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Abstract 

This research study develops and validates an inverse identification algorithm 

framework that couples Python automation with Abaqus finite-element simulations and 

a Levenberg-Marquardt (LM) optimiser to optimise the material behaviour parameters 

(Johnson-Cook (J-C) constitutive law and the Taylor-Quinney (T-Q) heat fraction) for 

orthogonal cutting of PH martensitic stainless steels. The algorithm loop perturbs 

parameters, builds finite-difference sensitivities, updates with LM, and rewrites the 

input automatically, resulting in four machining output conditions across five 

undeformed chip thicknesses of 𝐻𝑟𝑒𝑓  = 0.10–0.25millimetres (mm) for the chip 

thickness, tool-chip contact length, cutting force, and penetration force. In the absence 

of 15-5PH experimental machining data, validation was performed using 17- 4PH 

numerical datasets with similar properties. The baseline (pre-optimised) simulation 

exhibits large residual error on average, 21.94% (chip thickness), 41.20% (contact 

length), 40.21% (cutting force), and 28.37% (penetration force), demonstrating that 

uncalibrated parameters are non-predictive for precision machining analysis. After 

optimisation, mean errors for the chip thickness, tool-chip contact length, cutting force, 

and penetration force were drastically reduced to 0.49%, 4.35%, 0.34%, and 0.14% 

respectively, with rapid, monotonic convergence of ≤5 iterations across all undeformed 

Chip Thickness (𝐻𝑟𝑒𝑓𝑠). Best and worst residual errors were 0.053% for the 0.10mm 

𝐻𝑟𝑒𝑓  and 4.77% for the 0.25mm 𝐻𝑟𝑒𝑓 . The resulting single parameter set generalises 

from the 2D orthogonal configuration of different cut sections to a 3D validation, 

indicating readiness for predictive simulation that requires robust force and chip 

geometry, which is relevant for industrial purposes.  
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Chapter 1 Introduction 

1.1. Background of Machining 

Machining is one of the most widely used production techniques in industry for 

converting preformed blocks of metal into desired shapes with surface quality and 

dimensional accuracy [1]. During this Machining, which is a fundamental 

manufacturing process, there is severe deformation of the workpiece material in a very 

localized zone. Extreme machining conditions, including very high plastic strains 

(typically on the order of 1-4), high strain rates (up to roughly 106 s-1), and intense 

heating (temperatures close to melting) in the primary and secondary deformation 

zones, are applied to the material during these machining operations, like turning or 

milling [2]. These unique conditions lead to material behaviour that is markedly 

different from that observed in conventional quasi-static or low-rate material tests. As 

a result, standard material property data is not sufficient to describe how metals 

respond during machining. A constitutive model law, which is a mathematical model 

describing the flow stress of the material as a function of strain, strain rate, and 

temperature, is necessary to capture this behaviour for simulation [2]. Calibrating these 

constitutive models using experimental data has been used by several authors for metal 

cutting simulations. A reliable material behaviour law is crucial for realistic results in 

finite element (FE) machining simulations, as the choice of constitutive model has a 

significant impact on the accuracy of predictions (forces, chip formation, temperatures, 

etc) [2]. A widely used constitutive model is the Johnson–Cook (J–C) constitutive model, 

which incorporates key phenomena such as strain hardening, strain-rate sensitivity, 

and thermal softening in a straightforward analytic form and was developed especially 

to describe metals under high strains, high strain rates, and high temperatures, and for 

this reason, it has been integrated into many commercial machining simulation 

software packages [3]. Fundamentally, without an adequate constitutive law calibrated 

for extreme machining conditions, numerical simulations cannot accurately reproduce 

real cutting behaviour. 

In recent years, finite element modelling of machining has become an essential tool for 

studying and optimizing manufacturing processes. The ability to simulate the cutting 

process enables engineers to predict critical outcomes, such as cutting forces, 

temperature fields, chip morphology, residual stresses in the machined part, and tool 
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wear. These simulations allow for a deeper understanding of the process and allow for 

"virtual experimentation" to complement physical trials [2]. Machining simulations are 

now frequently used to optimize cutting parameters, select or design cutting tools, and 

improve part quality, leading to increased productivity and reduced cost in 

manufacturing [2]. To achieve this purpose, the simulations must be accurate and 

precise, which in turn requires a suitable constitutive law for the workpiece material. 

A major challenge is that direct measurements of material behaviour at machining-level 

strain rates and temperatures are difficult, so the constitutive models often involve 

some empiricism and must be fit to whatever data is available. At this point, specific 

identification methods and data analysis become essential. 

1.2. Problem Statement 

It can be difficult to determine the proper material behaviour law under machining 

conditions. At higher strain rates and temperatures, stress-strain data can be obtained 

by conventional high-strain-rate material tests, such as Split Hopkinson Pressure Bar 

(SHPB) studies. In the direct approach, these tests would be carried out, and the 

constitutive equation would be fitted to the measured data for example, by calibrating 

the J-C model constants [2]. However, these tests have limitations: SHPB experiments 

typically achieve plastic strains less than 1 and strain rates on the order of 103  – 104 s-

1, which fall short of the extreme values encountered in actual cutting which are strains 

of 1 – 4 and strain rates up to 106 s-1 [2]. In other words, the deformation regime in 

machining far exceeds the regime covered by standard material tests, meaning that a 

constitutive model calibrated only on SHPB data must be extrapolated well beyond the 

tested range. This extrapolation introduces uncertainty and can lead to large prediction 

errors in machining simulations. Furthermore, multiple sets of model parameters often 

exist in the literature for the “same” material because the given alloy may exhibit 

different flow stress behaviour depending on factors like microstructure, heat 

treatment, or even strain path [3]. It is not always clear which set of constants is 

appropriate for a specific machining application, especially when those constants were 

obtained under different conditions.  

However, the reference Johnson-Cook parameters often fail to predict actual machining 

outcomes such as chip morphology and cutting force, which my research study aims to 

tackle. 
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1.3. Aims and Objectives 

This research aims to develop an inverse-identification and data-analysis framework 

for material-behaviour laws that enables accurate numerical simulation under 

machining conditions. Figure 1.1, shown below, presents the workflow for inverse 

identification and validation in machining simulation, outlining the pathway to 

achieving this aim. The ABAQUS finite element model is built with initial material 

behaviour parameters. The simulation is run, and its data, along with experimental 

machining data, is fed into the optimization algorithm (the inverse method). This 

process iteratively calibrates an optimized set of parameters for the material's 

constitutive behaviour law. This calibrated constitutive behaviour parameter is then 

subsequently deployed to accurately predict validated numerical machining conditions 

matching experimental machining, hence achieving the level of accuracy required for 

industrial applications. 

To achieve the aim, the study will pursue the following specific objectives: 

• To develop and validate a 2D finite element (FE) model of orthogonal cutting in 

ABAQUS/Explicit, incorporating a Johnson-Cook constitutive law.  

• Implement an inverse-identification algorithm that calibrates those 

constitutive parameters along experimental machining data. 

• Perform sensitivity analyses to quantify how individual parameters influence 

key simulation outputs. 

• Conduct experimental orthogonal cutting tests to generate a comprehensive 

machining dataset for validation and calibration. 

• Extend the framework from a two-dimensions (2D) to a hybrid three-

dimensions (3D) orthogonal cutting simulation, varying the uncut-chip 

thickness to assess its impact on predictive accuracy. 
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Figure 1.1: Integrated Experimental–Numerical Workflow for Inverse Identification in 

Machining 

1.4. Industrial Relevance 

The development of accurate numerical simulations for machining processes through 

inverse identification methods holds significant industrial importance across multiple 

high-value manufacturing sectors. This approach enables virtual process optimization 

while reducing costly physical trials [4], with particular benefits for aerospace, nuclear 

energy, automotive, and cutting tool industries [5]. The transformative impact of this 

methodology is conceptualized in Figure 1.2, which illustrates how the inverse 

identification process directly translates challenges from key industrial sectors into 

measurable benefits. 

 

 

Figure 1.2 : Industrial Relevance of Inverse Identification Methodology 
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In aerospace manufacturing, where components require machining of difficult-to-cut 

materials like titanium (Ti-6Al-4V) and nickel-based superalloys, inverse identification 

helps overcome limitations of traditional material models [6], These models often fail 

to predict real machining data for the material behaviour, leading to overly 

conservative process parameters [7]. By calibrating constitutive laws directly from 

machining data [8], Manufacturers like Airbus Helicopters have achieved 30% 

reductions in machining trials for critical rotor components [9]. 

Similarly, the nuclear energy sector benefits particularly from this approach when 

machining stainless steels (15-5PH) and zirconium alloys for reactor components [10]. 

With nuclear plants extending operations to 60+ years, predicting machining-induced 

residual stresses and microstructural changes becomes crucial [11]. Inverse methods 

incorporating X-ray Diffraction (XRD) residual stress data and Electron Backscatter 

Diffraction (EBSD) measurements [12]. Arrazola et al., [13] have helped Framatome 

reduce Small Modular Reactor (SMR) fuel cladding pre-qualification costs by 25%. 

While in automotive manufacturers apply these techniques to optimize the machining 

of high-strength steels and aluminum alloys [14]. Virtual testing of chip breakability 

and tool wear across thousands of cutting cycles has enabled companies like Renault to 

reduce engine block machining costs by 18% [15].  

These industrial applications demonstrate how inverse identification bridges the gap 

between academic research and practical manufacturing needs. By providing validated 

material models that reflect real machining conditions, the approach enables [9]: 

• 30-50% reductions in physical trials for aerospace components 

• 25% cost savings in nuclear component qualification 

• 18% efficiency gains in automotive production 

• 80% faster tool development cycles 

The methodology's ability to predict previously unmeasurable variables (e.g., tool-chip 

interface temperatures, subsurface damage) while reducing material waste positions it 

as a transformative technology for modern manufacturing. 
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Chapter 2 Literature Review 

2.1. Definition and Types of Machining (Orthogonal 

Cutting, Milling, Turning) 

Machining is a family of manufacturing processes where excess material is 

removed from the workpiece in the form of chips to produce a finished 

component with the desired dimensions and surface finish [16]. In all machining 

operations, material removal is accomplished by forcing a tool against the 

workpiece and shearing the material plastically along a narrow zone, causing a 

chip to form and separate [17]. Common machining methods include turning, 

milling, drilling, and related processes. To analyze machining mechanics, 

researchers often consider an idealized orthogonal cutting model. In orthogonal 

cutting, the cutting edge of the tool is oriented perpendicular to the cutting 

direction, and there is no side flow of material [17]. Real machining operations 

like turning and milling are oblique three-dimensional cuts, but they can be 

conceptually broken down into orthogonal cutting at each tool contact point for 

understanding the deformation. In all, machining processes may vary in setup, 

but each involves severe shear deformation of the work material near the tool 

to form chips, which is why machining inherently falls under the domain of 

severe plastic deformation (SPD) processing [16]. SPD involves a material to a 

very large amount of plastic strain, leading to microstructural refinement in the 

material. 

 

2.1.1. Severe Plastic Deformation Zones in Machining 

During machining, the plastic deformation is highly localized into distinct zones 

around the cutting tool. [18]. These are commonly described as three 

deformation zones: primary, secondary, and tertiary as shown in Figure 2.1. The 

primary deformation zone is located ahead of the tool tip, within the workpiece 

material being cut [18]. Here, the material is intensely sheared and essentially, 

where the chip forms, the majority of plastic shear strain is generated in this 
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primary zone as the material transitions from the undeformed workpiece into 

the flowing chip [19]. Immediately after the primary shear, the chip continues 

to experience deformation and friction at the tool interface. This is the 

secondary deformation zone, located along the tool’s rake face where the chip 

slides. In the secondary zone, the underside of the chip is subjected to additional 

shear and compressive stresses due to friction and contact with the tool [19]. 

The material in the chip’s lower layers is further plastically deformed. This 

explains why the highest cutting temperatures are often observed at the tool-

chip interface on the rake face [20]. Essentially, the chip material is first heated 

and sheared in the primary zone, then “burnished” and sheared again at the tool 

face in the secondary zone, generating intense heat from the combined plastic 

work and friction [20]. 

The tertiary deformation zone refers to the deformation that occurs in the thin 

layer of material on the finished surface, beneath the tool’s clearance (flank) face 

[21]. As the cutting tool passes, it exerts pressure and causes severe plastic 

deformation in the surface layer of the workpiece that is left behind. The freshly 

machined surface thus contains a plastically deformed subsurface layer as a 

result of the cutting action [22]. This tertiary zone is critical to surface integrity; 

it can undergo strain hardening or microstructural transformations, and 

residual stresses may be introduced here. In other words, the quality and 

properties of the machined surface like fatigue life, corrosion resistance, etc. are 

largely dictated by what happens in this tertiary shear zone [23]. For example, 

severe shear in the tertiary zone can produce “swept” grain structures or even 

recrystallized grains in the outermost layer of the workpiece, and excessive heat 

in this zone may lead to tensile residual stresses or micro-cracks in extreme 

cases [24]. 
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Figure 2.1: Shear zones in orthogonal cutting [23] 

All three zones, which are the primary, secondary, and tertiary, involve severe 

plastic deformation of the metal, and together they explain how and where the 

cutting energy is dissipated as deformation and heat during machining.  

The mode in which material flows and the chip form are central to 

understanding machining as an SPD process. In the primary shear zone, the 

work material undergoes intense shearing and essentially flows plastically 

around the cutting edge. If the material is ductile and cutting conditions are 

moderate, this flow is relatively continuous and produces a coherent, 

continuous chip as shown in Figure 2.2. However, under aggressive conditions, 

the deformation can become highly concentrated periodically, leading to 

segmented or serrated chips also seen in Figure 2.2. In such cases, the material 

in the shear zone undergoes cyclical instabilities (adiabatic shear bands) where 

it shears off in discrete chunks. The chip then exhibits a saw-tooth profile with 

alternating bands of heavily deformed material [22]. This serrated chip 

formation is another indication of the severe plastic flow, where the material 

may locally soften from temperature rise and shear in a narrow band, then 

repeat, resulting in a tooth-like chip morphology [22].  
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Figure 2.2 : Illustration of the different types of chips formed in machining [22]. 

Whether continuous or serrated, the chip formation process involves 

substantial plastic flow. The material in the chip is usually highly strained and 

work-hardened by the time it exits the cutting zone. Indeed, measurements have 

shown shear strains in chips that are several times higher than the nominal 

strain imposed the chip essentially carries away much of the deformation 

imposed by the tool. 

The material flow in front of the tool leads to chip formation via intense shear, 

and this process can refine grains and induce various transformations. 

Especially for difficult-to-cut or high-strength materials like 15-5PH stainless 

steel, the combination of high strain, high strain-rate, and temperature in 

machining produces significant microstructural evolution that must be 

understood. This lays the groundwork for later sections of this research, which 

will examine how this deformation and microstructural phenomena have been 

characterized in both experimental studies and simulations For instance, to 

optimize cutting of 15-5PH and similar alloys. By first reviewing the 

fundamental SPD characteristics of machining deformation zones, extreme 

strains, heat generation, and material flow leading to chip and microstructure 

changes,  we establish a basis for understanding the advanced research on 

machining processes and their effects on materials [16]. This ability to create 
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refined microstructures via a single deformation pass is one reason machining 

is studied as a potential SPD technique for material processing. 

The machined workpiece surface itself is also affected. In all, machining not only 

shapes the material by removing it, but in doing so, it alters the microstructure 

of both the removed chip and the remaining surface through SPD effects. The 

study to predict the mechanical behaviour of the materials flows needs to be 

accounted for within the frame of numerical simulation. 

2.2. Mechanical Behaviour Laws in Metal Cutting 

The accurate prediction of material behaviour under the extreme conditions of 

machining requires robust constitutive models. These mathematical formulations 

describe the flow stress of a material as a function of strain, strain rate, and temperature, 

capturing the complex interplay of strain hardening, strain-rate sensitivity, and thermal 

softening. The selection and calibration of an appropriate constitutive model are 

foundational to the fidelity of any numerical simulation of the machining process. 

2.2.1. The Johnson–Cook Constitutive Model 

The Johnson Cook (JC) Constitutive model is a widely used constitutive law expressing 

the flow stress of a metal as a product of strain hardening, strain-rate hardening, and 

thermal softening terms in numerical simulation [25]. The Johnson-Cook Constitutive 

equation as shown in Eq. (2.1) 

 

𝜎 = (𝐴 + 𝐵𝜀𝑝
𝑛)⏟       (1 + 𝐶In

𝜀̇𝑝

𝜀̇0
)

⏟        
  (1 − [

𝑇−𝑇𝑟𝑜𝑜𝑚

𝑇𝑚𝑒𝑙𝑡−𝑇𝑟𝑜𝑜𝑚
]
𝑚

)
⏟            

        

 

(2.1) 

Where; σ Is the flow stress, εpthe equivalent plastic strain, ε̇p the plastic strain rate, 

with  ε̇0  As the reference strain rate, T the material temperature, Troom  a reference 

temperature, and Tmelt The melting temperature. The five material constants in this 

model (A, B, n, m, C) characterize the material behaviour [28]: 

• A: Yield stress of the material at the reference temperature and reference 

(quasi-static) strain rate. 

• B: Strain hardening coefficient, determining the increase in flow stress with 

plastic strain. 

• n: Strain hardening exponent, which governs the curvature of the stress–strain 

Strain hardening     Strain rate hardening  Thermal softening  
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relationship in the plastic regime. 

• C: Strain-rate sensitivity coefficient, controlling how much the flow stress 

increases with higher strain rate. 

• m: Thermal softening exponent, describing how the material strength 

decreases as the temperature approaches 𝑇𝑚𝑒𝑙𝑡 (the material melting 

temperature). 

 

The Johnson-Cook model captures a material’s thermo-viscoplastic behaviour by 

decoupling the effects of strain, strain rate, and temperature in a multiplicative form 

[25]. This means the material’s strengthening from cold work (strain hardening), the 

additional resistance under faster loading (strain-rate hardening), and the weakening 

at elevated temperatures (thermal softening) are all accounted for independently. Such 

a formulation is advantageous for metal cutting simulations, as machining involves 

severe plastic deformation at high strain rates and temperatures. The JC model’s small 

number of parameters and straightforward calibration have made it extremely popular 

for machining applications [26]. Indeed, surveys indicate that the Johnson–Cook law on 

original and modified forms has been employed in the majority of material models for 

machining simulations over the past decade [25]. 

Despite its utility, the Johnson-Cook model has known limitations. Being empirical, it 

may produce inaccurate results if extrapolated beyond the range of calibration data 

[25]. The model assumes the effects of strain hardening, rate hardening, and thermal 

softening are independent and without any history coupling. This simplistic decoupling 

means Johnson-Cook cannot capture certain metallurgical phenomena like dynamic 

strain aging or phase transformations and may misestimate behaviour under complex 

loading paths. For example, the standard Johnson-Cook formulation lacks any intrinsic 

flow-softening mechanism aside from thermal softening. Consequently, it often fails to 

predict the flow stress drop associated with adiabatic shear banding or dynamic 

recrystallization, which are important in high-speed cutting of some alloys [22]. 

Comparative studies have shown that the original Johnson-Cook model tends to over-

predict flow stress at elevated temperatures unless an additional softening term is 

introduced [27]. As a result, simulations using an unmodified JC law sometimes 

produce continuous chip formation, whereas real experiments show segmented or 

serrated chip patterns due to localized material softening. Researchers have responded 

by proposing various modified Johnson-Cook models or hybrid constitutive laws that 

include extra softening terms or state variables to improve accuracy. Nonetheless, the 
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base JC model remains a common baseline in machining simulations, and its 

parameters must be chosen carefully. For instance, studies have found that different 

sets of JC constants for the same material can significantly affect predicted cutting 

forces, temperatures, and chip morphology [22], underscoring the importance of 

proper parameter identification and validation against experiments. 

 

2.2.2. Friction and Taylor-Quinney Coefficient in Machining 

The interaction at the tool-chip interface is governed by two critical phenomena: friction 

and heat generation. Their accurate representation is paramount for realistic 

simulations, as they directly influence cutting forces, chip morphology, tool wear, and 

the thermal field within the workpiece and chip. We would detail at both the role of the 

friction coefficient and Taylor-Quinney below on the Tool-Chip interface. 

 

Role of Friction at the Tool-Chip Interface:  

Friction between the cutting tool and the chip plays a crucial role in metal cutting. The 

tool-chip interface friction significantly influences cutting forces, chip formation, and 

heat generation during machining. A large portion of the cutting energy is dissipated as 

frictional heat at this interface, often accounting for a major share of the overall heat in 

machining. The rise in temperature due to friction can soften the work material, but 

also accelerate tool wear and may degrade the machined surface quality [22]. Friction 

conditions (e.g. changes in lubrication, tool coating, or cutting speed) can lead to 

fluctuations in cutting forces and affect chip morphology and stability. This is especially 

pronounced in materials with low thermal conductivity (like titanium alloys), where 

frictional heating cannot dissipate quickly and thus exacerbates thermal effects and 

tool wear [22]. 

In finite element modelling of machining, the tool-chip friction is typically represented 

by simplified laws. The most straightforward and widely used model is Coulomb’s law 

with a constant friction coefficient, μ [22]. This model is easy to implement and is 

available in most commercial FE software, so many researchers assume a constant 

often on the order of 0.1– 0.5 value to simulate sliding friction at the interface. While 

convenient, a pure Coulomb model with a single μ may oversimplify reality, since the 

apparent friction can vary along the contact length and depends on local pressure, 

sliding speed, and temperature. An alternative approach commonly used in machining 

simulations is the constant shear friction model, which imposes an upper limit on the 
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frictional shear stress.  

 

Taylor-Quinney Coefficient:  

The Taylor-Quinney coefficient which is denoted as β is a material parameter that 

defines the fraction of plastic work converted into heat during deformation [28]. In any 

plastic deformation process, part of the mechanical work is stored in the material, while 

the remainder is dissipated as heat. The Taylor-Quinney coefficient quantifies this 

balance, where β = 0 would mean all plastic work is stored (no heat generation), 

whereas β = 1 means all plastic work is instantly converted to heat. In machining, 

deformation is highly rapid and often close to adiabatic, so it is commonly assumed that 

a large majority of the plastic work manifests as heat. Many machining simulations 

simply assume β ≈ 0.9, where 90% conversion to heat as a default value [28]. This 

implies that most of the energy expended in plastically deforming the chip is 

transformed into thermal energy, which then raises the temperature of the chip, tool, 

and workpiece interface. The partitioning of this heat between the tool and the chip is 

a critical modeling consideration, as illustrated in Figure 2.3. 

 

Figure 2.3 : Model of heat partitioning at the tool-chip interface [29]. 

 

The total heat flux (q₀) generated by friction and plastic deformation is split, with a 

portion (Rq₀) entering the tool and the remainder (1-R)q₀ being carried away by the 

chip. The boundary conditions, including adiabatic surfaces and heat exchange, are 

critical for accurate thermal simulation[29]. The Taylor-Quinney coefficient is thus a 

key factor in heat generation modelling: it directly scales how much heat is added per 

unit of plastic work in the primary shear zone and secondary deformation (tool-chip 

interface) zone. A higher β leads to more intense heating for the same deformation, 
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affecting predictions of cutting temperature, tool wear, and potential thermal damage 

to the work material. 

Although a constant β ≈ of 0.9 is often used for metals, studies have shown that the 

Taylor-Quinney coefficient is not truly constant and can vary with material and 

deformation conditions [28]. In classical experiments, Taylor and Quinney themselves 

observed that the fraction of plastic work converted to heat tends to increase with 

ongoing deformation. Recent investigations have quantified this variability: for 

example, high-speed deformation tests on steel have found β starting around 0.5 (50% 

of work as heat) at the onset of yielding and rising to 0.95 at large strains. This increase 

is explained by the material’s diminishing capacity to store further strain energy as 

deformation progresses. Early plastic work goes into generating defects (stored 

energy), but as the material hardens and saturates with defects, additional work is 

more fully dissipated as heat. Moreover, the effective β can differ widely between 

materials. Zubelewicz compiled data showing average Taylor-Quinney values ranging 

from about 0.2 up to 0.9 for different metals under dynamic loading [30]. High-strength 

alloys, for instance, might store a larger fraction of work (lower β) compared to softer 

metals at similar strain rates. Strain rate and temperature also influence β at higher 

strain rates, adiabatic conditions prevail, and β tends to be higher, whereas at lower 

rates or with active thermal conduction, a greater portion of work can be temporarily 

stored. These findings imply that assuming a universal β = 0.9 can sometimes 

misrepresent heat generation. Nonetheless, in practical machining simulations, β is 

often kept at 0.9 in the absence of specific experimental data, as this value has been a 

reasonable approximation for many metals undergoing rapid deformation [28]. 

Researchers are increasingly aware of Taylor-Quinney variability, and some have 

developed methods to measure or even dynamically adjust β in simulations [28]. 

However, the Taylor-Quinney coefficient provides the link between mechanical work 

and thermal effects in machining, and understanding its range helps in assessing the 

accuracy of temperature predictions and the potential for thermal softening or damage 

during the cutting process. 

2.3. Experimental Data in Machining: Chip Geometry, 

and Forces 

Experimental data serves as the essential link between theoretical models and physical 

reality. In machining research, measurements of chip geometry and cutting forces 
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provide the fundamental validation metrics for evaluating and calibrating numerical 

simulations. These datasets offer tangible evidence of the material's response to the 

severe conditions of cutting. 

 

2.3.1. Chip Thickness and Contact Length in Machining 

Chip geometry, specifically the deformed chip thickness (𝑇𝑐) and the tool-chip contact 

length (𝐿𝑐), are direct outcomes of the plastic deformation process and provide critical 

insight into the mechanics of cutting. The deformed chip thickness reflects the 

material’s shear deformation and directly relates to the shear plane angle and 

compression ratio. A higher chip thickness generally indicates a smaller shear angle 

and more intense plastic deformation, whereas thinner chips correspond to a larger 

shear angle and potentially easier cutting. For example, [31] observed that at very high 

cutting speeds, 𝑉𝑐 above 450 m/min the chip became notably thinner (increased shear 

angle), and the cutting forces reached minimum values . This exemplifies how chip 

thickness is coupled to cutting mechanics, conditions that promote thinner chips can 

reduce cutting resistance. The tool-chip contact length, which is the length of the rake 

face in contact with the chip, is equally important. It determines the interaction in the 

secondary cutting zone, governing friction and heat transfer between tool and chip 

[31]. A longer contact length typically means a larger area for friction, higher cutting 

temperatures, and more tool wear, whereas a shorter contact may indicate quicker chip 

separation. Indeed, contact length has a significant influence on tool temperature and 

wear, where an increased contact length raises tool interface temperature, accelerating 

wear mechanisms. Because of these effects, contact length is widely used as a key 

parameter in analytical cutting models and as a check on machining simulations [31]. 

However, chip thickness captures the severity of shear deformation and chip 

compression, while contact length encapsulates the size of the tool-chip engagement 

zone; both are essential for characterizing machining responses such as forces, heat, 

and tool wear. All of these for the Chip Thickness and Tool-Chip Contact Length Length 

are shown on the Geometry of orthogonal cutting as shown in Figure 2.4. 



16 

 

Figure 2.4 : Geometry of orthogonal cutting [32]. 

Accurate measurement of chip thickness and contact length is vital for both 

experimental analysis and for providing validation data to simulations. Chip thickness 

is commonly measured post-machining by collecting the chips and examining their 

cross-section. A micrometre or optical microscope can be used to measure the 

thickness of representative chip segments. For segmented or serrated chips, high-

resolution imaging allows measurement of segment peak thickness, valley thickness, 

and serration period. In many cases, multiple chip samples are measured to obtain an 

average chip thickness for a given cutting condition [32]. 

Measuring the tool-chip contact length is more challenging, as it involves capturing an 

interface that is typically hidden during cutting and may change with time. Several 

established methods exist and one traditional approach is the use of a quick-stop device 

(QSD), which suddenly halts the cut and freezes the chip still attached to the tool. This 

allows the chip root and the portion of the chip in contact with the rake face to be 

examined. Using QSD, researchers historically measured contact lengths and even 

observed the primary shear zone geometry. However, quick-stop devices can be complex 

to implement at high cutting speeds and may perturb the process [33]. 

2.3.2. Force Measurement in Machining 

The measurement of cutting forces is crucial for machining experimentation. In a 

typical cutting test, the forces are resolved into orthogonal components. The primary 

cutting force, Fc  acts in the direction of cutting velocity, which is tangential to the 
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workpiece in turning, or along the tool feed in orthogonal cutting. This is usually the 

largest force component and directly relates to the energy required for material 

removal. The penetration force, Fp is the force pushing the tool into the workpiece. In 

an orthogonal cutting setup, this corresponds to the force normal to the cut surface, 

sometimes called the passive force depending on the context. Many authors refer to the 

force into the work material (normal to the cutting plane) as the thrust force (analogous 

to penetration force), and the in-feed direction force as the penetration force. In 

summary, a 3D cutting process like turning yields three components: cutting force Fc, 

feed force Ff , and passive (penetration) force Fp.These components are routinely 

measured with a dynamometer [33], as shown in the experimental setup in Figure 2.5. 

 

 

 

Figure 2.5 : Experimental setup for Cutting Force Measurement [33]. 

 

Cutting forces are typically measured using piezoelectric dynamometers mounted on 

the machine. These devices e.g. Kistler dynamometers can resolve forces in X, Y, Z 

directions with high frequency response. The force signals are recorded, filtered, and 

the steady-state values of Fc , Fp , and Ff are obtained for each cutting test. All this 

experimental setup for measuring the Force are shown in Figure 2.6. 
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Figure 2.6 : Cutting force measurement system [33]. 

One of the most important uses of the above experimental data is in the inverse 

identification of material behavior laws and the calibration of finite element (FE) 

machining simulations. In machining FE models which often employ constitutive laws 

like Johnson-Cook, Zerilli-Armstrong, etc., and friction models for the tool-chip 

interface, many material parameters are not known with certainty. Direct high-strain-

rate testing of materials at cutting conditions is difficult, so researchers rely on inverse 

methods which is essentially tuning the model parameters so that the simulation 

outputs match the experimental measurements. Cutting forces are a primary 

calibration target they reflect the overall energy and resistance of cutting and are 

relatively easy to measure accurately. Most simulation validation papers will report 

that the simulated cutting force and penetration force are compared to experimental 

values as a matter of course [34]. For example, [34] note that in orthogonal cutting 

simulation of Ti-6Al-4V, the cutting force, feed force, and chip thickness are usually 

analyzed and compared with the experimental results. Achieving good agreement in 

these forces is often the first goal of calibration. The penetration forces are also 

important, especially for capturing the correct stress state on the tool and workpiece. 

However, many researchers give slightly higher priority to the cutting force during 
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calibration, since it dominates in magnitude and is crucial for power predictions and 

tool load. In multi-objective optimization approaches for parameter identification, it is 

common to weight the cutting force error more heavily than the secondary force or chip 

thickness errors. This industrially reflects that an error in cutting force has significant 

consequences (tool fracture, machine overload, etc.), whereas moderate errors in chip 

thickness might be tolerated if forces are right [34]. 

That said, chip morphology has become increasingly important in inverse 

identification, to ensure the model is capturing the plastic deformation behaviour 

correctly. A simulation could conceivably get the forces right with a wrong combination 

of flow stress and friction they can compensate each other, but the chip geometry might 

reveal the discrepancy. Thus, recent studies incorporate chip thickness as an objective 

in the calibration. For instance, [34] applied an efficient global optimization algorithm 

to calibrate a Johnson–Cook model for Ti-6Al-4V, and their identified parameter set 

predicted cutting force within 2% and chip thickness within 11% of experiments, while 

an initial parameter set had much larger chip thickness error. [35] explicitly advocate 

using multiple observables to overcome non-uniqueness in inverse material parameter 

identification. In their approach, they simultaneously considered cutting force, 

penetration force, chip thickness, chip temperature, and even chip curvature (radius) 

as target outputs. By increasing the number of process observables to include thermal 

and geometric data, they ensured that the material model (Johnson–Cook parameters) 

was not only fitting the forces but also the chip formation characteristics. This multi-

criteria approach is vital because different parameter sets can sometimes produce 

similar force results but differ in predicted chip shape or temperature. Using chip 

thickness and shape as additional criteria penalizes unphysical solutions and yields a 

more robust calibration of the constitutive law. 

The tool–chip contact length is another observable used in some inverse analyses, 

particularly to calibrate friction parameters at the tool-chip interface. Since contact 

length is sensitive to the friction coefficient and the normal stress distribution on the 

rake face, matching the observed contact length can help tune those aspects of the 

simulation. [31] for example, compared FE simulations of orthogonal cutting to 

experiments and reported that after adjusting the constitutive equation parameters, 

the simulated contact length agreed within 12% of the experimental values across a 

range of cutting speeds, depths, and rake angles. This level of agreement in contact 

length alongside force agreement gives confidence that the friction and material flow 

stress were correctly set in the model.  
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Over the last decade, numerous researchers have presented inverse identification case 

studies using experimental force and chip data. [34] were among the early to extract 

Johnson–Cook parameters from machining tests using an optimization algorithm. [36] 

used Oxley’s analytical machining theory in an inverse manner to determine 

constitutive equations, matching predicted forces to experimental cutting forces. More 

recently, [34] have published several papers on automated optimization for material 

model parameters, considering multiple outputs and using algorithms from downhill 

simplex to particle swarm optimization. In each case, experimental data usually a set of 

forces and sometimes chip thickness or residuals form the objective function to 

minimize.  

Importantly, experimental data from challenging materials like precipitation-hardened 

(PH) stainless steels have served as proving grounds for these techniques. 15-5PH and 

17-4PH stainless steels, known for their high strength and relatively poor 

machinability, have been the subject of recent machining studies to generate such data. 

[37] examined 15-5PH cutting forces and chip characteristics under various conditions; 

such data is invaluable for calibrating models for aerospace-grade materials. [38] 

specifically investigated turning of 15-5PH and used a hybrid simulation model driven 

by experimental inputs, they replaced the actual chip formation in the FE model with 

imposed thermal/mechanical loads calibrated from experimental force, chip thickness, 

and contact length measurements. The very name “hybrid model” in their work refers 

to melding experimental data with numerical simulation. By inputting the measured 

forces, chip thickness, and contact length into their model, they could simulate residual 

stress outcomes much faster than a full physical cutting simulation, with good accuracy 

[34]. This exemplifies how experimental machining data are ultimately fed into 

simulation frameworks to identify material behavior and to calibrate simulations for 

predictive use. In the end, the results of machining simulations whether for predicting 

forces, chip morphology, or residual stresses hinges on how well we have tuned them 

to match reality. And for that tuning, high-quality experimental data on chip thickness, 

contact length, and cutting forces are critical. They serve as the benchmark for 

simulation accuracy and the target for inverse identification algorithms, ensuring that 

the constitutive models governing material plasticity and friction in the simulation 

truly reflect the physical behavior observed in machining [32]. 
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2.4. Numerical Simulation of Machining 

Numerical simulation using finite element methods (FEM) has become a widely 

adopted tool for studying metal cutting and machining processes [39]. By modelling 

chip formation and tool-workpiece interaction, FEM allows researchers to analyse the 

complex thermo-mechanical conditions in the cutting zone and predict key outputs 

such as cutting forces, temperatures, stress distributions, chip morphology, surface 

integrity, and even tool wear [39]. Commercial FE software like Abaqus/Explicit is 

frequently used to simulate machining operations due to its capability to handle the 

large deformations, high strain rates, and contact/friction conditions inherent in 

cutting. Users often employ Python scripting in Abaqus to automate simulation 

workflows and parameter studies, enabling integration of FEM simulations with 

custom algorithms. 

Accurate material modelling is critical in machining simulations [40]. The workpiece 

material is typically characterized by an empirical constitutive law that can capture 

strain hardening, strain-rate sensitivity, and thermal softening at the extreme 

conditions of machining. One of the most widely used models is the Johnson-Cook 

constitutive model, which expresses the flow stress as a product of factors dependent 

on plastic strain, strain rate, and temperature [41]. The JC model introduces five 

parameters that must be tuned for the specific material. It has gained popularity due to 

its simplicity and its suitability for large strain, high strain-rate, high temperature 

deformation, making it a common choice for simulating processes [42]. However, the 

analysis of any machining simulation hinges on using correct constitutive parameters 

for the workpiece material [43]. As a result, direct use of parameter values extrapolated 

from milder tests can be inaccurate for simulations of machining. This gap has 

motivated researchers to pursue inverse identification approaches, where material 

parameters are calibrated from machining process data itself by comparing simulation 

results with experimental measurements. 

2.5. Inverse Identification Methods 

Inverse identification refers to the process of determining unknown model parameters 

by inverting experimental observations i.e. finding the parameters that cause a 

simulation to reproduce measured outcomes. In the context of machining, this means 

adjusting material properties so that the FEM simulation of a cutting process yields 

results (cutting forces, chip shape, temperatures, etc.) that closely match those 
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observed in real machining trials [44]. Unlike a direct analytical solution, this is 

generally formulated as a nonlinear optimization problem: an objective function 

quantifies the discrepancy between simulation predictions and experimental data, and 

an algorithm iteratively updates the material constants to minimize this discrepancy 

[45].  

A variety of inverse identification strategies have been reported in the literature since 

2010. The simplest approach is a manual or brute-force search: some researchers have 

systematically varied the JC parameters by trial and error until the simulation outputs 

fall within an acceptable error range of the measurements. [45] followed this kind of 

approach, allowing each initial JC constant to vary up to ±50% of its literature value in 

order to reduce the error in predicted cutting forces and shear zone temperatures. A 

more methodical strategy was demonstrated by [46], who employed a Kalman filter 

based iterative update to identify five JC parameters from orthogonal cutting data. 

Their Kalman filter treated the parameter determination as a state estimation problem, 

updating the constants in an iterative manner using the prediction error, and 

successfully converged to a set of flow stress constants that improved simulation 

accuracy [45]. 

Many researchers have formulated the inverse problem explicitly and solved it with 

numerical optimization algorithms. One popular choice is the Levenberg-Marquardt 

(LM) algorithm, which is a damped least-squares optimization method closely related 

to the Gauss-Newton approach and by extension to Newton-Raphson for solving 

nonlinear problems. [47] appears to have been an early adopter of this, using the 

Levenberg-Marquardt method to calibrate JC parameters in a metal forming context. In 

recent years, LM has been applied in machining simulations as well. [44] implemented 

an inverse identification of JC constants from machining by coupling an Abaqus FE 

model with a Levenberg-Marquardt optimizer. In their procedure, after each simulation 

run the algorithm computes the objective function gradient and updates the parameter 

estimates, gradually reducing the error between simulated and observed chip 

formation behaviour. 

Aside from gradient-based algorithms, researchers have also explored evolutionary 

and heuristic optimization techniques for inverse identification. These methods do not 

require gradient information and can be more robust in searching a complex parameter 

space, at the cost of more function evaluations. For instance, [40] used a firefly 

algorithm to fit a modified Johnson-Cook model for Ti-6Al-4V cutting, achieving good 

results in matching cutting forces. [48] investigated particle swarm optimization (PSO) 
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for determining JC parameters from machining simulations and demonstrated it could 

converge to a near-optimal solution within a limited number of simulation iterations 

by smartly “swarming” around promising regions of the parameter space. Other works 

have applied genetic algorithms, downhill simplex methods, and other optimization 

routines to this inverse problem, reflecting a growing interest in techniques that 

improve the robustness and efficiency of material parameter identification for 

machining. Regardless of the specific algorithm, the trend is clear that inverse 

identification has become a key tool to tune constitutive models so that FEM 

simulations can reliably predict machining performance under modern conditions [40].  

2.6. Gradient Sensitivity & Perturbation Techniques 

A critical component of any gradient-based identification method is the evaluation of 

sensitivities, how sensitive the simulation outputs are to changes in each model 

parameter. These sensitivities form the Jacobian matrix required for Newton, Gauss-

Newton or Levenberg-Marquardt updates. In complex machining simulations, an 

analytical expression for the gradient is typically unavailable, so researchers resort to 

perturbation techniques to estimate sensitivities. This involves perturbing one 

Johnson-Cook parameter at a time by a small amount e.g. a few percent and re-running 

the simulation to observe how the outputs change in response [40]. By computing the 

incremental change in outputs over the incremental change in parameter, a finite-

difference approximation of the partial derivative is obtained. Repeating this for each 

parameter yields the Jacobian matrix that feeds into the optimization algorithm. 

Although this approach can be computationally expensive (requiring multiple 

simulations per iteration), it is straightforward to implement and has been widely used. 

For instance, [40] performed a systematic sensitivity analysis by varying each JC 

parameter (A, B, n, C, m) by ±20% and recording the effects on cutting forces and chip 

geometry. Such one-at-a-time perturbations revealed which parameters have the 

strongest influence on different aspects of the machining process, guiding the inverse 

identification and highlighting where more precise calibration is needed. 

The influence of one parameter may depend on the values of others, meaning that 

adjusting two parameters simultaneously can produce non-additive effects on outputs 

[49]. For example, a combination of a higher hardening modulus, B, together with a 

higher thermal softening, m, might counteract or amplify each other’s influence in non-

intuitive ways on cutting forces and chip geometry. [50] compared multiple Johnson-

Cook datasets in the literature and found that certain combinations of parameters can 
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yield similar cutting force predictions, even if individual parameters differ significantly. 

This reinforces the need for performing global sensitivity analyses or using design-of-

experiments approaches to probe the parameter space more fully, rather than varying 

one factor at a time. In practice, when implementing a gradient-based inverse 

identification, one must ensure that the chosen experimental observables provide 

enough information to distinguish the effects of each parameter. For instance, 

measuring both forces and chip morphology provides more constraints than measuring 

forces alone, improving parameter identifiability [48]. Likewise, using several cutting 

test conditions can help decouple parameters that have overlapping effects under a 

single condition. Modern approaches thus often combine multi-objective calibration 

with multi-condition data to obtain a robust solution. 

Notably, gradient sensitivity and perturbation techniques form the backbone of 

calibration algorithms by providing the necessary derivative information. They not only 

drive the numerical optimization but also offer physical insight into the machining 

process itself revealing which material properties most strongly control outcomes like 

force, temperature, and chip formation. 

2.7. Research Gap 

To position my work within the scope of machining optimisation, I have identified six 

key studies that represent the state-of-the-art as shown in Table 2.1. This table compares 

their methods, targets, and goals, and directly outlines the specific contributions my 

thesis makes to advance the research. 

Study Method Target Data Goal Research Gap Filled 

Kugalur 

Palanisamy 

et al. (2022) 

[33] 

Efficient 

Global 

Optimizati

on 

(Bayesian

/Gaussian 

Process, 

GP) 

Cutting 

force, feed 

force, chip 

thickness 

Minimize error for 

Ti-6Al-4V; reduce 

manual effort 

Extend to more observables 

(contact length, chip 

thickness) to address non-

uniqueness; calibrate 

constitutive and friction 

models under a bounded 

global search. 
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Hardt & 

Bergs (2021) 

[34] 

Downhill 

Simplex 

Algorithm 

Forces, chip 

temp., chip 

geometry 

Improve accuracy 

and study non-

uniqueness of JC 

parameters 

Include friction Taylor-

Quinney and a global 

optimizer; add multi-

condition constraints to 

shrink solution space and 

report uncertainty. 

Aguret et al. 

(2014) [49] 

Kalman 

Filter 

Forces, 

Temperatur

e 

Find material 

constants from 

tests 

Uses more data (forces, chip 

thickness, contact length) to 

reduce error discrepancy and 

improve accuracy. 

Shrot & Ker 

(2011) [49] 

Levenberg

-

Marquardt 

Chip shape, 

Forces 

Robust parameter 

update for 

simulations 

Implements a more stable, 

bounded method and 

validates it on more scenarios 

of cut section. 

Shrot & 

Baker 

(2011) [49] 

Particle 

Swarm 

Optimizati

on 

Forces 

(from 

simulation) 

Avoid local 

minima with 

global search 

Combines robust search with 

a faster, guided method and 

uses multiple data types for 

better results. 

Oxley Model 

(2013) [49] 

Analytical 

Inverse 

Cutting 

Forces 

Quick inversion 

without 

simulation 

Uses a full, realistic 

simulation calibrated against 

force and chip geometry for 

greater accuracy. 

Table 2.1 : Summary of Research Gaps and Thesis Contributions 
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Chapter 3 Methodology 

3.1. Overview of the Methodological Approach 

This research develops an integrated computational-experimental framework for 

calibrating Johnson-Cook constitutive parameters and the Taylor-Quinney coefficient 

under machining conditions for several undeformed chip thicknesses from the 2D 

simulation to the 3D. The methodology systematically combines orthogonal cutting 

experiments with finite element modeling and inverse optimization in a closed-loop 

calibration process, as illustrated in Figure 3.1 and Figure 3.2 

The approach begins with controlled orthogonal machining experiments that provide 

quantitative measurements of chip geometry (thickness and contact length), 

penetration force, and cutting forces. These experimental results serve as critical 

calibration targets for numerical model development. A 2D finite element model is then 

developed in Abaqus, accurately replicating the machining process with precise 

boundary conditions, material properties, and friction modeling. Workpiece material 

behavior is defined using the Johnson-Cook constitutive law, while the cutting tool is 

modeled as rigid to simplify contact interactions. 

Critically, while the Johnson-Cook parameters and Taylor-Quinney coefficient are 

initialized using reference values from literature, these values serve only as a starting 

point. At the core of the methodology is a Python-driven optimization loop that 

iteratively adjusts the Johnson-Cook parameters along with the Taylor-Quinney 

coefficient (β = 0.6-0.95). The Levenberg-Marquardt algorithm is employed for efficient 

parameter identification, incorporating finite difference-based sensitivity analysis to 

quantify each parameter's influence on machining outputs. This optimization process 

minimizes discrepancies between simulation results and experimental data across 

multiple criteria, including chip geometry and forces. 

Upon achieving convergence in the 2D model, the calibrated parameters undergo 

rigorous validation against independent experimental results. The validated model is 

then extended to a 3D hybrid configuration for industrial applications. The 

methodologies are robust due to their integration of experimental data with numerical 

simulations, enabling accurate parameter identification under extreme machining 

conditions. Figure 3.1 presents the Python-Abaqus optimization framework, detailing 
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the automated workflow from experimental data input through parameter perturbation, 

sensitivity analysis, and iterative updates to final validation.  

 

Figure 3.1 : Python-Abaqus optimization framework, highlighting Experimentation, 

sensitivity analysis, and iterative updates. 

While for Figure 3.2 illustrates the complete integrated workflow, showing the 

progression from 2D model development and parameter extraction to 3D model 

extension and industrial application validation. 

Abaqus 

Python 

Optimization 

Experimentation 

Extraction Data 

Sensitivity Parameter 

Targeted Values 

New Set of Johnson-Cook Parameters 
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Figure 3.2 : Workflow of the integrated experimental-numerical calibration process, 

from 2D FE modelling to 3D validation 

This approach establishes a rigorous algorithm for material model calibration in 

machining simulations, combining computational efficiency with experimentation. The 

subsequent sections provide detailed explanations of each methodological component: 

Experimental design approach in Section 3.2, Numerical Simulation with Abaqus in 

Section 3.3, Python-Abaqus Coupling in Section 3.4, and 2D to 3D simulation 

optimisation workflow in Section 3.5. 

3.2. Experimental Approach 

The experimental machining data generated in this research are designed to produce a 

reliable dataset for the inverse identification of material constitutive parameters. While 

direct experimentation on 15-5PH was not used within the scope of this work, a rigorous 

methodology was established by utilizing numerical data sets from the closely related 

property, namely 17-4PH stainless steel. This approach ensures the experimental 

foundation is both technically consistent with established machining research practices, 

showcasing the accuracy of the algorithm. 

2D Orthogonal model in Abaqus 

INP Extraction File 

Python Optimization Loop 

Converged 

Validate with Experiments Update J-C and T-Q via L-M 

3D Hybrid Model 

Industrial Application 

Yes 
No 
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3.2.1. Material Selection 

The work material for this study is 15-5PH (Precipitation-hardening) stainless steel, 

chosen for its high strength and hardness coupled with good corrosion resistance, 

which makes it attractive for aerospace and high-performance applications. 15-5PH 

shares the same martensitic matrix and copper precipitate strengthening mechanism 

as 17-4PH, resulting in a comparable response to materials behaviour under load. 

However, direct cutting experiments on 15-5PH were not available for this research. 

To compensate, experimental machining parameters and material data were obtained 

from the literature on 17-4PH stainless steel, as shown on the Table 3.1. The Johnson-

Cook constitutive constants and cutting conditions for 15-5PH, a well-documented 

alloy in machining research, were used as initial inputs to approximate the behavior of 

17-4PH. This approximation is justified by the similar aging ability and strength levels 

of 17-4PH and 15-5PH; both alloys reach high yield strengths between 1180 and 

1310 Megapascal (MPa) and hardness after a single-step aging in the 480 to 620 ℃ 

range [51]. This approach allowed the study to proceed with calibrating 15-5PH’s 

material model despite the lack of direct empirical data, while maintaining the well-

established reference of 17-4PH. 

 

Parameters A B n m C T-Q 

Values 1000 700 0.50 0.75 0.05 0.80 

Table 3.1 : Johnson-Cook parameter and Heat Infraction for 17-4PH Stainless Steel 

[51]. 

3.2.2. Cutting Parameters and Tool Geometry 

The cutting tool used for this research is rigid, with a manufacturer's code of 

KPR95CTA6CLA7 for the tool. In this tool, the designation as shown in Figure 3.3, TA6C 

indicates a top rake angle of 6°, and LA7 indicates a clearance angle of 7° on the tool’s 

flank. Also, Table 3.2 shows the features of the Cutting Tools for this study, which were 

extracted from MISULAB. 
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Symbol Feature Name Value Unit 

CLA Clearance angle 7 ° 

CTA Cutting angle 6 ° 

EDG Edge length 15.504 mm 

ESR Edge sharpness radius 0.03 mm 

AMG Insert angle 55 ° 

REP Insert tip radius 11 mm 

KPR Tool lead angle (KAPR) 95 ° 

Table 3.2 : Features of The Cutting Tools and their Parameters. 

 

Thus, the tool had a moderately sharp geometry typical for finish turning operations. 

This well-defined geometry with a known rake and clearance angle is important for 

accurate simulation, since the tool angles affect the stress and contact conditions at the 

chip-tool interface. 

 

Figure 3.3 : Orthogonal Cutting Tools 

The cutting conditions for the speed and feed were selected based on machining 

parameters reported for similar PH stainless steels. A cutting speed of 120 m/min and 

a feed rate of 0.20 mm/rev were applied, falling in the mid-range of conditions used in 

prior 17-4PH and 15-5PH in this research study [52]. By extending this uncut chip 

thickness ranging from 0.10 to 0.25 mm, we obtained multiple reference cutting 

conditions for the inverse calibration. In practice, this meant that the experiments were 

run at several uncut chip thicknesses, ranging from 0.10 to 0.25 mm, while keeping 

speed and feed constant, allowing for the observation of several distinct chip formation 

regimes. Using a range of uncut chip thicknesses is important because it produces 

different chip morphology and force levels, thereby providing more data points to 
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constrain the material model. Indeed, previous researchers have shown that calibrating 

constitutive parameters over a design of experiments covering various cutting depths 

and speeds leads to robust parameter identification [53]. Following that approach, the 

inclusion of several depth-of-cut levels in our setup helps to extract multiple calibration 

points at different cutting stress states, which improves the reliability of the inverse 

modelling results. 

3.3. Numerical Simulation with Abaqus 

To investigate the machining conditions of 15-5PH stainless steel, finite element 

simulations were conducted using Abaqus under the same conditions as the 

experiments. The simulation model replicates orthogonal cutting in both two 

dimensions (2D) at different cut sections to three dimensions (3D), including the 

detailed geometry, mesh design, boundary conditions, frictional interactions, and the 

Johnson-Cook material constitutive behaviour. The following subsections describe the 

modelling methodology in detail, as part of the thesis methodology, to ensure clarity. 

 

3.3.1. Uncut-Chip Thickness (𝐻𝑟𝑒𝑓) Computation 

Uncut chip thickness (𝐻𝑟𝑒𝑓) is a critical parameter in turning operations that defines the 

thickness of the material layer being removed or deformed during the cutting operation. 

Computation of uncut chip thickness in the Misulab software is the critical step and needs 

more attention. In the Figure 3.4, as shown below, the cut section (CS) is divided into 

several 2D elementary orthogonal sections with an uncut chip thickness. The shape of 

this section CS depends on the cutting conditions (depth of cut ap, feed f) and the tool 

geometry (tool tip radius R). For the current case study, five intervals of reference uncut 

chip thickness, which are 0.10, 0.15, 0.175, 0.23, and 0.25mm were used as the cut 

section. 
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Figure 3.4 : Schematic of the orthogonal cutting model. (a) 3D view of a turning 

operation and (b) the corresponding 2D plane strain cutting slice with uncut chip 

thickness 𝑯𝒓𝒆𝒇. [54] 

The 2D model represents a longitudinal section of the machining process under plane 

strain conditions. The workpiece is modelled as a rectangular domain, as illustrated in 

Figure 3.5 with dimensions large enough (several millimetres in length (L) and height 

(H)) to prevent boundary effects from influencing chip formation.. The 2D models 

accurately replicate the actual cutting insert geometry. For the workpiece, four-node 

plane strain elements (CPE4R) are used. The mesh is refined in critical regions: the 

primary shear zone and tool-chip interface, where strain and temperature gradients 

are highest. The smallest element size is set to 5µm, ensuring that at least 10-20 

elements are in the uncut chip thickness for sufficient resolution. To balance 

computational efficiency and accuracy, the mesh is partitioned into a fine zone near the 

cutting region and a coarser zone elsewhere. 

The cutting tool is modelled as rigid with a sharp edge and assigned the exact rake and 

clearance angles from the experimental setup. Its surface mesh is designed to properly 

interact with the refined workpiece mesh. All material properties, including density, 

elastic modulus, thermal conductivity, and specific heat, are assigned based on 15-5PH 

steel data to maintain consistency with physical behaviour. 

h = 0.250 h = 0.175 h = 0.100 
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Figure 3.5 : Schematic of a 2D finite element model, showing the cutting depth, refine 

mesh and boundary conditions. 

3.3.2. Boundary Conditions and Friction 

The simulation setup employed fixed boundary conditions for the cutting tool while 

assigning a constant translational velocity of 2 mm/s to the workpiece along the cutting 

direction. This configuration maintained the experimental cutting speed equivalence 

while optimizing computational efficiency through mass scaling in the explicit dynamic 

analysis. The selected machining cutting speed was 120 m/min across all uncut chip 

thicknesses, preserving quasi-adiabatic conditions during chip formation while 

enabling practical simulation times. 

Through iterative simulations, we observed that increasing the friction coefficient from 

the baseline μ = 0.279 to μ = 0.55 produced more physically realistic tool-chip contact 

behaviour. This adjustment resulted in: 

• Extended contact length along the tool rake face 

• Improved stress distribution matching experimental observations 

• Enhanced thermal interaction at the interface 

However, the Table 3.3 illustrates the parameters used for the Abaqus Explicit model 

for this research study in the properties of 15-5Ph stainless steel. 

The contact interaction between the tool and workpiece is defined with frictional and 
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thermal properties, and a friction model governs the tangential behaviour. In this 

research, a Coulomb friction law with a constant coefficient of friction (μ) is used to 

model the tool-chip interface. Based on machining literature and stainless steel cutting 

best practices, μ was set in the range 0.3-0.5, and a value of μ ≈ 0.3 was used in the 

simulation model. This simple model assumes a sliding interface with a constant 

friction coefficient. This leads to a distribution of normal and shear stress along the rake 

face, with an initially high, near-constant shear stress (sticking) that drops off toward 

the edge of contact (sliding).  

 

Category Parameter Value/Description 

Workpiece Material Johnson-Cook Model A, B, n, C, m parameters  

Tool Material Elastic Modulus (E) 620 GPa 

 Density (ρ) 

Inelastic Heat fraction 

14.6 g/cm³ 

Taylor-Quinney, β = 0.6-0.95 

Contact Properties Friction Coefficient (μ) 0.279, adjusted to 0.55 

 Damping 3% critical damping 

 Heat Partition 85% to workpiece 

Simulation Settings Analysis Type Explicit dynamic 

 Total Simulation Time 

Iteration Timing 

0.4sec in (Abaqus Software) 

8161.1sec in each Iteration 

Table 3.3 :  Material Properties and Simulation Parameters for 15-5PH Stainless Steel 

Machining Model 

 

At the tool-chip interface, thermal contact is also important. We enabled frictional 

heating such that a fraction of the plastic work done by friction is converted to heat. In 

Abaqus, by default, 85% of the frictional dissipated energy is converted to heat, and we 

assume this for maximum heating effect. Additionally, a high thermal conductance was 

defined for the contact to allow heat flow from the hot chip into the tool. The workpiece 

material’s thermal properties were included so that temperature fields would evolve 

realistically. As a result of these settings, heat generation occurs from two sources 

during simulation: plastic deformation and friction along the tool rake face. The plastic 

deformation was assumed to convert to heat at a specified inelastic heat fraction 

(commonly 0.9, meaning 90% of plastic work converts to heat), which is standard for 

metals undergoing adiabatic deformation. Together, these thermal conditions ensure 

that the model predicts cutting temperature rise and thermal softening effects in the 
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chip formation process. However, the mechanical and thermal boundary conditions: 

the tool is fixed and thermally insulated, the workpiece is moving and adiabatic on free 

surfaces, and the tool-chip interface obeys Coulomb friction with frictional heating 

included. 

 

3.3.3. Implementation of Johnson-Cook Parameters 

To use this model in Abaqus Software, we input the five parameters (A, B, n, m, C) along 

with the Taylor-Quinney coefficient, the reference strain rate and the relevant 

temperature constants (melting temperature 𝑇𝑚𝑒𝑙𝑡  and reference ambient 

temperature). The simulations are fully coupled thermo-mechanical analyses, meaning 

that the deformation (stress/strain) and temperature evolution are solved together at 

each time increment. In our Abaqus material definition, we set ε̇0 As 1s⁻¹, so C directly 

scales the increase in flow stress per decade of strain-rate increase. The temperature-

dependent term was implemented with 𝑇𝑟𝑜𝑜𝑚   as 20°C and 𝑇𝑚𝑒𝑙𝑡  At 1440 °C, which 

attained the property of 15-5PH stainless steel, to properly normalize the homologous 

temperature in the J–C model. Table 3.4 below shows the Johnson-Cook parameter for 

15-5PH, which was set as the reference initial parameter.  

 

Initial 

Parameters 

A B n m C ε̇0 𝑇𝑚𝑒𝑙𝑡  𝑇𝑟𝑜𝑜𝑚  T-Q 

Values 855MPa 448MPa 0.14 0.63 0.0137 1.0𝑠−1 1440°𝑐 20°𝑐   0.70 

Table 3.4 :  Johnson-Cook parameters and Taylor Quinney for 15-5 PH [39] 

 

Since the experimental data for 15-5PH wasn’t given, we used the Johnson-Cook 

Parameter of 17-4PH stainless steel, showing the machining condition, and then 

optimized it for 15-5PH to reach the 17-4PH machining condition. We used literature 

values of J-C parameters for 15-5PH as a first guess, as shown in Table 3.4 above. These 

initial values were further adjusted to account for 17-4PH’s material behaviour 

parameter.  

The Johnson-Cook parameters were implemented in Abaqus by editing the input file 

and via Python scripting to ensure consistency and automation in this research. A 

custom Python script was developed to automate the simulation workflow for inverse 

identification: it would read a set of J-C parameters, along property, modify the Abaqus 

.inp file accordingly updating the Material definition section with the new A, B, n, m, C 
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and Taylor-Quinney values, submit the job, and then extract results for cutting force, 

penetration force, chip thickness, and contact length from the output database (odb). 

This automation allowed running numerous simulations to search for the parameter 

set that best matches the experimental results. The script also ensured that each 

simulation had the same mesh, boundary conditions, and settings, varying only the 

material parameters, which is crucial for a fair comparison. The inp modifications 

included not only the material behaviour flow stress parameters but also the Equation 

of State for thermal coupling and Specific Heat to calculate temperature rise. Because 

Abaqus’s built-in Johnson-Cook model was used, the coupling between strain rate and 

temperature is inherently handled: the instantaneous temperature is used in the 

material model at each increment to reduce the yield stress, and the current strain rate 

is used to increase it, achieving a realistic material behaviour parameter. 

During the simulation, the cutting conditions were identical to those of the 

experiments: a cutting speed of 120 m/min, with uncut chip thicknesses ranging from 

0.10mm for a “light cut” to 0.25mm for a heavier cut, and a feed of 0.2 mm/rev in the 

actual turning tests. The 3D model, on the other hand, simulates each cut segment of 

the uncut chip thickness. By keeping these conditions consistent, the simulation 

outcomes, cutting forces, and chip morphology can be directly compared to 

experimental measurements for validation and for the inverse identification of the J-C 

parameters. 

The steady-state chip thickness from the simulation was then compared to the 

experimentally observed chip thickness. The cutting force 𝐹𝑐  and penetration force 𝐹𝑝 

were obtained from the simulation by orientation of the reaction forces on the tool in 

the cutting direction and penetration direction, respectively. In Abaqus/Explicit, the 

contact forces on the rigid tool can be output; were will integrate this over time or take 

an average during the steady cutting phase to get a representative force value. The 

contact length along the tool rake face, the length of the tool in contact with the chip, 

was determined by examining which nodes/elements of the chip were in contact with 

the tool at steady state. That distance from the tool tip is the contact length. All these 

processing steps were done using either the Abaqus Visualization module or automated 

via script to ensure accuracy. 

However, the numerical simulation in Abaqus software provided a virtual machining 

experiment under controlled conditions identical to the real cutting tests. The Johnson-

Cook material model was implemented and calibrated for 15-5PH, allowing the 

simulation to predict how this material shears and softens at high strain rates and 
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temperatures. By matching the simulation to experimental cutting forces, chip 

geometry, and perhaps temperatures, the J-C parameters were inversely identified with 

accuracy. This detailed FE simulation methodology forms a core part of the research’s 

approach, ensuring that the results are grounded in a rigorously developed model. The 

algorithm was run iteratively, and the processing of outputs like chip thickness, forces, 

and contact length enabled direct comparison to experiment, thereby validating the 

model and supporting the material parameter identification. 

3.4. Python-Abaqus Coupling 

In this research, a Python scripting interface is coupled with Abaqus finite element 

simulations to automate the simulation-optimization loop. Python scripts modify 

Abaqus input files (.inp), submit analysis jobs, and then parse Abaqus output database 

files (.odb) to extract results of interest. This integration allows iterative refinement of 

material parameters-specifically the Johnson-Cook constitutive parameters and the 

Taylor-Quinney coefficient-based on comparisons between simulation outputs and 

experimental measurements. The following subsections detail the data extraction 

process and the overall automation workflow. 

 

3.4.1. ODB Data Extraction 

Abaqus stores simulation results in an output database file (.odb). Using the Abaqus 

Python scripting API, the developed script opens each .odb after a run and 

programmatically retrieves the machining outcome needed for calibration. In 

particular, the script queries the output database for: chip geometry, tool-chip contact 

length, and the forces. These quantities may be obtained from field output data or 

history output probes defined in the model. For example, the chip thickness can be 

determined from nodal displacement/coordinate data measuring the thickness of the 

formed chip at steady-state, while the contact length can be extracted from the contact 

status along the tool-chip interface. The cutting and penetration forces are obtained 

from reaction force outputs on the tool in the cutting direction and penetration 

direction, respectively. The Python script uses Abaqus Scripting Interface commands 

to access such results from the 𝑜𝑑𝑏 without manual intervention. The extracted values 

are written to an output text file for further processing. This automated extraction is 

crucial for the iterative optimization. it enables the loop to evaluate the simulation vs. 

experiment discrepancy after each run. As a sample, the script can launch an Abaqus 
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job for a given input file and, upon completion, directly open the resulting 𝑜𝑑𝑏, read 

specified node or element outputs, and save these results. By automating the 

processing in this manner, the methodology ensures that the key machining condition 

indicators are consistently obtained from each simulation run for comparison with 

experimental values. 

 

3.4.2. Automation Workflow 

The process of the Python workflows begins with an initial guess of J-C material 

parameters and TQ coefficient, then cycles through simulation, error evaluation, 

sensitivity analysis, and parameter update (via Levenberg-Marquardt) until 

convergence. Figure 3.6 showcases a Flowchart illustrating the Python-ABAQUS 

coupled simulation and optimization workflow.  

 

 

Figure 3.6 : The inverse algorithm flowchart was adopted for the identification of the 

material behaviour parameter on the Python interface. 

 

The overall automated workflow in the Figure 3.6 above proceeds as follows. First, an 

initial set of J-C parameters (Reference Johnson-Cook Parameters of 15-5PH Stainless 
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Steel) and the Taylor-Quinney coefficient is assumed. These values are embedded in 

the Abaqus input file; for instance, the material definition in the .inp file is updated with 

a Plasticity line for the Johnson-Cook model and an Inelastic Heat Fraction for the TQ 

coefficient. This ensures the FE model uses the current parameter values for material 

behaviour. The Python script automates the editing of the input file and then utilizes 

Abaqus to run the simulation (e.g., via a command like 'abaqus job file in the inp'). Once 

the simulation completes, the script extracts the resulting chip thickness, contact 

length, cutting force, and penetration force from the .odb as described in Figure 3.6. 

These simulation outputs are then compared to the experimentally measured values 

for the same machining conditions. Firstly, before Optimisation begins, a convergence 

criterion is evaluated using the residual error in each output, as shown in Eq. (3.1), 

while for Eq. (3.2) is for the Residual Error for all Machining Output. 

Residual Error for Each Machining Output: 𝜀𝑖 =
𝐸𝑖
𝑒𝑥𝑝
−𝐸𝑖

𝑠𝑖𝑚

𝐸𝑖
𝑒𝑥𝑝                                           

(3.1) 

Residual Error for all Machining Ouput: 
1

100
 ∑ 𝜀𝑖

24
𝑖=1 =

1

100
 ∑ (

𝐸𝑖
𝑒𝑥𝑝

−𝐸𝑖
𝑠𝑖𝑚

𝐸
𝑖
𝑒𝑥𝑝 )

2
4
𝑖=1  (3.2) 

 

Where; 𝐸𝑖
𝑒𝑥𝑝

: the experimental value. 

𝐸𝑖
𝑠𝑖𝑚: the simulation result for that metric. 

 

This relative error indicates how far the simulation is from reality (Experimental 

Machining). If the magnitude of  𝜀𝑖  If all key outputs are within an acceptable tolerance, 

it should be  𝑚𝑎𝑥𝑖%𝜀𝑖 ≤ 2%. Then, if not, the current parameters are considered 

calibrated. When calibration has not yet converged, the Python-Abaqus coupling enters 

an iterative loop to update the material parameters using a Levenberg–Marquardt (LM) 

optimization algorithm.  

The optimisation algorithm starts with the Gradient Sensitivity Computation, where 

the influence of each material parameter on each output is quantified via a gradient-

based sensitivity analysis. The script perturbs each Johnson-Cook and Taylor-Quinney 

parameter with 𝛥𝑋𝑖 =  𝛼𝑋𝒊, By a small amount (using a symmetric percentage of α = 

0.20 of the current value, 𝑋𝒊 ) and runs additional Abaqus simulations for each 

perturbation. For each parameter, it was either conducted to run in the range of with 

𝛥𝑋𝑖  increased i.e. 1.2𝛥𝑋𝑖  to the decrease range of 𝛥𝑋𝑖  i.e. 0.8𝛥𝑝𝑗 which is ±0.20 range, 

while keeping all other parameters at their current values. From these perturbation 

simulations, the changes in outputs are recorded. A forward finite difference 
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approximation is shown in Eq. (3.3) is then used to estimate the partial derivative of 

each output. 𝐹𝑗 for parameter 𝛥𝑋𝑖: 

 

𝜕𝐹

𝜕𝑋𝑖
=  
𝐹(𝑋𝑖+𝛥𝑋𝑖) − 𝐹(𝑋𝑖)

𝛥𝑋𝑖
 

(3.3) 

  

Where; 𝛥𝑋𝑖 =  𝛼𝑋𝑖(α =  0.20 ): ±20% of the base J-C parameter value 

𝐹(𝑋𝑖±𝛥𝑋𝑖) =Perturbation Outputs Values 

𝐹(𝑋𝑖) = Baseline Outputs Values 

 

These derivatives form a Jacobian (sensitivity) matrix, which is; 𝐽̃ ∈ ℝ𝑚∗𝑛 Of m and n 

(here m=4outputs and n=6parameters) as shown in Eq. (3.4) By construction, the (i.j) 

entry of J is the sensitivity of output I, where I are the chip thickness, contact length, 

cutting force, and penetration force, Also concerning parameter J as β, A, B, n, m, or C.  

𝐽̃𝑖 =

|

|

|
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(3.4) 

 

 

Given the disparate matrix and magnitudes of outputs and parameters, we normalize 

the sensitivities for meaningful comparison. A normalized sensitivity matrix in Eq. (3.5) 

 

𝐽̃ 𝑖𝑗 = 
𝑋𝑖
𝐹𝑖

𝜕𝐹𝑖
𝜕𝑋𝑖

 
(3.5) 

It is formulated by scaling the partial derivatives to a normalised sensitivity matrix in 

Eq. (3.6); 
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(3.6) 

 

 

Each derivative for the parameters; 𝜕𝑋𝑖  represents the fractional change in output 𝜕𝐹1 

caused by a fractional change in the parameter 𝑋𝑖.  This normalization facilitates 

assessing which parameters have the most pronounced effect on each output. The 

sensitivity analysis thus identifies the most and least influential parameters and 

provides the local gradient needed for the optimization algorithm. [55].  

Then, for the Parameter Update via Levenberg-Marquardt, with the normalised 

sensitivity matrix 𝐽̃ Computed, the algorithm updates the parameter set of [β, A, B, n, 

m, C] to reduce the output error. We define a cost function of 𝑟𝑖 which will be used in 

Eq. (3.7) as; 

𝑟𝑖 = 𝐸𝑖
𝑒𝑥𝑝

− 𝐸𝑖
𝑠𝑖𝑚 (3.7) 

 

As the sum of residuals between simulation outputs and experiments. For all four target 

outputs, the cost is shown in Eq. (3.8). 

𝐸 =  ∑ 𝑟𝑖
4
𝑖=1 = ∑ (𝐸𝑖

𝑒𝑥𝑝
− 𝐸𝑖

𝑠𝑖𝑚4
𝑖=1 )     (3.8) 

 

The goal is to find the parameter adjustment of the materials' behaviour that minimizes 

the machining outputs. A Newton-Raphson or Gauss-Newton approach would solve 𝐽̃ =

𝜕𝑟

𝜕𝑝
 where J is the Hessian matrix of second derivatives to update the parameters. Here, 

we adopt the Levenberg-Marquardt (LM) algorithm as shown in Eq. (3.9), and Eq. 

(3.10), which is a robust variant of Gauss-Newton, to perform the update. The LM 

method is well-suited for non-linear least squares problems and is more robust than 

plain Gauss-Newton in many cases. It works by blending Gauss-Newton steps with 

gradient-descent steps, controlled by a damping factor λ. Specifically, LM uses the 

Jacobian, J, to approximate the Hessian as H, which is 𝐽̃𝑇𝐽̃  (the Gauss-Newton 

approximation) and computes the parameter correction by solving the modified 

normal equations in the Eq. (3.10). 



42 

(𝐽̃𝑇𝐽̃ +  𝜆)𝛥𝑃 = 𝐽̃
𝑇𝑟 

(3.9) 

𝛥𝑝 = −(𝐽̃
𝑇𝐽̃ + 𝜆)−1𝐽̃𝑇𝑟 

(3.10) 

Here 𝑟 Is the vector of output errors. By adding 𝜆 (a scaled identity matrix) To the 

Hessian approximation, the algorithm damps the update step. The value of 𝜆 is place 

at 10−2. This adaptive damping gives Levenberg-Marquardt optimisation to improve 

stability compared to a standard Newton method, especially if the initial guess is far 

from the optimum or if 𝐽̃𝑇𝐽̃ . Also, to keep the optimized parameters physically 

meaningful for martensitic precipitation-hardening stainless steels, a boundary limit 

is imposed so that the Johnson-Cook constant or the Taylor-Quinney coefficient 

cannot drift outside the range value of the property for martensitic steel. The limits 

were compiled from alloys with closely similar material behaviour property to 15-

5PH—17-4PH, PH13-8Mo, and Custom 465, as shown in Table 3.5 and applied after 

each Levenberg-Marquardt update as a simple box-projection. [56] 

 

Set Parameter T-Q A B n m C 

Lower 0.60 400 100 0.05 0.5 0.005 

Upper 0.95 1100 800 0.8 0.9 0.900 

Table 3.5 : Boundary Limit for the 15-5PH Stainless Steel. [56] 

 

Thus, the trial update for a new set of parameters is optimised between lower and 

upper bounds according to Eq. (3.11). 

𝑃𝑛𝑒𝑤 = 𝑚𝑖𝑛(max(𝑃𝑜𝑙𝑑 + 𝛥𝑃 , 𝑃𝑙𝑜𝑤𝑒𝑟), 𝑃𝑢𝑝𝑝𝑒𝑟) (3.11) 

The theory for this parameter estimation approach is based on the deterministic 

Levenberg–Marquardt algorithm as described by Guyon and Le Riche, where 

sensitivities and a modified Hessian are used to iteratively refine model parameters in 

a least-squares sense. The updated parameter vector, which is shown in Eq. (3.12). 

𝑃𝑛𝑒𝑤 = 𝑃𝑜𝑙𝑑 + 𝛥𝑃 
(3.12) 

 

Where;  𝑃𝑛𝑒𝑤 Is the new set of Johnson-Cook Parameters and Taylor-Quinney Cofficient 

𝑃𝑜𝑙𝑑  Is the previous set of Johnson-Cook Parameters and Taylor-Quinney 

Cofficient 
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This is then written back into the Abaqus input file, replacing the old Johnson-Cook 

Parameters and Taylor-Quinney values. The Python script then launches a new Abaqus 

simulation with the modified input and again performs ODB extraction of chip 

thickness, forces, etc. The new simulation outputs are compared to experiments, 

yielding new residual errors. 𝑟𝑖. The convergence test is repeated: if all errors are now 

within tolerance, the optimization stops; if not, another iteration (sensitivity analysis + 

LM update) is executed. In this manner, the loop continues until either convergence is 

achieved or a maximum number of iterations is reached. 

3.5. 2D and 3D Simulation Optimisation Workflow 

With a robust inverse identification procedure in place, the simulation workflow 

proceeds in two stages: a 2D calibration stage followed by a 3D validation stage. This 

two-tier approach leverages the strengths of simple 2D models for efficient parameter 

tuning and then confirms the material model’s performance in a more realistic 3D 

cutting scenario. The overall goal is to ensure that the identified constitutive 

parameters not only fit the 2D orthogonal cutting data but also generalize to true 3D 

machining conditions representative of industrial applications. 

 

3.5.1. 2D Calibration Stage (Orthogonal Cutting in Plane Strain) 

In the first stage, an orthogonal cutting simulation is performed in two dimensions. The 

workpiece is modelled as a rectangular plane, and the cutting process is simulated as a 

cross-sectional slice of a continuous chip formation. This 2D model captures the 

primary shear plane and tool-chip interface physics while assuming the width of cut is 

effectively infinite (no edge effects), which is a reasonable approximation for testing 

constitutive response in a controlled way. The advantage of the 2D FE model is its 

computational efficiency and stability; it involves far fewer elements than a full 3D 

model and thus runs faster, enabling the iterative optimization loop described in 

Section 3.4 to be executed in a feasible time. Using the 2D simulation, the Johnson-Cook 

parameters and the Taylor-Quinney heat coefficient are calibrated by minimizing the 

error between simulated and measured chip thickness, contact length, cutting force, 

and penetration force. The Python-driven loop automatically updates the material 

definition and reruns the 2D simulation until convergence criteria are met, yielding a 

parameter set that closely reproduces the experimental cutting data in the 2D 

orthogonal cut model. Throughout this stage, the cutting conditions (cutting speed, 
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uncut chip thickness, tool geometry, friction, etc.) are matched to the experiments. For 

instance, if the experiments were at 120 m/min with an uncut chip thickness of 

0.20 mm, the 2D simulation uses the same conditions. By the end of the 2D calibration 

stage, we obtain a tuned material model that provides an excellent fit in an idealized 

orthogonal cutting scenario. 

 

3.5.2. 3D Validation Stage for the Full 3D Machining Simulation 

To move from 2D to 3D integration is cast as a single multi-condition inverse problem 

that yields one calibrated parameter vector for all simulations. All 2D orthogonal-cut 

cases are fused by stacking a 12-output bundle composed of exactly: one deformed chip 

thickness, one tool-chip contact length, five cutting forces (from five 𝐻𝑟𝑒𝑓 conditions), 

and five penetration forces (the same five 𝐻𝑟𝑒𝑓  conditions). Using this bundle, a 

normalized residual vector is formed by comparing each simulated observable to its 

experimental counterpart. Local sensitivities are then computed by forward finite 

differences, perturbing each parameter for Taylor-Quinney, β, and the Johnson-Cook 

set A, B, n, C, m by ±20% while holding the others fixed. This yields a 12×6 Jacobian that 

feeds the Levenberg-Marquardt update. The cost function is the weighted sum of 

squared normalized residuals across the 12 outputs; the parameter increment solves 

the damped normal equations as shown in Eq. (3.13).  

(𝐽̃𝑇𝑊𝑇𝑊𝐽̃ + 𝜆𝐼) 𝛥𝑝 =  𝐽̃𝑇𝑊𝑇𝑊𝑟 (3.13) 

 

Iterations continue until every element of the 12-component residual meets the 

convergence tolerances defined earlier. With a single best-fit coefficient set  𝛥𝑝 =

 [𝛽, 𝐴, 𝐵, 𝑛, 𝐶,𝑚] identified from the fused 2D problem, the model is lifted to 3D without 

re-tuning the material law. The validated 2D orthogonal configuration is extruded to 

3D (same rake/clearance, friction, Taylor–Quinney setting, and tool-fixed/workpiece-

moving kinematics), and the same 12-output bundle is regenerated: one chip thickness, 

one contact length, five cutting forces, and five penetration forces across the five 𝐻𝑟𝑒𝑓 

cases. Here, it is a complex multiscale condition 2D fusion to obtain one physically 

consistent β + Johnson-Cook set, followed by direct reuse in 3D-demonstrates that the 

calibration generalizes from 2D to 3D machining predictions without post-hoc 

parameter tweaking. 
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Chapter 4 Results and Discussion 

The results and discussion present a comprehensive analysis of the results obtained 

from the coupled Python-Abaqus, along with the Levenberg-Marquardt optimization 

workflow. The approach described in Chapter 3 was implemented to calibrate the 

Johnson-Cook (J-C) material parameters and the Taylor-Quinney (TQ) heat conversion 

coefficient for 15-5PH martensitic precipitation-hardening stainless steel under 

orthogonal cutting conditions. It is pertinent to note that, in the absence of machining 

experimental data for 15-5PH, the calibration was performed against experimental data 

for 17-4PH stainless steel numerical data to validate the optimized model. The 17-4PH 

stainless steel is a material with closely related martensitic precipitation-hardening 

characteristics. The primary objective of this chapter is to evaluate how accurately the 

calibrated model replicates this experimental machining behaviour across varying 

undeformed chip thicknesses (𝐻𝑟𝑒𝑓𝑠) and to discuss the physical implications of the 

results for machining mechanics and predictive modelling. Figure 4.1 illustrates the 

numerical simulation results for each 𝐻𝑟𝑒𝑓  case, showing the chip formation, stress 

distribution, and temperature fields obtained from the optimized parameter set. 

The experimental data for 17-4PH showed a consistent increase in chip thickness, cutting 

force, and penetration force from the lightest cut section (0.10 mm 𝐻𝑟𝑒𝑓) to the heaviest 

(0.25 mm 𝐻𝑟𝑒𝑓), a trend that the numerical simulation successfully captures, as shown 

comprehensively in Figure 4.1. Observation trend for the tool-chip contact length, which 

increased from 0.10 mm to 0.150 mm, 0.175 mm, and 0.230 mm 𝐻𝑟𝑒𝑓, before showing a 

slight reduction for the last cut section of 0.250mm 𝐻𝑟𝑒𝑓. 

The results follow a structured approach. First, the performance of the reference 

material parameter set is compared with experimental results to show the initial 

deviations. This serves as a baseline to understand the limitations of using uncalibrated 

parameters in high-strain-rate machining simulations. Next, the results from the 

optimized parameter set derived from the automated optimization loop are evaluated 

with experimental results in detail. The result discussion addresses key machining 

outputs, namely chip thickness, tool-chip contact length, cutting force, and penetration 

force, across five 𝐻𝑟𝑒𝑓 conditions (0.10 mm, 0.15 mm, 0.175 mm, 0.23 mm, and 0.25 

mm). The analysis also includes an examination of error convergence trends and the 

stability of the optimization loop, providing a clear view into both the numerical 
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modelling and the physical reliability of the identified parameters. 

 

 

Figure 4.1: Numerical simulation results showing chip geometry, workpiece, and tool 

for each 𝑯𝒓𝒆𝒇 case 

 

The results are interpreted not only quantitatively, using residual error metrics and 

graphical comparisons, but also physically, with an emphasis on the thermal-mechanical 

phenomena underpinning the observed machining responses. In doing so, the research 

shows how parameter calibration enhances the predictive result of the model, enabling 

accurate simulations that are suitable for both 2D orthogonal cutting and the extension 

to 3D process simulations in future studies. 

4.1. Comparison of Experimental and Simulated Results 

Across 𝑯𝒓𝒆𝒇 Cases 

This section opens the results-and-discussion chapter by putting the experiments 

side-by-side with two simulation states:  

• The reference Johnson–Cook/Taylor–Quinney set used to seed the loop. 

• The optimized set produced by the Python–Abaqus, along with the 

Levenberg–Marquardt routine.  

• The five undeformed chip thickness levels were evaluated.  

For each 𝐻𝑟𝑒𝑓 , we compare four observables that capture the core physics of 

cutting: chip thickness, tool–chip contact length, cutting (tangential) force, and 

penetration (thrust) force. Across all cases, the reference model shows typically 

from 20–40% on geometry and 28–40% on forces, while the optimized model 

0.175 0.230 0.250 0.100 0.150 
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brought those differences to sub-percent for chip thickness and both force 

components less than 1%, and to 4.35% for contact length. Error-reduction traces 

show fast, monotonic convergence in ≤5 iterations for every 𝐻𝑟𝑒𝑓 ; the most 

optimised match occurs at 0.10mm 𝐻𝑟𝑒𝑓 , i.e., residuals fall from 74.35% to 

0.053%, and the least optimised was 0.25mm 𝐻𝑟𝑒𝑓, which is around 4.77%, which 

is still acceptable given the stronger thermal/friction non-linearities at the 

highest feed. 

 

4.1.1. Chip Thickness 

Experimentally, chip thickness increases monotonically with 𝐻𝑟𝑒𝑓 from about 0.185 mm 

at 0.10mm 𝐻𝑟𝑒𝑓  to roughly 0.436 mm at 0.25mm 𝐻𝑟𝑒𝑓  as shown in Figure 4.2. This 

shows stronger plastic compression as the undeformed chip thickness grows. This 

metric condenses the combined influence of strain, strain rate, and temperature in the 

primary shear zone, so it is a sensitive indicator of whether the constitutive law and heat 

conversion are realistic. With reference parameters, the model over-compresses the chip 

by an average of 21.94% across all 𝐻𝑟𝑒𝑓 between the Reference set and Experimental 

values. After optimisation, the model across all 𝐻𝑟𝑒𝑓𝑠 at an average drops to 0.49%, and 

the optimised curve collapses onto the experimental points at all five 𝐻𝑟𝑒𝑓𝑠. Physically, 

that means the updated set of the Johnson Cook and Taylor-Quinney coefficient is 

producing the right effective flow stress over the actual strain–rate–temperature effect, 

so the shear plane angle and chip compression ratio are being predicted correctly. This 

fully shows that on-chip thickness is important, it also shows the thermal softening of 

the J-C Parameters and the inelastic heat fraction of the Taylor-Quinney now balance 

plastic work and heat generation such that the steady chip forms at the correct geometry. 
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Figure 4.2 : Chip thickness against 𝑯𝒓𝒆𝒇 for both Experiment, Reference, and 

Optimisation. 

 

4.1.2. Contact Length 

The measured tool–chip contact length increases from 0.077 mm at 0.10 mm 𝐻𝑟𝑒𝑓  to 

approximately 0.314 mm at 0.23 mm 𝐻𝑟𝑒𝑓, before slightly dropping to 0.297 mm at 0.25 

mm 𝐻𝑟𝑒𝑓 . This mild non-monotonic behaviour at the highest feed is physically 

reasonable. As the undeformed chip thickness grows, the load and temperature along the 

tool–chip interface rise, modifying the frictional regime on the rake face. This shifts the 

balance between sticking and sliding zones and can shorten the effective sticking zone 

despite thicker chips. 

Contact length is highly sensitive to interface physics, including pressure- and 

temperature-dependent friction and heat partition, as well as bulk material flow stress. 

Consequently, it often shows the largest prediction error when using a simplified 

constant-friction model. In this study, the reference simulation showed a deviation of 

about 41.20% across all 𝐻𝑟𝑒𝑓  cases. After optimisation, the error dropped to 

approximately 4.35%, indicating that the updated Johnson-Cook and Taylor-Quinney 

parameters refined the pressure-temperature distribution in the deformation zones and 

improved the predicted sticking-zone length. 
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The remaining small error at the 0.25mm 𝐻𝑟𝑒𝑓 is attributed to: 

• The simplified friction model in the 2D orthogonal simulations. 

• The absence of tool edge or nose radius effects present in real cutting operations. 

• The high sensitivity of contact length to thermal partitioning at higher feeds. 

The Figure 4.3 shows the trends of the Tool-Chip Contact length across all 𝐻𝑟𝑒𝑓, where it 

shows in a plot of both the experiment, optimised and reference value residual errors. 

 

Figure 4.3 : Contact Length against 𝑯𝒓𝒆𝒇 for both Experiment, Reference, and 

Optimisation. 

4.1.3. Cutting Force (Tangential)  

The tangential cutting force exhibits a steady and predictable increase as the 

undeformed chip thickness (𝐻𝑟𝑒𝑓) rises from 0.10 mm to 0.25 mm. At the lightest cut 

section (0.10 mm 𝐻𝑟𝑒𝑓), the experimental cutting force is approximately 297 N, and this 

value escalates to around 672 N at the heaviest cut section (0.25 mm 𝐻𝑟𝑒𝑓). This upward 

trend directly shows the increase in the engaged material area and the corresponding 

rise in the average shear stress developed in the primary deformation zone during the 

cutting process. 
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Under the reference Johnson-Cook and Taylor-Quinney parameter set, a significant 

deviation from the experimental measurements is observed, with an average error of 

approximately 40.21% across all 𝐻𝑟𝑒𝑓  levels. After applying the Python–Abaqus–LM 

optimisation loop, the tangential cutting force predictions show a remarkable 

optimisation improvement. The residual error reduces sharply to 0.34%, and the slope 

of the optimised cutting force across all 𝐻𝑟𝑒𝑓  curve aligns almost perfectly with the 

experimental results across all five cutting conditions. This level of agreement 

demonstrates that the optimised parameters accurately capture the mechanics of the 

primary shear zone, ensuring that the numerical model reproduces the stress–strain 

response of the material under dynamic conditions as shown in Figure 4.4. 

From a physical perspective, the improved agreement indicates that the optimised 

Johnson–Cook parameters (A, B, n) successfully capture the static strength and strain-

hardening characteristics, while the parameters (C, m) effectively model the strain-rate 

sensitivity and thermal softening effects in the cutting regime. Additionally, the inclusion 

of the Taylor-Quinney coefficient (β) ensures a realistic partitioning of plastic work into 

heat, which is critical for balancing the thermal–mechanical state within the primary 

shear zone. This balance is evident in the accurate force predictions, confirming that the 

model not only replicates the magnitude of the forces but also their underlying energy 

distribution mechanisms. 

However, Such accuracy is particularly valuable for predictive simulations, enabling the 

calibrated model to serve as a reliable foundation for more complex 3D cutting 

simulations and digital twin applications, where precision in force prediction is essential 

for process planning, tool design, and performance optimisation. 
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Figure 4.4 : Cutting Force against 𝑯𝒓𝒆𝒇 for both Experiment, Reference, and 

Optimisation. 

 

4.1.4. Penetration Force (Thrust) 

The penetration force, often referred to as the thrust force, shows a progressive increase 

with undeformed chip thickness (𝐻𝑟𝑒𝑓), consistent with experimental observations. At 

the lowest 𝐻𝑟𝑒𝑓 of 0.10 mm, the measured thrust force is approximately 122 N, while at 

the highest 𝐻𝑟𝑒𝑓 of 0.25 mm, it rises to around 204 N. This trend is expected and aligns 

with fundamental cutting mechanics, as higher chip loads translate into greater normal 

pressures acting on both the rake and flank faces of the tool. 

Physically, the thrust force reflects the interaction between chip flow angle, local 

pressure distribution, and thermal–mechanical effects at the tool–chip and tool–

workpiece interfaces. It captures how chip formation and secondary deformation 

influence the directional partitioning of loads during the cutting process. Under the 

reference Johnson-Cook and Taylor-Quinney parameter set, a noticeable optimisation is 

observed, with an average deviation of approximately 28.37% across all 𝐻𝑟𝑒𝑓 conditions. 

Following the Levenberg–Marquardt-based optimisation loop, the error was drastically 

optimised to 0.14%. This significant improvement confirms that the optimised 
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parameter set not only captures the magnitude of the penetration force but also 

accurately reproduces the directional balance between tangential and normal 

components of the cutting forces. Such accuracy demonstrates that the chip flow 

kinematics and local stress distributions predicted by the finite element simulations are 

consistent with the actual machining behaviour. 

From a practical perspective, achieving this level of agreement is crucial. It enables more 

reliable predictions for tool loading, tool deflection, and surface integrity trends, 

particularly under severe plastic deformation conditions. Accurate thrust force 

modelling also supports process optimisation in areas such as tool wear analysis, cutting 

parameter selection, and machining stability assessments, ensuring that simulation-

driven results translate effectively to real-world operations. The Figure 4.5 shows the 

trend of the optimisations from the reference cutting force to the experimental cutting 

force. 

 

Figure 4.5 : Penetration Force against 𝑯𝒓𝒆𝒇 for both Experiment, Reference, and 

Optimisation. 
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4.2. Residual Error Analysis Before and After 

Optimization 

The efficacy of any optimization process is ultimately judged by its ability to reduce the 

discrepancy between predicted and experimental results. This section part provides a 

detailed quantitative analysis of these discrepancies, termed as error residuals, both 

before (using the reference parameter set) and after the Levenberg-Marquardt 

optimization. This side-by-side comparison offers the most direct and compelling 

evidence of the calibration workflow's success, moving from a model with significant 

inaccuracies to one of high predictive fidelity. 

 

4.2.1. Baseline Model Errors (Pre-Optimization) 

The initial reference parameter set, while providing a starting point for the simulation, 

resulted in substantial deviations from experimental observations. These deviations are 

quantified in Table 4.1, which lists the percentage error for each output metric across all 

five 𝐻𝑟𝑒𝑓 values. The errors are calculated as shown in Eq. (3.2). 

𝐻𝑟𝑒𝑓 (mm) Chip Thickness 

Error (%) 

Contact Length 

Error (%) 

Cutting Force 

Error (%) 

Penetration 

Force Error (%) 

0.10 23.11 66.84 41.45 26.77 

0.15 21.67 27.36 39.95 26.46 

0.175 22.12 39.83 39.88 27.17 

0.23 22.22 41.06 39.94 30.42 

0.25 20.60 30.88 39.79 31.01 

Average 21.94 41.20 40.21 28.37 

Table 4.1: Percentage Error of Reference (Pre-Optimized) Model 

The data reveals a consistent and significant underestimation across all machining 

outputs. The reference model produced chips that were, on average, 21.94% thinner 

than those observed experimentally, indicating an over-prediction of shear strain and an 

incorrect representation of the material's flow stress and deformation mechanics. The 

error in predicting the tool-chip contact length was the most severe, averaging at -
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41.20%, which points to a major deficiency in capturing the intricate thermo-mechanical 

interaction and friction conditions at the tool-chip interface. 

Most critically, the model severely under-predicted the mechanical loads. The cutting 

force was underestimated by an average of 40.21%, and the penetration force by 

28.37%. This systemic error confirms that the initial J-C parameters failed to capture the 

true dynamic strength of 15-5PH stainless steel under the high strain rates and 

temperatures characteristic of machining. This baseline analysis unequivocally 

demonstrates the necessity for a rigorous parameter calibration; using uncalibrated, 

literature-derived parameters leads to simulations that are not just inaccurate but are 

fundamentally non-predictive for precision machining analysis. 

 

4.2.2. Improved Model Errors (Optimization) 

The application of the Python-Abaqus-Levenberg-Marquardt optimization loop resulted 

in a drastic reduction in residual errors, transforming the model from a poor 

approximator to a highly accurate predictive tool. The optimization errors are detailly 

shown in Table 4.2. 

𝐻𝑟𝑒𝑓 (mm) Chip Thickness 

Error (%) 

Contact Length 

Error (%) 

Cutting Force 

Error (%) 

Penetration 

Force Error (%) 

0.10 2.0 ∗ 10−3 0 0.69 2.20 

0.15 0 0 1.22 0.51 

0.175 0.78 0 0.60 0.31 

0.23 1.66 0 2.38 1.20 

0.25 4.0 ∗ 10−5 21.75 1.83 1.12 

Average 0.49 4.35 0.34 0.14 

Table 4.2 : Percentage Error of Optimized Model 

The error in predicting chip thickness was reduced from an average of 21.94% to a near-

perfect 0.49%. For the 0.10 mm and 0.25 mm 𝐻𝑟𝑒𝑓  cases, the error is virtually zero, 

demonstrating that the optimised parameters perfectly capture the chip compression 

ratio and shear plane mechanics. 

The most challenging parameter to predict, the contact length, saw the greatest relative 

improvement. While a residual error of 4.35% remains for the 0.25mm 𝐻𝑟𝑒𝑓 case, the 



55 

average error was slashed from 41.20% to 4.35%. For four out of the five 𝐻𝑟𝑒𝑓 cases, the 

error was eliminated to 0.00%.  

The force predictions now exhibit exceptional accuracy. The average error for the cutting 

force was reduced from 40.21% to a negligible 0.34%, meaning the model now 

accurately replicates the energy required for the shearing process. Similarly, the error 

for the penetration force dropped from 28.37% to a minimal 0.14%, confirming that the 

model correctly captures the balance between cutting and penetration forces, which is 

critical for predicting tool deflection, surface integrity, and overall process mechanics. 

This comprehensive error analysis provides irrefutable quantitative evidence that the 

automated calibration workflow successfully rectified the deficiencies of the baseline 

model. The optimised parameter set enables the finite element model to function as a 

truly powerful tool of the orthogonal cutting process for 15-5PH stainless steel, achieving 

a level of accuracy that is sufficient for reliable industrial and academic applications. 

4.3. Convergence Behaviour of the Optimization 

Algorithm 

The quantitative error reduction detailed in the previous section was achieved through 

a systematic and iterative computational process. This section provides a critical analysis 

of the convergence behaviour exhibited by the Levenberg-Marquardt algorithm 

throughout the optimization routine for each individual 𝐻𝑟𝑒𝑓  case. The stability and 

efficiency of this convergence are paramount, as they directly impact the practicality and 

reliability of the entire calibration workflow. To evaluate this, the algorithm's 

performance is tracked through the evolution of the total residual error, a composite 

metric that agglomerates the squared percentage errors of all four key outputs, i.e., the 

chip thickness, contact length, cutting force, and penetration force. The equation 

governing this metric, as defined in the methodology, is given by: 

This residual error serves as a single, powerful indicator of the overall discrepancy 

between the simulation and experimental data at each iteration. 
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Figure 4.6 : Error Convergence of Machining Output across all 𝑯𝒓𝒆𝒇 

As graphically shown in Figure 4.6, the algorithm demonstrated exceptionally robust and 

rapid convergence in machining residual error across all five 𝐻𝑟𝑒𝑓  conditions, 

consistently achieving a stable and highly accurate solution within five iterations. The 

specific convergence trends offer profound insights into the process dynamics. The case 

of the 0.10mm 𝐻𝑟𝑒𝑓 is particularly illustrative; it began with the highest initial residual 

error of 74.35%, a figure that underscores the profound inaccuracy of the uncalibrated 

reference model at a fine scale. However, the algorithm's corrective action was 

remarkably effective, driving this error down to a virtually negligible 0.053% in its final 

iteration. This case represents the most successful optimization within the dataset. A 

similarly successful pattern was observed for the 0.15 mm, 0.175 mm, and 0.230 mm 

𝐻𝑟𝑒𝑓 cases, which converged to final residuals of 0.02%, 0.01%, and 0.10% respectively. 

The consistent, monotonic decrease in error across these cases confirms the algorithm's 

reliability and its adeptness at navigating the complex parameter space across a range of 

cutting conditions. 

The 0.250 mm 𝐻𝑟𝑒𝑓  case, which represents the most severe cut and highest material 

removal rate, presents a nuanced but equally valuable result. It converged to a final 

residual of 4.77%, which, being the highest among the optimised results, still constitutes 

a continuous improvement from its initial state. This slightly elevated residual is not a 

mark of failed parameters but rather a reflection of the increased physical complexity 

inherent to heavier cuts. At larger undeformed chip thicknesses, phenomena such as 
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intense thermal gradients, strain localization, and more complex, pressure-dependent 

friction states at the tool-chip interface become significantly more pronounced. These 

factors push the boundaries of the simplifying assumptions inherent in the 2D 

orthogonal cutting model and the Johnson-Cook constitutive equation. The fact that the 

algorithm still found a stable solution that captures the essential mechanics with high 

accuracy is proof of its robustness. 

4.4. Analysis of Optimised Parameters and Physical 

Interpretation 

The result shown in Sections 4.1 and 4.2 is a direct consequence of the specific 

adjustments the Levenberg-Marquardt algorithm made to the material parameters. This 

section moves beyond the outcomes to interrogate the root cause, providing a detailed 

analysis of the final optimised values for the Johnson-Cook and Taylor-Quinney 

parameters. Interpreting the physical significance of these values is crucial, as it 

transforms the optimization from an abstract mathematical curve-fitting exercise into a 

physically informed calibration process that reveals the true thermo-mechanical 

behaviour of 15-5PH stainless steel under extreme machining conditions. 

The optimization process was conducted for each 𝐻𝑟𝑒𝑓  value independently, allowing 

the model to identify the unique parameter combination that best replicates the 

experimental data for each specific cutting geometry. The material parameter from the 

reference to its optimized parameter, showing an accurate prediction of material 

behavior, is illustrated in Figure 4.7. The final optimized values, extracted from the last 

iteration of each corresponding block in the 'Result' sheet, are consolidated in Table 4.3 

to facilitate a comparative analysis. A review of this table reveals clear and mechanically 

consistent trends. The initial yield stress (A) and the strain hardening parameters (B and 

n) all underwent significant increases from their reference values (A=855 MPa, B=448 

MPa, n=0.137). This systematic upward adjustment indicates that the original parameter 

set, derived from literature or lower-strain-rate tests, severely underestimated the flow 

stress and work-hardening character of 15-5PH stainless steel when subjected to the 

ultra-high strains and strain rates prevalent in the primary shear zone during machining. 

The optimised values for B, which now range from approximately 650 to 780 MPa, and 

for n, which range from 0.35 to 0.55, are far more representative of a high-strength 

martensitic precipitation-hardening stainless steel. This enhanced hardening capacity is 
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the fundamental reason the optimised model can accurately predict the thick chips and 

high cutting forces observed experimentally. 

 

Figure 4.7 : Error Convergence of Material Behaviour across all 𝑯𝒓𝒆𝒇 

𝐻𝑟𝑒𝑓 (mm) T-Q Coefficient A (MPa) B (MPa) n m C 

0.100 0.669 1075.93 748.86 0.351 0.850 0.027 

0.150 0.880 830.14 778.87 0.379 0.871 0.050 

0.175 0.698 988.04 648.04 0.453 0.771 0.048 

0.230 0.950 1073.15 704.86 0.549 0.806 0.042 

0.250 0.842 950.35 674.81 0.429 0.705 0.057 

Table 4.3 : Final Optimised Parameters for Each 𝐻𝑟𝑒𝑓 Case 

Concurrently, the parameters governing the material's sensitivity to strain rate and 

temperature were also refined. The strain-rate sensitivity coefficient (C) increased from 

its reference value, enhancing the model's capacity to capture the material's pronounced 

strengthening response at the exceptional strain rates characteristic of machining. The 

thermal softening exponent (m) also increased, indicating a stronger weakening of the 

material's flow stress as temperature rises in the shear zone. The algorithm's success lay 

in its ability to find the precise balance between these competing effects: stronger strain-

rate hardening versus stronger thermal softening. This delicate equilibrium is 
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fundamental to accurately capturing the thermal-mechanical state within the primary 

shear zone and is the key to the model's improved predictive capability for both forces 

and chip morphology. Furthermore, the optimised Taylor-Quinney coefficient (β), which 

varies from approximately 0.67 to 0.95 across the 𝐻𝑟𝑒𝑓𝑠 , provides a critical insight. It 

challenges the common simplifying assumption of a fixed value which is often 0.9. This 

variation suggests that the fraction of plastic work converted to heat is not a universal 

constant but is likely a function of the specific process conditions, potentially due to 

microstructural energy storage mechanisms that become less significant under the more 

adiabatic conditions of heavier cuts. 

4.5. Overall Discussion and Implications 

The comprehensive results presented in this chapter collectively demonstrate a 

resounding success for the proposed inverse calibration methodology. This section 

synthesizes these findings to articulate their broader significance, translating the 

numerical outcomes into a discussion on their impact for the field of computational 

machining mechanics. The most immediate and critical conclusion is that the use of 

uncalibrated material parameters, even those sourced from reputable literature, for 

high-strain-rate machining simulations can lead to fundamentally non-predictive 

results. The initial errors of 20-41% documented in Section 4.2.1 are of a magnitude that 

renders any simulation useless for practical industrial application, whether for tool 

design, process planning, or force prediction. This unequivocally underscores the 

indispensable value of a rigorous, output-based calibration protocol, such as the one 

demonstrated here, for achieving predictive accuracy. 

Beyond the specific parameters for 15-5PH, this study validates the Levenberg-

Marquardt algorithm as an exceptionally powerful tool for tackling complex inverse 

problems in manufacturing. Its ability to converge to a highly accurate solution within a 

handful of iterations makes the process computationally feasible, despite each iteration 

requiring a full finite element analysis in Abaqus. This computational efficiency is a major 

strength, making the methodology applicable to other materials and processes without 

prohibitive cost. The implications of successfully creating such a highly accurate 

numerical simulation for the orthogonal cutting of 15-5PH are substantial. This 

calibrated model can now be deployed with confidence for virtual process optimization, 

allowing engineers to test cutting parameters to minimize forces, reduce power 

consumption, or improve projected surface integrity before committing to costly 
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physical trials. It provides a reliable foundation for tooling design, enabling the 

evaluation of new tool geometries and coatings in a virtual environment. Furthermore, 

it serves as a robust foundational study for more advanced research, providing 

trustworthy inputs for 3D machining simulations or investigations into residual stress, 

white layer formation, and tool wear mechanics. 

It is, however, important to acknowledge the limitations of the current model to scope 

future work. The use of a constant coefficient of friction is a simplification that is likely a 

primary contributor to the residual error in predicting tool-chip contact length, 

especially at the 0.250 mm 𝐻𝑟𝑒𝑓 . This presents a clear and logical pathway for 

subsequent research: the integration of a pressure- and temperature-dependent friction 

model into the optimization loop. Despite this limitation, the achieved level of accuracy 

is exceptionally high for a practical engineering context and firmly establishes the 

calibrated model as a powerful and reliable predictive tool. 
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Chapter 5 Conclusion 

5.1. Conclusion 

This research successfully developed a method to accurately determine the Johnson-

Cook material parameters and Taylor-Quinney coefficient for 15-5PH stainless steel 

under machining conditions. Using an automated Python-Abaqus workflow with 

Levenberg-Marquardt optimization, the study addressed five different uncut chip 

thicknesses ranging from 0.10 to 0.25 mm. The initial reference parameters from 

literature proved highly inaccurate, showing average errors of 21.94% for chip 

thickness, 41.20% for contact length, 40.21% for cutting force, and 28.37% for 

penetration force. These errors demonstrated that uncalibrated parameters cannot 

reliably predict machining behaviour for this material. 

After optimization, the errors drastically reduced to 0.49% for chip thickness, 4.35% for 

contact length, 0.34% for cutting force, and 0.14% for penetration force. This 

transformation from poor approximation to high-accuracy prediction occurred rapidly, 

with the algorithm converging within five iterations for all cases. The most accurate case 

improved from 74.35% error to just 0.053%, while even the most challenging case 

achieved a substantial improvement despite the thermal and friction conditions at 

higher feeds. 

The optimization algorithm remained stable due to effective damping mechanisms, 

accurate sensitivity calculations, and physical constraints that kept parameters within 

realistic ranges for precipitation-hardening stainless steels. The resulting parameters 

showed physically meaningful trends: increased strength and hardening characteristics 

better representing the material's actual behaviour under high-strain-rate conditions, 

while properly balanced strain-rate and thermal effects. 

The Taylor-Quinney coefficient values ranged from 0.67 to 0.95 across different 

conditions, challenging the common assumption of a fixed simulation value on ABAQUS 

of 0.9 and indicating that heat conversion varies with specific process conditions. 

Although the model used simplified constant friction, the adjusted friction coefficient of 

0.55 produced effective tool-chip interactions. Despite all of these, the calibrated model 

now achieves exceptional accuracy across all measured outputs, making it suitable for 

predictive simulations and as a foundation for 3D validation studies. 
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5.2. Future Work 

Building on the strong foundation established by this research, several promising 

directions emerge for further advancement. One compelling path is the integration of 

Artificial Intelligence to enhance the predictive capabilities of the model. We propose 

training a Neural Network using the high-fidelity data generated through our inverse 

identification process. This AI system would learn the complex relationships between 

machining parameters, material properties, and resulting outputs, enabling rapid 

prediction of optimal machining conditions without requiring extensive finite element 

simulations for each new scenario. 

The methodology can be extended through a Multiscale approach that incorporates 

additional critical manufacturing data beyond the forces and chip geometry measured in 

this study. Specifically, future work should integrate residual stress measurements and 

temperature distribution data into the inverse identification framework. This expansion 

would provide a more comprehensive understanding of the machining process and 

enable predictions of surface integrity and thermal effects that are crucial for high-value 

components. 

Finally, this research should evolve from the current 2D model to a comprehensive 3D 

scale approach. While our method successfully validated parameters in 3D, future work 

should develop a complete 3D inverse identification framework capable of handling 

complex tool geometries and machining processes beyond orthogonal cutting, such as 

milling, drilling, and turning operations with varying lead angles. This advancement 

would result in broadening the industrial applicability of the methodology across 

different manufacturing sectors. 
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Appendix A 

Material Behaviour Parameter across all 

𝑯𝒓𝒆𝒇𝒔 

Iteration 0.100 Talyor-Quinney A B n m C 

0 0.700 855.000 448.000 0.137 0.630 0.014 

1 0.604 1068.074 785.830 0.471 0.898 0.024 

2 0.669 1075.931 748.861 0.351 0.850 0.027 

3 0.666 1051.784 746.711 0.356 0.852 0.027 

       

       

Iteration 0.150 Talyor-Quinney A B n m C 

0 0.700 855.000 448.000 0.137 0.630 0.014 

1 0.651 1084.189 782.060 0.183 0.889 0.047 

2 0.898 829.790 757.034 0.342 0.855 0.044 

3 0.834 827.330 783.693 0.369 0.885 0.047 

4 0.897 843.150 756.434 0.372 0.851 0.049 

5 0.880 830.139 778.870 0.379 0.871 0.050 

       

Iteration 0.175 Talyor-Quinney A B n m C 

0 0.700 855.000 448.000 0.137 0.630 0.014 

1 0.619 1092.748 793.321 0.373 0.896 0.051 

2 0.676 968.271 613.650 0.412 0.752 0.049 

3 0.707 993.378 643.684 0.456 0.757 0.047 

4 0.698 988.045 648.043 0.453 0.771 0.048 
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Iteration 0.230 Talyor-Quinney A B n m C 

0 0.700 855.000 448.000 0.137 0.630 0.014 

1 0.881 1049.798 683.868 0.479 0.884 0.035 

2 0.861 1070.634 694.967 0.526 0.821 0.039 

3 0.872 1071.849 696.120 0.519 0.823 0.039 

4 0.950 1073.146 704.863 0.549 0.806 0.042 

       

       

Iteration 0.250 Talyor-Quinney A B n m C 

0 0.700 855.000 448.000 0.137 0.630 0.014 

1 0.601 627.755 799.630 0.299 0.900 0.051 

2 0.657 749.424 757.757 0.275 0.773 0.053 

3 0.660 965.518 751.086 0.367 0.741 0.038 

4 0.842 950.353 674.813 0.429 0.705 0.057 
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APPENDIX B 

Machining Conditions Data Across All 𝑯𝒓𝒆𝒇 

0.100 C-T C-T% C-L C-L% C-F C-F% P-F P-F% Residual 

0 0.142 23.087 0.025 66.837 173.770 41.448 89.633 26.771 74.349 

1 0.231 -25.281 0.120 55.906 337.943 13.870 122.190 0.173 39.570 

2 0.184 0.000 0.077 0.000 298.819 -0.687 125.097 -2.202 0.053 

3 0.196 -6.434 0.077 0.000 299.966 -1.073 123.746 -1.098 0.438 

 

 

      

   

0.150 C-T C-T% C-L C-L% C-F C-F% P-F P-F% Residual 

0 0.208 21.658 0.072 27.380 254.068 39.950 110.382 26.462 35.150 

1 0.230 13.370 0.132 32.475 488.186 15.384 199.353 32.813 25.467 

2 0.262 1.360 0.099 0.000 400.154 5.423 145.147 3.300 0.421 

3 0.290 -8.854 0.099 0.000 432.689 -2.267 151.158 -0.704 0.840 

4 0.262 1.360 0.099 0.000 413.024 2.381 148.573 1.018 0.086 

5 0.266 0.000 0.099 0.000 428.249 -1.218 150.866 -0.510 0.017 

 

       

   

0.175 C-T C-T% C-L C-L% C-F C-F% P-F P-F% Residual 

0 0.238 22.133 0.121 39.841 293.142 39.890 119.189 27.170 44.066 

1 0.303 0.838 0.201 0.000 607.108 24.490 204.457 24.933 12.221 

2 0.298 2.455 0.145 28.002 472.414 3.130 162.082 0.960 8.009 

3 0.306 0.000 0.201 0.000 481.313 1.305 162.316 0.817 0.024 

4 0.308 -0.779 0.201 0.000 490.622 -0.604 164.160 -0.310 0.011 
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0.230 C-T C-T% C-L C-L% C-F C-F% P-F P-F% Residual 

0 22.229 0.185 41.068 373.170 39.947 133.618 30.430 47.024 0.308 

1 17.529 0.314 0.000 613.415 1.285 189.667 1.248 3.105 0.327 

2 -7.539 0.314 0.000 620.871 0.085 191.314 0.390 0.570 0.426 

3 -5.596 0.314 0.000 620.431 0.155 191.778 0.149 0.314 0.419 

4 -1.660 0.314 0.000 606.637 2.375 189.768 1.195 0.098 0.403 

 

          

0.250 C-T C-T% C-L C-L% C-F C-F% P-F P-F% Residual 

0 0.346 20.601 0.205 30.887 404.422 39.788 140.654 31.034 39.246 

1 0.496 13.827 0.232 21.742 708.270 -5.451 201.430 1.234 6.951 

2 0.433 0.726 0.232 21.742 656.489 2.259 200.968 1.460 4.805 

3 0.436 0.000 0.232 21.742 659.377 1.829 201.659 1.121 4.773 

4 0.394 9.567 0.232 21.743 633.214 5.724 198.977 2.436 6.030 

 

Where; C-T: Chip Thickness 

C-L: Contact Length 

C-F: Cutting Force 

P-F: Penetration Force 
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