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1. Introduction

In the following chapter, a brief presentation of the topics discussed in this thesis
will be made. In the first place, the context in which this project is conducted will
be presented. Following, the main subjects of this work and its objectives will be
discussed.

1.1 Overview

In the last few decades, interest towards topics such as sustainability, de-carbonization
and environmentally friendly solutions has been growing more and more. These
words, previously unknown, are now part of our ordinary lives and influence both
our everyday behaviors and the decisions made by governments all around the world.

The great economic and industrial development that has taken place over the
last few centuries has undoubtedly brought benefits in terms of improving people’s
quality of life and general wealth. However, the main players in all this have ignored
several fundamental aspects, including the environmental impact of such rapid de-
velopments. In fact, in an attempt to meet an ever-increasing demand, the industrial
system has made indiscriminate use of fossil fuels, the consequences of which are
plain for all to see.

At the present day, climate change is is no longer a possible scenario but reality.
In fact, temperatures in 2025 have averagely increased by 1.55 °C compared to pre-
industrial levels (1850-1900) [9], sea levels are rising due to pole’s ice is melting and
atmospheric phenomena are more and more devastating year by year. These events
are all related to global warming, a phenomenon caused by the release of greenhouse
gases into the atmosphere (GHG). These pollutants have not only negative impacts
on climate but also on the population. In fact, the number of people dying from
GHG related health issues is increasing on a year by year basis.

Taking into consideration all these events, worldwide organizations and coun-
tries’ governments have decided to take decisive action in trying to mitigate and
possibly solve the environmental question. One of the first steps took place at the
Kyoto Conference of 1997, in which 38 industrialized countries committed in trying
to reduce their GHG emissions of 5.2%, in the 2008-2012 period, with respect to
1990 levels. [35] Further and more restrictive measures were decided in 2015 Paris
Climate Conference, whose main output was the imposition of a global limit in terms
of temperature increase of just 1.5°C worldwide. In doing so, each country was able
to present its own program to succeed in such task, which included also important
financial investments in environmentally friendly technologies. In addition, a trans-



parent global control system was established so that it became possible to verify
the effectiveness of the measures taken and also a mandatory update of the single
climate goals was imposed every 5 years. [52]

Nevertheless, countries were left free to apply even more restrictive countermea-
sures at national level. This was the case of the European Union and its European
Green Deal. This set of measures is composed by several targets on different time
horizons, for example it aims at cutting EU’s GHG emissions by 55% by 2030 com-
pared to 1990 levels and to reach net zero emissions by 2050.

Even if these sets of environmental laws were proclaimed, globally the effects are
still to observe. In fact, GHG emissions in 2023 reached a record high 53.4 GtC O,
increasing by 0.8% with respect to 2022 [16]. This trend can be observed also for
the years prior as Fig. 1.1 shows. However, GHG emissions decreased in the regions
that applied more restrictive environmental policies, the global performance is still
not enough to satisfy the previously mentioned goals.
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Figure 1.1: GHG Global Emission Levels as of 2023.

1.2 Electric Motors for Traction Applications

Electric motors are one of the spine bones of the current worlwide industry and
society. In fact, in 2011, electric machines accounted for nearly 45% the global
electricity usage, accordingly to [22]. More recent estimations expect this figure to
be in the 45% to 53% range and it is expected to grow even more over the following
years. This data is very representative of the importance that electric machines
have throughout the world due to their wide range of possible applications, from
energy production and industrial machinery to household appliances and transport
systems.

1.2.1 The Current Transport System

The focus of this work will be, in particular, on the transport sector. This sector
was not immune to the shift in attention towards less environmentally impactful
solutions, mentioned in the previous section. In fact, in order to fulfill both global



and local climate goals, for example those convened in the Paris agreements world-
wide [52] or in European Green Deal [15] for the European Union (EU), severe
actions need to be performed across all areas. Due to the fact that the transport
sector consumes approximately 30% of the global energy usage [40], it is conse-
quently one of the largest contributors to global greenhouse gases (GHG) emissions.
Considering the enormous amount of energy and emissions that are involved in this
field, the benefits that a reduction of both would have towards the environment are
evident.

Transports account for approximately 15% of global greenhouse gases emissions
in 2019 [12] and, according to more recent estimates, this figure does not appear to
have changed significantly during the last years. In fact, as it can be seen from Fig.
1.2, transport related emissions grew on a year basis, with the exception of 2020 due
to the COVID-19 pandemic, after which the previous trend continued. [27] According
to IEA [24], more than 90% of the energy used for transports worldwide comes from
oil derivatives such as gasoline, diesel, and kerosene. This number is due to the
fact that the current transport system is still based on internal combustion engines
(ICE), which operate on fossil fuels. In general, ICEs are characterized by very low
efficiencies, in the 15% to 25% range, meaning that most of the energy extracted
from the fuel is not actually used for useful purposes but lost. In addition, the
combustion output gases produced by this type of motors are toxic and contribute
to worsen both global and local pollution.
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Figure 1.2: Current Transport Sector GHG Emissions

Moreover, the transport field is one of the fastest growing sectors in today’s econ-
omy as the demands for private vehicles, long range flights and shipments continue to
increase, resulting ultimately in higher and higher energy demand. This trend leads
to transport-related emissions to be still rising on a year-by-year basis, differently
from other sectors whose carbon footprints are reducing. On the other hand, imple-
menting concrete and effective countermeasures to reduce the environmental impact
of the entire transport sector is very complex. In fact, certain applications such as
aviation, maritime shipping or heavy-duty trucks are challenging to decarbonize as



they require longer ranges and higher energy densities compared to standard vehi-
cles. These requirements constitute a real challenge that will need to be overcome
in order to succeed in reducing the entire field GHG emissions. Another element
that needs to be taken into account is the fact that the renovation of the transport
field is proceeding at a slow rhythm. In fact, many of the vehicles currently in use
are outdated and so characterized by lower efficiencies, which ultimately leads to
introducing more pollutants into the atmosphere, compared to models of newer gen-
eration. This trend is worrying as it can be observed both in high-income countries
and low-income ones and it can be associated to an ever-increasing loss of customer’s
purchasing power caused by inflation growing year by year. Consequently, the chal-
lenge is not only to de-carbonize the transport sector, reducing more and more its
usage of fossil fuels, by introducing and spreading new ”green” solutions but also
to make sure that these new environmentally friendly solutions are affordable to
customers in order to be actually effective.

1.2.2 The Future of Transports

From the very first moment in which the public opinion has been introduced to
the concepts of sustainability and de-carbonization, huge steps have been made
and enormous amounts of money invested in order to find suitable alternatives able
to resolve the just mentioned issues of the transport sector. If for the previously
mentioned heavy-duty sector these problems are not immediately resolvable, the
same could not be said for the commercial vehicles. In fact, electric vehicles
(EV) have been considered, for the last decade, as a key instrument in order to
reduce the private transportation’s carbon footprint. Differently from standard ICE
vehicles, EVs do not produce any output gases during use, consequently reducing
pollutants levels both locally and also globally, and so helping in the achievement
of the emission’s cut goal.

Electric vehicles are powered by electric machines, exploiting the energy stored in
a battery pack thanks to power electronic controls, which have an higher efficiency,
in the 80% to 95% range, compared to internal combustion engines. Considering
the enormous amount of energy consumed by private road transports each year,
approximately 80% of the total sector which is equivalent to 25% worldwide [25],
the benefits given by any efficiency improvement are notable in terms of both saved
energy and not produced emissions.

Electrification of Transports: Hybrid and Battery Electric Vehicles The
electrification of road cars was not a new concept made up in the last decades. In
fact, the first so-called hybrid vehicle was invented by Ferdinand Porsche in 1900 for
the Paris Universal Exhibition. It was a ”series” hybrid vehicle, characterized by
one gasoline internal combustion engine and two electric motors. The ICE did not
operate as the traction motor but as generator, producing the energy required by
the electric machines to move the vehicle. Even if this example never reached mass
production due to its high production costs and inadequacy of the time’s infrastruc-
ture, it shows how the benefits of using electric motors on traction vehicles were
already well known long before topics such as de-carbonization and electrification
became subjects of public domain.

The first modern hybrid vehicle, which entered mass production, was introduced



by Toyota in 1997. Since then, many more electrified vehicles were presented and
the resources spent in research for new solutions lead to several new technologies to
be implemented.

For what concerns hybrid vehicles, there are four different typologies currently
on sale in the market, which differentiate from each other depending on the electri-
fication level and how the battery’s energy is exploited.

The first type is represented by Mild-Hybrid Electric Vehicles (MHEV)
in which the ICE is the traction motor and is supported by a small electric motor
and battery, not capable of moving the car alone, during acceleration and coasting
phases.

Next, there are Full Hybrid Vehicles (HEV) that are characterized by bigger
electric motors and batteries, even if the internal combustion engine remains the
main traction source, able to move the automobile by themselves for a few kilometers.

After this, it is turn of Plug-In Hybrid Vehicles (PHEV), in which electric
motors and batteries are even bigger than for HEVs, but still not the main traction
solution, as they are able to move the car for several dozens of kilometers by just
exploiting the energy stored in the battery pack. One crucial difference, except for
the electric motor and battery pack sizes, between the mentioned technologies is
that the batteries in PHEVs can be recharged externally meanwhile for HEVs and
MHEVs it can only be recharged using energy produced by the ICE.

Last but not least are the Extented Range Electric Vehicles (E-REV),
which exploit a technology very similar to the one developed by Porsche in 1900.
In fact, in this case the internal combustion engine present in the vehicle is used to
produce the energy stored inside the battery pack which is used by the electric motors
for traction purposes. In addition, the battery could not be recharged externally
but only using the ICE consequently in order to recharge the pack, it is necessary
to refill the fuel tank.

Another possible solution, still not diffused due to infrastructure limitations, is
represented by Fuel Cell Electric Vehicles (FCEV). These vehicles exploit a
chemical reaction between hydrogen and oxygen to produce electrical energy which
is then used by the electric motor for traction purposes. Even if this technology is
promising as it bypasses some limitations of standard EVs, its diffusion is slowed
down by hydrogen (fuel) procurement, limitations in the dispatch framework and
very high costs.

Even if hybrid vehicles represent a step in the right direction towards a reduction
of the transport sector emissions, this is still not enough to fulfill the environmental
goals imposed by the global institutions and the single countries. The presence of an
internal combustion engine, independently on the hybrid vehicle’s technology, has
the consequence of toxic gases being produced and injected into the atmosphere. In
a world in which one of the main targets for the future is reaching carbon neutrality,
it is crucial to cut all the un-necessary emissions and private transports related ones
fall into this category. For this reason, electric vehicles, with their zero emissions
during use, are considered the future of the private transports sector.

Battery Electric vehicles (BEV or EV) have a long history as the first one
was invented in the first half of the 19th century, well before the invention of the
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Figure 1.3: Visual Schematic of Hybrid and Battery Electric Vehicles

first gasoline-powered car. At the beginning, they were more electric carriages than
real automobiles and they were very popular inside the cities due to their quietness.
However, with the advent of the ICE automobiles, they gradually disappeared till
the last decades. In fact, the first modern electric vehicle was presented by General
Motors in 1996. The term modern refers to the fact that it was not an adapta-
tion of an ICE vehicle to an electric version and that it was the first EV to enter
mass production, even if the amount of units assembled was not high. Since then,
attention on electric vehicles grew year by year as a solution for sustainable mobil-
ity. Consequently, the amount of investments followed this trend, leading to both
technological advancement in the field and to automotive manufacturers designing
and commercializing their own versions of electric vehicles. The main differences
between the previously described vehicles, in terms of components, can be observed
in Fig. 1.3.

A brief summary of electrified vehicles’ technologies could be observed in Ta-
ble 1.1.

Technology Description Energy Source Motor
BEV (Battery Electric Vehicle) Vehicle powered exclusively by | Rechargeable battery | Electric motor
battery (Li-ion)
HEV (Hybrid Electric Vehicle) Internal combustion engine + | Gasoline/diesel + bat- | Internal combustion engine + electric motor

electric motor, battery charged by | tery
engine or regenerative braking

PHEV (Plug-in Hybrid Electric Vehicle) | Similar to HEV but with larger | Gasoline/diesel + | Internal combustion engine + electric motor
battery rechargeable from exter- | rechargeable battery
nal plug

FCEV (Fuel Cell Electric Vehicle) Electric vehicle powered by hy- | Hydrogen (tank) Electric motor
drogen fuel cells

MHEV (Mild Hybrid Electric Vehicle) Internal combustion engine as- | Gasoline/diesel + | Internal combustion engine + electric motor

sisted by a small electric motor, | small battery
battery not rechargeable from ex-
ternal source

Table 1.1: Summary of Electric Vehicle Technologies

Current EV Situation At the present day, electric vehicles represent 4% of the
automobiles around the world. This number has been growing steadily over the last
decades, as it can be seen from Fig. 1.4, and is forecast to increase at even higher
pace in the following years as, in 2024, more than 20% of new vehicles sold globally
were fully electric, with China leading the way at approximately 50%. [26]

This data, even if promising, shows how the spread of EVs is still not wide enough
to reach the global climate goals. In fact, a lot of skepticism surrounds these vehicles
due to their limitations, in comparison with traditional ones, like waiting additional
time for the battery to recharge or the limited ranges, and their higher costs that
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Figure 1.4: Number of Electric Vehicles on the Road Over the Years

prevent their wide-spread. It is not a case that where EVs have more competitive
prices, even lower than ICE vehicles, the number of units currently on the road is
higher, for example China. For these reasons, governments will have to elaborate
possible solutions to incentivize their populations into buying EVs, like for example
economic subsidies or advertising campaigns highlighting the advantages of owning
one. Only if these strategies are successful, it will be possible to reduce the private
transports’ carbon footprint, with evident benefits for both earth’s ecosystem and
population.

Several typologies of electrical machines are capable of fulfilling the requirements
imposed by private-traction industry and consequently can be used on electric vehi-
cles. This is due to the fact that electrical machines have an high level of interoper-
ability. However, only a few technologies of electric motors are used in the current
automotive market.

In general, permanent magnet motors are the most used in the automotive in-
dustry due to their high efficiency and power density levels. Specifically, Internal
Permanent Magnet Synchronous Machines (IPMSM) are the most diffused, being
installed in approximately 65% of the electric and hybrid vehicles currently on the
market. Another very common technology is represented by Induction Machines
(IM), which are cheaper and more robust compared to IPMSMs but heavier and
less efficient. This category of electric motors covers around 20% of the market
share. The remaining percentages are shared between motors of newer generation,
like Synchronous Reluctance Machines (SynRM) and Permanent Magnet Assisted
Synchronous Reluctance Machines (PMaSynRM), for about 10% and the remaining
(approximately 3%) is mainly covered by Electrically Excited Synchronous Machines
(EESM) [10]. Fig. 1.5 illustrates graphically the just mentioned percentages for a
more immediate comprehension.

During the last years, a shift in paradigm has taken place as the sustainability
evaluation of vehicles started considering their entire life cycles, including: their
production, the one of their composing materials and apparatuses, operational span
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Figure 1.5: Electrical Machines Topologies Shares in the Automotive World

and end-of-life periods. This implies that manufacturers, during the design phase,
have to take into account not only the eventual emissions produced by the vehicle
during its operational life, but also the ones generated during its production, the
ones of its materials and also how the entire system could be recycled or re-used at
the end of the life cycle. These new requirements involved all types of vehicles from
traditional ICE to electrified one.

In fact, if it is true that electric vehicles do not generate any pollutant gases dur-
ing their use, the same can not be said for their entire life cycles. Researches testify
that to produce an electric vehicle, an higher amount of emissions is created com-
pared to the assembly of an internal combustion engine based car, approximately
50-60% more [21]. However, EVs are more sustainable than traditional vehicles as
the overall amount of emissions produced over their entire lives is still lower, as it
can be seen from Fig. 1.6. [23] The gap could even become more evident if the
electrical energy used by EVs, to perform their traction purposes, arrives from re-
newable sources.
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Figure 1.6: Comparative Life Cycle GHG Emissions of an EV and ICE Vehicle



The higher amount of pollutants generated during the EV production phase is
mainly due to generation of their unique components. In fact, electric vehicles are
made up of a series of components not commonly used before in the automotive
industry. The main elements of an EV are: electric motor; battery pack; power
electronics (DC-DC converter, inverter and on-board charger) and their respective
control, management and cooling systems.

Researches say that the production phase of an electric vehicle, including all
components (battery, motors, electronics, chassis, etc.), accounts for approximately
60% of the entire life cycle’s emissions. [6] The remaining percentages are taken
respectively by the electrical energy consumed by the vehicle, whose environmental
impacts depends on the energy mix of the single country, possible changeable com-
ponents (tires, brakes etc.) and the recyclability of the system.

The battery pack of an EV is for sure the component with the biggest carbon
footprint of the entire vehicle. It accounts for about 50% of the vehicle production
emissions (equivalent to 30% of the entire life cycle) . Most of these emissions
are related to the procurement of the raw materials, like cobalt, nickel or lithium,
composing the battery pack as their extraction requires high quantities of energy
and takes place in countries with energy mixes highly reliant on fossil fuels.

The manufacturing of the vehicle glider (or chassis) has also an high environ-
mental impact as it accounts for approximately 25% of the entire vehicle production
emissions. Once again, most of this share is accountable to the procurement of
the raw materials, such as aluminum or composites. In fact, these materials are
lightweight but in order to be produced and processed require huge amounts of
energy to be consumed.

Also power electronics and electric motors have a certain environmental impact
in the overall production emissions of an EV. In fact, they account respectively
for about 8% and 10% of GHG emissions. As for the previous components these
shares are highly influenced by material extraction, with particular attention for the
permanent magnets possibly present in motors, and also the whole manufacturing
processes. [21]

The impacts of the single components of an EV in summarized in Table 1.2,
where each impact is divided between the production process of the vehicle and the
overall life cycle. It is important to underline that the numbers refereed to the energy
consumption for traction purposes is an average value as it is highly dependent on
how that energy is procured consequently on the owner’s provision or the country’s
energy mix.

Component Production Emissions (% of total production) | Life Cycle Emissions (% of total LCA)
Battery pack 50% 30%
Electric motor 10% 5%
Vehicle chassis 25% 15%
Electronics 8% 1%
Energy consumption 0% 45%

Table 1.2: Estimated percentage emissions of electric vehicle components during
production and full life cycle.
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1.3 Electrically-Excited Synchronous Machines

Electrically-Excited Synchronous Machines are currently one of the most discussed
topics in the automotive world. In fact, even if they currently cover a small mar-
ket share, it is expected that their implementation on vehicles will grow over the
following years, as more and more EESM based powertrains are being developed
(Fig. 1.7). This trend was originated by the industrial limitations that the current
electric motors mounted on EVs impose.

Figure 1.7: Example of EESM based EV Power Train

1.3.1 A Renewed Interest

As mentioned in the previous section, Permanent Magnet Synchronous Machines
and their derivatives are currently the most diffused in the automotive world. How-
ever, these motors, even if they offer very good performance and efficiency levels,
have some limitations. First of all, the presence of rare-earth permanent magnets in
most designs creates issues both on a material procurement and environmental lev-
els. In fact, these materials are not commonly available around the world but only
in a few countries. This implies that in case of geopolitical tensions, as in the last
few years, the supply of these could be reduced or even stopped as a tool of bribery.
In addition to that, the extraction of rare-earth materials generates considerable
GHG emissions as it requires huge amounts of energy to be performed. Considering
also the economical part, the presence of rare-earth magnets in electrical machines
implies additional costs as these materials are expensive, which then leads to higher
prices of whole vehicle.

For these reasons, some manufacturers have been trying to either remove rare-
earth magnets from their electrical machines, reduce their amount or substitute them
with different kinds of magnets. Some European constructors have opted instead
for investing resources on research and development of other topologies of electrical
machines. In this last case, it can be found the Electrically-Excited Synchronous
Machine (EESM), which is the main focus of this thesis.

EESM machines surpass the previously mentioned geopolitical, environmental
and economical limitations. In fact, these motors substitute permanent magnets
with direct current electrical windings, which are more sustainable, less expensive
and made of materials easier to procure. Due to the fact that EESM machines are
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a well consolidated technology in other applications, they guarantee excellent relia-
bility levels while offering also high efficiencies and power densities, not achievable
with other topologies like an Induction Machine.

1.3.2 Structure and Operating Principle

EESM motors, just like any other electrical machine, present a stator and a rotor
separated by an airgap. The stator is composed by several sheets of iron stacked
one on each other and processed in order to create the slots in which a three-phase
electrical current winding, where a three-phase set of alternated (AC) currents flow,
is inserted. The configuration of the stator windings and how the single wires are
positioned inside each slot, it strictly depends on the single design of the machine
and on its application. For what concerns the rotor, it is also made of stacked sheets
of iron and it also presents an electrical winding. But, this winding is single phase
and it is crossed by a direct current (DC).

The DC rotor winding is also called excitation winding. In fact, this electri-
cal winding performs the same task as permanent magnets in PMSM machines by
generating a static magnetic field (or excitation field), originated by the externally
provided DC current flowing into the single phase rotor winding. Meanwhile, as
the three-phase stator winding is externally supplied with a balanced three-phase
power supply, it generates a magnetic field rotating at synchronous speed, which de-
pends on the stator supply frequency and on the number of pole pairs of the machine.

The operating principle of the EESM machine is based on on the fundamental
laws of the magnetic field and electromagnetic induction. In fact, the electrome-
chanical conversion is possible from the interaction of stator’s magnetic field and
rotor’s one. Having these two magnetic fields a different rotational speed, as the
stator’s one rotates at synchronous speed meanwhile the rotor’s is static, the inter-
action between the two generates an electromagnetic torque. This torque forces the
rotor, if not immobilized, to start rotating at an increasing speed until it reaches
the synchronous one. At this speed, the rotor (and so its magnetic field) has the
same rotating speed as the stator’s magnetic field.

Consequently, it can easily be deduced that by controlling the DC current flowing
in the rotor winding, it can be changed the amplitude of the rotor’s magnetic field
and consequently the output torque, which is one the main benefits of the EESM
machine with respect to PMSM ones.

In addition, the rotor of Electrically-Excited Synchronous Machine can have two
different shapes: cylindrical (or not-salient poles) or salient poles. Not-salient poles
EESM machines present a cylindrical rotor and so they can be considered as isotropic
machines as the airgap thickness remains constant, neglecting the effects caused
by the rotor slots, all round the diameter. Instead, salient poles EESM machines
present a variable airgap thickness that causes the anisotropy of the system. The
consequence of this is having variable inductances along the airgap which leads to
the machine torque having two contributions, one caused by the magnetic coupling
and the other due to the rotor salient poles. The two different rotor topologies of
EESM machines can be observed in Fig. 1.8.
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Figure 1.8: EESM Machine Rotor Typologies: a) Salient Poles; b) Cylindrical

The two rotor configurations are interchangeable, in the sense that both can be
used for the same applications. Even if in general, cylindrical rotor EESM machines
have higher rotational speeds than salient-pole ones. In contrast, within the auto-
motive field, salient-pole EESM machines attracted more interest than cylindrical
ones due to the possibility of exploiting two torque contributions instead of one.
Considering the fact that torque is one of the main parameters for a traction motor,
these type of motors have the potential of providing higher torques due to the sum
of two contributions: the reluctance torque and the magnetic coupling one.

1.3.3 Excitation Systems

The rotor excitation system is one of the most crucial components in an EESM
machine as a malfunction in this system compromises the correct operation of the
entire motor. At the present day, there are several technologies able to perform such
task. Traditionally, EESM machines had excitation systems composed by sliding
contacts between stationary graphite brushes and rotating slip rings. If it true that
this solution is very cheap and offers a fast dynamic response, on the other hand it
limited the diffusion of the EESM machine as it caused concerns about the wear of
the brushes, which require additional maintenance, and possible safety issues due to
eventual sparks in the motor.

During the years, a lot of research and development has been performed on
EESM machines in order to find a feasible alternative solution to brushes and slip
rings for rotor excitation. Some of the possible options will be briefly explained in
the following paragraphs:

Brushless Excitation As it can be deducted from the name, brushless rotor
excitation requires no contact between static and moving parts. In fact, in this
solution a small synchronous generator is installed on the EESM’s rotor, this machine
generates a system of three-phase AC currents which is rectified by a diode rectifier
installed on the main machine’s rotor, which then receives the obtained DC current.
This solution partially surpasses the traditional excitation issues as it requires very
little maintenance and has high reliability levels. However, it is more complex and
offers a worst dynamic control performance.
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Figure 1.9: Wireless Excitation Circuits: a) Inductive; b) Capacitive

Wireless Excitation This kind of solution has become a feasible solution for
EESM excitation systems only during the last years thanks to the researches per-
formed in wireless technologies and power electronics. Currently there are only two
possible wireless excitation systems: rotary transformer and rotary capacitors.

Rotary transformers perform an inductive power transfer (IPT) between two
AC windings, a primary and a secondary, just like a normal transformer. However
the primary winding is installed on the stator of EESM machine meanwhile the
secondary one is installed on the rotor and rotates with it. Consequently, when
power has been transferred to the secondary winding, the AC current is transformed
into DC using a rectifier installed on the rotor. This kind of solution presents
some limitations related to its high operational frequencies and the presence of both
leakage inductances and parasitic capacitances which alter its correct operation.

Rotary capacitors perform a capacitive power transfer (CPT) between two con-
ductive materials, one positioned on the stator and one on the rotor, by creating an
alternated electric field due to the rotor’s movement. Once again, the transferred
AC current is transformed in a DC one by a rectifier installed on the machine’s
rotor. This solution offers good performance and high reliability, even at high ro-
tational speeds. It requires very good electrical insulation and protections and it
might present some structural issues in presence of mechanical vibrations.

A circuital scheme of the solutions can be observed in Fig. 1.9. [18]

1.3.4 Steady State Model

In order to deliver a discussion as exhaustive as possible, in the following section a
dg-model of the EESM machine at steady state will be described. In addition, as
most of the SyR-e software simulations are performed in static conditions, having
further information on the machine under analysis is crucial for a reader’s better
and more complete understanding.

In general, electrical machines can be represented in a simplified way through
models, constituted by specific sets of electrical and magnetic equations. In the
EESM case, it can be described using electrical and magnetic equations of the single-
phase rotor and the three-phase stator.

As it is know, the variables of these equations can be associated to vectors and
consequently the equations can be rewritten in a vector form. These sets of equations
representing an electrical machine can be referred to various reference systems, for
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example the stator’s stationary 1-2-3 frame or the rotor’s rotating one.
However, the electrical motors” models can be furtherly simplified by applying a
set of transformations. Specifically, the 1-2-3 to - and a-f to d-q ones. [38]

This thesis will focus on EESM machines having salient pole rotors. As already
mentioned, this rotor structure causes the machine to be anisotropic consequently,
both the inductances and reluctances are variable along the airgap as its thickness
varies depending on the rotor’s position.

The application of the a-3 and a-f to d-q reference transformation brings with it
a series of benefits. First, it leads to having isofrequential stator and rotor variables
which in the EESM case means having DC variables at steady state. Then these
transformations cause the inductance matrix of the machine to be independent of
the rotor position. Lastly, it introduces the induced EMF (electro-magnetic force)
term into the stator’s electrical equation.

The reference system transformations here considered use the controllers con-
vention, as a consequence the amplitude of the variables are invariant from one
transformation to another. The electric and magnetic equations that represent an
electrical machine can be written in a general matrix form as represented in 1.1.

(1.1)

V =RI + QA
A=LI+MI

Each element of these equations, both the vectors and matrices, can be de-
composed to highlight the single d-axis and g-axis components. For example, the
structure beneath the voltage V|, current I and flux linkages A vectors is observable
in 1.2 :

Vy Iy Aq
v=lv,| 1=11] A=A, (1.2)
‘/7' Ir AT‘

The other elements of 1.1 are related to the characteristics of the electrical ma-
chine under analysis, which for this thesis is an EESM one. R is the resistances
matrix, it is a diagonal 3x3 matrix composed by stator resistance Ry and rotor re-
sistance R,. €2 is a 3x3 matrix representing the electrical speed w = 27nf. L is
another diagonal 3x3 matrix, containing the d-axis inductance L, the g-axis one L
and the rotor’s L,. M is also a 3x3 matrix containing the mutual inductance effect
between stator and motor expressed by M,,. It is important to underline that in
these considerations the inductances’ cross-coupling effect was not considered. In
addition, it must highlighted that the previous inductances Ly and L, are the sum of
two contributions: leakage Ls and magnetizing L,, inductances. 1.5 The structure
of the previously mentioned matrices can be observed in 1.3 and 1.4.

R, 0 O 0 —w 0
R=|(0 R, 0 Q=|w 0 0 (1.3)
0 0 R, 0O 0 0

15



Ly 0 O 0 0 M,
L=(0 L, O M = 0O 0 0 (1.4)
0 0 L, My, 0 O
Lg= Lsqg+ Lyg Lq = L(;q + Lmq (1.5)

Consequently, unfolding the electrical and magnetic equations contained in 1.1,
the following equation system 1.6 is obtained. Note that electrical equations are on
the right hand side meanwhile magnetic one on the left.

‘/d:Rs*Id_w*Aq Ad:Ld*Id+Msr*]r
Vo=Rsx I, +wx\y Ay=1L,x1, (1.6)
V.=R, %I, N, =L, 1.+ M, *x1,;

By substituting the magnetic equations into stator’s electrical ones, 1.7 equa-
tion system is obtained, which represents the electrical machine steady state model
equations.

(1.7)

Vi=Rsxlg—wxLgx1,
Vo= Rs*xIg+wx*Lg*1g+w* Mg x Iy

It is now possible to rewrite this system of equation in phasorial form as in Eq.
1.8, which can be observed also in graphical form in Fig. 1.10.

Figure 1.10: EESM Machine Generic Phasor Diagram

V=Ryxl—j*Xgxly+j*xXgx L4+ E (1.8)
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The single elements of 1.8 can be unpacked as in 1.9 and 1.10. Note that E is
the no load induced voltage.

V=Vi+7xV, I=1;+j7%1, Ig=15+7%0 I,=047%1, (1.9)

E:j*w*Msr*Ir Xd:W*Ld Xq:W*Lq (110)

EESM Output Torque One of the main design parameters of an electrical ma-
chine is its output torque. In order to obtain the EESM machine output torque
expression, it is necessary to perform an energy balance before. To perform such
task, it is necessary to consider the dynamic model of the motor. However, for sim-
plicity’s sake and to reduce the length of this section, the steps necessary to obtain
the output torque equation will be neglected and only the final expression reported.

Removing the stator and rotor Joule losses and magnetizing power terms, the
ones remaining constitute the output mechanical power. At this point, dividing for
the mechanical speed w, = w/pp, where pp indicates the number of pole pairs of the
machine, the EESM machine output torque equation is obtained 1.11.

T:g*pp*(Ad*Iq—Aq*Id) (1.11)

Substituting the d-axis and ¢-axis magnetic equations into the torque one, the
obtained result is 1.12.

T:g*pp*(Msr*[r*Iq—i—(Ld—Lq)*Id*Iq) (1.12)

Analyzing the torque equation, the following considerations can be deducted.
First, the EESM output torque is composed by two terms, one related to magnetic
coupling called ”electromagnetic” torque and the other related to the anistropy of
the rotor. In case the rotor current would be zero, the torque equation has only the
anisotropy contribution and behaves like a relutance synchronous machine, in which
the MTPA angle is obtained for a current phasor angle of 45° that maximizes both
I; and I,. As the rotor current /, increases in amplitude, the MTPA angle tends to
rotate towards negative d-axis current values. In case of a machine operating in the
linear iron region, the value of L is higher than the one of L,, leading to a positive
difference of the two, consequently in order to sum both torque contributions both
I; and I, need to be positive, meaning that the MTPA angle is positioned between
45° and the g-axis. Instead, if the rotor current increases even more, causing the
machine iron to work in the hard-saturation region, this leads Lq and L, to have
similar values. Consequently, the position of the MTPA coincides with g-axis. [18]

1.3.5 Benefits and Drawbacks

In the following section, a brief overview of the general benefits and drawbacks as-
sociated with the usage of EESM machines will be performed.
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As already mentioned, EESM machines present a DC rotor winding, which is
responsible for generating the excitation field, allowing the removal of permanent
magnets from the motors. The benefits connected to this feature in terms of sustain-
ability and independency from geopolitical tensions have already been addressed, so
it is now time to talk about the technical ones.

First, being the excitation generated via a DC current flowing in the rotor wind-
ing, the EESM machine allows for full controllability of the excitation field. In fact,
by reducing or increasing the rotor DC current, it is possible to modify the exci-
tation field’s intensity. This leads to the capability of the machine to deliver high
torques even at low rotation speeds, without absorbing high stator currents. The
ability of controlling the excitation current at any time allows EESM machines not
to have any unwanted generation operations, usually present in PMSM ones, as the
source of excitation can be rapidly removed by opening the rotor’s terminals.

Being the excitation field strictly correlated to the EMF induced at stator, by
varying the rotor current amplitude, automatically the amplitude of the induced
EMF varies. This leads to the possibility of implicitly controlling the machine’s
power factor and consequently regulating the reactive power exchanged. Having an
high power factor is beneficial as it allows to use windings composed by conductors
of smaller sections.

Lastly, EESM machines are characterized by very wide speed ranges in which
they are able to operate at constant power, this is due to their crucial ability of
controlling the excitation rotor current.

However, EESM machines present also some critical points. For example, the
necessity to supply the rotor winding with a DC current introduces additional power
electronics devices, already mentioned in a previous section, increasing the system’s
complexity and costs. In the past, one the EESM machine biggest limitations was
related to the necessity of bringing current to rotating parts, in fact, the usage
of brushes and rotating rings created both security and reliability concerns, which
could be solved nowadays using one of the systems described in Section 1.3.3.

Moreover, the presence of the rotor DC current, flowing in its winding, generates
addition Joule losses and consequently heat that needs to be dissipated. Lastly,as
for Induction Motors, EESM machines suffer limited cooling capabilities due to the
difficulty in reaching the rotor’s conductor to cool them.

1.4 SyR-e Software

The analysis performed in this thesis has the software SyR-e as one of crucial sub-
jects. SyR-e (Fig. 1.11) is an electrical machine design software developed by a
collaboration between Politecnico di Torino and Politecnico di Bari. Originally cre-
ated to design synchronous reluctance machines, it is now able to perform such task
on more topologies by means of finite element analysis (FEA) and multi-objective
optimization. [14]
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Figure 1.11: SyR-e Software Logo

In order to successfully perform its analysis, SyR-e has been developed in the
Matlab ecosystem and relies on the free FEA software FEMM to perform precise
electro-magnetic simulations. The SyR~e work flow is represented in Fig. 1.12. It can
be seen that once the user has defined the electrical machines desired parameters, a
parameterized drawing of the machine is created as .fem file, which is then analysed
by FEMM. The results obtained return to Matlab where a performance analysis is
executed.

GUI_Syre GUI_Syre_MMM
Motor design and simulation Magnetic Model Manipulation

Sife .
Magnatio Model Mariouation ;

Figure 1.12: SyR-e Software Operational Workflow

In addition, SyR-e is compatible with the Matlab Parallel Computing Toolbox,
which allows to perform multiple simulations in parallel. This feature allows to con-
siderably cut the overall simulation time as each simulation can be run on a different
computer’s core.

To facilitate the user experience while using SyR-e, a Graphical User Interface

(GUI) has been developed, where it is possible to apply geometrical adjustments or
even modify thermal, magnetic, mechanical or electric parameters of the machine
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under analysis. However, it is important to underline that SyR-e can be used also
in "manual” mode, without exploiting this feature. Further information about GUI
structure will be given in the following subsection.

1.4.1 Graphical User Interface

In order to have a user’s more immediate comprehension of the SyR-e software, the
GUI feature has been developed. To design an electric machine using SyR-e, the
GUI needs to be launched by using the command ”"GUI_Syre” in Matlab command
window.

Once the Graphical User Interface has been launched, its main tab will appear.
As soon as the main GUI tab is loaded, a default motor automatically opens; how-
ever, the user can decide the work on a pre-existing motor file by clicking on the
”Load Machine” button in the right hand side corner and select the desired option.
The main GUI window can be observed in Fig. 1.13, where it can be seen that it is
divided into 8 secondary tabs, each with a dedicated purpose.

% GULSyre

MainData  Stator  Rotor  Options  Materials  Optimizaion  Simulation  Motor-CAD | Utilties

Main Motor Parameters Preliminary Design Ll

Number of pole pairs | 3 ] [ Compute (xb) Design Plane | [ FEAfix -
Save machine

Number of 3-phase sets ‘ 1 ‘ Range of x (otor/stator spiit) [0507] —
Close all Clear \tm,
Number of slots/pole/phase 3 Range of b (airgap/iron split) [0406] L oot S r .
Number of stator slots Iron Loading [T] 15 Current mot file is J
syreDefaultMotor.mat ver.3.9

Airgap thickness [mm] 07 Thermal Loading kj [Wim"2] | 170987.3553

Stator outer radius [mm] 125 [ Scale | Current Density [Arms/mm2] 36.0001

Airgap radius [mm] 7495 Tooth size factor [p.u] 1

Shaft radius [mm] 3475 Stator yoke factor [p.u]

1
Stack length [mm] 134 Rotor yoke factor [p.u] 1
Type of rotor (Seg v PM factor [p.u] 1

# of FEAfix simulations | 16 v

| Constant flux barrier permeance v

| Constant flux carrier thickness v

Custom Geometry

| Constant current density J v

o Import from FEMM ]
FEAfix corrections and computations |
Clear |
[ MTPA point Char. current | | HWC-SC current

| Demag @ rated Demag @ HWC |

Figure 1.13: SyR-e’s GUI Main Tab

In the following paragraphs, an explanation of the single GUI tabs will be given
for the reader’s sake of clarity.

Main Data In this section, it is possible for the user to set the main machine’s
parameters for its appropriate design. First of all, it is possible to select the type of
rotor and consequently the technology of the machine. It is also possible to decide:
number of pole pairs, number of three-phase sets, number of slots per pole per phase,
number of stator slots and other main geometrical parameters. While doing so, the
user can also observe the consequences of the desired changes as a drawing of one
pole of the machine appears on the right side. In addition, the user can also assign
some preliminary design parameters like flux and current densities. In short, this
section allows to define volumes and material’s exploitation of the machine to design.
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Stator and Rotor The second and third tabs of SyR-e’s GUI, observable in Fig.
1.14 are dedicated to the definition of every aspect of the machine’s stator and rotor.
For the stator section (Fig. 1.14a), it is possible to assign more geometrical param-
eters (tooth lengths, tooth widths slot shapes, etc.) but also to define the stator
windings and slots. For what concerns the stator winding definition, it is possible to
decide: slot filling factor, turns in series per phase, pitch shortening factor and other
important winding data. In addition, in order to model the stator’s slots, it is possi-
ble to select the number, type, width and radius of the conductor inside each slot and
also the temperature and frequencies to conduct the thermal and frequency analysis.

The rotor’s section (Fig. 1.14b) is similar to the one of the stator but it presents
some peculiarities. In fact, in this case, the tab is divided in three sections, each
dedicated to a different type of electrical machine. Depending on the rotor type
chosen in the first tab, the software allows the user to modify only the parameters
correspondent to the technology selected. The variables that can be changed in
this section are strictly related to the rotor typology. For example, in EESM case,
parameters such as rotor coil filling factor, pole width or pole head fillet can be
modified. Meanwhile, for the induction machine the user can select the number the
number of rotor bars, the tooth lengths and other parameters.

(a) SyR-e’s Stator GUI Tab (b) SyR-e’s Rotor GUI Tab

Figure 1.14: SyR-e’s Stator and Rotor GUI Dedicated Tabs.

Options This section, observable in Fig. 1.15, is dedicated to the user’s selection
of non-electrical parameters of the machine to design. It is divided into three smaller
windows, each dedicated to one aspect. The three areas of interest are dedicated to
the definition of: thermal parameters, structural parameters and ribs design.

In the window regarding thermal parameters, the user is able to select the main
thermal parameters of the machine. The software is able to automatically calculate
the machine’s nominal current and winding temperature from imposing the hous-
ing and copper target temperature and by selecting one of three variables: thermal
loading factor k; [W/m?], rated losses [W] or field current density [Arms/mm?]. Se-
lecting as input one of these quantities, the others are calculated as a consequence
by SyR-e. In addition, the phase resistance is computed from the geometrical pa-
rameters selected in the previous tabs. [14]

SyR-e implements also a simple structural model to be used in the machine’s
design structural evaluations. The main parameters of this section are the ”Over-
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Figure 1.15: SyR-e’s GUI Options Tab

speed” [rpm]|, or maximum rotation speed, and the ”Minimum Mechanical Toller-
ance” [mm]. The first value is used to size radial ribs and it considers only centrifugal
forces. While, the second one is used for the sizing of the tangent ribs. In addition,
it is possible include also the rotor sleeve, by imposing its thickness, using its dedi-
cated tool. [14]

The last window of this tab is dedicated to the ribs design. This tool is very
useful as it allows to design size and dimensions of the flux barriers by defining
the thickness of tangent and radial ribs while neglecting overspeed parameters. It is
also possible to decide if the ribs need to be split or not and change their slope angle.

Materials GUI’s fifth tab (Fig. 1.16) is the one dedicated to materials. In this
section, the user assigns to each part of the electrical machine (stator core, stator
slot, flux barrier, rotor core, shaft, etc.) its material and defines their weights. Con-
sequently, using the data uploaded in the materials’ library, SyR-e automatically
computes both the total motor mass and the rotor inertia. This tab is divided into
three smaller ones: material data, material library and permanent magnet.

In the material library, the user finds the material database uploaded in SyR-
e, it is completely customizable and the user can remove or add materials at its
discretion, using the apposite buttons. In addition, for each material present in
SyR-e’s database, it is possible to observe its characteristic B-H magnetic curve.

The permanent magnet portion is instead dedicated to the design of the perma-
nent magnets mounted on certain topologies with the aim of calculating the char-
acteristic current of the magnet, using the software FEA iterative procedure. [42]
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Figure 1.16: SyR-e’s GUI Materials Tab

Optimization This tab is one the most important in SyR-e as it allows to perform
the optimization of the machine under design. It presents two different pages, which
can be seen in Fig. 1.17, in the first the user selects the optimization options while
in the second the variables and boundaries.

The first page (Fig. 1.17a) of this section is divided in 4 windows: optimization
options; time stepping raw (evolution) and fine (Pareto re-evaluation); objectives
and penalization limits. In the first one, the user chooses which kind of optimiza-
tion to perform and its main parameters (current overload, number of generations,
population size and stator current setting). It is also possible to perform a mechan-
ical stress control by enabling its option. In the second and third ones, it is possible
to decide the time step, in terms of rotor angular excursion and number of posi-
tions, at which the analysis is performed. In the last one instead, the user decides
the objectives of the optimization between the ones available (torque, torque ripple,
power factor, copper mass, etc).

The machine’s design optimization is performed using the Multi-Objective Dif-
ferential Evolution (MODE) family of algorithms, in specific NSGA-II. The setup
of the analysis is decided by the user in this GUI tab. As a consequence of the
optimization procedure, parameters of stator and rotor can be modified in order to
reach the desired objectives. SyR-e offers multiple types of analysis: MODE Design,
MODE Refine, Surrogate Model Dataset LHS and Surrogate Model Dataset Sobol.
The first two options are MODE type optimization, applied, respectively, to a ma-
chine designed from scratch and to an already existing one. Meanwhile, the last two
alternatives are types of sensitivity analysis.

The outputs of the optimization algorithm are two files, a Matlab one and a
FEMM one, containing all the parameters of the optimized electrical machine.

The second page (Fig. 1.17b) of the optimization tab contains the decision
variables and their respective boundaries of the optimization problem. Depending
on the machine type chosen in the first tab, different variables can be selected and
at user’s discretion also their limits can be modified.
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(a) SyR-e’s Optimization Options GUI Tab
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(b) SyR-e’s Optimization Variables and Boundaries GUI Tab

Figure 1.17: SyR-e’s Optimization Dedicated Tabs.

Simulation In this section of the GUI, it is possible to perform various types of
FEA simulations on the electric machine designed in the previous steps. This tab
is divided into three smaller windows: simulation setup, custom current and mesh
control.

In the first one, it is possible to define the parameters with whom the user desires
to perform the simulation. SyR-e offers a wide selection of parameters, for exam-
ple: current phase angle, phase current amplitude, current load, number of rotor
positions, rotor speed, etc. and evaluation type. The evaluation type is the most
important one as it indicates the type of simulation the user intends to perform on
the electrical machine. There are various types of simulations that can be executed
like: single point current computation, torque and flux maps calculation, structural
analysis, demagnetization curve analysis, etc.

In the custom current window, by enabling its correspondent flag, it is possible
to create from scratch a current waveform, load a pre-existing one and perform the
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simulation using this custom current. In addition, the user can also calculate AC
losses of the machine.

For what concerns the mesh control zone, here the user can decide the parame-
ters of the mesh what will be used in the FEA simulation. The parameters to select
are: mesh size, airgap factor, PM factor and structural PDE.

Once the simulation parameters have been decided, the user can start the com-
puting by clicking on one of the buttons present in the low right hand corner. Each
button conducts to softwares and specific types of FEA, like: FEMM; MAGNET;
ANSYS and JMAG. It is possible to observe the structure of the Simulation GUI
window in Fig. 1.18.
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Figure 1.18: SyR-e’s GUI Simulation Tab

Motor-CAD This GUI tab is dedicated to the designed electric machine’s export
to Ansys Motor-CAD. In this section it is possible to export the machine towards
other FEA softwares and setup thermal and electromagnetic simulations. It is even
possible to decide further parameters for thermal evaluations, including: type of
evaluation, transient period, initial temperature, cooling technology, cooling fluid,
flow rate, thermal limits, etc.

An overview of this tab can be observed in Fig. 1.19.
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Figure 1.19: SyR-e’s GUI Motor-CAD Tab
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Utilities The last tab of SyR-e’s GUI (Fig. 1.20) has been developed to be helpful
for this software’s users. In fact, here it is possible to find further SyR-e documen-
tation, parallel computing enabling and disabling buttons, shortcuts to export the
electrical machine simulated models and it is also possible to launch the Magnet
Model Manipulation section (MMM), where it is possible to calculate flux maps,
currents, MTPA, MTPV and evaluate torque and power curves. For further infor-
mation about the MMM unit, the reader can consult [14].

MainData  Stator Rotor  Options  Materials  Optimization  Simulation  Motor-CAD  Utilties

Launch MMM ‘

Launch
| Simcenter MagNet (x,b) Design Plane Explorer

to Workspace ‘

)

]
[ Ansys Maxwell ) ‘
Ansys Motor-CAD |

JMAG

COMSOL |

Figure 1.20: SyR-e’s GUI Utilities Tab

1.5 Thesis Objectives

This thesis aims to verify the implementation of an additional electrical machine
topology in SyR-e, the Electrically Excited Synchronous Machine (EESM). The
preliminary analysis, carried out in the previous sections, has highlighted how the
EESM motor constitutes a valid alternative option to the traction electrical machine
used in the current automotive industry. In fact, the absence of rare-earth permanent
magnets in this configuration allows the manufacturers to be more immune to the
possible tightening of environmental policies and eventual geopolitical tensions.

At the same time, the description of the SyR-e software has demonstrated how
valuable and reliable it is as a tool for designing electrical motors. This is mainly
to its wide range of modifiable variables and possible analyses, and its compatibil-
ity with even more accurate external software. The immediacy and simplicity with
which users can interact with SyR-e makes it a benchmark program for a rapid and
cost effective design of electrical machines, although the final considerations of such
task always rest to the designer.

In addition, another goal of this work is the development of an automatic MTPA
angle calculation tool in SyR-e. This new feature aims to be compatible with all
electrical motor topologies and possible analysis that can be performed in SyR-e.

At the present day, SyR-e already has an MTPA angle calculation functional-
ity. However, it is performed only if the designer selects the angle "gamma” as
a decision variable in the ”Variables and Boundaries” section of the optimization

26



tool. Implementing a tool that automatically calculates the MTPA angle allows to
increment the efficiency of the electrical machine design workflow and the quality of
the output data. In fact, even if the designer considers that information not crucial
in a first design phase, it might be necessary in a further step and having it already
available allows not to launch another optimization procedure, saving precious time.

In the following lines, a brief description of this thesis’ chapter structure and the
topics covered will be performed.

Chapter 2 will address electrical machine optimization procedures. In particu-
lar, the current most used algorithms, specifically the one used in SyR-e, and a new
methodology which could become the dominant one in the future.

Chapter 3 will analyze the steps which lead to the implementation of the EESM
machine in SyR-e, including how both its geometry and specific parameters were
added. This section will also talk about the validation procedures used to verify
the correctness of the EESM implementation and an analysis of the results will be
performed.

Chapter 4 will address the steps which lead to the automatic MTPA angle re-
search tool addition in SyR-e. In particular, its design steps, its operational proce-
dure and then its validation using a confrontation of two Sobol mapping analysis
examples.

Last but not least, chapter 5 will perform a recap of all the arguments treated,

draw the conclusions and offer some considerations about further future develop-
ments of both SyR-e software and electrical machine optimization techniques.
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2. Electrical Machine Design Op-
timization

This section will offer an overview of the main electrical machine optimization tech-
niques, with particular focus on the one used in SyR-e, for the reader’s interest.
First, general notions about EM design will be provided, then the single algorithms
analyzed. For latter, a discussion about the newest methodologies in the field will
be performed.

The design process of an electrical machine is an iterative procedure consisting
of a sizing phase and an optimization one. If the sizing provides the machine’s
sizes, volumes and main parameters, its final geometry and secondary parameters
are determined in the optimization phase, which is directly influenced by individual
specifications such as power density, output torque, efficiency, etc. [44]

The main focus of this thesis will be on optimization techniques, consequently
the sizing stage will be neglected and it will be hypothesized that those electrical
machine information are already provided.

Electrical machine design optimization is an interdisciplinary subject as it in-
volves electromagnetic, thermal, economic and structural aspects, reasons why it
has been for decades a major area of research [39]. It aims at identifying the best
electrical machine configuration able to satisfy multiple requirements simultaneously.
As for every optimization problem, also in this case it is necessary to define first
the objectives, using the objective functions f(z), of the optimization problem, such
as output torque, torque ripple, efficiency, power density, etc. It is also necessary
to select the decision variables x of the problem and their variation ranges, or con-
straints. The latter will be the machine’s variables whose values can be modified in
order to obtain the optimal EM configuration, after having resolved the problem’s
set of objective functions f(z).

Being an electrical machine characterized by thousands of variables and tens of
equations, belonging to different fields, it is evident that the resolution of an opti-
mization problem is not an easy-to-solve problem. In the past, designers only relied
on manual calculation tools, reason why the design of an electrical machine was
based on the experience of the designer in applying empirical solutions to new prob-
lems or adapting already functioning previous designs. However, with the advent of
computers, the design optimization of electrical machines has simplified and sped
up slightly, even though it still remains a very complex task in which the ability of
the designer is crucial.

In the following section, the currently most used optimization algorithms will be
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explained in further detail.

2.1 FEA-based Design Optimization

Finite Element Analysis (FEA) is the basis of the most currently used optimization
techniques in the electrical machine design field. It is a crucial instrument due
to its ability to model complex physical phenomena with great accuracy, allowing
designers not to build expensive machines’ prototypes for the first stages of design.
In fact, FEA divides the domain under analysis in smaller elements, whose size
depends on the mesh density level desired (Fig. 2.1). Consequently, after having
defined the proper boundary conditions and the solving equations, the main problem
is separated into smaller ones, which are easier and faster to solve. The solutions of
the smaller problems (of the single element) are then unified constituting the global
solution.

Figure 2.1: Example of Mesh Generation for an Electrical Machine

These characteristics allow FEA to have a wide range of applications as it can
be used to solve electromagnetic, structural and thermal problems. Finite Element
Analysis’ interoperability makes it the perfect instrument of analysis for electrical
machine optimization.

The first optimization algorithms adopting FEA were able to solve only single-
objective optimization problems, due to the limited computational power that they
had available. However, thanks to technological advancement, the computational
power of computers increased and with that their capability of solving more com-
plex problems in smaller amounts of time. This paved the way for multi-objective
optimization problems to be solvable without recurring to more ingenious solutions.

Electrical machine related optimizations may be single or multi-objective opti-
mization problems, depending on the design’s specifications. For this reason, an
overview of the main optimization algorithm families, based on FEA, will be per-
formed, with distinction between single and multi-objective ones.
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2.1.1 Deterministic Methods

Deterministic optimization algorithms offer consistency in results as they are able
to provide the same result under the same initial conditions and parameters, due
to the fact that they do not introduce random components in the analysis. In fact,
they offer a systematic approach, without relying on chance.

Deterministic algorithms are mainly single-objective, which is why they are able
to provide results in reduced amounts of time, compared to other optimization algo-
rithms, due to their smaller computational weights. Even if, more recent evolutions
of these algorithms made them able to perform multi-objective optimization, in this
case the benefits of this type of analysis partially faint, especially in multi-physics
environments with an high number of variables (like for electrical machine design)
leading to other types having superior performances. [31]

Even if, the field of electrical machine design usually requires the solution of
multi-objective optimization problems, this type of optimization algorithms can still
be used for rapid and cost effective single-objective evaluations as they allow to re-
duce uncertainty in results and to make direct comparisons between different variants
of the same design, highlighting the differences.

There are various families of deterministic algorithms, each one differing from
another on the type of information used and on the way the solution space is ex-
plored. In the following lines, a brief description of each typology will be provided,
for the completeness of the discussion:

e Gradient-based Algorithms

As it can been deducted, gradient-based deterministic algorithms are based
on derivatives. This type of analysis starts by defining the objective function
f(z), a set of problem’s resolving equations, and the decision variable’s starting
values 7y. Then, the gradient of the objective function in zy is calculated V f(zy )
and a step variation length « is decided, whose value is either coming from
a predefined rule or as a result of another optimization problem aiming at
finding its best value. Vf(zq) value provides the direction to follow in order to
minimize the objective function as, if the gradient is positive, the successive
points under analysis need to be in the opposite direction. Consequently the
gradient is then calculated for another point distant a from the first and this
process is repeated till a minimum point is found [55], [41], [43].

Despite being very effective, this family of algorithms have a limitation as
the objective function needs to be continuous, differentiable and they might
converge on local minimum points.

e Gradient-free Algorithms

These optimization algorithms overcome the main limitations of the previous
ones as they do not require the derivative of the objective function to be
performed. Consequently, this type of analysis can be executed even if the
objective function f(z) is not continuous or differentiable. Also in this case, it is
necessary to select a decision variable’s starting value 1, in which the objective
function value f(1p) is calculated, and a step variation length. Consequently,
the value of the objective function is calculated also for other points chosen
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following a certain logic, which depends on the specific gradient-free algorithm
selected. Following, the values of the objective function obtained in those
points are compared and the one having the highest/minimum value of the
lot is selected as new starting point. Consequently a more detailed analysis
near this point is performed by using the variation step and if no better point
is found, the step is furtherly reduced. After a certain number of attempts,
if no better point is found, the point having the highest/minimum value of
objective function is labeled as the optimal one. [20], [54]

Linear Programming Algorithms

Linear Programming optimization algorithms are based on linearity. In fact,
in this kind of technique both the objective functions and the constraints are
linear. Its standard form can be written in the following way:

{min/maaj (c*x) 2.1)

Axx<b

In this equation: c is the vector of the objective function coefficients; x is
the decision variable’s vector; A is the matrix of the constraints and b is the
vector of the constraints’ constants.

These optimization algorithms are characterized by very fast output calcula-
tions even in case of systems with an high number of variables under analy-
sis. Differently from the previous two families of algorithms that might have
stopped at local minimum/maximum points, LP is able to find global mini-
mum /maximum points of the objective function if the problem is linear.

Linear Programming workflow operates as follows. First, it observes the con-
straints of the problem and defines the feasible working space. Then, the
algorithm finds the vertex points the operational space and calculates the val-
ues of the objective function in those points. A confrontation of the obtained
values in these extreme points and in another initial point is performed and,
dependently on the results, the algorithm moves the evaluation point towards
the extreme having the highest value of objective function. After, several more
evaluations around the best vertex are performed, until the point with best
performance is found, coinciding with the optimal point [8], [2].

The main characteristics of the algorithms presented before can be observed in

Table 2.1 .
Characteristic Linear Programming (LP) Gradient-based Non-gradient-based
Use of derivatives No Yes No
Guarantee of global optimum  Yes, if linear No, local No
Speed Very high High Slower (many evaluations)
Robustness to discontinuities No No Yes

Main limitation Only linear problems Continuous and differentiable function Slow

Table 2.1: Comparison of deterministic optimization methods

In the following paragraphs, it will take place the description of the most common
deterministic optimization algorithms in the field of electrical machine design.
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Method of Moving Asymptotes (MMA) The Method of Moving Asymptotes
(MMA) is a deterministic optimization algorithm developed by Krister Svanberg
in the 1980s. It has been developed for resolving non-linear constrained problems,
reason why it became very common for structural and electromagnetic analysis, as
it is able to provide always the same solution if fed with the same inputs, like every
deterministic algorithm. As it can be deducted from its name, this algorithm exploits
asymptotes (or limits) by constantly adapting them, in an iterative way, depending
on the situation, in order to avoid solution instabilities and find the optimal one.

In the following lines, the workflow behind this algorithm will be explained in
detail.

First, the problem needs to be defined and its general form is presented in 2.2.

mingcr-f(x) st gi(x) <0, a;;”m <x; <™ oi=1,..m j=1,...n

In this equation each variable has the meaning as follows:

e f(x) is the objective function, the goal of the optimization problem,

x are the decision variables, whose value can be modified in order to satisfy
the objectives,

gi(x) is constraint function, which imposes the limitations on values of the
decision variables that need to be respected for the solution to be valid,

b constitutes the values of the constraints

min

x] and x
variables

max
J

are technological constraints on the values of the decision

Once the problem has been defined, the algorithm approximates the objective
function and the constraint ones with surrogate functions (convex and rational),
based on partial derivatives. This process is repeated for every iteration of the algo-
rithm, till the optimal solution is found. Consequently, the objective and constraint
functions can be written as in 2.3 and 2.4, exemplified for k-iteration.

p d;
f(x) = [P (@) =r® 4y (——+ —L—5) (2.3)
) U]( ) Tj X — Lg- )
(k) (k) i riy sy
gix) =g (@) =17+ ) (——+—"4) (2.4)

The main elements present in these surrogate equations are:

o f*)(x) and ggk)(a:) are the surrogate functions approximating respectively
the objective function f(x) and the constraint functions g;(x),

° p;.k), J(.k) and rg.c), ](.k) are coefficients obtained from the partial derivatives
of respectively the objective functions f(x) and the constraint functions g; (),
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o U ;k) and L;k) are the lower and higher asymptotes of the decision variable x;
considered

e x; is the decision variable under analysis,
e () and 'r'z(k) are constant terms chosen to make the values of the original
functions and the surrogate one coincide in the current valued point.

The asymptotes are one of the most crucial features of this optimization algo-
rithm. In fact, they have multiple roles. First, they act limiting the values that the
decision variables can assume. Then, they make sure that the solution obtained is
stable and not oscillating. The values of the lower and upper asymptotes are at first
selected from the technological limits of the decision variable x; imposing a certain
margin 0. Later, the values of the asymptotes are updated for each iteration of the
algorithm using equations 2.5 and 2.6.

k k
LY = oh — s (ah — L) (2.5)
p =x; — 7k ( j xj) (2.6)

Independently on the iteration number, asymptotes have to always respect the
following rule 2.7:

gt < LW < oW < g < gmee (2.7)

Consequently, once the surrogate functions and asymptotes have been defined, it
is possible to re-write the original optimization problem as a series of simpler prob-
lems, one for each decision variable. This leads to the conclusion that this algorithm,
instead of solving one big and complex optimization problem, allows to solve a se-
ries of smaller single-variable ones. So, for each decision variable this procedure is
repeated in an iterative way until, the single optimal values are found. The process
just explained goes on until, the overall convergence condition ||z**1) — z(*) < ¢|| is
respected, finding the optimal solution of the whole problem.

Even if this algorithm offers good performance in terms of consistency, compu-
tational time and it can be adapted to perform multi-objective optimizations (but
in its standard form, it is able to perform only single-objective optimizations), it
presents some critical points. First, there is no guarantee that the convergence
point found is the global optimum point, as it could only be a local one. Second,
it is very sensitive on the initial asymptotes selection, a wrong choice can lead to
an higher number of iterations in order to reach the convergence condition. Third,
its computational weight increases exponentially with the number of variables and
constraints (as for electrical machine designs). Last but not least, it requires the
functions to be linear as their derivatives need to be estimated. [46] [47]

For what concerns the usage of MMA for electrical machines, it can be exploited
for multiple purposes. In fact, it can be used for proper optimization or to perform
a sensitivity analysis, in combination with FEA. MMA is able to perform both
geometrical optimizations and topology ones; however, the limitations described
earlier, especially the slowness with an high number of variables prevent it from
being a dominant technology of the field. Final considerations are always left to
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the design team and to the level of detail required but, usually other algorithms
are preferred over MMA for electrical machine design. Nevertheless, MMA can be
useful in a latter design stages to perform a sensitivity analysis. In fact, its ability
to provide always the same output if fed with the same inputs allows to perform
slight variations on the geometry or the magnetic configuration of the machine and
observe the differences with respect to a previous variant. [1], [56]

Fig. 2.2 shows a summary scheme of the MMA optimization algorithm workflow.
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Figure 2.2: MMA Workflow Schematic Diagram

Sequential Quadratic Programming (SQP) Sequential Quadratic Program-
ming is a deterministic optimization algorithm invented in 1970s at Stanford Uni-
versity which became popular in the engineering world during the 1980s.

This algorithm is used for the solution of single-objective constrained optimiza-
tion problems. It is particularly common due to its accuracy in results, its rapid
times of convergence and its compatibility with complex systems. [36] In the sequent
lines, a brief description of the SQP algorithm’s modus operand: will be provided.

The first step consist of defining the optimization problem, which is represented
in its standard form by 2.8.

minger-f(x) st g(z) <0, h(z)=0 (2.8)

where: f(x) represents the objective function of the problem; g(x) is the in-
equality constraint vector function; h(x) is the equality constraint vector function
and x represents the decision variables’ vector.

Once the general problem has been defined, the differences of SQP, in comparison
with MMA, come out. In fact, one of the most crucial elements of this algorithm is
the definition of the Lagrangian function as it combines both the objective function
and inequality and equality constraints in one element, guaranteeing that these
limitations are respected. It is defined by the following equation 2.9:

Lz, A\ p) = f(z) + X% g(w) + p" * (@) (2.9)

where: A\ and p are respectively the Lagrange multipliers for inequality and
equality constraints. In addition, the Lagrangian function is used to verify the
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optimality, or convergence, condition. In fact, if the point (z*, \*, u*) is the optimal
one, in which the objective function is minimized, the following equation 2.10 must
be verified:

VL(z* N, p*) =0 (2.10)

After defining the Lagrangian function, SQP algorithm proceeds to approximate
both the objective function and the constraint ones, process which is repeated for
every iteration. The objective function is approximated using Taylor form in a
second grade polynomial. Meanwhile, the constraint functions are approximated as
linear. The simplified functions can be observed in 2.11, 2.12 and 2.13, referred to
a generic k-iteration and xj; point:

flzp +d) ~ flog) + Vf(zp) *d+ %dT*Bk * d (2.11)
g(zp +d) = g(za) + Jy(xg) xd <0 (2.12)

where the main elements of these equations are: By, which is the Hessian matrix
(2nd degree gradient) of the Lagrangian function in point xy; Jg(xq) and Jp(xq)
are in order the partial derivatives of g(z) and h(z) in point xx; V f(xg) is the
gradient of the objective function in point x; and d is the direction in which the
decision variable vector x is updated to reach optimality.

At this point, instead of solving the initial optimization problem, this algorithm
builds a smaller quadratic problem for each iteration. By solving each quadratic
problem, the direction d is obtained, which is used to update the point under anal-
ySiS Tpy1 = Tk + o * di, (where ay is the step length, chosen depending on the type
of analysis). Consequently, all the elements (Hessian matrix, Lagrange multipliers,
etc.) are updated to the new point under consideration and a new quadratic prob-
lem is ready to be resolved. This process continues until the global convergence
condition presented in 2.10 is verified. [5]

One of the characteristics of this optimization algorithm consists in the fact that
it is able to perform its iterative workflow simultaneously for each decision variable,
differently from MMA. In addition, it guarantees high levels of accuracy and it is
able to cope with both equality and inequality constraints thanks to the usage of
the Lagrangian function and the Hessian matrix, which enables it to be used also
for non-linear problems.

However, SQP presents also several limitations. First, it is able to perform only
single-objective optimizations, limiting its application field. Second, the optimal
solution that it finds might be only a local one and not the global optimum, as this
algorithm is not able to distinct between a local and global minimum points. Third,
it is also very sensitive to the starting point of evaluations, if it starts far from it
then it might diverge or take an high number of iterations to reach the minimum
point. Last but least, its computational weight is not negligible in case of an high
number of variables under analysis.

35



The features od SQP optimization algorithm allow this analysis to be used in the
electrical machines design field, in combination with FEA softwares. In fact, it is
able to solve problems of various nature, both geometrical, structural or electromag-
netic, if the objective function is well modeled, including also multiple constraints.
In addition, its ability to operate with non-linear objectives and non-linear con-
straints make it a valid alternative solution for single-objective optimizations. This
last characteristic is the one limiting the most the application of this algorithm in
the EM field as in most cases during EM’s design the optimization problems that
need to be resolved are multi-objective.

Fig. 2.3 shows a summary of SQP optimization algorithm workflow.
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Figure 2.3: SQP Workflow Schematic Diagram

2.1.2 Metaheuristic Algorithms

Metaheuristic Algorithms (MA) are a typology of optimization analysis able to deal
with non-linear multi-objective constrained problems. They are able to work in com-
plex environments, where previously discussed deterministic algorithms struggled,
without requesting not feasible computational power. Even if, also metaheuristic
algorithms do not guarantee to find the global optimal point of the problem, they
are built in such a way that they explore the space efficiently in order to find a solu-
tion. Once the space has been analyzed, they operate further analysis on a deeper
level in those areas that were considered as promising in a first place, minimizing
the chances of converging a local optimal point. Another peculiar characteristic of
MAs is that multiple algorithms can be combined in hybrid solutions, due to their
high level of interoperability. For these reasons, they are the most used solution for
electrical machine design optimization as, these algorithms best fit the requirements
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of the field, in which they have to deal with complex, constrained and non-linear
systems. [49]

Metaheuristic Algorithms can be divided into three different families, whose main
features will be explained in the following lines:

e Evolutionary Algorithms (EA)

Evolutionary Metaheuristic Algorithms are based on the concepts of natural
evolution. In fact, starting from a population of candidate solutions, which
might be also randomly generated, its quality is verified using the objective
function (or more than one). The solutions having the best performance are
kept, as they have the highest probability of being the optimal solution or that
it is in a near space, while the remaining ones are discarded. At this point,
the kept solutions are either combined in ”child” solutions or mutated by ap-
plying random variations, depending on the specific algorithm exploited, and
another selection round takes place. The process continues until the conver-
gence condition is verified. If it’s true that EAs can be used for multi-objective
constrained problems applied to complex systems, they have also limitations,
like their not insignificant computational weight, connected to the high num-
ber of objective functions evaluations required (and FEA simulations) before
converging. Example of evolutionary algorithm are: Genetic Algorithm (GA)
and Differential Evolution (DE). [19] [17]

e Swarm Intelligence-based Algorithms

Swarm Intelligence-based Algorithms are metaheuristic algorithms inspired on
the human beings social interactions. In most cases, they begin by randomly
generating a population of candidate solutions. These solutions are valued
using the objective function of the optimization problem. In the next phase,
each agent (or possible solution) is free to move, interact and modify itself
on the basis of the information given in the previous evaluations, in general
they move towards the solutions with the best performance. This iterative
process continues until a solution satisfies the algorithm arrest conditions and
is labeled as the optimal one. This family of algorithms is very easy to im-
plement and they can be used in different field applications. However, their
computational weight is not negligible as they require an high number of iter-
ations and evaluations to converge and they are very sensible on the selection
of the starting population. Typical examples of Swarm Intelligence-based Al-
gorithms are: Particle Swarm Optimization (PSO) and Artificial Bee Colony
(ABC). [28]

e Physics-based Algorithms
Physics-based Algorithms are metaheuristic optimization algorithms inspired
by physics phenomena, not by biological ones as for the Swarm Intelligence
type. The basic idea behind these algorithms is that they simulate a physics
system looking for an equilibrium state corresponding to the optimal solution
of the problem, which the system tends to reach autonomously. The general
workflow starts by generating an initial solution, which can be random or
chosen with a certain logic depending on the specific algorithm. This first
solution is then modified on the basis of the physics process on which algorithm
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is inspired. At this point, this population of candidate solutions is evaluated
using the objective function, the best ones are selected and the remaining
discarded. The accepted ones are once again modified and further evaluations
are performed. The process is iteratively repeated until the limit number
of iterations is reached or a solution is accredited as stable. This family of
algorithms is very easy to implement, does not require huge populations to
converge and is able to avoid local minimum points. However, it is not suitable
for multi-objective optimizations and it is slow at finding the optimal solution.
Simulated Annealing (SA) and Harmony Search (HS) are two examples of the
most common algorithms of this family. [58]

e Multi-objective Algorithms
Multi-objective Algorithms are metaheuristic optimization algorithms devel-
oped to solve multi-objective optimization problems. To perform such task,
these algorithms produce as outputs Pareto fronts of optimal solutions, through
which it is possible to select the optimal output depending on the importance
of the objectives or the dominant one overall. Also for these algorithms, their
workflow starts by generating an initial population of candidate solutions, de-
cided either randomly or using certain criteria. These first possible solutions
are evaluated using the objective functions and then ranked using a Pareto
front. At this point, further possible solutions are generated, by either com-
bining the previous ones or mutating them, in such a way that they differ
from the first round’s ones and then also these new solutions are evaluated,
building another Pareto front. This process is repeated iteratively until the
arrest condition is reached, either in the number of iteration or the stability
of the solutions. At this point, all the Pareto fronts obtained are combined
and the result is the non-dominated Pareto front which offers a set of optimal
solutions for the objectives. These algorithms are able to work on very com-
plex systems with an high number of variables and offer at the designers the
chance to pick the best compromise between the objectives that need to be
optimized. However, this comes at a cost as the computational weight of these
algorithms is very heavy and they require a significant number of iterations to
converge. The most common multi-objective algorithms is NSGA-II. [11] [29]

In the following paragraph a focus on the most popular metaheuristic optimiza-
tion algorithms used in the electrical machine design field, including their operational
workflow will be provided.

Genetic Algorithm (GA) Genetic Algorithm (GA) is a metaheuristic algorithm
invented by John Holland in the 1970s and belonging to the Evolutionary Algorithms
family, which means it is based on natural selection and genetics. It is able to per-
form single-objective constrained optimizations on complex and non-linear systems.
Its basic concepts are identical to the ones already presented in EA section. [19]

However, a brief description of its workflow will be provided in the following
lines, to add further detail to this discussion. A schematic summarizing the main
phases of this optimization algorithm can be observed in Fig. 2.4.

Given a certain optimization problem, the one here considered is a minimization
of the objective function fu,; (), but GA is able to solve also maximization problems.
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Figure 2.4: Genetic Algorithm Workflow Schematic Diagram

The standard form of the problem can be observed in 2.14:

mingepn fobj () st g(x) <0, h(zx)=0 with x =[x, 29, ...z, (2.14)

where: fop;() represents the objective function of the problem; g(z) the in-
equality constraints; h(x) the equality constraints and @ the decision variables.

Once the optimization problem has been defined, the Genetic Algorithm builds
the fitness function ffimess(z), a function which is used internally to evaluate the
quality of a possible solution, in terms of probability of it being discarded or not.
This feature is crucial as optimizing the objective function is equal to optimizing
the fitness one. Depending on the type of optimization problem, minimization or
maximization, the fitness function assumes different forms. In fact, if the optimiza-
tion problem aims at maximizing the objective then the fitness function is equal
to the objective one frimness(€) = fobj (r). Meanwhile, in case the problem wants to
minimize the objective, the fitness function assumes, in the most simple case, the

form observable in 2.15. 1

finess r) = — 2.15
poness(®) = Ty (215)

At this point, a random initial population of n candidate solutions P(®) =
[xgo),xg]), ...,:1:7(10)] is generated. Each individual, a vector of decision variables, of

the initial population is evaluated first by the objective function f,; (332(0)) and then
by the fitness function f fitness(xgo)). Consequently, the performances of the individ-
uals are observed and the best ones are selected, according to the criteria chosen
by the specific declination of GA selected. In general, the individuals are chosen
or discarded on the base of a performance ranking or a probability one. The re-
maining individuals are combined, generating other ”child” candidate solutions. An
example of how these "child” individuals ¢; are generated by the combination of

two illustrative parents 4 and #® can be observed in 2.16.

e = [z 2h, o w, wp o, 2] (2.16)
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After the ”child” individuals have been created, to some of them a random vari-
ation is applied, in order to introduce diversity: x;x = x; + Ax;, where Azx; is a
randomly generated number. At this point, after the selection, combination and
mutation processes have been completed, a new population, made of the ”child”
individuals and the modified ones, is obtained and it is once again evaluated using
both objective and fitness functions. The process is repeated iteratively until one of
the arrest conditions is met, either the maximum number of generations is reached
or the optimal point is found.

In addition to the main features already mentioned before, this algorithm reduces
the probability of converging on a local minimum, even if it is still possible, thanks
to the diversification of the population explained before. As it is able to perform
single-objective optimizations on complex systems, it requires a significant amount
of calculations to be performed, especially if the fitness function is non-linear.

GA application in the electrical machine design field, in combination with Fi-
nite Element Analysis tools, is quite common. In fact, the design of an electrical
machine is a constrained, multi variable and complex optimization problem, which
falls into the field of application of GA. In addition, this optimization algorithm is
capable of resolving problems of different nature, like: geometrical (best stator or
rotor topology), thermal (maximum allowed winding temperature) or even electro-
magnetic (maximum torque or efficiency). Consequently, GAs are currently used
for geometry, topology, thermal and magnetic optimizations of every topology of
electrical machines. [45]

It is important to underline, however, that most electrical machine designs nowa-
days require multi-objective optimization problems to be resolved, reason why evo-
lutions, which will be analyzed later, of Genetic Algorithms have been made.

NSGA-II Non-dominated Sorting Genetic Algorithm II is a metaheuristic opti-
mization algorithm belonging to the Multi-objective Algorithms family and intro-
duce by Deb et al. in 2022. [29]

NSGA-II is the optimization algorithm used in the SyR-e software mentioned in
the previous chapter, reason why a description of its general features and workflow
will be performed in the following lines. The justifications for the choice of NSGA-
IT as SyR-e’s optimization algorithm stay within its ability to solve multi-objective
constrained non-linear problems of various nature, from electromagnetic to thermal
ones. It provides as output a non-dominated Pareto front of candidate solutions,
by classifying the results’ fronts obtained at each step. The solutions supplied are
guaranteed not to be too close with each other, thanks to its diversity mechanisms.
The basics of NSGA-II have already been introduced in the paragraph dedicated to
multi-objective algorithms and partially in the GA’s one. However, it is interesting
to describe its operation workflow in a more complete manner. A schematic diagram
summarizing the main steps of the NSGA-II optimization algorithm can be observed
in Fig. 2.5.

40



Chromosome evaluation

|(‘nlcul:\ting FNDS & CD of the individuals

Front determination

Binary tournament
selection

Crossover & mutation

Chromosome evaluation

FNDS & CD

Sort population & choose
N individual

Figure 2.5: NSGA-IT Algorithm Workflow Schematic Diagram

Once again, the operational process starts with the generic definition of an op-
timization problem, which is a multi-objective one this time. Usually NSGA-II
performs the minimization of the objective functions but it is also able to maximize
them in case it is requested. In fact, it is useful to underline that minimizing a neg-

ative function equals maximizing a positive one. The general equation of a typical
NSGA-II problem can be observed in 2.17:

minF (x) = [fi(x), fa(x), ..., fu(z)] st g(z) <0, h(x)=0 with =[x, 29..

(2.17)

where: F'(x) represents the objective vector, containing the various objective

functions that need to optimized ; g(x) the inequality constraints; h(x) the equal-
ity constraints and « the decision variables.

Once the problem has been defined, a first population of candidate solutions
PO = [zcgo), wgo), ey w%o)] is randomly generated. There are various ways in which
X© can be created, either randomly or using sampling methods, like Sobol or
Latin HyperCube (both implemented in SyR-e). Each single member of the popu-
lation is a vector containing the values of the decision variables that might solve the
problem. At this point, the candidate solutions are evaluated by substituting their
variables’” values into the objective functions. Consequently, the Pareto dominance
is calculated and the non-dominated solutions are inserted into a first Pareto front.
It is important to remember that, for example, a solution x; dominates x; if the
conditions shown in 2.18 are respected.

Viell,2,...,J], flx:) < f(z;) and 3j: f(z;) < f(z;) (2.18)

Once the first Pareto front has been defined, those non-dominated solution are
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removed from the initial population. Another Pareto dominance evaluation is then
performed on the remaining solutions of the population, the non-dominated ones are
identified and a second Pareto front is built, which is dominated compared to the
first one. The process is repeated until each member of the population is inserted
in a Pareto front. At this point, NSGA-II algorithm performs the so-called crowd
distancing, which measures how much a solution is isolated, in comparison with
others of the Pareto front to which it belongs; the more distant the solutions are
from each other, the more diverse their front is. The distance d; of a generic solution
x; from the others can be calculated using 2.19.

M

fz‘+1 _ fz’—l
G= D e — i (2.19)
m=1 ‘fm o fm

Once the crowd distance has been calculated, it is time of the individuals’ selec-
tion. This selection is performed using two criteria: the rank of the Pareto front (the
least the better) to which they belong and their crowd distance value (the higher the
better). So, two candidate solutions (from whatever Pareto front) are confronted on
the basis of these two criteria and the one with the best characteristics is selected
as winner and the other discarded. This routine continues until every individual
of the population is analyzed, in such way the remaining solutions are both non-
dominated and diversified. After this step, the ”winner” solutions are combined into
”child” solutions, which are spatially close to their "parents”. In addition, certain
”child” solutions are mutated randomly by adding a small random disturbance, in
such way the space is better explored reducing the risk of premature convergence.
After both the generation and the mutation processes have taken place, a ”child”
population has been generated. The next step consists of combining the ”parent”
and the ”child” populations, generating a bigger one that that has the double of
candidate solutions of the original ones. For this reason, it is necessary to reduce
the number of candidate solutions present in this new population and in order to do
so, a Pareto domination evaluation is performed. This evaluation organizes the solu-
tions in Pareto fronts of non-dominated solutions and a new population having the
size of the starting one is built by adding the Pareto fronts just constructed one at
a time. If one of the fronts does not fit entirely in this new population, the solutions
which enter are selected on the two criteria used before. Following, new evaluations
on this newer population are conducted and the process is repeated iteratively until
the convergence or the arrest condition is met. The final result given by NSGA-II
algorithm is a Pareto front formed by optimal solutions, each one representing a
good compromise between the different objectives. [7]

In addition to main features already mentioned in the first part, NSGA-II algo-
rithm guarantees good diversity of the solutions, thanks to the mechanisms men-
tioned before, and it is very easy to implement. It is also able to analyze the space
in a complete way and this leads to it being able to find the global optimal solution,
not converging on local points. However, all these benefits lead to some critical
points, as NSGA-II has an high computational weight, especially if it operates in
combination with FEA software, due to the high number of objectives functions
evaluations which leads to a slow convergence time.

As testified by its use in SyR-e, NSGA-II algorithm is one of the best and most
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common solutions for the optimization of every type of electrical machines. This
is due to its ability to work on multi-objective non-linear problems taking place in
complex systems with an high number of variables. It is able to solve problems of
various nature, like geometrical, material, thermal, topology and electromagnetic
optimizations, which is an important feature when designing an electrical machine.
This allows a wide spectrum of solutions to be considered, with the possibility of
including additional features like cost, emissions or machine-control optimizations
to the problem without compromising its execution. [44] [34] [57]

In [13] a confrontation between three different multi-objective optimization algo-
rithms, applied on the electrical machine design, has been performed. The families
of the algorithms under analysis are: Differential Evolution (DE), in which NSGA-
IT falls; Genetic Algorithms (GA) and Simulated Annealing (SA). Following all the
preliminary considerations about the problem’s context and the methodology used
for this comparison, the results show how DE is the superior analysis between the
three, due to the fact that it has the best performances in terms of convergence time
and repeatability of the results.

2.1.3 Hybrid Algorithms

Hybrid optimization algorithms are a type of analysis characterized by the com-
bination of two, or more, optimization techniques in order to exploit the benefits
while overcoming the restrictions. This category of algorithms has been created to
overcome the limitations of the ones previously described. In fact, deterministic al-
gorithms are valid options when precision and speed are required but their drawback
is that they might converge on a local optimal point instead of a global one. On
the other hand, metaheuristic algorithms do not generally have this issue, as they
perform a good problem space analysis, but they have significant computational
weights, which lead to long-waited and less precise optimization results.

Generally, hybrid algorithms try to combine both the good problem space ex-
ploration of the metaheuristic ones and also the convergence speed and precision,
characteristics of the deterministic algorithms. For these reasons, hybrid approaches
constitute one of the best solutions for the analysis of multi-objective, non-linear,
constrained optimization problems on complex and multi-dimensional systems, de-
livering both accurate and fast results. However, these hybrid solutions present
several limitations. In fact, these algorithms are more complex to implement, as
an higher number of operational parameters (population, mutation, crossover rate,
etc.) needs to be set before starting the evaluations. In addition, the combination of
the optimization algorithms needs to be developed with proper attention, as if it is
done approximately, it might lead to overall worst performances of the optimization
than the ones had before, as some examples where the computational weight has
increased show. [50] [4]

There are several typologies of hybrid optimization algorithm which will be
briefly explored in the following lines:

e Sequential Hybrids: these optimization techniques are composed by two
different algorithms. The first one is a metaheuristic algorithm (ex: GA or
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DE) which is responsible for exploring the problem’s space and finding the
most promising area. Then, the second algorithm, which is a deterministic
one (ex: SQP or Newton-Rapson), analyzes that promising space identifying
the optimal solution. The operation of the two algorithms is in series as they
operate one at a time and consequently it is of easy implementation.

Strictly Integrated Hybrids: these algorithms are characterized by the full
implementation of a deterministic algorithm inside a metaheuristic one. They
are also called "memetic” algorithms as the operation of two is not in series but
simultaneous. In fact, the metaheuristic techniques performs a problem’s space
analysis and, periodically or randomly, some solutions are better analyzed and
improved by the deterministic algorithm. These solutions proceed then to
substitute the original ones. These algorithms offer high levels of efficiency
and a meaningful balance between the characteristics of its original ones but
the implementation of this type of analysis is very demanding.

Multi-Metaheuristic and Multi-Deterministic Hybrids: these types of
optimization algorithms are characterized by the combination of two (or more)
algorithms belonging to the same family, for example two metaheuristic or
two deterministic ones. The two algorithms can operate in a cooperative way,
in which they operate simultaneously (in parallel) and they share information
with each other, or in a competitive way, in which they operate one at the time
and only the one with best performances continues the resolution. Depending
on the families of the chosen algorithms, their benefits and drawbacks can vary
according to what has been introduced before.

Surrogate-based Hybrids: these optimization techniques have not insignif-
icant differences with respect to the ones showed before. In fact, surrogate-
based hybrid algorithms are characterized by a surrogate model (built via
neural networks for example) of the problem, whose aim is to emulate the
behavior of the system under analysis but in a simplified and less demand-
ing way. Consequently the global metaheuristic algorithm operates on the
surrogate model of the system and not on the real one, having considerable
advantages on the computational point of view as this evaluation is faster than
performing FEA simulations. Nevertheless, some solutions are tested using the
real model of the system in order to verify the correlation between the two.
These methods offer a lower computational weight, compared to other hybrid
algorithms, which ultimately leads to lower convergence times. However, the
surrogate model constitutes a critical part of the technology and for this rea-
son it needs to be constantly updated for it to be accurate. Further detail will
be provided into the next section.

Co-Evolutionary Hybrids: these algorithms have some unique features due
to the fact that the original optimization problem is divided into smaller ones.
Each smaller problem is evaluated by a different optimization algorithm, even
with algorithms of other technologies, and have diverse populations. In addi-
tion, the algorithms of the smaller problems can operate in a cooperative or
in a competitive way. The partial candidate solutions of the smaller problems
are then combined to judge the overall quality of the global problem’s solution
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using the objective functions. Once these evaluations are performed, the feed-
back is communicated back to the single algorithms of the smaller problems,
leading to successive evolutions and newer solutions. This unique feature of
decomposing a bigger problem into smaller ones allows these algorithms to be
able to manage complex systems with an high number of variables, offering
good flexibility performances. However, this strategy has also some limitations
as the decomposition strategy needs to properly studied to be effective and
also the overall computational weight of the optimization problem increases.

Family Strategy Strengths Weaknesses Examples
Sequential Hy- | Global search — | Simple, combines | Depends on | GA + SQP
brid Local search exploration and | global phase, risk
exploitation of inefficiency

Memetic Local search inte- | High solution | Computational GA + Gradient-

grated into evolu- | quality, fast con- | cost, risk  of | based

tionary cycle vergence premature  con-

vergence

Multi- Combination of | Good global (or | Complex (or | GA  + DE,
Metaheuristic multiple  meta- | local) explo- | simple) to design, | MMA + SQP
and Multi- | heuristics (or | ration, resilient | many parameters
Deterministic deterministic) (or sensible) to

local minima

Surrogate-Based | Metaheuristic + | Reduces com- | Accuracy limited | GA + Kriging
surrogate model | putational cost, | by surrogate, re-
handles FEM | quires updates
models
Co-Evolutionary | Subproblems Handles complex | High complexity, | GA for geometry
in cooperative | problems, paral- | risk of interde- | + PSO for mate-
populations lelizable pendence rials

Table 2.2: Hybrid Optimization Algorithms Families.

The main characteristics of the Hybrid Algorithms typologies, just presented,
are reported in Tab. 2.2 for a more immediate comprehension.

For what concerns the usage of Hybrid Algorithms in the electrical machine de-
sign field, these algorithms are one of the most used technology thanks to their
ability of being effective in the optimizations of multi-objective non-linear problems
of complex systems with a high number of variables. Hybrid algorithms are capable
of solving both geometrical, material, thermal and electromagnetic optimizations
which make them a very good tool for electrical machine design. In addition, they
allow less FEA simulation to be performed with evident reductions of analysis’ com-
putational times. The combined usage of different technologies of algorithms allows
also to obtain a better compromise between conflicting objectives of various na-
ture, like maximum torque and minimum cost for example. Performing a literature
overview, it has been possible to observe how these techniques can be effectively
used on almost every electrical machine topology, like induction motors or perma-
nent magnet synchronous machine etc., which enhance even more their validity as
optimization tool. [3] [59]
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2.2 Al-based Methodologies

During the last years, a real Artificial Intelligence (Al) revolution has been taking
place. The term Al refers to the ability of a computer to perform tasks that would
normally have been executed by human beings, for example: learning, reasoning,
recognizing images, understanding language, or making decisions. The implemen-
tation of Artificial Intelligence allows for the automatization of tasks, which are
performed in faster and more precise way than if done by humans, and offers sup-
port in decision making moments, thanks to its ability of managing and analyzing
big quantities of data. Consequently, the reasons behind the large scale adoption of
this tool are evident. In fact, it is revolutionizing most sectors of the present society
and the engineering field has not been immune to these changes.

In the electrical machine design field, Artificial Intelligence is gradually gaining
popularity as Al-based methods offer, in the resolution of complex multi-dimensional
problems, performances and efficiencies that traditional algorithms are not able to
provide. In fact, electrical machine designs require the resolution of multi-objective
non-linear constrained optimization problems, in which commonly the objectives
are in conflict with each other, where the classical deterministic algorithms suffer a
lack of computational efficiency to perform such tasks with the desired performances.

For Al-based methodologies, a wide range of solutions is intended. In fact, the
term Al refers to the capability of an optimization tool to perform the required tasks
"intelligently” , emulating the concept of human intelligence in a totally autonomous
way. For these reasons, there are several methodologies labeled as Al-based even
if they still require human intervention to be performed. In the following lines, an
overview of the Al-based optimization techniques will be performed.

Al-based optimization techniques can be divided into several families:

e Metaheuristic Algorithms: Evolutionary Algorithms, Swarm Intelligence-
based Algorithms and Physics-based Algorithms

e Hybrid Algorithms
e Predictive Models and Machine Learning

Both Metaheuristic Algorithms and Hybrid Algorithms have already been dis-
cussed in previous sections. Therefore, the reader is invited to consult those parts
for further information. Nevertheless, some notions on the reasons behind these
families of algorithms to be labeled as Al-based will be provided.

Metaheuristic algorithms can be considered as Al-based, due to the fact that
these optimization techniques are founded on natural processes. For example, Ge-
netic Algorithms, one of the biggest exponents of the Evolutionary Algorithms fam-
ily, use elements like crossover and mutation that resemble natural selection and
biology processes, which are intelligent as no human action is required. The same
can also be said for Swarm Intelligence-based Algorithms, in which the candidate
solutions interact with each other exchanging information in a way similar to what
happens during human socialization processes.

For what concerns Hybrid Algorithms, being them originated from the combina-
tion of two algorithms, either of the same family or from different ones, they can also
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be considered as intelligent as they inherit the best characteristics of their parents.

Predictive Models and Machine Learning : Optimization techniques based
on Predictive Models and Machine Learning algorithms are what currently is in-
tended for real Al-based methodologies.

First of all, it is important to underline that a predictive model and machine
learning are separate entities. For Machine Learning (ML), it is intended a set
of algorithms that enable computers to learn patterns from data without being
programmed. This technique is used to build models, which might perform various
actions, from a predictive function to a data-generating one. Instead, a predictive
model is a mathematical pattern aiming at predicting the behavior of a system by
estimating its variables’ values. It might be created by a ML algorithm or using
traditional methods, for example linear regression.

However, for the sake of this discussion, only predictive models generated using
ML algorithms will be considered.

Al-based methodologies using Machine Learning algorithms perform optimiza-
tion problems by relying not only on mathematical equations, but also by integrating
models that they are able to learn from data. In fact, they aim to predict results
and reduce computational times. In order for these optimization techniques to be
operational, first a set of actions needs to be performed, in the sense that a ”train-
ing” procedure of the machine needs to take place, for it to be able to solve the
problems.

Original data

Data preparation
Training sel(s) Validation set Test sel

Train the model

Fine tune
the model

Evaluaie the
model

Predictive model

Figure 2.6: Machine Learning Training and Predictive Model Creation Schematic

The workflow behind the ”training” procedure and the generation of a predic-
tive model will briefly be explained in the following lines. However, Fig. 2.6 offers
a schematic summary of the ML training procedure and predictive model creation
for a more immediate understanding.

The first step of "training” consists in feeding a set of consolidated data, coming
from a simulation or a previous analysis, to the machine. At this point, using a
ML algorithm (for example: neural networks or Gaussian processes) the proper
training takes place in the sense that the machine learns the relationship between
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the inputs (decision variables) and the outputs (objectives). The output of the
"training” is a predictive model with whom the machine is able to predict the
behavior of the system under analysis, without having to perform long and expensive
simulations. At this point, the predictive model can be inserted into the already
consolidated optimization algorithms, whose working principles have already been
described, helping in the evaluation of the candidate solutions proposed.
Substantially, at current day Al-based methodologies are more a kind of Hy-
brid Algorithms that implement Machine Learning techniques more than ad-hoc
solutions. In fact, to the author’s knowledge, there is not a ”full AI” optimiza-
tion technique, in which artificial intelligence is responsible for every step of the
process from start to finish, but only hybrids of Al-based simulations and already
in-use optimization algorithms. An example of Machine Learning integration into
a consolidated optimization algorithm can be observed in Fig. 2.7, in which ML is

combined with GA.

ML architecture New generation

| Variable definition |

ML training
evaluate MSE

:

Find the mean

and the best values

Optimal model

Figure 2.7: Example of Machine Learning Integration into GA

To sum up, the main features of Al-based techniques are: good solution space
exploration, as they do not limit the analysis to a few points and so the chance of
converge on a local minimum is reduced; introduction of randomness into the anal-
ysis , which leads to finding better solutions; feasibility of parallel computing, the
task can be divided between various computer’s cores and it adapts well to a com-
bination with Finite Element Analysis tools; and significant adaptability, in terms
of capability of solving problems of different nature. However, the quality of the
training data is one the main limitations of Al-based techniques. In fact, particu-
lar attention must be spent on the data given for training the adaptive model, as
"bad” data could mean wrong outputs and consequently an optimization problem
delivering un-optimal configurations. [51] [30] [32]

Focusing on the electrical motor design scenario, once the ”training” has take

place and has been done using reliable data, there is no further need to use FEA
simulation, except for producing the data used for "training”. In fact, the machine,
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once trained, is able to predict the behavior of an electric motor by just receiving its
input parameters, in effect operating as a ”black box”. At this point, the predictive
model of the electrical machine can be integrated in the algorithms currently in use
for EM design (MODE, GA, exc.), with evident benefits in terms of computational
time as the AI model is able to respond in milliseconds instead of minutes, like FEA
tools.

Following a bibliography research, it has been noted that Al-based techniques
are already in use, offering promising results. In [48] Al-driven methodologies are
evaluated for electrical machines design, predictive maintenance and control opti-
mization. The results obtained show how the implementation of Al offers significant
advancements, both in fault detection and performance optimization of the electrical
machines. A similar type of analysis has been performed in [33], in which Al-based
hybrid solutions are used to optimize an axial flux PM machine, while performing
a study on the minimum number of simulations that can be used to train the ma-
chine model, without incurring in unacceptable errors. The results show that these
methodologies offer fast optimization’s resolution times and result almost identical
to the ones obtained with standard simulation tools. [53] quantifies the effective
time savings obtained by using machine learning algorithms in electrical machine
optimization, the results show how the time required for selecting the algorithm
decreased by 10 times compared to before, while effective optimization time lowered
by an even bigger factor. Last but not least, [37] shows how even more accurate
results can be obtained using proper tools like Scientific Machine Learning (sML)
and Physics-informed Machine Learning algorithms. In fact, these tools, if combined
with high-fidelity FEA simulation results for training, allow to accelerate compu-
tationally expensive tasks in the development of electric machines by hundreds of
times.
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3. Validation of the EESM Parametriza-
tion in SyR-e

This chapter will perform an overview of the steps which leads to the Electrically
Excited Synchronous Machine to be implemented in the SyR-e software. The first
part will explain how it was modeled, both on a geometrical point of view and on
a parameter one. Instead, the second part will talk about the validation processes,

analyzing also the results obtained. Fig. 3.1 summarizes the chapter’s operational
plan.
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Figure 3.1: EESM Machine Implentation in SyR-e Workflow



3.1 EESM in SyR-e

Being the Electrically Excited Synchronous Machine (EESM) not present between
the various electrical machine’s topologies offered in SyR-e, it has been necessary to
add it. In order to succeed in such task, it was required to perform several steps. In
fact, it has been necessary both to create some ad-hoc Matlab functions, represent-
ing the EESM machine’s unique features, and to modify some pre-existing ones, so
that they would be compatible with this new instrument of analysis.

In the following sections, the workflow which lead to EESM machine’s implemen-
tation in SyR-~e, both of its geometrical and electrical parameters, will be explained
in detail, accompanied by the lines of Matlab code which made it possible.

3.1.1 Geometrical Implementation

As already mentioned in during Chapter 1, EESM machines are characterized by a
stator and a rotor, like any other electrical motor.

The EESM’s stator is analogous to ones used for Permanent Magnet Synchronous
Machines (PMSM) or Induction Motors (IM). In fact, they are characterized by a set
(or more) of three-phase electrical windings inserted in the stator’s slots following a
certain logic, defined in a preliminary design phase. As these topologies are already
inserted in SyR-e, to implement the EESM machine’s stator it was only necessary
to transpose the consolidated functions to this new type of analysis.

The EESM’s rotor is instead characterized by a DC current winding, which is
a unique feature of this machine. For this reason, it was not possible to adapt the
work done previously for implementing other electrical machines’ topologies in SyR-
e and an ad-hoc process was required. As already mentioned in the EESM section,
this work will focus only on the implementation of an EESM machine with a salient
pole rotor, the cylindrical type is left for a future development.

The geometrical implementation of the EESM machine in SyR-e begins by defin-
ing its main geometrical rotor parameters. This information arrives directly from
the Graphical User Interface (GUI), which has already been introduced.

The first file under analysis is data0.m, whose main function is to translate and
divide the machine’s dataset, inserted by the user, into smaller classes, depending on
the field of the data: geo (geometrical), mat (material), per (performance), bounds
(limits of the optimization decision variables). In order to make the discussion leaner
and easier to interpret, only data0.m code lines regarding the addition of the main
geometric parameters of the EESM machine’s rotor will be shown below. Further-
more, how these were added to the GUI will be shown at a later stage.

i|% EESM
geo.lyr = dataln.YokeWidth;
geo . hpb = dataln.PoleBodyHeight;
geo .hph = datalIn.PoleHeadHeight;
geo.wp = dataln.PoleWidth;
geo.wb = datalIn.CoilWidth;
geo.hb = datalIn.CoilHeight;
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193 geo.thHead_deg
i geo.r_fillet

dataln.PoleRotHeadAngle;
dataln.PoleRotHeadFillet;

As it can be deducted from these lines, this function receives the values corre-
sponding to several parameters and it associates them with the corresponding field
(in this case geometrical) and with a new Matlab variable. The several EESM’s
rotor geometrical parameters defined in this code will be briefly explained in the
following lines:

lyr = Yoke Width, quantifies how much each yoke of the rotor’s pole is wide;

hpb = Pole Body Height, identifies the length of the pole’s part interconnect-
ing the yoke and its head, but not including this last one;

hph = Pole Head Height, it is "hpb” corresponding quantity for the pole’s
head, it quantifies the pole head’s vertical length;

wp = Pole Width, identifies the width of the element interconnecting the yoke
with the pole’s head;

wb = Coil Width, quantifies the outer diameter of the DC winding wounded
around each salient pole;

hb = Coil Height, shows the vertical length of the DC winding wounded around
each salient pole;

thHeadg, = Rotor’s Pole Head Angle, identifies the amplitude of the angle
between the pole’s body and head

T rinet = Rotor’s Pole Head Fillet, quantifies the radius of the circumference’s
arc connecting the pole’s body and head (if this value is zero then the two are
connected by a right angle).

Once the main rotor’s geometrical parameters have been defined, it is time to
draw the EESM’s rotor. In order to do so, an ad-hoc Matlab script was designed,
whose function is identifying the rotor’s main nodes (or points) so that it can be
drawn in a later stage. The designated Matlab script is nodes_rotor EESM.m,
whose lines can be observed in the following:

16| function [geo,mat,temp] = nodes_rotor_EESM(geo ,mat)

17

slri = geo.Ar; % intermnal rotor radius (mm)
olp = geo.p; % pole pairs (-

20| beta_pu = geo.dalpha_pu; % pole arc extemnsion (pu)
21| hry = geo.lyr; % rotor yoke height (mm)
22| hpl = geo.hpb; % rotor pole body lengt (mm)
23| hp2 = geo.hph; % rotor pole head length (mm)
21| Wp = geo.wp; % rotor pole body width (mm)
25| Wb = geo.wb; % coil width (mm)

26| hb = geo.hb; % coil height (mm)

27| MinTol = geo.pontO; % minimun tolerance (mm)

25| g0 = geo.g; % air gap (mm)
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re_lim = geo.r; % air gap radius (mm)

thHead_deg = geo.thHead_deg; % Head slope (deg)

r_fillet = geo.r_fillet; % Pole head fillet (mm)
slnarcs = 15; % # of arcs for approximation of the pole head

5|% parameters’ check

jif MinTol < 0.01 MinTol = 0.01; end
1if p <= 0 P = 1; end
if hry <= MinTol hry = MinTol; end
if hpl <= MinTol hpl = MinTol; end
if hp2 <= 2 hp2 = 2; end
if wp <= MinTol wp = MinTol; end
if wb <= MinTol wb = MinTol,; end
if hb <= MinTol hb = MinTol; end
if thHead_deg <= 0 thHead_deg = O; end
s51if r_fillet <= 0 r_fillet = 0; end

% parameters’ calculation

s|theta = pi/p/2; % bisector (rad)

ilbeta = pi/pxbeta_pu; % pole arc extension (rad)
sat = 1/(1+p)+0.5; % variable pole body width saturation (pu)
ry = ri + hry; % rotor’s yoke external radius (mm)
rb = ry + hpil; % rotor’s body’s tooth external radius (mm)
re = rb + hp2; % rotors external radius (mm)

The function nodes_rotor EESM.m receives as inputs geo (geometrical), mat (ma-
terial) variables and provides at output geo, mat and and temp (temporary) ones.
The first step consists in associating the respective variables to all the data regarding
the geometrical configuration of EESM machine’s rotor (internat rotor, pole pairs,
rotor yoke height, etc.). Also, the number of arcs narcs used to approximate the
pole head is defined.

Once the main geometrical parameters have been recovered, their values are con-
trolled. A minimum tolerance value is set and each variable’s value is confronted
with it. If, they are smaller than this limit, their value is imposed equal to it.

After these preliminary verifications are concluded, this function calculates the
remaining geometrical rotor parameters’ values, such as: rotor external radius, rotor
yoke external radius, etc.

At this point, the real rotor ”drawing” takes place as it is constructed point by
point using several steps. It is important to underline that this process manages to
obtain only the points necessary to draw one pole of the rotor, not the entire pole
pair (analogous to SyR-e’s GUI).

The process builds the rotor structure starting from the inside towards the out-
side. In fact, first the rotor’s pole yoke is built then its head. A first point is defined
by rotating the internal radius r; by the angle @, starting from a zero angle. The
same is repeated at the rotor’s external yoke radius r,. Consequently, other points
are found either by intersection or by rotation of the previous ones. In addition, also
geometrical compatibility verifications are performed. This process can be observed
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in the lines of Matlab code reported below:

% xpl = ri;
h ypl 0;

xp2 = ri*cos(theta);

5|lyp2 = ri*sin(theta);

xp3 = ryxcos(theta);
yp3 = ryx*sin(theta);

if yp3 > wp/2
[xp4, yp4] = intersezione_retta_circonferenza(0,0,ry,0,wp
/2);
else
xp4 = xp3;
yp4 = yp3;
Wwp=2*yp3;

9| end

xp5 = rb;
ypP5 = yp4;

xp6 =rb;
yp6 = xp6xtan(beta/2);

xM = re;
yM = 0;
tau = beta/2/narcs;

for ii=1:narcs
gamma = beta/2 - (ii-1)=*tau;
[xp7 (ii) ,yp7(ii)] = rot_point (xM,yM, gamma) ;
xp7(ii) = xp7(ii) - gO0*(1/cos(gamma*p)-1)*cos (gamma) ;
yp7 (ii) yp7 (ii) - gO0x(1/cos(gamma*p)-1)*sin(gamma) ;

2| end

The remaining code lines are neglected to shorten this discussion. Nevertheless,
they follow a path similar to the ones mentioned before. In fact, other rotor points
are identified by exploiting the geometrical information available, using tools as
intersections, projections and rotations. In addition, also the geometrical footprint
of the DC winding is performed, in a similar way to the one used up to this point.

At the end of this function, the geometrical parameters defined at the beginning
are re-calculated, exploiting the points defined during this process, and their values
are updated according to more recent evolutions.

At this point, the focus translates on the function: build_matrix EESM.m.
This function receives as inputs temporary and geometrical variables and provides
as outputs a matrix rotore. This matrix contains all the crucial information about
the EESM machine’s rotor, both on geometrical and magnetic levels, and it can be
used for further analysis, for example in FEA software or magnetic analysis.

In the following lines, the code lines and their respective comments will be pro-
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vided. However, to shorten the discussion only the code’s most important parts will
be reported.

s function rotore = build_matrix_EESM(temp,geo)

| %o th

for ii = 2:1:7
x_var = sprintf (’xp%d’,ii);
y_var = sprintf (’yp%d’,ii);
eval (sprintf (’%sy =, temp.(x_var);’, x_var));
eval (sprintf (’%sy=,temp.(y_var);’, y_var));

end

narcs = temp.narcs;
theta = temp.theta;
if geo.r_fillet "= 0

xc_fillet = temp.xc_fillet;

yc_fillet = temp.yc_fillet;
;| end
/|rotore = [];
Mag = [];
% Cu <- Mag || Mag <- Cu

materialCodes;

2| indexEle = 1;

In these first lines of code, the function extracts, from temp (temporary folder),
the points ), necessary to define the rotor profiles’ geometry, and the points z.
(whose lines are not reported), which indicate the boundaries of inner parts of the
rotor where conductors or magnets are positioned. In the following lines, some
geometrical parameters are defined, like the number of arcs narcs necessary to define
the profile. In presence of rotor’s fillets, their coordinates are also extracted from the
temporary folder. At this point, the matrices rotore and Mag, defining the rotor’s
iron and conductor geometries are initialized and then the single materials’ codes
are extracted.

rotore = [rotore
0 0 xp3 yp3 xp4 yp4 -1 codMatFeRot
indexEle
xp4 yp4 xp5(1) yp5(1) ©NaN NaN 0 codMatFeRot
indexEle
1
for ii = 1:1:narcs-1
if ii == narcs-1
[xo(ii), yo(ii)] = calc_center_given_3pts (xp7(ii),
yp7 (ii), xp7(ii+1), yp7(ii+1), xM, yM);
else
[x0(ii), yo(ii)] = calc_center_given_3pts(xp7(ii),
yp7 (ii), xp7(ii+1), yp7(ii+1), xp7(ii+2), yp7(ii
+2));
end
rotore = [rotore

95




79

x0(ii) yo(ii) xp7(ii) yp7(ii) xp7(ii+1) yp7(ii+1l) -1
codMatFeRot indexEle
1;

s0| end

16

The function then proceeds to define the rotor’s first sections by adding lines to
the rotore matrix, including: the coordinates of the single points, the materials codes
and the type of geometric element (0 for lines and 1 for arcs). In case of presence
of fillets, additional information is added. Consequently, each arc of the rotor is
created using an iterative process, which calculates its center using a geometrical
function calc_center_given _3pts.m. This process is repeated iteratively for each
arc and then every single element is added to rotore matrix.

Mag = [Mag
xcl ycl xc2(1) yc2(1) NaN NaN O codMatCuRot indexEle
15
.|Mag = [Mag

xc3 yc3 xc4 yc4 NaN NaN O codMatCuRot indexEle
xc4 yc4 xcl ycl NaN NaN O codMatCuRot indexEle
1

slrotore = [rotore;Mag];

The final part of build matrix EESM.m proceeds to build the Mag matrix,
for the conductors of the EESM rotor, in a way analogous to the one used to build
rotore. Also in this case, the coordinates of the geometrical elements and their
materials are included.

At the end of these processes, the created matrices are unified creating one unique
matrix called rotore, which contains a complete mathematical description of the ro-
tor’s geometry in terms of lines/arcs and materials.

All the information obtained by running the functions nodes_rotor EESM.m
and build_matrix EESM.m is then used in the function drawPole.m. This fea-
ture exploits the processes ran previously to build a complete model of the rotor in
matrix form, both on a geometrical point of view and on a material one, which can
be used by the FEMM software for analysis. In fact, it defines the materials used in
each part of the rotor, and applies rotation and symmetry tools, delivering complete
information ready to be used in the FEA simulations.

Consequently, the inputs of this function are geo (geometrical) and mat (mate-
rial) data and fem (FEA) parameters, like mesh density etc. Meanwhile ,the outputs
are: geo, containing information on the rotor’s geometry and the position of each
material; mat and temp (temporary), which stores information that might be used
in successive steps of analysis.

In the following lines the most important parts of the function and the ones
regarding the EESM machine will be reported.

5| function [geo,temp,mat] = drawPole(geo,mat,fem)

b
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7% This function draw a single standard pole, in zero position

(as drawn in

;| % SyR-e), with labels matrix (BLKLABELSrot),

|% 1) Find the design points (nodes_rotor_xxx), build rotor

matrix

case ’'EESM’
[geo ,mat ,temp] = nodes_rotor_EESM(geo,mat);
rotor = build_matrix_EESM(temp,geo);

end

The first step of this function consists in a confrontation between the rotor type,
selected by the user, and the various types that SyR-e offers. Once, the type of rotor
under analysis is identified, in this case the EESM’s one, the function proceeds to
build the rotor’s matrix finding the design points and materials, exploiting the func-
tions nodes_rotor EESM.m and build matrix EESM.m previously described.

%2) mirror the half pole

rotNeg=rotor;

rotNeg(:,[2 4 6 7]) = -rotor(:,[2 4 6 7]);
rotNeg(:,9) = rotNeg(:,9)+max(rotor(:,9));
rotor=[rotor;rotNeg];

%3) find the centers of all blocks (PMs and air)
BarCenter = defineBlockCenters (temp,fem,geo);

% Rotate rotor in zero position (rotor matrix and labels)

rotor = rotateMatrix (rotor ,90/geo.p*pi/180) ;
rotor checkPlotMatrix (rotor,1e-9);

% Rotate block labels selection points

[xtemp,ytemp] = rot_point(BarCenter(:,1),BarCenter(:,2),90/
geo .p*pi/180) ;

BarCenter = [xtemp,ytemp,BarCenter(:,3:end)];

clear xtemp ytemp;

% Magnetization direction rotation

7|xtemp=cos (atan2(BarCenter (:,7) ,BarCenter (:,6))+(pi/2/geo.p-

eps));
ytemp=sin(atan2 (BarCenter (:,7) ,BarCenter (:,6))+(pi/2/geo.p-
eps));
BarCenter (:,6)=xtemp;
BarCenter (:,7)=ytemp;
clear xtemp ytemp;

s| % %% OUTPUT DATA %%%

5|1 %%% Block centers %%%

geo .BLKLABELS .rotore.xy = BarCenter;
geo.rotor = rotor;
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Once the rotor’s geometrical information has been retrieved, the next steps con-
sists of mirroring the part just built so that the full salient poles of the rotor are
represented. After that, the central points of each element are identified, so that
the respective material of each member of the rotor can be assigned properly. The
rotor and all the identified points are then rotated in zero position of the analysis.
Consequently, the magnetization directions are also rotated, which is essential for
having accurate simulations of the magnetic fluxes crossing the salient poles of the
rotor.

Finally, the outputs of the function are defined, which are: geo.rotor, a geometric
element that contains the rotor’s matrix defining each geometrical element and the
single materials; geo. BLKLABFELS.rotore.zy, a matrix containing the coordinates of
the central points of each element of the rotor for material assignment; temp and
mat, which have been already discussed.

The last part of the EESM’s rotor geometric implementation in SyR-e is com-
posed by the ROTmatr.m function. It is crucial as it is responsible for the ma-
chine’s rotor drawing in FEMM (Finite Element Method Magnetics), the FEA soft-
ware used by SyR-e to perform simulations and analysis. Also for this function, its
inputs are geo (geometrical) and mat (material) data and fem (FEA) parameters.
Meanwhile, its outputs are: rotor, a matrix describing the rotor’s geometry using
lines and arcs for it to be drawn in FEMM; BLKLABELSrot, another matrix con-
taining the boundary conditions and the coordinates of each element; geo and mat,
which contain information about the rotor’s final geometry and materials.

Being this function very long and complex, only its initialization and the parts
regarding the EESM machine will be reported in the following lines.

s|function [rotor ,BLKLABELSrot ,geo,mat] = ROTmatr (geo,fem,mat)

1% Rotor construction.

% rotor: one row per FEMM line or arc
% BLKLABELSrot.xy: center points of FEMM blocks
% BLKLABELSrot.boundary: one row per FEMM bounday
condition
% BLKLABELSrot.BarName: names of flux barrier blocks
p = g€0.P;
ps = geo.ps;
s\ th_FBS = geo.th_FBS;
| = geo.r;
% Ar = geo.Ar;
Im = geo.hc_pux*xgeo.g;
RotType = geo.RotType;
matFBS = mat;
hs = geo.hs;
g0 = geo.g;

% draw a single, straight pole or a rotor slot
if strcmp(geo.RotType,’IM’)
[geo,”,mat] = drawBar (geo,mat,fem);
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5| BarCenter

else
[geo,temp,mat] = drawPole(geo,mat,fem);
end

s|Ar = geo.Ar;

% initialize the matrix for geometry and labels for the total
rotor (ps poles)

rotor0 = geo.rotor;
xy0 = geo.BLKLABELS.rotore.xy;
[nRow_mat ,nCol_mat] = size(rotor0);

[nRow_xy ,nCol_xy] size(xy0);

rotor zeros (ps*nRow_mat ,nCol_mat) ;

zeros (ps*nRow_xy ,nCol_xy);

These first lines of code initialize the function. In fact, geometrical information
is retrieved and assigned to the variables that will be later used. In addition, de-
pending on the machine’s rotor typology, a first pole or slot is drawn. Lastly, the
matrices for the rotor geometry and the boundary conditions are generally created.

else
% replicate the pole (ps-1) times (geometry and
labels)
for ii=1:ps
% geometry
rotorTmp = rotateMatrix(rotor0,(ii-1)*pi/p);
indexEle = rotorTmp(:,9);

rotorTmp (:,9) = indexEle+max(indexEle)*(ii-1);
rotor (1+nRow_mat*(ii-1) :nRow_mat*ii,:) = rotorTmp
% labels

if strcmp(RotType,’EESM’)
[xtemp,ytemp] = rot_point (xy0(:,1),xy0(:,2),(
ii-1)*pi/p);
magdir = atan2(xy0(:,7) ,xy0(:,6))+((ii-1)=*pi/
p-eps)+(cos ((ii-2) *pi)+1) /2xpi;
if "mod(ii,2)

BarCenter (1+nRow_xy*(ii-1) :nRow_xy*ii,:)
= [xtemp, ytemp, xy0(:,3:5), cos(
magdir), sin(magdir), -xy0(:,8)1;

else

BarCenter (1+nRow_xy*(ii-1) :nRow_xy*ii,:)
= [xtemp, ytemp, xyO0(:,3:5), cos(
magdir), sin(magdir), xy0(:,8)1];

end
if ii<ps
BarCenter (4*ii-1,:) = NaN*ones(1l,nCol_xy)

)
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else

if ps == 2x%p
BarCenter (end-1,:) = NaN*ones (1,
nCol_xy);
end

end

else

[xtemp,ytemp] = rot_point (xy0(:,1),xy0(:,2),(
ii-1)*pi/p);

magdir = atan2(xy0(:,7),xy0(:,6))+((ii-1)*pi/
p-eps)+(cos ((ii-2) *pi)+1) /2xpi;

BarCenter (1+nRow_xy*(ii-1) :nRow_xy*ii,:) = [
xtemp, ytemp, xy0(:,3:5), cos(magdir), sin
(magdir), xy0(:,8)];

end
end

In these lines, the first step is to replicate the pole drawn previously ps-1 times,
in terms of both geometry and coordinates for the boundary conditions. In the
EESM machine specific part, an additional calculation is performed. In fact, the
magnetic direction, in terms of orientation of the rotor’s poles, is estimated. These
processes are performed using geometrical tools like rotations and arc-tangents, aim-
ing at building the rotor’s complete structure.

In the following lines, analogous steps are performed also for the other rotor
typologies implemented in SyR-e. After these processes, additional rotor sections
are built, like the the connecting sections between the rotor’s iron and the airgap
or the shaft. These steps are performed, once again, recurring to the geometrical
tools already mentioned. In this procedure, a distinction between a partial machine
analysis (of just one pole) and a full machine one is performed. To shorten the
discussion, only the lines regarding the full machine analysis will be reported.

5/% full machine

Xre2 = re;

yre2 = 0;

xre3 = -re;

yre3 = 0;

xra2 = Ar;

yra2 = 0;

xra3 = -Ar;

yra3 = 0;

if strcmp(RotType, ’EESM’)
rotor = [rotor

0 0 xra2 yra2 xra3 yra3 1 codMatShaft indexEle+1
0 0 xra3 yrad xra2 yra2 1 codMatShaft indexEle+1
15
for ii = 1:1:2%p
[xA,yA]l = rot_point (temp.xp7 (1) ,temp.yp7(1l),pi/p
/2+ii*pi/p);
[xB,yB] = rot_point(temp.xp7 (1) ,temp.yp7(1l),pi/p

60




/2+ii*pi/p+(l-geo.dalpha_pu)*pi/p);

273 rotor = [rotor

274 xA yA xB yB NaN NaN O codMatAirRot indexEle
+1+i1i

275 ];

276 end
277 else

si0|% add label for rotor iron

311 elseif strcmp(RotType, ’EESM’)

312 [xtemp,ytemp] = rot_point(mean([Ar Ar+geo.lyr]l) ,0,pi/2/p)
313 BarCenter = [BarCenter; xtemp ytemp codMatFeRot ,fem.res
,1,NaN,NaN,NaN];

369 elseif strcmp(geo.RotType,’EESM’)

370 [xRotBoundl ,yRotBoundl] = rot_point(mean([Ar,Ar+geo.lyr])
,0,-90/p*pi/180) ;

371 [xRotBound2, yRotBound2] = rot_point (mean ([Ar,Ar+geo.lyr])
,0,(ps-1/2)*180/p*pi/180) ;

372 [xRotAirBoundl ,yRotAirBoundl] = rot_point(mean([Ar+geo.
lyr ,r-hs]) ,0,-90/p*pi/180) ;

373 [xRotAirBound2,yRotAirBound2] = rot_point(mean([Ar+geo.
lyr,r-hs]) ,0,(ps-1/2) *180/p*pi/180) ;

374 [xSleeveBoundl ,ySleeveBoundl] = rot_point(mean([r-hs,r])
,0,-90/p*pi/180) ;

375 [xSleeveBound2 ,ySleeveBound2] = rot_point(mean([r-hs,r])

,0,(ps-1/2) *180/p*pi/180) ;

In these last two code blocks reported, first a specific EESM machine rotor’s
iron label is added, identifying it as material block. Then, also the other elements
of the rotor are labeled but, the code lines are neglected. Following, the EESM spe-
cific boundary conditions, including the borders between airgap, iron and shaft, are
defined. It is important to underline that these represent only the EESM machine
proprietary boundary conditions but, also limits common to all machines’ typologies
exists. However, these common boundary conditions are not reported here.

388 %%% OUTPUT DATA %%%
o | I e %

301/ geo.rotor = rotor;

303| %hhh Block centers %%%
304/ BLKLABELSrot .xy = BarCenter;
305 BLKLABELSrot .BarName = BarName ’;

3071 % Boundaries %%%

s0s) BLKLABELSrot . boundary = [

399 xShaftBoundl yShaftBoundl codBound_periodic;
100 xShaftBound2 yShaftBound2 codBound_periodic;
101 xRotBoundl yRotBoundl codBound_periodic;
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xRotBound2 yRotBound2 codBound_periodic;
xRotAirBoundl yRotAirBoundl codBound_periodic;
xRotAirBound2 yRotAirBound2 codBound_periodic;
xSleeveBoundl ySleeveBoundl codBound_periodic;
xSleeveBound2 ySleeveBound2 codBound_periodic;

1;

BLKLABELSrot.boundary = BLKLABELSrot.boundary(~isnan(
BLKLABELSrot.boundary (:,1)),:); %remove NaN rows

% Rotate boundary selection points

[xtemp,ytempl=rot_point (BLKLABELSrot.boundary(:,1),
BLKLABELSrot.boundary (:,2) ,90/p*pi/180) ;

BLKLABELSrot.boundary=[xtemp,ytemp, BLKLABELSrot.boundary(:,3:
end)];

o

The last lines of the ROTmatr.m function are dedicated to define its outputs.
In fact, the rotor matrix, defining the machine’s rotor geometry, and the BLKLA-
BFELSrot.boundary one, containing all the information about the single block of the
rotor, materials and boundary conditions, are created.

3.1.2 Electrical Parameters Implementation

As it has been underlined in previous sections, the Electrically Excited Synchronous
Machine (EESM) has some unique features, not present in the other machines’
topologies implemented in SyR-e. For this reason, a series of new electrical param-
eters had to be added for this type of machine to be correctly implemented.

The presence of the rotor DC winding has consequences in terms of additional
electrical parameters that need to be defined for an effective implementation of the
EESM machine. In fact, this winding is crossed by a certain "field” current iy,
which is responsible for generating the excitation field, that needs to be modeled
in the machine’s SyR-e transposition. Consequently, both a field current ¢y and a
rotor current density Jy need to be added as electrical variables. In addition, the
DC winding is characterized by a certain resistance value, called field resistance Ry.

In order to insert these parameters in SyR-e, once again, the data0.m function
has been used. Following the user selection of the amplitude of these entities in
the GUI section, these parameters, which are then part of a dataset, are translated
by this function and assigned to the respective field of interest, either geo (geo-
metrical), mat (material), per (performance), bounds (boundary conditions) or objs
(objectives).

The lines of code regarding the implementation of these EESM-original param-
eters will be reported below.

function [bounds, objs, geo, per, mat] = dataO(dataln)

7| per . kj = dataln.ThermalloadKj;
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s|per.i0 = dataln.RatedCurrent;

per .Rs = dataln.Rs;

per .Lend = dataln.Lend;

per.J = dataln.CurrentDensity;

per . Jf = dataln.RotorCurrentDensity;

per.if = datalIn.FieldCurrent; % rotor current
for EESM

per .Rf = dataln.Rf; % field circuit

resistance

5| per .10 = datalIn.RatedFieldCurrent;
i per . JEPU = dataln.FieldStatorCurrentDensityRatio;

ij|geo.win.kcuf
7lgeo.win.NE

datalIn.RotorConductorFillingFactor;
dataIn.FieldTurns; % turns in series per

pole

In these lines of code, it can be observed how the various EESM specific parame-
ters, present in the dataset, have been divided between the geometrical field and the
performance one. The electrical parameters added, inserted within the performance
data of the machine, are: rotor current density J¢; field current iy; field resistance
Ry; rated field current 77y, which is the nominal value of reference for the field cur-
rent, and the ratio between the field and stator current densities J;py. Instead,
for what concerns the additional geometrical entities, these are related to the DC
winding. In fact, the two implemented parameters are respectively: rotor conductor
filling factor k/ , which quantifies how much the conductors’ area is actually filled,

cu?

and number of turns of the field winding Ny.

At this point, the proper implementation of the EESM machine is SyR-e is
almost complete. However, some more steps need to be executed, adapting pre-
existing functions.

The first function under analysis is FEMMfitness.m. This function is one of
the most crucial ones of the SyR-e software. In fact, it is responsible for running the
FEA simulations, in FEMM, by using the data coming either from a pre-existing
machine or from the optimization setup decided by the user in the GUI. The inputs
of this function are several sets of data, in specific: R(), which is the set of pa-
rameters whose value needs to be optimized; geo, geometrical information about the
machine under analysis; per, contains the performance variables of the machine; mat,
expresses the materials of the elements present; eval;ype, which defines the type of
analysis that needs to be performed (either an optimization of a new machine or of
an existing one, etc.), and filenameln, which is a vector containing the name of the
input file of this function. FEMMIfitness.m’s outputs are instead: cost, a matrix
containing the values of the objectives after the optimization has been performed;
out, a matrix containing the values of the performance variables after the analysis has
been performed; pathname, which contains the path necessary to retrieve the output
information of the process; geo and mat, whose meaning has already been explained.

As FEMMfitness.m Matlab code is very long and complex, only a portion
of it will be reported. This part is the most relevant one for the EESM machine
implementation, as it introduces two ad-hoc functions that have been developed
appositely to add this machine to SyR-e.
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function [cost,geo,mat,out,pathname] = FEMMfitness (RQ,geo
,per ,mat ,eval_type ,filenameln)

if ~“isempty (RQ)
% MODE optimization (RQ geometry)
RQ=RQ’;

geo.pathname=pwd () ;

if strcmp(eval_type,’MO_0A’)

RQ % debug .. when syre crashes it is useful to
have visibility of last RQ
end
[geo,gamma ,mat] = interpretRQ(RQ,geo,mat);

per.gamma=gamma;

[geo,mat] = draw_motor_in_FEMM(geo ,mat,pathname,filename)
[",geo] = calc_endTurnlLength(geo) ;

[“,geo] = calc_endTurnFieldLength (geo);

% flag_OptCurrConst = 1;

switch per.flag_OptCurrConst
case 0 7% constant thermal loading

per.loss = NaN;
per.J = Nal;

case 1 7 constant current density
per . kj = Nal;

per .Loss = NaN;
case 2 7 constant current

per .kj = NaN;
per .Loss = NaN;
per.J = NaN;

end

per = calc_iO(geo,per ,mat);

% warning(’Define the ratio between stator and rotor
current density’)

per.Jf = per.J*per.JfPU;

per = calc_if (geo,per,mat);

per.if = per.if0;

% if any(strcmp(geo.0OBJnames,’Fdq0’))
YA per0 = per;

% perO.overload = 0;

YA per0.gamma = 0;

% per0O.nsim_singt = 1;

yA end

else
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% post proc or FEMM simulation (existing geometry)
copyfile(filenameIn,[pathname filename]); % copy .fem in
the temporary folder

50| end

In these lines, the function proceeds first to check the type of analysis that
needs to be performed, if it is an optimization or another kind. Then, it withdraws
geometrical and material data, in combination with the analysis’ objectives and
decision variables. After this step, it proceeds to draw the electrical machine in
the FEMM software. At this point, this function estimates the windings’ end turns
length. If this procedure for the stator AC windings is already consolidated, the same
can not be said for the DC rotor winding. In fact, it has been necessary to develop
a proper function, called calc_endTurnFieldLenght.m, in order to estimate the
length of the DC winding end turns. The code of this inner function can be observed
below.

function [lendf,geo] = calc_endTurnFieldLength(geo)
% computation of the field coil end-winding length

Wp = geo.wp;
wb geo .wb;

lendf = pix*(wp/2+wb/2);

;) geo.lendf = lendf;

This very simple function is able to calculate the field winding end turn length,
in average value, by exploiting the rotor pole body width w, and the coil width w,.
The DC winding end turn length is estimated by using the formula of the circum-
ference perimeter, in which the diameter is composed by the sum of half w, and wy.

After this simple estimation, FEMMfitness.m proceeds first to define if the
optimization is performed imposing one between the thermal loading, current density
or the current as constant. Then, this function estimates the values of various
electrical parameters. The first one to be estimated is the nominal stator current g,
which is obtained using a proper function already implemented for other topologies.
Then, the field current density J; is calculated, by exploiting the product between
the stator current density J and the ration between the two Jypy. At this point,
it is time to estimate the field currentiy, flowing into the rotor DC winding. To
estimate this entity, an ad-hoc function, named calc_if.m, has been developed and
its code lines can be observed in the sequent lines.

function [per] = calc_if (geo,per ,mat)
Jf = per.Jf;
if0 = per.if0;
1 = geo.l/1e3; % stack length [m]
lendf = geo.lendf/1e3; % end-winding length [m]
;| N = geo.win.Nf; %» number of turns in series per
pole

if isfield(geo,’Acoilf’)
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Acoilf = geo.Acoilf/1e6; % slot area [m~2]
26| else
Acoilf = NalN;
end
kcuf = geo.win.kcuf; % slot filling factor
P = geo.p; % pole pairs number
;] tempCu = per.tempcu; % target copper temperature [C]
if exist(’mat’,’var’)
ro0 = 1/mat.BarCond.sigma;

alphaCond = mat.BarCond.alpha;
rocu = roO*(1+alphaCond*(tempCu-20));
else
rocu = (1.7241e-08) *(234.5+tempCu) /(234.5+20) ;
warning(’Copperurotoruwindingucomputation’);
end

flag = 1;

s5/if “isnan (Jf)

if0 = Jf*x(Acoilf*1le6xkcuf)/Nf;
elseif “isnan(if0)

Jf = if0/(Acoilfxle6*kcuf) *Nf;

flag = 0;
else

warning (’Wrong, field currrent input!’)
end

Rf = rocu*x(l+lendf)/(Acoilfx*xkcuf)*Nf "2x(2x*p);

| per .Rf = Rf;

per.if0 = ifO0;
per.Jf = Jf;

This inner function is able to estimate both the field current i and the field
winding resistance . It is able to do so by exploiting both the geometrical and
performance data available and by consequently applying the right formulas depend-
ing on the single case scenario. The procedure used can be read in the lines code,
which are of immediate and simple interpretation.

At this point, FEMMfitness.m proceeds then to perform various analysis be-
longing to different fields, depending on the type of examination required and on
the objectives selected in the setup phase. Both mechanical and electromagnetic
simulations, of the machine under analysis, can be performed. For this specific dis-
cussion, only the electromagnetic simulations will be considered. These simulations
are performed, after having drawn the machine in FEMM, by running the function
simulate_xdeg.m. This function is able to emulate the electromagnetic behavior of
an electrical machine and consequently, it offers as output all the variables’ values of
main interest, which will constitute the out and cost vectors, like: torque, currents
(on d-q axis), fluxes, torque ripple, etc. The importance of this function is then evi-
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dent for the overall success of the optimization process. It is important to underline
that simulate_xdeg.m is completely compatible with the EESM machine, even if
some adaptation, here neglected to shorten the discussion, were necessary.

3.1.3 GUI Implementation

As it has been previously discussed, the Graphical User Interface is a very conve-
nient SyR-e tool. In fact, it allows for an immediate and simplified comprehension
of each electrical machine parameter, to choose rapidly the analysis to perform and
to select additional fields of study, depending on the single case scenario. In a few
words, the GUI simplifies the designer’s work, causing significant savings of time
compared to SyR-e usage without this tool.

Every electrical machine topology supported by SyR-e is implemented in the
GUI and for the EESM machine, no exception was made. In order to do so, several
pre-existing functions have been modified to efficiently support the EESM machine.

The first function that was adapted for implementing the EESM machine is
GUI_APP _SetParameters.m. It is responsible for managing the GUI’s inter-
face, which allows to insert the electrical machine’s parameters. This function is
the one behind the benefits given by the usage of the GUI. In fact, exploiting its
features, the user is able to modify the values of the various parameters by just click-
ing and writing in the desired box, instead of using SyR-e’s proper code to apply
modifications.

In the lines below, only some of the lines regarding the implementation of the
EESM machine are reported, due to the fact that this function is very complex and
extensive.

s|function GUI_APP_SetParameters (app)

7ldataSet = app.dataSet;

set (app.currentMotFileName ,’Value’,dataSet.currentfilename) ;

% Main data panel
set (app.PolePairsEdit,’Enable’,’on’,’Value’ ,num2str (dataSet.
NumOfPolePairs)) ;

;| set (app.Num0fSlotsEdit, ’Enable’,’on’,’Value’ ,num2str (dataSet.

NumOfSlots)) ;
set (app.NumberofstatorslotsEditField, ’Enable’,’on’,’Value’,
int2str (dataSet.NumOfStatorSlots));

5| set (app . Numberof3phasesetsEditField,’Enable’,’on’,’Value’,

int2str (dataSet.Num3PhaseCircuit)) ;

j|set (app.GapThiEdit , ’Enable’,’on’,’Value’,num2str (dataSet.

AirGapThickness)) ;

‘| set (app.StatorOuterRadEdit ,’Enable’,’on’,’Value’ ,num2str (

dataSet.StatorOuterRadius));

set (app.AirGapRadiusEdit, ’Enable’,’on’,’Value’ ,num2str(
dataSet.AirGapRadius));

set (app.ShaftRadEdit, ’Enable’,’on’,’Value’,num2str (dataSet.
ShaftRadius)) ;
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set (app.StackLenghtEdit , ’Enable’,’on’,’Value’ ,num2str (dataSet
.StackLength));

set (app.TypeOfRotorList ,’Enable’,’on’,’Value’,dataSet.
TypeOfRotor) ;

elseif (strcmp(dataSet.TypeOfRotor,’IM’)||strcmp(dataSet.
TypeOfRotor ,’EESM’))

set (app.NumberOfLayersEdit ,’Enable’,’off’,’Value’ ,num2str
(dataSet .NumOfLayers));

set (app.AlphapuEdit,’Enable’,’off’,’Value’ ,mat2str(
dataSet .ALPHApu)) ;

set (app.AlphadegreeEdit , ’Enable’,’off’,’Editable’,’off’,”’
Value’ ,mat2str (dataSet.ALPHAdeg)) ;

set (app.hcpuEdit,’Enable’,’off’,’Value’ ,mat2str (dataSet.
HCpu)) ;

set (app.hcmmEdit,’Enable’,’off’,’Editable’,’on’,’Value’,
mat2str (dataSet .HCmm) ) ;

set (app.DxEdit , ’Enable’,’off’,’Value’,mat2str (dataSet.
DepthOfBarrier));

set (app.BetaEdit, ’Enable’,’off’,’Value’ ,mat2str (dataSet.
betaPMshape)) ;

set (app.CentralBarriersShrinkEdit ,’Enable’,’off’,’Value’,
mat2str (dataSet.CentralShrink)) ;

set (app.NarrowFactorEdit ,’Enable’,’off’,’Value’,mat2str (
dataSet .NarrowFactor)) ;

set (app.RadShiftInnerEdit,’Enable’,’off’,’Value’ ,mat2str(
dataSet.RadShiftInner));

set (app.ThetaFBSEdit , ’Enable’,’off’);

set (app.TanRibEdit , ’Enable’,’off’,’Value’,mat2str (dataSet
.TanRibEdit)) ;

set (app.RadRibEdit ,’Enable’,’off’,’Value’,mat2str (dataSet
.RadRibEdit)) ;

set (app.SplitRibsEditField,’Enable’,’off’,’Value’,’0’);

set (app.RadRibCheck, ’Enable’,’off’,’Value’,dataSet.
RadRibCheck) ;

% EESM motor panel
if strcmp(dataSet.TypeOfRotor,’EESM’)
% set(app.PoleAnglepuEditField,’Enable’,’on’,’Editable’,’
on’,’Value’ ,num2str (dataSet.PoleAnglepu));
set (app.PoleAnglepuEditField, ’Enable’,’on’,’Editable’, ’on
>,’Value’ ,num2str (dataSet . ALPHApu));
set (app.YokewidthmmEditField , ’Enable’,’on’,’Editable’,’on
>, ?’Value’ ,num2str (dataSet.YokeWidth)) ;
set (app.PolebodyheightmmEditField ,’Enable’,’on’,’Editable
>,%0on’,’Value’ ,num2str (dataSet.PoleBodyHeight)) ;
set (app.PoleheadheightmmEditField,’Enable’,’on’,’Editable
> ,70ff’,’Value’ ,num2str (dataSet.PoleHeadHeight)) ;
set (app.PolewidthmmEditField , ’Enable’,’on’,’Editable’,’on
> ,’Value’ ,num2str (dataSet .PoleWidth)) ;
set (app.CoilwidthmmEditField, ’Enable’,’on’,’Editable’,’on
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> ?’Value’ ,num2str (dataSet.CoilWidth)) ;

set (app.CoilheightmmEditField , ’Enable’,’on’,’Editable’,”’
on’,’Value’ ,num2str (dataSet.CoilHeight));

set (app.PoleHeadFilletmmEditField ,’Enable’,’on’,’Editable
>,%0on’,’Value’ ,num2str (dataSet.PoleRotHeadFillet)) ;

set (app.PoleHeadAngledegEditField ,’Enable’,’on’,’Editable
>,%0n’,’Value’ ,num2str (dataSet.PoleRotHeadAngle));

set (app.NumberofturnsperpoleEditField,’Enable’,’on’,”’
Editable’,’on’,’Value’ ,num2str (dataSet.FieldTurns)) ;

set (app.CoilfillingfactorpuEditField, ’Enable’,’on’,”’
Editable’,’on’,’Value’ ,num2str (dataSet.
RotorConductorFillingFactor));

5|if strcmp(dataSet.TypeOfRotor ,’EESM’)

set (app.YokeWidthBouCheck ,’Enable’,’on’);

set (app.PoleBodyHeightBouCheck ,’Enable’,’on’);
set (app.PoleAnglepuBouCheck, ’Enable’,’on’);

set (app.PoleWidthBouCheck ,’Enable’,’on’);

set (app.CoilWidthBouCheck, ’Enable’,’on’);

set (app.CoilHeightBouCheck ,’Enable’,’on’);

set (app.PoleRotHeadFilletBouCheck ,’Enable’,’on’);
set (app.PoleRotHeadAngleBouCheck , ’Enable’,’on’);

if dataSet.YokeWidthBouCheck

set (app.YokeWidthBou, ’Enable’,’on’);
else

set (app.YokeWidthBou, ’Enable’,’off’);
end

Observing the upward code lines, it can be seen how this function operates. In
fact, it enables the possibility for the user of modifying the single parameters of the
electrical machine under analysis. First, it is the turn of the main ones, like: number
of pole pairs, number of slots, number of three-phase sets, etc. Then, depending on
the topology selected, the same is repeated for the specific variables of the single
topologies. This is the case also for the EESM machine. In fact, when the function
confronts the type of rotor and detects that an EESM is under analysis, it automat-
ically enables the possibility of editing the parameters of this machine and blocks
the ones of the other topologies. In addition, also the verification that the values
inserted respect the boundaries, obtained from the back_compatibility.m file, is
performed and if the value inserted is higher or lower then its respective limits, the
function changes it autonomously to the value of the closest limit. This process is re-
peated for each EESM variable, even if in the code lines only an example is reported.

The other function that was modified is: GUI_APP_DrawMachine.m. This
function is responsible for drawing one pole of the electrical machine under analysis
in the GUI. In fact, the user is able to observe in real time the consequences of the
changes of the single parameters by just looking at the sketch of the machine in the
low-right hand side corner of the GUI. This feature is very useful as, it makes of
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easier comprehension the meaning of the machine’s single parameters.
In the following lines, a brief overview of the function will be exhibited, with a
focus on the EESM machine characteristic parts.

;) geo . mAl

s function app = GUI_APP_DrawMachine (app)

7% flag_plot = ’Y’;

h = app.AxisGeometry;
dataSet = app.dataSet;

[, 7, geo,per,mat] = dataO(dataSet);

[geo,gamma ,mat] = interpretRQ(geo.RQ,geo,mat);
% nodes
[rotor,”,geo] = ROTmatr (geo,fem,mat);

26| [geo ,stator ,”] = STATmatr (geo,fem) ;

GUI_Plot_Machine (h,rotor) ;
GUI_Plot_Machine(h,stator) ;

% Rated current computation (thermal model)
[“,geo] = calc_endTurnFieldLength(geo);

per = calc_if (geo,per ,mat);
dataSet.RotorCurrentDensity = per.Jf;

sldataSet.RatedFieldCurrent = per.if0;
jldataSet .Rf = per.Rf;

dataSet.RotorCurrentDensity = per.Jf;

% Mass and Inertia computation
geo.pShape = dataSet.pShape;
geo.mCu = calcMassCu(geo,mat);
geo .mPM calcMassPM(geo ,mat) ;
calcMassAl (geo,mat) ;
[geo.mFeS,geo.mFeR] = calcMassFe (geo,mat);
if strcmp(geo.RotType, ’ EESM’)
geo.J = NalN;
warning (’Rotor inertia_ not,yet computed’)

These lines of code start by defining the function. Then, the function proceeds
to retrieve the data, which is required to draw the electrical machine under analysis
and perform some immediate estimations. Consequently, geometrical, material, per-
formance, objective and decision variables data is extracted and saved. This data is
then used to draw both the stator and the rotor, by defining first their nodes and
elements, using the inner functions ROTmatr.m and STATmatr.m. After the
two main geometrical elements of the machine have been drawn, the function pro-
ceeds to perform some immediate estimations, like calculating rated stator current
(whose steps are here neglected). For the EESM specific case, the following addi-
tional calculations are also performed: DC winding end turns [.,qr, field current
if, rotor current density Jy, field winding resistance R; and rated field current 4.
The knowledge of these parameters is crucial as they will be used not only in elec-
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tromagnetic simulations but also in thermal ones. In addition, this function is also
able to estimate mechanical parameters like the mass and inertia of the machine.
After the other lines of code, here neglected for space reasons, are run, this function
completes its task of drawing a pole of the electrical machine under study in SyR-e’s
GUI, having estimated both electrical, thermal and mechanical parameters in the
meanwhile.

3.2 EESM Implementation Validation

In order to verify the correct operation of the EESM implementation in SyR-e,
a series of test analysis has been performed. These procedures are necessary to
detect the presence of possible errors, either in the geometrical or in the electrical
parts, committed in the functions’ development or adaptation. For these reasons,
two different simulation runs are executed: a multi-objective optimization with 60
generations of 60 individuals each and a design space sampling through Sobol set
mapping (with more than 9000 cases). Summarizing, an optimization first and then
a sensitivity analysis will be performed, in such a way that these modifications are
tested in different environments and dealing with tasks of various nature.

The validation procedures that will be carried out and described in the following
lines will be executed using the ICEM24 motor as basis. This electrical machine is
present in SyR-e’s library of machines’ examples. However, being the ICEM24 not
an EESM, it has been modified by changing its rotor type to an EESM. It is known
that this leads to having a not properly designed machine but, this ensures that
the results obtained are even more satisfactory, as the analysis have been carried
out on an un-optimal sample. Consequently, the result obtained for a proper-EESM
machine will be even better.

3.2.1 Validation with MODE

As already mentioned, the first type of validation procedure is an optimization one.
This analysis is performed exploiting the Multi-objective Differential Evolution algo-
rithm, which has been discussed in the previous chapter. The optimization problem
setup has been carried out selecting only two objectives: an output torque value
and maximum torque ripple one. It is important to underline that, even if the tar-
get torque value is negative, the algorithm aims at maximizing its value. In fact,
optimizing a positive variable is equivalent to minimizing a negative one. For what
concerns the decision variables, seven have been selected. It is important to under-
line that all the decision variables connected to the EESM machine rotor were only
selected, as this procedure aims to verify if the implementation process was executed
properly. Being the stator identical to the well-consolidated ICEM24.m machine’s
one, it is supposed that it will not generate any issues in the optimization process.
The full optimization setup, with the target values and boundaries of each variable,
can be observed in Fig. 3.2 and Fig. 3.3.

Before launching the first full optimization procedure, a manual code verification
has been carried out by running the functions manually in Matlab’s Debug Mode.
After these manual checks have delivered positive results, the real optimization
process was launched. The proper optimization test kept going for several hours,
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Figure 3.2: MODE EESM Validation Objectives
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Figure 3.3: MODE EESM Validation Decision Variables

approximately five, until it stopped as it concluded its evaluations on the populations
generated. Consequently, it can be concluded that the EESM implementation was
successful in terms of the optimization analysis, even if the results will be analyzed
in a following section.

3.2.2 Validation with Sobol Set Mapping

The second analysis test conducted is composed by a sensitivity analysis using the
Sobol space mapping method. Sobol is quasi-random sampling algorithm used to
explore efficiently the design parameters’ space. It is capable of generating a set
of uniformly distributed points in the multidimensional variables’ space. It is usu-
ally preferred over standard random sampling algorithms as it guarantees a more
uniform space analysis, less variation in the simulation results, obtained using also
less samples. The use of Sobol allows to perform efficient sensitivity analysis and
consequently, to identify the relationship between the design parameters and the
machine’s performances, without recurring to computationally significant additional
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FEA simulations.

If the machine under test was the same of the first analysis (still an EESM
adaptation of the ICEM24 motor example present in SyR-e), some features were
different. In fact, this verification was composed of two identical smaller ones. For
each simulation, the population was set equal to 4096 individuals and the analysis
performed imposing a constant current density, with a ratio of 0.8 between the rotor
and stator current densities.

For this case study, more objectives were selected: output torque, torque ripple,
copper mass, stator Joule losses and rotor Joule losses. The chosen decision vari-
ables were all the ones available for the EESM machine rotor. No decision variables
regarding the machine’s stator were selected as it is not subject of analysis, com-
ing from a well-consolidated technology. In such way, the simulation is the most
complex one, from the rotor’s point of view, and positive results indicate that the
implementation of the EESM machine does not create any issues and works properly.

It is important to underline that the real objective of this analysis regards only
the validation of the EESM machine in SyR-e, not the results obtained.

In addition to the preliminary setup, it is crucial to highlight that the mechan-
ical and thermal analysis performed automatically by SyR-e have been turned off
for this simulation. This choice was made to avoid errors from taking place as the
EESM machine has not been properly implemented in those field. Consequently, the
upcoming analysis will focus only on the geometrical and electro-magnetical aspects.

The overall simulation setup can be observed in Fig. 3.4 and in Fig. 3.5.
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Figure 3.4: Sobol Sampling EESM Objectives

Also in this case, before launching the real analysis, some manual testing was
performed exploiting Matlab’s Debug Mode. Being the results promising, in the
sense that no errors occurred, the real problems were launched. Both simulations
concluded without delivering errors, even if their computational time was longer
than the one of the first analysis, concluding after approximately 10 hours each.
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Nevertheless, both simulations delivered their respective results which will be dis-
cussed later. Consequently, it can be concluded that the EESM optimization was
successful for this type of review also.

3.3 Results and Comments

The following section aims at presenting the results obtained from the validation
analysis performed on the newly implemented EESM machine in SyR-e. In addition
to the pure results, explanatory comments and figures will be reported for a more
immediate interpretation.

3.3.1 MODE Optimization Results

After all preliminary verifications and setup steps were completed, as depicted in
the previous sections, the proper optimization validation procedure has been per-
formed. The computational weight of this type of analysis was not insignificant,
reason why it has been necessary to use a virtual machine, made available by Po-
litecnico di Torino. Exploiting this machine’s larger computational capabilities, it
was possible to obtain the optimization results in approximately five hours, partly
thanks to SyR-e’s ability to exploit Matlab’s Parallel Computing toolbox.

After all the steps of the analysis were completed, SyR-e automatically provided
the results in terms of both pure data, in Matlab files, and graphical figures for a
more immediate understanding. The software has been able to generate bar charts
regarding each one of the objectives and the decision variables, highlighting the dis-
tribution of their values between the various machines generated in the population.
In addition, also a Pareto front was delivered to underline the best compromise
between the desired objectives and their goal values.

In the following pages, the just mentioned figures will be reported, starting from
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the decision variables and then going to the objectives. The Pareto front will be
neglected as the only goal of this simulation is the pure verification of the correctness
of the EESM implementation procedure.

Fig. 3.6 shows the distributions of the decision variables’ obtained from this
first simulation. In particular, Fig. 3.6a and Fig. 3.6b represent respectively the
values taken by the field winding coil height hb and by rotor’s pole body height hpb.
Observing the left hand side figure, it can be seen that in most cases the variable
reaches the higher limit value. In addition, the most of remaining ones have a value
of 5mm, coinciding with the constraint lower value. This leads to the conclusion
that the constraint limit values are too strict for this value to reach its optimal value.

A similar pattern can be observed also in the right hand side figure. However,
in this case only a few subjects reach the higher limit value and most of them are
within the limits, far from the lower one. In fact, the lowest value observed is ap-
proximately 16.4mm, which is significantly closer to the upper constraint than to
the lower one. Consequently, it could be interesting to observe the results in case
the limits of the constraints are enlarged.

Fig. 3.6c and Fig. 3.6d represent respectively the values taken by the rotor’s
yoke width lyr and its pole head fillet 7. By rapidly observing these figures, it
can be observed that the values taken by the yoke widths in the candidate machines
are, once again, very close to their upper limit value of the constraints. This trend
may signal that the constraints used for this analysis are too strict and may be
enlarged in a future simulation to obtain the optimal value of the variable.

A different trend can be seen for the pole head fillet. In fact, it never reaches
the higher limit value but, instead, the most common value coincides with the lower
constraint limit. Consequently, it is possible that the optimal value of this variable
stays below the lower limit value.

Fig. 3.6e and Fig. 3.6f represent respectively the values taken by the rotor’s pole
head angle thHead-deg and the field winding coil width wb.

From a rapid observation of the graphs, it can be seen that the most common
pole head angle is equal to zero, with a few exceptions having values higher than one.
Meanwhile, the coil width has a very different distribution. The variety of values
is more diversified this time. In fact, for most candidates their value is very high
and close to the upper limit of the constraint. However, for some cases the value is
lower and lowest one is 2mm, which coincides with the lower limit of the constraint.
Nevertheless, most individuals present an amplitude higher half of the range, which
lead to the conclusion that in a future analysis its limits could be enlarged.

Fig. 3.6g shows the distribution of the pole width wp values of the candidate
machines obtained from the optimization problem. As it can be seen from the bar
chart, the values are not evenly distributed within the constraint limits. In fact,
there are several candidates having values coinciding with upper limit and an even
bigger part characterized by a smaller one, a few coinciding with lower limit value of
this constraint. The discrepancy observed in the previous figures is observable also
in this one and they can all be re conducted to unorthodox adaptation of a PMSM
born machine to being an EESM one.
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Nevertheless, to provide an higher level of completeness of this discussion, also
the other results regarding the objectives will be reported in the following pages.
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Fig. 3.7 and Fig. 3.8 show the optimization outputs regarding the two objectives
of torque and torque ripple. As it can be observed from the left hand side figure,
only a limited number of machines respect the analysis initial objective target value
of an output torque equal to 180 Nm. In fact, most of the machines provide a torque
value significantly smaller than the one initially wanted.

An even more worrying trend can be observed for the torque ripple objective.
In fact, in the simulation setup a target torque ripple value of 25 Nm was selected,
which constitutes more than 10% of the target torque. From the right hand figure,
it can be seen that most of the proposed machines do not respect the initial target
value. In fact, it can be observed that the machines delivering the requested torque
produce a very high torque ripple. The only individuals that have torque ripple val-
ues in the same range of the objective provide an output torque significantly lower
than the one requested initially.

The previous considerations highlight how the results obtained from this first
optimization test for an adapted EESM version of the ICEM24.mat machine are
not acceptable, in terms of pure machine designing. The poor quality of the output
results is strictly connected to the "raw” adaptation of the electrical machine geom-
etry, born to be used with permanent magnets, to a new type of rotor. In addition,
the optimization procedure waists iterations in trying to calculate the MPTA angle
v, even when not selected as variable, which leads to the worst overall design space
exploration, ultimately resulting in the discrepancies observed between the values of
the same objectives. Last but not least, also the fact that the stator of the machine
was not subject of the optimization process, but only its rotor, made the results
even worse.

However, the main goal of this type of analysis was not to deliver a final design
of an EESM machine. In fact, it was to verify if the EESM implementation process,
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previously described, was successful or not. Considering the fact that the simulation
proceeded without stopping for unexpected errors and delivered the presented results
(even if they were not satisfactory), it can be concluded that the main objective of
this analysis was completed.

3.3.2 Sobol Set Mapping Results

After the simulations setup were prepared, as explained previously, the two Sobol
mapping simulations were launched. These analysis were carried out one at the
time. Even if each analyzed a population of 4096 individuals, the subjects under
study were different between the two. In fact, the individuals studied in the second
one are directly adjacent to the ones of the first. In this way, it has been possible
to sample a wider space, delivering a more accurate dataset, and test even more the
EESM machine implementation. However, it is important to highlight that, being
the MTPA angle v not selected as decision variable, the overall sampling performed
by Sobol was not of highest efficiency, for reasons that will be explained in a later
section.

Once both simulations were completed, SyR-e provided the results in terms of
pure datasets. At this point, a post-processing of the delivered data was necessary
for it to be observable in a figure form. This process started by retrieving, for each
simulation, the OUT matrix containing all the output information. Of all the data
contained in this matrix, two smaller ones were of greatest interest, the matrices
Xpop and Jpop. Xpop contains the values assumed by decision variables for each
electrical machine (individual of the population) analyzed, each column representing
a variable. Jpop has a similar structure but this time each column represents the
values of the objectives. This operation was necessary to retrieve the data on which
the graphs contained in Fig. 3.9 and 3.10 are based.

It is crucial to highlight that only the figures regarding the decision variables will
be reported in the following pages. This choice was due to the fact that, as already
mentioned, the real objective of this analysis is not really to find data on which to
perform further analysis, but to verify if the implementation of the EESM machine
was done in the right way, without delivering unwanted errors. For this reason, only
the decision variables will be reported, to underline the wideness of the variables’
space analyzed.

Fig. 3.9a and Fig. 3.10a show the coil heights’ hb values assumed by the field
winding in the various cases analyzed. It can be seen that both the minimum and
maximum values taken by this variable are different between the two runs, high-
lighting how these are adjacent. In addition, it is also observable the variety of the
values assumed by this variable, within the limits defined in the setup, underlining
the density of the sampling performed in this space mapping analysis.

Fig. 3.9b and Fig. 3.10b represent the heights hApb taken by the rotor’s pole body
along the populations studied. Also in this case, it can be noted that the values
assumed by this variable have an high variety and their minimum and maximum
amplitudes are close to the limits imposed by the predefined constraints but different
from each other.
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Fig. 3.9c and Fig. 3.10c show the amplitudes of the rotor’s yoke widths lyr
studied in the two analysis. Fig. 3.9d and Fig. 3.10d make observable the values
taken by the rotor’s head fillet r-fillet during the simulation runs performed. Fig.
3.9e and Fig. 3.10e show the distribution of the values assumed by rotor’s pole
angle thHead-deg. Fig. 3.9f and Fig. 3.10f represent the values assumed by the field
winding’s coil width wb. Last but not least, Fig. 3.9g and Fig. 3.10g highlight the
amplitudes taken by the rotor’s pole widths wp.

As already mentioned, observing the different patterns of the figures, various
common aspects can be deducted. The first one regards the maximum and minimum
values of each decision variable represented. In fact, it is evident how both values,
for each run performed, are close to the limits of the constraints selected in the
simulations’ setup, in line with the Sobol objective of performing an efficient design
space exploration. In addition to that, by a rapid observation of the two figures
proposed for each decision variable analyzed, it can be noted how each one assumes
a various spectrum of values within those predefined limits. This highlights even
more how the variables’ design space sampling performed was very wide, being the
number of individuals studied so high. This choice was made on purpose to put under
stress the implementation of the EESM machine in SyR-e. In fact, being both the
number of individuals and the one of selected decision variables large, the simulations
performed coincided with worst-case scenario for this new feature. However, as
explained in the previous lines, it was still possible to obtain the presented results
without errors. Consequently, it can be concluded that also for this case study, the
implementation of the EESM machine in SyR-e was successful.
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4. Improvement of the Design Space
Sampling Procedure

This chapter is dedicated to explanation of the steps which lead to the development
of a new SyR-e tool. This new feature allows to determine the MTPA of an electrical
machine independently on the fact that this angle v is a decision variable or not,
in the analysis setup, and on the topology of the machine under analysis. In the
latter section of this chapter, the validation of the proposed procedure is assessed
and a confrontation of results between the previous and the current methodologies
is performed.

4.1 Addition of MTPA search during MODE and
Design Space Mapping

As it is know, the Maximum Torque Per Ampere (MTPA) angle is one of the most
important information to know about an electrical machine. In fact, it allows to
identify the current angle corresponding to the maximum output torque for that
current amplitude. Consequently, the knowledge of the MTPA angle ~ is crucial for
developing an efficient and reliable electrical machine control strategy. The value
of this variable is not constant, but changes depending on the electrical machine
under analysis, due to the topology and other motor’s parameters (like the d-axis
and ¢-axis inductances), and its working conditions.

The implementation of an automatic MTPA calculation tool is beneficial for ev-
ery type of analysis. However, Design Space Mapping simulations receive the biggest
boost in terms of performance if compared with the one received by an optimization
problem. In fact, generally speaking, the MTPA angle v must always be a decision
variable of any type of analysis, even when not selected. Proof of this is that during
optimization problems, the algorithm wastes iterations trying to find the MTPA
angle, instead of performing a better exploration of the geometrical design space,
resulting in a worst overall performance. Nevertheless, for an optimization analysis,
this fact does not constitute a real problem as when the convergence of the problem
is reached both the MTPA angle and the optimal solutions are delivered as outputs.
However, the same can not be said for Space Mapping analysis, like Sobol mapping.
In fact, for these types of studies, the presence of an additional electrical variable in
the analysis’ space constitutes a non-negligible issue as consequently, the geomet-
rical design space is not sampled in a satisfactory way, leading to a lower overall
quality of the delivered dataset. Consequently, an automatic MTPA angle calcu-
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lation removes the limitations associated with the presence of this additional (and
unexpected) electrical variable. This paves the way to a more efficient and dense ge-
ometrical space sampling, especially for smaller populations, which ultimately leads
to the delivery of a more accurate dataset, as each machine (individual) is already
evaluated along its MTPA angle.

In the following lines, the workflow procedure utilized to develop the MTPA
automatic research tool will be explained. This new feature has been inserted within
the FEMMfitness.m file and it is based on iterative processes.

The first step consists in defining a set of variables useful for the iterative cycles’
initialization.

|% Variables necessary for MTPA calculation

flagMTPA = O;

ss|maxIter = 40;

286| gammaStep = 2;
7ldirection = 0

3

if isfield(per,’if0’)
per.if = per.if0;
else
per.if = 0;

203| end

if ~“isempty (RQ)
RQ(end) = 90;

06| end

300

305

306

307

20s|if any(strcmp (’gamma’, geo.RQnames))

flagMTPA = 0;
else
flagMTPA = 1;

2| end

As it can be seen from the Matlab code lines reported, the first step is the defi-
nition of a flag variable flagM TPA, which is initialized equal to zero. Following, the
maximum number of iterations, the amplitude of the variations applied to v and
their directions are also added. Consequently, a differentiation between the EESM
machine and the other topologies is performed by assigning the field current value
depending on the study case. A starting value of the MTPA angle v is also defined
and imposed equal to 90 degrees. In the final lines of the preliminary initialization,
an automatic flagM TPA value assignment is performed. In fact, depending on the
fact that ~y is selected as decision variable or not in the optimization setup, the value
of flagMTPA is imposed equal to zero or one.

In the code lines reported below, the proper iterative process leading to the
calculation of the MTPA angle will be reported and also explained in detail.

if “isempty (RQ) % MODE optimization (RQ geometry)

% Cost functions

83




308

309

310

311

323

346

348

349

350

cost = zeros(l,length(geo.0BJn
templ = 1;
% Torque

if strcmp(geo.0BJnames{templ},
if "flagMTPA
cost (templ) = -out.T;
else

ames)) ;

>Torque’)

% aggiungere ricerca MTPA

gammaO = RQ(end);

il = L

done = O0;

TVect = nan (1,maxIt
gVect = nan(1,maxIt
dTppVect = nan(1l,maxIt
idqVect = nan(l,maxIt
fdqVect = nan(1l,maxIt

perTmp = per;
TmpSOL_old [1;
TmpSOL_new = [];

while “done
if jj==

gammaSim
elseif jj==
gammaSim
elseif jj==
gammaSim

else
gammaSim =
gammaSt

end

er) ;
er) ;
er) ;
er) ;
er) ;

gammao ;
gammaO+gammaStep;
gammaO -gammaStep;

gammaSim+direction*
ep;

RQ(end) = gammaSim;
TmpSOL = simulate_xdeg(geo,perTmp,mat,

eval_type,
TVect (jj)
gVect (jj)
dTppVect (jj)
TmpSOL.T) ;
idqVect (jj)
TmpSOL.1iq)
fdqVect (jj)
TmpSOL. £q)

% To save the
iteractive
TmpSOL_old
TmpSOL_new
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pathname ,filename) ;

= mean (TmpSOL.T);

= gammaSim;

max (TmpSOL.T) - min(

mean (TmpSOL.id)+j*mean (

-

mean (TmpSOL . fd)+j*mean (

-

last 2 results of the
process

TmpSOL_new;

TmpSOL;




360

361

362

363

364

389

390

398

399

100

101

end

[*,index]

Output data

0UT . geo
0UT . per
0UT .mat
OUT.T

0UT .dTpp
0UT . gamma
0UT. idq
0UT. fdq

0UT .RQ

%0UT . nFEMM

OUT.Pjs

==3
[*,index] = max(TVect,[],’omitnan
)
if index==
done=1;
elseif index==
direction=+1;
else
direction=-1;
end

elseif jj>3

if TVect(jj)<TVect(jj-1)
done=1;
end

if jj==maxIter

done=1;

ji+i;

disp([’Simulation,’ int2str(jj-1) ’,done
1)

max (TVect ,[],’omitnan’);

geo;

perTmp;
mat ;

TVect (index) ;
dTppVect (index) ;
gVect (index) ;
idqVect (index) ;
fdqVect (index) ;
RQ;

nFEMM ;

3/2xper .Rs*abs (0UT.idq) "2;

% Identify Rf value depending on rotor geometry
if strcmp(geo.RotType, ’EESM’)
Rf=per .Rf;

OUT.Pjf

else

Rf=
OUT.Pjf

end

= Rf*out.if;

nan;
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402

103

404

105

406

107

108

109

110

111

113

116

417

118

419

120

if mean(TmpSOL_new.T) > mean(TmpSOL_old.T)
OUT.SOL = TmpSOL_new;

else
0UT.SOL = TmpSOL_old;

end

out.SOL = OUT.SOL;

out.id = real (0UT.idq);
% [A]
out.igq = imag (0UT.idq);
% [A]
out . fd = real (OUT.fdq);
% [Vs]
out.fq = imag (0UT.£fdq);
% [Vs]
out.T = QUT.T;
oL
Nm ]
out .dTpp = 0UT.dTpp;
% [Nm]
out .gamma = 0UT.gamma;
ho L

degrees] MTPA angle

cost(templ) = -mean(0UT.T);
templ = templ+l;

end

end

First of all, these lines of code are run independently on the problem under
analysis, it could be either an optimization or a Sobol sampling or another type
included in SyR-e. Then a cost vector, having the length of the problem’s number
of objectives, is initialized and with it also a counting variable temp1.

Following, the real differentiation between the cases explained before takes place.
In fact, depending on the value of flagMTPA, the MTPA automatic calculation is
either skipped, if « is already a decision variable of the problem and consequently
the output torque value is directly calculated, or not. For explaining this procedure,
a value of flagM TPA equal to 1 will be hypothesized.

As soon as the automatic MTPA research code is run, a set of new variables is
defined. These new parameters are local ones and are only used in these lines of code
for either: assigning temporary values to real machine entities or defining variables
useful for the iterative process later run. For example, gamma0 is the initial value
of the MTPA angle from which the calculations will start. Meanwhile, done is a
flag used to highlight if the iterative process has ended or not. perTmp represents
temporary values of machine performance variables.
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At this point, the real iterative process begins. In fact, as long as the done flag
is not equal to 1, the process continues to take place updating the counting variable
g7 value at each iteration, until either the MTPA angle is found or the maximum
number of iterations is reached. Depending on 7j’s entity, the value of the tempo-
rary variable gammaSim, representing the MTPA angle, is modified. For the first
iteration, it is imposed equal to gamma0 but in following ones, it is modified first
to identify a search direction and then to look for the final MTPA angle value.

After the value of gammaSim has been modified according to the previous rules,
the consequent value of the variables of the electrical machine under analysis are
calculated using the simulate_xdeg.m function and saved as a temporary solution
in TmpSOL. The main variables of interest (torque, torque ripple, currents, fluxes
and ) are then saved singularly in their respective array vectors, which will contain
the values obtained from each iteration of this process. In addition, the last two
solution vectors TmpSOL are saved in a singular way for future analysis.

As soon as the number of iterations performed is at least three, a confronta-
tion between the calculated torque values is performed. Depending on the iteration
number corresponding to the biggest one, the process either stops or identifies the
direction in which to perform further analysis. In case the arrest condition is not
immediately met, additional iterations are performed. The torque values obtained
in the last two calculations are then confronted, ending the process if the penulti-
mate value is bigger than the last one calculated.

Once the stop condition of the iterative process has been met, the output data
processing begins. First, the electrical machine variables corresponding to the max-
imum torque value are saved into the OUT struct vector. Then, taking advantage
of the fact that the last two calculations performed have been saved, the SOL vector
corresponding to it is saved in OUT. Consequently, the just mentioned OUT.SOL
vector is saved in FEMMIfitness.m output vector out and the main variables of
interest are then saved singularly. The process ends with the delivery of the calcu-
lated output torque (which is an objective of the optimization) and its respective
angle, corresponding to the MTPA angle ~.

4.2 Procedure Validation and Assessment

As introduced in the previous section, the automatic MTPA research process is able
to work on problems of various nature, from an optimization to a space sampling
one. However, being Sobol sampling the one obtaining the most benefits from its
introduction, for the reasons already explained, it has been decided to validate the
development of this new feature by launching two Sobol simulations and confronting
their results to highlight the differences. The two simulations launched are identical,
and similar to the Sobol mapping one described in Chapter 3. They again regard
an EESM adaptation of the ICEM24.mat motor present in SyR-e’s library. The
only difference between the two analysis presented below consists in the selection or
not of the MTPA angle v as a decision variable in the preliminary setup. For both
cases, the analysis has been carried out considering a population of 512 individuals,
imposing a constant current density type of analysis and a ratio between the field
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and stator current densities of 0.8. The selected objective are: torque, torque ripple,
copper mass, stator and rotor Joule losses. The selected decision variables are, also
in this case, connected only to the rotor, for the reasons explained in the previous
chapter, and every single one available has been enabled.

In addition, also for these study cases, it has been decided to turn off both the
mechanical and thermal SyR-e’s analysis tool, this is due to the fact the EESM
machine has not been properly implemented in those fields yet. Consequently, to
avoid unwanted simulations errors due to external causes, those two objectives have

been avoided.

The common simulations’ setup can be observed in Fig. 4.1 and Fig.4.2.
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Figure 4.1: Sobol Sampling MTPA Procedure Validation Objectives
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It is important to highlight that before launching these simulations several man-
ual runs using Matlab’s Debug Mode have been performed. These experiments have
been useful for identifying possible critical issues and to validate the effectiveness of
the developed code. During these test, no errors were found using the final version
of the MTPA automatic research and the results obtained were aligned with the
expectations.

Differently from the EESM implementation validation Sobol analysis, in this
case, the figures representing the distributions of the single decision variables are
substituted by different graphical representations. This is due to the fact that the
main objective of this analysis is to prove both the correct operation of the auto-
matic MTPA tool and its effectiveness in improving the overall performance of the
space mapping performed during the analysis. The choice of these figures was done
to highlight the differences between the two studied cases in terms of space sampling
density. In the following lines, the figures representing the results obtained from the
two simulations will be reported.

Fig. 4.3 illustrates the normalized amplitudes of the selected decision variables
obtained from the two simulations performed. In particular, Fig. 4.3a is the output
of the Sobol analysis performed selecting the MTPA angle v as decision variable.
Meanwhile, Fig. 4.3b is the output of the analysis performed exploiting the new
automatic MTPA research tool.

This type of graphical tool helps to highlight the main purpose of the automatic
MTPA research tool. In fact, in this way, Sobol mapping is able to perform a more
dense sampling of the geometrical space as no iterations are wasted to look for the
addition electrical variable constituted by the MTPA angle ~.

From a confrontation between Fig. 4.3a and Fig. 4.3Db, it is possible to note how
the second figure has an higher density of lines. If this characteristic is not directly
observable in the central area of the figures, which is quite chaotic, it becomes more
evident in the peripheral one. In fact, observing the areas close to the z-axis and to
the unit amplitude line, it is possible to notice how Fig. 4.3b has more lines with
respect to Fig. 4.3a.

In order to highlight the benefits generated by the introduction of the automatic
MTPA research tool, an ad-hoc Matlab script, calculating the distances between
the 512 points analyzed in the 7-dimensional variables’ space, has been developed.
Even if the choice of calculating the distances between the points obtained from
the Sobol mapping analysis might seem unconventional, it has been executed after
several considerations on the which could be the most efficient way to effectively
show the higher sampling density performed in the simulation using the automatic
MTPA tool. The direct calculation and consequent observation of the distances’
distributions seemed as the best pick for a more immediate understanding of the
matter.

The developed ad-hoc Matlab script will be reported in the following lines.

P = 0UT.Xpop(:,1:7);

3| [N, d] = size(P);
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fprintf (’Points Number: %d, Dimensions:_ %d\n’, N, d4);

% Distances Calculation
if exist(’pdist’, ’file’) == 2
fprintf (’Using pdist...\n’);
D = squareform(pdist (P, ’euclidean’));

dist_values = squareform(D);

dmin = min(dist_values);
dmax = max(dist_values);

dmean mean (dist_values) ;

figure;

7lhistogram(dist_values, 50) ;

title(’Distances Distribution, (0UT.Xpop)’);

olxlabel (’Distance’) ;

ylabel (’Frequency’) ;

This very simple Matlab code is able to estimate the distances between the 512
points subjects of the Sobol analysis in an efficient and cost effective way. In fact, it
retrieves the first seven columns of the OUT. Xpop matrix, containing the values of
the decision variables, and assigns them to a new variable P. Then, exploiting the
pdist function, present in the Matlab Statistics and Machine Learning Toolbox, it is
able to calculate rapidly the distances between each point, which corresponds to a
line of the matrix OUT.Xpop. At this point a matrix D, containing the amplitudes
of the distances between each point and the others, is created. Consequently, a
single line form of the matrix D, called dist_value is formed. This is particularly
useful to perform a statistical analysis by retrieving the minimum, maximum and
mean values of the calculated distances. Last but not least, the distribution of the
values assumed by the points’ distances is summarized in an histogram graph. It
is important to note that the Matlab code previously described has been developed
just to perform this analysis. For this reason andhaving it has no other application
in terms of electrical machine design, it has not been added to the SyR-e library.

As soon as the output data obtained from the two Sobol simulations performed,
with and without the automatic MTPA research, were available, they have been in-
serted in the just described Matlab script. Consequently, it has been run two times,
one for each analysis, and its outputs can be observed in Fig. 4.4 and in Tab. 4.1.
Specifically, Fig. 4.4 shows both the distributions of the points’ distances for the
Sobol analysis performed, with and without the MTPA tool. It is particularly useful
as it allows to execute an immediate comparison between the results obtained from
the two simulations. In addition, Tab. 4.1 illustrates the results from a statistical
point of view, highlighting the minimum, maximum and average values of the dis-
tances obtained from the two analysis.

Confronting the histogram graphs present in Fig. 4.4, it is possible to note
how the two distributions are similar in shape. Nevertheless, they present some
interesting differences. In fact, it can be observed that the second distribution,
related to simulation performed with automatic MTPA research, presents an higher
frequency of lower values of distances than the ones shown in the first. Consequently,
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the second histogram shows, generally, a slightly lower frequency of higher distances
compared to the first. This trend is aligned with expectations. In fact, as already
mentioned, the distances for the analysis with the automatic MTPA were predicted
to be lower than the ones of first one, in which the angle v is selected as variable.
The reason behind this forecast is connected to the higher space sampling density
offered, thanks to the removal of the search for the MTPA angle v, which allows
exploring the same design space in a more efficient way, without wasting iterations
to find this additional electrical variable.

However, it is important to underline that there are a few cases, observable in
Fig. 4.4, in which this trend is not completely respected. Consequently, in these
anomalous points, the MTPA-related distribution presents higher values of distances
than the ones correspondent to the analysis performed selecting v as variable. This
discrepancy is connected to the size of the populations analyzed in these simulations.
In fact, in order to limit the computational times required for the Sobol mapping
simulations, it has been decided to perform these study cases on a population of
only 512 individuals. Incrementing the size of the population under analysis should
resolve the just mentioned anomalies. In fact, in that case, the Sobol mapping
algorithm would have an higher number of individuals to sample the design space
and consequently, the differences, between the usage of the MTPA tool or not, should
be enlarged even more. Nevertheless, this choice, in posterity, has been appropriate
as the time required to perform the MTPA-related simulation was almost four times
longer than that occupied by the one without this tool.

Simulation 1 (No MTPA) | Simulation 2 (Yes MTPA)
Min. Value 1.3628 1.3002
Max. Value 22.2090 21.5976
Average Value 9.5429 9.5420

Table 4.1: Sobol MTPA Tool Simulations Statistics

Anyway, the predicted trend is confirmed also by observing the statistical values
reported in Tab. 4.1. In fact, this table summarizes, between all the calculated
distances of the two simulations, the minimum, maximum and average amplitudes
found. Confronting the single values obtained from the simulations, it is clear that
the second one (obtained using the automatic MTPA research) has better perfor-
mances than the first. In fact, all three values analyzed were lower. This confirms
that the points obtained from the second simulation are closer between each other,
consequently they are more densely distributed in the design space analyzed, even
if both the space and the number of elements under study are the same.

These differences would be even more evident if the same study cases were re-
peated using a larger population, which was not done due to both time and compu-
tational power limitations.

Summarizing, it can be affirmed that the implementation of the automatic MTPA
tool was successful as no errors took place during the simulation runs. In addition,
the expected benefits, in terms of sampling density, carried by the development of
this feature have found an experimental correlation with the data obtained from the
two Sobol analysis.
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5. Conclusions and Future Works

In conclusion, this thesis has touched on several arguments, starting from an overview
on the current transport system, including its limitations and future goals, then de-
veloped by introducing the real subjects of the analysis, the EESM machine and
SyR-e software. Consequently, a more detailed discussion about electrical machine
design optimization techniques has been developed.

Once the theoretical bases were depicted, the discussion’s focus shifted towards
the description of the more practical section performed.

The first topic regarded the steps behind the implementation of the EESM ma-
chine in the SyR-e software. This procedure has been divided into three smaller
sections for an easier and more organized comprehension. The first one concerns the
geometrical aspects behind the introduction of this new electrical machine topology
in SyR-~e, in specific the addition of new parameters and the steps behind its drawing
for FEA purposes. The second regards the implementation of electrical parameters
unique to the EESM machine, which has been possible thanks to the development
of ad hoc Matlab functions and the adaptation of several pre-existing ones. Lastly,
also the GUI implementation of this new electrical machine topology has been dis-
cussed, due to the fact that this is a crucial tool for SyR-e users as it allows for a
more immediate and intuitive analysis setup, saving a considerable amount of time.

At this point, proper verifications of the correctness of the previously described
steps were necessary to validate the procedure. In order to do so, it has been
decided to perform two different simulations. The first one consisted in launching
an optimization problem on an EESM adaptation of an electrical machine already
present in the SyR-e library. Instead, the second regards two runs of the Sobol
mapping algorithm on the same machine used in the first.

Both analysis concluded successfully without interruptions due to errors. Con-
sequently, it can be concluded that both geometrical and electrical implementations
of the EESM machine were successful. In fact, even if the quality of the output data
generated from the simulations was not satisfying, on an electrical machine design
point of view, the main objective of these analysis was to verify if the designed
workflow worked properly, not to design a new machine.

Once the EESM related verifications were successfully completed, the focus of
this discussion shifted towards the development of a new tool for the SyR-e software,
the automatic MTPA angle research. This additional feature allows to autonomously
determine the MTPA angle v of the machine under analysis, even when it is not
selected as decision variable in the simulation setup, and it is compatible with every
topology and type of analysis present in SyR-e.
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First, the steps leading to the development of this additional feature and its
Matlab code were reported and described in detail. Then, this procedure has been
verified by launching two separate Sobol mapping simulations, one selecting v as
variable of interest and the second exploiting this new SyR-e tool. This choice was
made to have a direct confrontation between the data delivered by the two simu-
lation runs, in such way to highlight the main differences and observe the benefits
introduced by the automatic MTPA tool. Both analysis were performed on the
adapted EESM machine used for the previous study cases. However, the number
of individuals studied was smaller this time due to limitations in the computational
power available.

The two simulations ended successfully, without delivering unexpected errors.
Consequently, it can be concluded that the implementation of this new tool was
performed correctly.

At this point, the simulations’ output data was processed in such a way that
the main differences between the two were more immediate to observe. In fact, at
first a figure containing the normalized amplitudes of the analysis’ common decision
variables was generated. From this element, it was possible to see how the simula-
tion using the MTPA tool delivered a more dense design space sampling, using the
same number of elements, than the first one. However, due to the fact that this fea-
ture was not clearly visible enough, it has been decided to generate a second figure
showing the distributions of the distances between the points delivered by the two
studies. This has been possible by appositely developing a Matlab code performing
such task. A confrontation between the figures shows how, even if the distributions
are quite similar in shape, the one related to the simulation using the new MTPA
tool generally has lower values of distances than the one that is not, with the excep-
tion of a few anomalous points. The same pattern can be observed also when the
overall values of minimum, maximum and average distances of the two analysis are
confronted. In fact, the second one has lower amplitudes in all three categories.

Consequently, it can be concluded that the development of the automatic MTPA
research tool was successful. In fact, it introduces benefits for every kind of analysis
performed in SyR-e. In the optimization problems case, it allows to not waste iter-
ations in the research of the MTPA angle v, leading to a more efficient exploitation
of resources towards the fulfillment of the analysis objectives. However, the type
of analysis benefiting the most from this addition is the Sobol space mapping one.
In fact, the introduction of this features allows this space sampling algorithm to
perform a better design space exploration, at parity of space limits, compared to
the one executed previously as no resources are wasted in looking for the MTPA
angle. Consequently, the space sampling performed is more dense leading to a more
accurate dataset delivered as output.

Nevertheless, these improvements in terms of output data quality comes at a
cost as the computational time of the simulation increases by approximately four
times compared to the time achieved without using this new tool.

Concluding this discussion, it can be stated that the main objectives of this thesis

were fulfilled as both the outputs obtained from the EESM verification simulations
and the development of the automatic MTPA research tool gave results in line
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with the expectations. However, further analysis on both subjects might still be
interesting to perform. In fact, if it is true that the EESM machine has been
successfully implemented on a geometrical and electrical points of view, SyR-e is
able to execute analysis also on thermal and mechanical aspects of the electrical
machines, which are still missing from the current EESM model. In fact, the just
mentioned limitations forced the removal of the thermal and mechanical analysis
from being performed in the Sobol mapping simulations, both in the case of the
EESM verification and for the MTPA tool assessment. Consequently, it would be
intriguing to repeat the simulations when these additional aspects of analysis are
added. In addition, in the MTPA feature case, it would be interesting to perform
additional simulations increasing the size of the populations analyzed also. In such
way, the benefits introduced in terms of quality of the output dataset and in sampling
density executed should become even more evident. However, a compromise between
the number of individuals under study and the computational time required to
perform the analysis should be found for it not to be excessively long. Nevertheless,
these additional aspects are left as hints for future discussions.
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