a
constitutive model calibrated only on SHPB data must be extrapolated well beyond the
tested range. This extrapolation introduces uncertainty and can lead to large prediction
errors in machining simulations. Furthermore, multiple sets of model parameters often
exist in the literature for the “same” material because the given alloy may exhibit
different flow stress behaviour depending on factors like microstructure, heat
treatment, or even strain path [3]. It is not always clear which set of constants is
appropriate for a specific machining application, especially when those constants were
obtained under different conditions.

However, the reference Johnson-Cook parameters often fail to predict actual machining
outcomes such as chip morphology and cutting force, which my research study aims to

tackle.



1.3. Aims and Objectives

This research aims to develop an inverse-identification and data-analysis framework
for material-behaviour laws that enables accurate numerical simulation under
machining conditions. Figure 1.1, shown below, presents the workflow for inverse
identification and validation in machining simulation, outlining the pathway to
achieving this aim. The ABAQUS finite element model is built with initial material
behaviour parameters. The simulation is run, and its data, along with experimental
machining data, is fed into the optimization algorithm (the inverse method). This
process iteratively calibrates an optimized set of parameters for the material's
constitutive behaviour law. This calibrated constitutive behaviour parameter is then
subsequently deployed to accurately predict validated numerical machining conditions
matching experimental machining, hence achieving the level of accuracy required for
industrial applications.
To achieve the aim, the study will pursue the following specific objectives:
e Todevelop and validate a 2D finite element (FE) model of orthogonal cutting in
ABAQUS/Explicit, incorporating a Johnson-Cook constitutive law.
e Implement an inverse-identification algorithm that calibrates those
constitutive parameters along experimental machining data.
e Perform sensitivity analyses to quantify how individual parameters influence
key simulation outputs.
e Conduct experimental orthogonal cutting tests to generate a comprehensive
machining dataset for validation and calibration.
e Extend the framework from a two-dimensions (2D) to a hybrid three-
dimensions (3D) orthogonal cutting simulation, varying the uncut-chip

thickness to assess its impact on predictive accuracy.
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1.4. Industrial Relevance

The development of accurate numerical simulations for machining processes through
inverse identification methods holds significant industrial importance across multiple
high-value manufacturing sectors. This approach enables virtual process optimization
while reducing costly physical trials [4], with particular benefits for aerospace, nuclear
energy, automotive, and cutting tool industries [5]. The transformative impact of this
methodology is conceptualized in Figure 1.2, which illustrates how the inverse
identification process directly translates challenges from key industrial sectors into

measurable benefits.
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In aerospace manufacturing, where components require machining of difficult-to-cut
materials like titanium (Ti-6Al-4V) and nickel-based superalloys, inverse identification
helps overcome limitations of traditional material models [6], These models often fail
to predict real machining data for the material behaviour, leading to overly
conservative process parameters [7]. By calibrating constitutive laws directly from
machining data [8], Manufacturers like Airbus Helicopters have achieved 30%
reductions in machining trials for critical rotor components [9].
Similarly, the nuclear energy sector benefits particularly from this approach when
machining stainless steels (15-5PH) and zirconium alloys for reactor components [10].
With nuclear plants extending operations to 60+ years, predicting machining-induced
residual stresses and microstructural changes becomes crucial [11]. Inverse methods
incorporating X-ray Diffraction (XRD) residual stress data and Electron Backscatter
Diffraction (EBSD) measurements [12]. Arrazola et al, [13] have helped Framatome
reduce Small Modular Reactor (SMR) fuel cladding pre-qualification costs by 25%.
While in automotive manufacturers apply these techniques to optimize the machining
of high-strength steels and aluminum alloys [14]. Virtual testing of chip breakability
and tool wear across thousands of cutting cycles has enabled companies like Renault to
reduce engine block machining costs by 18% [15].
These industrial applications demonstrate how inverse identification bridges the gap
between academic research and practical manufacturing needs. By providing validated
material models that reflect real machining conditions, the approach enables [9]:

e 30-50% reductions in physical trials for aerospace components

e 25% cost savings in nuclear component qualification

e 18% efficiency gains in automotive production

e 80% faster tool development cycles
The methodology's ability to predict previously unmeasurable variables (e.g., tool-chip
interface temperatures, subsurface damage) while reducing material waste positions it

as a transformative technology for modern manufacturing.



Chapter 2 Literature Review

2.1. Definition and Types of Machining (Orthogonal
Cutting, Milling, Turning)

Machining is a family of manufacturing processes where excess material is
removed from the workpiece in the form of chips to produce a finished
component with the desired dimensions and surface finish [16]. In all machining
operations, material removal is accomplished by forcing a tool against the
workpiece and shearing the material plastically along a narrow zone, causing a
chip to form and separate [17]. Common machining methods include turning,
milling, drilling, and related processes. To analyze machining mechanics,
researchers often consider an idealized orthogonal cutting model. In orthogonal
cutting, the cutting edge of the tool is oriented perpendicular to the cutting
direction, and there is no side flow of material [17]. Real machining operations
like turning and milling are oblique three-dimensional cuts, but they can be
conceptually broken down into orthogonal cutting at each tool contact point for
understanding the deformation. In all, machining processes may vary in setup,
but each involves severe shear deformation of the work material near the tool
to form chips, which is why machining inherently falls under the domain of
severe plastic deformation (SPD) processing [16]. SPD involves a material to a
very large amount of plastic strain, leading to microstructural refinement in the

material.

2.1.1. Severe Plastic Deformation Zones in Machining
During machining, the plastic deformation is highly localized into distinct zones
around the cutting tool. [18]. These are commonly described as three
deformation zones: primary, secondary, and tertiary as shown in Figure 2.1. The
primary deformation zone is located ahead of the tool tip, within the workpiece
material being cut [18]. Here, the material is intensely sheared and essentially,

where the chip forms, the majority of plastic shear strain is generated in this



primary zone as the material transitions from the undeformed workpiece into
the flowing chip [19]. Immediately after the primary shear, the chip continues
to experience deformation and friction at the tool interface. This is the
secondary deformation zone, located along the tool’s rake face where the chip
slides. In the secondary zone, the underside of the chip is subjected to additional
shear and compressive stresses due to friction and contact with the tool [19].
The material in the chip’s lower layers is further plastically deformed. This
explains why the highest cutting temperatures are often observed at the tool-
chip interface on the rake face [20]. Essentially, the chip material is first heated
and sheared in the primary zone, then “burnished” and sheared again at the tool
face in the secondary zone, generating intense heat from the combined plastic
work and friction [20].

The tertiary deformation zone refers to the deformation that occurs in the thin
layer of material on the finished surface, beneath the tool’s clearance (flank) face
[21]. As the cutting tool passes, it exerts pressure and causes severe plastic
deformation in the surface layer of the workpiece that is left behind. The freshly
machined surface thus contains a plastically deformed subsurface layer as a
result of the cutting action [22]. This tertiary zone is critical to surface integrity;
it can undergo strain hardening or microstructural transformations, and
residual stresses may be introduced here. In other words, the quality and
properties of the machined surface like fatigue life, corrosion resistance, etc. are
largely dictated by what happens in this tertiary shear zone [23]. For example,
severe shear in the tertiary zone can produce “swept” grain structures or even
recrystallized grains in the outermost layer of the workpiece, and excessive heat
in this zone may lead to tensile residual stresses or micro-cracks in extreme

cases [24].
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Figure 2.1: Shear zones in orthogonal cutting [23]

All three zones, which are the primary, secondary, and tertiary, involve severe
plastic deformation of the metal, and together they explain how and where the
cutting energy is dissipated as deformation and heat during machining.

The mode in which material flows and the chip form are central to
understanding machining as an SPD process. In the primary shear zone, the
work material undergoes intense shearing and essentially flows plastically
around the cutting edge. If the material is ductile and cutting conditions are
moderate, this flow is relatively continuous and produces a coherent,
continuous chip as shown in Figure 2.2. However, under aggressive conditions,
the deformation can become highly concentrated periodically, leading to
segmented or serrated chips also seen in Figure 2.2. In such cases, the material
in the shear zone undergoes cyclical instabilities (adiabatic shear bands) where
it shears off in discrete chunks. The chip then exhibits a saw-tooth profile with
alternating bands of heavily deformed material [22]. This serrated chip
formation is another indication of the severe plastic flow, where the material
may locally soften from temperature rise and shear in a narrow band, then

repeat, resulting in a tooth-like chip morphology [22].
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Figure 2.2 : [llustration of the different types of chips formed in machining [22].

Whether continuous or serrated, the chip formation process involves
substantial plastic flow. The material in the chip is usually highly strained and
work-hardened by the time it exits the cutting zone. Indeed, measurements have
shown shear strains in chips that are several times higher than the nominal
strain imposed the chip essentially carries away much of the deformation
imposed by the tool.

The material flow in front of the tool leads to chip formation via intense shear,
and this process can refine grains and induce various transformations.
Especially for difficult-to-cut or high-strength materials like 15-5PH stainless
steel, the combination of high strain, high strain-rate, and temperature in
machining produces significant microstructural evolution that must be
understood. This lays the groundwork for later sections of this research, which
will examine how this deformation and microstructural phenomena have been
characterized in both experimental studies and simulations For instance, to
optimize cutting of 15-5PH and similar alloys. By first reviewing the
fundamental SPD characteristics of machining deformation zones, extreme
strains, heat generation, and material flow leading to chip and microstructure
changes, we establish a basis for understanding the advanced research on

machining processes and their effects on materials [16]. This ability to create



refined microstructures via a single deformation pass is one reason machining
is studied as a potential SPD technique for material processing.

The machined workpiece surface itself is also affected. In all, machining not only
shapes the material by removing it, but in doing so, it alters the microstructure
of both the removed chip and the remaining surface through SPD effects. The
study to predict the mechanical behaviour of the materials flows needs to be

accounted for within the frame of numerical simulation.

2.2. Mechanical Behaviour Laws in Metal Cutting

The accurate prediction of material behaviour under the extreme conditions of
machining requires robust constitutive models. These mathematical formulations
describe the flow stress of a material as a function of strain, strain rate, and temperature,
capturing the complex interplay of strain hardening, strain-rate sensitivity, and thermal
softening. The selection and calibration of an appropriate constitutive model are

foundational to the fidelity of any numerical simulation of the machining process.

2.2.1. The Johnson—Cook Constitutive Model
The Johnson Cook (JC) Constitutive model is a widely used constitutive law expressing
the flow stress of a metal as a product of strain hardening, strain-rate hardening, and
thermal softening terms in numerical simulation [25]. The Johnson-Cook Constitutive

equation as shown in Eq. (2.1)

o= (A+Be) (1+CmE) (1[Il ") 2.1)

Tmett—Troom

Strain hardening Strain rate hardening Thermal softening

Where; o Is the flow stress, eythe equivalent plastic strain, &, the plastic strain rate,
with &, As the reference strain rate, T the material temperature, T,,,m @ reference
temperature, and Ty, The melting temperature. The five material constants in this
model (A, B, n, m, C) characterize the material behaviour [28]:
e A: Yield stress of the material at the reference temperature and reference
(quasi-static) strain rate.
e B: Strain hardening coefficient, determining the increase in flow stress with
plastic strain.

e n: Strain hardening exponent, which governs the curvature of the stress-strain

10



relationship in the plastic regime.

e (C: Strain-rate sensitivity coefficient, controlling how much the flow stress
increases with higher strain rate.

e m: Thermal softening exponent, describing how the material strength
decreases as the temperature approaches Ty, (the material melting

temperature).

The Johnson-Cook model captures a material’s thermo-viscoplastic behaviour by
decoupling the effects of strain, strain rate, and temperature in a multiplicative form
[25]. This means the material’s strengthening from cold work (strain hardening), the
additional resistance under faster loading (strain-rate hardening), and the weakening
at elevated temperatures (thermal softening) are all accounted for independently. Such
a formulation is advantageous for metal cutting simulations, as machining involves
severe plastic deformation at high strain rates and temperatures. The JC model’s small
number of parameters and straightforward calibration have made it extremely popular
for machining applications [26]. Indeed, surveys indicate that the Johnson-Cook law on
original and modified forms has been employed in the majority of material models for
machining simulations over the past decade [25].

Despite its utility, the Johnson-Cook model has known limitations. Being empirical, it
may produce inaccurate results if extrapolated beyond the range of calibration data
[25]. The model assumes the effects of strain hardening, rate hardening, and thermal
softening are independent and without any history coupling. This simplistic decoupling
means Johnson-Cook cannot capture certain metallurgical phenomena like dynamic
strain aging or phase transformations and may misestimate behaviour under complex
loading paths. For example, the standard Johnson-Cook formulation lacks any intrinsic
flow-softening mechanism aside from thermal softening. Consequently, it often fails to
predict the flow stress drop associated with adiabatic shear banding or dynamic
recrystallization, which are important in high-speed cutting of some alloys [22].
Comparative studies have shown that the original Johnson-Cook model tends to over-
predict flow stress at elevated temperatures unless an additional softening term is
introduced [27]. As a result, simulations using an unmodified JC law sometimes
produce continuous chip formation, whereas real experiments show segmented or
serrated chip patterns due to localized material softening. Researchers have responded
by proposing various modified Johnson-Cook models or hybrid constitutive laws that

include extra softening terms or state variables to improve accuracy. Nonetheless, the

11



base JC model remains a common baseline in machining simulations, and its
parameters must be chosen carefully. For instance, studies have found that different
sets of JC constants for the same material can significantly affect predicted cutting
forces, temperatures, and chip morphology [22], underscoring the importance of

proper parameter identification and validation against experiments.

2.2.2. Friction and Taylor-Quinney Coefficient in Machining

The interaction at the tool-chip interface is governed by two critical phenomena: friction
and heat generation. Their accurate representation is paramount for realistic
simulations, as they directly influence cutting forces, chip morphology, tool wear, and
the thermal field within the workpiece and chip. We would detail at both the role of the

friction coefficient and Taylor-Quinney below on the Tool-Chip interface.

Role of Friction at the Tool-Chip Interface:

Friction between the cutting tool and the chip plays a crucial role in metal cutting. The
tool-chip interface friction significantly influences cutting forces, chip formation, and
heat generation during machining. A large portion of the cutting energy is dissipated as
frictional heat at this interface, often accounting for a major share of the overall heat in
machining. The rise in temperature due to friction can soften the work material, but
also accelerate tool wear and may degrade the machined surface quality [22]. Friction
conditions (e.g. changes in lubrication, tool coating, or cutting speed) can lead to
fluctuations in cutting forces and affect chip morphology and stability. This is especially
pronounced in materials with low thermal conductivity (like titanium alloys), where
frictional heating cannot dissipate quickly and thus exacerbates thermal effects and
tool wear [22].

In finite element modelling of machining, the tool-chip friction is typically represented
by simplified laws. The most straightforward and widely used model is Coulomb’s law
with a constant friction coefficient, p [22]. This model is easy to implement and is
available in most commercial FE software, so many researchers assume a constant
often on the order of 0.1- 0.5 value to simulate sliding friction at the interface. While
convenient, a pure Coulomb model with a single p may oversimplify reality, since the
apparent friction can vary along the contact length and depends on local pressure,
sliding speed, and temperature. An alternative approach commonly used in machining

simulations is the constant shear friction model, which imposes an upper limit on the
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frictional shear stress.

Taylor-Quinney Coefficient:

The Taylor-Quinney coefficient which is denoted as  is a material parameter that
defines the fraction of plastic work converted into heat during deformation [28]. In any
plastic deformation process, part of the mechanical work is stored in the material, while
the remainder is dissipated as heat. The Taylor-Quinney coefficient quantifies this
balance, where 3 = 0 would mean all plastic work is stored (no heat generation),
whereas 3 = 1 means all plastic work is instantly converted to heat. In machining,
deformation is highly rapid and often close to adiabatic, so itis commonly assumed that
a large majority of the plastic work manifests as heat. Many machining simulations
simply assume 8 = 0.9, where 90% conversion to heat as a default value [28]. This
implies that most of the energy expended in plastically deforming the chip is
transformed into thermal energy, which then raises the temperature of the chip, tool,
and workpiece interface. The partitioning of this heat between the tool and the chip is

a critical modeling consideration, as illustrated in Figure 2.3.

Heat flux generated at
tool-chip interface g
Adiabatic
o =
Tool Heat exchange
Heat ﬂux" @ coefficient &
Ry |2 L x
=
Workpiece -~
Adiabatic
(@) ()

Figure 2.3 : Model of heat partitioning at the tool-chip interface [29].

The total heat flux (qo) generated by friction and plastic deformation is split, with a
portion (Rqp) entering the tool and the remainder (1-R)qo being carried away by the
chip. The boundary conditions, including adiabatic surfaces and heat exchange, are
critical for accurate thermal simulation[29]. The Taylor-Quinney coefficient is thus a
key factor in heat generation modelling: it directly scales how much heat is added per
unit of plastic work in the primary shear zone and secondary deformation (tool-chip

interface) zone. A higher (8 leads to more intense heating for the same deformation,
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affecting predictions of cutting temperature, tool wear, and potential thermal damage
to the work material.

Although a constant 8 = of 0.9 is often used for metals, studies have shown that the
Taylor-Quinney coefficient is not truly constant and can vary with material and
deformation conditions [28]. In classical experiments, Taylor and Quinney themselves
observed that the fraction of plastic work converted to heat tends to increase with
ongoing deformation. Recent investigations have quantified this variability: for
example, high-speed deformation tests on steel have found f8 starting around 0.5 (50%
of work as heat) at the onset of yielding and rising to 0.95 at large strains. This increase
is explained by the material’s diminishing capacity to store further strain energy as
deformation progresses. Early plastic work goes into generating defects (stored
energy), but as the material hardens and saturates with defects, additional work is
more fully dissipated as heat. Moreover, the effective $ can differ widely between
materials. Zubelewicz compiled data showing average Taylor-Quinney values ranging
from about 0.2 up to 0.9 for different metals under dynamic loading [30]. High-strength
alloys, for instance, might store a larger fraction of work (lower 3) compared to softer
metals at similar strain rates. Strain rate and temperature also influence 8 at higher
strain rates, adiabatic conditions prevail, and [ tends to be higher, whereas at lower
rates or with active thermal conduction, a greater portion of work can be temporarily
stored. These findings imply that assuming a universal § = 0.9 can sometimes
misrepresent heat generation. Nonetheless, in practical machining simulations, B is
often kept at 0.9 in the absence of specific experimental data, as this value has been a
reasonable approximation for many metals undergoing rapid deformation [28].
Researchers are increasingly aware of Taylor-Quinney variability, and some have
developed methods to measure or even dynamically adjust 8 in simulations [28].
However, the Taylor-Quinney coefficient provides the link between mechanical work
and thermal effects in machining, and understanding its range helps in assessing the
accuracy of temperature predictions and the potential for thermal softening or damage

during the cutting process.

2.3. Experimental Data in Machining: Chip Geometry,

and Forces

Experimental data serves as the essential link between theoretical models and physical

reality. In machining research, measurements of chip geometry and cutting forces
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provide the fundamental validation metrics for evaluating and calibrating numerical
simulations. These datasets offer tangible evidence of the material's response to the

severe conditions of cutting.

2.3.1. Chip Thickness and Contact Length in Machining

Chip geometry, specifically the deformed chip thickness (T,) and the tool-chip contact
length (L), are direct outcomes of the plastic deformation process and provide critical
insight into the mechanics of cutting. The deformed chip thickness reflects the
material’s shear deformation and directly relates to the shear plane angle and
compression ratio. A higher chip thickness generally indicates a smaller shear angle
and more intense plastic deformation, whereas thinner chips correspond to a larger
shear angle and potentially easier cutting. For example, [31] observed that at very high
cutting speeds, V. above 450 m/min the chip became notably thinner (increased shear
angle), and the cutting forces reached minimum values . This exemplifies how chip
thickness is coupled to cutting mechanics, conditions that promote thinner chips can
reduce cutting resistance. The tool-chip contact length, which is the length of the rake
face in contact with the chip, is equally important. It determines the interaction in the
secondary cutting zone, governing friction and heat transfer between tool and chip
[31]. A longer contact length typically means a larger area for friction, higher cutting
temperatures, and more tool wear, whereas a shorter contact may indicate quicker chip
separation. Indeed, contact length has a significant influence on tool temperature and
wear, where an increased contact length raises tool interface temperature, accelerating
wear mechanisms. Because of these effects, contact length is widely used as a key
parameter in analytical cutting models and as a check on machining simulations [31].
However, chip thickness captures the severity of shear deformation and chip
compression, while contact length encapsulates the size of the tool-chip engagement
zone; both are essential for characterizing machining responses such as forces, heat,
and tool wear. All of these for the Chip Thickness and Tool-Chip Contact Length Length

are shown on the Geometry of orthogonal cutting as shown in Figure 2.4.
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Figure 2.4 : Geometry of orthogonal cutting [32].

Accurate measurement of chip thickness and contact length is vital for both
experimental analysis and for providing validation data to simulations. Chip thickness
is commonly measured post-machining by collecting the chips and examining their
cross-section. A micrometre or optical microscope can be used to measure the
thickness of representative chip segments. For segmented or serrated chips, high-
resolution imaging allows measurement of segment peak thickness, valley thickness,
and serration period. In many cases, multiple chip samples are measured to obtain an
average chip thickness for a given cutting condition [32].

Measuring the tool-chip contact length is more challenging, as it involves capturing an
interface that is typically hidden during cutting and may change with time. Several
established methods exist and one traditional approach is the use of a quick-stop device
(QSD), which suddenly halts the cut and freezes the chip still attached to the tool. This
allows the chip root and the portion of the chip in contact with the rake face to be
examined. Using QSD, researchers historically measured contact lengths and even
observed the primary shear zone geometry. However, quick-stop devices can be complex

to implement at high cutting speeds and may perturb the process [33].

2.3.2. Force Measurement in Machining

The measurement of cutting forces is crucial for machining experimentation. In a
typical cutting test, the forces are resolved into orthogonal components. The primary

cutting force, F. acts in the direction of cutting velocity, which is tangential to the
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workpiece in turning, or along the tool feed in orthogonal cutting. This is usually the
largest force component and directly relates to the energy required for material
removal. The penetration force, Fy, is the force pushing the tool into the workpiece. In
an orthogonal cutting setup, this corresponds to the force normal to the cut surface,
sometimes called the passive force depending on the context. Many authors refer to the
force into the work material (normal to the cutting plane) as the thrust force (analogous
to penetration force), and the in-feed direction force as the penetration force. In
summary, a 3D cutting process like turning yields three components: cutting force F,

feed force F¢, and passive (penetration) force F,.These components are routinely

measured with a dynamometer [33], as shown in the experimental setup in Figure 2.5.

Figure 2.5 : Experimental setup for Cutting Force Measurement [33].

Cutting forces are typically measured using piezoelectric dynamometers mounted on
the machine. These devices e.g. Kistler dynamometers can resolve forces in X, Y, Z
directions with high frequency response. The force signals are recorded, filtered, and

the steady-state values of F, F,, and F¢ are obtained for each cutting test. All this

experimental setup for measuring the Force are shown in Figure 2.6.
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Figure 2.6 : Cutting force measurement system [33].

One of the most important uses of the above experimental data is in the inverse
identification of material behavior laws and the calibration of finite element (FE)
machining simulations. In machining FE models which often employ constitutive laws
like Johnson-Cook, Zerilli-Armstrong, etc., and friction models for the tool-chip
interface, many material parameters are not known with certainty. Direct high-strain-
rate testing of materials at cutting conditions is difficult, so researchers rely on inverse
methods which is essentially tuning the model parameters so that the simulation
outputs match the experimental measurements. Cutting forces are a primary
calibration target they reflect the overall energy and resistance of cutting and are
relatively easy to measure accurately. Most simulation validation papers will report
that the simulated cutting force and penetration force are compared to experimental
values as a matter of course [34]. For example, [34] note that in orthogonal cutting
simulation of Ti-6Al-4V, the cutting force, feed force, and chip thickness are usually
analyzed and compared with the experimental results. Achieving good agreement in
these forces is often the first goal of calibration. The penetration forces are also
important, especially for capturing the correct stress state on the tool and workpiece.

However, many researchers give slightly higher priority to the cutting force during
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calibration, since it dominates in magnitude and is crucial for power predictions and
tool load. In multi-objective optimization approaches for parameter identification, it is
common to weight the cutting force error more heavily than the secondary force or chip
thickness errors. This industrially reflects that an error in cutting force has significant
consequences (tool fracture, machine overload, etc.), whereas moderate errors in chip
thickness might be tolerated if forces are right [34].

That said, chip morphology has become increasingly important in inverse
identification, to ensure the model is capturing the plastic deformation behaviour
correctly. A simulation could conceivably get the forces right with a wrong combination
of flow stress and friction they can compensate each other, but the chip geometry might
reveal the discrepancy. Thus, recent studies incorporate chip thickness as an objective
in the calibration. For instance, [34] applied an efficient global optimization algorithm
to calibrate a Johnson-Cook model for Ti-6Al-4V, and their identified parameter set
predicted cutting force within 2% and chip thickness within 11% of experiments, while
an initial parameter set had much larger chip thickness error. [35] explicitly advocate
using multiple observables to overcome non-uniqueness in inverse material parameter
identification. In their approach, they simultaneously considered cutting force,
penetration force, chip thickness, chip temperature, and even chip curvature (radius)
as target outputs. By increasing the number of process observables to include thermal
and geometric data, they ensured that the material model (Johnson-Cook parameters)
was not only fitting the forces but also the chip formation characteristics. This multi-
criteria approach is vital because different parameter sets can sometimes produce
similar force results but differ in predicted chip shape or temperature. Using chip
thickness and shape as additional criteria penalizes unphysical solutions and yields a
more robust calibration of the constitutive law.

The tool-chip contact length is another observable used in some inverse analyses,
particularly to calibrate friction parameters at the tool-chip interface. Since contact
length is sensitive to the friction coefficient and the normal stress distribution on the
rake face, matching the observed contact length can help tune those aspects of the
simulation. [31] for example, compared FE simulations of orthogonal cutting to
experiments and reported that after adjusting the constitutive equation parameters,
the simulated contact length agreed within 12% of the experimental values across a
range of cutting speeds, depths, and rake angles. This level of agreement in contact
length alongside force agreement gives confidence that the friction and material flow

stress were correctly set in the model.
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Over the last decade, numerous researchers have presented inverse identification case
studies using experimental force and chip data. [34] were among the early to extract
Johnson-Cook parameters from machining tests using an optimization algorithm. [36]
used Oxley’s analytical machining theory in an inverse manner to determine
constitutive equations, matching predicted forces to experimental cutting forces. More
recently, [34] have published several papers on automated optimization for material
model parameters, considering multiple outputs and using algorithms from downbhill
simplex to particle swarm optimization. In each case, experimental data usually a set of
forces and sometimes chip thickness or residuals form the objective function to
minimize.

Importantly, experimental data from challenging materials like precipitation-hardened
(PH) stainless steels have served as proving grounds for these techniques. 15-5PH and
17-4PH stainless steels, known for their high strength and relatively poor
machinability, have been the subject of recent machining studies to generate such data.
[37] examined 15-5PH cutting forces and chip characteristics under various conditions;
such data is invaluable for calibrating models for aerospace-grade materials. [38]
specifically investigated turning of 15-5PH and used a hybrid simulation model driven
by experimental inputs, they replaced the actual chip formation in the FE model with
imposed thermal/mechanical loads calibrated from experimental force, chip thickness,
and contact length measurements. The very name “hybrid model” in their work refers
to melding experimental data with numerical simulation. By inputting the measured
forces, chip thickness, and contact length into their model, they could simulate residual
stress outcomes much faster than a full physical cutting simulation, with good accuracy
[34]. This exemplifies how experimental machining data are ultimately fed into
simulation frameworks to identify material behavior and to calibrate simulations for
predictive use. In the end, the results of machining simulations whether for predicting
forces, chip morphology, or residual stresses hinges on how well we have tuned them
to match reality. And for that tuning, high-quality experimental data on chip thickness,
contact length, and cutting forces are critical. They serve as the benchmark for
simulation accuracy and the target for inverse identification algorithms, ensuring that
the constitutive models governing material plasticity and friction in the simulation

truly reflect the physical behavior observed in machining [32].
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2.4. Numerical Simulation of Machining

Numerical simulation using finite element methods (FEM) has become a widely
adopted tool for studying metal cutting and machining processes [39]. By modelling
chip formation and tool-workpiece interaction, FEM allows researchers to analyse the
complex thermo-mechanical conditions in the cutting zone and predict key outputs
such as cutting forces, temperatures, stress distributions, chip morphology, surface
integrity, and even tool wear [39]. Commercial FE software like Abaqus/Explicit is
frequently used to simulate machining operations due to its capability to handle the
large deformations, high strain rates, and contact/friction conditions inherent in
cutting. Users often employ Python scripting in Abaqus to automate simulation
workflows and parameter studies, enabling integration of FEM simulations with
custom algorithms.

Accurate material modelling is critical in machining simulations [40]. The workpiece
material is typically characterized by an empirical constitutive law that can capture
strain hardening, strain-rate sensitivity, and thermal softening at the extreme
conditions of machining. One of the most widely used models is the Johnson-Cook
constitutive model, which expresses the flow stress as a product of factors dependent
on plastic strain, strain rate, and temperature [41]. The JC model introduces five
parameters that must be tuned for the specific material. It has gained popularity due to
its simplicity and its suitability for large strain, high strain-rate, high temperature
deformation, making it a common choice for simulating processes [42]. However, the
analysis of any machining simulation hinges on using correct constitutive parameters
for the workpiece material [43]. As a result, direct use of parameter values extrapolated
from milder tests can be inaccurate for simulations of machining. This gap has
motivated researchers to pursue inverse identification approaches, where material
parameters are calibrated from machining process data itself by comparing simulation

results with experimental measurements.

2.5. Inverse Identification Methods

Inverse identification refers to the process of determining unknown model parameters
by inverting experimental observations i.e. finding the parameters that cause a
simulation to reproduce measured outcomes. In the context of machining, this means
adjusting material properties so that the FEM simulation of a cutting process yields

results (cutting forces, chip shape, temperatures, etc.) that closely match those
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observed in real machining trials [44]. Unlike a direct analytical solution, this is
generally formulated as a nonlinear optimization problem: an objective function
quantifies the discrepancy between simulation predictions and experimental data, and
an algorithm iteratively updates the material constants to minimize this discrepancy
[45].

A variety of inverse identification strategies have been reported in the literature since
2010. The simplest approach is a manual or brute-force search: some researchers have
systematically varied the JC parameters by trial and error until the simulation outputs
fall within an acceptable error range of the measurements. [45] followed this kind of
approach, allowing each initial JC constant to vary up to +50% of its literature value in
order to reduce the error in predicted cutting forces and shear zone temperatures. A
more methodical strategy was demonstrated by [46], who employed a Kalman filter
based iterative update to identify five JC parameters from orthogonal cutting data.
Their Kalman filter treated the parameter determination as a state estimation problem,
updating the constants in an iterative manner using the prediction error, and
successfully converged to a set of flow stress constants that improved simulation
accuracy [45].

Many researchers have formulated the inverse problem explicitly and solved it with
numerical optimization algorithms. One popular choice is the Levenberg-Marquardt
(LM) algorithm, which is a damped least-squares optimization method closely related
to the Gauss-Newton approach and by extension to Newton-Raphson for solving
nonlinear problems. [47] appears to have been an early adopter of this, using the
Levenberg-Marquardt method to calibrate JC parameters in a metal forming context. In
recent years, LM has been applied in machining simulations as well. [44] implemented
an inverse identification of JC constants from machining by coupling an Abaqus FE
model with a Levenberg-Marquardt optimizer. In their procedure, after each simulation
run the algorithm computes the objective function gradient and updates the parameter
estimates, gradually reducing the error between simulated and observed chip
formation behaviour.

Aside from gradient-based algorithms, researchers have also explored evolutionary
and heuristic optimization techniques for inverse identification. These methods do not
require gradient information and can be more robust in searching a complex parameter
space, at the cost of more function evaluations. For instance, [40] used a firefly
algorithm to fit a modified Johnson-Cook model for Ti-6Al-4V cutting, achieving good

results in matching cutting forces. [48] investigated particle swarm optimization (PSO)

22



for determining JC parameters from machining simulations and demonstrated it could
converge to a near-optimal solution within a limited number of simulation iterations
by smartly “swarming” around promising regions of the parameter space. Other works
have applied genetic algorithms, downhill simplex methods, and other optimization
routines to this inverse problem, reflecting a growing interest in techniques that
improve the robustness and efficiency of material parameter identification for
machining. Regardless of the specific algorithm, the trend is clear that inverse
identification has become a key tool to tune constitutive models so that FEM

simulations can reliably predict machining performance under modern conditions [40].

2.6. Gradient Sensitivity & Perturbation Techniques

A critical component of any gradient-based identification method is the evaluation of
sensitivities, how sensitive the simulation outputs are to changes in each model
parameter. These sensitivities form the Jacobian matrix required for Newton, Gauss-
Newton or Levenberg-Marquardt updates. In complex machining simulations, an
analytical expression for the gradient is typically unavailable, so researchers resort to
perturbation techniques to estimate sensitivities. This involves perturbing one
Johnson-Cook parameter at a time by a small amount e.g. a few percent and re-running
the simulation to observe how the outputs change in response [40]. By computing the
incremental change in outputs over the incremental change in parameter, a finite-
difference approximation of the partial derivative is obtained. Repeating this for each
parameter yields the Jacobian matrix that feeds into the optimization algorithm.
Although this approach can be computationally expensive (requiring multiple
simulations per iteration), it is straightforward to implement and has been widely used.
For instance, [40] performed a systematic sensitivity analysis by varying each ]JC
parameter (A, B, n, C, m) by +20% and recording the effects on cutting forces and chip
geometry. Such one-at-a-time perturbations revealed which parameters have the
strongest influence on different aspects of the machining process, guiding the inverse
identification and highlighting where more precise calibration is needed.

The influence of one parameter may depend on the values of others, meaning that
adjusting two parameters simultaneously can produce non-additive effects on outputs
[49]. For example, a combination of a higher hardening modulus, B, together with a
higher thermal softening, m, might counteract or amplify each other’s influence in non-
intuitive ways on cutting forces and chip geometry. [50] compared multiple Johnson-

Cook datasets in the literature and found that certain combinations of parameters can
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yield similar cutting force predictions, even if individual parameters differ significantly.
This reinforces the need for performing global sensitivity analyses or using design-of-
experiments approaches to probe the parameter space more fully, rather than varying
one factor at a time. In practice, when implementing a gradient-based inverse
identification, one must ensure that the chosen experimental observables provide
enough information to distinguish the effects of each parameter. For instance,
measuring both forces and chip morphology provides more constraints than measuring
forces alone, improving parameter identifiability [48]. Likewise, using several cutting
test conditions can help decouple parameters that have overlapping effects under a
single condition. Modern approaches thus often combine multi-objective calibration
with multi-condition data to obtain a robust solution.

Notably, gradient sensitivity and perturbation techniques form the backbone of
calibration algorithms by providing the necessary derivative information. They not only
drive the numerical optimization but also offer physical insight into the machining
process itself revealing which material properties most strongly control outcomes like

force, temperature, and chip formation.

2.7. Research Gap

To position my work within the scope of machining optimisation, I have identified six
key studies that represent the state-of-the-art as shown in Table 2.1. This table compares
their methods, targets, and goals, and directly outlines the specific contributions my

thesis makes to advance the research.

Study Method Target Data  Goal Research Gap Filled

Kugalur Efficient Cutting Minimize error for Extend to more observables

Palanisamy Global force, feed Ti-6Al-4V; reduce (contact length,

et al. (2022) Optimizati force, chip manual effort thickness) to address non-

[33] on thickness uniqueness; calibrate
(Bayesian constitutive  and
/Gaussian models under a bounded
Process, global search.
GP)
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Hardt & Downbhill Forces, chip Improve accuracy Include friction Taylor-
Bergs (2021) Simplex temp., chip and study non- Quinney and a global
[34] Algorithm  geometry uniqueness of JC optimizer; add multi-
parameters condition constraints to
shrink solution space and

report uncertainty.
Aguret et al. Kalman Forces, Find material Uses more data (forces, chip
(2014) [49]  Filter Temperatur constants from thickness, contact length) to
e tests reduce error discrepancy and

improve accuracy.
Shrot & Ker Levenberg Chip shape, Robust parameter Implements a more stable,
(2011) [49] - Forces update for bounded method and
Marquardt simulations validates it on more scenarios

of cut section.
Shrot & Particle Forces Avoid local Combines robust search with
Baker Swarm (from minima with a faster, guided method and
(2011) [49] Optimizati simulation) global search uses multiple data types for
on better results.

Oxley Model Analytical Cutting Quick inversion Uses a  full, realistic
(2013) [49] Inverse Forces without simulation calibrated against
simulation force and chip geometry for

greater accuracy.

Table 2.1 : Summary of Research Gaps and Thesis Contributions
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Chapter 3 Methodology

3.1. Overview of the Methodological Approach

This research develops an integrated computational-experimental framework for
calibrating Johnson-Cook constitutive parameters and the Taylor-Quinney coefficient
under machining conditions for several undeformed chip thicknesses from the 2D
simulation to the 3D. The methodology systematically combines orthogonal cutting
experiments with finite element modeling and inverse optimization in a closed-loop
calibration process, as illustrated in Figure 3.1 and Figure 3.2

The approach begins with controlled orthogonal machining experiments that provide
quantitative measurements of chip geometry (thickness and contact length),
penetration force, and cutting forces. These experimental results serve as critical
calibration targets for numerical model development. A 2D finite element model is then
developed in Abaqus, accurately replicating the machining process with precise
boundary conditions, material properties, and friction modeling. Workpiece material
behavior is defined using the Johnson-Cook constitutive law, while the cutting tool is
modeled as rigid to simplify contact interactions.

Critically, while the Johnson-Cook parameters and Taylor-Quinney coefficient are
initialized using reference values from literature, these values serve only as a starting
point. At the core of the methodology is a Python-driven optimization loop that
iteratively adjusts the Johnson-Cook parameters along with the Taylor-Quinney
coefficient ( = 0.6-0.95). The Levenberg-Marquardt algorithm is employed for efficient
parameter identification, incorporating finite difference-based sensitivity analysis to
quantify each parameter's influence on machining outputs. This optimization process
minimizes discrepancies between simulation results and experimental data across
multiple criteria, including chip geometry and forces.

Upon achieving convergence in the 2D model, the calibrated parameters undergo
rigorous validation against independent experimental results. The validated model is
then extended to a 3D hybrid configuration for industrial applications. The
methodologies are robust due to their integration of experimental data with numerical
simulations, enabling accurate parameter identification under extreme machining

conditions. Figure 3.1 presents the Python-Abaqus optimization framework, detailing
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the automated workflow from experimental data input through parameter perturbation,

sensitivity analysis, and iterative updates to final validation.

New Set of Johnson-Cook Parameters

Abaqus <: \
:> Python
Extraction Data k
> Optimization
Sensitivity Parameter ~
Targeted Values
Experimentation

Figure 3.1 : Python-Abaqus optimization framework, highlighting Experimentation,

sensitivity analysis, and iterative updates.

While for Figure 3.2 illustrates the complete integrated workflow, showing the
progression from 2D model development and parameter extraction to 3D model

extension and industrial application validation.
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3D Hybrid Model
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Figure 3.2 : Workflow of the integrated experimental-numerical calibration process,

from 2D FE modelling to 3D validation

This approach establishes a rigorous algorithm for material model calibration in
machining simulations, combining computational efficiency with experimentation. The
subsequent sections provide detailed explanations of each methodological component:
Experimental design approach in Section 3.2, Numerical Simulation with Abaqus in
Section 3.3, Python-Abaqus Coupling in Section 3.4, and 2D to 3D simulation

optimisation workflow in Section 3.5.

3.2. Experimental Approach

The experimental machining data generated in this research are designed to produce a
reliable dataset for the inverse identification of material constitutive parameters. While
direct experimentation on 15-5PH was not used within the scope of this work, a rigorous
methodology was established by utilizing numerical data sets from the closely related
property, namely 17-4PH stainless steel. This approach ensures the experimental
foundation is both technically consistent with established machining research practices,

showcasing the accuracy of the algorithm.
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3.2.1. Material Selection

The work material for this study is 15-5PH (Precipitation-hardening) stainless steel,
chosen for its high strength and hardness coupled with good corrosion resistance,
which makes it attractive for aerospace and high-performance applications. 15-5PH
shares the same martensitic matrix and copper precipitate strengthening mechanism
as 17-4PH, resulting in a comparable response to materials behaviour under load.
However, direct cutting experiments on 15-5PH were not available for this research.
To compensate, experimental machining parameters and material data were obtained
from the literature on 17-4PH stainless steel, as shown on the Table 3.1. The Johnson-
Cook constitutive constants and cutting conditions for 15-5PH, a well-documented
alloy in machining research, were used as initial inputs to approximate the behavior of
17-4PH. This approximation is justified by the similar aging ability and strength levels
of 17-4PH and 15-5PH; both alloys reach high yield strengths between 1180 and
1310 Megapascal (MPa) and hardness after a single-step aging in the 480 to 620 °C
range [51]. This approach allowed the study to proceed with calibrating 15-5PH’s
material model despite the lack of direct empirical data, while maintaining the well-

established reference of 17-4PH.

Parameters A B n m C T-Q
Values 1000 700 0.50 0.75 0.05 0.80
Table 3.1 : Johnson-Cook parameter and Heat Infraction for 17-4PH Stainless Steel
[51].

3.2.2. Cutting Parameters and Tool Geometry
The cutting tool used for this research is rigid, with a manufacturer's code of
KPR95CTA6CLA?7 for the tool. In this tool, the designation as shown in Figure 3.3, TA6C
indicates a top rake angle of 6°, and LA7 indicates a clearance angle of 7° on the tool’s
flank. Also, Table 3.2 shows the features of the Cutting Tools for this study, which were
extracted from MISULAB.
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Symbol Feature Name Value Unit

CLA Clearance angle 7 °
CTA Cutting angle 6 °
EDG Edge length 15.504 mm
ESR Edge sharpness radius 0.03 mm
AMG Insert angle 55 °
REP Insert tip radius 11 mm
KPR Tool lead angle (KAPR) 95 °

Table 3.2 : Features of The Cutting Tools and their Parameters.

Thus, the tool had a moderately sharp geometry typical for finish turning operations.
This well-defined geometry with a known rake and clearance angle is important for
accurate simulation, since the tool angles affect the stress and contact conditions at the

chip-tool interface.

Figure 3.3 : Orthogonal Cutting Tools

The cutting conditions for the speed and feed were selected based on machining
parameters reported for similar PH stainless steels. A cutting speed of 120 m/min and
a feed rate of 0.20 mm/rev were applied, falling in the mid-range of conditions used in
prior 17-4PH and 15-5PH in this research study [52]. By extending this uncut chip
thickness ranging from 0.10 to 0.25 mm, we obtained multiple reference cutting
conditions for the inverse calibration. In practice, this meant that the experiments were
run at several uncut chip thicknesses, ranging from 0.10 to 0.25 mm, while keeping
speed and feed constant, allowing for the observation of several distinct chip formation
regimes. Using a range of uncut chip thicknesses is important because it produces

different chip morphology and force levels, thereby providing more data points to
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constrain the material model. Indeed, previous researchers have shown that calibrating
constitutive parameters over a design of experiments covering various cutting depths
and speeds leads to robust parameter identification [53]. Following that approach, the
inclusion of several depth-of-cutlevels in our setup helps to extract multiple calibration
points at different cutting stress states, which improves the reliability of the inverse

modelling results.

3.3. Numerical Simulation with Abaqus

To investigate the machining conditions of 15-5PH stainless steel, finite element
simulations were conducted using Abaqus under the same conditions as the
experiments. The simulation model replicates orthogonal cutting in both two
dimensions (2D) at different cut sections to three dimensions (3D), including the
detailed geometry, mesh design, boundary conditions, frictional interactions, and the
Johnson-Cook material constitutive behaviour. The following subsections describe the

modelling methodology in detail, as part of the thesis methodology, to ensure clarity.

3.3.1. Uncut-Chip Thickness (Href) Computation

Uncut chip thickness (H,.) is a critical parameter in turning operations that defines the
thickness of the material layer being removed or deformed during the cutting operation.
Computation of uncut chip thickness in the Misulab software is the critical step and needs
more attention. In the Figure 3.4, as shown below, the cut section (CS) is divided into
several 2D elementary orthogonal sections with an uncut chip thickness. The shape of
this section CS depends on the cutting conditions (depth of cut ap, feed f) and the tool
geometry (tool tip radius R). For the current case study, five intervals of reference uncut
chip thickness, which are 0.10, 0.15, 0.175, 0.23, and 0.25mm were used as the cut

section.
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h=0.250 h=0.175 h=0.100

Figure 3.4 : Schematic of the orthogonal cutting model. (a) 3D view of a turning
operation and (b) the corresponding 2D plane strain cutting slice with uncut chip

thickness Hy.qf. [54]

The 2D model represents a longitudinal section of the machining process under plane
strain conditions. The workpiece is modelled as a rectangular domain, as illustrated in
Figure 3.5 with dimensions large enough (several millimetres in length (L) and height
(H)) to prevent boundary effects from influencing chip formation.. The 2D models
accurately replicate the actual cutting insert geometry. For the workpiece, four-node
plane strain elements (CPE4R) are used. The mesh is refined in critical regions: the
primary shear zone and tool-chip interface, where strain and temperature gradients
are highest. The smallest element size is set to 5um, ensuring that at least 10-20
elements are in the uncut chip thickness for sufficient resolution. To balance
computational efficiency and accuracy, the mesh is partitioned into a fine zone near the
cutting region and a coarser zone elsewhere.

The cutting tool is modelled as rigid with a sharp edge and assigned the exact rake and
clearance angles from the experimental setup. Its surface mesh is designed to properly
interact with the refined workpiece mesh. All material properties, including density,
elastic modulus, thermal conductivity, and specific heat, are assigned based on 15-5PH

steel data to maintain consistency with physical behaviour.
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Figure 3.5 : Schematic of a 2D finite element model, showing the cutting depth, refine

mesh and boundary conditions.

3.3.2. Boundary Conditions and Friction

The simulation setup employed fixed boundary conditions for the cutting tool while
assigning a constant translational velocity of 2 mm/s to the workpiece along the cutting
direction. This configuration maintained the experimental cutting speed equivalence
while optimizing computational efficiency through mass scaling in the explicit dynamic
analysis. The selected machining cutting speed was 120 m/min across all uncut chip
thicknesses, preserving quasi-adiabatic conditions during chip formation while
enabling practical simulation times.
Through iterative simulations, we observed that increasing the friction coefficient from
the baseline p = 0.279 to p = 0.55 produced more physically realistic tool-chip contact
behaviour. This adjustment resulted in:

e Extended contact length along the tool rake face

e Improved stress distribution matching experimental observations

e Enhanced thermal interaction at the interface
However, the Table 3.3 illustrates the parameters used for the Abaqus Explicit model
for this research study in the properties of 15-5Ph stainless steel.

The contact interaction between the tool and workpiece is defined with frictional and
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thermal properties, and a friction model governs the tangential behaviour. In this
research, a Coulomb friction law with a constant coefficient of friction (u) is used to
model the tool-chip interface. Based on machining literature and stainless steel cutting
best practices, p was set in the range 0.3-0.5, and a value of p = 0.3 was used in the
simulation model. This simple model assumes a sliding interface with a constant
friction coefficient. This leads to a distribution of normal and shear stress along the rake
face, with an initially high, near-constant shear stress (sticking) that drops off toward

the edge of contact (sliding).

Category Parameter Value/Description
Workpiece Material Johnson-Cook Model A, B, n, C, m parameters
Tool Material Elastic Modulus (E) 620 GPa

Density (p) 14.6 g/cm?

Inelastic Heat fraction Taylor-Quinney, 3 = 0.6-0.95
Contact Properties Friction Coefficient (i) 0.279, adjusted to 0.55

Damping 3% critical damping

Heat Partition 85% to workpiece
Simulation Settings Analysis Type Explicit dynamic

Total Simulation Time 0.4sec in (Abaqus Software)

[teration Timing 8161.1sec in each Iteration

Table 3.3 : Material Properties and Simulation Parameters for 15-5PH Stainless Steel

Machining Model

At the tool-chip interface, thermal contact is also important. We enabled frictional
heating such that a fraction of the plastic work done by friction is converted to heat. In
Abaqus, by default, 85% of the frictional dissipated energy is converted to heat, and we
assume this for maximum heating effect. Additionally, a high thermal conductance was
defined for the contact to allow heat flow from the hot chip into the tool. The workpiece
material’s thermal properties were included so that temperature fields would evolve
realistically. As a result of these settings, heat generation occurs from two sources
during simulation: plastic deformation and friction along the tool rake face. The plastic
deformation was assumed to convert to heat at a specified inelastic heat fraction
(commonly 0.9, meaning 90% of plastic work converts to heat), which is standard for
metals undergoing adiabatic deformation. Together, these thermal conditions ensure

that the model predicts cutting temperature rise and thermal softening effects in the
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chip formation process. However, the mechanical and thermal boundary conditions:
the tool is fixed and thermally insulated, the workpiece is moving and adiabatic on free
surfaces, and the tool-chip interface obeys Coulomb friction with frictional heating

included.

3.3.3. Implementation of Johnson-Cook Parameters

To use this model in Abaqus Software, we input the five parameters (4, B, n, m, C) along
with the Taylor-Quinney coefficient, the reference strain rate and the relevant
temperature constants (melting temperature T,,.; and reference ambient
temperature). The simulations are fully coupled thermo-mechanical analyses, meaning
that the deformation (stress/strain) and temperature evolution are solved together at

1, so C directly

each time increment. In our Abaqus material definition, we set £y As 1s~
scales the increase in flow stress per decade of strain-rate increase. The temperature-
dependent term was implemented with T,.,,,, as 20°C and Ty, At 1440 °C, which
attained the property of 15-5PH stainless steel, to properly normalize the homologous
temperature in the J-C model. Table 3.4 below shows the Johnson-Cook parameter for

15-5PH, which was set as the reference initial parameter.

Initial A B n m C % Toor  Tooom T-Q
Parameters
Values 855MPa  448MPa  0.14 0.63 0.0137 1.0s™! 1440 20 0.70

Table 3.4 : Johnson-Cook parameters and Taylor Quinney for 15-5 PH [39]

Since the experimental data for 15-5PH wasn’t given, we used the Johnson-Cook
Parameter of 17-4PH stainless steel, showing the machining condition, and then
optimized it for 15-5PH to reach the 17-4PH machining condition. We used literature
values of ]-C parameters for 15-5PH as a first guess, as shown in Table 3.4 above. These
initial values were further adjusted to account for 17-4PH’s material behaviour
parameter.

The Johnson-Cook parameters were implemented in Abaqus by editing the input file
and via Python scripting to ensure consistency and automation in this research. A
custom Python script was developed to automate the simulation workflow for inverse
identification: it would read a set of ]-C parameters, along property, modify the Abaqus

.np file accordingly updating the Material definition section with the new A, B, n, m, C
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and Taylor-Quinney values, submit the job, and then extract results for cutting force,
penetration force, chip thickness, and contact length from the output database (odb).
This automation allowed running numerous simulations to search for the parameter
set that best matches the experimental results. The script also ensured that each
simulation had the same mesh, boundary conditions, and settings, varying only the
material parameters, which is crucial for a fair comparison. The inp modifications
included not only the material behaviour flow stress parameters but also the Equation
of State for thermal coupling and Specific Heat to calculate temperature rise. Because
Abaqus’s built-in Johnson-Cook model was used, the coupling between strain rate and
temperature is inherently handled: the instantaneous temperature is used in the
material model at each increment to reduce the yield stress, and the current strain rate
is used to increase it, achieving a realistic material behaviour parameter.

During the simulation, the cutting conditions were identical to those of the
experiments: a cutting speed of 120 m/min, with uncut chip thicknesses ranging from
0.10mm for a “light cut” to 0.25mm for a heavier cut, and a feed of 0.2 mm/rev in the
actual turning tests. The 3D model, on the other hand, simulates each cut segment of
the uncut chip thickness. By keeping these conditions consistent, the simulation
outcomes, cutting forces, and chip morphology can be directly compared to
experimental measurements for validation and for the inverse identification of the J-C
parameters.

The steady-state chip thickness from the simulation was then compared to the
experimentally observed chip thickness. The cutting force F; and penetration force F,
were obtained from the simulation by orientation of the reaction forces on the tool in
the cutting direction and penetration direction, respectively. In Abaqus/Explicit, the
contact forces on the rigid tool can be output; were will integrate this over time or take
an average during the steady cutting phase to get a representative force value. The
contact length along the tool rake face, the length of the tool in contact with the chip,
was determined by examining which nodes/elements of the chip were in contact with
the tool at steady state. That distance from the tool tip is the contact length. All these
processing steps were done using either the Abaqus Visualization module or automated
via script to ensure accuracy.

However, the numerical simulation in Abaqus software provided a virtual machining
experiment under controlled conditions identical to the real cutting tests. The Johnson-
Cook material model was implemented and calibrated for 15-5PH, allowing the

simulation to predict how this material shears and softens at high strain rates and
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temperatures. By matching the simulation to experimental cutting forces, chip
geometry, and perhaps temperatures, the |-C parameters were inversely identified with
accuracy. This detailed FE simulation methodology forms a core part of the research’s
approach, ensuring that the results are grounded in a rigorously developed model. The
algorithm was run iteratively, and the processing of outputs like chip thickness, forces,
and contact length enabled direct comparison to experiment, thereby validating the

model and supporting the material parameter identification.

3.4. Python-Abaqus Coupling

In this research, a Python scripting interface is coupled with Abaqus finite element
simulations to automate the simulation-optimization loop. Python scripts modify
Abaqus input files (.inp), submit analysis jobs, and then parse Abaqus output database
files (.odb) to extract results of interest. This integration allows iterative refinement of
material parameters-specifically the Johnson-Cook constitutive parameters and the
Taylor-Quinney coefficient-based on comparisons between simulation outputs and
experimental measurements. The following subsections detail the data extraction

process and the overall automation workflow.

3.4.1. ODB Data Extraction

Abaqus stores simulation results in an output database file (.odb). Using the Abaqus
Python scripting API, the developed script opens each .odb after a run and
programmatically retrieves the machining outcome needed for calibration. In
particular, the script queries the output database for: chip geometry, tool-chip contact
length, and the forces. These quantities may be obtained from field output data or
history output probes defined in the model. For example, the chip thickness can be
determined from nodal displacement/coordinate data measuring the thickness of the
formed chip at steady-state, while the contact length can be extracted from the contact
status along the tool-chip interface. The cutting and penetration forces are obtained
from reaction force outputs on the tool in the cutting direction and penetration
direction, respectively. The Python script uses Abaqus Scripting Interface commands
to access such results from the odb without manual intervention. The extracted values
are written to an output text file for further processing. This automated extraction is
crucial for the iterative optimization. it enables the loop to evaluate the simulation vs.

experiment discrepancy after each run. As a sample, the script can launch an Abaqus
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job for a given input file and, upon completion, directly open the resulting odb, read
specified node or element outputs, and save these results. By automating the
processing in this manner, the methodology ensures that the key machining condition
indicators are consistently obtained from each simulation run for comparison with

experimental values.

3.4.2. Automation Workflow
The process of the Python workflows begins with an initial guess of J-C material
parameters and TQ coefficient, then cycles through simulation, error evaluation,
sensitivity analysis, and parameter update (via Levenberg-Marquardt) until
convergence. Figure 3.6 showcases a Flowchart illustrating the Python-ABAQUS

coupled simulation and optimization workflow.

| Rua INP varying JC within £20% to Generate ODB |
1

v ' ! '
Gradient Run Chup Thickness Run Contact Length Run Cutting Force Run Penetration Force
Sensitivity Seript on BAT File Script on BAT File Script on BAT File Script on BAT File
and Extract and Extract and Extract and Extract

Computation

| Collct all exracted dm: of 220% 1 Parameters |

| Compute Gradient via Finie Diff:mce Method and Normalised |

| Optimisation: Lm‘wberngmciuardt: Kowe = &g — (PIFF |
| Computing new J-C Parameter into Modified INPFile |

Refine Material Behaviour .| Run Modified INP File to
Values to get a new INP File. Generate ODB Output
|
' 1 1 1

Run Chip Thickness Run Contact Length Run Cutting Force Run Penetration Force Cost Function

ScptonBATFile | | SciptonBATFile | | ScripronBATFile | | Scripton BATFile :
and Extract and Extract nd Etract +ui xiract Computation

|
Link all quantities into
the Error Calculation

Compute Residual Error: £ = (Exp - Sim) / Exp ‘

Python Flowchart Setup

Convergence
Error Test

If e = 1%, varying +20% J-C
Parameters

iAccepted ifError: £ €1%

Figure 3.6 : The inverse algorithm flowchart was adopted for the identification of the

material behaviour parameter on the Python interface.

The overall automated workflow in the Figure 3.6 above proceeds as follows. First, an

initial set of J-C parameters (Reference Johnson-Cook Parameters of 15-5PH Stainless
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Steel) and the Taylor-Quinney coefficient is assumed. These values are embedded in
the Abaqus input file; for instance, the material definition in the .inp file is updated with
a Plasticity line for the Johnson-Cook model and an Inelastic Heat Fraction for the TQ
coefficient. This ensures the FE model uses the current parameter values for material
behaviour. The Python script automates the editing of the input file and then utilizes
Abaqus to run the simulation (e.g., via a command like 'abaqus job file in the inp"). Once
the simulation completes, the script extracts the resulting chip thickness, contact
length, cutting force, and penetration force from the .odb as described in Figure 3.6.
These simulation outputs are then compared to the experimentally measured values
for the same machining conditions. Firstly, before Optimisation begins, a convergence
criterion is evaluated using the residual error in each output, as shown in Eq. (3.1),
while for Eq. (3.2) is for the Residual Error for all Machining Output.

€xp _ psim
Residual Error for Each Machining Output: ¢; = ELET? (.1

4

. . 1 ¢4 .2 I o 3.2
Residual Error for all Machining Ouput: Too Yic1 &5 = Too Zi=1 ‘ET (3:2)
i

Where; Eie *P. the experimental value.

ES™: the simulation result for that metric.

This relative error indicates how far the simulation is from reality (Experimental
Machining). If the magnitude of ¢; If all key outputs are within an acceptable tolerance,
it should be max;%¢e; < 2%. Then, if not, the current parameters are considered
calibrated. When calibration has not yet converged, the Python-Abaqus coupling enters
an iterative loop to update the material parameters using a Levenberg-Marquardt (LM)
optimization algorithm.

The optimisation algorithm starts with the Gradient Sensitivity Computation, where
the influence of each material parameter on each output is quantified via a gradient-
based sensitivity analysis. The script perturbs each Johnson-Cook and Taylor-Quinney
parameter with AX; = aX;, By a small amount (using a symmetric percentage of a =
0.20 of the current value, X;) and runs additional Abaqus simulations for each
perturbation. For each parameter, it was either conducted to run in the range of with
AX; increased i.e. 1.24X; to the decrease range of AX; i.e. 0.84,; which is +0.20 range,
while keeping all other parameters at their current values. From these perturbation

simulations, the changes in outputs are recorded. A forward finite difference
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approximation is shown in Eq. (3.3) is then used to estimate the partial derivative of

each output. F; for parameter AX;:

OF _ FXi+AX) = F(X) (3.3)
ox; AX;

Where;  AX; = aX;(a = 0.20): +20% of the base J-C parameter value
F(X;*4X;) =Perturbation Outputs Values
F(X;) = Baseline Outputs Values

These derivatives form a Jacobian (sensitivity) matrix, which is; /] € R™" Of m and n
(here m=4outputs and n=6parameters) as shown in Eq. (3.4) By construction, the (i.j)
entry of ] is the sensitivity of output I, where I are the chip thickness, contact length,

cutting force, and penetration force, Also concerning parameter J as f3, A, B, n, m, or C.
JF, O0F, O0F, O0F, 0F 0F
aT, A 9B on om aC
dF, OF, O0F, O0F, O0F, OF,
|or, 3 @B m am ac
K=ok, ok ok, oR, oR oR, B4)
T, 0A 9B on dm 0dC
JF, O0F, O0F, O0F, O0F, O0F,
aT, 34 B on oam oC

Given the disparate matrix and magnitudes of outputs and parameters, we normalize

the sensitivities for meaningful comparison. A normalized sensitivity matrix in Eq. (3.5)

_ Xi0F (3.5)
Y F; oy,

It is formulated by scaling the partial derivatives to a normalised sensitivity matrix in

Eq. (3.6);
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OF,T, OF,A OF,B 0F,n O0Fn OF C
dTgF, 0AF, 0BF, onF, dmF, 0CF,
0F,T, OF,A 0F,B 0F,n dFn 0F,C
dTgF, 9AF, 0BF, OnF, OmF, OCF,
T =\ar1, 0F,A 0F,B 9F;n 0Fsn 0F C (3.6)
dTgF; 0AF; 0BF; OnF; 0mF; dCFy
OF,T, OF A 9F,B dF,n dFn dF,C
aTqF, 0AF, 0BF, onF, OmF, OJCF,

Each derivative for the parameters; dx, represents the fractional change in output 0F;

caused by a fractional change in the parameter X;. This normalization facilitates

assessing which parameters have the most pronounced effect on each output. The

sensitivity analysis thus identifies the most and least influential parameters and

provides the local gradient needed for the optimization algorithm. [55].

Then, for the Parameter Update via Levenberg-Marquardt, with the normalised

sensitivity matrix | Computed, the algorithm updates the parameter set of [[3, A, B, n,

m, C] to reduce the output error. We define a cost function of r; which will be used in

Eq.(3.7) as;

r, = EfP — Ef™m (3.7)
As the sum of residuals between simulation outputs and experiments. For all four target
outputs, the cost is shown in Eq. (3.8).
E=Xiin= X (B - E7™) (38)

The goal is to find the parameter adjustment of the materials' behaviour that minimizes

the machining outputs. A Newton-Raphson or Gauss-Newton approach would solve | =

or
dp

where | is the Hessian matrix of second derivatives to update the parameters. Here,
we adopt the Levenberg-Marquardt (LM) algorithm as shown in Eq. (3.9), and Eq.
(3.10), which is a robust variant of Gauss-Newton, to perform the update. The LM
method is well-suited for non-linear least squares problems and is more robust than
plain Gauss-Newton in many cases. It works by blending Gauss-Newton steps with
gradient-descent steps, controlled by a damping factor A. Specifically, LM uses the
Jacobian, ], to approximate the Hessian as H, which is 7] (the Gauss-Newton

approximation) and computes the parameter correction by solving the modified

normal equations in the Eq. (3.10).
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J'J+ Dap =]"r (3.9)

b= =0T+ (3.10)
Here r Is the vector of output errors. By adding 4 (a scaled identity matrix) To the
Hessian approximation, the algorithm damps the update step. The value of 1 is place
at 1072, This adaptive damping gives Levenberg-Marquardt optimisation to improve
stability compared to a standard Newton method, especially if the initial guess is far
from the optimum or if J7]. Also, to keep the optimized parameters physically
meaningful for martensitic precipitation-hardening stainless steels, a boundary limit
is imposed so that the Johnson-Cook constant or the Taylor-Quinney coefficient
cannot drift outside the range value of the property for martensitic steel. The limits
were compiled from alloys with closely similar material behaviour property to 15-
5PH—17-4PH, PH13-8Mo, and Custom 465, as shown in Table 3.5 and applied after

each Levenberg-Marquardt update as a simple box-projection. [56]

Set Parameter T-Q A B n m C
Lower 0.60 400 100 0.05 0.5 0.005
Upper 0.95 1100 800 0.8 0.9 0.900

Table 3.5 : Boundary Limit for the 15-5PH Stainless Steel. [56]

Thus, the trial update for a new set of parameters is optimised between lower and
upper bounds according to Eq. (3.11).

Prew = min(max(Pyq + Ap, Piower), Bupper) (3.11)
The theory for this parameter estimation approach is based on the deterministic
Levenberg-Marquardt algorithm as described by Guyon and Le Riche, where
sensitivities and a modified Hessian are used to iteratively refine model parameters in

a least-squares sense. The updated parameter vector, which is shown in Eq. (3.12).

Brew = Poig +4p (3.12)

Where; P, Is the new set of Johnson-Cook Parameters and Taylor-Quinney Cofficient
P14 Is the previous set of Johnson-Cook Parameters and Taylor-Quinney

Cofficient
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This is then written back into the Abaqus input file, replacing the old Johnson-Cook
Parameters and Taylor-Quinney values. The Python script then launches a new Abaqus
simulation with the modified input and again performs ODB extraction of chip
thickness, forces, etc. The new simulation outputs are compared to experiments,
yielding new residual errors. r;. The convergence test is repeated: if all errors are now
within tolerance, the optimization stops; if not, another iteration (sensitivity analysis +
LM update) is executed. In this manner, the loop continues until either convergence is

achieved or a maximum number of iterations is reached.

3.5. 2D and 3D Simulation Optimisation Workflow

With a robust inverse identification procedure in place, the simulation workflow
proceeds in two stages: a 2D calibration stage followed by a 3D validation stage. This
two-tier approach leverages the strengths of simple 2D models for efficient parameter
tuning and then confirms the material model’s performance in a more realistic 3D
cutting scenario. The overall goal is to ensure that the identified constitutive
parameters not only fit the 2D orthogonal cutting data but also generalize to true 3D

machining conditions representative of industrial applications.

3.5.1. 2D Calibration Stage (Orthogonal Cutting in Plane Strain)
In the first stage, an orthogonal cutting simulation is performed in two dimensions. The
workpiece is modelled as a rectangular plane, and the cutting process is simulated as a
cross-sectional slice of a continuous chip formation. This 2D model captures the
primary shear plane and tool-chip interface physics while assuming the width of cut is
effectively infinite (no edge effects), which is a reasonable approximation for testing
constitutive response in a controlled way. The advantage of the 2D FE model is its
computational efficiency and stability; it involves far fewer elements than a full 3D
model and thus runs faster, enabling the iterative optimization loop described in
Section 3.4 to be executed in a feasible time. Using the 2D simulation, the Johnson-Cook
parameters and the Taylor-Quinney heat coefficient are calibrated by minimizing the
error between simulated and measured chip thickness, contact length, cutting force,
and penetration force. The Python-driven loop automatically updates the material
definition and reruns the 2D simulation until convergence criteria are met, yielding a
parameter set that closely reproduces the experimental cutting data in the 2D

orthogonal cut model. Throughout this stage, the cutting conditions (cutting speed,
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uncut chip thickness, tool geometry, friction, etc.) are matched to the experiments. For
instance, if the experiments were at 120 m/min with an uncut chip thickness of
0.20 mm, the 2D simulation uses the same conditions. By the end of the 2D calibration
stage, we obtain a tuned material model that provides an excellent fit in an idealized

orthogonal cutting scenario.

3.5.2. 3D Validation Stage for the Full 3D Machining Simulation
To move from 2D to 3D integration is cast as a single multi-condition inverse problem
that yields one calibrated parameter vector for all simulations. All 2D orthogonal-cut
cases are fused by stacking a 12-output bundle composed of exactly: one deformed chip

thickness, one tool-chip contact length, five cutting forces (from five H.r conditions),
and five penetration forces (the same five H,.r conditions). Using this bundle, a

normalized residual vector is formed by comparing each simulated observable to its
experimental counterpart. Local sensitivities are then computed by forward finite
differences, perturbing each parameter for Taylor-Quinney, {3, and the Johnson-Cook
set A, B, n, C, m by £20% while holding the others fixed. This yields a 12x6 Jacobian that
feeds the Levenberg-Marquardt update. The cost function is the weighted sum of
squared normalized residuals across the 12 outputs; the parameter increment solves
the damped normal equations as shown in Eq. (3.13).

J™WTwj+ D Ap = J"WTWr (3.13)

[terations continue until every element of the 12-component residual meets the
convergence tolerances defined earlier. With a single best-fit coefficient set Ap =
[B,A, B,n, C,m] identified from the fused 2D problem, the model is lifted to 3D without
re-tuning the material law. The validated 2D orthogonal configuration is extruded to
3D (same rake/clearance, friction, Taylor-Quinney setting, and tool-fixed /workpiece-
moving kinematics), and the same 12-output bundle is regenerated: one chip thickness,

one contact length, five cutting forces, and five penetration forces across the five Hy.¢

cases. Here, it is a complex multiscale condition 2D fusion to obtain one physically
consistent 3 + Johnson-Cook set, followed by direct reuse in 3D-demonstrates that the
calibration generalizes from 2D to 3D machining predictions without post-hoc

parameter tweaking.
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Chapter 4 Results and Discussion

The results and discussion present a comprehensive analysis of the results obtained
from the coupled Python-Abaqus, along with the Levenberg-Marquardt optimization
workflow. The approach described in Chapter 3 was implemented to calibrate the
Johnson-Cook (J-C) material parameters and the Taylor-Quinney (TQ) heat conversion
coefficient for 15-5PH martensitic precipitation-hardening stainless steel under
orthogonal cutting conditions. It is pertinent to note that, in the absence of machining
experimental data for 15-5PH, the calibration was performed against experimental data
for 17-4PH stainless steel numerical data to validate the optimized model. The 17-4PH
stainless steel is a material with closely related martensitic precipitation-hardening
characteristics. The primary objective of this chapter is to evaluate how accurately the
calibrated model replicates this experimental machining behaviour across varying

undeformed chip thicknesses (Hy.f) and to discuss the physical implications of the

results for machining mechanics and predictive modelling. Figure 4.1 illustrates the
numerical simulation results for each H,.r case, showing the chip formation, stress
distribution, and temperature fields obtained from the optimized parameter set.

The experimental data for 17-4PH showed a consistent increase in chip thickness, cutting

force, and penetration force from the lightest cut section (0.10 mm H,..¢) to the heaviest
(0.25 mm H,..¢), a trend that the numerical simulation successfully captures, as shown

comprehensively in Figure 4.1. Observation trend for the tool-chip contact length, which

increased from 0.10 mm to 0.150 mm, 0.175 mm, and 0.230 mm H,..¢, before showing a
slight reduction for the last cut section of 0.250mm H,...

The results follow a structured approach. First, the performance of the reference
material parameter set is compared with experimental results to show the initial
deviations. This serves as a baseline to understand the limitations of using uncalibrated
parameters in high-strain-rate machining simulations. Next, the results from the
optimized parameter set derived from the automated optimization loop are evaluated
with experimental results in detail. The result discussion addresses key machining
outputs, namely chip thickness, tool-chip contact length, cutting force, and penetration

force, across five Hy,; conditions (0.10 mm, 0.15 mm, 0.175 mm, 0.23 mm, and 0.25

mm). The analysis also includes an examination of error convergence trends and the

stability of the optimization loop, providing a clear view into both the numerical
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modelling and the physical reliability of the identified parameters.

Figure 4.1: Numerical simulation results showing chip geometry, workpiece, and tool

for each H,..f case

The results are interpreted not only quantitatively, using residual error metrics and
graphical comparisons, but also physically, with an emphasis on the thermal-mechanical
phenomena underpinning the observed machining responses. In doing so, the research
shows how parameter calibration enhances the predictive result of the model, enabling
accurate simulations that are suitable for both 2D orthogonal cutting and the extension

to 3D process simulations in future studies.

4.1. Comparison of Experimental and Simulated Results

Across H,..r Cases

This section opens the results-and-discussion chapter by putting the experiments
side-by-side with two simulation states:

e The reference Johnson-Cook/Taylor-Quinney set used to seed the loop.

e The optimized set produced by the Python-Abaqus, along with the

Levenberg-Marquardt routine.

e The five undeformed chip thickness levels were evaluated.
For each H,.r, we compare four observables that capture the core physics of
cutting: chip thickness, tool-chip contact length, cutting (tangential) force, and
penetration (thrust) force. Across all cases, the reference model shows typically

from 20-40% on geometry and 28-40% on forces, while the optimized model
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brought those differences to sub-percent for chip thickness and both force
components less than 1%, and to 4.35% for contact length. Error-reduction traces
show fast, monotonic convergence in <5 iterations for every H,.r; the most
optimised match occurs at 0.10mm H,.f, i.e, residuals fall from 74.35% to
0.053%, and the least optimised was 0.25mm Hyep, which is around 4.77%, which
is still acceptable given the stronger thermal/friction non-linearities at the

highest feed.

4.1.1. Chip Thickness
Experimentally, chip thickness increases monotonically with H..¢ from about 0.185 mm
at 0.10mm H,.f to roughly 0.436 mm at 0.25mm H,..r as shown in Figure 4.2. This

shows stronger plastic compression as the undeformed chip thickness grows. This
metric condenses the combined influence of strain, strain rate, and temperature in the
primary shear zone, so it is a sensitive indicator of whether the constitutive law and heat
conversion are realistic. With reference parameters, the model over-compresses the chip

by an average of 21.94% across all H,..r between the Reference set and Experimental
values. After optimisation, the model across all Hy.. ¢, at an average drops to 0.49%, and
the optimised curve collapses onto the experimental points at all five H,..¢s. Physically,

that means the updated set of the Johnson Cook and Taylor-Quinney coefficient is
producing the right effective flow stress over the actual strain-rate-temperature effect,
so the shear plane angle and chip compression ratio are being predicted correctly. This
fully shows that on-chip thickness is important, it also shows the thermal softening of
the J-C Parameters and the inelastic heat fraction of the Taylor-Quinney now balance

plastic work and heat generation such that the steady chip forms at the correct geometry.
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Figure 4.2 : Chip thickness against H .. for both Experiment, Reference, and

Optimisation.

4.1.2. Contact Length

The measured tool-chip contact length increases from 0.077 mm at 0.10 mm H,.f to
approximately 0.314 mm at 0.23 mm H,¢, before slightly dropping to 0.297 mm at 0.25
mm H,.r. This mild non-monotonic behaviour at the highest feed is physically
reasonable. As the undeformed chip thickness grows, the load and temperature along the
tool-chip interface rise, modifying the frictional regime on the rake face. This shifts the
balance between sticking and sliding zones and can shorten the effective sticking zone

despite thicker chips.

Contact length is highly sensitive to interface physics, including pressure- and
temperature-dependent friction and heat partition, as well as bulk material flow stress.
Consequently, it often shows the largest prediction error when using a simplified
constant-friction model. In this study, the reference simulation showed a deviation of
about 41.20% across all H,.s cases. After optimisation, the error dropped to
approximately 4.35%, indicating that the updated Johnson-Cook and Taylor-Quinney
parameters refined the pressure-temperature distribution in the deformation zones and

improved the predicted sticking-zone length.
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The remaining small error at the 0.25mm H,.. is attributed to:

e The simplified friction model in the 2D orthogonal simulations.
e The absence of tool edge or nose radius effects present in real cutting operations.

o The high sensitivity of contact length to thermal partitioning at higher feeds.

The Figure 4.3 shows the trends of the Tool-Chip Contact length across all H,..r, where it

shows in a plot of both the experiment, optimised and reference value residual errors.
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Figure 4.3 : Contact Length against H,..¢ for both Experiment, Reference, and

Optimisation.

4.1.3. Cutting Force (Tangential)

The tangential cutting force exhibits a steady and predictable increase as the
undeformed chip thickness (H,.) rises from 0.10 mm to 0.25 mm. At the lightest cut
section (0.10 mm H,.¢), the experimental cutting force is approximately 297 N, and this
value escalates to around 672 N at the heaviest cut section (0.25 mm H,..¢). This upward
trend directly shows the increase in the engaged material area and the corresponding

rise in the average shear stress developed in the primary deformation zone during the

cutting process.
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Under the reference Johnson-Cook and Taylor-Quinney parameter set, a significant
deviation from the experimental measurements is observed, with an average error of
approximately 40.21% across all H,..; levels. After applying the Python-Abaqus-LM
optimisation loop, the tangential cutting force predictions show a remarkable
optimisation improvement. The residual error reduces sharply to 0.34%, and the slope
of the optimised cutting force across all Hf curve aligns almost perfectly with the
experimental results across all five cutting conditions. This level of agreement
demonstrates that the optimised parameters accurately capture the mechanics of the
primary shear zone, ensuring that the numerical model reproduces the stress-strain

response of the material under dynamic conditions as shown in Figure 4.4.

From a physical perspective, the improved agreement indicates that the optimised
Johnson-Cook parameters (A, B, n) successfully capture the static strength and strain-
hardening characteristics, while the parameters (C, m) effectively model the strain-rate
sensitivity and thermal softening effects in the cutting regime. Additionally, the inclusion
of the Taylor-Quinney coefficient (8) ensures a realistic partitioning of plastic work into
heat, which is critical for balancing the thermal-mechanical state within the primary
shear zone. This balance is evident in the accurate force predictions, confirming that the
model not only replicates the magnitude of the forces but also their underlying energy

distribution mechanisms.

However, Such accuracy is particularly valuable for predictive simulations, enabling the
calibrated model to serve as a reliable foundation for more complex 3D cutting
simulations and digital twin applications, where precision in force prediction is essential

for process planning, tool design, and performance optimisation.
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Figure 4.4 : Cutting Force against H,..s for both Experiment, Reference, and

Optimisation.

4.1.4. Penetration Force (Thrust)

The penetration force, often referred to as the thrust force, shows a progressive increase
with undeformed chip thickness (Hy.f), consistent with experimental observations. At
the lowest H¢ of 0.10 mm, the measured thrust force is approximately 122 N, while at
the highest H,.r of 0.25 mm, it rises to around 204 N. This trend is expected and aligns
with fundamental cutting mechanics, as higher chip loads translate into greater normal

pressures acting on both the rake and flank faces of the tool.

Physically, the thrust force reflects the interaction between chip flow angle, local
pressure distribution, and thermal-mechanical effects at the tool-chip and tool-
workpiece interfaces. It captures how chip formation and secondary deformation
influence the directional partitioning of loads during the cutting process. Under the
reference Johnson-Cook and Taylor-Quinney parameter set, a noticeable optimisation is
observed, with an average deviation of approximately 28.37% across all H,..; conditions.
Following the Levenberg-Marquardt-based optimisation loop, the error was drastically

optimised to 0.14%. This significant improvement confirms that the optimised
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parameter set not only captures the magnitude of the penetration force but also
accurately reproduces the directional balance between tangential and normal
components of the cutting forces. Such accuracy demonstrates that the chip flow
kinematics and local stress distributions predicted by the finite element simulations are

consistent with the actual machining behaviour.

From a practical perspective, achieving this level of agreement is crucial. It enables more
reliable predictions for tool loading, tool deflection, and surface integrity trends,
particularly under severe plastic deformation conditions. Accurate thrust force
modelling also supports process optimisation in areas such as tool wear analysis, cutting
parameter selection, and machining stability assessments, ensuring that simulation-
driven results translate effectively to real-world operations. The Figure 4.5 shows the
trend of the optimisations from the reference cutting force to the experimental cutting

force.
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Figure 4.5 : Penetration Force against H,..r for both Experiment, Reference, and

Optimisation.
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4.2. Residual Error Analysis Before and After

Optimization

The efficacy of any optimization process is ultimately judged by its ability to reduce the
discrepancy between predicted and experimental results. This section part provides a
detailed quantitative analysis of these discrepancies, termed as error residuals, both
before (using the reference parameter set) and after the Levenberg-Marquardt
optimization. This side-by-side comparison offers the most direct and compelling
evidence of the calibration workflow's success, moving from a model with significant

inaccuracies to one of high predictive fidelity.

4.2.1. Baseline Model Errors (Pre-Optimization)
The initial reference parameter set, while providing a starting point for the simulation,
resulted in substantial deviations from experimental observations. These deviations are
quantified in Table 4.1, which lists the percentage error for each output metric across all

five H,.. s values. The errors are calculated as shown in Eq. (3.2).

Hyer (mm) Chip Thickness Contact Length Cutting Force Penetration
Error (%) Error (%) Error (%) Force Error (%)
0.10 23.11 66.84 41.45 26.77
0.15 21.67 27.36 39.95 26.46
0.175 22.12 39.83 39.88 27.17
0.23 22.22 41.06 39.94 30.42
0.25 20.60 30.88 39.79 31.01
Average 21.94 41.20 40.21 28.37

Table 4.1: Percentage Error of Reference (Pre-Optimized) Model

The data reveals a consistent and significant underestimation across all machining
outputs. The reference model produced chips that were, on average, 21.94% thinner
than those observed experimentally, indicating an over-prediction of shear strain and an
incorrect representation of the material's flow stress and deformation mechanics. The

error in predicting the tool-chip contact length was the most severe, averaging at -
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41.20%, which points to a major deficiency in capturing the intricate thermo-mechanical

interaction and friction conditions at the tool-chip interface.

Most critically, the model severely under-predicted the mechanical loads. The cutting
force was underestimated by an average of 40.21%, and the penetration force by
28.37%. This systemic error confirms that the initial ]-C parameters failed to capture the
true dynamic strength of 15-5PH stainless steel under the high strain rates and
temperatures characteristic of machining. This baseline analysis unequivocally
demonstrates the necessity for a rigorous parameter calibration; using uncalibrated,
literature-derived parameters leads to simulations that are not just inaccurate but are

fundamentally non-predictive for precision machining analysis.

4.2.2. Improved Model Errors (Optimization)
The application of the Python-Abaqus-Levenberg-Marquardt optimization loop resulted
in a drastic reduction in residual errors, transforming the model from a poor
approximator to a highly accurate predictive tool. The optimization errors are detailly

shown in Table 4.2.

Hyer (mm) Chip Thickness Contact Length  Cutting Force Penetration
Error (%) Error (%) Error (%) Force Error (%)
0.10 2.0%1073 0 0.69 2.20
0.15 0 0 1.22 0.51
0.175 0.78 0 0.60 0.31
0.23 1.66 0 2.38 1.20
0.25 401075 21.75 1.83 1.12
Average 0.49 4.35 0.34 0.14

Table 4.2 : Percentage Error of Optimized Model

The error in predicting chip thickness was reduced from an average of 21.94% to a near-

perfect 0.49%. For the 0.10 mm and 0.25 mm H,.f cases, the error is virtually zero,

demonstrating that the optimised parameters perfectly capture the chip compression

ratio and shear plane mechanics.

The most challenging parameter to predict, the contact length, saw the greatest relative

improvement. While a residual error of 4.35% remains for the 0.25mm H,.f case, the
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average error was slashed from 41.20% to 4.35%. For four out of the five H,..s cases, the

error was eliminated to 0.00%.

The force predictions now exhibit exceptional accuracy. The average error for the cutting
force was reduced from 40.21% to a negligible 0.34%, meaning the model now
accurately replicates the energy required for the shearing process. Similarly, the error
for the penetration force dropped from 28.37% to a minimal 0.14%, confirming that the
model correctly captures the balance between cutting and penetration forces, which is

critical for predicting tool deflection, surface integrity, and overall process mechanics.

This comprehensive error analysis provides irrefutable quantitative evidence that the
automated calibration workflow successfully rectified the deficiencies of the baseline
model. The optimised parameter set enables the finite element model to function as a
truly powerful tool of the orthogonal cutting process for 15-5PH stainless steel, achieving

a level of accuracy that is sufficient for reliable industrial and academic applications.

4.3. Convergence Behaviour of the Optimization

Algorithm

The quantitative error reduction detailed in the previous section was achieved through
a systematic and iterative computational process. This section provides a critical analysis
of the convergence behaviour exhibited by the Levenberg-Marquardt algorithm
throughout the optimization routine for each individual H,.f case. The stability and
efficiency of this convergence are paramount, as they directly impact the practicality and
reliability of the entire calibration workflow. To evaluate this, the algorithm's
performance is tracked through the evolution of the total residual error, a composite
metric that agglomerates the squared percentage errors of all four key outputs, i.e., the
chip thickness, contact length, cutting force, and penetration force. The equation

governing this metric, as defined in the methodology, is given by:

This residual error serves as a single, powerful indicator of the overall discrepancy

between the simulation and experimental data at each iteration.
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Figure 4.6 : Error Convergence of Machining Output across all H..¢

As graphically shown in Figure 4.6, the algorithm demonstrated exceptionally robust and
rapid convergence in machining residual error across all five H,.; conditions,
consistently achieving a stable and highly accurate solution within five iterations. The
specific convergence trends offer profound insights into the process dynamics. The case
of the 0.10mm H,..f is particularly illustrative; it began with the highest initial residual
error of 74.35%, a figure that underscores the profound inaccuracy of the uncalibrated
reference model at a fine scale. However, the algorithm's corrective action was
remarkably effective, driving this error down to a virtually negligible 0.053% in its final
iteration. This case represents the most successful optimization within the dataset. A
similarly successful pattern was observed for the 0.15 mm, 0.175 mm, and 0.230 mm
H,.5 cases, which converged to final residuals of 0.02%, 0.01%, and 0.10% respectively.
The consistent, monotonic decrease in error across these cases confirms the algorithm's
reliability and its adeptness at navigating the complex parameter space across a range of

cutting conditions.

The 0.250 mm H,.f case, which represents the most severe cut and highest material
removal rate, presents a nuanced but equally valuable result. It converged to a final
residual of 4.77%, which, being the highest among the optimised results, still constitutes
a continuous improvement from its initial state. This slightly elevated residual is not a
mark of failed parameters but rather a reflection of the increased physical complexity

inherent to heavier cuts. At larger undeformed chip thicknesses, phenomena such as
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intense thermal gradients, strain localization, and more complex, pressure-dependent
friction states at the tool-chip interface become significantly more pronounced. These
factors push the boundaries of the simplifying assumptions inherent in the 2D
orthogonal cutting model and the Johnson-Cook constitutive equation. The fact that the
algorithm still found a stable solution that captures the essential mechanics with high

accuracy is proof of its robustness.

4.4. Analysis of Optimised Parameters and Physical

Interpretation

The result shown in Sections 4.1 and 4.2 is a direct consequence of the specific
adjustments the Levenberg-Marquardt algorithm made to the material parameters. This
section moves beyond the outcomes to interrogate the root cause, providing a detailed
analysis of the final optimised values for the Johnson-Cook and Taylor-Quinney
parameters. Interpreting the physical significance of these values is crucial, as it
transforms the optimization from an abstract mathematical curve-fitting exercise into a
physically informed calibration process that reveals the true thermo-mechanical

behaviour of 15-5PH stainless steel under extreme machining conditions.

The optimization process was conducted for each H,,r value independently, allowing
the model to identify the unique parameter combination that best replicates the
experimental data for each specific cutting geometry. The material parameter from the
reference to its optimized parameter, showing an accurate prediction of material
behavior, is illustrated in Figure 4.7. The final optimized values, extracted from the last
iteration of each corresponding block in the 'Result’ sheet, are consolidated in Table 4.3
to facilitate a comparative analysis. A review of this table reveals clear and mechanically
consistent trends. The initial yield stress (A) and the strain hardening parameters (B and
n) all underwent significant increases from their reference values (A=855 MPa, B=448
MPa, n=0.137). This systematic upward adjustment indicates that the original parameter
set, derived from literature or lower-strain-rate tests, severely underestimated the flow
stress and work-hardening character of 15-5PH stainless steel when subjected to the
ultra-high strains and strain rates prevalent in the primary shear zone during machining.
The optimised values for B, which now range from approximately 650 to 780 MPa, and
for n, which range from 0.35 to 0.55, are far more representative of a high-strength

martensitic precipitation-hardening stainless steel. This enhanced hardening capacity is
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the fundamental reason the optimised model can accurately predict the thick chips and

high cutting forces observed experimentally.
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Figure 4.7 : Error Convergence of Material Behaviour across all Hy..¢

Hyer (mm) T-Q Coefficient A (MPa) B(MPa) n m C

0.100 0.669 107593 748.86 0.351 0.850 0.027
0.150 0.880 830.14 77887 0.379 0.871 0.050
0.175 0.698 988.04 648.04 0.453 0.771 0.048
0.230 0.950 1073.15 704.86 0.549 0.806 0.042
0.250 0.842 950.35 67481 0.429 0.705 0.057

Table 4.3 : Final Optimised Parameters for Each H,. Case

Concurrently, the parameters governing the material's sensitivity to strain rate and
temperature were also refined. The strain-rate sensitivity coefficient (C) increased from
its reference value, enhancing the model's capacity to capture the material's pronounced
strengthening response at the exceptional strain rates characteristic of machining. The
thermal softening exponent (m) also increased, indicating a stronger weakening of the
material's flow stress as temperature rises in the shear zone. The algorithm's success lay
in its ability to find the precise balance between these competing effects: stronger strain-

rate hardening versus stronger thermal softening. This delicate equilibrium is
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fundamental to accurately capturing the thermal-mechanical state within the primary
shear zone and is the key to the model's improved predictive capability for both forces
and chip morphology. Furthermore, the optimised Taylor-Quinney coefficient (), which
varies from approximately 0.67 to 0.95 across the H,.f,, provides a critical insight. It
challenges the common simplifying assumption of a fixed value which is often 0.9. This
variation suggests that the fraction of plastic work converted to heat is not a universal
constant but is likely a function of the specific process conditions, potentially due to
microstructural energy storage mechanisms that become less significant under the more

adiabatic conditions of heavier cuts.

4.5. Overall Discussion and Implications

The comprehensive results presented in this chapter collectively demonstrate a
resounding success for the proposed inverse calibration methodology. This section
synthesizes these findings to articulate their broader significance, translating the
numerical outcomes into a discussion on their impact for the field of computational
machining mechanics. The most immediate and critical conclusion is that the use of
uncalibrated material parameters, even those sourced from reputable literature, for
high-strain-rate machining simulations can lead to fundamentally non-predictive
results. The initial errors of 20-41% documented in Section 4.2.1 are of a magnitude that
renders any simulation useless for practical industrial application, whether for tool
design, process planning, or force prediction. This unequivocally underscores the
indispensable value of a rigorous, output-based calibration protocol, such as the one

demonstrated here, for achieving predictive accuracy.

Beyond the specific parameters for 15-5PH, this study validates the Levenberg-
Marquardt algorithm as an exceptionally powerful tool for tackling complex inverse
problems in manufacturing. Its ability to converge to a highly accurate solution within a
handful of iterations makes the process computationally feasible, despite each iteration
requiring a full finite element analysis in Abaqus. This computational efficiency is a major
strength, making the methodology applicable to other materials and processes without
prohibitive cost. The implications of successfully creating such a highly accurate
numerical simulation for the orthogonal cutting of 15-5PH are substantial. This
calibrated model can now be deployed with confidence for virtual process optimization,
allowing engineers to test cutting parameters to minimize forces, reduce power

consumption, or improve projected surface integrity before committing to costly
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physical trials. It provides a reliable foundation for tooling design, enabling the
evaluation of new tool geometries and coatings in a virtual environment. Furthermore,
it serves as a robust foundational study for more advanced research, providing
trustworthy inputs for 3D machining simulations or investigations into residual stress,

white layer formation, and tool wear mechanics.

It is, however, important to acknowledge the limitations of the current model to scope
future work. The use of a constant coefficient of friction is a simplification that is likely a
primary contributor to the residual error in predicting tool-chip contact length,
especially at the 0.250 mm H,.;. This presents a clear and logical pathway for
subsequent research: the integration of a pressure- and temperature-dependent friction
model into the optimization loop. Despite this limitation, the achieved level of accuracy
is exceptionally high for a practical engineering context and firmly establishes the

calibrated model as a powerful and reliable predictive tool.
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Chapter 5 Conclusion

5.1. Conclusion

This research successfully developed a method to accurately determine the Johnson-
Cook material parameters and Taylor-Quinney coefficient for 15-5PH stainless steel
under machining conditions. Using an automated Python-Abaqus workflow with
Levenberg-Marquardt optimization, the study addressed five different uncut chip
thicknesses ranging from 0.10 to 0.25 mm. The initial reference parameters from
literature proved highly inaccurate, showing average errors of 21.94% for chip
thickness, 41.20% for contact length, 40.21% for cutting force, and 28.37% for
penetration force. These errors demonstrated that uncalibrated parameters cannot

reliably predict machining behaviour for this material.

After optimization, the errors drastically reduced to 0.49% for chip thickness, 4.35% for
contact length, 0.34% for cutting force, and 0.14% for penetration force. This
transformation from poor approximation to high-accuracy prediction occurred rapidly,
with the algorithm converging within five iterations for all cases. The most accurate case
improved from 74.35% error to just 0.053%, while even the most challenging case
achieved a substantial improvement despite the thermal and friction conditions at

higher feeds.

The optimization algorithm remained stable due to effective damping mechanisms,
accurate sensitivity calculations, and physical constraints that kept parameters within
realistic ranges for precipitation-hardening stainless steels. The resulting parameters
showed physically meaningful trends: increased strength and hardening characteristics
better representing the material's actual behaviour under high-strain-rate conditions,

while properly balanced strain-rate and thermal effects.

The Taylor-Quinney coefficient values ranged from 0.67 to 0.95 across different
conditions, challenging the common assumption of a fixed simulation value on ABAQUS
of 0.9 and indicating that heat conversion varies with specific process conditions.
Although the model used simplified constant friction, the adjusted friction coefficient of
0.55 produced effective tool-chip interactions. Despite all of these, the calibrated model
now achieves exceptional accuracy across all measured outputs, making it suitable for

predictive simulations and as a foundation for 3D validation studies.
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5.2. Future Work

Building on the strong foundation established by this research, several promising
directions emerge for further advancement. One compelling path is the integration of
Artificial Intelligence to enhance the predictive capabilities of the model. We propose
training a Neural Network using the high-fidelity data generated through our inverse
identification process. This Al system would learn the complex relationships between
machining parameters, material properties, and resulting outputs, enabling rapid
prediction of optimal machining conditions without requiring extensive finite element

simulations for each new scenario.

The methodology can be extended through a Multiscale approach that incorporates
additional critical manufacturing data beyond the forces and chip geometry measured in
this study. Specifically, future work should integrate residual stress measurements and
temperature distribution data into the inverse identification framework. This expansion
would provide a more comprehensive understanding of the machining process and
enable predictions of surface integrity and thermal effects that are crucial for high-value

components.

Finally, this research should evolve from the current 2D model to a comprehensive 3D
scale approach. While our method successfully validated parameters in 3D, future work
should develop a complete 3D inverse identification framework capable of handling
complex tool geometries and machining processes beyond orthogonal cutting, such as
milling, drilling, and turning operations with varying lead angles. This advancement
would result in broadening the industrial applicability of the methodology across

different manufacturing sectors.
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Appendix A

Material Behaviour Parameter across all

H;. fs

[teration 0.100 Talyor-Quinney A B n m C

0 0.700 855.000  448.000 0.137 0.630 0.014
1 0.604 1068.074 785.830 0.471 0.898 0.024
2 0.669 1075.931 748.861 0.351 0.850 0.027
3 0.666 1051.784 746.711 0.356 0.852 0.027
[teration 0.150 Talyor-Quinney A B n m C

0 0.700 855.000  448.000 0.137 0.630 0.014
1 0.651 1084.189 782.060 0.183 0.889 0.047
2 0.898 829.790  757.034 0.342 0.855 0.044
3 0.834 827.330  783.693 0.369 0.885 0.047
4 0.897 843.150 756.434 0.372 0.851 0.049
5 0.880 830.139  778.870 0.379 0.871 0.050
Iteration 0.175 Talyor-Quinney A B n m C

0 0.700 855.000  448.000 0.137 0.630 0.014
1 0.619 1092.748 793.321 0.373 0.896 0.051
2 0.676 968.271  613.650 0.412 0.752 0.049
3 0.707 993.378  643.684 0.456 0.757 0.047
4 0.698 988.045 648.043 0.453 0.771 0.048
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[teration 0.230 Talyor-Quinney A B n m C

0 0.700 855.000  448.000 0.137 0.630 0.014
1 0.881 1049.798 683.868 0.479 0.884 0.035
2 0.861 1070.634 694.967 0.526 0.821 0.039
3 0.872 1071.849 696.120 0.519 0.823 0.039
4 0.950 1073.146 704.863 0.549 0.806 0.042
[teration 0.250 Talyor-Quinney A B n m C

0 0.700 855.000  448.000 0.137 0.630 0.014
1 0.601 627.755  799.630 0.299 0.900 0.051
2 0.657 749.424  757.757 0.275 0.773 0.053
3 0.660 965.518 751.086 0.367 0.741 0.038
4 0.842 950.353 674.813 0.429 0.705 0.057
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APPENDIX B

Machining Conditions Data Across All H,..¢

0.100 C-T C-T% C-L C-L% C-F C-F% P-F P-F%  Residual
0 0.142 23.087 0.025 66.837 173.770 41.448 89.633 26.771 74.349
1 0.231 -25.281 0.120 55906 337943 13.870 122.190 0.173 39.570
2 0.184 0.000 0.077  0.000 298.819 -0.687 125.097 -2.202 0.053

3 0.196 -6.434 0.077  0.000 299966 -1.073 123.746 -1.098 0.438
0.150 C-T C-T% C-L C-L% C-F C-F% P-F P-F%  Residual
0 0.208 21.658 0.072 27.380 254.068 39.950 110.382 26.462 35.150
1 0.230 13.370 0.132 32,475 488.186 15.384 199.353 32.813 25.467
2 0.262 1.360 0.099 0.000 400.154 5.423 145.147 3.300 0.421

3 0.290 -8.854 0.099 0.000 432.689 -2.267 151.158 -0.704 0.840

4 0.262 1.360 0.099 0.000 413.024 2.381 148.573 1.018 0.086

5 0.266 0.000 0.099 0.000 428.249 -1.218 150.866 -0.510 0.017
0.175 C-T C-T% C-L C-L% C-F C-F% P-F P-F%  Residual
0 0.238 22.133 0.121 39.841 293.142 39.890 119.189 27.170 44.066
1 0.303 0.838 0.201 0.000 607.108 24.490 204.457 24933 12221
2 0.298 2.455 0.145 28.002 472414 3.130 162.082 0.960 8.009

3 0.306 0.000 0.201 0.000 481.313 1305 162.316 0.817 0.024

4 0.308 -0.779 0.201 0.000 490.622 -0.604 164.160 -0.310 0.011
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0.230 C-T C-T% C-L C-L% C-F C-F% P-F P-F%  Residual
0 22.229 0.185 41.068 373.170 39.947 133.618 30.430 47.024 0.308

1 17.529 0.314 0.000 613.415 1.285 189.667 1.248 3.105 0.327

2 -7.539 0.314 0.000 620.871 0.085 191.314 0.390 0.570 0.426

3 -5.596 0.314 0.000 620.431 0.155 191.778 0.149 0.314 0.419

4 -1.660 0.314 0.000 606.637 2.375 189.768 1.195 0.098 0.403
0.250 C-T C-T% C-L C-L% C-F C-F% P-F P-F%  Residual
0 0.346 20.601 0.205 30.887 404.422 39.788 140.654 31.034 39.246
1 0.496 13.827 0.232 21.742 708.270 -5.451 201430 1.234 6.951

2 0433 0.726 0.232 21.742 656.489 2.259 200968 1.460 4.805

3 0.436 0.000 0.232 21.742 659.377 1.829 201.659 1.121 4.773

4 0.394 9567 0.232 21.743 633.214 5.724 198.977 2.436 6.030

Where; C-T: Chip Thickness

C-L: Contact Length

C-F: Cutting Force

P-F: Penetration Force
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