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Italian Summary

Il presente studio si concentra sul comportamento morfologico e di crescita dello 9H-

Xanthen-9-one in tre diversi solventi (acetone, acetonitrile e toluene), esaminato da una

doppia prospettiva: sperimentale e computazionale. Lo xanthone è un composto organico

aromatico eterociclico, facente parte della famiglia polifenolica degli xantoni, noto per le

sue proprietà farmacologiche e per le sue potenziali applicazioni nei materiali funzionali.

L’influenza del solvente nelle cinetiche di crescita e dei cambiamenti che essi apportano

alla morfologia del cristallo stesso è un aspetto di particolare interesse, soprattutto nei

settori farmaceutico, chimico e ingegneristico, derivante dalla consapevolezza che diverse

morfologie cristalline di una stessa molecola possono presentare proprietà differenti e, di

conseguenza, adattarsi in modo più efficiente a specifiche applicazioni. Tali differenze

influenzano aspetti critici come la cinetica del processo, l’efficienza delle operazioni di

downstream e la resa finale. Nei processi di downstream ad esempio, alcune morfologie,

come quella aghiforme, sono indesiderate, in quanto comportano problemi nella fase di

filtrazione del prodotto. Al contrario, morfologie più compatte, come quella prismatica,

possono risultare vantaggiose in applicazioni in cui si desidera aumentare la superficie di

contatto del cristallo, ad esempio per migliorare la dissoluzione o l’interazione con altri

componenti del sistema.

L’analisi computazionale e sperimentale sono state integrate al fine di verificare se fosse

possibile ottenere informazioni sul comportamento morfologico dello xanthone basandosi

esclusivamente su dati di simulazione molecolare e, di conseguenza, facilitarne il design

del processo di cristallizzazione. In particolare, si è stimato il valore dell’energia interna

del sistema cristallo–solvente all’interfaccia di tre diverse facce cristallografiche. L’energia

interna rappresenta il primo termine dell’energia libera di Helmholtz; nello specifico, si è

cercato di correlare tale termine a proprietà macroscopiche del sistema, quali la cinetica di

crescita e il grado di anisotropia morfologica, al fine di valutare se l’impiego esclusivo delle

simulazioni computazionali possa essere sufficiente a predire, almeno qualitativamente,

tali caratteristiche, riducendo la necessità di test preliminari. Si sottolinea tuttavia che

l’energia libera di Helmholtz comprende anche un contributo entropico, che in questo

lavoro non è stato considerato nei calcoli. Tale omissione comporta una semplificazione
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del modello, potenzialmente limitandone la capacità predittiva.

I solventi investigati sono stati acetone, acetonitrile e toluene. In tutti gli esperimenti, con-

dotti in soluzione sovrasatura con rapporto 1.09 C
Ceq

tramite protocollo di seeding (massa

dei seed: 5% in massa della concentrazione di soluto in equilibrio), è stato applicato un

gradiente di raffreddamento costante di 0.5 ◦C/min. Per ciascun esperimento sono stati

prelevati nove campioni (i primi otto ogni ora, l’ultimo a distanza di 14 ore per misurare

le dimensioni delle principali direzioni di crescita e i valori di assorbanza raggiunti asin-

toticamente), su cui è stata condotta l’analisi di immagine tramite il software ImageJ, al

fine di determinare le dimensioni caratteristiche dei cristalli (lunghezza e larghezza). I

dati raccolti sono stati successivamente elaborati tramite analisi statistiche per ricavare

i parametri caratteristici delle distribuzioni dimensionali dei cristalli nei diversi campi-

oni. Indicatori come valore medio, deviazione standard e intervallo di confidenza hanno

permesso di valutare la significatività statistica del campionamento effettuato, fornendo

una base quantitativa per valutare quanto i risultati ottenuti siano rappresentativi della

popolazione cristallina nel suo complesso: dal confronto tra gli intervalli di confidenza

calcolati e la risoluzione del microscopio ottico emerge che la discrepanza è limitata e,

pertanto, pur essendo possibile migliorare il campionamento, i risultati ottenuti risultano

comunque adeguati a supportare le valutazioni qualitative condotte.

Nonostante i limiti quantitativi dell’analisi statistica, i dati ottenuti permettono comunque

di trarre considerazioni di natura qualitativa, che risultano rilevanti ai fini dell’interpretazione

del sistema. Gli esperimenti mostrano infatti che i differenti solventi influenzano in modo

significativo la cinetica di crescita, portando alla formazione di morfologie finali dello

xanthone sensibilmente diverse, sia in termini di dimensione generale dei cristalli, sia per

quanto riguarda il rapporto lunghezza/larghezza. La valutazione di questo parametro

consente di indagare il comportamento anisotropo del cristallo, ovvero quanto le sue pro-

prietà (ad esempio la lunghezza) varino in funzione della direzione cristallina considerata.

L’analisi ha evidenziato una maggiore anisotropia nel toluene, dove il rapporto lunghezza-

/larghezza risulta più elevato, mentre negli altri due solventi, in particolare nell’acetonitrile,

il cristallo presenta una crescita più uniforme tra le diverse direzioni.

In tutti e tre i casi, inoltre, è stato osservato il fenomeno di nucleazione secondaria, evi-

denziando la presenza di meccanismi complessi nel processo di crescita cristallina.

Per la parte computazionale, le simulazioni sono state effettuate con il software LAMMPS,

inizialmente validando le box monocomponenti in ensemble NPzAT mediante il confronto

con dati di letteratura di densità, funzione di distribuzione radiale (RDF) e diffusività dei

tre solventi. Successivamente, è stato simulato il sistema completo (cristallo - solvente) in

ensemble NVT, calcolando l’energia interna per ciascuna faccia ortogonale dello xanthone,

(100), (010), (001) secondo gli indici cristallografici, nei diversi solventi. La differenza tra
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l’energia interna della box unita e la somma delle energie interne delle due box separate

ha permesso di stimare il contributo energetico all’interfaccia.

I risultati computazionali hanno mostrato che il toluene presenta il valore più basso di

energia interna, seguito da acetone e infine acetonitrile. In particolare, le facce energeti-

camente favorite sono risultate essere la (001) per toluene e acetonitrile, e la (010) per

acetone. Da tali valori ci si aspetterebbe che la crescita cristallina sia più rapida nel

toluene e più lenta nell’acetonitrile, con crescita più rapida in direzione perpendicolare

alle facce per cui rispettivamente si è calcolata un’energia minore.

L’analisi sperimentale ha effettivamente confermato che lo xanthone cresce più rapida-

mente e in modo più anisotropo in toluene, con cristalli fino a 13 volte più grandi rispetto

a quelli sviluppati in acetonitrile; tuttavia, si è riscontrata una discrepanza tra le previsioni

basate solo sull’energia interna e lo sviluppo morfologico reale delle singole facce: in alcuni

casi, infatti, le facce che sperimentalmente crescono meno, in quanto facce più ampie e

dunque presentanti maggior competività tra le interazioni soluto-solvente e soluto-soluto,

risultano invece energeticamente favorite nei calcoli computazionali, condizione che sug-

gerirebbe, al contrario, una crescita più rapida. Di conseguenza, sebbene l’energia interna

risulti un buon indicatore per confrontare qualitativamente la tendenza alla crescita nei

diversi solventi, essa non è sufficiente per predire con precisione la morfologia finale del

cristallo o la crescita specifica delle singole facce.

Pertanto, l’analisi integrata tra dati sperimentali e computazionali ha fornito una com-

prensione più approfondita delle dinamiche di cristallizzazione dello xanthone; ma le dis-

crepanze osservate evidenziano i limiti dell’approccio basato esclusivamente sull’energia

interna, mentre la buona corrispondenza nelle tendenze generali di crescita convalida

l’utilizzo della dinamica molecolare come strumento preliminare di screening.

Per ottenere predizioni morfologiche più accurate, in futuro sarà necessario includere an-

che il termine entropico dell’equazione di Helmholtz. Inoltre, il calcolo delle cinetiche di

crescita specifiche per ciascun sistema e la ripetizione degli esperimenti permetterà una

caratterizzazione più precisa dei meccanismi coinvolti e dei comportamenti cristallini.
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Abstract

The present work investigates the morphological behavior of 9H-Xanthen-9-one, an aro-

matic heterocyclic compound from the polyphenolic xanthone family, known for its phar-

maceutical properties and its potential applications in functional materials. In particular,

the study examines how crystal morphology and growth kinetics depend on three differ-

ent solvents (acetone, acetonitrile, and toluene). This aspect is of great relevance in the

pharmaceutical, chemical, and engineering fields, as different crystal morphologies of the

same compound can exhibit distinct properties and suitability for specific applications.

For example, needle-like crystals are often undesirable in downstream processes due to

filtration issues, whereas prism-like crystals may be advantageous when increased surface

area is required for dissolution or interaction with other system components.

The analysis was conducted through a dual approach: experimental crystallization and

molecular dynamics (MD) simulations. The aim is to assess whether the internal energy

at the crystal–solvent interface alone, obtained computationally, could serve as a reliable

predictor of experimental crystal growth trends and interfacial properties.

Experimentally, xanthone was crystallized in the three solvents using identical supersat-

uration and seeding conditions. Crystals were sampled at regular time intervals over a

24-hour period and analyzed via image processing to determine characteristic size dis-

tributions. To evaluate the statistical representativeness of each sample, the number of

crystals analyzed was examined through methods such as the cumulative running average

and moment analysis of the size distributions: by comparing the calculated confidence

intervals with the resolution of the optical microscope, it emerges that the discrepancy is

minor and thus, despite possible improvements in sampling, the results remain adequate

to support the qualitative assessments performed in this work.

Experimental results showed a clear solvent-dependent trend: growth was fastest and

most anisotropic in toluene, followed by acetone, with acetonitrile yielding the slowest

and least anisotropic growth.

From a computational perspective, MD simulations were conducted using the LAMMPS

package. The simulations focused on evaluating the interfacial internal energy, the first

term of the Helmholtz free energy equation, for the three orthogonal crystal faces (100),

(010), and (001). After validating the simulation setup via density, Radial Distribution
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Functions, and diffusivity benchmarks obtained from literature, energy calculations were

performed on both mono-component (crystal or solvent only) and crystal–solvent com-

bined systems.

The simulation results echoed the experimental hierarchy: toluene yielded the lowest in-

ternal energy values, followed by acetone and then acetonitrile. However, discrepancies

arose when comparing face-specific growth: in some cases, the faces that experimentally

grew the least were those with the lowest internal energy, contrary to thermodynamic

expectations.

This mismatch indicates that internal energy alone is insufficient to predict directional

growth: although the computed energies can reliably forecast overall solvent effects on

crystal growth kinetics, they do not capture anisotropic development.

In conclusion, the study demonstrates the viability of linking computational and exper-

imental approaches to evaluate crystal morphology and growth kinetics, confirming the

potential of molecular dynamics as a qualitative screening tool for the design of crys-

tallization processes. Nonetheless, a more comprehensive energetic model including the

entropic contribution is necessary for accurate morphological predictions. Future work

should therefore focus on thermodynamic integration to quantify the entropic term and

on crystal growth kinetics modeling to deepen the understanding of solvent-specific be-

havior and dependence parameters.
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Ich glaube, heute Abend wird es regnen

So wie ich dich kenne passt dir das ganz gut

- AnnenMayKantereit
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Chapter 1

Introduction

The influence of the solvent on crystal growth kinetics and the morphological changes

it induces is a subject of particular interest, especially in the pharmaceutical, chemical,

and engineering fields. This interest stems from the understanding that different crystal

morphologies can exhibit distinct properties and, consequently, be better suited for specific

applications.[1]

Such morphological differences affect critical aspects of the process, including growth

kinetics, downstream efficiency, and overall yield. For example, in downstream processing,

certain morphologies, such as needle-like forms, are generally undesirable, as they pose

challenges during product filtration. Conversely, more compact or flat morphologies, such

as prism-like crystals, can be advantageous in applications where an increased surface

area is functionally beneficial, for instance to improve dissolution or interaction with

other components in the system.

Understanding and controlling crystallization through solvent selection is therefore crucial

to obtain the most suitable morphology for a specific application, especially when aiming

for enhanced performance, bioavailability, or stability of the final product.

In parallel, a computational approach is employed to evaluate the facet-specific energetic

contributions within the system. Molecular Dynamics simulations are conducted on both

single-component systems (comprising only the solvent or the crystal) and combined sys-

tems (crystal–solvent) to estimate the primary term in the interfacial free energy equation.

The central hypothesis is that internal energy at the crystal–solvent interface can serve

as a meaningful predictive descriptor for macroscopic properties such as growth kinetics

and anisotropy.

An attempt was made to correlate this term with these properties in order to assess

whether the exclusive use of computational simulations may be sufficient to qualitatively

predict such characteristics, thereby reducing the need for preliminary experimental test-

ing.
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1.1 Thesis Objective

The present work aims to experimentally investigate the crystallization behavior of xan-

thone in different solvents. It has been observed that the crystal exhibits distinct mor-

phologies depending on the crystallization medium. Therefore, this study focuses on

analyzing the characteristic size, shape distribution and growth kinetics of xanthone crys-

tals.

In parallel, a computational approach is employed to evaluate the different energy con-

tributions in order to obtain useful information for solvent selection and process design.

Molecular dynamics simulations are performed on both single-component systems (con-

taining only the solvent or the crystal) and combined systems (solvent-crystal).

This thesis is thus structured around two complementary approaches: experimental and

computational. This dual nature is consistently maintained throughout the chapters,

each of which presents the topic from both perspectives. A comparative and integrative

analysis is then provided in the results chapter, where the two methodologies are brought

together to find connections and correlations.

The structure of the thesis is as follows:

• Chapter 2 – State of the Art: An overview of the literature on crystallization and

molecular dynamics. The main parameters, techniques, and theoretical models rel-

evant to this work are introduced, including the key equations used in the compu-

tational analysis.

• Chapter 3 – Materials and Methods: A detailed description of the experimental

procedures and computational methods employed.

• Chapter 4 – Results and Analysis: Presentation and discussion of the experimental

and computational results, first individually and then as a whole.

• Chapter 5 – Conclusions and Future Work: Summary of the findings and suggestions

for future developments or improvements to the study.
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Chapter 2

State of the Art

2.1 State of the Art in Crystallization

2.1.1 Crystallization Principles

Crystallization is a widely employed technique in purification and separation processes

across a broad spectrum of materials, ranging from fine chemicals to pharmaceutical

products. Over the past decades, scientific interest in crystallization has significantly

increased, not only due to its inherent complexity, stemming from its multicomponent

and multiphase nature, as well as the wide scale of the phenomena involved, but also

in response to the expanding range of application fields, including protein crystallization

and the development of nutraceutical compounds.

The process involves a phase transition in which a solute undergoes transformation from

the liquid state to the solid crystalline phase, adopting a periodic and ordered structure

with fixed intermolecular distances.

A solution is a homogeneous mix of two or more substances. In this context, it is consid-

ered as formed by the dissolution of a solid solute in a solvent, the latter acting as the bulk

medium. The extent to which the solute dissolves is governed by solubility, which defines

the equilibrium concentration of solute in the solvent as a function of temperature. For

each solute–solvent pair, a specific solubility curve exists, typically exhibiting a positive

temperature dependence: that is, solubility increases with temperature (Figure 2.1).
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Figure 2.1: Example of solubility curves for different salts from [2]

By examining the solubility curve, it is possible to determine the state of a solution at

any given temperature. If the concentration of solute lies below the curve, the system is

classified as unsaturated; vice versa, if the concentration exceeds the equilibrium value,

the solution is considered supersaturated, a condition under which crystallization may

occur. A solution in which the solute concentration matches the solubility curve is deemed

saturated. It is however possible for the solution to contain more solid than the equilibrium

concentration and not to form solids or precipitates: this zone is known as metastable

zone. Furthermore, the term induction time is commonly used to refer to the time required

for the system to overcome the nucleation energy barrier. Figure 2.2 allows for a clearer

picture of the conditions described.
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Figure 2.2: Depiction of solubility curve with stable, metastable and labile zone (from [3]
and modified)

Starting from point A, in the stable undersaturated zone, a decrease in temperature

allows to go past the solubility curve, reaching the metastable zone with a certain de-

gree of supersaturation in point B: here spontaneous crystallization is improbable, but

crystallization via other means is possible. By further decreasing the temperature, the

over saturation limit is reached in point C, landing the solution in the labile zone, with

consequent precipitation of part of the solute dissolved, in order to return to a state of

equilibrium by decreasing the concentration of solid dissolved.

The degree of supersaturation can be described as difference in concentrations (Equation

2.1):

∆S = C − C∗ (2.1)

or ratio of concentrations (Equation 2.2):

∆S =
C

C∗ (2.2)

or relative supersaturation (Equation 2.3):

σ =
C − C∗

C∗ = S − 1 (2.3)

where C is the concentration of the given solution, and C* represents the concentration

at equilibrium.

Supersaturation is the driving force for crystallization processes, as it is an essential
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condition for all crystallization operations.

2.1.2 Crystallization Techniques

Numerous crystallization techniques have been developed throughout the decades, and

they are distinguished based on the way supersaturation is created.[4]

• Evaporative Crystallization: the solvent is removed by evaporation from a solution,

therefore obtaining supersaturation by diminishing the overall quantity of solvent

present and consequently increasing the solute concentration. It is mainly used

when the solubility does not show a strong dependence on temperature;

• Cooling Crystallization: supersaturation is reached by decreasing the temperature of

the equilibrated solution, thus decreasing also the solubility (see Section 2.1.1). The

equilibrium is then reestablished by growing crystals in the solution. It is a technique

mostly used in the majority of crystallization processes, and it is particularly efficient

if the solubility has a strong dependence on temperature;

• Crystallization via antisolvent : although the addition of an antisolvent, that is, a

liquid not able to dissolve the solute, dilutes the mixture and reduces the concen-

tration, it also reduces the overall solubility in the mixture, thus reaching supersat-

uration conditions and allowing crystals to form. In this instance a good mixing of

the process is necessary to avoid large local supersaturation zones close to the inlet

points of the antisolvent. However, mixing effects and spatially localized variations

in system properties make the process control difficult;

• Reactive Crystallization: it occurs when two soluble materials are mixed and react,

resulting in a sparingly soluble solute. If the concentrations are sufficiently high,

and therefore also higher than the solubility, supersaturation is obtained. Same for

the antisolvent method, this technique requires good mixing and homogeneity to

avoid imbalances in the concentration of the solution.

2.1.3 Nucleation

Supersaturated conditions alone are not sufficient to allow the system to crystallize: it is

necessary to overcome the nucleation energy barrier in order to have solid nuclei able to

grow. This stochastic phenomenon of formation of crystalline matter in a supersaturated

clear solution, whether spontaneous or not, is referred to as nucleation[3] [5]. Nucleation

is distinguished in primary and secondary: in the first case, the crystals formed sponta-

neously in a solution that previously was homogeneous in the liquid phase; in the latter,

other nuclei are formed near crystals already present in the supersaturated system. Fur-

thermore, primary nucleation is defined as homogeneous when it happens spontaneously,

and heterogeneous when it is induced by foreign particles, whether it being other crys-
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tals of the same species (known as seeds), or impurities (dust in the equipment, external

particles not belonging to the crystal, etc).

Homogeneous nucleation

Homogeneous nucleation is a process controlled only by the degree of supersaturation

of the system, and it is appliable only in the case of certain absence of impurities or

external bodies. It is therefore extremely difficult in an experimental environment to be

sure that this phenomenon has occurred. Nonetheless, it is the basis for many nucleation

theories, such as the classical nucleation theory (CNT), stemming from Gibbs (1948),

Volmer (1939) and others. [3]

This theory visualizes the system as formed by a certain number of molecules that at

one point will form clusters resulting mainly from a sequence of bimolecular additions,

following the scheme:

A+ A ⇀↽ A2

A2 + A ⇀↽ A3

...

An−1 + A ⇀↽ An

where An is the size of the critical cluster, leading to nucleation and subsequent crystal

growth: if the nucleus achieves a certain critical size, it is considered stable and the

addition reactions thermodynamically favored.

The nucleation rate, J , as in the number of nuclei formed per unit time per unit volume,

is expressed in the form of the Arrhenius reaction velocity in Equation 2.4:

J = A exp

(
−∆G

kT

)
(2.4)

where A is the pre-exponential factor, k the Boltzmann constant and ∆G the Gibbs free

energy therm.

In order to explain the thermodynamic behind this process, a further analysis of the Gibbs

free energy is necessary. For simplicity, the nuclei are considered as a sphere of radius

r. The overall Gibbs free energy between a solid particle in the solute and the solute

itself is given by the sum of the surface excess free energy ∆Gs, which is positive (so

not thermodynamically favored) and proportional to the radius of the nucleus following

the relation described by equation 2.5, and the volume excess free energy ∆GV , negative

(thermodynamically favored) and also proportional to the radius following Equation 2.6.

∆Gs ∝ r2 (2.5)
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∆GV ∝ r3 (2.6)

As such, the overall term is illustrated in Equation 2.7.

∆G = ∆Gs +∆GV = 4πr2γ + 4
3
πr3∆Gv (2.7)

where ∆Gv is the free energy change of the transformation per unit volume and γ is

the interfacial free energy between the developing crystal surface and the supersaturated

solution.

Since the two components of Gibbs free energy depend differently on r, the free energy

function passes through a maximum, ∆Gcr, corresponding to the critical nucleus dimen-

sion r∗, which represents the minimum size of a stable nucleus, as shown in Figure 2.3.

Figure 2.3: Gibbs free energy variation dependent on the size of the crystal nucleus r
(from [4] and modified)

Through the analysis of Figure 2.3 it is possible now to explain the thermodynamic

tendencies of crystal growth: for small particles, with r < r∗, the positive free surface

energy factor prevails, resulting in the process of molecule addition to the cluster not

being thermodynamically favored, and thus particles smaller than r∗ will dissolve. Vice

versa, for r > r∗ the free volume energy is the main contributor, increasing the free energy

of the system and leading to cluster disaggregation.

The critical radius can be found through minimization of the Gibbs free energy function
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(Equation 2.8), resulting in Equation 2.9.

d(∆G)

dr
= 8πr∗γ + 4πr∗2∆Gv (2.8)

r∗ = − 2γ

∆Gv

(2.9)

Considering the growth of the crystal cluster as governed by Gibbs-Thompson Equation

(Equation 2.10) and substituting this term in Equation 2.4, the final equation for the

nucleation rate is obtained (Equation 2.11), through which it is also possible to highlight

the main variables that govern the phenomenon:

∆Gcr =
16πγ3ν2

3k3T 3(lnS)2
(2.10)

J = A exp

[
− 16πγ3ν2

3k3T 3(lnS)2

]
(2.11)

where T represents the temperature, S the degree of supersaturation, γ the interfacial

free energy, ν is the molecular volume and k the Boltzmann constant.

It is also important to note that temperature has an effect on the critical Gibbs free

energy, as shown in equation 2.10: lower temperatures lead in fact to lower values of

critical energy, which results in a maximum point of the function shifted to the left and,

therefore, to a lower value of critical radius, as depicted in Figure 2.4. This is also

linked to the effect that temperature has on the degree of sovrasaturation: the higher

the temperature, the higher the solubility of the crystals and consequently the easier it

is to reach higher degrees of supersaturation, thus facilitating nucleation by reducing the

energetic barrier and promoting faster crystal formation.
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Figure 2.4: Effect of Temperature on the critical radius value (From [3] and modified)

Heterogeneous nucleation

Homogeneous nucleation is not a common event, most cased in which it is assumed that it

has occurred are later deemed to be induced in some ways, whether by unknown seeding

or presence of impurities in the system, since there is a greater chance of samples being

contaminated with active heteronuclei. As those nuclei constitute a source of nucleation,

the overall free energy change associated with heterogeneous nucleation, ∆G′, is less than

the one associated with homogeneous conditions.

In this case, equation 2.11 can be modified as shown in equation 2.12, which includes a

factor f(θ) that keeps track of the variation in superficial tension:

Jhet = A exp

[
−16πγ3ν2f(θ)

3k3T 3(lnS)2

]
(2.12)

During nucleation, both mechanisms happen at the same time, as such, the actual rate of

nucleation is the sum of both homogeneous and heterogeneous nucleation rates (Equation

2.13).

J = Jhom + Jhet (2.13)

Secondary nucleation

The term secondary nucleation refers to the phenomenon in which nucleation occurs more

readily when crystals of the solute are already present in the solution. There are many

mechanisms thank to which this can happen, such as:

• Attrition: the crystals already in the solution collide with each other, the walls of
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the reactor or the stirrer, resulting in crystals more strained and stressed and thus

having an increased chemical potential;

• Initial breeding;

• Needle breeding;

• Fracture of the crystals;

• Fluid shear;

The size of the crystal seeds is influential in secondary nucleation: in fact, large seeds

generate more secondary nuclei in agitated system than smaller seeds because of their

greater contact probabilities and collision energy. As a result, increased supersaturation

increases secondary nucleation and decreases the latent period.

Some other process parameters, like temperature, pressure, composition, stirring and

cooling rate, can affect the probability of secondary nucleation.This phenomenon is usually

considered undesirable when it occurs repeatedly within the same system, particularly

in experimental studies, as it may result in a non-homogeneous crystal size distribution.

However, nucleation induced by deliberate seeding is still classified as secondary nucleation

and is generally preferred over primary nucleation, since the latter produces a large number

of crystals with low growth rates, which is not desirable when the aim is to evaluate growth

kinetics.

2.1.4 Crystal growth

After nucleation, the crystals in the solution grow by including surrounding solute molecules

and increasing their dimension. When trying to describe the growth rate from a math-

ematical point of view, the structure in the crystal is approximated by individuating its

characteristic dimension when compared to a known geometrical form, as shown in Figure

2.5. This is particularly true in the case of non-monodimensional crystals.

Figure 2.5: Crystal dimension approximation

Generally, then, the growth rate is described as the velocity in which the particle’s char-

11



acteristical dimensions Li increases as a function of time (equation 2.14).

G =
dLi

dt
(2.14)

The velocity of growth of a crystal face is measured by the outward rate of movement in

direction perpendicular to that face. The many theories in which growth occurs and their

implications are detailed below.

Surface energy theories [3]

The surface energy theories are based on the principle that the total free energy of a crystal

in equilibrium with its surroundings at a constant temperature and pressure would be a

minimum for a given volume (Equation 2.15). Therefore, when a crystal grows in a

supersaturated solution, it should develop in a manner as to ensure that the whole crystal

has a minimum total surface free energy: consequently, crystal faces should grow at rates

proportional to their respective surface energies, and thus, the velocity of growth will vary

from face to face.

n∑
i=1

Aiγi = min (2.15)

where Ai represents the area of a specific face, and γi the surface energy per unit area of

the ith surface.

Experimentally then, smaller faces grow faster in comparison to large faces, and so it is

possible for a crystal not to maintain geometric similarity during its growth, as faster-

growing faces gradually disappear, as pictured in Figure 2.6.
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Figure 2.6: Velocities of crystal growth faces, here the D face of the crystal is shown to
gradually disappear during its growth, from [3] and modified

Adsorption layer theories

The adsorption layer theories are based on the concept of existence of an adsorbed layer of

solute atoms or molecules on a crystal face: when crystallizing units arrive at the crystal

face, they are not immediately integrated, but instead lose one degree of freedom and are

able to migrate over the crystal face via surface diffusion, where they will link into the

bulk crystal in positions where the attractive forces are greatest.[3]

The presence of dislocations and imperfections on the bulk crystal surface can then pro-

mote attraction of solute molecules and face growth, solving the difficult thermodynamic

problems of needing a two-dimensional nucleation for the adsorption growth to occur.

This mechanism, in presence of a screw dislocation, is known as spiral growth mechanism:

screw dislocations, as in “steps” in the crystal surface, provide energetically favorable ac-

cess points for incorporating molecules. Since the step originates from a fixed position,

the crystal particles that aggregate make such step spiral around the dislocation [6].

Diffusion-reaction theories

The diffusion-reaction theories define the deposition of solid on the face of a growing

crystal as a two-step process:

• Diffusion process: the solute molecules are transported from the bulk of the fluid

phase to the solid surface (Equation 2.16):

dm

dt
= kd A (c− ci) (2.16)
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where kd is a coefficient of mass transfer by diffusion and ci the solute concentration

in the solution at the interface;

• First-order reaction process: the solute molecules arrange themselves into the crystal

(Equation 2.17)
dm

dt
= kr A (ci − c∗) (2.17)

in which kr a rate constant for the surface reaction (integration) process, and c∗ the

concentration at equilibrium.

In both cases the driving force is a concentration difference, better illustrated in Figure

2.7.

Figure 2.7: Concentration driving forces, from [3] and modified

A general equation for crystallization based on the overall driving force can be written as:

dm

dt
= KGA (c− c∗)g (2.18)

where KG is the overall crystal growth coefficient, g is the order of the overall crystal

growth process.

2.1.5 Surface Structure and Interfacial Energies in Crystal Growth

It exists an important connection between the structure of a crystal face and the modality

of growth adopted. This property is characterized by the surface roughness or surface

entropy factor, also known as the alpha factor (Equation 2.19).

α =
ξ∆H

kT
(2.19)
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where ξ is an anisotropy factor related to the bonding energies in the crystal surface

layers,∆H is the enthalpy of fusion and k is the Boltzmann constant.

Low values of α are indicative of a rough crystal surface that will allow continuous growth

to proceed, whereas higher values indicate smoother surfaces, which makes it more difficult

for solute molecules to attach to the face of a growing crystal.

Interface structure changes can sometimes explain the changes undergone by the crystal

in terms of solvent dependance: generally, the higher the solubility of the solute, the lower

the α-value and consequently rougher the surface [7]. The surface roughness, as explained

above (see Section 2.1.4), influences the velocity and probability of attachment of solute

molecules on the surface of the pre-existing crystal, thus influencing the growth rate and

impacting the final shape of specific faces.

Wullf construction

A way to predict the equilibrium shape of a crystal, hence its morphology during growth,

is the Wulff construction [8] [9]. It is a graphic method that requires the surface energy to

be known: said surface energies, which vary in order to minimize the free energy following

equation 2.15, are selected in reference to the surface area, assumed as constant (equation

2.20). By individuating the values of surface energies, it is then possible to construct the

shape of that face of the crystal at equilibrium, as depicted in Figure 2.8.

γ =
Esurf

A
(2.20)

The surface free energy, howeve,r is complex to determine through conventional empirical

methods, hence why in the lates decades molecular dynamic simulations and thermody-

namic integrations have been employed (see Section 2.2).
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Figure 2.8: Example of Wullf construction, γ are the interfacial free energies and h the
directions perpendicular to the accounted faces. The ticker, black outline shows which
shape the face will undertake in equilibrium conditions, from [9] and modified

2.1.6 Growth rate measurement

To determine the growth rate of a specific crystal face, measurements made on population

of crystals are often used to determine the overall mass transfer rate under controlled

conditions and determine the bulk volume of the crystals.[10]

The general models that take in consideration the development of crystals in a solution,

such as behaviors like birth, growth, agglomeration and death, are known as population

balance equations (PBE), of which the general form is:

∂n(L, t)

∂t
+G(L, t)

∂n(L, t)

∂L
= B(L, t)−D(L, t) (2.21)

where the first term considers the evolution of the population density (also known as

number density) of the crystals through time, taking into account the characteristic di-

mension of the crystals, L, and time t; G is the growth rate, allowing the second term

to highlight how the crystals population varies in their size through time due to growth;

B(L, t) crystal birth (due to nucleation or breakage) and D(L, t) the crystal death (due

to agglomeration or dissolution). A simplified schema of the process is shown in Figure

2.9
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Figure 2.9: Parameters considered in PBE, from [10] and modified

Using simplifying assumptions, analytical solutions can be found for the population bal-

ance equation. However, the simplest and most efficient way to solve them is to implement

the method of moments (MOM).

Method of Moments

The method of moments involves converting the PBE into moments equation of the num-

ber density and using those values to find global properties of the distribution. The ith

moment is defined in equation 2.22, and the general form of the PBE with the MOM

application is given in equation 2.23.

µi =

∫ ∞

0

f(L, t)Li dL (2.22)

dmi(t)

dt
= (0)iB(t) +

∫ ∞

0

iLi−1(L)n(L, t) dL+Bi,a(t)−Di,a(t) +Bi,b(t)−Di,b(t) (2.23)

where mi is the ith moment (m
i

m3 ), B(t) is the birth rate due to nucleation, Bi,a(t) is the

birth rate due to agglomeration, Di,a(t) is the death rate due to agglomeration, and Bi,b(t)
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and Di,b(t) are the birth and death rate due to breakage, respectively.

Solving the first four moments of the population balance equation provides a comprehen-

sive description of the crystallizing system. For simplicity, assuming that only the growth

rate G and the nucleation rate B are considered, the meaning of the first four moments

is as follows, where the general multidimensional equation is shown in equation 2.26:

• Zeroth moment µ0: Represents the total number of crystals per unit volume (equa-

tion 2.24);

• First moment µ1: Corresponds to the total length of all crystals per unit volume

(equation 2.25);

• Second moment µ2: Provides information related to the total surface area of the

crystals, assuming a simplified geometry (equation 2.25)

• Third moment µ3: It is proportional to the total volume (or mass) of crystals present

in the system (equation 2.25)

µ̇(0) = B0 (2.24)

µ̇i1...ik = −
k∑

r=1

gir µi1...ir−1 ir+1...ik + B0

k∏
r=1

ℓ0,ir (2.25)

where g represents the crystal decay term, quantifying the strength of the dependence of

the k − th moment µk on the (k − 1)− th moment µk−1. In the mono dimensional case,

g is a scalar; in multidimensional formulations it can instead take the form of a vector

(g ∈ Rd) or, more generally, a matrix (A ∈ Rd×d).

Each moment integrates the particle size distribution across different size classes, allowing

for a simplified but meaningful description of the crystallization process. These values

are fundamental for process control and scale-up, as they relate directly to measurable

physical properties.

The method of moment can also be extended into the Quadrature Method of Moments

(QMOM) by approximating the integral with a quadrature, as shown in equation 2.26.

When discrete crystal size distributions are available, the QMOM provides clear advan-

tages over the classical method of moments. QMOM reconstructs the particle size dis-

tribution from a small set of moments, ensuring realizability and enabling more accurate

tracking of nucleation, growth, and aggregation dynamics. In contrast, standard MOM

relies on moment closures and may produce non-physical results, especially when higher-

order dynamics are relevant.

mi =

∫ ∞

0

f(L)Li dL ≈
n∑

j=1

wj L
i
j (2.26)
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where Li
jdenotes the representative crystal size of the j − th class and wj the associated

weighting factor, corresponding to its relative frequency in the distribution.

2.1.7 Techniques for crystal characterization and analysis

Polarized Light Microscopy

Polarized Light Microscopy (PLM) is an optical technique used to enhance image contrast

when analyzing samples containing birefringent materials. This method is particularly

effective for the qualitative and quantitative examination of anisotropic substances, such

as crystalline compounds, due to its high sensitivity to optical anisotropy.[11]

The technique relies on the interaction between polarized light and birefringent structures

within the specimen. A typical polarized light microscope is equipped with two key optical

elements: the polarizer, positioned below the sample, and the analyzer, placed above the

objective in the optical path. When plane-polarized light passes through a birefringent

material, it splits into two orthogonal wave components that travel at different speeds.

These components are later recombined by the analyzer, resulting in constructive and

destructive interference patterns.

This interference enhances contrast and reveals detailed structural features that are often

invisible under standard brightfield illumination. For this reason, PLM is especially useful

for observing crystals, as it helps clearly show their shape, orientation, and how they

interact with light. The technique makes it easier to see small differences in the structure

that would be hard to detect with regular light microscopy.

Turbidity analysis

During a crystallization process, turbidity analysis is important both to evaluate the

beginning of the process and, indirectly, the occurrence of other phenomena, i.e. secondary

nucleation. This method is based on the principle of measuring the transmission of light

though a turbid solution, in order to account for variations in terms of transmittance

and absorbance. The two parameters are linked to one another following equation 2.27,

and have opposite trends: an increased value of transmittance leads to a decrease in the

absorbance, and vice versa.

A = −log10T (2.27)

Transmittance (T) is defined as the fraction of incident light that passes through a sample:

T =
I

I0
(2.28)

where I0 is the intensity of the incident light and I is the intensity of the transmitted light.

It is commonly expressed as a percentage (%T ), where higher values indicate clearer solu-
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tions (i.e., less absorbance or scattering). On the other hand, absorbance is a logarithmic

measure of the amount of light absorbed by the sample, and it is directly proportional to

the solute concentration, given constant path length and molar absorptivity. As crystal-

lization proceeds and solute leaves the solution to form crystals, transmittance increases

and absorbance decreases, indicating a lower concentration of dissolved solute. [12]

For this type of analysis immersion probes are often used, in which a constant LED ray

goes through the process fluid: the ray is intercepted by a sensor that measures how much

the intensity of the transmitted light has been toned down due to turbidity. An example

of such instrumentation is depicted in Figure 2.10.

Figure 2.10: Insertion sensor, where 1) Optic path, 2) Optics in sapphire, 3) Measuring
sensor, 4) Ambient light Filter, 5) LED source

Statistical Reliability of Crystal Size Distribution Measurements

To ensure the reliability of any analysis conducted on crystal populations, it is essential

to verify that the investigated sample is statistically significant; namely, that the number

of particles analyzed is representative of the entire population batch or, in certain cases,

that the statistical estimators can properly represent the sample analyzed.[13]

To this end, two key statistical estimators are employed:

• x̄n, cumulative running average (Equation 2.29): This parameter reflects the cumu-

lative mean of a property across the first n analyzed particles. Ideally, the running

average should converge as n increases. Such convergence indicates that the ana-

lyzed sample is large enough to statistically represent the population of the sample

at the given time:

x̄n =
1

n

n∑
i=1

xi (2.29)

• s, cumulative running standard deviation (Equation 2.30): This value measures

the dispersion of the observed property across the first n particles. Similar to the

average, convergence of the standard deviation towards a stable value suggests that

the variability within the sample is well captured and additional sampling is unlikely
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to alter the population statistics significantly:

s =
1

n− 1

n∑
i=1

(xi − x̄)2 (2.30)

To further validate the reliability of the calculations, a comparison between the values

obtained through running statistics and those derived from evaluation of the moments of

the sampled distribution was performed. In particular, the mean and variance calculated

via the moments should match the cumulative estimators if the calculations are correct.

As such, the mean and variance values may be written as a function of the sample raw

moments, following equation 2.31 and 2.32:

L̄ =
M1

M0

(2.31)

S2 =
M0M2–M

2
1

M0(M0 − 1)
(2.32)

where M0 is equal to the total number of sampled particles N , and Mi represents the ith

moment for the given system of crystals.

From Equation 2.32, the common equation for standard deviation can be written as:

S =
√
S2 (2.33)

In cases where more than one dimension is analyzed (e.g., both length and width of the

crystals), the same statistical criteria apply. However, the most descriptive property may

vary: for instance, in a 2D context, the average projected area might be the most relevant

parameter, as it captures both dimensions’ effects simultaneously. As such, equations 2.31

and 2.32 can be generalized for n-dimensions as:

X̄ =
Mn

M0

(2.34)

S2 =
M0M2n–M

2
n

M0(M0 − 1)
(2.35)

The moments are primarily employed to estimate statistical descriptors of a population.

In the context of this work, it is particularly useful for validating the representativeness

of the samples by estimating the confidence interval (CI) associated with the measured

property.

The confidence interval defines the range within which the true value of a population

parameter is expected to lie, at a given confidence level α. It is delimited by an upper
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limit (Ulimit) and a lower limit (Llimit), as shown in Equation 2.36, while the interval

width (CIW ) is given by their difference. The value of α indicates the proportion of

measurements expected to fall within the interval (typically between 80% and 99%). The

corresponding t-value, t∞,α/2, is derived from the two-tailed Student’s t-distribution with

infinite degrees of freedom (a valid approximation when N is large).

CIW = Ulimit − Llimit, where :

Ulimit

Llimit

=

X̄ + 2t∞,α/2
S√
N

X̄ − 2t∞,α/2
S√
N

(2.36)

where S is the sample standard deviation, X̄ is the sample mean of the measured prop-

erty, and N is the number of sampled particles.

The evaluation of the confidence interval can be performed using the Central Limit The-

orem (CLT), which states that, within a population of collected samples N , the sampling

distribution of the mean x̄ is increasingly concentrated around the mean of the population

µ and converges to a standard Gaussian distribution as N increases, as better shown in

Figure 2.11[14].

Figure 2.11: Rapresentation of the Central Limit Theorem, from [14] and modified

From Equation 2.36, it is also possible to invert the formulation in order to estimate the

minimum number of particles (N) required to achieve a target level of precision, expressed

as a desired confidence interval:

N = (
2t∞,α/2

benchmark
)2 (2.37)

This formulation is essential when planning experiments, as it provides a statistical basis

for determining whether the number of samples is sufficient to make reliable conclusions.

In addition to the confidence interval, the calculation of the Relative Confidence Interval
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(RCI) provides a dimensionless measure of statistical uncertainty by normalizing the in-

terval width with respect to the mean. Unlike the absolute confidence interval, the RCI

enables direct comparison between samples with different average crystal sizes, allowing

the reliability of the measurements to be assessed on a relative basis. Its equation is:

RCI =
Ulimit − Llimit

X̄
(2.38)

where X̄ is the average value, and U and L are the upper and lower limit of the confidence

interval, respectively.

In order to enable a qualitative assessment of sample representativity, an arbitrary thresh-

old value for the relative confidence interval (RCI) was defined. A cut-off of 15% was

adopted: intervals with RCI < 15% were classified as narrow, whereas those with higher

values were considered wide. The threshold of 15% was selected based on the common

criterion in scientific practice whereby a relative error below 10% is generally regarded

as acceptable according to the literature. By adopting a slightly higher limit, the defi-

nition of narrow confidence intervals (RCI < 15%) ensures consistency with established

standards while accounting for the experimental constraints of the present study.

2.2 State of the Art in Molecular Modeling Applied

to Crystallization

2.2.1 Molecular Modeling and Molecular Mechanics

Molecular modeling enables the investigation of molecular structures across a wide range

of systems by combining theoretical concepts with computational simulations. A rigorous

description of atoms requires analysis at the quantum level; however, such an approach

becomes impractical for systems involving thousands of atoms over very short time scales

(on the order of tens of nanoseconds). This limitation persists even when employing

approximations such as the Born–Oppenheimer approximation, which assumes that elec-

trons, due to their much smaller mass, adjust instantaneously to changes in the positions

of the nuclei, which constitute the heavier part of the atom.

Therefore, the solution is to resort to classical approximations, representing molecular

systems through simplified models that omit certain complex features, such as explicit

electronic structure, while retaining the essential physics of the problem. This approach

allows the prediction not only of macroscopically measurable properties, but also of more

subtle quantities, such as the potential energy and its individual contributions.

Molecular modeling is applied across numerous STEM disciplines, including computa-

tional biology, computational chemistry, spectroscopy, and materials science. Within this
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framework, Molecular Mechanics (MM) represents molecular systems by modeling atoms

as semi-rigid spheres of radius r, centered at the positions of the nuclei. These spheres

interact with one another through forces derived from classical potential functions that ap-

proximate quantum-mechanical interactions. Molecular Mechanics simulations therefore

involve evaluating the interactions among these spheres across different configurations;

namely, by sampling multiple relative positions. It is important to note that, for prac-

tical purposes, molecular mechanics models must be parametrized: choosing appropriate

parameters is a critical step to accurately simulate the molecular environment and obtain

reliable results.

In this context, tracking the positions of molecules is inherently connected to monitor-

ing their changes over time, particularly when studying conformational rearrangements

or dynamic interactions. To investigate such complex phenomena, molecular dynamics

provides an essential computational framework.

2.2.2 Molecular Dynamics

Molecular Dynamics (MD) is a computational technique used to simulate the time evolu-

tion of a system of interacting particles (typically atoms or molecules), based on the laws

of classical mechanics. It allows the analysis of the time-dependent behavior of molecular

systems, by updating the positions and velocities of particles over time by numerically

solving Newton’s equations of motion, while the forces acting on the particles are deter-

mined by empirical potentials (force fields), which depend on the geometric configuration

of the system.[15]

Newton’s equations of motion are applied to a system of N particles. In particular, the

definition of the force Fi acting on a particle is expressed through Newton’s second law,

which states that it is proportional to its mass and acceleration (expressed as the second

derivative of the particle’s position ri):

Fi = mi
∂2ri
∂t2

(2.39)

and also as the gradient of the system’s potential energy E(R):

Fi = −∇riE(R) (2.40)

giving as a result a set of differential equations that must be solved for all particles in the

system, in order to determine the evolution through time of their velocities and positions

(Equation 2.41).

mi
∂2ri
∂t2

= −∇riE(R) (2.41)
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Since equation 2.41 is usually not analytically solvable, due to the complexity in estimating

the different parameters, numerical integration methods are employed. Common schemes

include Euler, Verlet, and Velocity-Verlet, which integrate the equations over a chosen

timestep (∆t).

The update of particle positions and velocities uses either the current and next timestep (t

and t+∆t, in the Euler scheme) or the previous, current, and next timestep (t−∆t, t, and

t+∆t in the Verlet scheme). As such, the choice of the timestep is a crucial point for the

simulation of the system, and mainly depends on the oscillation frequency of the studied

phenomena: it must be sufficiently small to accurately describe the system’s dynamics, but

too little of a timestep would result in computationally inefficient simulations. In practice,

it is on the order of femtoseconds (10−15 seconds), corresponding to the oscillation period

of the H atom bonded in a molecule.

This approach allows for the investigation of a wide range of physical and chemical phe-

nomena at the atomic and mesoscopic scale, such as phase transitions, diffusion processes,

thermomechanical behavior, and structural properties. The versatility of the method

makes it applicable across various scientific fields, from crystalline materials to polymers

and complex biological systems.

The parameters and functions that must be defined to ensure a realistic and reliable

simulation are discussed in the following subsections.

Force Fields

As previously stated, a force field is a set of mathematical functions and associated pa-

rameters used to describe the potential energy function (PEF) of a molecular system as

a function of the positions of its atoms[16]. For a system composed of N atoms, each

represented by a position vector ri, the overall potential energy, also known as potential

energy surface (PES), is expressed as:

V (rN) = Vbond(rN) + Vnon-bond(rN) (2.42)

where Vbond(rN) describes forces with atoms connected through chemical bonds, includ-

ing aspects as bond stretching, angle bending and torsional rotations; and Vnon-bond(rN)

represents forces between atoms not directly bonded, such as Van der Waals attractions

and electrostatic interactions. A summary of the different interactions is illustrated in

Figure 2.12.
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Figure 2.12: Bonded (left) and non-bonded (right) interactions considered in MD simu-
lations, from [17] and modified

In MD simulations, examples of commonly used force fields include TraPPE[18], OPLS[19],

AMBER[20], and CHARMM[21]. Each of these has been parametrized for specific classes

of systems and applications: for instance, TraPPE[18] (Transferable Potentials for Phase

Equilibria) is optimized for accurate prediction of thermophysical properties in phase equi-

librium studies, while OPLS[19] (Optimized Potentials for Liquid Simulations) focuses on

reproducing liquid-state properties. AMBER[20] and CHARMM[21], on the other hand,

are widely used in biomolecular simulations, offering extensive parameter sets for proteins,

nucleic acids, and other biological macromolecules. The choice of force field is therefore

dictated by the chemical nature of the system under study and the target properties to

be predicted.

Analyzing each term of equation 2.42 singularly, the bonded interactions in MD refer

mainly to atoms connected by covalent bonds, and are divided in three categories:

• Bond stretching, involving two atoms, it is expressed through Hooke’s law:

Vbonds(d) =
ki
2
(di − di,0)

2 (2.43)

where k is the stretching constant of the bond, and d0 is the reference bond length

between the two particles considered;

• Angle bending, involving three atoms, it is often represented using a harmonic

potential, and it expresses the energy linked to deviations from the ideal valence
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angle defined within three atoms:

Vangles(θ) =
hi

2
(θi − θi,0)

2 (2.44)

in which h is a force constant and θ0 is the reference value for the valence angle;

• Torsional or dihedral interactions, involving four atoms, it explicates the energy

changes occurring during the rotation around a bond involving four atoms, and it

is modeled using a sinusoidal function:

Vdihedrals(ϕ) =
Vn

2

(
1 + cos(nϕ− φ)

)
(2.45)

the parameters of this equation are the barrier term Vn, expressing the energy

required for rotation, the multiplicity n, indicating the number of minimum potential

points encountered in a full rotation of the molecule, and the phase factor ϕ that

defined the position of the different minima.

As such, the general equation for bonded interaction is:

Vbond(rN) =
∑
bonds

Vbonds(rN) +
∑
angles

Vangles(rN) +
∑

dihedrals

Vdihedrals(rN) (2.46)

Turning back to the original equation for the overall potential energy surface (Equation

2.42), the non-bond interaction refers to atoms not connected by covalent bonds, and in

MD are modeled using functions that depend on the distance between the particles (r).

It consists mainly of two terms, resulting in Equation 2.47:

Vnon-bond(rN) =
N∑
i=1

N∑
j=i+1

Velect(rij) +
N∑
i=1

N∑
j=i+1

VVdW(rij) (2.47)

The individual terms are as follows:

• Electrostatic forces: long-range interactions resulting from differences in electroneg-

ativity among atoms, leading to unbalanced distribution of charges within the

molecule itself, they are mainly expressed using Coulomb’s law:

Velect(rij) =
qiqj

4πε0 rij
(2.48)

where qi and qj are the net charges of the two atoms analyzed, rij is the distance

between them and ϵ0 is the dielectric constant;

• Van der Waals forces: they describes short-range interactions and its trend is com-
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monly described using the Lennard-Jones potential:

VVdW(rij) = 4εij

[(
σij

rij

)12

−
(
σij

rij

)6
]

(2.49)

The Lennard-Jones potential is characterized by two terms, better represented in

Figure 2.13: σ, which represents the distance at which the potential energy is zero,

also known as collision diameter, and ϵ, that indicates the minimum of the potential.

Figure 2.13: Trend of Lennard-Jones potential, from [22] and modified

Through Figure 2.13 it is possible to analyze the characteristic behavior of the Lennard–Jones

potential, and consequently of Van der Waals interactions. At short intermolecular dis-

tances the potential rises steeply, reflecting strong repulsive forces, whereas at longer dis-

tances it asymptotically approaches zero. The Lennard-Jones potential has a minimum

for a specific value of r, r0: for rij < r0,

dV (rij)

dr
< 0, (2.50)

and the corresponding force

F (rij) = −dV (rij)

dr
, (2.51)

is positive, indicating repulsion. Viceversa, for rij > r0 the derivative of the potential is

positive, so the force is negative, corresponding to attractive interactions. In other words,

the ϵ parameter represents the imaginary line of distinction between attractive forces (for

rij > ϵ and repulsive forces (for rij > ϵ).

Realistically, even if moderately, each atom interacts with all the other atoms present in

the system, leading to a simulation that would require the calculations of all atom-pair

combinations: however, simulating and calculating the atomic interactions in this way
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would not only lead to a too high computational cost, but also would not result in models

potentially appliable elsewhere than the single simulation itself. As such, there are several

techniques available to reduce the computational cost and to accelerate non-bonded force

computations, the most used of which is the introduction of a cut-off radius.

Cut-off radius

In an MD simulation, the system is typically represented as a simulation box containing

the atoms of interest, which can be further subdivided into smaller cells to reduce compu-

tational complexity. To evaluate non-bonded interactions between atom pairs, a cut-off

distance is defined (Figure 2.14): this spherical truncation allows only the interactions

between particles with a distance smaller than the cut-off radius (Rc) to be considered

and atoms lying beyond this radius to be excluded from the computation, as their con-

tribution is assumed to be negligible. As such, the potential energy considered follows

Equation 2.51.

Vtrunc(r) =

VLJ(r), r ≤ Rc

0, r > Rc

(2.52)

Because atomic positions change over the course of the simulation, the list of atom pairs

within the cut-off distance is updated at each computational step to ensure that only the

relevant interactions are calculated. This approach maintains computational efficiency

while preserving the physical accuracy of the simulation, also due to the choice of a

spherical geometry of the cut-off region, which ensures that interactions are considered

isotropically in all directions, avoiding directional bias that would arise from non-spherical

shapes (e.g., cubic boundaries), due to the fact that the distance between the atom-pair

considered would vary.

Figure 2.14: Division of the simulation box in cells and representation of the cut-off radius,
from [17] and modified

29



Boundary Conditions

The interest of a MD simulation is to obtain the bulk properties of a liquid or solid

system, as such, despite having the possibility to simulate the system of N particles in

isolation surrounded by a vacuum, it is better to impose boundary conditions. The use

of rigid walls is allowed but generally discouraged, as the surface effects would impact on

the estimation of the real physics of the bulk system: this occurs because the fraction of

atoms near the walls is proportional to N− 1
3 . While this fraction is negligible for large

systems, it becomes particularly relevant the smaller the investigated box is: for example,

a box with N = 1000 particles would have 45% of its elements close to the walls, while in

a bigger sample, with N = 106 particles, only 15% of the particles would lay in the walls

region. Since not always the investigation of a bigger system is wished or necessary, it is

better to use periodic boundary conditions (PBC) in any case [16].

The base principle of PBC is to surround the simulation box with an infinite number of

replicas, as shown in Figure 2.15. In this case, only the atoms inside the main cell are

considered, but an image particle enters from the opposite side of the box as soon as one

of the atoms leaves the cell boundaries.

Figure 2.15: Representation of PBC (in 2D) in a MD simulation using a cubic box, from
[16] and modified

PBC are used together with the minimum image convention (MIC), meaning that only

the interactions with the nearest atom or image of it are considered within the boundaries

of the chosen cut-off radius Rc. The cut-off radius cannot be larger than L
2
(where L is
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the side of the cell) because otherwise interactions between a particle and more than one

images would occur.

Ensembles

Macroscopic properties of interest can be obtained from MD simulations using statistical

mechanics, and in particular the concept of ensembles, i.e., the theoretical representation

of the physical system that best represents the system’s conditions. Observable properties

are obtained as time-averaged values over the course of the simulation, in contrast to

other approaches, such as the Monte Carlo method, where properties are estimated via

statistical sampling of randomly generated, time-independent configurations.

Given that macroscopic systems at equilibrium can be represented by ensembles, the value

of a macroscopic thermodynamic state variable (A) is expressed as the mean value over

the infinite phase space points of the ensemble:

A = ⟨A⟩ensemble (2.53)

As exploring “infinite” microstates of the system is impractical, equation 2.53 can be

modified by applying the ergodic hypothesis. This hypothesis states that, given a suffi-

ciently long period of evolution, the system will pass through all of its accessible states.

Therefore, the ensemble average of a state variable corresponds to its time-averaged value:

A = ⟨A⟩ensemble (2.54)

In the context of Molecular Dynamics, this equivalence is crucial: it allows the calculation

of macroscopic thermodynamic properties from a single, sufficiently long simulation tra-

jectory, rather than having to explicitly sample an ensemble of systems. By averaging over

time along the trajectory, properties such as temperature, pressure, or potential energy

can be estimated with the same statistical meaning as ensemble averages.

The commonly used ensembles include:

• NVE (microcanonical): keeps constant the number of particles (N), the system

volume (V), and the total energy (E);

• NVT (canonical): keeps N, V, and temperature (T) constant, often by introducing

a thermostat;

• NPT (isothermal–isobaric): keeps N, T, and pressure (P) constant, allowing the

system volume to fluctuate;

• µVT (grand canonical): keeps the chemical potential (µ), volume, and temperature

constant, typically used to simulate open systems in contact with a thermal reservoir.
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2.2.3 Output of interest in Molecular Dynamics Simulations

Molecular dynamics simulations can produce a broad spectrum of output data, encom-

passing structural, energetic, and dynamic properties of the system under investigation.

In the context of the present work, attention will be devoted exclusively to those quanti-

ties that are of direct relevance to the objectives of the study. For each selected output, its

computational significance, underlying physical meaning, and contribution to the overall

interpretation of the results will be presented in the subsequent sections.

Density

In MD, as with most engineering fields, density ρ is derived directly from the total mass

of the system, expressed in g and the simulation volume (in Å3):

ρ =
mtot

vbox
(2.55)

Evaluating the density is a fundamental first step to validate both the realism of the con-

structed system and the adequacy of the chosen force field. Significant deviations from

experimental reference values may indicate an inappropriate force field or an incorrect

initial box volume.

In addition, monitoring the density profile over time provides valuable insight into the

system’s equilibration. In an NPT ensemble, stabilization of the density around a con-

stant value generally indicates that equilibrium has been reached. Conversely, a lack of

stabilization may suggest that the NPT parameters impose volume changes too abruptly,

therefore requiring adjustment.

Radial Distribution Function

The Radial Distribution Function (RDF) is a mathematical function used to describe the

spatial organization of atoms within a system by evaluating the probability of finding

a particle at a given distance from another. It analyzes the relative atomic density as a

function of radial distance (cutoff radius) from a reference atom and enables identification

of local order and interactions between the atomic species present.

This property is particularly useful for assessing the accuracy of the force field used in

the simulation, as it allows comparisons between the atomic arrangement predicted by

the model and the expected configuration for the simulated physical state.

RDF graphs (Equation 2.56) exhibit a characteristic pattern, with peaks corresponding

to the average interatomic distances in the various interaction “shells”.

g(r) =
dN

dV ρ
=

ρL(r)

ρ
(2.56)
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where dN is the number of particles within an infinitesimal volume dV , ρL(r) density at

a radial distance r and ρ is the macroscopic density (N
V
).

Typical RDF plots show a sequence of peaks corresponding to the average interatomic

distances within successive coordination shells. In ordered systems such as crystals, these

peaks are sharp and extend over long distances; in liquids, the ordering decays beyond

the first shell, and g(r) tends towards 1 at large r. For a better understanding of the

function trend, an example of a typical RDF function for water is shown in Figure 2.16.

Figure 2.16: Example of RDF for water in different phases: gaseous water (top), liquid
water (middle), solid ice (bottom), from [23] and [24] and modified

Diffusivity

Diffusivity describes the rate at which molecules move within a system and provides

critical information about liquid mobility, Brownian motion, and molecular relaxation

times.

In molecular dynamics, this property is typically determined using two main approaches:

• Velocity Autocorrelation Function Method (VACF), a method based on the time

integration of the velocity autocorrelation function:

D = 1
3

∫ ∞

0

⟨v(t)v(0)⟩ dt (2.57)

where v(t) is the velocity vector of a particle at time t, and ⟨v(t)v(0)⟩ denotes the
ensemble and time average. The factor 1

3
accounts for averaging over the three

spatial degrees of freedom. In practice, the integration is carried out numerically

up to the point where the correlation decays to zero, excluding statistical noise;
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• Mean Square Displacement Method (MSD), based on the mean square displacement

of the particles:

D =
MSD

6
= lim

t→∞

1

6t

〈
|r(t)− r(0)|2

〉
(2.58)

where r(t) denotes the particle’s position at time t. Diffusivity is obtained from the

slope of the MSD curve in its linear regime, typically evaluated via linear regression

over long-time data.

Helmholtz free energy

Building upon the concept of interfacial free energy γ (Section 2.1.5), it is possible to also

define the variation of Helmholtz free energy (∆F ) between to states of the system: with

and without interface. As such, Helmholtz free energy variation can be written as:

∆F = A∆γ (2.59)

Alternatively, incorporating the internal energy U , the configurational entropy at constant

volume S and the temperature T :

Aγ = ∆F = ∆U − T∆S (2.60)

With the goal of isolating the interfacial free energy term, as it is difficult to evaluate, the

formula is weighed on the surface area:

γ =
∆F

A
=

∆U

A
− T

∆S

A
(2.61)

Resulting in:

∆γ = ∆f = ∆u− T∆s (2.62)

Where the internal energy term is expressed as:

∆U = Uinterface − Ubulk (2.63)

In which Uinterface is the internal energy at the solvent-solute interface in the combined

system, and Ubulk is the internal energy of the solvent and solute in isolated systems.

This formulation allows for the estimation of the interfacial free energy γ based solely on

computable parameters, such as internal energy and entropy, thus providing a valuable

thermodynamic descriptor for the characterization of the solute-solvent interface.

In the current work, only the first term of the calculation (Equation 2.63) was estimated,

with the goal of correlating the experimental results with computational simulations of

interfacial energy. In particular, the hypothesis states that, for the observed growth to be
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consistent with the simulations, the calculated interfacial energy must be lower than the

sum of the surface energies of the crystal and the solvent considered individually.
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Chapter 3

Materials and Methods

Before presenting the material and methods for each part of the work, it is important

to clarify which xanthone crystal faces were considered in both the experimental and

computational analyses, as these constitute the core of the interaction study between the

crystal and the solvents.

Table 3.1 lists the analyzed faces: experimental nomenclature is reported using Miller

indices, while the corresponding computational equivalents are shown alongside. Face

indexing of xanthone crystals were obtained by collecting the diffracted intensities on

single-crystals with a CMOS Photon II 2D detector on a Bruker D8 Venture diffractome-

ter equipped with a kappa goniometer and an Oxford Cryostream [1].

To better appreciate the morphology of the different faces of xanthone in the three sol-

vents, Figure 3.1 is provided.

Table 3.1: Nomenclature of xanthone faces used in experimental and computational anal-
ysis

Crystalline Face Computational Name

(100) BC
(010) AC
(001) AB

The selected faces correspond to the three orthogonal crystallographic directions, pro-

viding a representative basis for characterizing crystal–solvent interactions. This choice

ensures coverage of the main growth orientations and offers a suitable starting point for

the type of analysis performed.
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(a) (b)

(c)

Figure 3.1: Morphology characterization of xanthone Crystals in acetone (a), acetonitrile
(b), and toluene (c), from [1]

3.1 Materials and Methods for Experimental Analy-

sis

Multiple experiments were carried out aimed at collecting images and data related to

the crystal growth of xanthone in three different solvents; to ensure comparability among

the results obtained across the three systems, a standardized experimental protocol was

adopted, using identical equipment for data and image acquisition.

3.1.1 Materials

Xanthone (IUPAC name: 9H-xanthen-9-one) appears as a light brown powder and was

supplied by Alfa Aesar(Ward Hill, Massachusetts, USA) with a reported purity of 98%.

Acetone, acetonitrile, and toluene (Riedel-de-Haën, Honeywell Specialty Chemicals, Seelze,

Germany) were employed as solvents for crystallization, with a reported purity of 99.9%.

3.1.2 Instrumentation

The materials used both during the experiments and during measurements were as follows:
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• Jacketed Reactor: Reactor-Ready Radleys, 500 mL capacity;

• Overhead Stirrer: Velp Scientifica DHL;

• Thermocouple: Radleys Pt 100 PTFE 8 mm with Lemo connector;

• Spectrophotometer: Optek 4000;

• Temperature Controller: Huber Pilot One;

• Polarized Light Optical Microscope: Zeiss Axiolab 5 (Germany);

• Analytical Balance: Radwag (accuracy ± 0.1 mg);

• Filtration Assembly: KNF vacuum pump SC 920 F (Germany), 100 mL Büchner

flask, filter, and Cordenos Perfecte 2 filter paper;

• Beaker: 1 L capacity;

• Hot Plate: IKA C-mag Hotplate;

• Mortar and Pestle;

Images of crystals were captured using a mobile device and subsequently analyzed with

ImageJ software.The imaging was done with a Xiaomi Redmi Note 11 5G rear camera:

108 MP wide-angle lens (f/1.9) and 8 MP ultra-wide lens (f/2.2).

3.1.3 Crystallization Experiments

Seeds Production

The seeds were produced via anti-solvent technique from a saturated solution at 24◦C in

acetone, following the protocol below:

1. Preparation of a saturated xanthone-acetone solution in a 1 L beaker

2. Heating the solution on a hot plate to 40◦C with magnetic stirring (agitation: 240

rpm)

3. Temperature maintenance at 40◦C for 15 minutes

4. Removal of the beaker from the hot plate

5. Anti-solvent (distilled water) addition in a 1:1 ratio

6. Sample filtering

Steps 5 and 6 were repeated multiple times until the permeate appeared sufficiently clear

and the retentate presented a minimal mass of crystals.

The resulting seeds were then ground with a mortar and pestle to reduce their size,

thereby enabling, in solvents that allow it, growth along the three main crystallographic

directions. In fact, excessively large needle-like crystals, such as those typically obtained

through this method, tend to grow preferentially along one face, limiting the ability to

observe crystal development in both directions.

The seeds thus obtained (Figure 3.2) were photographed and analyzed under optical
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microscopy to allow characterization and identification of a dimensional baseline, that is,

the initial average length and width, to effectively evaluate the growth of xanthone in the

various solvents.

Figure 3.2: Seeds produced with anti-solvent method (objective 40x)

The mass quantities of the reagents are therefore summarized in Table 3.2.

Table 3.2: Reagent quantities used in seeding

Compound Quantity (g)

Xanthone 5.2
Acetone 300
Distilled Water 300

Solubility Curves

The solubility curves of xanthone in the different solvents, necessary to calculate the

equilibrium concentration and the corresponding excess solute mass required to obtain a

supersaturated solution, were obtained using Crystal 16, an automated parallel crystallizer

capable of handling up to 16 different crystallization processes. It is primarily used for

solubility screening, crystallization studies, and small-scale process optimization.

The device is equipped with a turbidity sensor that measures the transparency of the

solution, from which the software identifies dissolution points and extrapolates solubility

curves as a function of temperature and concentration. These solubility curves provided

by Crystal 16 constitute the source of solubility data employed in the experiments.

The solubility curves were thus obtained by simultaneously monitoring 10 stirred reactors

(stirring rate: 780 rpm) with increasing concentrations, each subjected to a linear tem-

perature ramp from 10 to 30◦C at a rate of 0.3◦C/min.
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The various solutions were placed in 1mL vials equipped with small stir bars at the bot-

tom, which served both to maintain agitation and solution homogeneity, and to prevent

crystal residues from adhering to the vial walls.

For the purposes of this analysis, the solubility curve of xanthone in acetone was newly

determined using the methodology described above. The resulting graph (Figure 3.3) and

a summary table of the dissolution concentrations and temperatures for the different vials

(Table 3.3) are reported below.

Figure 3.3: Solubility curve of xanthone in acetone

Table 3.3: Values of concentration of xanthone in acetone as a function of Temperature
in solubility analysis

Vial Concentration (mg/g) Temperature (°C)

1 19.62 18.5

2 22.78 22.5

3 26.90 26.2

4 28.94 29.6

5 30.51 31.1

6 30.86 30.2

7 32.89 32.9

8 35.35 35.7

9 37.18 36.5

10 45.84 43.6

The curve related to acetonitrile (Figure 3.4) was instead expanded and refined based

40



on pre-existing data, in order to improve its resolution within the temperature range of

interest (Table 3.4).

Figure 3.4: Solubility curve of xanthone in acetonitrile

Table 3.4: Values of concentration of xanthone in acetonitrile as a function of Temperature
in solubility analysis

Vial Concentration (mg/g) Temperature (°C)

1 8.80 9.8

2 11.60 21.2

3 15.40 28.8

4 19.30 32.7

5 25.78 39.9

6 31.94 46.7

7 38.57 52.7

8 44.84 57.3

9 51.51 59.7

10 58.17 62.7

11 63.80 66.2

12 70.30 68.2

13 76.76 69.7

For toluene, previously obtained data were used, collected through an experimental proto-

col identical to that adopted in the present study. These data cover a broader temperature

range and exhibit a bigger number of samples (23 in total) compared to those acquired

for acetone and acetonitrile (10 and 13 samples, respectively).
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Despite this difference in the number of measurements, the comparative analysis remained

valid, as the underlying methodological consistency was preserved and the resulting in-

formation proved compatible with the objectives of the study.

The solubility curve (Figure 3.5), accompanied by a table reporting the dissolution concen-

trations and temperatures (Table 3.5), was therefore used without further modification,

ensuring methodological consistency with the other solvents analyzed.

Figure 3.5: Solubility curve of xanthone in toluene

Table 3.5: Values of concentration of xanthone in toluene as a function of Temperature
in solubility analysis

Vial Concentration (mg/g) Temperature (°C)

1 34.0 20.1

2 34.0 21.8

3 34.2 20.1

4 34.3 23.1

5 39.7 27.1

6 39.9 27.0

7 40.0 27.5

8 45.1 32.2

9 45.4 32.4

10 45.5 32.0

11 45.8 32.5

12 51.2 36.1

13 51.3 37.0
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Vial Concentration (mg/g) Temperature (°C)

14 51.3 38.4

15 51.4 37.0

16 56.8 41.0

17 57.0 40.3

18 57.1 41.2

19 57.2 39.9

20 65.8 45.2

21 68.8 46.2

22 74.2 49.1

23 81.1 52.6

Experimental Protocol

The crystallization technique employed relies on secondary nucleation induced by seeding

in a supersaturated solution of xanthone and solvent at 24◦C.

Following the solubility analysis and the determination of the equilibrium concentration,

an initial supersaturation level of 1.09 C
Ceq

was arbitrarily selected, in order to standardize

the initial conditions across all experiments and allow for a consistent and reliable compar-

ison of the resulting growth kinetics. The seeding quantity was set at 5% of the xanthone

mass corresponding to the equilibrium concentration in the solvent at 24◦C. The mass

values of crystal and solvent used in the experiments are summarized in Table 3.6. After

the introduction of the seed crystals, the system was subjected to controlled cooling with

a thermal gradient of -0.05◦C/min, from 24◦C down to 10◦C. The final temperature of

10◦C was then maintained constant for the next 14 hours.

The procedure adopted was as follows:

1. Introduction of the xanthone–solvent solution into the stirred reactor (stirring: 220

rpm)

2. Heating of the solution to 35◦C to allow complete dissolution of the crystals

3. Maintaining the system at 35◦C for 30 minutes

4. Cooling to 24◦C

5. Seeding

6. Sampling: 2 mL every hour (8 samples total), with an additional sample after 14

hours to assess the plateau in terms of growth and absorbance

7. Sample filtration (pressure: 400 mbar)

8. Weighing of the permeate before solvent evaporation
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9. Weighing of the permeate after solvent evaporation

10. Morphological analysis of the crystals in the retentate using optical microscopy

Steps 8 and 9 are fundamental for determining the equilibrium concentrations of the

solution at various temperatures—an essential parameter for the subsequent analysis of

growth kinetics.

The forementioned value was obtained through Equation 3.1.

C =
mx

ms

(3.1)

where mx is the mass of xanthone in mg, calculated using Equation 3.2, and ms is the

mass of solvent in grams, obtained using Equation 3.3.

mx = mV −mVpe (3.2)

ms = mP −mV −mx (3.3)

where mV and mVpe represent the mass of the empty vessel and the mass of the vessel

containing the sample after solvent evaporation, respectively, while mP corresponds to

the mass of the vessel containing the sample immediately after filtration.

3.1.4 Crystal Characterization and Image Analysis

Turbidity Probe

The use of a turbidity sensor enables the measurement of two key properties for assessing

crystal growth trends: absorbance and transmittance (see Section 2.1.7).

Analyzing the evolution of these functions over time was essential to draw meaningful con-

clusions and formulate plausible hypotheses on the system’s behavior. Monitoring these

variations therefore provided an indirect yet effective way to detect secondary nucleation

events and other dynamic phenomena during crystallization.

Optical Microscope

For the execution of step 10 of the experimental protocol (described in Section 3.1.3),

a portion of the crystals retained on the filter paper was deposited onto a microscope

slide for analysis. Observations were carried out using an optical microscope (see Section

3.1.2), with 40x, 10x, and 5x objectives selected based on the size of the crystals observed.

Images (approximately 60 per sample) were captured using the camera of a Xiaomi Redmi
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Note 11 5G mobile device (Xiaomi Inc., Beijing, China).

ImageJ

The images obtained were used to measure crystal size and shape distributions using

the Fiji software (ImageJ 1.54p, NIH, Bethesda, USA)[25]. The analysis was performed

with the ROI Analysis tool, which allows for manual tracing of visible crystals in the

images (Figure 3.6) and subsequent measurement of their width and length (Figure 3.7).

These dimensions were selected as xanthone crystals predominantly exhibit a needle-like

morphology, which can be reasonably approximated by rectangular geometry.

Figure 3.6: Crystal individuation through ROI Set Analysis Tool in ImageJ

Figure 3.7: Crystal measurements through ROI Set Analysis Tool in ImageJ, the red
square shows the measures obtained for the selected crystal
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The data thus obtained were subsequently transferred to Excel (Microsoft Corp., Red-

mond, USA) for processing. Specifically, for each sample, the average length, width, and

aspect ratio were calculated, as well as the variations in the distribution of these val-

ues over time. To monitor the morphological evolution of xanthone crystals during the

experiment, the Aspect Ratio (AR) was calculated for each sample using Equation 3.4.

This dimensionless parameter provides insight into the overall shape of the particles by

quantifying the ratio between their length (L) and width (W):

AR =
L

W
(3.4)

Values of AR close to 1 typically indicate equiaxed or near-spherical particles, whereas

higher values are associated with elongated or needle-like morphologies. In the context of

this study, the AR served as a useful indicator of anisotropic growth, allowing to evaluate

whether the crystals developed more uniformly along both axes or displayed a preferential

elongation along a specific direction.

3.1.5 Statistical Analysis

As previously discussed (see Section 2.1.7), cross-validation between the mean and stan-

dard deviation values obtained via the moments evaluation and those calculated through

the cumulative running average and running standard deviation is essential; firstly, to

verify the correctness of the estimations derived from the latter method, secondly, to as-

sess whether the number of particles analyzed is statistically representative of the overall

population.

Moreover, since experimental observations of the manually selected crystals indicated

that xanthone predominantly grows along two crystallographic directions, the statistical

analysis was performed using both a one-dimensional (1D) and a two-dimensional (2D)

approach: the 1D method provided a first set of indicative results, while the 2D analysis

offered a more comprehensive assessment of the population’s geometrical features.

1D - Analysis

Following the equations detailed in Section 2.1.6, the evaluation of the moments in one

dimension for a predominantly bi-dimensional crystal required the estimation of an equiv-

alent linear dimension.

To this end, the crystal, whose actual three-dimensional geometry resembles a prism, was

approximated as a sphere. This allowed for the calculation of an equivalent spherical

diameter, which was then used as the characteristic size (L1) for the one-dimensional

formulation. The procedure adopted is summarized as follows:
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• Individuation of the two principal growth directions, L1 and L2, through image

analysis (see Section 3.1.4). The number of crystals analyzed per experimental

sample is reported in Table 3.6.

Table 3.6: Number of crystals analyzed for each solvent and sample

Solvent Sample Number of crystals analyzed (N)

Acetone

1 732

2 984

3 1014

4 1113

5 541

6 531

7 812

8 803

9 459

Acetonitrile

1 414

2 624

3 331

4 697

5 360

6 404

7 381

8 265

9 232

Toluene

1 843

2 902

3 741

4 416

5 641

6 513

7 415

8 360

9 538

• Estimation of the actual crystal volume assuming a prism with a square base (L1)

and height L2, using Equation 3.5:

Vprism = L2
1L2 (3.5)
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• Calculation of the equivalent diameter De by equating the prism volume to that of

a sphere and inverting the standard formula (Equation 3.6):

De = (
6Vprism

π
)
1
3 (3.6)

The resulting values were used to compute the zero-through-sixth moments of the popu-

lation. Specifically, moments 0–3 were used to derive the total number of crystals, total

length, surface area, and volume (see Section 2.1.6). Moments 4-6 were also evaluated

as parameter employed in the statistical formulations (see Equation 2.34-2.35 in Section

2.1.7) for the estimation of each property’s standard deviation and confidence interval.

Furthermore, Equations 2.31, 2.32, and 2.33 were used to estimate the average length

and standard deviation of the entire crystal population. For the parameter N , represent-

ing the total number of sampled particles, the values reported in Table 3.6 were used as

reference.

Cumulative Running Average and Cumulative Running Standard Deviation

In line with the 1D moments evaluation protocol, the equivalent diameter De was em-

ployed as the representative linear dimension for the statistical calculations. This enabled

the estimation of both the cumulative (running) average length of the crystal popula-

tion and the corresponding running standard deviation over time. To streamline the

process and reduce computational effort, the calculations were automated via a custom

Python script (see Appendix A). The code processed data directly imported from Ex-

cel worksheets, where the individual De values for each crystal in each sample had been

previously recorded.

Confidence Interval and Minimum Number of Crystals

Using the equations described in Section 2.1.7, confidence intervals were calculated for the

three main investigated properties (average length, average projected area, and average

projected volume) through evaluation of the moments of the sampled distribution. The

values used for the t∞,α/2 parameter in Equation 2.36 are as follows[14]:

• for α = 90%: 1.645;

• for α = 99%: 2.576.

From the computed confidence intervals (CI), it was then possible to estimate the mini-

mum number of crystals that would be required to reduce the confidence interval.

This approach serves a dual purpose: on one hand, it validates whether the number of

particles analyzed in the samples is sufficient to statistically represent the population with

a given confidence level; on the other, it ensures that the measurement uncertainty does
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not fall below the instrument’s physical resolution limit, since higher statistical precision

than what the instrument can detect would be both misleading and meaningless.

To this end, the optical resolution of the three objectives (40x, 10x, and 5x) of the polar-

ized light microscope used for image acquisition was calculated using Abbe’s diffraction

limit (Equation 3.7):

d =
0.61λ

NA
(3.7)

where d is the resolution limit, λ is the wavelength of visible light (assumed to be 500

nm), and NA is the numerical aperture of the objective, as indicated on the objective

itself. For the microscope used in this study, the NA values were 0.65, 0.25, and 0.15 for

the 40x, 10x, and 5x objectives, respectively.

The calculated resolution values for each objective are reported in Table 3.7.

Table 3.7: Optical resolution values for different objectives employed in the crystals’ image
analysis

Objective Optical Resolution (µm)

40x 0.52
10x 1.34
5x 2.24

2D - Analysis

Due to the complexity involved in modeling the correlation between the two main growth

dimensions, the 2D statistical analysis was carried out by treating each dimension inde-

pendently. In other words, rather than considering the crystal area as the product of the

two correlated lengths (e.g., L1×L2), the estimators were calculated using simplified forms

such as L2
1 or L

2
2, depending on the dominant dimension being analyzed. This allowed for

a more manageable evaluation of the crystal size distribution while still providing insight

into the geometrical characteristics of the population.

To this end, similarly to the 1D analysis, firstly the zero-through-sixth moments were

estimated independently for each of the two principal growth dimensions. Secondly, these

parameter where then employed to assess the confidence interval, as described in the

previous paragraph.
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3.2 Material and Methods for Computational Anal-

ysis

To enable a comprehensive analysis of the crystal growth system, it was necessary to

evaluate the internal energy of both the xanthone and the solvent boxes.

This was achieved through a series of molecular dynamics simulations, carried out in two

stages: first, on separate systems, each containing only one component, and subsequently

on combined systems, consisting of both the crystal and the solvent under investigation.

3.2.1 Softwares

LAMMPS (Large-scale Atomic/Molecular Massively Parallel Simulator; Sandia National

Laboratories, New Mexico, USA) is an open-source software for molecular dynamics (MD)

simulations.

In this work, LAMMPS (ver. 2 August 2023) was used to perform classical atomistic sim-

ulations aimed at extracting properties useful for evaluating the compatibility between

the computational model and experimental reality.

The simulations were carried out on a molecular system (hereafter referred to as box),

in which the molecules are confined within a three-dimensional periodic geometry repro-

ducing the non-orthogonal triclinic structure characteristic of xanthone. The objective

is to obtain the internal energy of the system, then used as a parameter for analyzing

interfacial energy.

To perform a simulation in LAMMPS, as previously described (see Section 2.2.2), it is

necessary to define a force field: in the present case, the TraPPE model (Transferable Po-

tentials for Phase Equilibria)[18] was employed, a force field parameterized to accurately

reproduce the thermodynamic properties of organic fluids, particularly in the context of

phase equilibrium. This model was chosen in order to ensure an optimal balance between

accuracy and computational cost.

Another key aspect in configuring molecular dynamics simulations concerns boundary

conditions. In all systems analyzed, Periodic Boundary Conditions (PBCs) were applied,

whereby the simulated box is treated as part of an infinite system, periodically replicated

along all three spatial directions. This setup solves the issue of edge effects, which would

otherwise introduce significant artifacts in the calculations, especially in liquid systems.

PBCs allow particles to exit one side of the box and re-enter from the opposite side,

thus simulating a homogeneous and continuous environment more representative of bulk

conditions.

Each simulation requires a preliminary energy minimization step to obtain a stable initial
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configuration corresponding to a local minimum of the system’s potential energy. Al-

though LAMMPS includes a built-in minimization function (minimize), this command

was deemed adequate only in specific cases (see Section 3.2.2). Various tests revealed

that, for the systems considered in this study (see Section 3.2.2), the integrated approach

was overly approximate and failed to ensure the necessary structural stability.

In such cases, an alternative strategy was adopted: a selective minimization performed

via a custom script, in which the equations of motion were applied exclusively to the fluid

portion of the system (i.e., the solvent). This approach allowed for optimizing the solvent

configuration without altering the crystal structure. The resulting configuration was then

used as the starting point for simulating the full system, including the dynamic evolution

of the crystalline component.

LAMMPS simulations are based on an iterative evaluation of system parameters at regular

and predefined time intervals, known in computational terms as timesteps. The timestep

value was selected according to the specific objective of each simulation:

• For simulations aimed at minimizing the system’s energy (Section 3.2.2), a very

small timestep of 10−8 fs (with 1 fs = 10−15 s) was used in order to ensure numerical

stability and prevent physically unrealistic behaviors such as energy divergence or

structural collapse of the system;

• For simulations intended to evaluate the global physical properties of the system

(Section 3.2.2), a timestep of 0.5 fs was applied, which is more appropriate for data

collection purposes.

The total simulation time (running time) was also adapted to the type of analysis being

conducted. Total durations ranged from 20,000 steps (for energy minimization simula-

tions) to 500,000 steps (for simulations focused on thermodynamic or structural property

analysis).

The values of the physical properties were obtained as averages of the quantities calculated

at each step, since in the simulated context, LAMMPS does not provide a continuous

dynamic evolution of the molecular structure, but rather computes the system’s state at

each discrete time point. This approach allows simulations to be treated as a series of

repeated measurements on the same system, offering a statistical assessment of the target

properties analogous to conducting multiple experimental trials on the same sample.

VMD (Visual Molecular Dynamics, Theoretical and Computational Biophysics Group,

University of Illinois at Urbana-Champaign, USA) is an open-source software used for

the visualization and analysis of molecular structures and trajectories generated from

molecular dynamics simulations.

The program allows graphical representation of molecular systems using various styles
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(wireframe, licorice, CPK, etc.) and integrates tools for identifying structural issues that

may compromise the reliability or stability of simulations, such as molecular overlaps,

interpenetration of distinct species, or unstable configurations.

In this work, VMD was primarily used for visualizing the simulation boxes and verifying

the correct spatial configuration of crystal–solvent systems, with particular attention given

to simulations involving selective minimization.

The boxes used had a non-orthogonal triclinic geometry, which made it less intuitive to

interpret compared to a standard rectangular box. For this reason, during the initial

stages of computational setup, graphical visualization was essential for identifying issues

such as molecular escape or improper containment within the box; conditions that, in

some cases, led to simulation errors or run failures.

An example of the boxes is given in Figure 3.8.

(a) (b)

Figure 3.8: Visualization example in VMD of toluene- (a) and xanthone- (b) only boxes

Python (Python Software Foundation, USA) is an open-source, high-level programming

language widely used in scientific computing, data analysis, and automation of simula-

tion workflows. Thanks to its extensive ecosystem of libraries, such as NumPy, pandas,

Matplotlib, and MDAnalysis, Python enables efficient handling of large datasets, statisti-

cal evaluation, and graphical representation of results obtained from molecular dynamics

simulations.

In the present work, Python was employed primarily for post-processing simulation out-

puts from LAMMPS, including the extraction of relevant physical properties (density,

radial distribution functions, diffusivity) and the generation of plots for result visual-

ization. Custom scripts were developed to automate repetitive analysis tasks, ensuring
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reproducibility and minimizing human error in data handling. Particular attention was de-

voted to the Radial Distribution Function (RDF) and Mean Square Displacement (MSD)

analyses, where Python scripts were used to compute ensemble-averaged values, estimate

error bars, and compare trends with literature data.

Python played a key role also in the post-processing of experimental data, particularly

for optimization routines and parameter estimation within the framework of the calcula-

tions of moments (see Section 2.1.6), as well as for the calculation of cumulative running

averages and cumulative running standard deviations, and for the comparison of results

across different datasets (see Section 2.1.7).

The specific scripts developed for each stage of the analysis are provided in Appendix A, to

ensure reproducibility and to offer a transparent overview of the implemented procedures.

In most cases, input and output data were managed through Excel worksheets, facilitating

data handling and visualization.

3.2.2 Computational Protocol and simulation assessment

Xanthone and solvent boxes validation trough physical properties assessment

Before proceeding with the evaluation of the internal energy of the systems, it was neces-

sary to verify the adequacy and consistency of the provided molecular structures (boxes),

both with respect to other models available in the literature and to the physical con-

straints of the system.

To this end, independent simulations were performed on both crystalline and liquid boxes,

with the aim of separately assessing the structural and thermodynamic properties of each

phase and comparing them with known experimental and computational data from the

literature.

The properties analyzed, selected for their physical relevance, are, in order: density, radial

distribution function (RDF), and diffusivity.

Solvents’ density was the first physical property to be validated, as it constitutes a funda-

mental macroscopic characteristic of the system. Its evaluation provides an initial check

on the consistency between the simulated configurations and physical reality, serving as

a preliminary validation of the chosen force field and simulation setup.

Simulations were conducted for 500,000 iterations (equivalent to approximately 2.5 ×
10−10 s), using an NPzAT ensemble, a variant of the classic NPT ensemble, at 293.15

K and 1 atm. In LAMMPS, the standard NPT ensemble adjusts the dimensions of the

simulation box along all three directions (x, y, and z) to maintain constant pressure.

However, in this study, such behavior was deemed undesirable: evaluating the interfacial
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energy between the solvent and the crystal requires the box to retain constant dimensions

along the x and y axes, which correspond to the directions in direct contact with the

crystal surface.

The adoption of the NPzAT ensemble, which allows dimensional variation only along the

z-axis (perpendicular to the interface), enabled the pressure effect to be isolated without

altering the contact area with the crystal surface. This approach provided a more realistic

and reliable assessment of the simulated systems’ density, which was obtained through

the evaluation of the mean value throughout the simulation running time.

The analysis of Radial Distribution Function (RDF) profiles was carried out to verify the

correctness of the interatomic distances in the simulation boxes. Agreement between the

simulated RDF trends and reference data from the literature was taken as evidence that

the constructed boxes reproduced the real molecular structure with high accuracy.

The simulations were performed using the NVT ensemble, with a total runtime of 400,000

iterations (equivalent to 200 ps, with a timestep of 0.5 fs). The use of this ensemble was

made possible only after preliminary validation of the systems’ density. The RDF output

produced by LAMMPS was computed over windows of 250 iterations, generating a total

of 1,600 RDF profiles for each analyzed atom–atom pair. To reduce noise and obtain

representative curves, the average of the generated RDF profiles was calculated. The

difference between the raw and averaged graphs is illustrated in Figure 3.9.
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(a)

(b)

Figure 3.9: Averaged (a) and not-averaged (b) RDF for acetonitrile, atom-pair: C1-C1

Diffusivity was the final property evaluated to further assess the reliability of the simula-

tion boxes. Of the two methods described in Section 2.2.3, the Velocity Autocorrelation

Function (VACF) approach was deemed unsuitable for quantitative analysis in this work,

mainly due to sample asymmetry and the intrinsic noise of the simulated data. Instead,

the Mean Square Displacement (MSD) method, shown to be more robust for the present

liquid systems, is adopted.

Although LAMMPS automatically provides an estimated value of D, for improved re-

liability the raw data were exported, plotted, and the slope manually calculated using

spreadsheet tools.
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Figure 3.10: MSD vs. time plot for acetone (ac face) – Example of data interpolation

As with the RDF analysis, the simulation was carried out in the NVT ensemble at room

temperature and atmospheric pressure, with a total runtime of 400,000 iterations.

Internal Energy calculation

Following the validation of the physical consistency of the simulated systems, simulations

were carried out to calculate the internal energy of the individual components; namely,

simulation boxes containing only crystalline xanthone and those containing the respective

pure solvents (acetone, acetonitrile, toluene).

These simulations represent the first step required to determine the U factor, a key pa-

rameter in the calculation of the interfacial energy between crystal and solvent.

Simulations were performed in the NVT ensemble at a constant temperature of 293.15 K

and a pressure of 1 atm, with a total runtime of 100,000 iterations (equivalent to 50 ps),

for a total of 10 simulations:

• 3 simulations for each pure solvent (one for each crystal face analyzed);

• 1 simulation for the crystalline box.

The obtained internal energy was averaged over a time interval, excluding initial tran-

sients, to ensure the reliability of the value.

The next step was to construct the combined xanthone–solvent boxes, required to evaluate

the second term in the overall U calculation (see Section 2.2.3). To this end, two main

steps were necessary:

• The physical assembly of the simulation box ;

• Energy minimization simulations to identify the most stable configuration.

The initial assembly was carried out using a Bash script, which merged the crystal and

solvent boxes by keeping the xanthone structure fixed and translating the coordinates of
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the solvent box to position it adjacent to the selected crystal face.

The script allows the user to adjust two key parameters: the distance between the two

systems (defined in the script as extrashift) and the lateral void space within the combined

simulation box (in the script as slsshift).

These values had to be carefully tuned: if set too high, the components would fail to

interact meaningfully, preventing LAMMPS from computing a reliable interaction en-

ergy. Moreover, excessive box dimensions would yield internal energy values that are

not comparable with those obtained for the separate xanthone and solvent boxes, due to

the mismatch in system volume. Conversely, values that were too small led to overlap-

ping between the crystal and the solvent, resulting in abnormally high Van der Waals

and Lennard-Jones interaction energies. This not only caused the simulation to fail but

also prevented the generation of physically meaningful or reliable results for parameter

estimation.

Several simulations were performed to explore different parameter combinations. Ulti-

mately, a configuration using a value of 1.5 for both extrashift and slsshift was found to

be the optimal compromise, ensuring both simulation stability and physical consistency

of the calculated energies. An example of the final merged box is shown in Figure 3.11.

Figure 3.11: Visualization example in VMD of xanthone (left) - toluene (right) box, face
ac

After the assembly of the combined xanthone–solvent simulation box, it was necessary to

verify its structural and energetic stability, in order to ensure the reliability of subsequent
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energy calculations.

The main critical aspect was the configuration of the solvent, which underwent significant

geometric distortion as a result of coordinate translation during the box-merging process.

To address this, a series of computational protocols were tested with the objective of iden-

tifying a robust and reproducible procedure. The simulations, executed in chronological

order, were as follows:

• Protocol A: Direct simulation of the merged system, without any pre-processing or

minimization. The system was unstable, leading to early simulation failure.

• Protocol B: Application of LAMMPS’ built-in energy minimization command (min-

imize) on the merged system. Instabilities persisted, and results were physically

unreliable.

• Protocol C: Selective pre-minimization of the solvent component only (see Paragraph

3.2.1), maintaining the crystal fixed. This approach yielded a significantly improved

configuration with lower internal energy and increased structural stability.

• Protocol D: Standard simulation using the configuration resulting from Protocol C,

without additional minimization. The system remained stable and produced reliable

energy data.

The combination of Protocol C and D was therefore adopted for all subsequent simulations

involving the united box systems, ensuring both physical plausibility and computational

consistency. An example of the three different systems at the interface is shown in Figure

3.12.
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(a) (b)

(c)

Figure 3.12: Interface visualization in VMD of the crystal (right)-solvent (left) system for
acetone (a), acetonitrile (b) and toluene (c) - face ac

After structural optimization of the combined crystal–solvent boxes (see Section 3.2.2),

simulations were carried out to calculate the total internal energy of the interfaced system.

These simulations were also performed in the NVT ensemble at 293.15 K and 1 atm, with

a total runtime of 100,000 iterations (50 ps).

The value obtained represents the second term required for the evaluation of the U factor,

whose complete definition and formulation is provided in Section 2.2.3.
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Chapter 4

Result and Discussion

4.1 Experimental Results

4.1.1 Crystal growth analysis

The collected data enabled a detailed analysis of xanthone crystal growth, revealing clear

differences in growth rates and morphological evolution across the three solvents. These

results provide valuable guidance on which parameters should be considered when de-

veloping kinetic models of crystal growth. Moreover, higher growth rates correspond to

shorter reaction times in batch processes, thereby increasing production efficiency. It

is also important to emphasize that, since the solvent strongly influences crystal mor-

phology, the findings support relevant qualitative considerations regarding the size and

shape distribution of the final product, improving its suitability for different purposes and

industrial applications.

In particular, the analysis of transmittance and absorbance values gives meaningful insight

on the system’s behavior. In the present experiments, the increase in absorbance is

associated with the progressive light scattering caused by the formation and growth of

suspended crystals: a sudden increase in absorbance may indicate a rapid rise in solid

crystal concentration. This, in turn, can be associated with a common phenomenon in

supersaturated agitated systems: secondary nucleation (see Section 2.1.3). Conversely, an

abrupt decrease in transmittance can lead to the same interpretation, given the inverse

relationship between these two parameters.

Furthermore, the direct link between absorbance and concentration can be employed to

explain different asymptotic values reached by the experiments: in high-solubility sol-

vents, the total amount of solute available for crystallization is greater, allowing for the

formation of a larger crystal population and/or larger individual crystals. This results in

more pronounced turbidity of the suspension and, consequently, higher absorbance val-
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ues. Conversely, in low-solubility solvents, the limited availability of solute restricts the

amount of suspended solid, leading to lower maximum absorbance values. This behavior

can also be interpreted in light of the supersaturation theory: in highly soluble systems,

the initial supersaturation level reached after cooling (or solvent evaporation) is higher,

leading to a larger driving force for nucleation and growth. This results in the formation

of a greater number of crystals and/or larger crystals, which remain suspended in the

medium and increase light scattering. Conversely, in less soluble systems, the lower su-

persaturation limits both nucleation and growth, yielding fewer suspended particles and

thus lower measured absorbance.

These trends are further validated from the results obtained from the solubility curves

(see Section 2.1.3), which show clear differences in the concentration at the equilibrium,

and its correlation with the solubility itself. As summarized in Table 4.1, toluene is the

solvent in which xanthone is most soluble, followed by acetone and acetonitrile.

Table 4.1: Xanthone solubility in the different solvents at 24◦C

Solvent Xanthone Solubility at 24°C (mg/g)

Acetone 25

Acetonitrile 14

Toluene 32

As such, the values of transmittance and absorbance measured during the experiments

clearly indicate the occurrence of a second instance of secondary nucleation, as evidenced

by the abrupt decrease in transmittance (and corresponding increase in absorbance) shown

in Figure 4.1.
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(a)

(b)

(c)

Figure 4.1: Absorbance, Transmittance and Temperature Trends in acetone (a), acetoni-
trile (b) and toluene (c), the red oval indicates where secondary nucleation occurred

During the experiment conducted with acetonitrile, a minor misalignment occurred due

to incorrect assembly of the reactor’s rotor, which required subsequent adjustment of

both the thermocouple and the optical sensor. This procedural correction introduced a
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transient irregularity in the signal acquisition process, resulting in the non-linear profile

observed just after the red ovals in Figure 4.1 (b). In the toluene experiment, the peaks

observed in Figure 4.1 (c) are attributed to a temporary increase in the rotor’s speed.

This adjustment was made to evaluate whether higher stirring rates could facilitate the

suspension of larger crystals, which, due to their weight, tended to accumulate at the

bottom of the reactor, preventing representative sampling.

The approach proved effective: increasing the rpm briefly allowed the detachment and sub-

sequent collection of heavier crystals. Since these constituted the main crystal population,

their inclusion in the sampling process was essential for reliable dimensional analysis.

To better appreciate the different shape development of the xanthone in the different

solvents, particularly regarding the Aspect ratio, a comparison between this value’s trend

is shown in Figure 4.2. This allows to better understand the difference among solvents

and the overall behavior of the crystal.

Figure 4.2: Comparison of the AR trends of xanthone in different solvents, the red line
represents the AR of the seeds (AR = 5.5) as a baseline

The results specific to each solvent, along with their interpretation, are discussed below.

The experiment conducted in acetone revealed a moderate growth of xanthone, partic-

ularly when compared to its behavior in the other two solvents. Figure 4.3 illustrates

the crystal evolution between the first and last samples, showing a preferential elongation

along the longitudinal axis, while the width remains relatively stable throughout the ex-

periment. Overall, the crystal remains needle-like in shape throughout the experiment, as

depicted by the trend in Aspect Ratio (AR), which diverges from the unitary value (see

Section 3.1.4), depicted in Figure 4.2.
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(a) (b)

Figure 4.3: Xanthone in acetone, first sample (a, objective: 40x) and last (b, objective:
10x)

The progression of average size is summarized in Table 4.2. A gradual increase in both

length and width is observed up to the sixth hour. After this point, a drop in average size is

recorded, most likely due to secondary nucleation: the appearance of new, smaller crystals

lowers the overall mean size of the sample, resulting in a non-linear growth trend, con-

trary to what would be expected if only growth from the original seeding were occurring.

The subsequent increase in size observed in the final samples supports this hypothesis,

suggesting continued growth of the overall crystal population despite the presence of sec-

ondary nuclei.

Table 4.2: Growth of xanthone in acetone, mean measurements

Sample Length (µm) Width (µm)

Sample 1 - 1 h 63.8 7.5
Sample 2 - 2 h 66.3 7.0
Sample 3 - 3 h 124.5 4.6
Sample 4 - 4 h 240.7 7.6
Sample 5 - 5 h 233.6 6.5
Sample 6 - 6 h 435.8 11.7
Sample 7 - 7 h 353.1 11.0
Sample 8 - 8 h 366.6 11.0
Sample 9 - 22 h 417.8 12.4

To better appreciate the size distributions in the two dimensions, which gets lost when

observing only the average value, Figure 4.4 and 4.5 are provided, highlighting the evolu-

tion of crystal growth during the experiments. The choice of samples reflects the initial,

intermediate, and final points of the process, thereby enabling a coherent evaluation of
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the evolution of both size and shape distributions over time.

From the figures it is clear that at the initial stage (sample 1), the distribution is narrower

and centered on smaller sizes, whereas at later stages (samples 5 and 9) the distribution

progressively shifts towards larger sizes and broadens, reflecting ongoing crystal growth

and the development of anisotropy in the population.

Figure 4.4: Evolution of Length (L1) size distribution of xanthone crystals in acetone

Figure 4.5: Evolution of Width (L2) size distribution of xanthone crystals in acetone

Xanthone growth in acetonitrile is noticeably slower compared to its behavior in the

other solvents. While the crystal maintains its characteristic needle-like morphology, a
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more equivalent development along both the longitudinal and transverse axes is observed,

resulting in a more squared overall shape. This morphological distinction is clearly visible

in Figure 4.6, which also highlight the reduced dimensional growth, and further confirmed

in the AR trend shown in Figure 4.2, which fluctuates less than the one in acetone or

toluene.

(a) (b)

Figure 4.6: Xanthone in acetonitrile, first sample (a, objective: 40x) and last (b, objective:
40x)

Similar to what was observed in acetone, a peak followed by a decline in the mean crystal

size is evident in Table 4.3. This trend is again attributed to the onset of secondary

nucleation: the appearance of new, smaller crystals reduces the average size measured

during sampling.

However, in this case, the decline occurs earlier in the experiment (Sample 5 instead

of Sample 6), suggesting a different nucleation timing. The relatively low solubility of

xanthone in acetonitrile may also account for the overall modest growth: fewer solute

molecules in solution likely lead to a reduced number of growth sites, and therefore, to

slower overall crystal development (see Section 2.1.3).
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Table 4.3: Growth of xanthone in acetonitrile, mean measurements

Sample Length (µm) Width (µm)

Sample 1 - 1 h 48.10 8.4

Sample 2 - 2 h 48.47 8.5

Sample 3 - 3 h 71.23 9.4

Sample 4 - 4 h 93.80 10.0

Sample 5 - 5 h 71.50 12.0

Sample 6 - 6 h 97.60 10.0

Sample 7 - 7 h 100.90 10.8

Sample 8 - 8 h 103.70 10.7

Sample 9 - 22 h 140.70 10.8

The particular behavior of xanthone in acetonitrile is also evident when analyzing the

evolution of the size distributions for length (Figure 4.7) and width (Figure 4.8). Although

the trend resembles that observed in acetone, where later samples show broader and flatter

distributions, which is indicative of crystal growth, the overall crystal sizes in acetonitrile

remain comparatively smaller than in the other solvents, suggesting a slower overall growth

rate.

Figure 4.7: Evolution of Length (L1) size distribution of xanthone crystals in acetonitrile
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Figure 4.8: Evolution of Width (L2) size distribution of xanthone crystals in acetonitrile

Among the three solvents analyzed, toluene produces the fastest crystal growth. The

resulting particles show a marked elongation along the longitudinal axis, confirming a

distinct needle-like morphology. This anisotropic growth is reflected in the Aspect Ra-

tio trend reported in Figure 4.1, which further highlights the deviation from spherical

symmetry over time.

Figure 4.9 visually demonstrates the dimensional progression of the crystals between the

first and final samples, emphasizing the sharp increase in size and preferential elongation.

(a) (b)

Figure 4.9: Xanthone in toluene, first sample (a, objective: 40x) and last (b, objective:
5x)
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As observed in the other two solvents, a decrease in mean size appears in Table 4.4 starting

from Sample 6. This behavior is again attributed to the onset of secondary nucleation,

which alters the distribution of particle sizes and introduces a deviation from a strictly

increasing trend. Interestingly, this inflection point occurs at a comparable time to that

observed in acetone.

Table 4.4: Growth of xanthone in toluene, mean measurements

Sample Length (µm) Width (µm)

Sample 1 - 1 h 92.90 7.35

Sample 2 - 2 h 279.30 18.2

Sample 3 - 3 h 1310.80 47.3

Sample 4 - 4 h 1348.60 53.3

Sample 5 - 5 h 1581.20 55.7

Sample 6 - 6 h 1741.40 62.0

Sample 7 - 7 h 1634.40 58.8

Sample 8 - 8 h 1689.54 59.4

Sample 9 - 22 h 1765.20 57.0

Furthermore, the evolution of the size distributions highlights the increased growth rate,

particularly in length (Figure 4.10). The distributions not only broaden over time, but

also shift markedly towards larger values: in the later samples (5 and 9), the crystals are

drastically longer than in sample 1, with no overlap remaining between their size ranges.

This behavior contrasts with the other solvents, where remnants of the initial distribution

could still be observed in later samples. In terms of width (Figure 4.11), however, the dis-

tributions remain comparatively compact, underlining the strong anisotropy of xanthone

crystallization in toluene.
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Figure 4.10: Evolution of Length (L1) size distribution of xanthone crystals in toluene

Figure 4.11: Evolution of Width (L2) size distribution of xanthone crystals in toluene

4.1.2 Statistical Analysis

Comparison between calculations performed using moments and Cumulative Running

Average

The results obtained by calculating the average geometrical properties, namely, the

equivalent linear dimension and projected area, using both the cumulative approach and

the moments show excellent agreement, as expected.

This consistency between the two approaches confirms the accuracy of the cumulative

running average calculations and, at the same time, validates the implementation of the

moments calculation for the dataset. It is worth noting that the moments, by definition,

consider the entire crystal measured sample. Therefore, the observed match with the
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results from the cumulative approach, which directly averages the measured dimensions,

indicates that no significant implementation errors were introduced by either method.

Statistical Relevance of the Properties for the individual Sample

After validating the values obtained through the cumulative approach, the trend observed

for each sample allows for classification into two categories, each with specific statistical

implications:

• Convergence reached: If the functions representing the cumulative running average

and the corresponding standard deviation stabilize at the end of the sample, that

is, they cease to oscillate and remain approximately constant, this indicates that

the number of crystals analyzed is sufficient for the statistical parameters to be

considered reliable and representative of the underlying population.

• Convergence not reached: If the functions continue to fluctuate without stabiliza-

tion, this suggests that the sample size is insufficient to reliably describe the pop-

ulation’s characteristics in the investigated sample. In such cases, the extracted

information may still offer insights, but must be interpreted cautiously, as it may

not accurately reflect average population behavior.

Representative examples of both scenarios are depicted in Figure 4.12.
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(a)

(b)

Figure 4.12: Plot of cumulative running average and its standard deviation with (a) and
without (b) convergence

In most samples, convergence was successfully achieved, supporting the assumption that

the analyzed crystals provide a representative snapshot of the entire crystal population at

the sampling time. For clarity and conciseness, the plots of the cumulative running aver-

age and its standard deviation for all samples, in both 1D and 2D analyses, are reported

in Appendix B. A collective summary is provided in Table 4.5, indicating which samples

reached convergence. In this analysis, convergence was defined as a variation of no more

than 5% in the mean value calculated over the last 100 crystals.
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Table 4.5: Convergence analysis for 1D and 2D (L1, L2) analyses for each solvent and
sample: the presence of the check mark ✓denotes that the calculations for the sample
have reached convergence

Solvent Sample 1D - analysis 2D - analysis L1 2D - analysis L2

Acetone

1 ✓ ✓

2 ✓ ✓

3 ✓ ✓ ✓

4 ✓ ✓ ✓

5 ✓

6 ✓ ✓ ✓

7 ✓ ✓ ✓

8 ✓ ✓ ✓

9 ✓ ✓ ✓

Acetonitrile

1 ✓ ✓

2 ✓ ✓

3 ✓ ✓ ✓

4 ✓ ✓ ✓

5 ✓

6 ✓ ✓ ✓

7 ✓

8 ✓

9 ✓

Toluene

1 ✓

2 ✓ ✓ ✓

3 ✓ ✓ ✓

4 ✓ ✓ ✓

5 ✓ ✓

6 ✓ ✓

7 ✓ ✓

8 ✓ ✓ ✓

9 ✓

Statistical Relevance of the Sample

To assess whether the number of crystals analyzed in each sample could be deemed sta-

tistically representative of the total population, confidence intervals were calculated at

two different confidence levels: 90% and 99%. This analysis estimated the reliability with
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which the measured crystal properties reflect the actual values of the broader population,

essentially quantifying how likely it is that a given measurement lies above a defined mar-

gin of error around the estimated parameter.

Confidence intervals were computed for all three properties investigated (average length,

average area, and average volume) both for the one-dimensional analysis based on the

equivalent diameter, and for the two-dimensional approach, which considered the two

principal growth directions separately. However, it is important to note that if the num-

ber of crystals used to estimate the average length is insufficient to represent the popula-

tion adequately, then any parameters derived from higher-dimensional properties (such as

area or volume) will inevitably exhibit even greater uncertainty and error, making their

interpretation less meaningful.

For this reason, although all calculations were carried out, only the results related to the

average length are discussed in this chapter for the sake of clarity. Complete data for all

the properties can be found in Appendix B.

The results of the confidence interval calculations (see Equation 2.36) and the corre-

sponding estimates of the minimum number of crystals required (see Equation 2.37 ) are

presented in the following tables: Table 4.6 reports the data for the equivalent diame-

ter (1D analysis), while Tables 4.7 and 4.8 display the outcomes for the two-dimensional

analysis, specifically for the L1 and L2 dimensions, respectively. The number of crystals

used are found in Table 3.6.

Table 4.6: 1D Equivalent Diameter: mean length (L̄), standard deviation of the mean
(S), confidence intervals (CIW ) and relative confidence interval (RCI) for each solvent
and sample

Solvent Sample L̄ (µm) S (µm) CIW90(µm) CIW99(µm) RCI90 RCI99

Acetone

1 (1 h) 18.5 4.4 1.1 1.7 6% 9%

2 (2 h) 19.2 4.8 1.0 1.6 5% 8%

3 (3 h) 16.7 5.5 1.13 1.8 7% 11%

4 (4 h) 29.2 9.8 1.9 3.0 7% 10%

5 (5 h) 26.2 8.2 2.3 3.6 9% 14%

6 (6 h) 48.0 14.5 4.1 6.5 9% 14%

7 (7 h) 42.8 13.3 3.0 4.8 7% 11%

8 (8 h) 43.7 14.0 3.3 5.11 7% 12%

9 (22 h) 49.1 16.3 5.0 7.9 10% 16%

Acetonitrile

1 (1 h) 17.2 6.6 2.2 3.4 12% 20%

2 (2 h) 17.6 7.5 2.0 3.1 11% 18%

3 (3 h) 21.4 8.5 3.1 4.8 14% 23%
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Solvent Sample L̄ (µm) S (µm) CIW90(µm) CIW99(µm) RCI90 RCI99

4 (4 h) 24.7 7.6 1.9 3.0 8% 12%

5 (5 h) 26.0 8.0 2.8 4.4 11% 17%

6 (6 h) 25.2 7.2 2.3 3.7 9% 15%

7 (7 h) 27.0 6.9 2.3 3.6 9% 14%

8 (8 h) 27.2 7.5 3.0 4.8 11% 18%

9 (22 h) 30.5 8.3 3.6 5.6 12% 19%

Toluene

1 (1 h) 20.1 7.7 1.8 2.8 9% 14%

2 (2 h) 51.1 28.5 6.2 9.8 12% 19%

3 (3 h) 175.0 51.8 12.5 19.6 7% 11%

4 (4 h) 192.0 40.0 12.9 20.2 7% 11%

5 (5 h) 208.0 48.5 12.6 19.7 6% 9%

6 (6 h) 231.0 46.1 13.4 21.0 6% 9%

7 (7 h) 218.0 44.2 14.3 22.4 7% 10%

8 (8 h) 223.0 45.5 15.8 24.7 7% 11%

9 (22 h) 220.0 39.9 11.3 17.7 5% 8%

Table 4.7: 2D Length L1: mean (L̄1), standard deviation of the mean (S), confidence
intervals (CIW ) e RCI for each solvent and sample

Solvent Sample L̄1 (µm) S (µm) CIW90(µm) CIW99(µm) RCI90 RCI99

Acetone

1 (1 h) 63.9 26.9 6.6 10.3 10% 16%

2 (2 h) 79.8 32.0 6.7 10.5 8% 13%

3 (3 h) 124.0 47.9 9.9 15.5 8% 12%

4 (4 h) 241.0 96.7 19.1 29.8 8% 12%

5 (5 h) 234.0 67.8 19.2 30.1 8% 13%

6 (6 h) 436.0 140.0 39.9 62.5 9% 14%

7 (7 h) 353.0 121.0 27.9 43.7 8% 12%

8 (8 h) 367.0 124.0 28.9 45.2 8% 12%

9 (22 h) 418.0 150.0 46.0 72.1 11% 17%

Acetonitrile

1 (1 h) 48.1 48.4 15.7 24.5 33% 51%

2 (2 h) 48.5 45.7 12.0 18.8 25% 39%

3 (3 h) 71.2 59.2 21.4 33.5 30% 47%

4 (4 h) 93.9 64.2 16.0 25.0 17% 27%

5 (5 h) 71.6 45.0 15.6 24.4 22% 34%
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Solvent Sample L̄1 (µm) S (µm) CIW90(µm) CIW99(µm) RCI90 RCI99

6 (6 h) 97.7 57.2 18.7 29.3 19% 30%

7 (7 h) 101.0 58.0 19.6 30.6 19% 30%

8 (8 h) 104.0 57.7 23.3 36.5 22% 35%

9 (22 h) 141.0 67.9 29.3 45.9 21% 33%

Toluene

1 (1 h) 92.9 57.2 13.0 20.3 14% 22%

2 (2 h) 279.0 158.0 34.7 54.4 12% 19%

3 (3 h) 1310.0 479.0 115.7 181.2 9% 14%

4 (4 h) 1350.0 281.0 90.6 141.9 7% 11%

5 (5 h) 1580.0 418.0 108.7 170.2 7% 11%

6 (6 h) 1740.0 458.0 133.2 208.5 8% 12%

7 (7 h) 1630.0 410.0 132.4 207.4 8% 13%

8 (8 h) 1690.0 347.0 120.5 188.6 7% 11%

9 (22 h) 1770.0 343.0 97.2 152.2 6% 9%

Table 4.8: 2D Length L2: mean (L̄2), standard deviation of the mean (S), confidence
intervals (CIW ) e RCI for each solvent and sample

Solvent Sample L̄2 (µm) S (µm) CIW90(µm) CIW99(µm) RCI90 RCI99

Acetone

1 (1 h) 7.5 1.9 0.5 0.7 6% 10%

2 (2 h) 7.0 2.1 0.4 0.7 6% 10%

3 (3 h) 4.6 2.0 0.4 0.6 9% 14%

4 (4 h) 7.6 3.0 0.6 0.9 8% 12%

5 (5 h) 6.5 2.6 0.7 1.2 12% 18%

6 (6 h) 11.7 4.0 1.2 1.8 10% 15%

7 (7 h) 11.0 4.0 0.9 1.5 8% 13%

8 (8 h) 11.1 4.0 0.9 1.5 8% 13%

9 (22 h) 12.4 4.6 1.41 2.2 11% 18%

Acetonitrile

1 (1 h) 8.4 3.2 1.0 1.6 12% 19%

2 (2 h) 8.5 3.3 0.9 1.3 10% 16%

3 (3 h) 9.4 3.3 1.2 1.9 13% 20%

4 (4 h) 10.0 3.4 0.8 1.3 8% 13%

5 (5 h) 12.1 3.6 1.3 2.0 10% 16%

6 (6 h) 10.0 3.3 1.1 1.7 11% 17%

7 (7 h) 10.8 3.4 1.1 1.8 10% 16%
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Solvent Sample L̄2 (µm) S (µm) CIW90(µm) CIW99(µm) RCI90 RCI99

8 (8 h) 10.7 3.5 1.4 2.2 13% 20%

9 (22 h) 10.8 3.4 1.5 2.3 14% 21%

Toluene

1 (1 h) 7.4 3.5 0.8 1.2 11% 17%

2 (2 h) 18.2 10.3 2.3 3.5 12% 19%

3 (3 h) 47.3 14.9 3.6 5.7 8% 12%

4 (4 h) 53.3 14.2 4.6 7.2 9% 13%

5 (5 h) 55.7 15.5 4.0 6.3 7% 11%

6 (6 h) 62.0 14.1 4.1 6.4 7% 10%

7 (7 h) 58.8 14.7 4.7 7.4 8% 13%

8 (8 h) 59.4 15.3 5.3 8.3 9% 14%

9 (22 h) 56.9 12.7 3.6 5.7 6% 10%

Although the confidence interval on its own does not provide substantial inputs for further

analysis, it is still meaningful to compare the CI values obtained from sample analysis

with the optical microscope resolution, reported in Table 3.7. The two differ, as expected,

since experimental measurements rarely achieve the same precision as the instrument

resolution; however, the discrepancy remains limited. This indicates that, while sampling

could be improved by repeating the experiments, it is nonetheless adequate for supporting

the qualitative evaluations performed in this study.

In addition, a comparison between the confidence interval and the convergence of the

cumulative running average was carried out. As stated previously (see Section 3.1.5), a

confidence interval was classified as narrow when RCI< 15%. By comparing the results

reported in Tables 4.6–4.8 with the convergence analysis shown in Table 4.5, four different

cases were identified, each leading to a specific interpretation of the representativeness and

reliability of the analyzed sample:

• Case A - Convergence reached and RCI< 15%: the sample can be considered rep-

resentative, and the calculated mean value reliable;

• Case B - Convergence reached but RCI> 15%: the sample requires a larger number

of crystals to improve reliability, thus the quantitative analysis should be viewed as

indicative rather than conclusive;

• Case C - Convergence not reached and RCI< 15%: the number of collected data

points is insufficient to draw fully reliable conclusions;

• Case D - Convergence not reached and RCI> 15%: the sample cannot be considered

representative.
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It should be emphasized that representativeness here refers to the investigated sample

only, and not to the entire crystal population.

To synthesize the previous considerations, Table 4.9 indicates the case associated with

each sample, and Figure 4.13 illustrates the corresponding distribution in terms of relative

frequency.

Table 4.9: Case analysis: results of comparison between convergence studies and cumu-
lative running average calculations

Solvent Sample 1D - analysis 2D - analysis L1 2D - analysis L2

α = 90% α = 99% α = 90% α = 99% α = 90% α = 99%

Acetone

1 A A C D A A

2 A A A A C C

3 A A A A A A

4 A A A A A A

5 C C A A C D

6 A A A A A B

7 A A A A A A

8 A A A A A A

9 A B A B A B

Acetonitrile

1 A B D D A B

2 A B D D A B

3 A B B B A B

4 A A B B A A

5 A B D D C D

6 A B B B A B

7 C A D D A B

8 C B D D A B

9 C B D D A B

Toluene

1 C C D D A B

2 A B A B A B

3 A A A A A A

4 A A A A A A

5 A A C C A A

6 A A A A C D

7 A A C C A A

8 A A A A A A

9 A A C C C C
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(a)

(b)

Figure 4.13: Relative Frequency of the results with α = 90% (a) and α = 99% (b)

As shown above, the number of crystals collected can, in most cases, be considered reliable.

For the instances in which this is not valid, while this does not invalidate the qualitative

or quantitative analyses performed, it does call for careful interpretation: the calculated

confidence intervals are based on high confidence levels (90% and 99%) applied to single-

sample experiments without replicates, an experimental limitation that inherently reduces

the robustness of statistical inference and the ability to generalize results.

Therefore, the statistical findings presented here do not undermine the validity of the anal-

yses performed, but rather help contextualize their scope. The measured values should

not be interpreted as absolute descriptors of the entire crystal population, but as repre-

sentative of the specific samples analyzed. These data remain sufficiently reliable for the

purposes of this study, while reflecting real crystallization behavior with an acknowledged

degree of partiality and statistical limitation.
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4.2 Computational Results

4.2.1 Property validation

The analysis of the computed properties shows good agreement with established models

and reference data from literature, supporting the validity of the simulation setup. In

particular, the properties of the two orthogonal faces, AC and BC, were examined under

the assumption that, owing to their structural and morphological similarities, the third

orthogonal face would exhibit analogous behavior. For clarity, only the results for the AC

face are presented in this work, since in the liquid phase the properties are independent

from the box geometry. The detailed results for each property are discussed below.

The density estimates, reported in Table 4.10, show good accuracy for the analyzed faces,

with a small relative error compared to literature values[26][27][28]. This agreement sup-

ports the reliability of subsequent property analyses and allows to consider as accurate

the initial disposition of the models in terms of box dimension and volume.

Table 4.10: Comparison between solvents’ density results obtained from the simulations
(right) and literature (left) for acetone, acetonitrile and toluene, face AC

Density (g/cm3)

Solvent
AC

err (%)
literature LAMMPS

Acetone 0.789[26] 0.787 0.20

Acetonitrile 0.786[27] 0.785 0.19

Toluene 0.867[28] 0.866 0.16

To obtain these results, the mean value of the density evolution among each iteration was

calculated, as explained in detail in Section 3.2.2.

The analysis of the Radial Distribution Function (RDF) trends for the relevant atom–pairs

within each solvent molecule is a key step in validating both the selected force field and

the accuracy of interatomic distances. The RDF enables the comparison between the

simulated molecular arrangement and literature-reported reference values, providing a

basis for considering the subsequent property evaluations as reliable.

For each solvent, the most representative atom–pair interactions were selected and are

listed in Table 4.11. The nomenclature adopted is as follows:

• C1: carbon atom belonging to the main molecular chain;
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• C2: carbon atom belonging to a methyl group;

• H: hydrogen atom;

• N: nitrogen atom (present only in acetonitrile);

• O: oxygen atom (present only in acetone).

Table 4.11: List of the atom-pair interactions considered during RDF evaluation for ace-
tone, acetonitrile and toluene

Atom-pair Acetone Acetonitrile Toluene

C1C1 yes yes yes

C2C2 yes yes yes

C1H yes

HH yes

NC1 yes

NC2 yes

NH yes

NN yes

OC2 yes

OH yes

OO yes

In evaluating each RDF curve, the following aspects were considered:

• Position of the first peak, as it provides the most probable interatomic distance

between the two atom types and allows direct comparison with experimental and

literature data;

• Width of the first peak, as it indicates the degree of structural order. A narrow,

high peak corresponds to a well-defined coordination shell, whereas a broader peak

suggests greater positional disorder;

• Overall trend of the function: it reveals the level of short- and medium-range order

in the system, useful for distinguishing between liquid-like and solid-like behavior;

• Asymptotic value at large distances: in liquids, the RDF should approach a value of

1 as r → ∞, indicating a homogeneous particle distribution at long range; deviations

from this behavior can signal artifacts or non-equilibrated simulations.

The complete set of RDF curves for all atom–pair interactions listed in Table 4.11 is

reported in Appendix C. Here, only representative trends are presented in a condensed

form (Figure 4.14, 4.15 and 4.16), with each plot showing the RDFs for all selected

atom–pairs within a given solvent.

In all cases, the simulated RDFs show:
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• First peak positions in agreement with literature data, confirming that the inter-

atomic distances predicted by the selected force field are physically consistent[29][30][31].

• Peak widths and amplitudes compatible with the liquid state of the systems, with

sharper peaks for nearest-neighbor shells and progressively smoother features at

larger r.

• Correct asymptotic convergence to g(r) = 1, indicating the expected long-range

homogeneity of the liquid phase.

These results confirm the validity of the constructed simulation boxes and justify the

reliability of the subsequent property evaluations. Detailed, solvent-specific RDF plots

and quantitative peak analyses are provided in Appendix C.

Figure 4.14: Calculated RDF trends for chosen atom-pair in acetone

Figure 4.15: Calculated RDF trends for chosen atom-pair in acetonitrile
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Figure 4.16: Calculated RDF trends for chosen atom-pair in toluene

As the final property, diffusivity was evaluated to verify that the spatial interactions

between particles in the system were consistent with literature data[32][33][34]. The

results, reported in Table 4.12, show a relative error below 10%in all cases, which is

within the accepted range for experimental validation. This agreement further confirmed

the reliability of the chosen force field and provided a solid basis for the subsequent energy

calculations.

Table 4.12: Comparison between solvents’ diffusivity results obtained from the simulations
(right) and literature (left) for acetone, acetonitrile and toluene, face AC

Diffusivity ×10−9 (m2/s)

Solvent
AC

err (%)
literature LAMMPS

Acetone 4.80[32] 4.70 2.11

Acetonitrile 4.37[33] 4.66 6.74

Toluene 2.66[34] 2.87 7.89

4.2.2 Energy calculations

The complete set of results, for both the individual monocomponent boxes and the merged

systems, is reported in Table 4.13. For clarity, the different energy components listed in

the table are defined as follows:

• Potential: the total potential energy of the system, obtained as the sum of all
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contributions (Van der Waals, Coulomb, bond, angle, and dihedral energies), as

detailed in Section 2.2.2;

• Van der Waals: the energy associated with Van der Waals interactions, modeled

through the Lennard–Jones potential;

• Coulomb: the total Coulomb potential energy, given by the sum of short- and long-

range electrostatic interactions;

• Elong: the long-range Coulomb potential, accounting for electrostatic interactions

between molecules at larger distances;

• ECoulomb: the short-range Coulomb potential, describing the energy contribution

from interactions between molecules in close proximity.

Table 4.13: Results of energy calculation for single-component and merged system

BOX ENERGIES (cal/mol)

Group System Potential Van der Waals Coulomb Elong ECoulomb

PURE Xanthone 2865.1 -4577.9 1893.2 -8358.2 10251.4

PURE Acetone AC 2715.8 -1327.3 318.5 -11081.5 11400.0

PURE Acetone BC 3689.9 -1810.2 435.6 -15562.2 15997.8

PURE Acetone AB 2747.1 -1298.2 329.3 -11180.9 11510.2

PURE Acetonitrile AC -2121.3 -1990.1 -3261.1 -17448.8 14187.7

PURE Acetonitrile BC -2967.63 -2764.72 -4502.0 -23394.68 18892.64

PURE Acetonitrile AB 3867.38 -1463.31 -4757.9 -23449.36 18691.50

PURE Toluene AC 23248.4 -2053.8 918.9 -2104.6 3023.6

PURE Toluene BC 27982.5 -4027.4 1248.0 -2941.2 4189.2

PURE Toluene AB 95585.9 17333.4 1409.3 -2911.4 4320.8

MERGED Acetone AC -11675.5 -854.9 -20600.7 -19712.0 -888.7

MERGED Acetone BC -13816.2 -884.0 -25257.2 -23472.6 -1784.6

MERGED Acetone AB -12088.6 -1045.3 -20787.7 -19480.0 -1307.7

MERGED Acetonitrile AC -11196.5 -626.0 -19695.2 -24961.1 5265.9

MERGED Acetonitrile BC -13226.8 -621.8 -24120.7 -31403.3 7282.7

MERGED Acetonitrile AB -10066.8 -579.5 -25216.0 -31409.1 6193.1

MERGED Toluene AC 5760.3 3043.3 -9263.1 -10189.5 926.4

MERGED Toluene BC 7079.9 3476.7 -9852.5 -10852.5 1000.0

MERGED Toluene AB 71735.6 23533.6 -10098.7 -10985.0 886.4

As such, following equation 2.57, it was possible to evaluate the first parameter for the

calculation of Helmholtz free energy, with the equation adapted to the elements of the

simulation following equation 4.1: the results are shown in Table 4.14 and, for better
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understanding of the individual trends in different solvents, represented in Figure 4.17.

U = UX+S − (UBX + UBS) (4.1)

where UX+S is the internal potential energy of the merged systems, while UBX and UBS

are the potential energy of the isolated xanthone bulk system and isolated Solvent bulk

system respectively.

Table 4.14: Internal energy value calculation, first term of Helmholtz energy equation

Uinterface (cal/mol)

Face Acetone Acetonitrile Toluene

AC -17256.4 -11940.3 -20353.3

BC -20371.2 -13124.3 -23767.7

AB -17700.8 -16799.3 -26715.4

Figure 4.17: Visual representation of the different energy values for faces AB (001),AC
(010),BC (100) in acetone, acetonitrile and toluene

Through the analysis of the data reported in Tables 4.14 and 4.15, and Figures 4.17 and

4.18, several key findings can be highlighted.

First, when comparing the three solvents, acetonitrile exhibits the highest interface energy

values with the xanthone crystal, followed by acetone, while toluene consistently shows the

lowest values. This means that, from a thermodynamic perspective, the crystal–solvent

interface in toluene is the most favorable, facilitating crystal growth. As the system tends

to minimize energetic expenditure, it can therefore be expected that xanthone crystals

will grow more rapidly in toluene, while acetonitrile will promote the slowest growth, with
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acetone behaving as an intermediate case.

Looking more closely at the individual faces, in acetone the face (100) displays the low-

est interface energy, suggesting that growth will preferentially occur along the direction

perpendicular to this surface. In acetonitrile, face (001) is the most stabilized, whereas in

toluene face (001) shows by far the lowest energy, strongly favoring its growth compared

to the other two faces. Conversely, face (010) is consistently the least stable across all sol-

vents, presenting the highest interface energy values. This consistency indicates that face

(010) is generally the most inhibited in growth, independently of the solvent considered.

The differences in interface energies between faces, summarized in Table 4.13 and Figure

4.11, further support these considerations. Toluene shows the largest relative differences,

suggesting a strongly anisotropic growth, with a clear preference for specific directions.

Acetonitrile, instead, presents the smallest differences, pointing toward a more homoge-

neous, less directional growth. Acetone again lies in between, with moderate differences

that suggest some degree of preferential growth, but not as marked as in toluene.

These results generally outline a coherent picture: the solvent not only affects the overall

growth rate (with toluene > acetone > acetonitrile), but also strongly influences the

anisotropy of growth, determining whether the crystal will preferentially extend along

one axis or more evenly across its structure.

Table 4.15: Interface energy differences between the three investigated faces for the three
solvents

Energy differences ∆ (cal/mol)

Face comparison Acetone Acetonitrile Toluene

∆(AC–BC) 3114.8 1184.1 3414.5

∆(AB–BC) 2670.4 -3674.9 -2947.7

∆(AC–AB) 444.4 4859.0 6362.2
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Figure 4.18: Visual representation of the interface energy differences between the three
investigated faces for the three solvents

4.3 Result Discussion through Data Comparison

In order to validate the central hypothesis of the present work, namely, to understand

if the evaluation of only the internal free energy is sufficient to describe the property

of the crystal interface, a comparison between the experimental observations and the

computational data is required.

Before proceeding with the integrated analysis, it is first necessary to summarize the re-

sults obtained from both approaches. This step also serves to align the different nomencla-

tures used to describe the crystal faces, thereby ensuring greater clarity in the comparative

discussion that follows.

From an experimental perspective, the crystallization of xanthone in the three solvents

revealed a distinct preferential behavior, both in terms of growth rate and anisotropy.

Toluene exhibited the fastest crystal growth, followed by acetone and finally acetoni-

trile. This same trend was reflected in the degree of anisotropy observed: toluene crystals

showed the most pronounced directional growth, while acetonitrile favored more homoge-

neous expansion.

From a computational standpoint, significant differences were observed among the sol-

vents with respect to the internal energy values. Specifically, toluene showed the lowest

interfacial energy across all simulated faces, followed by acetone and, lastly, acetonitrile.

Furthermore, the simulations identified the energetically most favorable faces as follows:

face AB (corresponding to the crystallographic face (001)) for both toluene and acetoni-

trile, and face BC (100) for acetone.

Comparison between the experimental and computational analyses reveals a partial mis-
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match in the predicted growth directions. According to the simulations, the crystal faces

with the lowest internal energy values (face AB (001) in toluene and acetonitrile, and

face BC (100) in acetone) would be expected to grow preferentially, consistent with the

thermodynamic principle that systems evolve toward lower-energy configurations. This

trend, however, is not fully reflected in the experimental observations. In acetone, for

example, the AB face (001), which is the widest and thus more prone to strong solvent

interactions, was expected to grow more slowly; yet computational results assign it a lower

energy, implying a tendency toward growth. Conversely, in toluene and acetonitrile, face

BC (100) does not exhibit the lowest internal energy but nonetheless shows substantial

growth in the experiments.

On a broader scale, however, the general growth trends of xanthone across the three

solvents are consistently confirmed. Both the experimental and computational results

agree that the crystal grows fastest in toluene, followed by acetone and then acetonitrile.

This agreement supports the idea that internal energy is a good predictor of the overall

growth tendency in different solvents.

From these observations, two key conclusions can be drawn:

• The comparative analysis indicates that internal energy, considered without the

second entropic term, is insufficient to provide an accurate description of crystal

face behavior. As a result, this limitation could explain the inconsistencies observed

with experimental data.

• While internal energy alone does not allow accurate predictions of morphological

development at the molecular level, it is nonetheless a reliable indicator for assessing

general growth kinetics across different solvents. Though it cannot predict the

dominant face or final morphology of the crystal, it can serve as a useful screening

parameter in early-stage analyses, particularly in batch crystallization processes,

where solvent selection, process timeframes, and expected growth rates are critical.
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Chapter 5

Conclusions

This work investigated the polymorphic behavior of xanthone in three different solvents

(acetone, acetonitrile, and toluene) through a dual approach combining laboratory exper-

iments and molecular dynamics simulations.

The primary objective was to correlate the experimental results with computational es-

timates of interfacial energies, aiming to eventually use simulation as a predictive tool

for crystallization behavior. In particular, the internal energy of each solvent–crystal

interface was computed under the assumption that it represents the dominant term of

the Helmholtz free energy equation, allowing the entropic component to be neglected. If

valid, this simplification would imply that the crystal faces with the lowest internal energy

should exhibit the fastest growth rates, as thermodynamically favored pathways.

Experimentally, xanthone demonstrated the highest and most anisotropic growth in toluene,

followed by acetone, and finally acetonitrile, where both the growth rate and anisotropy

were reduced. Detailed image and statistical analysis, employing both the calculation

of moments and the cumulative running average approach, show that, although sam-

pling could be improved, the discrepancy remains limited, supporting the validity of the

qualitative evaluations carried out in this study.

Cross-validation with molecular simulations revealed both consistencies and discrepancies.

While overall solvent-dependent trends aligned well, with toluene promoting faster growth

and acetonitrile the slowest, the analysis of individual crystal faces did not fully support

the initial assumption. In several instances, the faces that were predicted to grow fastest

(due to low interfacial energy) did not do so experimentally, suggesting that internal

energy alone is not a sufficient descriptor of face-specific growth behavior.

These findings highlight a key conclusion: while internal energy calculations can provide

reliable comparative insight into overall crystal growth kinetics across different solvents,

they are insufficient for accurate prediction of crystal morphology, particularly in terms
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of face-specific development and anisotropy.

In conclusion, the integration of experimental and computational analyses has led to

a more comprehensive understanding of xanthone’s crystallization dynamics. Although

some inconsistencies emerged, the broader alignment of growth tendencies confirms the

usefulness of molecular dynamics simulations as a screening tool for the design of crys-

tallization processes. Future work should focus on incorporating the entropic component

of the Helmholtz free energy to improve the predictive accuracy of morphological out-

comes. Additionally, calculating face-specific growth rates and replicates of experiments

will offer a deeper insight into the underlying mechanisms. This combined approach sets

a solid foundation for more rational crystallization design, both in academic research and

industrial applications.
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Appendix A

Python Codes

This appendix contains the Python codes developed and implemented in the course of

this work, each preceded by a brief description of its purpose and functionality.

Code A.1 was employed to analyze the measures taken for the crystals and provide the

values of cumulative running average and cumulative running standard deviation both for

the one dimensional and two-dimensional analysis, completed with plots.

Listing A.1: Data processing and plotting for crystal samples 1D analysis

1 import os

2 import pandas as pd

3 import numpy as np

4 import matplotlib.pyplot as plt

5

6 #File input

7 input_excel = rExcel_file

8 output_excel = Excel_file_output # path to create the new excel work sheet with

outputs

9 plots_dir = graphs_samples1 # new folder for graphs

10 dot_size = 8 # personalized dimensions for scatter plot

11 # Insert personalized dictionary with the name of the Excel

12 #from which the data is recollected from, specifying the columns that contain the

dataset

13 #example given is for the 1D analysis,

14 #the 2D case will have two columns ('L1' and 'L2' for each sample)

15 experiments_config = {

16 'ACETONE_1D': {

17 'sheet': 'ACETONE_1D',
18 'time_columns': {

19 1: 'F', # one dimensions = only one column considered

20 2: 'U',
21 3: 'AJ',
22 4: 'AY',
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23 5: 'BN',
24 6: 'CC',
25 7: 'CR',
26 8: 'DG',
27 22: 'DV'
28 }

29 },

30 'TOLUENE_1D': {

31 'sheet': 'TOLUENE_1D',
32 'time_columns': {

33 1: 'F',
34 2: 'U',
35 3: 'AJ',
36 4: 'AY',
37 5: 'BN',
38 6: 'CC',
39 7: 'CR',
40 8: 'DG',
41 22: 'DV'
42 }

43 },

44 'ACN_1D': {

45 'sheet': 'ACN_1D',
46 'time_columns': {

47 1: 'F',
48 2: 'U',
49 3: 'AJ',
50 4: 'AY',
51 5: 'BN',
52 6: 'CC',
53 7: 'CR',
54 8: 'DG',
55 22: 'DV'
56 }

57 }

58 }

59

60

61

62 # excel to python utility

63 def col_letter_to_index(col_letter: str) -> int:

64 #Converts 'A'->0, 'B'->1, ..., 'Z'->25, 'AA'->26, etc for python coding

65 col_letter = str(col_letter).strip().upper()

66 num = 0

67 for ch in col_letter:

68 if not ('A' <= ch <= 'Z'):
69 raise ValueError(fNon valid column letter: {col_letter})
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70 num = num * 26 + (ord(ch) - ord('A') + 1)

71 return num - 1

72

73 def to_numeric_series(series: pd.Series) -> pd.Series:

74

75 #Robust conversion of the letters in numerical series:

76 #no spaces, comma->dot, NaN if not number

77

78 s = series.astype(str).str.strip().str.replace(,, ., regex=False)

79 return pd.to_numeric(s, errors=coerce)

80

81 def running_stats(values: np.ndarray):

82 #Returns (running_mean, running_std) cumulativi, std campionaria (ddof=1)

83 running_mean = []

84 running_std = []

85 for i in range(1, len(values)+1):

86 chunk = values[:i]

87 m = float(np.mean(chunk))

88 s = float(np.std(chunk, ddof=1)) if i > 1 else 0.0

89 running_mean.append(m)

90 running_std.append(s)

91 return running_mean, running_std

92

93 def safe_sheet_name(name: str) -> str:

94 #clean excel sheet's name or not accepted

95 invalid = set(r'[]:*?/\\')
96 cleaned = .join(_ if c in invalid else c for c in name)

97 return cleaned[:31]

98

99 def iter_time_columns(time_columns):

100 #Iterator on time_columns:

101 #if value= string, then single column (label 'L1')
102 #if value = dict with 'column' key, then single column (label 'L1')
103 #if value = dict with 'column, column' key, then iterates all of them (2D case)

104 #Returns tuple (label, col_letter)

105

106 for t, v in time_columns.items():

107 if isinstance(v, str):

108 yield t, L1, v

109 elif isinstance(v, dict):

110 # single column case {'column': 'F'}
111 if 'column' in v and isinstance(v['column'], str):

112 yield t, L1, v['column']
113 else:

114 # double column case {'L1':'C','L2':'D'}
115 for label, col in v.items():

116 yield t, str(label), str(col)
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117 else:

118 raise ValueError(fFormat not supported for time_columns[{t}]: {v})

119

120

121 #main

122 os.makedirs(plots_dir, exist_ok=True)

123

124 all_sheets_cache = {}

125

126 with pd.ExcelWriter(output_excel, engine=openpyxl) as writer:

127 for exp_name, exp_cfg in experiments_config.items():

128 sheet_name = exp_cfg[sheet]

129

130 # load file if not yet in cache

131 if sheet_name not in all_sheets_cache:

132 try:

133 df_full = pd.read_excel(input_excel, sheet_name=sheet_name, header=

None)

134 all_sheets_cache[sheet_name] = df_full

135 except Exception as e:

136 print(f Can't read sheet '{sheet_name}' ({exp_name}): {e})

137 continue

138 else:

139 df_full = all_sheets_cache[sheet_name]

140

141 # for each time/column (double or single)

142 for time_key, label, col_letter in iter_time_columns(exp_cfg[time_columns]):

143 try:

144 col_idx = col_letter_to_index(col_letter)

145 #takes column, converts to numeric and drops NaN

146 col_series = to_numeric_series(df_full.iloc[:, col_idx]).dropna()

147 values = col_series.to_numpy(dtype=float)

148

149 if values.size == 0:

150 print(f!! {exp_name} Sample{time_key} {label} ({col_letter}): no

value

151 continue

152

153 # running stats

154 r_mean, r_std = running_stats(values)

155

156 # dataframe risultati

157 out_df = pd.DataFrame({

158 Index: np.arange(1, values.size + 1, dtype=int),

159 Original values: values,

160 Running Average: r_mean,

161 Running StdDev: r_std
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162 })

163

164 # sheet name info

165 sheet_title = f{exp_name}_Sample{time_key}_{label}

166 out_sheet = safe_sheet_name(sheet_title)

167 out_df.to_excel(writer, sheet_name=out_sheet, index=False)

168

169 # grafico scatter: blue (mean) and red (std)

170 fig, ax1 = plt.subplots()

171 x = out_df[Index].values

172

173 ax1.scatter(x, out_df[Running Average].values, color=blue, s=dot_size,

label=Running Average)

174 ax1.set_xlabel(Number of Crystals)

175 ax1.set_ylabel(Running Average, color=blue)

176 ax1.tick_params(axis='y', labelcolor=blue)

177

178 ax2 = ax1.twinx()

179 ax2.scatter(x, out_df[Running StdDev].values, color=red, s=dot_size,

label=Running StdDev)

180 ax2.set_ylabel(Running StdDev, color=red)

181 ax2.tick_params(axis='y', labelcolor=red)

182

183 # Legend

184 handles1, labels1 = ax1.get_legend_handles_labels()

185 handles2, labels2 = ax2.get_legend_handles_labels()

186 fig.legend(handles1 + handles2, labels1 + labels2,

187 loc=upper center, bbox_to_anchor=(0.5, 1.05), ncol=2)

188

189 plt.title(sheet_title)

190 fig.tight_layout()

191

192 # save image

193 safe_png = safe_sheet_name(sheet_title) + .png

194 png_path = os.path.join(plots_dir, safe_png)

195 plt.savefig(png_path, dpi=150)

196 plt.close()

197

198 print(f{sheet_title}: {values.size} values. Sheet: {out_sheet} | Graph

: {png_path})

199

200 except Exception as e:

201 print(f Error on {exp_name} Sample{time_key} {label} ({col_letter}): {

e})

202

203 print(f\n Stats saved in: {output_excel})

204 print(f Graphs saved in : {plots_dir})
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Code A.2 produces the RDF graphs with and without error bars visible in Appendix C.

Listing A.2: RDF Solvent with and without error bars

1 #Path for RDF Files

2 filepath = rFileX

3

4 group_size = 250

5

6 # Initializations of lists to collect all the samples

7 r_data = {i: [] for i in range(1, group_size+1)}

8 gr_data = {i: [] for i in range(1, group_size+1)}

9

10 # File reading

11 with open(filepath, r) as f:

12 for line in f:

13 line = line.strip()

14 if not line or line.startswith(#):

15 continue

16 parts = line.split()

17 if len(parts) < 3:

18 continue

19 try:

20 iter_id = int(float(parts[0]))

21 if 1 <= iter_id <= group_size:

22 r_data[iter_id].append(float(parts[1]))

23 gr_data[iter_id].append(float(parts[2]))

24 except ValueError:

25 continue

26

27 # Evaluations of mean values and standard deviation

28 r_mean = np.zeros(group_size)

29 gr_mean = np.zeros(group_size)

30 r_std = np.zeros(group_size)

31 gr_std = np.zeros(group_size)

32

33 for i in range(1, group_size+1):

34 arr_r = np.array(r_data[i])

35 arr_gr = np.array(gr_data[i])

36 if arr_r.size == 0 or arr_gr.size == 0:

37 raise RuntimeError(fNo data for iteration {i})

38 r_mean[i-1] = arr_r.mean()

39 gr_mean[i-1] = arr_gr.mean()

40 r_std[i-1] = arr_r.std(ddof=1)

41 gr_std[i-1] = arr_gr.std(ddof=1)

42
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43 # Clean graph with line

44 plt.figure(figsize=(8, 5))

45 plt.plot(r_mean, gr_mean, '-', lw=1.5)

46 plt.xlabel(r ())

47 plt.ylabel(g(r))

48 plt.title(RDF Acetone OObc) #Label needs to be changed depending on the dataset

49 plt.grid(True)

50 plt.tight_layout()

51

52 # 2) Graph with errorbar

53 plt.figure(figsize=(8, 5))

54 plt.errorbar(

55 r_mean, gr_mean,

56 xerr=r_std, yerr=gr_std,

57 fmt='-o', ecolor='gray', elinewidth=1, capsize=2,

58 markersize=4, lw=1

59 )

60 plt.xlabel(r ())

61 plt.ylabel(g(r))

62 plt.title(RDF Acetone OO bc with error bars) #Label needs to be changed depending on

the #dataset

63 plt.grid(True)

64 plt.tight_layout()

65

66 plt.show()

Code A.3 was employed to plot all the RDF of a given solvent in a single graph, which is

visible in Section 4.2.1.

Listing A.3: RDF Solvent with multiple input files

1 #The code uses 6 RDF input files

2 filepaths = [

3 rFile1,

4 rFile2,

5 rFile3,

6 rFile4,

7 rFile5,

8 rFile6,

9 ]

10

11 # Peronalized label for the legend, (same order as the input files)

12 labels = [

13 C1C1,

14 C2C2,

15 NC1,

16 NC2,
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17 NH,

18 NN,

19 ]

20

21 #check if number of label == number inputfiles

22 if len(labels) != len(filepaths):

23 raise ValueError(The label number needs to be the same as the number of files)

24

25 group_size = 250

26

27 def compute_rdf_means(filepath, group_size):

28

29 Reads one RDF file and evaluates the average r and g(r) for each iteration

30 Returns two lists: r_mean and gr_mean

31

32 sum_r = [0.0] * group_size

33 sum_gr = [0.0] * group_size

34 count = [0] * group_size

35

36 with open(filepath, 'r') as f:

37 for line in f:

38 line = line.strip()

39 if not line or line.startswith('#'):
40 continue

41 parts = line.split()

42 if len(parts) < 3:

43 continue

44 try:

45 iter_id = int(float(parts[0]))

46 if 1 <= iter_id <= group_size:

47 idx = iter_id - 1

48 r_val = float(parts[1])

49 gr_val = float(parts[2])

50 sum_r[idx] += r_val

51 sum_gr[idx] += gr_val

52 count[idx] += 1

53 except ValueError:

54 continue

55

56 r_mean = []

57 gr_mean = []

58 for i in range(group_size):

59 if count[i] == 0:

60 raise RuntimeError(fNo data found for iteration {i+1} in file {os.path.

basename(filepath)})

61 r_mean.append(sum_r[i] / count[i])

62 gr_mean.append(sum_gr[i] / count[i])
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63

64 return r_mean, gr_mean

65

66 # Plot on the same graph all the files

67 plt.figure(figsize=(8, 5))

68 for filepath, label in zip(filepaths, labels):

69 r_mean, gr_mean = compute_rdf_means(filepath, group_size)

70 plt.plot(r_mean, gr_mean, lw=1.5, label=label)

71

72 plt.xlabel(r ())

73 plt.ylabel(g(r))

74 plt.title(RDF Acetonitrile) #Label needs to be changed depending on the dataset

75 plt.legend(title=)

76 plt.grid(True)

77 plt.tight_layout()

78 plt.show()
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Appendix B

Statistical Analysis

B.1 Plots

This section of Appendix B presents the plots of the running time averages and running

standard deviations for each sample in the three solvents. Both one-dimensional analy-

ses, based on the equivalent diameter (L1 in the 1D plots), and two-dimensional analyses,

distinguishing between L1 and L2, are reported.
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(a) Sample 1 - 1 hour (b) Sample 2 - 2 hours

(c) Sample 3 - 3 hours (d) Sample 4 - 4 hours

(e) Sample 5 - 5 hours (f) Sample 6 - 6 hours

(g) Sample 7 - 7 hours (h) Sample 8 - 8 hours

(i) Sample 9 - 22 hours

Figure B.1: Plots of Running Average Time and Standard deviation of xanthone’s crystals
size in ACETONE, 1D - analysis 101



(a) Sample 1 - 1 hour (b) Sample 2 - 2 hours

(c) Sample 3 - 3 hours (d) Sample 4 - 4 hours

(e) Sample 5 - 5 hours (f) Sample 6 - 6 hours

(g) Sample 7 - 7 hours (h) Sample 8 - 8 hours

(i) Sample 9 - 22 hours

Figure B.2: Plots of Running Average Time and Standard deviation of xanthone’s crystals
size in ACETONITRILE, 1D - analysis 102



(a) Sample 1 - 1 hour (b) Sample 2 - 2 hours

(c) Sample 3 - 3 hours (d) Sample 4 - 4 hours

(e) Sample 5 - 5 hours (f) Sample 6 - 6 hours

(g) Sample 7 - 7 hours (h) Sample 8 - 8 hours

(i) Sample 9 - 22 hours

Figure B.3: Plots of Running Average Time and Standard deviation of xanthone’s crystals
size in TOLUENE, 1D - analysis 103



(a) Sample 1 - 1 hour (b) Sample 2 - 2 hours

(c) Sample 3 - 3 hours (d) Sample 4 - 4 hours

(e) Sample 5 - 5 hours (f) Sample 6 - 6 hours

(g) Sample 7 - 7 hours (h) Sample 8 - 8 hours

(i) Sample 9 - 22 hours

Figure B.4: Plots of Running Average Time and Standard deviation of xanthone’s crystals
size in ACETONE L1, 2D - analysis 104



(a) Sample 1 - 1 hour (b) Sample 2 - 2 hours

(c) Sample 3 - 3 hours (d) Sample 4 - 4 hours

(e) Sample 5 - 5 hours (f) Sample 6 - 6 hours

(g) Sample 7 - 7 hours (h) Sample 8 - 8 hours

(i) Sample 9 - 22 hours

Figure B.5: Plots of Running Average Time and Standard deviation of xanthone’s crystals
size in ACETONE L2, 2D - analysis 105



(a) Sample 1 - 1 hour (b) Sample 2 - 2 hours

(c) Sample 3 - 3 hours (d) Sample 4 - 4 hours

(e) Sample 5 - 5 hours (f) Sample 6 - 6 hours

(g) Sample 7 - 7 hours (h) Sample 8 - 8 hours

(i) Sample 9 - 22 hours

Figure B.6: Plots of Running Average Time and Standard deviation of xanthone’s crystals
size in ACETONITRILE L1, 2D - analysis106



(a) Sample 1 - 1 hour (b) Sample 2 - 2 hours

(c) Sample 3 - 3 hours (d) Sample 4 - 4 hours

(e) Sample 5 - 5 hours (f) Sample 6 - 6 hours

(g) Sample 7 - 7 hours (h) Sample 8 - 8 hours

(i) Sample 9 - 22 hours

Figure B.7: Plots of Running Average Time and Standard deviation of xanthone’s crystals
size in ACETONITRILE L2, 2D - analysis107



(a) Sample 1 - 1 hour (b) Sample 2 - 2 hours

(c) Sample 3 - 3 hours (d) Sample 4 - 4 hours

(e) Sample 5 - 5 hours (f) Sample 6 - 6 hours

(g) Sample 7 - 7 hours (h) Sample 8 - 8 hours

(i) Sample 9 - 22 hours

Figure B.8: Plots of Running Average Time and Standard deviation of xanthone’s crystals
size in TOLUENE L1, 2D - analysis 108



(a) Sample 1 - 1 hour (b) Sample 2 - 2 hours

(c) Sample 3 - 3 hours (d) Sample 4 - 4 hours

(e) Sample 5 - 5 hours (f) Sample 6 - 6 hours

(g) Sample 7 - 7 hours (h) Sample 8 - 8 hours

(i) Sample 9 - 22 hours

Figure B.9: Plots of Running Average Time and Standard deviation of xanthone’s crystals
size in TOLUENE L2, 2D - analysis 109



B.2 Tables

This section of the appendix contains the tables relative to the average projected area,

average projected volume and their standard deviation for xanthone’s crystals in the three

solvents, both mono dimensional and bi-dimensional studies, completed with confidence

interval (CI) and relative confidence interval (RCI) estimation.

Table B.1: 1D Equivalent Area: mean (Ā), standard deviation (S), confidence intervals
(CIW ) for each solvent and sample

Solvent Sample Ā (µm2) S (µm2) CIW90 (µm2) CIW99 (µm2) RCI90 RCI99

Acetone

1 (1 h) 1.97E+02 1.30E+02 3.06E-05 4.78E-05 16% 24%

2 (2 h) 3.62E+02 2.10E+02 4.35E-05 6.81E-05 12% 19%

3 (3 h) 3.92E+02 4.00E+01 8.32E-06 1.30E-05 2% 3%

4 (4 h) 3.09E+02 1.10E+03 2.21E-04 3.47E-04 72% 112%

5 (5 h) 9.50E+02 5.20E+02 1.48E-04 2.32E-04 16% 24%

6 (6 h) 7.56E+02 3.40E+03 9.72E-04 1.52E-03 129% 202%

7 (7 h) 2.52E+03 1.20E+03 2.85E-04 4.46E-04 11% 18%

8 (8 h) 2.01E+03 1.50E+03 3.55E-04 5.55E-04 18% 28%

9 (22 h) 2.11E+03 2.20E+03 6.79E-04 1.06E-03 32% 50%

Acetonitrile

1 (1 h) 1.97E+02 6.10E+01 1.98E-05 3.11E-05 10% 16%

2 (2 h) 3.39E+02 3.00E+02 7.80E-05 1.22E-04 23% 36%

3 (3 h) 3.66E+02 5.80E+02 2.09E-04 3.28E-04 57% 90%

4 (4 h) 5.31E+02 6.10E+02 1.52E-04 2.37E-04 29% 45%

5 (5 h) 6.67E+02 4.60E+02 1.59E-04 2.49E-04 24% 37%

6 (6 h) 7.37E+02 3.10E+02 1.01E-04 1.59E-04 14% 22%

7 (7 h) 6.88E+02 4.40E+02 1.50E-04 2.35E-04 22% 34%

8 (8 h) 7.77E+02 4.40E+02 1.76E-04 2.75E-04 23% 35%

9 (22 h) 7.95E+02 4.60E+02 1.98E-04 3.10E-04 25% 39%

Toluene

1 (1 h) 1.97E+02 9.30E+01 2.12E-05 3.32E-05 11% 17%

2 (2 h) 4.64E+02 7.80E+03 1.71E-03 2.68E-03 369% 577%

3 (3 h) 3.42E+03 1.00E+05 2.51E-02 3.93E-02 734% 1149%

4 (4 h) 3.33E+04 2.20E+04 7.12E-03 1.11E-02 21% 33%

5 (5 h) 3.85E+04 2.10E+04 5.33E-03 8.35E-03 14% 22%

6 (6 h) 4.58E+04 2.70E+04 7.77E-03 1.22E-02 17% 27%

7 (7 h) 5.57E+04 1.80E+04 5.95E-03 9.32E-03 11% 17%

8 (8 h) 4.96E+04 2.00E+04 6.77E-03 1.06E-02 14% 21%
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Solvent Sample Ā (µm2) S (µm2) CIW90 (µm2) CIW99 (µm2) RCI90 RCI99

9 (22 h) 5.18E+04 1.50E+04 4.39E-03 6.87E-03 8% 13%

Table B.2: 2D Area L1: mean (Ā1), standard deviation (S), confidence intervals (CIW ) e
RCI for each solvent and sample

Solvent Sample Ā (µm2) S (µm2) CIW90 (µm2) CIW99 (µm2) RCI90 RCI99

Acetone

1 (1 h) 4.81E+03 4.32E+03 1.05E-03 1.65E-03 22% 34%

2 (2 h) 7.40E+03 6.58E+03 1.38E-03 2.16E-03 19% 29%

3 (3 h) 1.78E+04 1.38E+04 2.85E-03 4.46E-03 16% 25%

4 (4 h) 6.73E+04 6.68E+04 1.32E-02 2.06E-02 20% 31%

5 (5 h) 5.92E+04 3.39E+04 9.58E-03 1.50E-02 16% 25%

6 (6 h) 2.09E+05 1.49E+05 4.26E-02 6.67E-02 20% 32%

7 (7 h) 1.39E+05 1.16E+05 2.68E-02 4.19E-02 19% 30%

8 (8 h) 1.50E+05 1.15E+05 2.68E-02 4.20E-02 18% 28%

9 (22 h) 1.97E+05 1.46E+05 4.50E-02 7.04E-02 23% 36%

Acetonitrile

1 (1 h) 4.66E+03 1.40E+04 4.52E-03 7.08E-03 97% 152%

2 (2 h) 4.44E+03 1.12E+04 2.96E-03 4.64E-03 67% 105%

3 (3 h) 8.58E+03 1.63E+04 5.88E-03 9.20E-03 68% 107%

4 (4 h) 1.29E+04 2.01E+04 5.00E-03 7.83E-03 39% 61%

5 (5 h) 7.14E+03 9.62E+03 3.34E-03 5.22E-03 47% 73%

6 (6 h) 1.28E+04 1.59E+04 5.22E-03 8.17E-03 41% 64%

7 (7 h) 1.36E+04 1.88E+04 6.33E-03 9.91E-03 47% 73%

8 (8 h) 1.41E+04 1.75E+04 7.07E-03 1.11E-02 50% 79%

9 (22 h) 2.44E+04 2.46E+04 1.06E-02 1.66E-02 44% 68%

Toluene

1 (1 h) 1.19E+04 1.63E+04 3.68E-03 5.77E-03 31% 48%

2 (2 h) 1.03E+05 1.27E+05 2.77E-02 4.35E-02 27% 42%

3 (3 h) 1.95E+06 1.37E+06 3.31E-01 5.18E-01 17% 27%

4 (4 h) 1.89E+06 7.90E+05 2.55E-01 3.99E-01 13% 21%

5 (5 h) 2.67E+06 1.35E+06 3.52E-01 5.51E-01 13% 21%

6 (6 h) 3.24E+06 1.63E+06 4.73E-01 7.40E-01 15% 23%

7 (7 h) 2.84E+06 1.37E+06 4.42E-01 6.92E-01 16% 24%

8 (8 h) 2.98E+06 1.20E+06 4.16E-01 6.51E-01 14% 22%

9 (22 h) 3.23E+06 1.21E+06 3.42E-01 5.35E-01 11% 17%
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Table B.3: 2D Area L2: mean (Ā2), standard deviation (S), confidence intervals (CIW ) e
RCI pfor each solvent and sample

Solvent Sample Ā (µm2) S (µm2) CIW90 (µm2) CIW99 (µm2) RCI90 RCI99

Acetone

1 (1 h) 5.97E+01 3.24E+01 7.88E-06 1.23E-05 13% 21%

2 (2 h) 5.40E+01 4.03E+01 8.45E-06 1.32E-05 16% 25%

3 (3 h) 2.51E+01 2.56E+01 5.29E-06 8.28E-06 21% 33%

4 (4 h) 6.67E+01 6.75E+01 1.33E-05 2.08E-05 20% 31%

5 (5 h) 4.94E+01 5.87E+01 1.66E-05 2.60E-05 34% 53%

6 (6 h) 1.54E+02 1.22E+02 3.48E-05 5.45E-05 23% 36%

7 (7 h) 1.37E+02 1.11E+02 2.55E-05 4.00E-05 19% 29%

8 (8 h) 1.39E+02 1.20E+02 2.78E-05 4.36E-05 20% 31%

9 (22 h) 1.75E+02 1.45E+02 4.45E-05 6.96E-05 25% 40%

Acetonitrile

1 (1 h) 8.05E+01 6.81E+01 2.20E-05 3.45E-05 27% 43%

2 (2 h) 8.25E+01 7.21E+01 1.90E-05 2.97E-05 23% 36%

3 (3 h) 9.97E+01 7.66E+01 2.77E-05 4.34E-05 28% 44%

4 (4 h) 1.11E+02 8.09E+01 2.02E-05 3.16E-05 18% 28%

5 (5 h) 1.59E+02 1.00E+02 3.47E-05 5.44E-05 22% 34%

6 (6 h) 1.11E+02 8.19E+01 2.68E-05 4.20E-05 24% 38%

7 (7 h) 1.29E+02 8.47E+01 2.86E-05 4.47E-05 22% 35%

8 (8 h) 1.27E+02 9.28E+01 3.75E-05 5.87E-05 30% 46%

9 (22 h) 1.28E+02 9.04E+01 3.91E-05 6.12E-05 30% 48%

Toluene

1 (1 h) 6.61E+01 6.73E+01 1.52E-05 2.39E-05 23% 36%

2 (2 h) 4.40E+02 5.55E+02 1.22E-04 1.90E-04 28% 43%

3 (3 h) 2.46E+03 1.50E+03 3.63E-04 5.68E-04 15% 23%

4 (4 h) 3.04E+03 1.57E+03 5.07E-04 7.95E-04 17% 26%

5 (5 h) 3.34E+03 1.82E+03 4.74E-04 7.42E-04 14% 22%

6 (6 h) 4.04E+03 1.85E+03 5.36E-04 8.39E-04 13% 21%

7 (7 h) 3.67E+03 1.78E+03 5.76E-04 9.02E-04 16% 25%

8 (8 h) 3.76E+03 1.96E+03 6.80E-04 1.07E-03 18% 28%

9 (22 h) 3.40E+03 1.55E+03 4.39E-04 6.87E-04 13% 20%
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Table B.4: 1D Equivalent Volume: mean (V̄ ), standard deviation (S), confidence intervals
(CIW ) e RCI for each solvent and sample

Solvent Sample V̄ (µm3) S (µm3) CIW90 (µm3) CIW99 (µm3) RCI90 RCI99

Acetone

1 (1 h) 7.44E+03 6.10E+03 1.47E-09 2.31E-09 20% 31%

2 (2 h) 7.49E+03 1.20E+04 2.43E-09 3.80E-09 32% 51%

3 (3 h) 3.77E+04 7.50E+03 1.55E-09 2.43E-09 4% 6%

4 (4 h) 6.79E+03 6.80E+04 1.33E-08 2.09E-08 196% 308%

5 (5 h) 3.61E+04 4.30E+04 1.22E-08 1.91E-08 34% 53%

6 (6 h) 2.48E+04 1.90E+05 5.47E-08 8.57E-08 220% 345%

7 (7 h) 1.49E+05 1.30E+05 2.97E-08 4.65E-08 20% 31%

8 (8 h) 1.04E+05 1.70E+05 4.04E-08 6.33E-08 39% 61%

9 (22 h) 1.19E+05 2.10E+05 6.31E-08 9.88E-08 53% 83%

Acetonitrile

1 (1 h) 1.55E+04 1.00E+04 3.35E-09 5.25E-09 22% 34%

2 (2 h) 8.39E+03 1.40E+04 3.64E-09 5.70E-09 43% 68%

3 (3 h) 8.92E+03 2.40E+04 8.83E-09 1.38E-08 99% 155%

4 (4 h) 1.52E+04 2.10E+04 5.13E-09 8.04E-09 34% 53%

5 (5 h) 2.15E+04 2.30E+04 7.81E-09 1.22E-08 36% 57%

6 (6 h) 3.04E+04 1.80E+04 6.05E-09 9.48E-09 20% 31%

7 (7 h) 2.15E+04 2.00E+04 6.84E-09 1.07E-08 32% 50%

8 (8 h) 2.38E+04 2.30E+04 9.25E-09 1.45E-08 39% 61%

9 (22 h) 3.53E+04 3.40E+04 1.46E-08 2.29E-08 41% 65%

Toluene

1 (1 h) 1.63E+04 1.60E+04 3.72E-09 5.83E-09 23% 36%

2 (2 h) 1.34E+04 4.40E+05 9.70E-08 1.52E-07 725% 1136%

3 (3 h) 2.36E+05 6.10E+06 1.48E-06 2.31E-06 625% 978%

4 (4 h) 6.97E+06 4.80E+06 1.55E-06 2.43E-06 22% 35%

5 (5 h) 8.02E+06 7.20E+06 1.86E-06 2.91E-06 23% 36%

6 (6 h) 1.08E+07 8.20E+06 2.40E-06 3.75E-06 22% 35%

7 (7 h) 1.39E+07 6.90E+06 2.21E-06 3.47E-06 16% 25%

8 (8 h) 1.25E+07 7.80E+06 2.71E-06 4.24E-06 22% 34%

9 (22 h) 1.61E+07 6.60E+06 1.87E-06 2.92E-06 12% 18%
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Table B.5: 2D Volume L1: mean (V̄1), standard deviation (S), confidence intervals (CIW )
e RCI per solvente e campione

Solvent Sample V̄1 (µm3) S (µm3) CIW90 (µm3) CIW99 (µm3) RCI90 RCI99

Acetone

1 (1 h) 4.20E+05 6.26E+05 1.52E-07 2.38E-07 36% 57%

2 (2 h) 7.91E+05 1.36E+06 2.85E-07 4.46E-07 36% 56%

3 (3 h) 2.86E+06 3.48E+06 7.18E-07 1.12E-06 25% 39%

4 (4 h) 2.21E+07 5.44E+07 1.07E-05 1.68E-05 49% 76%

5 (5 h) 1.61E+07 1.42E+07 4.01E-06 6.28E-06 25% 39%

6 (6 h) 1.12E+08 1.39E+08 3.98E-05 6.23E-05 36% 56%

7 (7 h) 6.24E+07 1.14E+08 2.64E-05 4.13E-05 42% 66%

8 (8 h) 6.87E+07 1.02E+08 2.38E-05 3.72E-05 35% 54%

9 (22 h) 1.04E+08 1.23E+08 3.78E-05 5.92E-05 36% 57%

Acetonitrile

1 (1 h) 8.35E+05 4.71E+06 1.52E-06 2.39E-06 182% 286%

2 (2 h) 6.81E+05 3.31E+06 8.73E-07 1.37E-06 128% 201%

3 (3 h) 1.50E+06 4.85E+06 1.75E-06 2.75E-06 117% 183%

4 (4 h) 2.42E+06 6.49E+06 1.62E-06 2.53E-06 67% 104%

5 (5 h) 9.21E+05 2.06E+06 7.14E-07 1.12E-06 77% 121%

6 (6 h) 2.12E+06 4.40E+06 1.44E-06 2.26E-06 68% 107%

7 (7 h) 2.39E+06 6.25E+06 2.11E-06 3.30E-06 88% 138%

8 (8 h) 2.42E+06 5.14E+06 2.08E-06 3.25E-06 86% 134%

9 (22 h) 5.04E+06 8.11E+06 3.51E-06 5.49E-06 70% 109%

Toluene

1 (1 h) 1.99E+06 4.57E+06 1.04E-06 1.62E-06 52% 82%

2 (2 h) 4.79E+07 9.82E+07 2.15E-05 3.37E-05 45% 70%

3 (3 h) 3.19E+09 3.41E+09 8.25E-04 1.29E-03 26% 41%

4 (4 h) 2.77E+09 1.77E+09 5.71E-04 8.94E-04 21% 32%

5 (5 h) 4.79E+09 3.57E+09 9.28E-04 1.45E-03 19% 30%

6 (6 h) 6.38E+09 4.69E+09 1.36E-03 2.13E-03 21% 33%

7 (7 h) 5.19E+09 3.71E+09 1.20E-03 1.88E-03 23% 36%

8 (8 h) 5.44E+09 3.25E+09 1.13E-03 1.77E-03 21% 32%

9 (22 h) 6.12E+09 3.34E+09 9.48E-04 1.48E-03 15% 24%
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Table B.6: 2D Volume L2: mean (V̄2), standard deviation (S), confidence intervals (CIW )
e RCI per solvente e campione

Solvent Sample V̄ (µm3) S (µm3) CIW90 (µm3) CIW99 (µm3) RCI90 RCI99

Acetone

1 (1 h) 5.08E+02 4.53E+02 4.53E-16 1.73E-10 22% 34%

2 (2 h) 4.59E+02 8.02E+02 3.75E-16 2.63E-10 37% 57%

3 (3 h) 1.63E+02 3.29E+02 1.29E-16 1.07E-10 42% 65%

4 (4 h) 6.96E+02 1.68E+03 5.31E-16 5.18E-10 48% 74%

5 (5 h) 4.61E+02 1.62E+03 2.32E-16 7.17E-10 99% 155%

6 (6 h) 2.27E+03 3.33E+03 1.80E-15 1.49E-09 42% 65%

7 (7 h) 1.94E+03 2.68E+03 1.64E-15 9.70E-10 32% 50%

8 (8 h) 2.00E+03 3.54E+03 1.58E-15 1.29E-09 41% 64%

9 (22 h) 2.80E+03 4.23E+03 2.15E-15 2.04E-09 46% 73%

Acetonitrile

1 (1 h) 8.86E+02 1.29E+03 6.77E-16 6.55E-10 47% 74%

2 (2 h) 9.24E+02 1.53E+03 7.22E-16 6.33E-10 44% 69%

3 (3 h) 1.19E+03 1.55E+03 9.07E-16 8.76E-10 47% 74%

4 (4 h) 1.38E+03 1.67E+03 1.17E-15 6.51E-10 30% 47%

5 (5 h) 2.27E+03 2.36E+03 1.86E-15 1.28E-09 36% 56%

6 (6 h) 1.37E+03 1.85E+03 1.07E-15 9.49E-10 44% 69%

7 (7 h) 1.68E+03 1.81E+03 1.37E-15 9.58E-10 36% 57%

8 (8 h) 1.67E+03 2.17E+03 1.23E-15 1.37E-09 52% 82%

9 (22 h) 1.69E+03 2.12E+03 1.23E-15 1.44E-09 54% 85%

Toluene

1 (1 h) 7.11E+02 1.22E+03 5.73E-16 4.33E-10 39% 61%

2 (2 h) 1.34E+04 3.08E+04 1.01E-14 1.06E-08 50% 79%

3 (3 h) 1.38E+05 1.30E+05 1.22E-13 4.92E-08 23% 36%

4 (4 h) 1.84E+05 1.41E+05 1.61E-13 7.14E-08 25% 39%

5 (5 h) 2.14E+05 1.78E+05 1.91E-13 7.25E-08 22% 34%

6 (6 h) 2.76E+05 1.95E+05 2.48E-13 8.87E-08 21% 32%

7 (7 h) 2.42E+05 1.76E+05 2.13E-13 8.92E-08 24% 37%

8 (8 h) 2.53E+05 2.04E+05 2.17E-13 1.11E-07 28% 44%

9 (22 h) 2.13E+05 1.52E+05 1.92E-13 6.74E-08 20% 32%
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Appendix C

RDF Analysis of the three solvents

This appendix reports the RDF functions for the main atom–pairs of each solvent, along-

side the corresponding error–bar plots. For each case, the first peak position, peak width,

and the relevant literature reference are provided, followed by an explicit evaluation of

the agreement between the simulated results and the reference data.

Since the RDF analysis was performed on the solvent in bulk and is not specific to a single

crystal face, additional analyses showed that the interactions for the same atom-pair func-

tions exhibited identical trends across the different configurations. Therefore, the graphs

reported here refer to the simulations conducted on the AC face, with the understanding

that those for the BC and AB faces yielded equivalent results. This approach was adopted

to streamline the presentation of the results while avoiding unnecessary repetition of iden-

tical data.

The analysis presented here supports the validation of the chosen force fields and the

structural accuracy of the simulated systems, providing a solid basis for the subsequent

computational evaluations discussed in the main text.

Acetone[29]

(a) (b)

Figure C.1: RDF for C1C1 in acetone, without (a) and with (b) error bars
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The graph shows a main peak at 5.8 Å with a width of 1.5 Å, this shows conformity with

the literature data, as normally the expected first peak is between 5.8 Å - 6.0 Å.

(a) (b)

Figure C.2: RDF for C2C2 in acetone, without (a) and with (b) error bars

The graph shows a main peak at 6.0 Å with a width of 1.5 Å, this shows conformity with

the literature data. However, normally the expected first peak is between 5.8 Å - 6.0 Å:

the slightly bigger distance in comparison to the RDF for C1C1 could be attributed to

thermal fluctuation at the simulated temperature.

(a) (b)

Figure C.3: RDF for OC2 in acetone, without (a) and with (b) error bars

The graph shows a main peak at 3.9 Å with a width of 1.2 Å, this shows conformity with

the literature data, since normally the expected first peak is registered between 3.8 Å-
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4.0 Å.

(a) (b)

Figure C.4: RDF for OH in acetone, without (a) and with (b) error bars

The graph shows a main peak at 2.8 Å with a width of 1.0 Å, this shows conformity with

the literature data, since normally the expected first peak is registered between 2.7 Å -

2.9 Å.

(a) (b)

Figure C.5: RDF for OO in acetone, without (a) and with (b) error bars

The graph shows a main peak at 5.9 Å with a width of 1.5 Å, this shows conformity with

118



the literature data, as normally the expected first peak is registered between 5.8 Å - 6.0 Å.

Acetonitrile[30]

(a) (b)

Figure C.6: RDF for C1C1 in acetonitrile, without (a) and with (b) error bars

The graph shows a main peak at 4.8 Å with a width of 1.3 Å, this shows conformity with

the literature data, as normally the expected first peak is registered between 4.7 Å - 4.9 Å.

(a) (b)

Figure C.7: RDF for C2C2 in acetonitrile, without (a) and with (b) error bars

The graph shows a main peak at 4.3 Å with a width of 1.3 Å, this shows conformity with

the literature data, since normally the expected first peak is registered between 4.0 Å -
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4.4 Å.

(a) (b)

Figure C.8: RDF for NC1 in acetonitrile, without (a) and with (b) error bars

The graph shows a main peak at 4.2 Å with a width of 1.1 Å, this shows conformity with

the literature data, in fact, normally the expected first peak is registered between 4.1 Å -

4.3 Å.

(a) (b)

Figure C.9: RDF for NC2 in acetonitrile, without (a) and with (b) error bars

The graph shows a main peak at 3.7 Å with a width of 1.0 Å, this shows conformity with

the literature data, as normally the expected first peak is registered between 3.6 Å - 3.8 Å.
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(a) (b)

Figure C.10: RDF for NH in acetonitrile, without (a) and with (b) error bars

The graph shows a main peak at 2.9 Å with a width of 0.9 Å, this shows conformity with

the literature data, since normally the expected first peak is registered between 2.8 Å -

3.0 Å.

(a) (b)

Figure C.11: RDF for NN in acetonitrile, without (a) and with (b) error bars

The graph shows a main peak at 4.0 Å with a width of 1.2 Å, this shows conformity with
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the literature data, as normally the expected first peak is registered between 4.0 Å - 4.4 Å.

Toluene[31]

(a) (b)

Figure C.12: RDF for C1C1 in toluene, without (a) and with (b) error bars

The graph shows a main peak at 4.1 Å with a width of 1.0 Å, this shows conformity with

the literature data, as normally the expected first peak for carbons in aromatic rings is

registered between 4.0 Å - 4.1 Å.

(a) (b)

Figure C.13: RDF for C1C2 in toluene, without (a) and with (b) error bars

The graph shows a main peak at 4.3 Å with a width of 0.9 Å, this shows conformity with

the literature data, since normally the expected first peak for carbons in aromatic rings
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is registered between 4.0 Å - 4.4 Å.

(a) (b)

Figure C.14: RDF for C1H in toluene, without (a) and with (b) error bars

The graph shows a main peak at 5.0 Å with a width of 1.0 Å, this shows conformity with

the literature data, in fact, normally the expected first peak for carbons in aromatic rings

is registered between 4.8 Å - 5.1 Å.

(a) (b)

Figure C.15: RDF for HH in toluene, without (a) and with (b) error bars

The graph shows a main peak at 4.1 Å with a width of 1.0 Å, this shows conformity with

the literature data, as normally the expected first peak for carbons in aromatic rings is

around 4.1 Å.
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