
POLITECNICO DI TORINO

Master degree course in Ingegneria Informatica

Master Degree Thesis

Privacy-preserving Remote
Attestation of pods in Kubernetes

Supervisor
Prof. Antonio Lioy
Ing. Lorenzo Ferro

Candidate

Stefano Caradonna

July 2025

To my family, and to my

wise example who taught me

to believe in myself.

Summary

The advent of cloud computing has led to a paradigm shift in application and data manage-
ment, offering greater flexibility, availability and cost-efficiency. Unlike traditional on-premises
environments, wherein data and computations are executed locally, cloud-based systems abstract
both storage and processing, thereby enabling dynamic resource allocation. The contemporary
tendency towards the adoption of fully virtualised environments, wherein multiple tenants’ work-
loads are shared across a common infrastructure, is indicative of this transition. While this model
enhances efficiency and reduces operational costs, it also introduces new security challenges, par-
ticularly in ensuring the integrity of cloud-based workloads and protecting sensitive data from
unauthorised access. In this context, Remote Attestation functions as a security mechanism that
helps address the risks associated with shared cloud infrastructures. By analysing system mea-
surements, it verifies that running applications have not been tampered with, thereby providing
assurance about the integrity and trustworthiness of cloud-based workloads. These measure-
ments, recorded in Measurement Logs (ML) by the Integrity Measurement Architecture (IMA)
in Linux, provide a snapshot of the system’s state, ensuring that applications and their depen-
dencies remain unaltered. However, in multi-tenant cloud environments, where multiple verifiers
evaluate system integrity, these logs can inadvertently reveal details about unrelated applications,
potentially leading to data leaks. The complexity of remote attestation increases in large-scale de-
ployments, where multiple independent verifiers operate without full visibility into the workloads
they are assessing, making it difficult to enforce fine-grained access controls. This thesis proposes
a solution to the aforementioned challenges by enhancing the traditional attestation framework
with privacy-preserving capabilities. The present study proposes a novel IMA template, whose
implementation ensures unpredictable measurements and enforces discretion when verifiers access
restricted logs. It is evidenced that such restrictions enable the retrieval of data pertinent to the
verifier’s attestation tasks while ensuring the secrecy of all other system details. A master node
will act as a proxy, managing the access control aspect. The initiative adheres to the standards
set forth by the Trusted Computing Group (TCG), leveraging the capabilities of the Trusted
Platform Module (TPM) 2.0, the IMA, and a widely adopted remote attestation framework. As
demonstrated by performance tests conducted in the laboratory, the proposed solution effectively
safeguards privacy, mitigates the risk of unauthorized data exposure, and ensures secure pod attes-
tation while concealing cluster details in cloud-native environments. The results further confirm
that this approach is highly scalable. It addresses the limitations of existing methods and provides
a robust framework for privacy-aware workload verification in Kubernetes-based deployments.

4

Contents

1 Introduction 9

2 Trusted Computing and Trusted Platform Module TPM 12

2.1 Trusted Computing Group . 12

2.2 Trusted Computing Base . 12

2.3 Root of Trust . 13

2.4 Trusted Platform Building Blocks . 14

2.5 Boot Types . 14

2.6 TPM 2.0 . 15

2.6.1 Architecture . 15

2.6.2 Main features . 15

2.6.3 Securely storing data . 16

2.6.4 Implementations . 16

2.6.5 TPM Platform Configuration Register PCR 17

2.6.6 Secure Identity . 17

2.7 Remote Attestation (RA) . 18

2.7.1 Execution flow . 19

3 Integrity Measurement Architecture (IMA) 20

3.1 Overview . 20

3.2 Design . 21

3.2.1 IMA-Measurement . 21

3.3 Policies . 21

3.4 IMA Templates . 22

3.5 ML Integrity Verification and Entries Validation 22

4 Kubernetes (K8s) 25

4.1 Docker container . 25

4.2 Overview . 26

4.3 State-oriented approach . 26

4.4 Architecture . 27

4.5 Workload Resources . 29

4.5.1 Deployment . 29

4.6 Custom Resource . 29

5

5 Keylime Framework 30

5.1 Overview . 30

5.2 Design . 31

5.3 Main Features . 33

5.4 Operational Phases . 34

5.4.1 Physical Node Registration Protocol . 34

5.4.2 Three Party Bootstrap Key Derivation Protocol 34

5.4.3 Continuous Remote Attestation . 36

6 Related works 38

6.1 Container-IMA . 38

6.1.1 Architecture . 39

6.1.2 New components . 40

6.1.3 Measurement Mechanism . 41

6.1.4 Attestation Mechanism . 43

6.1.5 Consideration . 44

6.2 Docker Integrity Verification Engin (DIVE) . 44

6.2.1 Consideration . 45

6.3 Docker Container Attestation . 45

6.4 Kubernetes Pod Attestation . 46

6.4.1 Consideration . 48

7 Proposed solution - Design 49

7.1 Problems addressed . 49

7.2 Proposed Solution . 50

7.3 Measurement Log Analysis . 50

7.4 Architecture of the Proposed Solution . 52

7.5 Registration Process . 52

7.5.1 Worker Node . 53

7.5.2 Master Node . 53

7.5.3 Master Node Capabilities . 53

7.5.4 Verifier Registration . 54

7.5.5 Verifier Authorisation . 55

7.6 Verification Process . 55

7.7 Privacy and guessing analysis . 58

6

8 Proposed solution - Implementation 59

8.1 IMA Template and Kernel modification . 59

8.2 Keylime modification . 60

8.2.1 Tenant modification . 62

8.2.2 Agent modification . 62

8.2.3 Registrar modification . 63

8.2.4 Verifier modification . 63

8.3 Kubernetes Capabilities integration . 64

8.3.1 Proxy Feature . 64

8.3.2 Verifier Authorisation . 65

8.3.3 State Aggregation Feature . 66

9 Tests 67

9.1 Testbed . 67

9.2 Functional Tests . 67

9.2.1 Test with a correct Verifier permission . 69

9.2.2 Attestation test with an unrecognised Verifier 70

9.2.3 Attestation test with an unrecognised pod for a given Verifier 70

9.3 Comparison with standard Keylime . 70

9.4 Performance Tests . 71

10 Conclusions and future works 74

Bibliography 76

A User Manual 78

A.1 Attester machine . 78

A.1.1 Patching the Linux kernel . 78

A.1.2 Preparing the kernel before compiling . 79

A.1.3 Compiling and installing the new kernel . 81

A.1.4 TPM2 tools Installation . 83

A.1.5 Keylime installation . 83

A.1.6 Keylime Agent installation . 85

A.1.7 Configuring Keylime Agent . 85

A.1.8 Installing and configuring Kubernetes . 86

A.2 Verifier machine . 86

A.2.1 Keylime Verifier and Registrar installation 86

A.2.2 Installing and configuring Kubernetes . 86

A.2.3 Proxy Kubernetes Master node . 89

A.2.4 Deploy Pod Distribution Service Pod . 92

7

B Developer Manual 93

B.1 IMA patch . 93

B.1.1 ima-slt template implementation . 93

B.2 Filtering Measurement Log . 95

B.3 Filtered ML verification . 96

B.3.1 New ImaSlt Class . 97

B.3.2 Modified Entry Class . 97

B.3.3 Processing the Measurement List . 98

B.4 Pod Distribution Service script . 99

B.4.1 Kubernetes Node IP Retrieval . 99

B.4.2 Verifier and Pod Mapping Checks . 100

B.4.3 Multi-Application Concurrent Execution . 101

B.5 Authorised workload deployment . 104

8

Chapter 1

Introduction

The advent of cloud computing signifies a substantial paradigm shift in the management of ap-
plications and data. It is widely acknowledged that cloud computing represents a fundamental
solution to the problems associated with uncertain traffic peaks, computational overheads and
potentially large hardware investments. Indeed, it has the potential to transform the IT industry
by rendering software and infrastructure even more attractive as services. This paradigm is a
complementary addition to the current internet-based model of consuming and distributing IT
services by virtue of the fact that it provides dynamically scalable and often virtualised resources.
The fundamental concept underpinning this approach is the delegation of the management and
provision of software and hardware resources to external entities specialising in these domains
(cloud providers). This strategic decision aims to ensure a superior quality of service at a reduced
cost. The increasing demand for processing and storage capacity, precipitated by the Internet
of Things (IoT), has further accelerated the adoption of fully virtualised environments. In such
environments, workloads from multiple tenants are shared on a common infrastructure [1]. While
this model has been demonstrated to increase efficiency and reduce operational costs, it has also
been shown to engender new challenges.

To address the unique requirements of the cloud, such as high scalability, reliability and con-
tinuous integration and deployment processes, a new paradigm for cloud application development
has emerged: microservices design [2]. Microservices-based applications comprise numerous de-
coupled and autonomous services, each dedicated to the execution of a specific task and developed
and implemented independently. These services facilitate the transmission of data or information
by providing designated interfaces. In contradistinction to monolithic design, which is charac-
terised by a single code base where all functionality is tightly coupled, microservices architecture
enables greater granular scalability and flexibility for developers at minimal cost. It is evident that
well-known corporations such as Amazon, Netflix and Uber are transitioning from conventional
monolithic designs to microservices in order to accommodate their extensive user bases and meet
their stringent scalability requirements. The security requirements of contemporary application
container technologies are contributing to the development of more secure and reliable computing
environments. This development necessitates a more scalable attestation process that is suitable
for microservices architectures or orchestrated container deployments.

The transition to Infrastructure-as-a-Service (IaaS) and microservices architecture confers nu-
merous advantages, including flexibility, availability, cost efficiency, and the capacity to scale
applications on demand. However, this paradigm shift also introduces significant new security
challenges. The off-premises nature of computing resources invariably results in a diminution of
control over data and resources for the organisation. The level of security and protection is not
guaranteed. In multi-tenant environments where workloads are shared, ensuring the integrity of
those workloads and protecting sensitive data from unauthorised access becomes critical. The
cloud computing market is characterised by a paucity of regulation, with service level agreements
(SLAs) frequently ambiguous. This has the effect of making it difficult to hold providers account-
able for security breaches. Some researchers have noted that the isolation of virtual resources
remains an ongoing challenge. It is important to note that resources which are potentially implic-
itly shared between virtual machines (VMs), such as the last-level cache on multicore processors

9

Introduction

and memory bandwidth, present a risk of either security or performance degradation. It has been
hypothesised that incorporating security constraints and performance isolation as part of SLAs
in future cloud computing environments would enhance the visibility of cloud resources. It is
important to note that the cloud environment is not without its specific challenges. These include
the management of insider threats and the guarantee of transparency about security and residual
risks [1].

In order to provide effective support for microservices architecture in the cloud, lightweight
virtualisation has become a key element. Containerisation is a form of virtualisation that enables
resource isolation with low overhead by sharing the host operating system kernel. Containers have
been shown to be comparatively lightweight, simple to manage and offer superior performance in
comparison to traditional virtual machines (VMs). These systems have been shown to require less
storage and to reduce infrastructure costs. Docker is an example of an emerging containerisation
technology that is gaining popularity over VMs [3]. This technology has become the preferred
method for supporting microservices architecture, particularly due to its inherent scalability and
redundancy mechanisms.

To overcome the inherent security challenges posed by cloud environments, with a particular
focus on the verification of the integrity of systems running on shared infrastructures, the concept
of trusted computing is of considerable importance. The Trusted Computing Group (TCG) [4] has
developed a set of standards known as Trusted Computing, the purpose of which is to establish
trust in a platform by identifying its hardware and software components. The purpose of this
process is to guarantee that a computer exclusively operates with software that has been verified
as trustworthy. The Root of Trust (RoT) is an essential component in the development of trust-
based systems, and it is required to function in accordance with expectations, as any deviation
in behaviour would go undetected. Depending on the requisite security level, the RoT can be
implemented in either software or hardware, and it serves as an intrinsically trusted starting
point from which a chain of trust is established. This trust is established during the system’s
inaugural startup phase, with the first software component to execute being an element that itself
cannot be measured or validated. From this initial point, trust is progressively transferred from
one component to the next as each assumes control, thereby ensuring the integrity of the platform
is maintained throughout its operation. The employment of certificates within this specific context
functions to provide assurance with regard to the integrity of the implementation process, through
the demonstration of the RoT’s construction itself.

The present paper sets out the ways in which mechanisms such as Measured Boot and Remote
Attestation serve to extend trust into the operating system and its applications. Remote attesta-
tion is a process that enables a third party to verify the integrity of a system. This is achieved by
analysing measurements (i.e. file hash values) recorded by an Integrity Measurement Architecture
(IMA) log. The Trusted Platform Module (TPM) is a hardware component that, when utilised
in conjunction with the IMA, engenders a more robust, hardware-based chain of trust. Trusted
Computing, and more specifically the attestation procedure, facilitates the establishment of trust
in data and applications in cloud scenarios by means of providing technical mechanisms that
enable the verifiable enforcement of control over the hardware and software that access sensitive
workloads. Attestation can thus be defined as the mechanism that engenders trust in the domain
of confidential computing. Attestation is the mechanism that establishes trust in confidential
computing and forms the basis of security guarantees that enable workloads to execute securely
when integrated into potentially untrusted cloud environments [5].

Container-based virtualisation remains the preferred method for microservices architecture
due to its inherent scalability and redundancy mechanisms. In the context of a containerised
cloud environment in which thousands of applications and microservices have been deployed, the
necessity for an automated system to manage, scale and orchestrate this ecosystem is evident. It
is widely acknowledged that Kubernetes (K8s) [6] is the most prevalent orchestrator for microser-
vices in a containerised architecture. The platform is characterised by its portability, extensibility
and open-source development, which facilitates its application in the management of container-
ised workloads and services. In the context of orchestration, the utilisation of Kubernetes is
indispensable for the automation of tasks essential to the management of workload connections
and operations.

10

Introduction

Although significant progress has been made in the fields of Trusted Computing and orchestra-
tion, the adoption of multi-tenant cloud environments, particularly those employing microservices
architectures on Kubernetes, gives rise to intricate security and privacy concerns. While remote
attestation is imperative for the purpose of verifying integrity, there is a possibility that sensitive
information may be unintentionally revealed in Measurement Logs (ML) pertaining to unrelated
applications or pods, especially in multi-verifier environments. In such circumstances, the confi-
dentiality of logs is diminished when events within the logs can be identified without direct access,
and the enforcement of fine-grained access controls becomes more challenging. Consequently, it
is advisable to ensure that tenant-shared measurement logs cannot easily be predicted in order to
avoid revealing underlying occurrences.

The central theme of this thesis is the exploration of challenges, with a particular focus on
privacy concerns in the context of remote attestation of pods within Kubernetes environments.
The objective is for verifiers to receive only the specific attestation data relevant to their task,
without exposing the broader contents of Measurement Logs. The proposed thesis work is an
enhancement to the traditional attestation framework, incorporating privacy-preserving capabil-
ities. This includes the development of a new IMA template, the implementation of which is
intended to ensure unpredictable measurements by adding a nonce field to each entry and thereby
enforcing discretion in log access. The solution is predicated on the utilisation of the Kubernetes
Master node as a proxy to manage access control, thereby ensuring that verifiers only access
data relevant to their attestation tasks, while preserving the secrecy of other system details. The
primary objective is to ensure the effective safeguarding of privacy, the mitigation of the risk
of unauthorised data exposure, and the assurance of secure pod attestation, whilst ensuring the
anonymity of cluster details. The solution has been developed by modifying Linux IMA, the
Keylime framework, and adding Kubernetes capabilities.

11

Chapter 2

Trusted Computing and Trusted
Platform Module TPM

Trusted Computing [5] is a hardware and software design approach developed by the Trusted
Computing Group (TCG) [4] to improve the security of personal computers and billions of end-
points. The TCG outlines methods for establishing trust in a platform by identifying its hardware
and software components. The technology ensures that a computer runs only trusted software
and communicates exclusively with other systems operating trusted software.

The term ’trust’ is predicated on the expectation of predictable behaviour; however, this does
not necessarily imply that such behaviour is in itself trustworthy. To evaluate the expectations of
a platform, it is first necessary to define the term in question by reference to its actions. It can be
hypothesised that, if the components of the system in question consist of hardware and software,
and operate similarly, can be deduced that there should be equivalence in their trust properties.

Trusted Computing is predicated on the integration of hardware and software mechanisms for
the purpose of ensuring and validating the system’s integrity. A trusted platform is expected to
act consistently with its intended design during any operation. Consequently, its actual behaviour
must be examined against the predicted outcomes to ascertain its reliability.

A Trusted Platform [7] is built on protected capabilities and shielded storage. Protected
capabilities are fundamental operations performed by hardware and firmware that are critical to
the trust of the entire TCG subsystem. These capabilities rely on shielded memory locations and
special areas designed to securely store and process sensitive data.

2.1 Trusted Computing Group

The Trusted Computing Group (TCG) is a consortium of various technology companies which
aims to enhance the security that could be incorporated into future generations of computers. It
establishes new specifications and standards for Trusted Computing and supports interoperability
between different companies’ products.

One of the most significant contributions was the creation of the Trusted Platform Module
(TPM) [8] is a hardware-based security chip that meets the TCG’s specifications, integrating
’roots of trust’ into computer systems. Beyond developing the chip, TCG has also established
other hardware-based security techniques, such as secure boot and remote attestation.

2.2 Trusted Computing Base

A Trusted Computing Base (TCB) [5] is the set of components of a computer system responsible
for enforcing security policies and protecting sensitive data. The TCB, which defines the system’s

12

Trusted Computing and Trusted Platform Module TPM

security region, encompasses hardware, firmware, and software critical to protection. Even if
other system components become compromised, the TCB must remain secure to safeguard the
system. The TCB must be designed to withstand breaches in other system components without
compromising overall security.

2.3 Root of Trust

Trusted Computing begins with a Root of Trust (RoT) [9], which is an intrinsic trusted component
for ensuring trust in a platform. It must consistently behave as expected since any misbehaviour
would go undetected.

Although it is not possible to explicitly verify the correctness of the behaviour of RoTs at
runtime, certifications can provide confidence in their trustworthy implementation by knowing
how it was built. In other words, certificates serve as proof that the RoT has been built in a way
that ensures its trustworthiness [5]. It can be used in testing environments to issue a certificate
indicating the TPM’s Evaluated Assurance Level (EAL), which assures the proper implementation
of its RoTs. The first example of the root of trust is the Core Root of Trust for Measurements
(CRTM), a static root of trust (SRTM) located in the BIOS, which represents the first software to
execute and cannot be measured or validated. To safeguard the CRTM from attacks, the platform
manufacturer can make it immutable by placing it in ROM. Its certificate can confirm that the
TPM is correctly integrated into a motherboard.

Rot can be either software or hardware [9], depending on the required level of security. Still,
hardware is typically preferred in modern systems as it is more resistant to attacks. To achieve
high trust, the system’s hardware must be designed to ensure that the integrity of the hardware,
software, and data remains uncompromised. This requires the hardware to support continuous
monitoring to maintain the integrity of both hardware and software during power-up, initialisation,
and runtime operations.

In case of multiple RoTs involved, it is opportune to establish a transitive chain of trust. It
builds on the trustworthiness of the RoTs as the starting point for a chain of trust, where trust is
passed progressively from one executable function to the next as each takes control of the system.

The TCG requires three different kinds of RoT in a trusted platform:

• Root of Trust for Storage (RTS): The RTS is the shielded memory location, the key
concept of a trusted platform used to protect keys and data. It securely stores integrity mea-
surements and keys used for cryptographic operations. Integrity measurements are generally
considered non-sensitive information and can be safely shared using RTR specifications. On
the other hand, the keys used are asymmetric keys with a private part, so TPM rejects
access and manipulation without proper authorisation.

• Root of Trust for Measurement (RTM): The RTM oversees the process of verifying
system integrity and sends the resulting measurements to the RTS. Those results are the
evaluations of the system’s state taken from the initial boot stage, starting from the CRTM.
The CPU typically begins by executing the CRTM to initiate the measured boot process,
in figure 2.1 and records all subsequent system activity.

• Root of Trust for Reporting (RTR): The Root of Trust for Reporting (RTR) is a
reliable source for accessing information stored in the RTS. RTR securely accesses data held
from the RTS and transmits them to external entities to verify their authenticity. Before
transmission, the RTR generates an accurate digest of the data stored in shielded locations
and digitally signs it to prove identity and integrity. These signed digests are exported as
integrity reports (IRs).

Each root is inherently reliable and doesn’t require external monitoring.

At least one hardware component should act as the Root of Trust in the system. The hardware
Root of Trust and its associated firmware or software are responsible for maintaining system

13

Trusted Computing and Trusted Platform Module TPM

trust and protecting against tampering. The Trusted Platform Module (TPM) is a commercial
implementation of this technology, incorporating RTS and RTR features. However, the TPM
itself doesn’t guarantee the implementation of an RTM, as it’s designed to be a passive module
[See PCR section].

2.4 Trusted Platform Building Blocks

Trusted Building Blocks (TBB) [10] are components of the Roots of Trust that lack shielded
locations capabilities. They typically include instructions for initialising the RTM and TPM
and are platform-specific. An example of a TBB is the combination of the CRTM, its storage
connection, the TPM’s motherboard connection, and physical presence detection mechanisms.
The TBB has a one-to-one logical relationship with the PC Motherboard. It plays a crucial role
in the initial phase of the measured boot process (Figure 2.1), which includes, together with
a RoT, the CRTM and serves as the foundation of a chain of trust. TBB should be designed
to prevent devices with additional measurement codes from unintentionally expanding the TBB
boundary without verifying the connections’ trustworthiness.

1° stage:
Core Root of Trust
for Measurement

Execution flow

Measurement
flow

measure

m1 = 1e4e8f…

stored data by
extending PCRs

then
load

Extension flow

1

TPM 2.0

3 5

2° stage:
Boot Loader

OS

measure

m2 = 21fbd8…

2 4

then
load

Figure 2.1. Measured boot from a static root of trust [11].

2.5 Boot Types

• Plain boot: there’s no specific security requirement

• Secure boot: It is a hardware-based security feature where the firmware ensures that only
trusted digitally signed software is loaded during system startup. If the initial verification
fails, the platform is stopped to prevent unauthorised or untrusted software from running.

• Trusted boot: It is a software-based security feature where the Operating system (OS)
verifies the digitally signed components (i.e. drivers, antimalware). If this verification fails,
the platform is stopped during the OS operational state.

• Measured boot: in figure 2.1, the system records the execution of each component during
the boot process. It calculates a digest for every piece of code, starting from the firmware,
without interrupting the boot. This process leverages the transitive trust established from
the static CRTM to build a chain of trust.

14

Trusted Computing and Trusted Platform Module TPM

2.6 TPM 2.0

The computer engineers [8] who founded the Trusted Computing Group (TCG) aimed to address
the decline in PC system security by creating a hardware-based foundation for building secure
systems. A Trusted Platform Module (TPM) is a specialised hardware component intended to be
physically integrated with a computer’s motherboard to establish secure operations instructed by
Trusted Computing. A TPM safeguards user identity and data by securely storing encryption,
decryption, and authentication keys, providing robust protection against unauthorised tampering.

Version 2.0 is the latest update of the module, replacing the previous version 1.2 to enhance
security and integration with portable pc. It has replaced version 1.2 and is the standard version
implemented in all modern devices. This thesis focuses on version 2.0, so all described function-
alities pertain to it.

The TPM is a separate component from TCB [5], which can determine if the TCB’s integrity
has been compromised. In some uses, the TPM can help prevent the system from starting if the
TCB cannot be adequately instantiated. It works as a “passive” entity, a dependent component
that relies on the CPU for activation and operation.

2.6.1 Architecture

The primary components can be observed in the architecture depicted in figure 2.2.

I/O

Non-Volatile Memory
• Platform Seed
• Endorsement Seed
• Storage Seed
• Monotonic Counters
• Etc.

Asymmetric
Engine(s)

Hash Engine(s)

Symmetric Engine(s)

Key Generation

Random Number
Generator

Power Detection

Execution Engine

Management

Authorization

RAM
• PCR Banks
• Keys in use
• Session
• Etc.

Figure 2.2. TPM 2.0 Architecture (Source [5]).

2.6.2 Main features

• Low-cost chip: a cost-effective component that can be easily integrated into most servers,
laptops, and PCs.

• Tamper-resistant: although not wholly invulnerable to physical tampering (tamper-
proof), it offers significant resistance to specific hardware manipulations.

15

Trusted Computing and Trusted Platform Module TPM

• Hardware random number generator: a true random-bit generator [10] used to seed
random number generation. The Hardware random number generator (HRNG) is a non-
deterministic source of randomness in the TPM. It is used for key generation, nonce creation,
and strengthening passphrase entropy.

• Generation of cryptographic keys: cryptographic keys can be generated using the
HRNG for encryption purposes. The resulting secret key values are stored in a shielded
location and are intended for limited use.

• Remote attestation: support the attestation procedure reporting platform state, explain
better in chapter 2.7. It operates as an RTS and RTR component, collecting and securely
reporting a hash summary of the software configuration to an external third party to prevent
unauthorised modifications and ensure that the system is operating as expected.

• Binding: data encrypted with a TPM secret key is binding to the specific TPM module.
It uses an internally secret TPM bind key, a unique RSA key derived from the storage
key. This prevents unauthorised decryption outside the TPM itself, but it can introduce
complexities when data needs to be exported to other devices.

• Sealing: is a security mechanism that ties decryption to the data and the specific TPM
state at the time of encryption. It is mandatory to have a platform state with authorised
access to keys and data. This includes the state of all running applications and configuration
files, providing an extra layer of protection.

• Hardware device authentication: relies on the Endorsement Key (EK), a unique secret
key burned into each TPM chip at creation. This EK can be used to identify the specific
device.

2.6.3 Securely storing data

The TPM provides secure data storage through physical and cryptographic isolation. In the first
case, data is stored in the TPM’s limited non-volatile RAM with strict access controls. On the
other hand, keys are stored outside the TPM and encrypted with a TPM-held key, preventing
data migration. Both physical and cryptographic enforce mandatory access controls to protect
data.

2.6.4 Implementations

• Discrete TPM: Discrete chips [12] are designed, manufactured, and rigorously tested to
ensure they are highly resistant to tampering. This includes protection against sophisticated
attacks like probing and freezing.

• Integrated TPM: a step down in security compared to standalone TPMs. While they still
have a hardware TPM component, they’re integrated into other chips, making them less
tamper-resistant. Indeed, this level is not designed to be tamper-resistant.

• Firmware TPM: is a software implementation of the TPM that runs on the main CPU in
a protected environment called a Trusted Execution Environment (TEE).

• Hypervisor TPM: runs in an isolated execution environment and acts as virtual TPM.
Security is comparable with firmware TPM.

• Software TPM: software emulations of hardware TPMs running in user space. They are
helpful for testing purposes but more vulnerable to attacks.

16

Trusted Computing and Trusted Platform Module TPM

2.6.5 TPM Platform Configuration Register PCR

PCRs (Platform Configuration Registers) [5] [8] are shielded locations used to validate the integrity
of a system’s boot process, from BIOS to the application, passing for security-critical configuration
files. They record events that can affect the system’s security state and store these records in
a log. More precisely, they store measurements digested by external software. If the registers
provide a trustworthy representation of the software’s behaviour, then all the registered values
can be trusted.

While it’s technically possible for a single PCR to record all log entries, using multiple PCRs
simplifies evaluating different stages of platform evolution during the boot process. After the
recorder process, the TPM report these measurements by digitally signing them with a specific
key. In other words, TPM may provide an attestation of the value in the PCR, which, in turn,
verifies the contents of the log.

Standards mandate that TPMs have at least 24 Platform Configuration Registers (PCRs),
each storing 20 bytes of data. The first 8 PCRs are reserved for TPM-specific use, while the
remaining ones are available for the operating system and applications. The table specifies the
PCRs allocation (table 2.1).

PCR PCR Usage
0 SRTM, BIOS, Host Platform Extensions, Embedded Option, ROMs and PI Drivers
1 Host Platform Configuration
2 UEFI driver and application Code
3 UEFI driver and application Configuration and Data
4 UEFI Boot Manager Code and Boot Attempts
5 Boot Manager Configuration and Data and GPT/Partition Table
6 Host Platform Manufacturer Specific
7 Secure Boot Policy

8-15 Defined by the static OS
16 Debug
23 Application Support

Table 2.1. Standard PCRs allocation in a system.

PCRs may be implemented in volatile or non-volatile storage. However, their temporal values
must be reset after each system reboot or specific signal. If the registers are not reset, previous
integrity measurements might remain in the PCRs, potentially corrupting the validation process.
Resetting the registers involves setting their values back to 0.

Callers cannot directly change PCR values. The TPM manages the modification of PCR
values through the most used operation called “extend” (equation 2.1), which takes the old PCR
value and concatenates some data to be extended. So, data sent to the TPM are collected via
cumulative hash inside PCRs.

PCRnew = hash(PCRold || digest of data to extend) (2.1)

The TPM can only modify PCR values during the “extend” operation or system reset. Once
a PCR value is reached, it’s nearly impossible to determine the exact sequence of measurements
contributing to it. This makes it challenging to recreate the same PCR value using different
measurements.

2.6.6 Secure Identity

As discussed so far, the TPM provides information about the platform’s integrity state by quoting
PCR values. Potential external entities that verify the platform state need to identify the TPM
that issued the quote and ensure a binding between the RTR and the RTM that performed the

17

Trusted Computing and Trusted Platform Module TPM

measurements. This identification is achieved using asymmetric keys called Endorsement Keys
(EKs) derived from a unique endorsement seed within the TPM. All EKs generated from the
same seed are tied to the same TPM and RTR. These keys are non-migratable, ensuring they
remain exclusively within their originating TPM. Since the seed is statistically unique to each
TPM, there is a very low probability of having two TPMs with the same EK.

Trust in an EK is typically established through a certificate that confirms its authenticity.
However, because EKs uniquely identify a TPM, directly using them for operations like signing or
encrypting could lead to privacy issues, such as enabling activity tracking and data aggregation
that could compromise user privacy. To overcome this, the TCG recommends limiting EK usage
and promoting using other dedicated keys, such as Attestation Identity Keys (AIKs). This key
is generated from the EK, which ensures device-specific anonymity. AIK is used to sign specific
data, such as the digest of PCR content, during quote operations and for authentication at the
verification phase. An Attestation CA must be used to certify that a given AIK has been generated
by a valid TPM. This CA maintains a direct binding between AKs and EKs. It also permits users
to have the option to select a CA that guarantees it will not track these associations, ensuring
greater privacy [5].

2.7 Remote Attestation (RA)

Remote attestation is a process through which a system, known as the attester, generates crypto-
graphically signed evidence detailing the software it has run and its accessed files. This evidence
is then sent to another system, called the Verifier, which checks the validity of the information
and evaluates the status of an untrusted remote device. The outcome of this verification is a
cryptographically signed statement confirming the integrity of the attester system.

The use of a reliable Measured Boot process, which is typically implemented through the
presence of a Root of Trust for Measurement (RTM), a Trusted Platform Module (TPM), and
TPM-compatible boot components [13], is one scenario for remote attestation, but it is not the
only possible approach. In this context, the TPM is instrumental in ensuring the integrity and
trustworthiness of the target device’s platform, thereby establishing a foundation for trust between
remote devices.

1

VERIFIER

send
challenge
request

AGENT

build
response

challenge
PCR0: 1e4e888ac66f…
PCR1: b4d3c43dcb7c…
PCR2: 0f941b897a85…
…

Golden DB
send response

digitally
signed

TPM 2.0 𝐴𝐼𝐾𝑆𝐾

2

3

4

Figure 2.3. Remote attestation Schema.

18

Trusted Computing and Trusted Platform Module TPM

2.7.1 Execution flow

The RA’s process can be described, following the 2.3, through these steps:

1. Verifier sends a request called “Challenge Request” to the attester machine specifying which
PCR values must be attested. Usually, to avoid replay attacks and ensure freshness, it also
incorporates a nonce (unrepeatable random number) in the request’s body.

2. When the attester receives a challenge request, it leverages the RTR and RTS capabilities
provided by TPM to retrieve the PCR values stored in shielded locations as an integrity
report. It then builds a response (or quote), including the nonce from the request and all
requested PCR values. However, to ensure hardware device authentication, the response
must be digitally signed with the private part of the AIK.

3. The attester sends the digitally signed response to the Verifier. If a measurement log is
requested, the Verifier must check its integrity. This process is more complex and is described
in detail in Chapter 3.5 in Linux implementations.

4. Before proceeding, the Verifier ensures the response is authentic and up-to-date by validating
the signature. To do this, the verifier consults its list of public AIKs for the involved devices.
It then assesses the attester’s trustworthiness by comparing the verified quote to a known
trusted reference stored in a golden DB, known as golden values. A match indicates that
the device is trustworthy and is operating as expected. Ultimately, the remote device issues
an attestation result, indicating whether the target device is trusted based on the trust
assessment.

19

Chapter 3

Integrity Measurement
Architecture (IMA)

As explained in the previous chapter, TCG specifications outline the foundational components of
a Trusted Boot. Specifically, the CRTM initiates the RTM, which measures the system’s boot
components and securely stores these measurements in the RTS (in the TPM’s PCRs). This allows
an external party to verify that the system has been booted securely. Ideally, the chain of trust
would extend to the application layer. Still, operating systems handle various types of executable
content (e.g., kernel, modules, binaries) in an unpredictable order, and TCG’s specifications are
OS-agnostic and do not specify how the RTM extends into the operating system.

1° stage:
CRTM

Execution flow

Measurement
flow

measure

m1 = 1e4e8f…

stored data by
extending PCRs

then
load

Extension flow

1

TPM 2.0

3 5

m2 = 21fbd8…

2 6
then
load

2° stage:
Boot Loader

OS

Application

measure measure

m3 = 45da90…

4

7

Application

Measured boot IMA

Figure 3.1. Measured boot from a static root of trust to the application layer. [11].

To be precise, figure 2.1 doesn’t explicitly show the whole process. Figure 3.1 provides a more
comprehensive overview of the Measured Boot process from the BIOS to the application layer.

3.1 Overview

The Integrity Measurement Architecture (IMA) [13] is the Linux kernel’s implementation of the
TCG’s integrity measurement system (so as RTM) integrated into the Linux kernel since 2009 and
extends the chain of trust from the BIOS to the application layer. IMA is a leading TCG-compliant
solution for measuring dynamic executable content. It extends the principles of Measured Boot

20

Integrity Measurement Architecture (IMA)

and Secure Boot to the Linux OS and protects system integrity by collecting, storing, and locally
evaluating measurements. The platform needs a Measurement Log (ML) file to record the sequence
in which events occur.

3.2 Design

The design of the IMA module has been implemented with three components which cooperate to
enable the RA process [14]:

• The Measurement Mechanism on the attested system identifies which component of the
run-time environment needs to be measured, decides the measurement time, and ensures
protection on ML and secure storage. This mechanism starts with a base measurement
when a new executable is loaded and extends to other executable content and sensitive data
files. Initially, the BIOS and bootloader measure the kernel code, then the kernel measures
changes to itself and user-level processes. It stores the measurement log as a list in the
kernel, and the first entry is always the boot aggregate, confirming the SRTM’s correctness.
The operations used in this protocol are customized by policies explained in section 3.3.

• The Integrity Challenge Mechanism enables a remote verifier to request the measure-
ment list along with a TPM-signed summary and check them later with specific trusted
values. Since this protocol involves remote entities, it is not free from threats. Therefore,
communication should occur over TLS, and the system must adhere to remote attestation
protocols, using a nonce and digital signature for security. This permits freshness, authen-
ticity, and integrity inside this mechanism and ensures the system’s trustworthiness under
examination.

• An Integrity Validation Mechanism is the last mile mechanism allowing the verifier to
validate the received information and assess the trustworthiness of the attesting system’s
run-time integrity. Each measurement list entry is tested against a list of trusted values
to determine whether to trust or distrust the attesting system. The idea is that the entry
matches some predefined value with known integrity semantics, which the challenging party
has already measured and incorporated into the golden database.

To be precise, to extend Secure Boot and Measured Boot to the operating system and its
applications, IMA provides two mechanisms called Appraisal and Measurement [13]. The first
enhances Secure Boot, whereas IMA-Measurement extends Measured Boot into the operating
system and is more aligned with this thesis’s main concept.

3.2.1 IMA-Measurement

IMA measurement extends the idea of Measured Boot by integrating it into the operating system.
This integration enables Remote Attestation, allowing a third party to challenge the system and
verify its integrity. To achieve this, IMA keeps a sequential list of hash values within the kernel,
which includes all files measured since the OS took control. Although IMA can operate without
a Trusted Platform Module (TPM), it is often used in conjunction with one to create a stronger,
hardware-based chain of trust. As a result, the measurement list plays a crucial role in remote
attestation, as it provides a detailed record of all software executions for an external party that
will be asses. This remote party can then compare this list to a database of established valid
reference measurements to identify deviations from the expected integrity state.

3.3 Policies

IMA Policies specify the criteria and rules for determining which files should be measured, ensuring
that only relevant and essential files are included in the integrity measurement process. IMA
includes three built-in policies that are configured using kernel boot parameters:

21

Integrity Measurement Architecture (IMA)

1. Tcb policy: enables the measurement of different components, such as kernel modules,
executed software, files loaded into memory using mmap, and files that the root user opens
for reading;

2. Appraise tcb policy: evaluates the same components as the Tcb policy in real-time,
rather than just measuring them. It denies access if the files do not correspond to their
recognised good hash values.

3. Secure boot policy: This policy solely evaluates the kernel, its related modules, and the
IMA policies.

3.4 IMA Templates

The Measurement Mechanism fills [15] the measurement list using an ad-hoc template. However,
whenever a new template is introduced, the functions responsible for displaying the measurement
list must adapt to the new format, potentially leading to excessive code growth. This issue is
addressed by decoupling template management from the rest of the IMA code.

Each template defines the fields that describe the event triggering the measurement. In par-
ticular, these events are important in the data structures used in the managed mechanism. The
structure consists of the template descriptor, which specifies the information to be included in
the measurement list, and the template field responsible for generating and displaying data of a
specific type.

The original IMA template has a fixed length and includes the filedata-hash and path-name.
The file data hash is restricted to 20 bytes calculated with common hash algorithm such as
Secure Hash Algorithm 1 (SHA-1), while the path name is a null-terminated string limited to 255
characters. Enhancing the current version of IMA by creating additional templates is essential to
exceeding these limitations and incorporating extra file metadata.

PCR template-hash template-name filedata-hash filename-hint
10 b926a[...]36ed8 ima-ng sha1:999[...]e5f boot aggregate
10 dc3b9[...]5f88b ima-ng sha1:918[...]a10 /usr/bin/kmod
10 dc3b9[...]5f88b ima-ng sha1:1ba[...]0ef /usr/bin/cp

Table 3.1. Example of IMA Measurement Log created with ima-ng template

Table 3.1 illustrates an example of a Measurement Log (ML) generated using the default
template ima-ng. In order, the fields represent:

1. the index of the PCR where the entry was extended, which in this instance is PCR 10;

2. the template-hash, representing the digest extended in the specified PCR calculated over
the template fields using the SHA-1 algorithm;

3. the template-name associated with the entry;

4. the filedata-hash, which is the hash derived from the contents of the file or the boot PCRs
in the case of boot aggregate in this example, SHA-1 is the algorithm employed, as it is the
default hashing method;

5. the filename-hint, typically indicating the file’s path.

3.5 ML Integrity Verification and Entries Validation

The verifier initiates the IMA Integrity Challenge Mechanism by challenging the attester, which
starts the Remote Attestation process. This process generates an integrity report containing the

22

Integrity Measurement Architecture (IMA)

signed TPM quote and the measurement list. The verifier first verifies the signature and then
activates the Integrity Validation Mechanism, performing two main processes.

The first is the ML verification process (figure 3.2), which examines the integrity reports to
determine if they have been tampered with or are outdated, thus providing evidence that the
system lacks trustworthiness. This process begins by retrieving the template-hash field from the
first ML entry, corresponding to the boot aggregate (th1). This template hash is combined with
a digest of all zeros, and a new digest is calculated from the resulting concatenation. The extend
operation is performed for each entry thi, where i is a sequential number that increments until
the entire ML is processed.

The final result can then be compared with the IMA aggregate stored in PCR 10. The formula
3.1 summarizes the entire operation:

PCR10 = SHA1(... SHA1(SHA1(0 || th1) || th2) ... || thi) (3.1)

IMA Measurement Log

10 3ed..1df ima-ng sha256:12c.. boot_aggregate

10 8af..ebc ima-ng sha256:3ff.. /init

10 9aa..9dd ima-ng sha256:23e.. /bin/sh

10 4df..acc ima-ng sha256:3bc.. /usr/bin/cp

10 8c0..7ac ima-ng sha256:1b4.. /usr/bin/rm

…

00000 … 00000

SHA-1

result

SHA-1

result

SHA-1

result

result

TPM
SHA-1
bank

…

…

PCR 10 …=
?PCR 9

PCR 8

PCR 7

PCR 6

PCR 5

PCR 4

Figure 3.2. ML verification process (source: [1])

The second process involves assessing the ML entries (figure 3.3). In this context, an entry
refers to the file-hash field within the ML that corresponds to a specific event. Each entry is
compared then against trusted values contained in a whitelist. This whitelist is organised with a
file-path and a set of acceptable (trusted) file-hash associated with that element. The system is
deemed untrusted if the file path associated with the event is not found in the whitelist or if it is
present but does not match any trusted values. If the whitelist contains both the file path and
file hash of each ML entry, the system is successfully assessed as trusted.

23

Integrity Measurement Architecture (IMA)

IMA Measurement Log

10 3ed..1df ima-ng sha256:12c.. boot_aggregate

10 8af..ebc ima-ng sha256:3ff.. /init

10 9aa..9dd ima-ng sha256:23e.. /bin/sh

10 4df..acc ima-ng sha256:3bc.. /usr/bin/cp

10 8c0..7ac ima-ng sha256:1b4.. /usr/bin/rm

…

exist?

Whitelist
Event name Trusted digests

boot_aggregate 12cb7249ab60f32a...

/init 547aab1b724908ff...

3ff76ba2789ccbad...

/bin/sh aab6012ec5398def...

549ddb004ac53319...

exist?

exist?

Figure 3.3. ML measurements validation

24

Chapter 4

Kubernetes (K8s)

Cloud Computing [2] has improved applications’ development and deployment due to critical
demands for greater scalability, maintainability and fault tolerance. Meeting the scaling require-
ment is problematic for applications that previously relied on a monolithic architecture and cannot
leverage all the benefits of a cloud-native approach. A monolithic approach is often chosen to
develop simple applications or multiple services bundled within the same single code base, making
it challenging for several development teams to coordinate. Today, companies are leaning towards
a more recent architecture: the microservice approach, where applications are decoupled into
independent services. Each has a micro-functionality with a specific task, and they cooperate to
provide the complete service. Since a service contains its own system logic and data storage, it
can interact through standardised interfaces or event messages, which allows for deployment via
virtualisation.

Microservices [16] can be efficiently packaged into containers and deployed on physical hard-
ware, guaranteeing a suitable software execution environment from developers to end users. In
general, containerisation is a virtualisation that achieves resource isolation with low overhead by
sharing the kernel with the host OS. The container-based virtualisation approach has been the pre-
ferred method to help microservices architecture regarding inherent scalability and redundancy
mechanisms for machine failures. It permits the on-demand addition or removal of container
instances and a good degree of isolation to avoid influence between services.

In a Cloud Computing environment with thousands of applications, an automated system
is essential to determine on which physical machine within the cluster a single container (or
microservice) should operate, possibly with one or more instances, and also to oversee and control
the entire containerised ecosystem. This system already exists, and it is known as Kubernetes. It
is the most used orchestrator for microservices in a containerised architecture.

Orchestration refers to automating the tasks needed to manage workload connections and
operations and integrating automated tasks into a workflow to perform specific functions. This
is required for these containerised, micro-services-based applications, which communicate via ad
hoc functions to help with efficient deployment and management across cloud environments.

4.1 Docker container

Docker [17] is an open-source project that automates the deployment of software applications by
providing an additional layer of abstraction and automation of OS-level virtualisation on Linux. It
enables developers to build, deploy, run and update an application in a sandbox having a package
with all of its dependencies into a standardised unit called container.

Docker is also a Container management service that handles the creation and management of
containers. Any other components running on the host OS are categorised as host applications.
When a client requests a container to be executed, the container management services locate and

25

Kubernetes (K8s)

load the specified container image, applying the necessary configurations, such as network setup
and isolation environment settings.

Unlike virtual machines, containers are lightweight and efficient. They share the same operat-
ing system and hardware resources, enabling more efficient use of the underlying system. Docker
architecture, as shown in 4.1, consists of one or more containers which share the same below
infrastructure and Host Operating system. The Docker engine represents a high-level component
that initiates container creation, while Container Runtime manages the container’s life cycle on
a single physical machine. An example of container runtime is containerd.

Container Runtime

CONTAINER

Docker Engine

Host OS

Infrastructure

Bins/Libs

App2

Bins/Libs

App1

Bins/Libs

App3

Figure 4.1. Docker architecture

Containers are created starting from images available on Docker Hub, a public repository
for Docker images. An image contains executable application code with all the necessary tools,
libraries, and dependencies to run the application in a container. When a developer launches the
Docker image, it creates one or more instances of that container.

Docker leverages an automated build process using a Dockerfile to create a single image and
launch one container with specified features. A Dockerfile works like a recipe, listing commands
in sequence, and developers can use these commands in any combination they need.

4.2 Overview

Kubernetes [6] is a portable, extensible, open-source platform developed by Google in 2014 for
managing containerised workloads and services. It is a software orchestrator that facilitates declar-
ative configuration and automation, scaling the entire workload. Its specification is entirely declar-
ative, meaning it allows the description of the logic and application goals without defining how
the control flow works.

4.3 State-oriented approach

To ensure the healthy system’s functionality, it leverages a state-oriented approach through which
the system continuously checks if the actual state aligns with customer specifications. On the
contrary, try to converge the object state to the expected one. For object is intended a workload
resource explain more in detail in section 4.5. This involves a control loop which also takes care
of the desired state at runtime, as shown in figure 4.2.

The Kubernetes controller manager initiates the control loop and enforces the default client
configuration. The current state may not correspond with the expected state due to the client
updating specifications or internal errors. In both cases, the system reacts accordingly.

26

Kubernetes (K8s)

Client Spec

Reaction

Enforcement

Defaulting

K8s controller-manager

Object Spec
(desired state)

Object State
(actual state)

K8s controller-manager

Figure 4.2. Kubernetes control loop (source: [18])

4.4 Architecture

In the Kubernetes architecture, there are different organisation levels. The first distinction to
make is for the components involved inside the cluster.

Following the figure 4.3, a brief description can be done starting from the pod, which is the
smallest deployable computing unit in Kubernetes and serves as Kubernetes’ core unit of man-
agement for collective task execution. A pod is a wrapper containing one or more connected
containers and represents logical boundaries for containers sharing the same context. Each con-
tainer which belongs to a pod shares the same storage and network resources.

The Master node is the authoritative entity responsible for managing the state of the Kuber-
netes cluster and maintaining its desired configuration. It operates as the Control Plane, which
orchestrates the overall functioning of the cluster. The Control Plane performs critical tasks such
as monitoring the health of nodes and workloads, scheduling pods to appropriate nodes based on
resource availability, and ensuring that the cluster’s desired state is achieved and maintained. The
Master Node communicates with all other nodes in the Kubernetes cluster to enforce decisions
and distribute workloads. It is responsible for Continuous monitoring listen to all changes (i.e.
pod deletions, updates, or rescheduling) that can affect the allocation and utilisation of resources,
necessitating real-time adjustments.

The Worker Nodes execute the containerised applications and workloads. It runs one or more
pods scheduled by the master reading configuration written in YAML configuration files. These

…

Master
Kubernetes
Cluster

Worker 1

…

Pod 1

…

master services

system services

container N

container 1

Pod N

…

container N

container 1

Worker N

…

Pod 1

…

system services

container N

container 1

Pod N

…

container N

container 1

Figure 4.3. Kubernetes cluster

27

Kubernetes (K8s)

files are heavily used for the workload resources definition and will be explained better in section
4.5

In the end, Kubernetes Cluster refers to the set of all described components: Master node,
pods and Worker nodes.

As seen in the cluster figure, each cluster has a hierarchy, and each worker node is linked only
to its control plane. Figure 4.4 provides a detailed view showing the different node services and
how they work and communicate together.

Each master consists of these services:

• Kube API server: is the front-end component of the Control Plane through which all
interactions pass across it. It exposes all Kubernetes API functions and monitors the cluster
status.

• Kube Scheduler: the service responsible for scheduling application pods by assigning them
to suitable worker nodes based on available resources (i.e. memory, CPU).

• Etcd: serves as a database for consistent and highly available key values for all cluster data
in Kubernetes. It is usually used to provide data consistency through a backup plan. It
stores all resources desired states so the system knows the expected condition toward which
the state must move.

• Kube Controller Manager: is the control loop component that triggers all the object
state modifications of the cluster through controllers. A controller interacts with the Kube
API server whenever the current state deviates from the expected one.

• Cloud Controller Manager: This service is not used in on-premises or local environments,
enabling clusters to connect with cloud provider APIs. It integrates cloud-specific control
logic and manages only the controllers specific to a cloud environment, decoupling cloud-
related functions from cluster-specific components.

Instead, each worker node consists of these services:

kube-
apiserver

kube-
scheduler

Cloud
provider API

etcd

Kubernetes workers - Nodes
Kubernetes Master –

Control plane

cloud
connector

kube-
controller-
manager

cloud-
controller
-manager

kube-proxy

kubelet

kube-proxy

kubelet

…

Figure 4.4. Kubernetes Architecture (source: [6])

28

Kubernetes (K8s)

• Kubelet: it’s an agent running on the node that monitors both the node’s execution state
and the status of the pods assigned to it. Kubelet ensures that the containers are run by
interacting with the container runtime and keeps the Control Plane updated.

• Kube proxy: service which aims to enforce and handle the network rules assigned from
that node to pods assigned to it. These rules allow network communication to pods from
network sessions inside or outside the cluster.

• Container Runtime: an essential component that helps the node run containers efficiently
and handle their lifecycle inside the cluster.

4.5 Workload Resources

A resource is a deployable unit managed by controllers. Kubernetes makes available a collection of
resources through which a user can declaratively handle the pod’s execution. The term “workload”
refers to resources with a defined desired state. Every time a resource is modified (since it is stored
on the etcd), a controller triggers the event and sees to adjust the current state.

All Workload Resources use YAML configuration files and follow the same syntax with stan-
dard fields such as: “apiVersion” and “kind” that univocally identify the object, “spec” and
“status” which describe the expected and the current resource state respectively.

4.5.1 Deployment

Deployment is a high-level resource provided natively by Kubernetes that describes an applica-
tion’s desired state. In particular, it permits writing the output lifecycle applications in a YAML
file, specifying the features of each pod without needing to define how it operates.

Initially, the expected number of replicas (pods) is specified, and the system ensures horizontal
scalability to balance the workload. Next, container details such as name, image, and ports are
defined, allowing the system to run multiple containers with these configurations. Ultimately, the
controller watches the updated file in the etcd, starting the control loop and converting this file
into API requests by kubectl, the Kubernetes command-line tool.

4.6 Custom Resource

Thanks to its extensible nature, Kubernetes allows adding ”custom resource definitions” (CRDs)
to introduce extra functionality beyond its core features. Custom resources are extensions of
the native Kubernetes API with custom features not included in a standard installation. CRDs
permit customisation of cluster functionality and definition of new workload resources following
modular structure. For instance, many core Kubernetes functions are now built using custom
resources, adapting specific requirements to containerisation applications and enhancing Kuber-
netes’ modularity.

29

Chapter 5

Keylime Framework

Keylime [19] is a “Cloud Native Computing Foundation (CNCF)” hosted open-source project
initially developed by the security research team at MIT’s “Lincoln Laboratory”. It provides an
end-to-end scalable solution for remote boot attestation and runtime integrity measurement and
represents an easy method of integrating trusted computing into cloud infrastructure. Keylime
also permits users to monitor remote nodes using a hardware-based cryptographic root of trust
with a periodic attestation procedure.

5.1 Overview

Before discussing Keylime’s specifications, it’s helpful to consider its use context. The framework
is placed between trusted and cloud computing, looking to satisfy the ”IaaS” requirement for
establishing data and application trust in a cloud scenario.

Infrastructure as a Service (Iaas) is a cloud service model in which essential computing re-
sources (i.e. network, computing, storage) are made available for customers to deploy and run
various software, including operating systems and applications. In this model, IaaS resources
known as cloud nodes can be physical machines, virtual machines, or containers. Cloud users
(tenants) do not manage the underlying infrastructure but have control over the operating sys-
tems, storage, and applications they deploy.

However, a cloud service provider lacks the essential building blocks to establish the system’s
trustworthiness and protect sensitive data. Furthermore, a tenant cannot verify the underlying
platform during cloud deployment and check whether it remains trusted during computation. The
TPM module could provide a solution for bootstrapping trust and detecting changes, but unfor-
tunately, it has not been widely adopted in IaaS cloud environments. This is principally because
most IaaS services rely upon virtualization, which separates cloud nodes from the underlying
hardware on which they run. It is also a cryptographic co-processor, introducing substantially
inefficient performance beyond its complexity.

Here, Keylime comes into play. It provides an end-to-end solution for bootstrapping hardware-
rooted cryptographic identities into cloud nodes. It permits system integrity monitoring of those
nodes via periodic attestation, combining integrity system deviation with identity cloud node
revocation. It supports these functions in both bare-metal and virtualized IaaS environments, re-
ducing the cloud provider’s trust responsibility. Additionally, Keylime service has been integrated
with software standards to IaaS cloud deployments in non-trusted-computing aware devices. It
supports scalability by monitoring thousands of IaaS resources simultaneously as they are elasti-
cally instantiated and terminated.

Keylime’s central concept is to incorporate Trusted Computing into high-level security services
by using integrity measurements to establish and revoke identities on cloud nodes. This permits
higher-level services that rely on these identities to function independently without requiring
direct connection with Trusted Computing components.

30

Keylime Framework

Keylime

Trusted Computing Services

TPM / Platform
Manufacturer Enrollement

Software-based Cryptographic
Services

ID key
revoked

Software
ID Keys

Valid
TPM?

Signed EKs

Figure 5.1. Keylime layer between trusted hardware and software security services (Source [19]).

Figure 5.1 shows where the software Keylime layer is placed, decoupling the interaction be-
tween trusted hardware and high-level security services and supplying a plain interface accessible
to developers and users with the recent security features.

5.2 Design

To overcome the limitations of existing methods, this framework combines trusted computing with
IaaS to offer a hardware root-of-trust. This foundation permits tenants to establish confidence
in the cloud provider’s infrastructure and its systems. It leverages the TPM 2.0 chip and the
IMA module as the RTM, assuming that attackers cannot physically access the platforms. It also
assumes that the cloud provider is considered “semi-trusted”, meaning it should enforce controls
and policies to minimize the impact of possible attacks, particularly from malicious insiders, as
the provider may have access to tenants’ confidential data [1].

This section explains how trusted computing elements can be effectively utilized in a vir-
tualized environment and describes a streamlined architecture for managing trusted computing
services when cloud nodes are located on physical hosts. Keylime primarily comprises an agent,
two server controllers, and a command-line interface. Each component operates independently
and interacts through API-based communication. Figure 5.2 shows a simplified architecture high-
lighting connections encompassing the following Keylime’s components.

• Agent: a service that operates on the target operating system for attestation, working
with the TPM to register the Attestation Key and produce quotes. In other words, since
it represents the attester machine, it provides information about its current integrity state
by collecting necessary data for state verification and sending it as IRs. It is identified as
a cloud agent in the network through a Universally Unique Identifier (UUID). The Agent
can track revocation alerts sent by the Verifier when an attestation fails, which is useful in
environments where attested systems directly communicate, even if mutual trust is required.
In these cases, a revocation message can suggest policy changes to stop the compromised
system from accessing resources on other systems.

• Registrar: it manages the entire enrolment process by receiving register requests from the
Agent. The Registrar implements the protocol for the Attestation Key Identity Certification
by collecting the EKpub, the EK certificate, and the AIKpub from the Agent and proving
an association proof that the retrieved AIK and EK are associated. The registration phase
is described in section 5.4.1, and once registration is complete, the Agent will be ready for
attestation enrollment.

31

Keylime Framework

• Verifier: is the central component of the Keylime architecture since it checks the integrity of
a tenant’s IaaS resources. It is responsible for conducting the Agent’s attestation process and
sending revocation alerts if the Agent leaves the trusted state. It interacts with the Registrar
to obtain the AIKpub key, essential for validating a TPM quote. This data typically includes
a quote of PCRs, PCR values, the IMA log, and the UEFI event log.

• Tenant: represents the individual or organization utilising services across one or more
cloud nodes and interacts with the Agent via a Command Line Interface or REST APIs. It
works as an all-in-one platform for managing agents and supporting actions like adding or
removing agents from the attestation process and checking the status of individual agents.
Moreover, the Tenant can retrieve and use the EK certificate to verify the TPM’s integrity
and trustworthiness against a certificate repository. After the registration protocol, the
Keylime framework kicks off, which provides the Agent with an encrypted payload speci-
fying which service will be deployed securely. This starts the Three Party Bootstrap Key
Derivation Protocol, explained better in section 5.4.2. A tenant can ask for information
regarding the attestation of its running cloud services to the Verifier.

• Software CA: is a purely software-based certification authority designed to propagate
trustworthiness from the TPM toward advanced security services and avoid each service
trusted computing aware. When a cloud node receives a “revocation event”, it uses and
updates the Certificate Revocation List (CRL) to revoke the software identity key related
to the untrusted cloud node.

• Revocation Service: it works with the Keylime Software CA by issuing a revocation event
whenever a cloud node is detected untrusted by the Verifier. It is essential to inform all
nodes registered for those services about the revocation. This notification process requires
support from Software CA utilizing a CRL.

The primary function of Keylime is to shield tenants’ sensitive data from the cloud provider.
This data might include software identity keys or configuration details, such as a cloud-init script

Tenant

AIK good?

TPM / Platform
Manufacturer

Software
CA

Trust

CRL
service

Certificate
Authority

C

Bootstrap key
derivation

TPM good?

Kb

U V

Cloud Agent

KbIdentity
key

unwrap

TPM

Verifier

V
Revocation
notifier

Registrar

Figure 5.2. Keylime simplified architecture (source: [19])

32

Keylime Framework

(a standard mechanism to specify bootstrapping data, including secrets, for the cloud nodes).
To achieve this, the Tenant begins by generating a new symmetric key Kb and uses it with the
AES-GCM algorithm to encrypt sensitive data d obtaining EncKb

(d). Next, the Tenant requests
the IaaS provider to create a new resource (physical or virtual node) and includes the encrypted
result in the resource setup process. Once created, the provider returns the UUID and IP address
to access the new node on the network.

5.3 Main Features

• User Selected PCR Monitoring: with Keylime’s TPM policy feature, users can set up
monitoring of a remote machine for any specified Platform Configuration Register (PCR)
and related TPM quotes. This allows tracking specific changes in the system’s measured
state, offering targeted oversight of security-critical configurations.

• Measured Boot: In large-scale production environments, each node includes a TPM 2.0,
which specifies that certain PCRs (i.e. PCRs 0-9) record boot-related measurements, like
the UEFI BIOS and boot device firmware. However, comparing these PCR values to a sin-
gle ”golden” standard is impractical, as variations often arise. To overcome this limitation,
modern UEFI firmware provides an event log through an ACPI table, and Linux kernels ex-
pose a detailed boot log file at /sys/kernel/security/tpm0/binary_bios_measurements.
When paired with secure boot, this setup fully populates relevant PCRs, covering all boot
components up to the kernel. Moreover, tpm2-tools Linux commands can process these logs
to reconstruct the contents of PCRs [0-9] (or even [11-14]), permitting more precise boot
measurement monitoring even in complex environments.

Keylime leverages this new capability by enabling tenants to set a “measured boot reference
state” (known as mb_refstate), which represents a specific policy for an agent node and is
used for validating the Measured Boot ML. The Keylime verifier can then assess the node’s
boot event log against the received one, which can include both reference data for the node’s
expected boot events and rules for evaluating the log.

• Runtime Integrity Monitoring: Keylime’s runtime integrity monitoring requires setting
up Linux IMA (Integrity Measurement Architecture). Keylime enables policy creation and
verification to ensure the integrity of an agent’s files. It typically permits the creation of a
list known as a whitelist to validate the IMA measurement log (ML). This whitelist includes
trusted digests for configuration files and programs running on the cloud node. If any
files are altered or an unauthorized key is added to a keyring, the hashes will not match,
and Keylime will mark the Agent as compromised. It also supports IMA file signature
verification to detect changes in immutable files. If any invalid signatures are found in the
IMA log, a system reboot is needed to reset the log, allowing the Keylime Verifier to check
the system’s integrity accurately.

• Secure Payloads: Secure payloads in Keylime allow encrypted data (i.e. keys, passwords,
root certificates) to be securely provided to a node. This encrypted data helps bootstrap the
system with high confidentiality and integrity. The Keylime Tenant CLI (or REST API)
sends the payload to the Keylime Agent, along with a key share called the u key or user
key. After the Agent meets all enrolment requirements (like TPM policy or IMA allow-list
compliance), the Keylime Verifier sends the remaining key share, the v key or verification
key, allowing the Agent to decrypt the payload. Keylime supports two methods for secure
payloads: Single File Encryption and Certificate Package Code. The first allows to specify
the file by command line (in the keylime_tenant command) with the option -f. It will be
encrypted with the bootstrap key and securely delivered to the Agent. The second automates
many common actions tenants want to take when provisioning their Agents. This last mode
natively supports certificate revocation by detecting an Agent that no longer satisfies its
integrity policy and, in this case, creates a signed revocation notification [20].

33

Keylime Framework

5.4 Operational Phases

The following phases [19] summarise the entire Keylime framework behaviour:

1. Physical Node Registration Protocol

2. Three Party Bootstrap Key Derivation Protocol

3. Continuous Remote Attestation

5.4.1 Physical Node Registration Protocol

This phase starts the Registration Protocol through which AIK keys are generated and validated
using TCG standards known by the Keylime framework. To validate the AIKs in the Registrar,
Keylime implements a TPM-compatible enrolment protocol that starts interaction between the
Agent and the Registrar. In this phase, an agent asks for the TPM’s credential enrolment in the
system. As shown in the figure 5.3, first, the node sends its UUID together with the AIKpub, the
EKpub and the EK certificate held by TPM. When the Registrar receives the credentials, it verifies
the TPM EK’s validity with the issued TPM manufacturer and temporarily saves the credential
concern public area of the TPM object[5]. Since the AIK is not fixed to the platform (so the
TPM object is not tied to a specific platform), it ensures privacy, but this phase must be repeated
after each reboot. Here, the Registrar challenges the cloud node by proving that the received
credentials are associated with the private counterparts. To do this, it sends a challenge taking an
ephemeral symmetric key Ke, the digest computed over the TPM object public area and encrypt
both with the EKpub. The cloud agent once receives the blob, uses the ActivateIdentity TPM
command to decrypt Ke, which only succeeds if the TPM holds both EKpriv related to EKpub

and AIKpriv related to AIKpub. In summary, it must demonstrate to the Registrar as proof of
possession that it is the entity holding the right credentials. Indeed, it takes the decrypted Ke and
uses it to compute the keyed-hash message authentication code (HMAC) over its UUID, sending
it back and confirming its trustworthiness. The Registrar verifies this response by recalculating
the HMAC. If the result is aligned with the local one, it marks the Agent as active and makes
available the TPM credentials of the cloud node on demand, saving it on the persistent memory.

𝑬𝒏𝒄𝑬𝑲𝒑𝒖𝒃
(𝑯 𝑨𝑰𝑲𝒑𝒖𝒃 , 𝑲𝒆)

𝑯𝑴𝑨𝑪𝑲𝒆
(𝑼𝑼𝑰𝑫)

Cloud Agent

TPM 𝑨𝑰𝑲

𝑬𝑲

Keylime
Registrar

𝑼𝑼𝑰𝑫,𝑨𝑰𝑲𝒑𝒖𝒃, 𝑬𝑲𝒑𝒖𝒃, 𝑬𝑲𝒄𝒆𝒓𝒕

Figure 5.3. Physical node registration protocol (source: [19])

5.4.2 Three Party Bootstrap Key Derivation Protocol

After completing the Node Registration Protocol, it became essential to securely provide the
bootstrap key (Kb) to the cloud node as shown in the figure 5.2. The Three-Party Bootstrap Key
Derivation Protocol comes into play to demonstrate that the Tenant would retrieve the bootstrap
key Kb and that the cloud node will get the same information in a trusted state.

The protocol achieves these objectives by splitting the Kb between the Tenant and the potential
cloud verifier. In particular, the Tenant divides the key Kb into two parts, U and V, in a more

34

Keylime Framework

challenging reconstructing way. It takes a random value V, of the same length as Kb (typically
256-bit values) and obtains the second part U by computing the 5.1 formula. The Tenant then
sends U to the cloud node to indicate its intent to derive Kb. Meanwhile, it shares V with the
Verifier, which will only release V to the cloud node after confirming its trusted status.

U = Kb ⊕ V (5.1)

Figure 5.4 shows the entire protocol, dividing it into phases A, B and C in order and focusing
on all the interactions and exchanged values.

The protocol starts with the A phase, in which the Tenant contacts the Verifier over a protected
channel, informing it that a new cloud agent is present and supplying specific data. These data
refer to the cloud agent’s UUID, the V part of the bootstrap key, the IP address and the port
through which the Agent is reachable on the network, the TPM policy, the whitelist and a not
required Measured Boot refstate.

The completion of the A phase triggers the parallel execution of the other two phases, B and
C. This way, the Agent can independently receive the V-shared part from the Verifier and the U
part from the Tenant.

Phase B involves the interaction between the Verifier and the Agent. The Verifier sends the
Agent a freshly generated nonce (nonceVerifier). Along with the nonce, it also sends a PCRmask,
specifying the PCRs the quotes refer to. Since the Agent does not have a certified software identity
key for secure communication, it creates a temporary asymmetric key, NK, and returns the newly
generated public portion to the counterpart. Along with NKpub, it sends a QuoteAIK(nonceverifier,
16: H(NKpub), xi:yi). Here, 16: H(NKpub) refers to PCR 16, which contains the hash of NKpub,
and will be compared upon quote validation with the received one in cleartext. Instead, xi
represents the multiple PCR requested by the Verifier and its respective value yi. However, it is
impossible to check the authenticity of the received quote without the AIKpub. So, the Verifier
requests the Registrar the missing information along with other trusted node’s TPM credentials
(EKpub and EKcert) and then check the quote. Then, if the quote is valid, the Verifier compares
the Tenant’s TPM policy with the PCR values in the IR and validates the whitelist against the
IMA ML, ensuring cloud node trustworthiness. If all verification steps are successful, the Verifier
sends the V-shared part protected with the NKpub, which the Agent can decrypt and proceed to
the “Continuous Remote Attestation” phase (explained in 5.4.3). If verification fails, the Verifier
does not send the V share and marks the cloud node’s state as INVALID_QUOTE. If phase C occurs
before, so the Tenant has already shared the U value, there is no risk of exposure because the
bootstrap key is unique for each cloud node.

Phase C is initially similar to the previous, except for some details. Practically, it sends
obviously a different fresh nonce (nonceTenant) but without PCRmask because the Tenant is not
interested in verifying the node’s trusted state, so the quote truthfulness, but rather the authen-
ticity of the TPM. Indeed, it first verifies the NKpub correctness and then asks for the same
credentials as the Verifier to perform other kinds of control. In particular, it checks if the public
key in EKcert matches the received EKpub, checks if the EKcert signature is authentic and if its
issuer is trusted. If any checks fail, the Tenant does not send the U share to the cloud agent
and informs the Verifier, which marks the cloud node’s state as TENANT_FAILED and halts the
continuous attestation on the cloud node. However, if the TPM is authentic, the Tenant verifies
the quote with the AIKpub key and sends the U-share part encrypted with NKpub. Then, compute
HMAC over the node’s UUID with the starting Kb and the encrypted payload (d) with the same
key.

Once the cloud agent receives either the U share from the Tenant or the V share from the
Verifier, it computes the 5.2 formula to retrieve Kb and compares the received HMAC value by
the Tenant with the local computed one using the reconstructed key.

Kb = U ⊕ V (5.2)

If the values match, the cloud agent again uses Kb to decrypt the encrypted payload and start
the Tenant’s service. After decryption, the cloud agent deletes Kb and V values while storing

35

Keylime Framework

Tenant

𝒑𝒐𝒍𝒊𝒄𝒚

𝒗𝒆𝒓𝒊𝒇𝒊𝒆𝒓 𝒎𝒂𝒔𝒌

𝑨𝑰𝑲 𝒗𝒆𝒓𝒊𝒇𝒊𝒆𝒓 𝒑𝒖𝒃 𝒊 𝒊 𝒑𝒖𝒃

𝒑𝒖𝒃 𝒑𝒖𝒃 𝒄𝒆𝒓𝒕

𝑵𝑲𝒑𝒖𝒃

𝒕𝒆𝒏𝒂𝒏𝒕

𝑨𝑰𝑲 𝒕𝒆𝒏𝒂𝒏𝒕 𝒑𝒖𝒃 𝒑𝒖𝒃

𝒑𝒖𝒃 𝒑𝒖𝒃 𝒄𝒆𝒓𝒕

𝑵𝑲𝒑𝒖𝒃 𝑲𝒃 𝑲𝒃

A

Verifier
Cloud
Agent Registrar

B

C
Legend

TLS protection

no TLS

Figure 5.4. Three Party Bootstrap Key Derivation Protocol (source: [19]).

U in the TPM’s NVRAM for future use without requiring further interaction tenant-side. If a
reboot or migration occurs, the cloud agent sends again a new NKpub with the TPM quote to the
Verifier, which then sends the V-shared part back to the counterpart. The cloud agent can then
recombine Kb and decrypt the payload again.

5.4.3 Continuous Remote Attestation

Upon finishing the Three Party Bootstrap Key Derivation Protocol, the framework starts the
Continuous Remote Attestation phase. This phase enforces periodic attestation and ensures that,
after confirming a trusted boot for secure services launched on the node and after the payload is
delivered and decrypted, the Verifier continually monitors the cloud node’s integrity over time.
As illustrated in Figure 5.5, the Keylime verifier begins continuously polling the Agent to obtain
current integrity reports based on IMA measurements of applications running on the node. This
process ensures the system’s ongoing trustworthiness. The Verifier reviews each new IR to detect
changes in the system’s integrity status.

For each report, the Verifier will verify the authenticity and validity of the received quote
and whether the PCRs contain the expected values every time. In more detail, it checks if the
signature of the quote is acceptable, validating it with the AIKpub retrieved from the Registrar.
Then check the quote freshness using the provided nonce and if the quote refers to all specified
PCRs in the PCRmask. Moreover, verify the NKpub correctness sent by the Agent by comparing
its digest with the PCR 16 value in the quote. Also, following the IMA ML verification process,
check if the log matches the PCR 10 value and if the measurement events refer to those specified
in the whitelist. In the end, check if the PCR values specified in the Measured Boot ML match
the corresponding PCR in the IR and if this log match also the optional mb_refstate content
file supplied by the Tenant.

The interposed time between consecutive attestation requests defines how quickly a potential
compromise is detected. This interval is typically set to two seconds, though it can be adjusted
in the Keylime configuration file. The minimum latency is around 500 milliseconds and can not
be overtaken because TPM quote generation usually needs additional time.

36

Keylime Framework

Cloud Agent

TPM 𝑨𝑰𝑲

𝑬𝑲

Keylime Verifier

𝒏𝒐𝒏𝒄𝒆, 𝑷𝑪𝑹𝒎𝒂𝒔𝒌

𝑸𝒖𝒐𝒕𝒆𝑨𝑰𝑲 𝒏𝒐𝒏𝒄𝒆, 𝒙𝒊: 𝒚𝒊 ,
𝑰𝑴𝑨 𝑴𝑳,

𝑴𝒆𝒂𝒔𝒖𝒓𝒆𝒅 𝑩𝒐𝒐𝒕 𝑴𝑳

𝑨𝑰𝑲𝒑𝒖𝒃

Registrar

Legend

TLS protection

no TLS

Figure 5.5. Continuous Remote Attestation

Revocation Framework

If the Verifier finds a cloud node untrusted, the Keylime verifier activates the Revocation
Framework. This framework uses a service that leverages a publish/subscriber paradigm, through
which the Verifier can publish a new revocation event to the service and forward the event to
all the subscribers. In particular, a subscriber can represent the software CA that receives a
revocation message from a potential untrusted node. This CA can then revoke the certificate of
the identity key owned by that node and publish an updated CRL. A subscriber can also be a
trusted cloud agent by executing a specific script to isolate an untrusted node upon receiving a
new revocation message. It can also represent additional tools that must stay informed about
events concerning the trusted computing layer.

37

Chapter 6

Related works

The rapid advancement of computing systems, especially with the rise of application container
technologies, has brought new challenges to ensuring system integrity and security. The IMA ar-
chitecture enables systems to verify their integrity through runtime measurements and attestation
processes. Although the IMA architecture provides a foundation for addressing integrity-related
challenges, its standard implementation encounters limitations when extended to accommodate
more dynamic environments, such as cloud computing and containerised applications.

The core components of container technologies, such as images, registries, orchestrators, con-
tainers, and host operating systems, present various security risks [21]. Image risks include vulner-
abilities from outdated images and malicious or untrusted content; registries instead, as centralised
sources for images, face threats like insecure connections and stale or vulnerable images. Orches-
trators, which manage the execution environment, are exposed to risks from improper access
controls, unauthorised data access, and poor workload and network configurations. Containers
themselves are vulnerable to runtime exploits, misconfigurations, and privilege escalation. In con-
trast, the host OS, foundational to container operations, suffers from a broad attack surface and
dependencies on secure kernel components.

This chapter presents different non-standard solutions that extend the IMA architecture by
introducing customisation for the attestation framework, designed to better accommodate the
challenges of contemporary potential threats. These solutions aim to resolve critical security and
privacy challenges in multi-tenant environments, particularly ensuring transparency in identifying
application executions to specific tenants and mitigating the expansion of the attack surface. To
address the increasing complexity of these environments, the proposed extension improves IMA’s
ability to manage the virtual and dynamic nature of containers.

The chapter aims to demonstrate the feasibility and effectiveness of extending IMA to imple-
ment mechanisms for real-time integrity measurement of container images and runtime behaviours.
The security demands of modern application container technologies contribute to developing more
secure and trustworthy computing environments and require a more scalable attestation process
suitable for microservice architectures or orchestrated container deployments.

6.1 Container-IMA

Container-IMA [22] represent one of the first solutions of container attestation, developed by a
research group at Peking University in 2019. It focuses on addressing privacy issues in container
attestation, which are the central topic of discussion in this thesis due to the multi-tenant compo-
sition of cloud nodes. These issues can arise during the conventional remote attestation procedure.
Indeed, attestation for physical nodes grants the verifier access to the entire measurement log of
the attester, even if the purpose is to validate only the containers belonging to a specific tenant.
With these conditions at the verifier level, an attacker can exploit the attester’s vulnerabilities
and potentially access container data from other tenants.

38

Related works

To address this, Container-IMA introduces a modified Linux IMA module that enables the
partitioning of Measurement Log (ML) entries based on the specific container that produced them.
This work’s key contributions include enabling the attestation of a specific container while safe-
guarding the privacy of other containers and the host, preventing unnecessary exposure of details
to a potentially malicious verifier. It also ensures the collection of integrity evidence for all com-
ponents and dependencies of the targeted container using a container-based PCR (cPCR) secured
by a hardware-based RoT, making any tampering detectable and obtaining robust protection.
Furthermore, the approach minimises container attestation latency, ensuring that the overhead
introduced by Container-IMA is practically negligible.

6.1.1 Architecture

As described in the previous chapters, IMA checks if a system is running by verifying that the
software hasn’t been tampered with. The approach leverages a verifier to validate a prover ’s
trustworthiness (or attester’s) during the Remote Attestation procedure by providing evidence of
its integrity, including a list of all the software running on it (the Measurement Log). The ML
contains a detailed record of measurement values and essential metadata for software components,
reflecting the platform’s integrity status.

In a containerised environment, there are some open issues that this architecture aims to solve.
The main one is that sharing the full ML can be a privacy concern, for instance, when multiple
verifiers access data for different users on the same host. Typically, a Container management
service, such as Docker Daemon, handles the creation and management of containers and all
components running on the host system are categorised as host applications. When a client
requests that an application be executed, the container management services locate and load
the specified image, instantiating a container. Here, a verifier is a remote user interested in the
integrity of their containers on the prover. If the verifier owns only a specific container, it should
not have access to unauthorised details about other containers or the underlying host.

Fortunately, the Linux namespaces help protect privacy. This mechanism creates isolated
environments for containers by partitioning system resources, such as mount points, hostnames,
IPC, PID, and network, into separate instances across domains. Each container is typically
assigned a unique namespace, ensuring isolation from other containers.

Basically, the trusted boot measures components during the platform’s boot process. A
measure-before-loading approach establishes a chain of trust that extends from the RoT to the
OS kernel and so on to another level. Once trust reaches the application layer, IMA measures all
software components as they load and records them in sequential order in the ML. This process
integrates the loading sequence of software components into the chain at the application layer.
So, The entire Chain of Trust can be partitioned into:

• Integrity of the Prover’s Boot Process (IPro
boot): covers the period from powering on

the prover to successfully loading the OS kernel, including components such as the BIOS,
GRUB, and OS kernel;

• Integrity of Containers’ Dependencies (ICon
dep): relates to the container management

services and the files or libraries they rely on;

• Integrity of a Container’s Boot Process (ICon
boot): includes the container images and

boot configurations used when the container management services launch a container;

• Integrity of a Container’s Applications (ICon
app): spans from the successful launch of a

container by the container management services to its shutdown, encompassing all compo-
nents running within the container;

• Integrity of Host Applications (IHost
app): extends from the successful loading of the OS

kernel to the shutdown of the prover, excluding the container management services and all
containers;

39

Related works

prover

Hardware

KernelIMA

Container management
services

host
application

mysql tomcat Redis apache

internet

Verifier
for User A

Verifier
for User B

Containers
for User B

Containers
for User A

Chain
of Trust

BIOS, GRUB, …

Figure 6.1. Use Case in a Container Setting (Source [22]).

Figure 6.1 shows a scenario where a prover hosts multiple containers for different users, em-
phasising the chain of trust specific to containers. In this case, there are several containerised
applications, some for user A and some for user B. For example, user A wants to ensure that
their container (e.g., MySQL) is operating correctly, such as booting from the correct image and
loading trusted software. Containers rely directly on the container management service and, due
to namespaces, are isolated from other host applications.

As a result, the chain of trust for each container consists of specific components: IPro
boot, I

Con
dep ,

ICon
boot, and ICon

app (with the last two referred to the container under examination). When a verifier
requests attestation data for a container, the prover can only provide these specific subsets of
information. Any other measurements not related to these subsets, particularly those about IHost

app

or other containers’ ICon
app and ICon

boot, must not be disclosed to the verifier.

6.1.2 New components

This previous solution meets specific privacy conditions, but additionally, a strong requirement
exists: the verifier cannot determine whether its container is the only one running on the prover’s
system. Container-IMA divides the traditional ML into the mentioned partitions, and to imple-
ment them, it modifies the IMA module by incorporating three additional components:

1. the Split Hook component: lightweight virtualisation relies on namespaces to isolate system
resources, ensuring that each container is assigned to a separate namespace. The Split Hook
monitors system calls related to namespace generation and informs the kernel about events
that require ML partitioning.

2. the Namespace Parser component: identifies the namespace number of the process that
generates an event to be measured. Associating events with their respective namespace
numbers allows events to be assigned to the correct ML partition, corresponding to the
container that triggered the event.

3. the container-based PCR Module: is a kernel-level data structure designed to emulate the
host’s TPM PCRs, safeguarding each ML partition. Each cPCR contains three key fields:
the value derived from applying the extend operation to the container applications partition,
the namespace number, and a secret. The secret ensures the verifier cannot access data from
other tenants’ containers.

40

Related works

prover

Trusted BIOS
Measurment

Verifier

quote TPM
signed PCR

TPM

PCR 0

…

PCR N

Namespace
Parser

Split
Hook

Attestation
Agent

s-ML

U
s
e
r

S
p
a
c
e

K
e
rn

e
l

Measurement
Event

Event for
creating

ns

quote
ML

attestation
request/
response

MEs

Old value
of PCR12

Current ME

Newly added
components

Namespace
Register

Procedure

Measurement
Procedure

Attestation
Mechanism

cPCR Module

Measurement
Agent

IMA
Hooks

Figure 6.2. Complete Architecture of Container-IMA (Source [22]).

Figure 6.2 depicts the entire Container-IMA architecture, highlighting the newly added com-
ponents described above. Note that a Measurement Event (ME) signifies an event that triggers
a measurement. IMA determines MEs based on a defined policy. The complete architecture
enabling individual container attestation relies on two main mechanisms: the measurement mech-
anism and the attestation mechanism.

6.1.3 Measurement Mechanism

This section explains the measurement mechanism, dividing it into two basic procedures: the
Namespace Register Procedure, which enables the initial partitioning of the ML for a container
based on its mount namespace and the Measurement Procedure, which assigns a specific ME to its
corresponding ML partition. It is important to note that components involved during the prover’s
boot process (IPro

boot) are measured by the trusted boot and safeguarded by PCR0-7. Since MEs
generated during the boot phase are already placed in a separate ML, they are excluded from the
subsequent discussion.

Basic Namespace Register Procedure

The main issue is to differentiate between containers from the kernel’s perspective. Since
each container is expected to have a unique namespace, the kernel can distinguish containers
by analysing the namespace number of a running process during the process. This enables the
separation of IHost

app and ICon
app .

The Namespace Register Procedure is designed to allow the kernel to partition the ML. In
this architecture, the kernel maintains multiple doubly linked lists to represent the separate mea-
surement log (s-ML) derived from the ML.

Following the figure 6.2, the Split Hook informs the IMA Measurement Agent when a new
mount namespace needs to be generated. In response, the agent allocates new data structures

41

Related works

to separate the MEs generated by processes in the new namespace. Container-IMA maintains a
measurement list in kernel memory for each namespace, with each list having its own separated
Measurement Log (s-ML), which contains the MEs generated within that specific namespace ns:

s-MLs = {< value, ns >}n = {< {measure(MEns)}, ns >}n (6.1)

where n is the number of generated namespaces and s-MLs represent the set of all separated
logs that can be represented. To safeguard the integrity of these s-MLs, the solution created a
simulated set of PCRs known as container-based PCRs. If there are n partitions in the ML, the
complete list of cPCRs can be represented as:

cPCR-list = {cPCR}n = {< value, ns, secret >}n (6.2)

As mentioned, the cPCR is assigned a unique value, a namespace number, and a secret. Once
the namespace is created, the agent instructs the Namespace Parser to extract the new namespace
number and then forward it to the cPCR Module, which will request the TPM generate the
secret. This random value created by the TPM obscures the cPCRs of other containers about
other namespaces from a specific verifier. Ultimately, the module creates a new list of cPCR (and
a corresponding s-ML) established for the newly created namespace:

cPCR-listnew := cPCR− listold ∪ {< all zero, ns, secret >} (6.3)

s-MLsnew := s-MLsold ∪ {< {}, ns >} (6.4)

Basic Measurement Procedure

The measurement procedure, instead, is in charge of measuring and logging MEs. When an ME
is created, it activates the IMA hooks, which alert the Measurement Agent to measure the ME. The
resulting measurement and the current process’s namespace number, extracted by the Namespace
Parser, are forwarded to the cPCR module. If the ME lacks a mount namespace or is not
registered in the cPCR Module, it is treated as part of the host applications. In this case, the
measurement result is extended into PCR10 and logged in the ascii_runtime_measurements file.
Otherwise, if the ME has a mount namespace registered via the Namespace Register Procedure,
the module identifies the appropriate target cPCR and s-ML on which the measure will be logged:

target-cPCR = {cPCR | cPCR.ns == ns ∩ cPCR ∈ cPCR− list} (6.5)

target-ml = {s-ML | s-ML.ns == ns ∪ s-ML ∈ s-MLs} (6.6)

Next, the cPCR module updates the target cPCR by extending it with the current ME (fol-
lowing the extend operation outlined in the TPM specifications: PCR_Extend) and adds the ME
to the target s-ML:

target-cPCR.valuenew := HASH(target-cPCR.valueold,ME.nodehash) (6.7)

target-ml.valuenew := target-ml.valueold ∪ measure(ME) (6.8)

The integrity of each s-ML is safeguarded by its corresponding cPCR.value, allowing a verifier
to detect tampering by comparing the cPCR.value with the computed PCR_Extend operation over
the s-ML entries. However, since cPCRs reside in kernel memory, a hardware-based RoT does
not protect their integrity. For this reason, Container-IMA has implemented one way to permit
the cPCR module to bind cPCRs into a physical PCR.

42

Related works

Bind cPCRs to Hardware-based RoT

After updating the target cPCR and adding the ME to the target s-ML, the cPCR module
connects the cPCRs to a physical PCR, which in a TPM 1.2 is the PCR12, through a series of
steps. First, the cPCR Module saves the current value of PCR12 in an internal variable named
historyPCR used by verifiers to ensure the integrity of the cPCR list. Next, the cPCR Module
calculates:

sendcPCRi := cPCRi.value xor cPCRi.secret (6.9)

for each cPCR by performing an XOR operation between the template hash value and the
secret associated with that register. The system then stores the digest of all cPCRs. This
operation is carried out because when the verifier receives the sendcPCRs list, it can only disclose
the cPCR.values for the containers whose secrets it knows. The cPCR.value of other containers
remains hidden, preventing a malicious verifier from deducing details about those containers.

Finally, the system calculates the value of PCR12 by extending its old value with a specific
value: tempPCRn. This value is the result of the extension operation performed over all the
cPCRs considering each time the sendcPCRi value and the previous one:

tempPCRi := HASH(tempPCRi−1 || sendcPCRi),∀i ∈ [1, n] (6.10)

where the first tempPCR0 value is initialised to sendcPCR0. In this way, the new value of
PCR12 is computed after saving its old status into the historyPCR variable. So, a hardware-
based RoT is created since TPM’s PCR12 safeguards the integrity of the sendccPCRs list, and
each sendccPCR ensures the integrity of its corresponding s-ML.

The verifier’s role permits checking container integrity during attestation with these conditions.
Firstly, it checks the signature received from the prover over the quote, containing the s-ML
specific for that container, along with the historyPCR, all the sendcPCR values and evidence of
the right PCR12 value. Note that the verifier could perform a reverse xor operation to obtain
the cPCR.value from the sendcPCR if informed about the secret at container creation. Once the
list is valid, it can extract the final cPCR.value by extending all the cPCRi.value, each from the
sendcPCRi. If the final value matches the value calculated by extending all template hash in the
received s-ML, it can also demonstrate the list integrity.

6.1.4 Attestation Mechanism

The Attestation Mechanism enables a remote verifier to attest to the integrity of a specific con-
tainer and its dependencies based on traditional Remote Attestation. For Container-IMA, a
cluster is assumed to have an effective user management system, such as Kubernetes [6], avoiding
unauthorised verifiers from participating in the attestation mechanism. For this reason, verifier
identification is not considered in this section.

As mentioned, the mechanism is based on the traditional RA approach where an authorised
verifier sends a nonce to the Attestation Agent and the containerID of the container to attest.
The nonce is a randomly generated number created by the verifier to avoid replay attacks, while
the containerID refers to the UUID of the target container. Upon receiving the request, the
Attestation Agent responds to the verifier with an IR containing the following details:

1. the TPM’s quote, signed with the AIK containing the nonce and the related PCR values;

2. the sendcPCR value and the historyPCR of the PCR12;

3. the s-ML for prover’s boot time (IPro
boot) ;

4. the s-ML for container’s dependencies (ICon
dep);

43

Related works

5. the s-ML for container’s boot time (ICon
boot), providing complete information for the target

container while only including the template hash for the other ones;

6. the s-ML for the target container’s applications (ICon
app).

Verifier Workflow

Upon receiving the response from the Attestation Agent, the verifier first verifies the authen-
ticity of the TPM quote by validating the signature using the public part of the AK. If the quote is
authentic, the verifier checks the nonce matches the one sent in the IR request. This permit estab-
lishes the trustworthiness of the nonce and allows the verifier to confirm the response’s freshness.
Secondly, the integrity of the s-MLs for bootstrapping the prover (IPro

boot) and the target container
(ICon

boot) can be verified using the trusted PCR values. These s-MLs are stored in specific physical
PCRs: PCR0-7 for (IPro

boot) and PCR11 for (ICon
boot). Their authenticity is validated by simulat-

ing the PCR_Extend operation and matching the simulation results with the trusted PCR values.
Thirdly, the trusted PCR12 is used to validate the authenticity of the received sendcPCRs. To do
this, perform the extend operation with all sendcPCRi to obtain tempPCRn using equation 6.10.
If the PCR12 doesn’t match, it indicates an attack has happened. Consequently, the verifier uses
the container’s secret to obtain its cPCR.value and all-zero to obtain cPCR0.value used to verify
the integrity of the s-MLs for the container’s applications (ICon

app) and its dependencies (ICon
dep),

in order. If all the validation procedures mentioned above are successful, all related s-MLs are
considered trusted. The verifier can then validate the s-MLs by comparing them to his expecta-
tions, aligning them with traditional Trusted Computing and collecting them from software and
hardware manufacturers.

6.1.5 Consideration

The container-IMA architecture permits solving the issue of tenant privacy in the containerised
scenario, avoiding overturning the container architecture, but it has some disadvantages. First,
Container-IMA relies on the TPM 1.2 specification, which is outdated and no longer recommended
for new deployments. This solution’s main limitation is that it does not support containers in
the same namespace, which is particularly problematic in Kubernetes environments. The starting
point for improvement is enabling Container-IMA to work with containers that share namespaces,
as Kubernetes often deploys applications across multiple containers within the same pod.

Container-IMA hides certain details, like cPCR values, to protect privacy. This is a pro since
attackers cannot directly gain details about other containers but may still infer valuable informa-
tion from patterns or side-channel attacks if the communication is not trusted. For instance, if an
attacker manages to intercept the cPCR.value multiple times during a remote attestation process,
can learn knowledge to determine which container is currently active. Moreover, by observing
changes in the historyPCR over time, the attacker can deduce when a container has executed
certain operations. Ensuring malicious attackers cannot infer meaningful data would enhance the
system’s robustness against sophisticated attacks.

6.2 Docker Integrity Verification Engin (DIVE)

DIVE[23] is a solution proposed by the TORSEC research group at the Polytechnic of Turin,
specifically targeting the Docker container engine. It is designed to provide integrity evidence for
lightweight cloud environments and operates at the compute node level, requiring only a single
TPM per node. DIVE enables the integrity verification of the host, the container engine, and the
running containers. Authenticating the integrity state of services within containers through the
TPM facilitates verification during the Remote Attestation phase. A key advantage of DIVE is
its ability to identify which specific container has been compromised. This permits the immediate
termination and replacement of the affected container without resetting a full platform. As a
result, DIVE enhances the efficiency of the Remote Attestation process, making it a practical and
scalable solution for modern cloud environments. The schema consists of three main components:

44

Related works

• the Attester, which serves as the target of the Remote Attestation process, is equipped
with a TPM and runs the IMA framework in addition to the Docker container engine; it
also includes the RA agent, responsible for initiating the RA process by sending Integrity
Reports and interacting with the Verifier;

• The Verifier, as the core of the architecture, evaluates the integrity state of each Attester
and its containers;

• the Infrastructure Manager is responsible for provisioning containers based on user re-
quirements and maintaining a record of the association between Attesters and containers,
using their Universal Unique Identifiers (UUIDs) for identification.

When a cloud user requests the integrity of one of its services, the Infrastructure Manager ini-
tiates the Remote Attestation process. It sends the Verifier a list of containers and their respective
host machines to be checked. The Verifier then contacts the specified Attesters, requesting in-
tegrity reports that include evidence for the host system and all running containers. Using a
reference database, the Verifier validates the measurements of the targeted containers and gen-
erates an attestation report for the Infrastructure Manager. If a container is compromised, the
Infrastructure Manager can terminate it and launch a new one without rebooting the system.
However, a system reboot is required if the host operating system is compromised since a tamper
Attester may provide false reports, making compromised containers undetectable.

6.2.1 Consideration

DIVE leverages TPM-based hardware RoT for container attestation with minimal performance
impact. It permits the identification of compromised containers or hosts and enables efficient
recovery. It requires no changes to containerized applications or Verifier implementation but only
to the Attester machine, making it practical for real-world use. This solution, however, presents
some drawbacks inherent to the TPM specification, such as the lack of a Device Mapper as a
storage driver for Docker. Firstly, DIVE is based on the TPM 1.2 specifications for various
reasons, which are, unfortunately, deprecated. Another limitation is the potential collisions for
deviceID assigned to containers. In particular, if a container is stopped and a new one is started,
the new container might obtain the same ID as the previously terminated container, causing
attestation failures. Furthermore, DIVE does not protect against in-memory attacks, requiring
separate user and kernel space protections.

6.3 Docker Container Attestation

Generally, the MEs generated by processes on the host system and its containers are stored
together in the same ML. During the container attestation procedure, it is difficult to identify
which MEs belong to a specific container rather than another one. In the recent past, the TORSEC
research group at the Polytechnic of Turin has developed a valid solution for container attestation
that aims to associate each event present in the ML with the container or host system that
generates it. To do this, this work is based on TPM 2.0 specification and the concept of Control
groups. Control groups (cgroups) are Linux features which limit, account and isolate the resource
usage (i.e. CPU, memory, disk I/O) of a collection of processes, allowing the organisation of these
into hierarchical groups.

In the Linux kernel, the Docker process creates a control group for every new container gen-
erated. This is to ensure the separation of processes. Containers function as processes, with the
main application of each container acting as the init process. Consequently, all processes within
a container are descendants of the init process and cannot change their groups. In summary,
all processes within a container share the same groups. It has been established that Docker as-
signs a unique identifier to each container upon its creation. This identifier, referred to as the
container full-ID, is a 256-bit random code corresponding to the name of the newly created con-
trol group associated with the container. The work presents a new version of the IMA template

45

Related works

(ima-dep-cgn), with the consequent kernel function adjustments. It incorporates an additional
template descriptor of the form “dep|cgn|d-ng|n-ng” adding the control group name and all
the dependencies of the process in addition to the previous template. The incorporation enables
a Verifier to bind an ML entry with his container, only if the same conditions are met. Firstly,
the control group name field must be filled with a container-full-identifier. Secondly, a container
runtime must be present in the dependencies list field. If either of these conditions is not met,
the entry will be considered to belong to the host system. The RA framework used is Keylime,
which required modifications to enable container registration and support for the new template.

This work represents a valid container attestation solution, with the potential for adaptation
and integration into Kubernetes, where the smallest scheduling unit is the pod, rather than a
container.

6.4 Kubernetes Pod Attestation

More recently, the research group TORSEC of the Polytechnic of Turin has devised a method for
directly attesting the pod [24]. This work, instead, would identify all entries in the ML related to a
specific pod. To achieve this objective, the development of a revised IMA template (ima-cgpath)
was imperative, with the incorporation of the pod identifier as a mandatory component within the
attestation process. The RA framework utilised is Keylime, and modifications were necessary to
facilitate pod registration and the integration of the proposed template. The solution first aims
to discriminate the ML to understand the pods or host trustworthiness against an associated
whitelist. Then, following the setup of the cloud environment and modification of Keylime,
permit operations such as the periodic remote attestation and life cycle management.

IMA template

In the context of Kubernetes, a unique identifier, known as a UUID, is assigned to each object.
This serves to differentiate between past instances of entities with similar characteristics. It has
been observed that this UUID is consistently present in the control group path string associated
with a particular pod that is managed by Kubernetes. This consistency can be attributed to the
features of the control group in the Linux kernel, which is responsible for writing pod strings in
a specific format. The new version of the IMA template designated as (ima-cgpath) facilitates
the display of the specified UUID within a designated field in the ML, namely cgroup-path.
Consequently, in the context of pod attestation, a Verifier is able to bind a select number of ML

PCR template-hash template-name dependencies cgroup-path filedata-hash filename-hint

10 sha256:6b79219[…]8 ima-cgpath swapper/0:swapper/0 / sha256:7b6df73

6b0[...]1

boot_aggregate

… … … … … … …

10 sha256:ab34[...]74 ima-cgpath runc:/var/lib/rancher/k3s/data/8c2b

0191f6e36ec6f3cb68e2302fcc4be850

c6db31ec5f8a74e4b3be403101d8/bin

/containerd-shim-runc-

v2:/usr/lib/systemd/systemd:swappe

r/0

/kubepods/burstable/pod5c6ae4d

3-475b-4897-b1e4-

eb6367716cbd/5aeab4fc9a54050c

ab3f08b5e6e9b9566116e47716cb

4a657b909a1e6a0ce188

sha256:92e[...]e

7afaaec7e

/coreutils

10 sha256:ffdfb3[...]e17 ima-cgpath /bin/busybox:/var/lib/rancher/k3s/d

ata/8c2b0191f6e36ec6f3cb68e2302fc

c4be850c6db31ec5f8a74e4b3be4031

01d8/bin/containerd-shim-runc-

v2:/usr/lib/systemd/systemd:swappe

r/0

/kubepods/besteffort/pod5f5e4ef

5-22f0-4ff5-a693-

0497e43e58a9/8f2dcd659173cf34

53856cf5fce98d82ad309637ec951

593bf7cb65babad43a1

sha256:58e[...]e

e6ae4b8c

/bin/rm

10 sha256:0[...]42c5417 ima-cgpath /usr/bin/dash:/usr/bin/dash:/usr/lib/

systemd/systemd:swapper/0

/system.slice/keyboard-

setup.service

sha256:877a4bf

484[...]a2

/usr/bin/env

Figure 6.3. Example of ML with ima-cgpath template.

46

Related works

entries to a specific pod, provided that the format of the cgroup-path field corresponds to the
specifications outlined by the control group when handling Kubernetes pods. The format of this
field entry remains constant in order sense (string - UUID - string), as illustrated in Figure 6.3.
However, it may vary in terms of keywords or the addition of the container ID to the associated
container. The functionality of the dependencies field enables direct determination of the entry’s
association with the host or a container, as indicated by the presence of the container runtime
string.

Keylime Integration

The solution is based on the Keylime Remote Attestation framework with some modifications.
In more detail, it would integrate the Keylime framework in the Kubernetes environment, with
a specific focus on ensuring the integrity of the nodes and the pods running within them. The
whole architecture, shown in figure 6.4, helps to understand that the integration involves the
strategic placement of Keylime components: the Verifier, Tenant, and Registrar operate within the
Kubernetes Master Node, instead the Keylime Agent runs on the Worker Nodes. The integration
modifies Keylime’s execution flow, including the registration of pods and hosts, which is managed
by the Keylime Tenant component.

Pod Registration

The essential element of this solution is the pod registration, which is situated after the host
registration with the Keylime Verifier. This helps the registration of pods that operate on the
node, thereby ensuring that only the anticipated ones are running. It is imperative to note that
each pod is initially assigned a START state and can subsequently become either TRUSTED
or UNTRUSTED by the Verifier. The unique identifier (UUID) is retrieved from the control
group path field to check against a list of registered pods. If the pod (through the UUID) is

KUBERNETES WORKER NODE

KUBERNETES MASTER NODE

Keylime
Tenant

API server

etcd

User

controller
manager

scheduler

Keylime
Registrar

Keylime
Verifier

IMA
ML

TPM 2.0 kubelet kube-proxyCRI

POD
Keylime
Agent

POD POD

POD POD
POD

Figure 6.4. Architecture for Kubernetes Pod Attestation solution.

47

Related works

not registered, the host is deemed untrusted, and validation stops. If it is registered, the pod’s
measures are evaluated against a whitelist containing the golden values used to validate ML
entries. If a registered pod is found to be untrusted, it will be isolated and replaced with a fresh
version, but with a different UUID. Even though the pod can be considered untrusted, the host
is considered trusted in order to prevent the entire platform from restarting.

Remote attestation

The Keylime Verifier validates the integrity of both the host and its pods. This happens after
establishing the integrity of the Measurement List (ML) against PCR 10. The user triggers the
remote attestation by sending a request to the Keylime Tenant, which in turn registers the Agent
with the Keylime Verifier, although there is direct communication between them.

6.4.1 Consideration

The main aim of this solution is to protect the whole Kubernetes environment, including its nodes
and pods. By checking pods, the system can spot any unauthorised or unexpected processes
running on worker nodes. This method makes sure that everything is secure, but it also creates
a strong base for adapting to realistic situations in the future.

In the interest of simplicity, the current implementation of the Keylime system consolidates
all its components on the master node. Nevertheless, in a more general and complex scenario, it
is possible that multiple verifiers could be located outside the master. The presence of multiple
verifiers introduces potential privacy concerns, as a verifier, upon receiving a list of measurements
for validation, might gain access to information about pods that is not relevant to its purpose.
Moreover, the filtering measurement log is deemed to be trivial if the standard template hash fields
are detectable with offline guessing. It is, therefore, necessary to establish a method of rendering
the ML unpredictable and then performing a filtering process based on the pod identifier tied to
the verifier’s tasks.

48

Chapter 7

Proposed solution - Design

This chapter presents the design of the proposed solution, addressing key challenges related to
privacy and security in remote attestation for Kubernetes environments. The chapter commences
with an outline of the problems addressed, focusing on the risks associated with multiple verifiers
accessing sensitive information in Measurement Logs and the necessity for a privacy-preserving
approach. The proposed solution is then introduced, ensuring controlled access to attestation
data while maintaining system integrity. To enhance security, the chapter details modifications
to the IMA, including changes to the logging mechanism to prevent offline guessing attacks. The
architecture of the proposed solution is then described, highlighting the interactions between
different components within the cluster. The subsequent examination of the registration process
involves a thorough discussion of the roles of Worker nodes, the Master node, and verifiers, along
with the authorization mechanisms that delineate the verifiers’ authority to attest to specific
pods. The subsequent section details the verification process, explaining how integrity checks are
performed while minimizing data exposure. The chapter culminates in a privacy and guessing
analysis, evaluating how the proposed modifications enhance security and prevent unauthorised
access to sensitive information. This structured approach ensures that the solution is both effective
and scalable for large, multi-tenant cloud environments.

7.1 Problems addressed

In large-scale cloud environments like Kubernetes, privacy concerns arise when multiple veri-
fiers access Measurement Logs to assess node and pod integrity. These logs may inadvertently
expose sensitive information during the attestation phase, including data about unrelated pods
or workloads, risking confidentiality breaches. The challenge becomes more significant as the
system scales, as external verifiers often lack full context about the environment, making it dif-
ficult to enforce strict access controls. This can lead to verifiers accessing information beyond
their scope without proper mitigation, undermining trust and privacy in multi-tenant systems.
Another key challenge during attestation is ensuring that Measurement Logs cannot be easily
reverse-engineered. Filtering ML entries becomes ineffective if standard template hash fields,
which often follow predictable patterns, can be guessed offline, potentially exposing details about
existing measured components or configurations.

To overcome these challenges, this chapter introduces a privacy-preserving solution that en-
sures that verifiers only receive the specific attestation data relevant to their task, without exposing
the broader contents of the Measurement Logs. A design that obscures the internal distribution
of pods across Worker nodes is necessary, preventing verifiers from inferring sensitive deployment
details or gaining unnecessary visibility into the cluster’s structure. The solution should also
make the Measurement Logs unpredictable, mitigating the risk of offline guessing attacks and can
be achieved by incorporating dynamically generated metadata into the logs. This approach is
expected to render the content of the ML entries significantly more opaque to external verifiers,
thereby ensuring that only authorised details are discernible.

49

Proposed solution - Design

7.2 Proposed Solution

The proposed solution centres on the redefined attestation protocol within the Kubernetes envi-
ronment and the introduction of a new IMA template to overcome certain open privacy issues.
The objectives of this work are twofold: firstly, to enhance the efficiency of the remote attestation
procedure, and secondly, to improve the privacy of sensitive information when it is shared. This
approach ensures that verifiers do not directly access Worker nodes or their Measurement Logs;
instead, all attestation requests and responses are routed via the Master node. In this role, the
Master ensures that all communication and attestation requests pass through a centralized point,
abstracting the cluster’s underlying structure from the verifiers. This decoupling abstracts the
cluster’s internal details from the verifier, preventing it from gaining direct knowledge about pod
distribution and geographical details across nodes. The Master forwards the filtered measure-
ment data received from the Agent to the verifier, ensuring that only the specific measurements
required for the attestation process are provided, while all unrelated or confidential details remain
protected. In other words, the solution significantly reduces the risk of exposing sensitive infor-
mation in the Measurement Logs by ascertaining whether the entry is related to a pod that an
authorised Verifier is allowed to validate. The Master node acts as a proxy, interacting with the
Tenant component to register the Agent with the Verifier. It also manages the registration of pods
with the Verifier by sending lists of expected pod UUIDs and determining pod status based on
the Verifier’s evaluation. This approach is particularly beneficial in large, distributed Kubernetes
deployments with multiple verifiers, as it prevents unauthorized access to data outside a verifier’s
scope.

The last IMA template, designated as ima-cgpath, was developed to differentiate measure-
ment log entries by associating each entry with its specific pod through its unique UUID, which
is embedded in the control group path. This configuration helps the collection of measurements
relevant to a specific Verifier by the Master node, identifying pod entries and retrieving their as-
sociated UUIDs. To permit this, the template incorporates a field for the control group path, and
a dependencies field to understand the related process that generates this entry. However, to fur-
ther enhance privacy, the introduction of a new template is essential, and all details are described
in the section 7.3. This enhanced template incorporates a salt field, enabling the generation of
an unpredictable template-hash field, as it prevents unauthorised inference of Measurement Log
data. The incorporation of these new Agent capabilities will facilitate the development of refined
filtering mechanisms that will enable the isolation and retrieval of logs based solely on the pod
ID present. The salted template hash ensures that the filtering process prevents the potential
attacker from gaining a measurement traceable to other, previously observed ones.

This solution’s design is described through two main processes: registration process and veri-
fication process. The registration process described in the section 7.5 establishes the foundational
trust framework by having the Master and Verifier register with a centralized Registrar. This
process defines the roles of the components, authorizes verifiers to attest specific pods, and de-
termines the scope of their attestation, ensuring clear boundaries and controlled participation in
the verification process. The verification process described in the section 7.6 instead, is initiated
by the Verifier to check the integrity of specific pods, corresponding to the remote attestation
procedure within the presented scenario. First, the Verifier authenticates with the Master, which
checks the verifier’s authorization and determines the Worker nodes where the pod is deployed.
The Master forwards the request to the Workers, who compute the filtered Measurement List to
the Master and provide the Integrity Reports for attestation. The Master aggregates this data
into a unified state and delivers it to the verifier, ensuring an attestation result that reflects the
integrity of the pod across all involved Worker nodes. The Verifier only has access to information
about the specific pod it is authorized to check and does not receive information about other
pods, nor about the geographical location of the Worker nodes.

7.3 Measurement Log Analysis

The most recent IMA template (ima-cgpath) developed, is capable of facilitating the reporting
of the control group path field in addition to the dependencies field within the Measurement Log

50

Proposed solution - Design

entries. The focus here is on the first, which was added with the intention of displaying the UUID
assigned to the pod managed by Kubernetes, observing the string of the related control group
path. This facilitates the binding of a particular ML entry to the relevant pod, thereby ensuring
clear distinction, which is advantageous for subsequent filtering on this list. It should be noted
that there may be multiple entries with the same pod identifier but with different containers,
in the case of containers belonging to the same pod, or even with the same container identifier
in the case of different processes running along the same container. As previously stated, the
control group path field helps with pod identification, but a Verifier could still see details about
pods that aren’t their responsibility, which could cause a privacy issue. Moreover, it has been
observed that the template-hash value of certain entries can be identical across reboots, enabling a
potential attacker to recognise known measures. The template-hash field represents the hash over
the remaining fields beyond the template field. If these fields remain almost constant, without
something that changes every time before template-hash computation, it is possible to reconstruct
the entry identity. For these reasons, the proposal design involves the following IMA modification
for each entry:

1. the addition of a new field called nonce, a fresh random number generated for each reboot;
it is inserted by the Kernel before the template-hash computation making it unpredictable;

2. if the pod identifier in the ML doesn’t match the one requested by the verifier, the record will
be made up of two fields: the PCR number and the template-hash; this selective inclusion of
information prevents the exposure of unnecessary data, safeguarding sensitive details about
other pods.

A new template descriptor, called ima-slt, was introduced and will be explained in more detail
in chapter 8. This template permits the development of a filtering logic for the Measurement List
on the Agent’s local machine and then responds with the related Integrity Report. This solves
the privacy issue that was raised.

KUBERNETES WORKER NODE N

Agent

filtering logic
based on
required pod

KUBERNETES
MASTER NODE

User

RegistrarTenant

verifier-pod
association

Verifier

…

WORKER
NODE
N-1

WORKER
NODE
N+1

…

IMA
ML

POD

POD POD

POD POD

Figure 7.1. Architecture of the proposed solution.

51

Proposed solution - Design

7.4 Architecture of the Proposed Solution

The proposed solution is based on an architectural design in figure 7.1, involving several compo-
nents, including the tenant, the verifier, the Registrar and the Agent. Each of these components
has a specific role to play in ensuring pod integrity in the Kubernetes environment. Outside of the
cluster, the tenant is the entity that initiates the attestation process, requesting the verification
of specific pods. The verifier, which is also located outside the cluster, is the component that
performs the pod integrity check. The Verifier communicates with the Kubernetes Master node,
a pivotal component within the architecture that functions as a mediator. In order to operate,
it is necessary for both the Verifier and the Master node to be registered with the Registrar, a
centralized service external to the cluster that manages authentication keys. The Master node is
responsible for the management of authorisations and pod placement and is dislocated inside the
cluster with all the worker nodes. The cluster is comprised of worker nodes, each containing an
Agent that is responsible for collecting measurements related to pods running on that particular
node.

7.5 Registration Process

The registration process interest the main component of the remote attestation, which is intended
to facilitate mutual recognition and understanding between participants. This mechanism involves
further registration before starting the verification process and revisiting some of the traditional
registration procedures Keylime-based needed for remote pod attestation. The following sequence
has been established for the ordered registration process together with the figure 7.2:

• It is a prerequisite for the Registrar to enrol before the Master node (1), which is the entity
possessing knowledge of the local displacement of their Worker node and registered pods.
This part is described in section 7.5.2 with all Master capabilities and other subprocesses
necessary for the verification phase.

• Then (2), the process of registering Agents within the Registrar is similar, but there is
no direct communication between them. Instead, communication with the Worker node is

RegistrarVerifier

Tenant

1

2

3

KUBERNETES
MASTER NODE

verifier-pod
association

4

KUBERNETES WORKER NODE N

Agent

filtering logic
based on
required pod

IMA
ML

POD

POD POD

POD POD

Figure 7.2. Registration order of the components involved in the proposed solution.

52

Proposed solution - Design

passed through the Master node in order to provide its identity. A the end of this point all
the involved Agent in each Worker node will be enrolled to the Registrar.

• Once a Master is registered, the focus is on the Verifier (3). In this context, the registration
is characterised by the establishment of a unique identifier, designated as the verifierID

in addition to the IP address, which serves as a reference point for subsequent attestation
requests as explained in section 7.5.4.

• Once the Verifier is enrolled, the Tenant can request a Verifier to attest to the integrity of
their workload process (4) following the traditional procedure.

In such conditions, all components are known to each other, and a Master can assign the
authorisation to an existing Verifier to attest only to the interested pods by following a verifier-
pod mapping internally at the Master level. The Tenant can now provide a pod list with all
interested podID in the Worker node, thus initiating the verification process.

7.5.1 Worker Node

The Worker Node is registered with the Master Node in accordance with the established Kuber-
netes cluster hierarchy. In particular, in the event of a tenant requesting a new deployment, the
scheduler in the Master node will select the Worker node that hosts the necessary pods and will
initiate them. Here, the Agent, which runs inside the Worker node just instantiated, must be
activated and registered to the Registrar passing through the Master node. Once the Agent has
been initiated, it employs the IMA module within the Attester to populate and filter the Mea-
surement Logs to be included in the Integrity Report, utilising the recently proposed ima-slt

template. This modification is imperative for ensuring enhanced privacy at the Verifier level when
the Agent transmits the Integrity Report in response to each attestation request.

7.5.2 Master Node

The Master node plays a central role in the proposed remote attestation framework, acting as a
proxy between the Verifier and the Worker nodes. Its registration process begins with enrolling
in the Registrar, a centralized service responsible for verifying the authenticity of the hardware
platform via TPM’s Endorsement Key. The Registrar must be modified in order to host not only
keys needed for the attestation mechanism but also information about the Master (such as the
IP address) marking it as a known platform. In the event of a remote user requesting a new
deployment via the API server, the desired state is recorded in the etcd database. Subsequently,
the controller manager is responsible for creating the necessary controllers, while the scheduler
determines which physical nodes will host the pods. Once assigned, the Worker node launches the
pods using a container runtime. At this stage, the cluster becomes fully operational, continuously
working to maintain consistency between the actual state and the desired configuration. The
Master node also manages pod registration, a step that ensures that only expected pods are
actively running on the Worker nodes. Pod registration involves providing a list of pod UUIDs,
retrieved from the orchestrator, that are expected to operate on the node. Each pod is assigned
an initial state of START, indicating it is awaiting its first integrity check. As the attestation
process progresses, the Verifier updates the pod’s state to either TRUSTED or UNTRUSTED,
depending on its integrity evaluation.

7.5.3 Master Node Capabilities

Once registered, the Master node takes on a central role in managing authorizations and infor-
mation about pods. It maintains an internal mapping that links workloads (pods) to verifiers
authorised to attest to them. This mapping is of the type podID:verifierID and allows the
Master to verify whether a given Verifier is authorized to attest to a specific pod. This is a fun-
damental aspect of the system’s security and privacy, as it ensures that only authorized verifiers
can access information related to the pod’s integrity.

53

Proposed solution - Design

KUBERNETES MASTER NODE

Registrar

pod distribution

workerIP podID

192.168.15.94 0ae5c0...51606ba

6aaa09...e371206

c73045...3e073e7

192.168.15.95 f906a2...2058ac7

971165...1e55e60

192.168.15.96 a0dce3...e6bb486

192.168.15.97 d900c0...30aa9be

9c6f23...f1d7198

verifer-pod association

verifierID podID

abc123.. 0ae5c0...51606ba

6aaa09...e371206

c73045...3e073e7

efa456.. 0ae5c0...51606ba

971165...1e55e60

dfa980.. 0ae5c0...51606ba

eaf173.. c73045...3e073e7

971165...1e55e60

Figure 7.3. Example of pod-verifier mapping and pod distribution.

The Master node also maintains a detailed registry of all Worker nodes within the cluster,
providing it with comprehensive oversight of the cluster’s structure and resource allocation. This
registry includes information about the Worker nodes’ identities and their current operational
state. Through the use of Kubernetes APIs, the Master can identify the specific Worker node
where a particular pod has been deployed procuring information such as pod name, pod IP,
the namespace or even the Worker IP address. This list is subject to continuous updating,
with the relevant Worker IP address being associated with each pod, since a failure in a pod is
addressed with the rescheduling, potentially in another Worker node. Figure 7.3 illustrates the
pod-verifier mapping and the pod distribution after the registration phase which can help clarify
these relationships. It is important to note that multiple verifiers can be authorised to attest to
the same pod.

To preserve system privacy, the Master node operates as a proxy, abstracting internal cluster
details from the Verifier. While it holds detailed knowledge of the Worker nodes’ local config-
urations and pod distributions, this information is not directly exposed. The Master node can
provide information about pods to an authorised Verifier on demand, but only within strict pri-
vacy constraints. Specifically, the Verifier can access details related to the type of workload and
processes running within the pod without gaining any insight into the geographical location of
Worker nodes or other deployment details. Additionally, the Master would share information
about the pod’s integrity status, but only after the completed verification process.

7.5.4 Verifier Registration

After the registration of the Master node, the next step is the verifier’s registration. In this
process, the Verifier is enrolled with the Registrar, thereby establishing its identity and ensuring
its recognition within the attestation framework. During the registration process, the Verifier is
assigned a unique identifier, denoted as verifierID, along with its IP address and all necessary
information to be contacted in the network. This identifier serves as a reference point for handling
subsequent attestation requests, ensuring that each Verifier is uniquely identifiable within the
system. Following the conclusion of the registration process, the Verifier stores the Master node’s

54

Proposed solution - Design

IP address as its designated point of contact within the cluster. This enables the Verifier to
authenticate with the Master and initiate attestation procedures when requested. It is important
to note that the attestation process begins when a tenant requests the Verifier to assess the
integrity of specific pods by providing their corresponding podID.

The Master can assign authorisation to the verifier, thereby enabling it to attest solely to
specific pods. Alternatively, during the deployment of a new workload within a pod, the user
responsible for the deployment can specify which Verifier should be authorised to attest to that
particular workload. This authorization is provided at the moment of deployment, where the
tenant can provide (with the proper framework modification) the Verifier identifier, choosing his
favourite considering it the safest. In both cases, the Verifier must be pre-registered with the
Registrar since it already possesses the necessary information to communicate with the Master.

7.5.5 Verifier Authorisation

Following registration, a Verifier can be authorised to attest to specific pods within the cluster.
However, its access is strictly limited to application-level information. The Verifier is only per-
mitted to register a pod in terms of its workload type and application details, without obtaining
any information about the underlying infrastructure. This means that the Verifier cannot access
information such as the Worker node’s IP address, ports, server details or the pod’s geographi-
cal placement, thereby preserving the privacy of the cluster’s architecture. The Master node, in
its capacity as an intermediary, retains comprehensive knowledge of the Worker nodes and their
deployed pods ensuring that this information remains inaccessible to the Verifier.

The Master node can provide information to an authorised Verifier upon request, but this
is subject to strict limitations. The Verifier can access details about the type of workload and
application associated with a registered pod, thus ensuring that it can validate the pod’s expected
behaviour without acquiring unnecessary deployment details. Furthermore, upon completion of
the verification process, the Master node is capable of communicating the integrity status of the
verifier’s assigned pods, thereby confirming their status as either trusted or untrusted.

7.6 Verification Process

Before delving into the step-by-step process, it’s important to outline the context. The verification
process is how a Verifier checks the integrity of a specific pod and corresponds to the remote attes-
tation process adapted to the presented scenario. It involves several actors: a tenant who requests
the attestation, a Verifier authorized to perform the check, the Master node which orchestrates
the process and Agents that perform the actual work on the Worker nodes. The process starts
outside the cluster, as illustrated in figure 7.4, with the following step:

1. Attestation Request: a user initiates the process by sending an Attestation Request to
the Tenant, about his application or workload in a user-friendly way.

2. Forwarding to the Verifier: the tenant forwards the request to the Verifier to attest one
or more of their pods providing a list of UUID to be attested. This step is not included in
case two.

3. Forwarding to the Master: the Verifier then forwards the tenant’s request to the Master
node, on the basis that the user is known to the system. The location of the Master is
known to the Verifier based on prior registration with the Registrar, and the verifier may
or may not be authorised to attest specific pods.

4. Verifier Check: the Master node checks if the Verifier is already registered. If registered,
the Master node does not forward the request directly to the Agent. Instead, it proceeds to
check internal permissions, using the previously established podID:verifierID mapping,
to see which pods the Verifier is authorized to attest.

55

Proposed solution - Design

5. Worker Identification: the Master checks which are the relevant Workers by consulting
the pod distribution list continuously updated. If those UUIDs involve multiple entries in
the list, different Workers need to be contacted.

6. Forwarding to the Worker: The Master forwards the attestation request to the relevant
Worker nodes, for instance, the n-Worker.

As demonstrated in figure 7.5, the process continues within the cluster, with the subsequent
step being:

6. Agent Receives Request: the Agent is responsible for receiving the attestation request
on a designated port from the Master node, about a pod or a set.

7. ML Consulting and Filtering: the Worker node verifies the trustworthiness of the pods
using the same logic as the host machine. Once the integrity of the Measurement List
has been confirmed against PCR 10, both the host system and the pods will be validated
simultaneously. The TPM quote is determined by each Worker, who calculates the ML
associated with the underlying machine and filters it in accordance with specific criteria. The
process of filtering is initiated as follows: each entry in the Measurement List is evaluated
based on its podID. In the absence of a podID in the entry, the entry is regarded as relating
to the host system and is left intact. The same approach is adopted if the podID entry
identifier matches the one requested for attestation. Otherwise, only the first two fields are
returned, specifically the PCR number and the template hash. The template hash field is
mandatory, as this is required to permit the assessment of the system’s integrity state at
the verifier level.

8. Filtered ML to Master: the Agent then transmits the filtered list back to the Master
node.

The concluding stages involve a values comparison in order to validate the system’s trustwor-
thiness again outside the cluster. Figure 7.6 illustrates these steps in more detail:

8. Master Receives Filtered ML: the Master receives the filtered ML.

KUBERNETES
MASTER NODE

User

1

Registrar

Verifier

Tenant

2

3

4

5

verifier-pod
association

KUBERNETES
WORKER NODE N

6

WORKER
NODE N-1

WORKER
NODE N+1

… …

Figure 7.4. Verification process in the proposed scenario part 1.

56

Proposed solution - Design

6

KUBERNETES
MASTER NODE

8

KUBERNETES WORKER NODE N

Agent

filtering logic
based on
required pod

POD

POD POD

POD POD

7IMA
ML

Figure 7.5. Verification process in the proposed scenario part 2.

9. State Aggregation: (optional) the Master has the option to aggregate these responses if
they are from different Workers.

10. ML to the Verifier: the Master forwards the filtered (or aggregated) ML to the Verifier.

11. ML validation: the Verifier receives the list and performs validation according to the
Remote Attestation procedure.

12. Attestation Result: the Verifier generates an attestation result.

KUBERNETES
MASTER NODE

User

Registrar

Verifier

Tenant

10

9

verifier-pod
association

WORKER
NODE N-1

WORKER
NODE N+1

… …

8

KUBERNETES
WORKER NODE N

11 12

()

Figure 7.6. Verification process in the proposed scenario part 3.

57

Proposed solution - Design

This process can be performed periodically, as the user must first interact with the orchestrator
to obtain the current pod identifiers, which are dynamic and may change over time. In the event
of a Worker node failure or shutdown, the affected pods will be rescheduled with new UUIDs
and may be deployed on one or more different Worker nodes. It is evident that the operation in
question is executed by the scheduler. Consequently, the master is invariably informed of the pod
distribution, as the scheduler is responsible for the continuous monitoring of this list. Following
the retrieval of the updated pod UUIDs, the user then contacts the Tenant to initiate a new
Attestation Request, thus restarting the verification process.

7.7 Privacy and guessing analysis

The result of the verification process is that the Verifier can verify the integrity of a pod and
the Worker it runs on without knowing information about other pods. This information remains
private to the cluster administration. During the verification process, the Verifier receives a
filtered ML containing information related to the pod for which it requested attestation. This
list is generated by the Agent within the Worker node and subsequently processed by the Master
node. It is important to observe that the Verifier does not obtain direct information about other
pods running on the same Worker node or other Workers. The only data that the Verifier receives,
besides the integrity of the verified pod, is the first field of the list (template-hash), which is always
different due to the addition of a salt, making it impossible to relate this information to known
measurements.

A potential attacker, by analysing the filtered and obfuscated entries of the ML, might try to
guess the amount of work performed by the Worker on which the requested pod is running. The
attacker might also infer that other pods are running on the same Worker without being able
to determine the exact number of such pods. The relative proportions of work performed by a
single pod or multiple pods remain uncertain. A single pod is capable of performing a significant
amount of work, whereas multiple pods are capable of performing a smaller amount of work.

The attacker cannot obtain specific information related to other pods, such as the type of
application, dependencies, or the container runtime. Information regarding the geographical
location of the Worker is also hidden from the attacker who does not know if and where the
pod has been located. Information about the location and configuration of the pods remains
private to the cluster administration. Instead on the tenant side, details on pod placement and
configuration are protected and not accessible to the user consuming the service. This ensures that
information related to the cluster’s internal workings remains confidential to the administration,
maintaining the privacy of the system.

58

Chapter 8

Proposed solution -
Implementation

This chapter details the implementation of the proposed solution, with a particular focus on
enhancing remote attestation mechanisms within Kubernetes. The solution is built upon modifi-
cations to both the Linux Integrity Measurement Architecture and the Keylime framework, along
with additional Kubernetes capabilities to improve security and privacy. The chapter begins by
discussing modifications to the IMA template and kernel, which ensure that Measurement Logs
accurately represent pod-specific information. It then details the enhancements introduced to
Keylime, a critical component in the attestation process. These modifications encompass several
Keylime components, including the Tenant, Agent, Registrar, and Verifier, each of which con-
tributes to the enhancement of integrity verification enforcing privacy outside the cluster. The
remaining sections of the chapter proceed to examine Kubernetes integrations for secure and ef-
ficient attestation. These include a proxy implementation for centralized component interaction,
an authorisation mechanism to grant or reject data access, and a feature to build a compressive
state of the ML from different attester machines.

8.1 IMA Template and Kernel modification

The recently refined IMA template is predicated on its predecessor, with particular emphasis
placed on the entry discrimination corresponding to the host system and those associated with
a pod. This was made possible by the cgroup-path field, which displays the associated UUID
if the entry is related to a pod. The recently suggested template incorporates an additional
field corresponding to a nonce for each entry. The work operates under the assumption that a
fresh 32-bit random number is adequate for the purpose of generating unpredictability. The
template descriptor is referred to as “ima-slt”, accompanied by a format string that reads
“dep|cg-path|d-ng|n-ng|slt”. The abbreviation “slt” is employed to denote the additional
field, which functions as a salt for the template-hash computation and hence is subject to change
following a system reboot. Referring to Figure 8.1, the template fields utilised for each record are
as follows:

• PCR as the index of the PCR at which the entry was extended;

• template-hash, the representation of the digest extends from the specified PCR, calculated
over the template fields, from the template name to the last field; the SHA-256 algorithm
is utilised;

• template-name specifies the template descriptor used for the entry. In this case, it is
ima-slt;

• dependencies of the process that resulted in the creation of this event;

59

Proposed solution - Implementation

PCR template-hash template-name dependencies cgroup-path filedata-hash filename-hint salt

10 sha256:6b79219

[…]8

ima-slt swapper/0:swapper/

0

/ sha256:7b6df73

6b0[...]1

boot_aggregate de091f2969b531f9cc1112

9ee5d184c7

… … … … … … … …

10 sha256:ab34[...]

74

ima-slt /bin/bash:/bin/bash:

/usr/local/bin/contai

nerd-shim-runc-

v2:/usr/lib/systemd/

systemd:swapper/0

/kubepods.slice/kubepods-

besteffort.slice/kubepods-

besteffort-

pod8a6fa97c_ec24_4b56_9f79

_593d1fb071d6.slice/cri-

containerd-

2c08aecc965e59b51cae43d589

001d6971b423dc70c7ee04939

711413737f3e5.scope

sha256:92e[...]e

7afaaec7e

/coreutils 1bc206bf467aecc344bb6

dd70c37d76

10 sha256:ffdfb3[..

.]ae17

ima-slt /bin/bash:/bin/bash:

/usr/local/bin/contai

nerd-shim-runc-

v2:/usr/lib/systemd/

systemd:swapper/0

/kubepods.slice/kubepods-

besteffort.slice/kubepods-

besteffort-

pod72af3aba_3e41_42a3_adbc

_5d995710a511.slice/cri-

containerd-

c01f25798e461be92a80cb8e3c

ae9472aa4428e841094c7be02

65ec96bf97a27.scope

sha256:58e[...]e

e6ae4b8c

/bin/rm f6d793e1e063fbbdb4eec

254afab9e15

10 sha256:0[...]42c

5417

ima-slt /usr/bin/dash:/usr/bi

n/dash:/usr/bin/logi

n:/usr/lib/systemd/s

ystemd:swapper/0

/system.slice/system-

getty.slice

sha256:877a4bf

484[...]a2

/usr/bin/env 211b216abad273ab93758

7e2f0f5ad4b

Figure 8.1. Example of ML with ima-slt template.

• cgroup-path contains the pathname of the cgroup about a particular container within a
specific pod;

• filedata-hash contains the digest of the specified file; regards as the actual measure of the
event obtained utilising the SHA-256 algorithm;

• filename-hint is the conventional file path name;

• salt is defined as a 32-bit random number generated each time the system is restarted.

All fields previously present in the preceding template are mandatory, while salt has been
newly introduced. It is important to note that the template-hash field utilises the SHA-256
algorithm, whereas the default hashing algorithm employed in the IMA module is SHA-1.
Originally introduced by Docker Container Attestation developers, this enhancement has been
adopted in the current solution, allowing the hashing algorithm to be reverted to SHA-1 via the
ima_template_hash= kernel parameter. The patch implementation of the new template is set
out in section B.1 of the Developer’s Manual.

At the Agent level, this table is fully available. By observing the cgroup-path field, it is
possible to identify the pod identifier and the specific container in which the process is executing.
Utilising these details, a horizontal filtering logic has been implemented, retrieving the podID from
the Verifier request and selecting a specific subset of the entry. The term ’horizontal’ signifies that
only the first two fields are returned to the Verifier if the entry is not of interest. The motivation
behind the introduction of the final field is to induce unpredictability due to the inherent variability
of the salted template-hash value, which renders it indistinguishable from conventional measures.

8.2 Keylime modification

The Keylime modifications pertained to two primary considerations. Firstly, the objective was to
ensure the framework was both capable of understanding and utilising the newly developed IMA

60

Proposed solution - Implementation

template. This was to be implemented at the Agent level, responsible for the management of the
Measurement Log, as well as at the Verifier level, which is responsible for the acceptance of a list
comprising entries that potentially contain fewer fields than expected. Secondly, given the function
of the Kubernetes Master node as an intermediary between the Agent and other framework
components, the modification must ensure that all requests and responses in the attestation
process are correctly routed and managed following the established consensus.

Upon instantiation of the IMA template in the attester machine, the Keylime framework ini-
tiates the registration process, which involves the components in the order proposed in the design
section. Initially, the Master node must be registered to the Keylime Registrar, providing the nec-
essary information to be contacted over the network, as outlined in section 8.2.3. Subsequently,
the process of registering Keylime Agents within the Registrar is analogous to the Physical Node
Registration Protocol employed by Keylime, with the distinction that a Master mode now ex-
ists between them and that communication must be routed to the appropriate destination. This
necessitates modifying the port and IP address, which Keylime allows easily by editing specific
fields in the configuration files. A similar process is required when Keylime Agents register with
the Verifier component as part of the Three Party Bootstrap Key Derivation Protocol, a process
that also involves the Tenant informing the UUID of the Agent under examination. Given that
the Registrar is situated outside the cluster, an “Ingress” Resource is required to enable com-
munication with the Keylime Agent together with other services offered by Kubernetes outlined
in greater detail in section 8.3. Generally, some modifications are required for each component,
which will be described individually in the following sections.

The architecture of the component in question, as it pertains to the implementation, is delin-
eated in Figure 8.2.

relational
database

verifier-pod
association

KUBERNETES WORKER NODE N

Keylime
Agent

filtering logic
based on
required pod

KUBERNETES MASTER NODE

etcd

API
server

User
scheduler

IMA
ML

TPM 2.0

controller
manager

Keylime
Tenant

Keylime
Registrar

Keylime
Verifier

WORKER
NODE
N-1

WORKER
NODE
N+1

POD
POD POD

POD POD

kubelet kube-proxyCRI

Figure 8.2. Overview of the proposed architecture.

61

Proposed solution - Implementation

8.2.1 Tenant modification

Tenants represent a tool registered to the framework and possess a list of UUIDs corresponding
to the pods to be attested. The Agent provides a set of APIs for tenants that offer several critical
functionalities. Firstly, these APIs allow tenants to monitor the operational status of the Agent
as well as the pods running on a given Worker node, ensuring continuous visibility of the current
state. Additionally, tenants can dynamically add, modify, or remove pods from the attestation
list, providing flexibility in managing pod registration. Alternatively, a Tenant can query the
integrity status of an individual pod with proper APIs for instance by issuing a GET request with
the pod’s UUID; the Verifier will then respond with a status of either START, TRUSTED, or
UNTRUSTED. These features, as previously introduced in earlier works, are fundamental for this
thesis work and require no further modifications. The only modification to enforce is to change the
IP address of the Agent to the Master IP address in order to ensure the transmission of the correct
information to the Verifier, which will then route the Attestation Request correctly. It should be
noted that the Agent’s UUID to be transmitted remains invariable and will be recognised at the
Master level.

8.2.2 Agent modification

The Keylime Agent periodically transmits an Integrity Report, encompassing the Measurement
Log, to the Keylime Verifier. To provide support for the IMA template that has been recently in-
troduced, modifications were made to the Kernel code responsible for handling IMA interactions.
These modifications included the addition of a new class, named ima-slt, in the attester machine,
which permits the populating of the ML with the additional field that has been proposed. A fur-
ther significant modification pertains to the filtration of the Measurement Logs by the Keylime
Agent. The Agent is responsible for exposing an API as the point of contact to receive requests,
along with the UUID of the pod to attest. These APIs have been developed in the context of pre-
vious thesis works and thus do not necessitate modification, given their basis on the pod identifier.
The possession of the UUID facilitates the enforcement of the filtering logic illustrated in figure 8.3.
Before computing the KeylimeQuote, the process commences with a comprehensive scan of all ML

IMA Measurement Log

template-name .. cgroup-path .. filename-hint salt

slt .. / .. boot_aggregate de0..c1

slt .. kubepods.slice/kubepods- .. /usr/bin/coreutils 11b..76
besteffort.slice/kubepods-
besteffort-pod8a6fa97c_ec24
_4b56_9f79_593d1fb071d6
.slice/..

slt .. /kubepods.slice/kubepods- .. /bin/rm f6d..15
besteffort.slice/kubepods-
besteffort-pod72af3aba_3e41
_42a3_adbc_5d995710a511
.slice/..

…

API: GET
/v2/agents/{agent_id:UUID}/pods/72af3aba_3e41_42a3_adbc_5d995710a511

FILTERED

TAKEN

TAKEN

Figure 8.3. Filtering logic of the Keylime Agent.

62

Proposed solution - Implementation

PCR template-hash template-name dependencies cgroup-path filedata-hash filename-hint salt

10 sha256:6b79219

[…]8

ima-slt swapper/0:swapper/

0

/ sha256:7b6df73

6b0[...]1

boot_aggregate de091f2969b531f9cc1112

9ee5d184c7

… … … … … … … …

10 sha256:ab34[...]

74

10 sha256:ffdfb3[..

.]ae17

ima-slt /bin/bash:/bin/bash:

/usr/local/bin/contai

nerd-shim-runc-

v2:/usr/lib/systemd/

systemd:swapper/0

/kubepods.slice/kubepods-

besteffort.slice/kubepods-

besteffort-

pod72af3aba_3e41_42a3_adbc

_5d995710a511.slice/cri-

containerd-

c01f25798e461be92a80cb8e3c

ae9472aa4428e841094c7be02

65ec96bf97a27.scope

sha256:58e[...]e

e6ae4b8c

/bin/rm f6d793e1e063fbbdb4eec

254afab9e15

10 sha256:0[...]42c

5417

ima-slt /usr/bin/dash:/usr/bi

n/dash:/usr/bin/logi

n:/usr/lib/systemd/s

ystemd:swapper/0

/system.slice/system-

getty.slice

sha256:877a4bf

484[...]a2

/usr/bin/env 211b216abad273ab93758

7e2f0f5ad4b

Figure 8.4. Example of filtered ML with ima-slt template.

entries and checks if each cgroup_path value contains a specific pattern to respect. The pattern
is defined as "/kubepods.slice/kubepods-besteffort.slice/kubepods-besteffort-pod",

pod_UUID, ".slice" and if the pod_UUID matches the received one in the API, the entry is taken
entirely. On the contrary, verification is conducted to ascertain whether the value of cgroup_path
encompasses the initial segment of the pattern. In the event that the initial segment is present,
it can be deduced that the entry is associated with an event originating from another pod. Con-
sequently, the initial two entry fields, the template-hash and the PCR number, are selected.
Otherwise, the entry is tied to an event generated by the underlying host system, and again, the
entry is taken entirely since the Verifier has to know details about the machine to attest. The
resulting table is illustrated in figure 8.4 and will be communicated firstly to the Master and
subsequently to the Verifier. It is worth noting that all entries pertain to a particular Worker
node on a specific IP address; instead, all entries received at the Master level are derived from
other machines within the cluster, and therefore, an aggregation state is necessary. The described
script is available in the section B.2 of the Developer’s Manual.

8.2.3 Registrar modification

First, it is necessary to modify the Keylime Registrar to enroll the Kubernetes Master node
network details. Specifically, the IP address and port of the network node are to be saved to
inform the Verifier about the right destination when it has to be enrolled later. These data are
stored in the same database that is used for the attestation process, and in the field designated
for the IP address of the Agent, rather than the one for the Master. This operation is performed
before the Physical Node Registration Protocol between the Agent and the Registrar, and this
field is not altered in subsequent operations. In summary, the information regarding the Agent
destination is not retained and is instead substituted by the Master destination. The Master will
subsequently forward the information to the designated Agent recognising the associated UUID.

8.2.4 Verifier modification

The Keylime Verifier must be modified to support the new version of the Measurement List
provided in the Integrity Report, without the risk of erroneous results. The Verifier is in charge of

63

Proposed solution - Implementation

the IMA ML validation process, which is performed by checking each entry in the list. It parses
each entry by splitting it into fields using whitespace as a delimiter since the Agent transmits the
IMA Measurement Log in ASCII. By default, Keylime utilises the template name from the third
field to determine which template to apply and computes a digest of the corresponding template
fields using the hash algorithm specified in the Integrity Report. Although the template-hash
is already the digest computed over these fields beyond the template-name, for best practice,
Keylime checks if these values are the same. If these values are found to be different, the Verifier
will log the discrepancy identified during the ML verification process. However, it should be noted
that with the new version of the list, these fields in entries that are not interesting are missing.
For this reason, modifications are required to shift the validation to bypass the recalculation of
the digest and to rely on the template-hash value present in the entry. Consequently, the Verifier
performs an “extend” operation by combining the template-hash with the aggregated PCR, known
as the running_hash, which is built incrementally as entries are processed. Upon completion of
the processing of the entire list, the Verifier then compares the running_hash to the IMA PCR
value provided in the quote. A match between these values serves to confirm that the ML has
not been tampered with up to that point. To m For the primary attestation, the running_hash

is initialised to an all-zero string since the entire Measurement Log is received. For subsequent
attestations, it resumes from the IMA PCR of the previous attestation because only the new
ML entries are transmitted. After verifying the Measurement Log’s overall integrity, the Keylime
Verifier validates each entry by consulting the appropriate host and pod whitelists. In the event of
the validation of measurement log integrity encountering failure, or in the event that one or more
measures do not correspond with those present in the whitelist, the Attester system is evaluated
as untrusted. The snippet of code of interest for the new class and validation is shown in section
B.3 of the Developer’s Manual.

8.3 Kubernetes Capabilities integration

This section provides an in-depth description of the implementation, encompassing all features at
the Master level, with the use of different scripts.

8.3.1 Proxy Feature

In the proposed solution, the Master should act as a proxy, thus preventing other communications
from contacting nodes in the internal network. Specifically, the solution necessitates the imple-
mentation of a reverse proxy that incorporates designated filtering policies. The reverse proxy is
an intermediary component between the communication infrastructure and the available services.
It receives incoming requests from clients on the external cloud and subsequently forwards them
to the available services. In this particular instance, the service in question is the Keylime Agent
responsible for providing the quote associated with the required pod to attest. This feature can
be enforced by a Kubernetes resource, named Ingress, which is a service available through the
utilisation of a protocol-aware configuration mechanism. This mechanism possesses the capacity
to comprehend web concepts such as URIs, hostnames, or paths, and within the Ingress resource,
facilitates the mapping of traffic to distinct back-ends, based on rules defined via the Kubernetes
API. As illustrated in Figure 8.5, the present resource and the other associated ones are situated
within the proposed architecture. In order to utilise this service, it is necessary to define a par-
ticular YAML file (of the Ingress kind) which specifies the domain of the Master node’s public
address with the listening port. It is also necessary to specify the API exposed by the Agent in
the path field, together with a snippet of code on which a forward logic and the authorisation
logic work with the related file name. A service of the type NodePort must be defined here.
It constitutes an additional resource that has been defined previously, encompassing not only
the specifications of the incoming communication but also the nodePort number on which the
Keylime Agent on the Worker node is waiting to receive requests. For each Agent, a ClusterIP

Resource is enforced to process the incoming TCP traffic from the conventional port and choose
the right targetPort as pod destination. It is imperative to note that this Service is defined
individually for each Worker node, with each node possessing a distinct namespace. The files in

64

Proposed solution - Implementation

question are interconnected within the system through a label match. At this stage, the empha-
sis is on the logic that determines whether to forward the integrity request to the appropriate
Worker node. For the present scope, a Python script has been developed that discriminates the
pod UUID received from the Verifier or a list of pods and forwards the received request to the
right Worker node. The Python script performs a series of actions, the full details of which are
outlined in section B.4 of the Developer’s Manual. Firstly, it identifies the location of the pod
by consulting the pod distribution list, a process that is continuously updated by Kubernetes.
Secondly, it builds a request with all the required details. To execute this script, it is necessary to
launch a pod using a Deployment resource, which runs it. It includes a defined containerPort,
through which the service is accessible within the cluster, utilising a ClusterIP resource also in
the Master node. This deployment is defined in a YAML file, which specifies the deployment,
with a base image: python:3.8-slim, on which a container is able to execute a Python script.
In the end, the script is included in the image thanks to a custom Dockerfile, which contains it
and all the necessary packages. A comprehensive YAML definition may be found in the section
A.2.3 of the User’s Manual.

8.3.2 Verifier Authorisation

The Verifier authorisations refer to the mapping verifierID:podID presented in the design chap-
ter. This mapping is implemented in a sqlite3 database local to the Master on which all the
associations are available. Associations are recorded as records in a table containing just two
fields: the verifierID and the podID. Given the possibility of different verifiers attesting the
same pod, or of different pods being attested by the same Verifier, the relation is N:M, and the
primary key of the table encompasses both fields. The authorization logic is implemented in the
same file that is used for the forwarding logic, and it is enforced before the request is sent to the
correct Worker node. In order to provide a more detailed description of the process, it is first
necessary to explain the function of the initial check. This check ensures that a given Verifier is
already present in the system by querying the database using a SELECT statement to ascertain

Keylime
Tenant

KUBERNETES WORKER NODE N

ClusterIP
Service

Keylime
Registrar

Keylime
Agent

WORKER
NODE
N-1

WORKER
NODE N+1

External cloud

traffic

nodePort:30080nodePort:30080 nodePort:30080

Keylime
Verifier

Ingress
Resource

KUBERNETES
MASTER NODE

API server

NodePort
Service

Figure 8.5. Resources utilisation in the proposed architecture.

65

Proposed solution - Implementation

the identifier’s existence. In the event that the identifier is present, the script continues; oth-
erwise, the attestation attempt is halted immediately. Following this, authorisation to contact
the Worker is granted after a successful check on the mapping over the verifierID and podID

provided. In essence, when the pod list provided is scanned in the previous Python script, this
verification is performed for each entry by consulting the database to ascertain whether there is
a record with both identifiers. This is achieved through a query with a SELECT statement, as
previously described. In the absence of the record, it can be deduced that the Verifier lacks the
requisite authorisation to attest to this particular pod. Consequently, the system issues an error
message, thereby impeding the attestation attempt. On the other hand, the request is correctly
forwarded to the right Worker node following the specifications presented in the previous section.

For the simplicity of the process, the database is initially empty and will be populated each
time a workload to be attested is deployed. In the proposed solution, a new Python script is
developed to substitute the command to apply a workload configuration used by Kubernetes
through a YAML file. The new script is implemented to function similarly to the standard,
such as when YAML files are used in the kubectl apply -f command, with the additional step
of specifying the verifierID after the -verifier tag. The code first initiates deployment in
the customary manner employed by Kubernetes, subsequently retrieving the list of pod UUIDs
associated with the scheduled pods. Following the compilation of said list, the pods are registered
using an INSERT query to the database utilised for the purpose. This query is repeated for
each pod, with the number of iterations corresponding to the number of generated pods. The
pod UUID and the Verifier identifier at the conclusion of this process will be registered in the
database in each record. A segment of code for the designated apply command is presented in
section B.5 of the Developer’s Manual

8.3.3 State Aggregation Feature

Once the KeylimeQuote has been built with the filtered Measurement List, each Agent responds
to the Attestation request with a response related to the required pods. Each response is trans-
mitted to the designated port on a specified IP address, as outlined in the configuration file. In
this particular instance, the port is monitored by the Master node within the same network, and it
is listening for the response by the Keylime Agent. In particular, the Master node is waiting to re-
ceive many responses as many requests are already forwarded to Worker nodes. When the Master
collects all the received responses, it takes care of the serialization of an object composed of a set
of quotes received. This response is forwarded to the Verifier in the usual method since it exposes
the API to retrieve the quote from the Agent. The result of the attestation will be determined
based on the state aggregation provided. The present implementation is based on a prior script
when the forwarding logic is initiated, where the Master invokes itself as an API, transmitting
the verifierID and the anticipated quantity of pods to be attested. All the APIs exposed by
the Master have been constructed using Flask (a lightweight web framework for Python), which
has the purpose of facilitating the process of building APIs. Accordingly, the system has been
configured to await many responses corresponding to the number of Verifier identifiers requested.
The implementation of this waiting is achieved through the use of a threading Python library
utilised to facilitate synchronisation between the function that receives the response from the
Agent and the function that calculates the state aggregation. The first function is invoked each
time an Agent transmits a quote to the Master node, appending the response to an array of re-
sponses. The second one is waiting for a condition on the expected_responses variable, defined
when the Attestation Request is sent to the Agents. The condition consists of waiting until the
number of expected responses is equal to the length of the array of the received response. Once
this condition is met, the primary process acquires all the responses collected at that particular
instant and transmits them to the Verifier. The Verifier listens to the response via a TCP service
script on a specific port, without exposing any API.

66

Chapter 9

Tests

The present chapter concerns the testing and validation phase of the proposed architecture. In
this regard, a series of tests has been devised to ensure the system’s correctness, reliability, and
performance under various conditions. In particular, functional tests are conducted to verify the
correct behaviour of the remote attestation process, particularly focusing on scenarios involving
legitimate and unrecognised Verifiers and pods. Concurrently, the evaluation encompasses a
comparison with the standard Keylime framework to assess the architecture’s capacity to perform
remote attestation correctly in the proposed environment. In the end, performance tests are
utilised to analyse attestation times, thereby measuring the system’s efficiency and scalability in
relation to the growth in the number of pods.

9.1 Testbed

The prepared testbed for the proposed solution is composed of two machines:

• A Kubernetes Master Node where the Keylime Registrar, the Keylime Verifier and the
Keylime Tenant are launched. The machine is an Intel NUC with an Intel Core i5-5300u
CPU, and the operating system used is Ubuntu Server 24.04.2 LTS.

• AKubernetes Worker Node as the attester machine running the Keylime agent. The machine
is an HP Elitebook laptop equipped with an Intel Core i7-7600u CPU and a real HW TPM
module manufactured by Infineon. Ubuntu Desktop 22.04.1 LTS is the OS used, with
a Linux kernel patch applied to a specific branch checkout using the new IMA template
explained in section 8.1.

9.2 Functional Tests

The first step in the testing process is to understand the correctness of the proposed solution
within the architecture through functional testing. If the host system and each pod running on
it match their respective whitelist values, the Keylime Verifier is expected to consider both the
host system and each pod as trusted. The test considers running the pod with the script to
externally expose the API for receiving and forwarding requests, and already granting permission
to a verifier to attest specific groups of the pod. On the Kubernetes worker node, the Keylime
agent was started using the default UUID d432fbb3-d2f1-4a97-9ef7-75bd81c00000 and a single
nginx pod scheduled by the master, with the following nginx-deployment.yaml file:

apiVersion: apps/v1

kind: Deployment

metadata:

67

Tests

name: nginx-deployment

labels:

app: nginx

spec:

replicas: 1

selector:

matchLabels:

app: nginx

template:

metadata:

labels:

app: nginx

spec:

containers:

- name: nginx

image: nginx:latest

ports:

- containerPort: 80

All the test performed start with the Verifier running this command on the terminal with
its unique verifier_id to attest a specific pod indicated as a pod_id in the body of the JSON
request:

curl -X POST http://localhost:5000/verify -H "Content-Type: application/json" -d ’{

"verifier_id": "default",

"pods": [

{

"pod_id": "aaaaaaaa-aaaa-aaaa-aaaa-aaaaaaaaaaaa",

"whitelist": [],

"exclude_list": []

}

]

}’

For simplicity, Keylime Verifier runs on the same machine as the Kubernetes master node,
and the API is exposed internally on localhost.

In general, the verifier_id is not trivial like the default and should be kept secret from
other verifiers to avoid a spoofing attack. However, the pod_id is only known to the Kubernetes
control plane and the verifier responsible for attesting to a pod, which makes the same attack
harder to execute.

Now the Python script internally checks for the existence of the verifier_id and whether
this identifier is associated with the ability to verify the specified group of pods. Once the checks
have been passed, the agent sends a POST request each time to inform the master that a new
offer has been generated. For this reason, there is a first behavioural distinction regarding the
agent, namely, whether the Python script is running or not. The agent sends a POST request
to an API /collect exposed by the master node on port 5002, different from the /verify API
exposed on port 5000. If the script collects the request from the agent, the master will return a
log like this:

192.168.0.102 - - [22/Apr/2025 15:06:09] "POST /collect HTTP/1.1" 200 -

And on the agent side:

INFO keylime_agent::quotes_handler > POST request to /collect succeeded

On the other hand, if the script is not running, the master cannot collect the quotes, and the
agent will throw an error:

68

Tests

ERROR keylime_agent::quotes_handler > Failed to send POST request to /collect...

Finally, the script waits to receive all the quotes requested for the pods under observation.
Once all the quotes have been received, the script serialises the measurement list separately and
sends it back to the Verifier to validate the system integrity.

The cases dealt with in the functional tests include:

• test with a correct Verifier permission

• test with an unrecognised Verifier

• test with an unrecognised pod for a given Verifier

9.2.1 Test with a correct Verifier permission

This section reports on successful tests that have passed both checks. First, the Verifier runs
the above command on the terminal with its unique verifier_id (the test uses “default”, but
this can be changed) to attest a specific Pod with 616ac316-caa8-46e8-b42b-dabd554c59cc as
pod_id:

curl -X POST http://localhost:5000/verify -H "Content-Type: application/json" -d ’{

"verifier_id": "default",

"pods": [

{

"pod_id": "616ac316-caa8-46e8-b42b-dabd554c59cc",

"whitelist": [],

"exclude_list": []

}

]

}’

As this verifier is already registered in the local database verifier_pod_mapping.db managed
with sqlite, and the pod identifier requested in the command is associated with it, the positive
response given to the verifier corresponds to this:

{

"master_node_response": {

"aggregated_response": {

"code": 200,

"results": {

"quotes": [

{

"details": "Pod attestation completed successfully",

"pod_id": "616ac316-caa8-46e8-b42b-dabd554c59cc",

"status": "success"

}

],

"uuid": "default"

},

"status": "OK"

},

"message": "Response forwarded"

},

"message": "Verifier authorized (Verification initiated)"

}

69

Tests

9.2.2 Attestation test with an unrecognised Verifier

This attempt tries to verify the same previous pod but with another verifier identifier
(other_verifier_id), the command launched is:

curl -X POST http://localhost:5000/verify -H "Content-Type: application/json" -d ’{

"verifier_id": "other_verifier_id",

"pods": [

{

"pod_id": "616ac316-caa8-46e8-b42b-dabd554c59cc",

"whitelist": [],

"exclude_list": []

}

]

}’

As the Verifier is not registered on the system, the following message is returned to the Verifier
and the attestation attempt is aborted:

{

"message": "Unauthorized Verifier"

}

9.2.3 Attestation test with an unrecognised pod for a given Verifier

The last attempt will try to verify another pod with 72a2e8ee-d491-4c96-807b-1418ce611f0

as identifier, but with a Verifier identifier (default) already registered in the system:

curl -X POST http://localhost:5000/verify -H "Content-Type: application/json" -d ’{

"verifier_id": "default",

"pods": [

{

"pod_id": "72a2e8ee-d491-4c96-807b-1418ce611f0",

"whitelist": [],

"exclude_list": []

}

]

}’

As the Verifier is logged on to the system but does not have permission to attest the specified
Pod, the following message is returned to the Verifier and the attestation attempt is cancelled:

{

"message": "Verifier not authorized to attest some pods"

}

9.3 Comparison with standard Keylime

Another enforced test concerns the duration of a remote attestation cycle of the Keylime frame-
work, integrated into the proposed solution of Kubernetes, compared with the traditional Keylime
framework. Traditional means without the Kubernetes environment, always with the four essen-
tial services running on the two machines, as described in the testbed section. In the proposed
architecture, it is necessary to consider some times that are not usually present, such as the

70

Tests

traditional keylime keylime integrated in Kubernetes0

1

2

3

4

5

6
Ti

m
e

(s
)

2.46s

3.02s

Effective attestation time
Time to query the database
Time to pass access control
Time to forward request to worker nodes
Time to serialize MLs

Figure 9.1. RA duration evaluated by increasing the number of pods

time to query the database to check the verifier’s authorisation or the time to serialise all the
measurement lists of different worker nodes to return to the right verifier.

As demonstrated in Figure 9.1, a comparison is provided between traditional Keylime and its
integration within Kubernetes, focusing on the total attestation duration. The attestation process
is comprised of multiple steps, including database querying, access control, forwarding of requests
to worker nodes, and serialisation of measurement lists. Each of these steps contributes to the
overall attestation time. The attestation duration in the traditional Keylime setup is measured at
2.46 seconds, while the Kubernetes-integrated version takes slightly longer at 3.02 seconds. This
suggests that while Kubernetes adds some overhead, likely due to additional layers of orchestra-
tion, it remains within a reasonable range for attestation processes. The observed discrepancy
can be attributed to factors such as the time required to query the database to verify the verifier’s
authorisation or the additional processing demands of managing distributed workloads. Despite
the added delay, integrating Keylime with the proposed architecture could offer benefits such as
access control features to limit verifier authorisation or enhanced management in a quote response.
If security attestation remains effective within this additional time frame, the trade-off may be
justified for environments where Kubernetes is the standard infrastructure.

9.4 Performance Tests

The metric utilised for the evaluation of performance was the duration required by the Keylime
Verifier to execute an attestation cycle. This metric was determined by increasing the number
of pods, commencing from 1 to 110. Performance beyond this threshold was not assessed, as
Kubernetes imposes a default limit of 110 pods on standard cluster nodes. The number of pods was
increased incrementally, beginning with two basic nginx and apache deployments, respectively,
defined in yaml files as follows:

71

Tests

apiVersion: apps/v1

kind: Deployment

metadata:

name: nginx-deployment

labels:

app: nginx

spec:

replicas: 1

selector:

matchLabels:

app: nginx

template:

metadata:

labels:

app: nginx

spec:

containers:

- name: nginx

image: nginx:latest

ports:

- containerPort: 80

apiVersion: apps/v1

kind: Deployment

metadata:

name: apache-deployment

labels:

app: apache

spec:

replicas: 1

selector:

matchLabels:

app: apache

template:

metadata:

labels:

app: apache

spec:

containers:

- name: apache

image: httpd:latest

ports:

- containerPort: 80

The emphasis is placed on the segment of code specified as replicas: 1. Modifying the
number of replicas for the deployment in question can increase the number of pods. These
deployments are enforced by the following commands:

kubectl apply -f nginx.yaml

kubectl apply -f apache.yaml

Before describing the evaluation, it is imperative to taint the control plane master node with
the following command:

kubectl taint nodes k8s-control node-role.kubernetes.io/control-plane-

to avoid deploying pods on it and trying to saturate all the resources on the worker under
examination.

72

Tests

4 5 10 20 30 50 60 70 80 90 100 110
Number of pods

0

1

2

3

4

5

6

Ti
m

e
(s

)

2.94s 2.94s 3.06s 3.17s 3.18s 3.24s 3.27s 3.40s 3.43s
3.58s 3.65s 3.72s

Time to query the database
Time to invoke quote request and pass check
Time to generate TPM quote
Time to read the Measurment List
Time to filter the ML
Time to send back the quote
Time to process the quote

Figure 9.2. RA duration evaluated by increasing the number of pods

Analysis of figure 9.2 shows how the duration of the attestation process changes as the number
of pods increases. The x-axis represents the number of pods, ranging from 4 to 110, while the
y-axis measures the time in seconds. As each worker node has at least 3 management pods to
join and properly run in the cluster, the test will start with the fourth pod deploying. The total
duration of the attestation process consists of several stages, each of which contributes to the
total time. These stages include querying the database, retrieving and verifying the offer request,
generating the TPM quote, reading and filtering the measurement list, returning the quote and
processing the received one.

As the number of pods increases, the overall attestation time also grows, though not in a
straight line. In the beginning, with fewer pods, the time remains relatively stable at around
2.94 seconds. However, as the pod count rises, the attestation duration gradually increases,
reaching approximately 3.72 seconds when there are 110 pods. This finding suggests that, while
the process does scale with the number of pods, the increase in time is moderate and does not
show exponential growth. The visual segmentation within each bar indicates that certain stages
contribute more significantly to the total time than others. It appears that the time required to
query the database and generate the TPM quote remains relatively consistent. The first procedure
is essential to enforce fine-grained access control on the verifier applicant. In contrast, the second
procedure is mandatory to read the content of the target PCR and build an integrity report to
send back. As the number of pods increases, there is a slight increase in the time required to read
and filter the Measurement List or to process the quote. However, the progression along these
stages is influenced by the growth of the ML itself, with proportional growth as the size increases,
contributing to the total escalation in attestation time. In other instances, the time required to
invoke the request or to transmit the quote appears to be moderately extended. However, these
delays are influenced by the erratic network traffic between the nodes, which is difficult to predict.
This analysis suggests that while the attestation process does scale with system load, its efficiency
is maintained within a reasonable range.

73

Chapter 10

Conclusions and future works

The pervasive implementation of cloud computing, notably in virtualised and multi-tenant envi-
ronments administered by platforms such as Kubernetes, has precipitated a paradigm shift in IT
infrastructure by virtue of the substantial flexibility and scalability advantages it provides. The
proposed solution introduces new security features, particularly concerning workload integrity and
sensitive data protection when running on shared or potentially untrusted infrastructure.

Despite the efficacy of RA, its implementation in multi-tenant Kubernetes environments gives
rise to distinctive privacy concerns. As demonstrated in the relevant literature, the detailed in-
tegrity measurements (MLs) generated by IMA can contain information regarding the various
components and applications operating on a shared node. This has the potential to divulge sensi-
tive details about unrelated workloads or pods to verifiers. This predicament is especially salient
in environments characterised by the presence of multiple independent verifiers, wherein the en-
forcement of precise access control over these logs poses a considerable challenge. Furthermore, the
privacy issue depends on whether standard template hash fields within the MLs are predictable,
which would allow for the offline deduction of measured components or configurations.

Although prior efforts in container attestation have made progress, privacy concerns have fre-
quently been overlooked. Solutions such as Container-IMA and DIVE relied on TPM 1.2 and
lacked robust support for modern container orchestration systems, such as Kubernetes pods. Re-
cent approaches have adopted the use of TPM 2.0 and cgroups to establish a correlation between
measurements and containers, thereby demonstrating enhanced integration potential. Despite the
introduction of pod-aware templates and Keylime integration with Kubernetes Pod Attestation,
challenges persist with multi-verifier scenarios and the potential for information leakage through
template hashes.

The present thesis sets out a privacy-preserving remote attestation solution designed for multi-
tenant Kubernetes environments with multiple verifiers. The new IMA template incorporates a
nonce to prevent offline guess attacks, and it also supports the selective inclusion of log entries
based on verifier authorisation. It is imperative to emphasise that solely pertinent attestation
data is disseminated, thus ensuring the confidentiality of the cluster’s internal architecture. The
Kubernetes Master functions as a proxy to enforce access control and conceal pod locations.
Concurrently, a modified Keylime Agent is employed to filter the measurement list before trans-
mission.

The validity and performance of this solution were demonstrated through a series of tests.
It has been demonstrated that the implementation of the authorisation logic has been executed
correctly, as evidenced by the execution of functional tests. These tests have confirmed that
the logic has been implemented in such a manner that it can only be invoked by authorised
verifiers. Furthermore, these tests have also demonstrated that any attempts to invoke the logic
by unauthorised parties are effectively blocked. A comparison of the solution with the standard
Keylime framework demonstrated that integrating it into the Kubernetes architecture resulted in
an acceptable level of overhead. The mean execution time for a standard Keylime RA cycle was
found to be 2.46 seconds, whereas the Kubernetes-integrated solution required an average of 3.02
seconds. This discrepancy, amounting to 0.56 seconds, can be attributed to the implementation of

74

Conclusions and future works

enhanced security measures and centralised management processes, including database querying,
access control checks, request forwarding, and Measurement List serialisation. Notwithstanding
this marginal increase in time, the significant benefits gained in terms of privacy and access
control in a Kubernetes environment justify it. The solution’s scalability was confirmed through
the conduct of performance tests, which involved an increase in the number of pods being attested.
The total attestation time exhibited a moderate increase as the number of pods increased (from
2.94 seconds with a small number of pods to 3.72 seconds with 110 pods), without demonstrating
exponential growth. The findings of the analysis demonstrated that the duration required for
database querying and TPM quote generation exhibited relative constancy. Conversely, the time
taken to read and filter the ML and process the quote increased in proportion to the log size.
The findings indicate that the implemented modifications and architecture can effectively manage
increasing loads without inducing unsustainable delays, thereby demonstrating a scalable solution
that is mindful of resource consumption.

While the solution demonstrates strong performance and promising test results, it does have
limitations that may affect future scalability. A salient concern pertains to its reliance on the
Kubernetes Master node as a central proxy for authorization and request routing. This configura-
tion could potentially result in a single point of failure or a bottleneck under conditions of heavy
load or in highly distributed setups. It is recommended that future work explore the potential
of distributed authorization mechanisms to enhance resilience. This exploration could encompass
the execution of tests in larger and more complex Kubernetes environments. Furthermore, the
integration of verifier-pod authorization with Kubernetes admission controllers for automation
could be a fruitful avenue for future research. In the end, the refinement of the Master’s state
aggregation logic to enhance efficiency when handling responses from multiple Worker nodes is a
promising area for further investigation.

75

Bibliography

[1] I. Pedone, D. Canavese, and A. Lioy, “Trusted computing technology and proposals
for resolving cloud computing security problems”, Cloud Computing Security: Founda-
tions and Challenges (e. J. R. Vacca, ed.), pp. 373–386, CRC Press, August 2020, DOI
10.1201/9780429055126

[2] V. Singh and S. K. Peddoju, “Container-based microservice architecture for cloud applica-
tions”, International Conference on Computing, Communication and Automation (ICCCA),
Greater Noida (India), May 2017, pp. 847–852, DOI 10.1109/CCAA.2017.8229914

[3] R. Morabito, J. Kjallman, and M. Komu, “Hypervisors vs. lightweight virtualization: A
performance comparison”, 2015 IEEE International Conference on Cloud Engineering, Tempe
(AZ, USA), March 2015, pp. 386–393, DOI 10.1109/IC2E.2015.74

[4] TCG working group, “Official TCG website”, https://trustedcomputinggroup.org/
[5] Trusted Computing Group, “TPM 2.0 Library specification: Architecture”,

https://trustedcomputinggroup.org/wp-content/uploads/TCG_TPM2_r1p59_Part1_

Architecture_pub.pdf

[6] The Kubernetes Project, “Kubernetes Concepts”, https://kubernetes.io/
[7] A. Lioy, G. Ramunno, and D. Vernizzi, “Trusted-computing technologies for the protection

of critical information systems”, International Workshop on Computational Intelligence in
Security for Information Systems CISIS 2008, Genova (Italy), October 2008, pp. 449–455,
DOI 10.1007/978-3-540-88181-0 10

[8] W. Artur, D. Challener, and K. Goldman, “A Pratical Guide to TPM 2.0”, Apress Open,
January 2015, ISBN: 978-1-4302-6583-2

[9] W. D. Casper and S. M. Papa, “Root of Trust”, Encyclopedia of Cryptography and Security
(H. C. A. van Tilborg and S. Jajodia, eds.), pp. 1057–1060, Springer, Boston, MA, 2011,
DOI 10.1007/978-1-4419-5906-5 789

[10] Trusted Computing Group, “TCG Specification Architecture Overview”, https:

//trustedcomputinggroup.org/wp-content/uploads/TCG_1_4_Architecture_

Overview.pdf

[11] Trusted Computing Group, “TCG PC Client Platform Firmware Profile
Specification”, https://trustedcomputinggroup.org/wp-content/uploads/

PC-Client-Platform-Firmware-Profile-Version-1.06-Revision-52_pub.pdf

[12] Trusted Computing Group, “TPM 2.0: A Brief Introduction”, https://

trustedcomputinggroup.org/wp-content/uploads/TPM-2.0-A-Brief-Introduction.

pdf

[13] F. Bohling, T. Mueller, M. Eckel, and J. Lindemann, “Subverting Linux’ integrity measure-
ment architecture”, 15th International Conference on Availability, Reliability and Security,
Ireland, August 2020, pp. 1–10, DOI 10.1145/3407023.3407058

[14] S. Reiner, Z. Xiaolan, J. Trent, and v. D. Leendert, “Design and Implementation of a TCG-
based Integrity Measurement Architecture”, 13th USENIX Security Symposium (USENIX
Security 04), San Diego (CA, USA), August 2004, pp. 1–17

[15] The Linux Kernel documentation, “IMA Template Management Mechanism”, https://

docs.kernel.org/security/IMA-templates.html

[16] N. D. Keni and A. Kak, “Adaptive containerization for microservices in distributed cloud
systems”, IEEE 17th Annual Consumer Communications & Networking Conference (CCNC),
Las Vegas (NV, USA), January 2020, pp. 1–6, DOI 10.1109/CCNC46108.2020.9045634

[17] IBM Cloud Education, “Docker”, https://www.ibm.com/topics/docker

76

https://doi.org/10.1201/9780429055126
https://doi.org/10.1109/CCAA.2017.8229914
https://doi.org/10.1109/IC2E.2015.74
https://trustedcomputinggroup.org/
https://trustedcomputinggroup.org/wp-content/uploads/TCG_TPM2_r1p59_Part1_Architecture_pub.pdf
https://trustedcomputinggroup.org/wp-content/uploads/TCG_TPM2_r1p59_Part1_Architecture_pub.pdf
https://kubernetes.io/
https://doi.org/10.1007/978-3-540-88181-0_10
https://doi.org/10.1007/978-1-4419-5906-5_789
https://trustedcomputinggroup.org/wp-content/uploads/TCG_1_4_Architecture_Overview.pdf
https://trustedcomputinggroup.org/wp-content/uploads/TCG_1_4_Architecture_Overview.pdf
https://trustedcomputinggroup.org/wp-content/uploads/TCG_1_4_Architecture_Overview.pdf
https://trustedcomputinggroup.org/wp-content/uploads/PC-Client-Platform-Firmware-Profile-Version-1.06-Revision-52_pub.pdf
https://trustedcomputinggroup.org/wp-content/uploads/PC-Client-Platform-Firmware-Profile-Version-1.06-Revision-52_pub.pdf
https://trustedcomputinggroup.org/wp-content/uploads/TPM-2.0-A-Brief-Introduction.pdf
https://trustedcomputinggroup.org/wp-content/uploads/TPM-2.0-A-Brief-Introduction.pdf
https://trustedcomputinggroup.org/wp-content/uploads/TPM-2.0-A-Brief-Introduction.pdf
https://doi.org/10.1145/3407023.3407058
https://docs.kernel.org/security/IMA-templates.html
https://docs.kernel.org/security/IMA-templates.html
https://doi.org/10.1109/CCNC46108.2020.9045634
https://www.ibm.com/topics/docker

Bibliography

[18] M. Hausenblas and S. Schimanski, “Programming kubernetes: Developing cloud-native ap-
plications”, O’Reilly Media, July 2019, ISBN: 978-1-492-04705-6

[19] N. Schear, P. T. Cable, T. M. Moyer, B. Richard, and R. Rudd, “Bootstrapping and main-
taining trust in the cloud”, 32nd Annual Conference on Computer Security Applications, Los
Angeles (CA, USA), December 2016, pp. 65–77, DOI 10.1145/2991079.2991104

[20] Keylime Project, “Official documentation”, https://keylime.readthedocs.io/en/

latest/

[21] M. Souppaya, J. Morello, and K. Scarfone, “Application Container Security Guide”, NIST
SP800-190, September 2017, DOI 10.6028/NIST.SP.800-190

[22] L. Wu, S. Qingni, X. Yutang, and W. Zhonghai, “Container-IMA: A privacy-preserving
integrity measurement architecture for containers”, 22nd International Symposium on Re-
search in Attacks, Intrusions and Defenses (RAID 2019), Beijing (China), September 2019,
pp. 487–500

[23] M. De Benedictis and A. Lioy, “Integrity verification of Docker containers for a lightweight
cloud environment”, Future Generation Computer Systems, vol. 97, August 2019, pp. 236–
246, DOI 10.1016/j.future.2019.02.026

[24] C. Piras, “TPM 2.0-based Attestation of a Kubernetes Cluster”, 2022, Politecnico di Torino
[25] Git Project, “Official Documentation”, https://git-scm.com/doc
[26] Calico Project, “Quickstart for Calico on Kubernetes”, https://docs.tigera.io/calico/

latest/getting-started/kubernetes/quickstart

77

https://doi.org/10.1145/2991079.2991104
https://keylime.readthedocs.io/en/latest/
https://keylime.readthedocs.io/en/latest/
https://doi.org/10.6028/NIST.SP.800-190
https://doi.org/10.1016/j.future.2019.02.026
https://git-scm.com/doc
https://docs.tigera.io/calico/latest/getting-started/kubernetes/quickstart
https://docs.tigera.io/calico/latest/getting-started/kubernetes/quickstart

Appendix A

User Manual

This appendix describes how to configure the environment to test the proposed solution and
provides the steps required to configure and deploy two nodes, an Attester and a Verifier. The
Manual is based on a configuration in a VirtualBox environment and these two nodes must be
able to communicate with each other over a local network. The Attester uses a TPM, which in
VirtualBox is an emulated device, as opposed to a more serious configuration such as a software
TPM emulator or even a real hardware TPM.

A.1 Attester machine

This section configures a host to be used as an attester in the remote attestation process. The
machine must have a TPM 2.0. The operating system used for testing is Ubuntu Server 20.04
LTS, with a custom Linux kernel containing the IMA module modified as described in Appendix
C.

A.1.1 Patching the Linux kernel

The first thing to do is install Git [25] and clone the git repository of the stable Linux kernel using
the following command:

$ sudo apt install git

$ git clone git://git.kernel.org/pub/scm/linux/kernel/git/stable/linux-stable.git

This will create the linux-stable directory. Change to the current directory and switch to a
commit that permits applying the desired modification without error:

$ cd linux-stable

$ git checkout 88035e5694a86a7167d490bb95e9df97a9bb162b

The checkout command allows users to switch to a particular snapshot of the kernel, but it is
also possible to verify that it is on one of the latest stable release branches (LTS) by wiping it:

$ git branch --contains 88035e5694a86a7167d490bb95e9df97a9bb162b

The reason for this checkout at the selected commit is that it has a custom IMA template
with a template-hash field using a SHA-256 digest rather than the actual SHA-1. Then, apply the
patches provided with the thesis source code to obtain the custom Linux kernel:

78

User Manual

$ git config --global user.email "you@example.com"

$ git config --global user.name "Your Name"

$ git apply /patches_dir/0001-ima_template_dep_cgn.patch

$ git apply /patches_dir/0002-ima_template_cgpath.patch

$ git apply /patches_dir/0003-ima_template_slt.patch

A.1.2 Preparing the kernel before compiling

There are a few steps to follow to proceed with compiling the kernel. First, install the dependen-
cies:

$ sudo apt-get update

$ sudo apt-get install git fakeroot build-essential ncurses-dev xz-utils libssl-dev bc flex libelf-dev bison dwarves

Copy the current kernel configuration file to the linux-stable directory:

$ cp /boot/config-$(uname -r) ./.config

And then customize it:

$ make menuconfig

In the menu, select:

Security Options -> Integrity Measurement Architecture (IMA)

And then choose:

Default template -> ima-slt

Default integrity hash algorithm -> SHA256

Default template hash algorithm -> SHA256

Now, some options are needed to enable Docker Bridge and to ensure compatibility with
Kubernetes:

Networking support -> Networking options ->

<*> 802.1d Ethernet Bridging

[*] Network packet filtering framework (Netfilter)

Networking support -> Networking options -> XDP sockets ->

<*> XDP sockets: monitoring interface

Networking support -> Networking options -> Network packet filtering framework ->

[*] Advanced netfilter configuration

<*> Bridged IP/ARP packets filtering

Networking support -> Networking options -> Network packet filtering framework

-> IP: Netfilter Configuration ->

<*> IP tables support (required for filtering/masq/NAT)

<*> Packet filtering

<*> Packet mangling

<*> raw table support (required for NOTRACK/TRACE)

<*> iptables NAT support

79

User Manual

Networking support -> Networking options -> Network packet filtering framework

-> Core Netfilter Configuration ->

<*> Netfilter nf_tables support

<*> Netfilter connection tracking support

<*> Network Address Translation support

<*> MASQUERADE target support

<*> "addrtype" address type match support

<*> "conntrack" connection tracking match support

<*> Netfilter Xtables support (required for ip_tables)

<*> Netfilter nf_tables conntrack module

<*> Netfilter nf_tables redirect support

<*> Netfilter nf_tables nat module

<*> Netfilter nf_tables reject support

<*> REJECT target support

<*> raw table support (required for TRACE)

<*> "MARK" target support

<*> "mark" match support

Networking support -> Networking options -> Network packet filtering framework

-> The IPv6 protocol -> IPv6: Netfilter Configuration ->

<*> IP6 tables support (required for filtering)

<*> ip6tables NAT support

<*> MASQUERADE target support

Device Drivers -> Network device support ->

<*> Universal TUN/TAP device driver support

<*> Virtual ethernet pair device (veth)

Device Drivers -> Network device support -> Network core driver support ->

<*> Virtual eXtensible Local Area Network (VXLAN)

File systems ->

<*> Overlay filesystem support

Save changes and exit from the menu. The configuration file can now be opened:

$ sudo nano .config

To avoid compilation errors, comment out the following lines (in the Certificates for Signature
Verification):

CONFIG_MODULE_SIG_KEY="certs/signing_key.pem"

CONFIG_SYSTEM_TRUSTED_KEYS="debian/canonical-certs.pem"

CONFIG_SYSTEM_REVOCATION_KEYS="debian/canonical-revoked-certs.pem"

After that, further flags are needed to check in order to ensure the correctness of the attester
machine as a worker node of Kubernetes:

CONFIG_OVERLAY_FS=y

CONFIG_IMA_LSM_RULES=y

CONFIG_IP6_NF_FILTER=y

CONFIG_IP6_NF_MANGLE=y

CONFIG_IP6_NF_MATCH_HL=y

CONFIG_IP6_NF_MATCH_RPFILTER=y

CONFIG_IP6_NF_SECURITY=y

CONFIG_IP6_NF_TARGET_HL=y

80

User Manual

CONFIG_IP6_NF_TARGET_REJECT=y

CONFIG_IP6_NF_TARGET_SYNPROXY=y

CONFIG_IP_NF_MATCH_RPFILTER=y

CONFIG_IP_NF_TARGET_MASQUERADE=y

CONFIG_IP_NF_TARGET_REDIRECT=y

CONFIG_IP_NF_TARGET_SYNPROXY=y

CONFIG_IP_SET=y

CONFIG_IP_SET_BITMAP_IP=y

CONFIG_IP_SET_BITMAP_IPMAC=y

CONFIG_IP_SET_BITMAP_PORT=y

CONFIG_IP_SET_HASH_IP=y

CONFIG_IP_SET_HASH_IPMAC=y

CONFIG_IP_SET_HASH_IPMARK=y

CONFIG_IP_SET_HASH_IPPORT=y

CONFIG_IP_SET_HASH_IPPORTIP=y

CONFIG_IP_SET_HASH_IPPORTNET=y

CONFIG_IP_SET_HASH_MAC=y

CONFIG_IP_SET_HASH_NET=y

CONFIG_IP_SET_HASH_NETIFACE=y

CONFIG_IP_SET_HASH_NETNET=y

CONFIG_IP_SET_HASH_NETPORT=y

CONFIG_IP_SET_HASH_NETPORTNET=y

CONFIG_IP_SET_LIST_SET=y

CONFIG_IP_SET_MAX=256

CONFIG_IP_VS=y

CONFIG_IP_VS_IPV6=y

CONFIG_NETFILTER_XT_MARK=y

CONFIG_NETFILTER_XT_MATCH_COMMENT=y

CONFIG_NETFILTER_XT_MATCH_MULTIPORT=y

CONFIG_NETFILTER_XT_MATCH_PHYSDEV=y

CONFIG_NETFILTER_XT_MATCH_RECENT=y

CONFIG_NETFILTER_XT_MATCH_STATISTIC=y

CONFIG_NETFILTER_XT_MATCH_TIME=y

CONFIG_NETFILTER_XT_MATCH_U32=y

CONFIG_NETFILTER_XT_SET=y

CONFIG_NETFILTER_XT_TARGET_NOTRACK=y

CONFIG_NETFILTER_XT_TARGET_REDIRECT=y

CONFIG_NETFILTER_XT_TARGET_TPROXY=y

CONFIG_NF_CONNTRACK_BRIDGE=y

CONFIG_NF_CONNTRACK_MARK=y

CONFIG_NF_NAT_REDIRECT=y

CONFIG_NF_REJECT_IPV4=y

CONFIG_NF_REJECT_IPV6=y

CONFIG_NF_TABLES_BRIDGE=y

CONFIG_NF_TPROXY_IPV6=y

CONFIG_NFT_COMPAT=y

CONFIG_SYN_COOKIES=y

Finally, compile the kernel and make it run faster:

$ sudo make localmodconfig

which will skip drivers that are not needed and make compiling faster.

A.1.3 Compiling and installing the new kernel

The following commands can be used to compile and install the kernel:

81

User Manual

$ sudo make -j $(nproc)

$ sudo make modules

$ sudo make modules_install

$ sudo make install

the operation will take some time. After this, a system reboot is mandatory, but by de-
fault, GRUB boots the newly installed kernel. To manually select a kernel at startup, increase
GRUB_TIMEOUT in /etc/default/grub to allow time for selection.

$ sudo nano /etc/default/grub

GRUB_TIMEOUT=10

#GRUB TIMEOUT STYLE=hidden

In this way the grub menu stuck in the selection phase for 10 seconds. After this run this
command to update grub settings and then reboot the system:

$ sudo update-grub

$ reboot

Then add a custom IMA policy file called /etc/ima/ima-policy. The policies used for this
thesis, taken from Keylime Documentation [20], are:

PROC_SUPER_MAGIC

dont_measure fsmagic=0x9fa0

SYSFS_MAGIC

dont_measure fsmagic=0x62656572

DEBUGFS_MAGIC

dont_measure fsmagic=0x64626720

TMPFS_MAGIC

dont_measure fsmagic=0x1021994

DEVPTS_SUPER_MAGIC

dont_measure fsmagic=0x1cd1

BINFMTFS_MAGIC

dont_measure fsmagic=0x42494e4d

SECURITYFS_MAGIC

dont_measure fsmagic=0x73636673

SELINUX_MAGIC

dont_measure fsmagic=0xf97cff8c

SMACK_MAGIC

dont_measure fsmagic=0x43415d53

CGROUP_SUPER_MAGIC

dont_measure fsmagic=0x27e0eb

CGROUP2_SUPER_MAGIC

dont_measure fsmagic=0x63677270

NSFS_MAGIC

dont_measure fsmagic=0x6e736673

EFIVARFS_MAGIC

dont_measure fsmagic=0xde5e81e4

measure func=BPRM_CHECK mask=MAY_EXEC

Now it is time to reboot the system again; Check that the IMA module uses the ima-slt

template by checking the IMA ML file:

$ sudo cat /sys/kernel/security/ima/ascii_runtime_measurements

82

User Manual

A.1.4 TPM2 tools Installation

Install the following dependencies first

$ sudo apt install libssl-dev swig python3-pip autoconf autoconf-archive \

libglib2.0-dev libtool pkg-config libjson-c-dev libcurl4-gnutls-dev

Install TPM 2.0 tools and TPM 2.0 Resource Manager packages:

$ sudo apt install tpm2-tools

$ sudo apt install tpm2-abrmd

Manually build and install libtss2 library:

$ git clone https://github.com/tpm2-software/tpm2-tss.git tpm2-tss

$ pushd tpm2-tss

$./bootstrap

$./configure --prefix=/usr

$ make

$ sudo make install

$ popd

In the VirtualBox environment shut down the VM and restart it with the flag TPM2 enabled:

Settings -> System -> TPM: switch from none to v2.0

in case of communication with real TPM, configure TPM Command Transmission Interface
(TCTI) following the command in the Keylime documentation [20]. Start and enable the TPM
2.0 Resource Manager service:

$ systemctl start tpm2-abrmd.service

$ systemctl enable tpm2-abrmd.service

And check if it is working:

$ systemctl status tpm2-abrmd.service

This should show “active (running)”. To also check that the tpm2-tools are working correctly,
run the command:

$ sudo tpm2_pcrread

A.1.5 Keylime installation

For both Attester and Verifier nodes, clone first the Keylime repository from git:

$ git clone https://github.com/keylime/keylime.git

$ cd keylime

At this point, install Python’s virtual environment package, create a new virtual environment
named ”.venv”, and activate it for isolated Python development:

$ sudo apt install python3-venv -y

$ python3 -m venv .venv

$ source .venv/bin/activate

83

User Manual

and then install Keylime requirements and Keylime itself:

$ pip install . -r requirements.txt

$ sudo ./installer.sh

$ sudo python3 setup.py install

Now modify the endpoint configurations by exploring the file in the folder /etc/keylime/ by
saving and adjusting permissions if necessary:

$ sudo nano /etc/keylime/registrar.conf

...

ip = "192.168.0.113"

...

$ sudo nano /etc/keylime/verifier.conf

...

ip = "192.168.0.113"

registrar_ip = 192.168.0.113

...

$ sudo nano /etc/keylime/tenant.conf

...

verifier_ip = 192.168.0.113

registrar_ip = 192.168.0.113

...

$ sudo nano /etc/keylime/agent.conf

...

ip = "192.168.0.128"

contact_ip = "192.168.0.128"

registrar_ip = "192.168.0.113"

...

If the Keylime agent does not recognize the mTLS certificate from the tenant. Check if agents
trusted_client_ca is configured correctly:

$ ls -l /var/lib/keylime/cv_ca/cacert.crt

$ sudo chmod 644 /var/lib/keylime/cv_ca/cacert.crt

$ sudo chown keylime:tss /var/lib/keylime/cv_ca/cacert.crt

$ sudo chmod 750 /var/lib/keylime/cv_ca

$ sudo chown keylime:tss /var/lib/keylime/cv_ca

If does not exist the certificate or even the folder create it with this keylime command, the
password is usually located in the /etc/keylime/ca.conf:

$ sudo keylime_ca -c init -d /var/lib/keylime/cv_ca

Create the client and server certificates with the right password and set permissions:

$ sudo keylime_ca -c create -n client -d /var/lib/keylime/cv_ca

$ sudo keylime_ca -c create -n server -d /var/lib/keylime/cv_ca

$ sudo useradd -r -s /bin/false -g tss keylime

$ sudo chown -R keylime:tss /var/lib/keylime/cv_ca

In the end, you can start each service on a different shell (for the Agent, consult the next
section):

84

User Manual

$ keylime_registrar

$ keylime_verifier

$ keylime_tenant -c add --uuid d432fbb3-d2f1-4a97-9ef7-75bd81c00000 -f payload

where payload is a blank file and d432fbb3-d2f1-4a97-9ef7-75bd81c00000 is the default
agent uuid.

A.1.6 Keylime Agent installation

Install first the following dependencies:

$ apt-get install libclang-dev libssl-dev libtss2-dev libzmq3-dev pkg-config -y

Since the last Agent release of Keylime is written in Rust, follow the on-screen instructions to
install cargo packet management.

$ curl --proto ’=https’ --tlsv1.2 -sSf https://sh.rustup.rs | sh

Then export the PATH to use cargo everywhere in the filesystem:

$ export PATH="$HOME/.cargo/bin:$PATH"

Clone the repository of rust-keylime and test it:

$ git clone https://github.com/keylime/rust-keylime.git

$ cd rust-keylime

$ cargo test

A.1.7 Configuring Keylime Agent

Once the installation is completed, open the keylime-agent.conf file:

$ sudo nano keylime-agent.conf

In the [agent] section, set the binding ip address for the agent server, for example:

ip = "192.168.60.94"

Set the address where the verifier and tenant can connect to reach the agent, for example:

contact_ip = "192.168.60.94"

Finally, set the address of the registrar server with which the agent communicates.

registrar_ip = "192.168.60.94"

Do not change the port and the uuid, which will always be the same. To avoid error if
/var/lib/keylime/agent_data.json is missing, create the file and set the following permission:

$ sudo touch /var/lib/keylime/agent_data.json

$ sudo chmod 660 /var/lib/keylime/agent_data.json

$ sudo chown keylime:tss /var/lib/keylime/agent_data.json

$ sudo chmod 750 /var/lib/keylime

$ sudo chown keylime:tss /var/lib/keylime

85

User Manual

In this case, the Keylime agent does not recognize the mTLS certificate from the tenant, check,
or even set these permissions:

$ ls -l /var/lib/keylime/cv_ca/cacert.crt

$ sudo chmod 644 /var/lib/keylime/cv_ca/cacert.crt

$ sudo chown keylime:tss /var/lib/keylime/cv_ca/cacert.crt

$ sudo chmod 750 /var/lib/keylime/cv_ca

$ sudo chown keylime:tss /var/lib/keylime/cv_ca

To run the Keylime Rust Agent, launch this command:

$ RUST_LOG=keylime_agent=trace cargo run --bin keylime_agent

A.1.8 Installing and configuring Kubernetes

The installation of Kubernetes is almost identical between the Attester and the Master node, and
will be explained in the A.2.2 section as it is the most complete. For simplicity, the Keylime
Verifier and all other attestation components are placed into the master node.

A.2 Verifier machine

A.2.1 Keylime Verifier and Registrar installation

This section describes the configuration of a separate machine to run the Keylime Verifier, Keylime
Registrar, and Keylime Tenant components. The tests were performed with all three components
running on the same machine acting as the Kubernetes master node, although they can be installed
and run on separate machines. The design is always the same, where the master acts as a proxy
exposing an API to the verifier, and the verifier does not know any information about the internal
cluster because it talks only to the master.

A.2.2 Installing and configuring Kubernetes

This configuration is to be enforced for both the Master and the Attester node. First of all, set a
mnemonic hostname, one for each machine:

$ hostnamectl set-hostname k8s-control

$ hostnamectl set-hostname k8s-agent

Execute this command to see the immediate changes:

$ bash

Then, on both nodes, configure the hosts in the network:

$ printf "\n192.168.60.93 k8s-control\n192.168.60.94 k8s-agent" >> /etc/hosts

These two nodes are reachable by configuring a NatNetwork in VirtualBox and
enabling an additional network interface toward the local network, with a related
/etc/netplan/01-netcfg.yaml config file for example:

86

User Manual

network:

ethernets:

enp0s8:

dhcp4: no

addresses: [192.168.60.94/24]

nameservers:

addresses: [8.8.8.8, 8.8.4.4]

version: 2

Setting, for instance 192.168.60.94 for the attester and 192.168.60.93 for the master. At
this point, load the required modules and configure these files:

$ printf "overlay\nbr_netfilter\n" >> /etc/modules-load.d/containerd.conf

$ modprobe overlay

$ modprobe br_netfilter

$ printf "net.bridge.bridge-nf-call-iptables = 1\nnet.ipv4.ip_forward = 1\

\nnet.bridge.bridge-nf-call-ip6tables = 1\n" >> /etc/sysctl.d/99-kubernetes-cri.conf

$ sysctl --system

The last command is used to see if the sysctl configuration is up to date. Now, install and set
up containerd, a container runtime, on a Linux system:

$ wget https://github.com/containerd/containerd/releases/download/v1.7.13/\

containerd-1.7.13-linux-amd64.tar.gz -P /tmp/

$ tar Cxzvf /usr/local /tmp/containerd-1.7.13-linux-amd64.tar.gz

$ wget https://raw.githubusercontent.com/containerd/containerd/main/\

containerd.service -P /etc/systemd/system/

$ systemctl daemon-reload

$ systemctl enable --now containerd

Then get runc, a container runtime the system needs to run to manage containers. Install it
and set the permissions:

$ wget https://github.com/opencontainers/runc/releases/download/v1.1.12/runc.amd64 \

-P /tmp/

$ install -m 755 /tmp/runc.amd64 /usr/local/sbin/runc

It is also necessary to update the Container Network Interface (CNI) plugins, which are es-
sential for managing networking in containerized environments like Kubernetes.

$ rm -rf /opt/cni/bin/*

$ wget https://github.com/containernetworking/plugins/releases/download/v1.4.0/cni-\

plugins-linux-amd64-v1.4.0.tgz -P /tmp/

$ mkdir -p /opt/cni/bin

$ tar Cxzvf /opt/cni/bin /tmp/cni-plugins-linux-amd64-v1.4.0.tgz

Now, take the classic containerd default configuration and fill a file with it. Locate this file
in a new folder following these commands:

$ mkdir -p /etc/containerd

$ containerd config default > /etc/containerd/config.toml

At this point open the file /etc/containerd/config.toml:

$ nano /etc/containerd/config.toml

and manually edit and switch SystemdCgroup from false to true:

87

User Manual

SystemdCgroup = true

Following the Kubernetes documentation [6], is also required to disable swap for the kubelet
to work properly:

$ sudo swapoff -a

$ sudo sed -i ’/ swap / s/^\(.*\)$/#\1/g’ /etc/fstab

The last command makes this setting persistent. Now, set up a system to install Kubernetes
packages, first installing the necessary dependencies. Secondly, download and store the Kubernetes
package signing key and finally add a new APT repository for Kubernetes packages. The version
used for Kubernetes is v1.29 and the repository is set accordingly.

$ apt-get update

$ apt-get install -y apt-transport-https ca-certificates curl gpg

$ mkdir -p -m 755 /etc/apt/keyrings

$ curl -fsSL https://pkgs.k8s.io/core:/stable:/v1.29/deb/Release.key | sudo gpg \

--dearmor -o /etc/apt/keyrings/kubernetes-apt-keyring.gpg

$ echo ’deb [signed-by=/etc/apt/keyrings/kubernetes-apt-keyring.gpg] https://pkgs.k8s\

.io/core:/stable:/v1.29/deb/ /’ | sudo tee /etc/apt/sources.list.d/kubernetes.list

A the end of this process, it’s time to update package lists again including the newly added
Kubernetes repository, and reboot the system:

$ apt-get update

$ reboot

At this point is possible to install three essential Kubernetes tools.

$ apt-get install -y kubelet kubeadm kubectl

The first one, kubelet, runs on every node in a Kubernetes cluster and manages the lifecycle
of the node. The second, kubeadm, is a tool for bootstrapping a cluster, and kubectl is the
command line tool for managing each resource in a cluster. It is suggested that this command be
run to prevent automatic upgrades that could cause version mismatches:

$ apt-mark hold kubelet kubeadm kubectl

where the version is decided when the repository is set up.

The following commands need to be executed only on the master node, as it is responsible
for creating the cluster.

To effectively initialize the Kubernetes cluster, use this command:

$ sudo kubeadm init --pod-network-cidr=192.168.0.0/16 \

--apiserver-advertise-address=192.168.60.93 --control-plane-endpoint 192.168.60.93

where 192.168.60.93 is an example of a control-plane IP address. The command, in order,
defines the pod’s network range, assigns an IP address to the Kubernetes API server for future
cluster communication, and establishes a fixed endpoint for the control plane.

After initializing a Kubernetes cluster, configure kubectl for the current user by granting access
to a fresh Kubernetes admin configuration file:

$ mkdir -p $HOME/.kube

$ sudo cp -i /etc/kubernetes/admin.conf $HOME/.kube/config

$ sudo chown $(id -u):$(id -g) $HOME/.kube/config

88

User Manual

To check if all pods are running at any time, use the following command:

$ kubectl get pods -A -o wide

where the -A shows the pod of all namespaces and -o wide show more details such as the worker’s
IP address where the pod is running.

Kubernetes does not provide built-in networking for Pods; it relies on a CNI (Container
Network Interface) plug-in to handle networking between Pods and nodes. Calico is one of the
most popular CNI, and following the official documentation [26] is installed with this procedure:

$ kubectl create -f https://raw.githubusercontent.com/projectcalico/\

calico/v3.29.2/manifests/tigera-operator.yaml

$ kubectl create -f https://raw.githubusercontent.com/projectcalico/\

calico/v3.29.2/manifests/custom-resources.yaml

where the first one installs the Tigera operator and custom resource definitions, instead, the
second installs Calico by creating the necessary custom resource.

Finall,y the Kubernetes cluster is set up and it is necessary to join the required worker node
to the cluster. Just execute this last command on the master node to create a token on which a
reachable node can join the cluster as a worker node:

$ kubeadm token create --print-join-command

where the output will be a new command like kubeadm join with the required token and all
the information to join. Run this command on the nodes that would become worker nodes in this
cluster.

A.2.3 Proxy Kubernetes Master node

This section explains the YAML configurations required to implement the proxy feature in the
proposed solution. This feature enables the Master node to act as an intermediary between
external communications and the internal network for the Keylime Agent responsible for pod
attestation.

The following YAML file defines a Deployment and a NodePort resource for a worker node
(node1 in this example). The Deployment ensures that a pod is running on the specified worker
node, while the NodePort Service exposes the pod on port 30080 of the node.

apiVersion: apps/v1

kind: Deployment

metadata:

name: example-deployment-node1

namespace: default

spec:

replicas: 1

selector:

matchLabels:

app: example

node: worker1

template:

metadata:

labels:

app: example

node: worker1

spec:

89

User Manual

nodeSelector:

kubernetes.io/hostname: k8s-agent

containers:

- name: example-container

image: hashicorp/http-echo:0.2.3

args:

- "-text=Hello from worker1"

ports:

- containerPort: 5678

apiVersion: v1

kind: Service

metadata:

name: example-service-node1

namespace: default

spec:

type: NodePort

selector:

app: example

node: worker1

ports:

- protocol: TCP

port: 80

targetPort: 5678

nodePort: 30080

On the other hand, another YAML file configures a deployment and a cluster IP service for
the pod distribution service, which executes a Python script to determine the appropriate worker
node for incoming requests. The deployment ensures that the pod runs on the control plane node
and uses a custom container image that includes the Python script and all the necessary packages.
The associated ClusterIP Service exposes the pod within the cluster on port 5000.

apiVersion: apps/v1

kind: Deployment

metadata:

name: pod-distribution-deployment

namespace: default

spec:

replicas: 1

selector:

matchLabels:

app: pod-distribution

template:

metadata:

labels:

app: pod-distribution

spec:

nodeSelector:

node-role.kubernetes.io/control-plane: "true"

containers:

- name: pod-distribution-container

image: your-docker-repo/pod-distribution-service:latest

env:

- name: KUBERNETES_SERVICE_HOST

value: "kubernetes.default.svc"

- name: KUBERNETES_SERVICE_PORT

value: "443"

90

User Manual

ports:

- containerPort: 5000

- containerPort: 5001

- containerPort: 5002

apiVersion: v1

kind: Service

metadata:

name: pod-distribution-service

namespace: default

spec:

selector:

app: pod-distribution

ports:

- name: port-5000

protocol: TCP

port: 5000

targetPort: 5000

- name: port-5001

protocol: TCP

port: 5001

targetPort: 5001

- name: port-5002

protocol: TCP

port: 5002

targetPort: 5002

In the end, the last YAML file defines an Ingress resource that acts as the system’s reverse
proxy. It manages incoming requests and forwards them to the correct worker node, applying the
logic provided by the pod distribution service. The Ingress relies on the Pod Distribution Service
to provide authentication and routing decisions, which are delivered by an ad hoc scheduled pod
explained in the section A.2.4. Custom forwarding behaviour is implemented through annotations,
and the Ingress rule outlines the path for the Keylime Agent API, as well as for the default backend
service.

apiVersion: networking.k8s.io/v1

kind: Ingress

metadata:

name: example-ingress

namespace: default

annotations:

nginx.ingress.kubernetes.io/auth-url: "http://pod-distribution-service.default

.svc.cluster.local:5000/verify"

nginx.ingress.kubernetes.io/auth-response-headers: "node_ip"

nginx.ingress.kubernetes.io/configuration-snippet: |

set $target "";

if ($http_node_ip) {

set $target "http://$http_node_ip:30080";

}

nginx.ingress.kubernetes.io/proxy-pass: "$target$request_uri"

spec:

rules:

- host: example.com

http:

paths:

- path: /v2/agents/d432fbb3-d2f1-4a97-9ef7-75bd81c00000/

pathType: Prefix

91

User Manual

backend:

service:

name: pod-distribution-service

port:

number: 5000

In a nutshell, with everything set up, these files create a setup where the Master node acts
as a proxy, managing communication with the Keylime Agents on the Worker nodes and helping
keep things secure and under control. Just make sure that the Pod Distribution Service has the
correct permissions and RBAC roles to do its job. Also, confirm that your Ingress Controller is
correctly installed and configured in the cluster to ensure everything runs smoothly.

A.2.4 Deploy Pod Distribution Service Pod

The subsequent section will provide a comprehensive guide to the deployment of the Pod Dis-
tribution Service Pod. Initially, it is necessary to create a Docker image containing the Python
script and its dependencies. The Dockerfile provided with the thesis source code is employed,
and the requirements are installed by following the command line log and activating a virtual
environment. In the same folder, load the Dockerfile and the file which contains the logic of the
distribution service pod service named “pod_distribution_service.py”, described in section
B.4, and also provided with the thesis source code.

The Dockerfile must subsequently be located and loaded within the same folder as
a separate file that contains the distribution service pod logic. This file is named
“pod_distribution_service.py” which is described in the B.4 section of the Developer’s Manual
and provided in the thesis source code.

Now you can build and push the image using the following commands:

$ docker build -t your-docker-repo/pod-distribution-service:latest

$ docker push your-docker-repo/pod-distribution-service:latest

When this procedure is completed correctly, apply the YAML configuration described before:

$ kubectl apply -f pod-distribution-service.yaml

Here, the deployment will be initiated with the requested pod, and the service resource will
establish communication with all the necessary endpoints.

92

Appendix B

Developer Manual

B.1 IMA patch

This section provides the steps needed to create the IMA patch used in the proposed work with
the help of the TORSEC research group of the Polytechnic of Turin.

B.1.1 ima-slt template implementation

The ima-slt template incorporates an additional field for the control group path that is not
supported by iMA. The initial step in this process is to navigate to the directory containing
the Linux kernel source code and modify the file ./security/integrity/ima/ima_template.c.
First add to the array called supported_fields the new content:

static const struct ima_template_field supported_fields[] = {

...

{.field_id = "slt", .field_init = ima_eventslt_init,

.field_show = ima_show_template_string},

};

In this code snippet, the following components are defined:

1. “slt” as the ima field identifier

2. “ima_eventslt_init” is responsible for initialising the field value for measurement events.

3. “ima_show_template_string” is responsible for writing the field value in the Measurement
Logs

Subsequently, within the same file, a new built-in template must be defined named “ima-slt”.
The format string employed is “dep|cg-path|d-ng|n-ng|slt”.

static struct ima_template_desc builtin_templates[] = {

...

{.name = "ima-slt", .fmt = "dep|cg-path|d-ng|n-ng|slt"},

};

Each string has a meaning, in particular: dep and cg-path fields are used respectively to
denote the dependencies of the process that created the entry and the control group path needed
to establish the pod UID. Both have been defined by the research group. While d-ng and n-ng
are respectively the file digest and the file path. The term slt is the newly introduced field and

93

Developer Manual

represents a random nonce freshly generated at each measurement event recording. It is noted
that the strings d-ng and n-ng represent the file digest and the file path, respectively.

Then it is necessary to insert the prototype of the new function ima_eventslt_init in the
file ./security/integrity/ima/ima_template_lib.h

int ima_eventslt_init(struct ima_event_data *event_data,

struct ima_field_data *field_data);

and the related function is written in the file ./security/integrity/ima/ima_template_lib.c
and reported here:

...

#include <uapi/linux/limits.h>

#include <linux/random.h>

#define NONCE_LEN 16

...

/*

* ima_eventslt_init - include an additional random field to make template

* hash unpredictable

*/

int ima_eventslt_init(struct ima_event_data *event_data, struct

ima_field_data *field_data)

{

char nonce[NONCE_LEN];

char nonce_hex[(NONCE_LEN*2)+1];

get_random_bytes(nonce, NONCE_LEN);

for (size_t i = 0; i < NONCE_LEN; i++) {

sprintf(nonce_hex + (i * 2), "%02x", nonce[i]);

}

nonce_hex[NONCE_LEN * 2] = ’\0’; // Null-terminate the hex string

return ima_write_template_field_data(nonce_hex, NONCE_LEN*2,

DATA_FMT_STRING, field_data);

}

The function uses three local variables and a constant value:

• NONCE_LEN: a constant value has been set to 16 length characters, a sufficient length of
random data to render the record unpredictable;

• nonce: is the buffer used for storing a random sequence of bytes of length NONCE_LEN;

• nonce hex: represents the buffer for storing the hexadecimal representation of the nonce,
with space allocated for an additional null terminator;

The function get_random_bytes() is invoked to populate the nonce buffer with a random se-
quence of bytes. The number of bytes to be generated is also specified by the constant. The
following loop iterates over each byte in the nonce buffer, converting each byte into a two-
character hexadecimal string and storing it in nonce_hex. This is since each byte (8 bits) is
represented by two hexadecimal digits (4 bits each) to accurately depict its value. After the loop,
nonce_hex is null-terminated to ensure it is treated as a valid string and, at the end, the func-
tion ima_write_template_field_data is called to write the nonce_hex string as template field
data into the field_data parameter using DATA_FMT_STRING as data format. In a nutshell, the
ima_eventslt_init function adds a random field to the template, making the template_hash

unpredictable.

In the end, modify the ./security/integrity/ima/Kconfig file by adding the row with the
“+” operator, which consent to add the ima-slt template to the Kernel menu configuration. In
this way is possible to select this template as the default one before proceeding with the kernel
compilation, through the make menuconfig command.

94

Developer Manual

choice

prompt "Default template"

default IMA_NG_TEMPLATE

...

config IMA_NG_TEMPLATE

bool "ima-ng (default)"

config IMA_SIG_TEMPLATE

bool "ima-sig"

config IMA_DEP_CGN_TEMPLATE

bool "ima-dep-cgn"

config IMA_CGPATH_TEMPLATE

bool "ima-cgpath"

+ config IMA_SLT_TEMPLATE

+ bool "ima-slt"

endchoice

config IMA_DEFAULT_TEMPLATE

string

default "ima-ng" if IMA_NG_TEMPLATE

default "ima-sig" if IMA_SIG_TEMPLATE

default "ima-dep-cgn" if IMA_DEP_CGN_TEMPLATE

default "ima-cgpath" if IMA_CGPATH_TEMPLATE

+ default "ima-slt" if IMA_SLT_TEMPLATE

choice

B.2 Filtering Measurement Log

The purpose of this section is to elucidate the code in order to filter an IMA measurement list,
checking on entries related to a specific Kubernetes pod identified by pod_id. The interested file
is the default one used to manage the identity and integrity report in the keylime rust agent:
./rust-keylime/keylime-agent/src/quotes_handler.rs. The filtering logic snippet of code
is the following one:

async fn integrity(param: web::Query<Integ>, data: web::Data<QuoteData<’_>>,

) -> impl Responder {

...

let pattern = format!("/kubepods.slice/kubepods-besteffort.slice

/kubepods-besteffort-pod{}{}", pod_id, ".slice");

let pattern_entry_pod = format!("/kubepods.slice/kubepods-besteffort.slice/

kubepods-besteffort-pod");

let filtered_ima_measurement_list: Vec<String> =

ima_measurement_list.clone().expect("REASON")

.split(’\n’)

.filter_map(|line| {

let fields: Vec<&str> = line.split_whitespace().collect();

if fields.len() >= 5 {

let cgroup_path = fields[4];

if cgroup_path.contains(&pattern_entry_pod) {

if cgroup_path.contains(&pattern) {

return Some(line.to_string());

} else {

return Some(fields[..2].join(" "));

}

} else {

return Some(line.to_string());

}

}

return Some(line.to_string());

95

Developer Manual

})

.collect();

The code first constructs a specific formatted string pattern based on pod_id and to to identify
relevant cgroup paths in the measurement list. This pattern is tailored for Kubernetes, but may
need adjustment for other quick or lightweight orchestrators (i.e. k3s, minikube). Then the list
is divided into lines by the .split() command and each line is evaluated individually:

1. In the event that the cgroup path corresponds to the designated pod pattern, the entirety
of the line is preserved.

2. If there’s a match with a broader pod pattern, only the first two fields are kept.

3. In the absence of such a measure, the entire line is retained.

The implementation of the filter is facilitated by the filter_map() function, which systemat-
ically processes each line. In accordance with the preceding logic, the function returns the entire
entry or solely the initial two fields, as the verifier requires a pod belonging to a different tenant.
At the end, horizontal filtered lines are collect into a new list, which can be further processed and
returned to the verifier instead of the classic measurement list as follow:

let quote = KeylimeQuote {

pubkey,

ima_measurement_list,

//ima_measurement_list,

ima_measurement_list: Some(joined_list),

mb_measurement_list,

ima_measurement_list_entry,

..id_quote

};

...

let response = JsonWrapper::success(quote);

info!("GET integrity quote returning 200 response");

HttpResponse::Ok().json(response)

}

It should be noted that the code designated as pod_id is in fact that used by the veri-
fier (though passed by the tenant), and it is this that is used to construct the request in the
./keylime/keylime/cloud_verifier_tornado.py file in the following manner:

async def invoke_get_quote(

...

res = tornado_requests.request(

"GET",

f"http://{agent[’ip’]}:{agent[’port’]}/v{agent[’supported_version’]}/quotes/integrity"

f"?nonce={params[’nonce’]}&mask={params[’mask’]}"

f"&partial={partial_req}&ima_ml_entry={params[’ima_ml_entry’]}"

f"&pod_id={pod_id}",

**kwargs,

timeout=timeout,

)

B.3 Filtered ML verification

The Keylime Verifier has been modified to support the new version of the Measurement List
provided in the Integrity Report. This section delineates the principal revisions and innovations
introduced to align with the proposed format.

96

Developer Manual

B.3.1 New ImaSlt Class

A new class ImaSlt has been introduced in the keylime/ima/ast.py file to handle the ima-slt
template:

...

class ImaSlt(Mode):

"""

Class for "ima-slt". Contains the digest and a path.

"""

dep: Name # dependencies

cg_name: Name # cgroup-name

digest: Digest # filedata-hash

path: Name # filename-hint

nonce: Name # nonce

def __init__(self, data: str):

tokens = data.split(" ", maxsplit=4)

if len(tokens) != 5:

raise ParserError(f"Cannot create ImaSlt expected 5 tokens got: {len(tokens)}.")

self.dep = Name(tokens[0])

self.cg_name = Name(tokens[1])

self.digest = Digest(tokens[2])

self.path = Name(tokens[3])

self.nonce = Name(tokens[4])

def bytes(self) -> bytes:

return self.dep.struct() + self.cg_name.struct() + self.digest.struct() + self.path.struct() + self.nonce.struct()

def is_data_valid(self, validator: Validator) -> Failure:

return validator.get_validator(type(self))(self.dep, self.cg_name, self.digest, self.path, self.nonce)

It is the task of this novel class to manage the particular configuration of the ”ima-slt” tem-
plate. This encompasses such elements as dependencies, cgroup-name, fieldata-hash, filename-
hint, and nonce.

B.3.2 Modified Entry Class

The Entry class in keylime/ima/ast.py has been updated to support the new salted template
format:

class Entry:

...

def __init__(

self,

data: str,

salted_template: bool,

validator: Optional[Validator] = None,

ima_hash_alg: Hash = Hash.SHA1,

pcr_hash_alg: Hash = Hash.SHA1,

):

self.salted_template = salted_template

self._validator = validator

self._ima_hash_alg = ima_hash_alg

self._pcr_hash_alg = pcr_hash_alg

tokens = data.split(" ", maxsplit=3)

97

Developer Manual

if len(tokens) != 4 and salted_template != True:

raise ParserError(f"Cannot create Entry expected 4 tokens got:

{len(tokens)}.")

self.pcr = tokens[0]

try:

full_ima_th = tokens[1].split(’:’)

self.ima_template_hash = bytes.fromhex(full_ima_th[1])

except ValueError as e:

raise ParserError(f"Cannot create Entry expected 4 tokens got:

{len(tokens)}.") from e

if salted_template == False:

mode = self._mode_lookup.get(tokens[2], None)

if mode is None:

raise ParserError(f"No parser for mode {tokens[2]} implemented.")

else:

mode = self._mode_lookup.get("ima-slt", None)

if salted_template == False:

self.mode = mode(tokens[3])

self._bytes = self.mode.bytes()

self.pcr_template_hash = self._pcr_hash_alg.hash(self._bytes)

The Entry class now includes a salted_template flag to determine whether to use the new
format or the old one.

B.3.3 Processing the Measurement List

The _process_measurement_list function is a significant component in the IMA validation
process utilised by Keylime. The IMA measurement list is processed, with each entry being
validated, and the running hash is computed, and the function has been updated to support both
traditional and salted templates.

def _process_measurement_list(

agentAttestState: AgentAttestState,

lines: List[str],

hash_alg: Hash,

runtime_policy: Optional[RuntimePolicyType] = None,

pcrval: Optional[str] = None,

ima_keyrings: Optional[ImaKeyrings] = None,

boot_aggregates: Optional[Dict[str, List[str]]] = None,

) -> Tuple[str, Failure]:

failure = Failure(Component.IMA)

running_hash = agentAttestState.get_pcr_state(config.IMA_PCR, hash_alg)

assert running_hash

Check through the first line if is a salted template

salted_template: bool = False

if len(lines) > 0:

tokens = lines[0].split(" ")

if len(tokens) > 2:

if tokens[2] == "ima-slt":

salted_template = True

98

Developer Manual

elif len(tokens) == 2:

salted_template = True

...

for linenum, line in enumerate(lines):

remove only the newline character, as there can be the space

as the delimiter character followed by an empty field at the end

line = line.strip("\n")

if line == "":

continue

try:

entry = ast.Entry(line, salted_template, ima_validator,

ima_hash_alg=ima_log_hash_alg, pcr_hash_alg=hash_alg)

update hash

if salted_template == False:

running_hash = hash_alg.hash(running_hash +

entry.pcr_template_hash)

else:

running_hash = hash_alg.hash(running_hash +

entry.ima_template_hash)

validation_failure = entry.invalid()

if validation_failure:

failure.merge(validation_failure)

errors[type(entry.mode)] = errors.get(type(entry.mode), 0) + 1

The initial line of the measurement list must be examined in order to ascertain whether it
corresponds to a salted template. In the event that this is the case, the salted_template flag
must be set accordingly. It is then possible to update the running_hash based on the template
type by iterating through each line in the measurement list. The running_hash is a cumulative
hash value representing the system’s integrity measurements, initialized with the PCR state from
the agent’s attestation state. Under the standard case for good practice, the template_hash

value is recalculated over the fields on the right of the template descriptor. Alternatively, the
ima_template_hash is used to extend the running_hash.

B.4 Pod Distribution Service script

The Pod Distribution Service script is responsible for the management of the verification process,
the collection of responses, and the forwarding of aggregated results. The present script imple-
ments three discrete Flask applications, each of which is responsible for a different aspect of the
pod distribution and verification process providing only relevant code (full script is in the thesis
source code).

B.4.1 Kubernetes Node IP Retrieval

The get_node_ip function is responsible for interacting with the Kubernetes API to retrieve the
node IP for a given pod UUID, with the purpose of mapping pods to their host nodes.

def get_node_ip(pod_uuid):

config.load_kube_config()

v1 = kubernetes.client.CoreV1Api()

try:

99

Developer Manual

pods = v1.list_namespaced_pod(namespace="default")

pod_name = next((pod.metadata.name for pod in pods.items if

pod.metadata.uid == pod_uuid), None)

if not pod_name:

print(f"Pod with UUID {pod_uuid} not found")

return None

pod = v1.read_namespaced_pod(name=pod_name, namespace="default")

node_name = pod.spec.node_name

node = v1.read_node(name=node_name)

return next((address.address for address in node.status.addresses if

address.type == "InternalIP"), None)

except ApiException as e:

print(f"Exception when calling CoreV1Api->read_namespaced_pod: {e}")

return None

This function uses the Kubernetes Python API to:

1. List all pods in the default namespace;

2. find the pod with the matching UUID;

3. retrieve the node information for that pod;

4. extract and return the internal IP address of the node.

B.4.2 Verifier and Pod Mapping Checks

The script incorporates specialised functions to verify the authenticity of verifier IDs and their
authorisation to attest specific pods.

def check_verifier_id(verifier_id):

conn = sqlite3.connect(’verifier_pod_mapping.db’)

cursor = conn.cursor()

cursor.execute("SELECT 1 FROM verifier_pod_mapping

WHERE verifier_id=?", (verifier_id,))

result = cursor.fetchone()

conn.close()

return result is not None

def check_verifier_pod_mapping(verifier_id, pod_id):

conn = sqlite3.connect(’verifier_pod_mapping.db’)

cursor = conn.cursor()

cursor.execute("SELECT 1 FROM verifier_pod_mapping WHERE verifier_id=? AND

pod_uuid=?", (verifier_id, pod_id))

result = cursor.fetchone()

conn.close()

return result is not None

These functions interact with a SQLite database to perform security checks, ensuring that
only authorised verifiers can attest to specific pods. The connection is invariably closed following
the execution of the query, with a result always being provided.

Operations to install sqlite3 and create (and populate) the table are the following:

100

Developer Manual

apt install sqlite3 -y

sqlite3 verifier_pod_mapping.db <<EOF

CREATE TABLE verifier_pod_mapping (

verifier_id TEXT NOT NULL,

pod_uuid TEXT NOT NULL,

PRIMARY KEY (verifier_id, pod_uuid)

);

INSERT INTO verifier_pod_mapping (verifier_id, pod_uuid) VALUES (’abc’, ’uuid1’);

INSERT INTO verifier_pod_mapping (verifier_id, pod_uuid) VALUES (’def’, ’uuid2’);

INSERT INTO verifier_pod_mapping (verifier_id, pod_uuid) VALUES (’ghi’, ’uuid3’);

EOF

B.4.3 Multi-Application Concurrent Execution

The macro-steps of the Pod Distribution Service workflow are developed in the Verify function,
which initiates the attestation process for multiple pods. At the same time, the Forward function
consolidates the results and sends them to the Cloud Verifier, waiting for each agent to send
a Collect notification. The script runs two separate Flask applications concurrently using a
ThreadPoolExecutor:

...

from flask import Flask, request, jsonify

app_verify = Flask(__name__)

app_collect = Flask(__name__)

...

def run_app(app, port):

app.run(host=’0.0.0.0’, port=port, threaded=True)

if __name__ == ’__main__’:

with ThreadPoolExecutor(max_workers=3) as executor:

executor.submit(run_app, app_verify, 5000)

executor.submit(run_app, app_collect, 5001)

Adopting this approach enables the script to concurrently manage verification and collection
processes across multiple ports and a separate thread that manages the forward part.

Verification Function

The verify function handles the initial verification request for pods. It’s exposed as a POST
endpoint at /verify:

responses = []

responses_lock = Lock()

all_responses_received = Event()

expected_responses = 0

@app_verify.route(’/verify’, methods=[’POST’])

def verify():

global expected_responses

data = request.get_json()

verifier_id = data.get(’verifier_id’)

pods = data.get(’pods’, [])

expected_responses = len(pods)

101

Developer Manual

if not verifier_id or not check_verifier_id(verifier_id):

return jsonify({"message": "Unauthorized"}), 401

Start forward thread

threading.Thread(target=wait_and_forward_tcp, args=(

verifier_id, expected_responses, all_responses_received,

responses, responses_lock

)).start()

results = []

for pod in pods:

pod_id = pod.get(’pod_id’)

whitelist = pod.get(’whitelist’, [])

exclude_list = pod.get(’exclude_list’, [])

if pod_id:

if not check_verifier_pod_mapping(verifier_id, pod_id):

return jsonify({"message": "Not authorized to attest some pods"}), 401

node_ip = get_node_ip(pod_id)

if node_ip:

agent_ip = pod.get("agent_ip") not used in this context

agent_port = pod.get("agent_port")

agent_version = pod.get("agent_version", "2.2")

nonce = data["nonce"]

mask = data["mask"]

partial = data.get("partial", "0")

ima_ml_entry = data.get("ima_ml_entry", "0")

agent_url = (

f"http://{node_ip}:{agent_port}/v{agent_version}/quotes/integrity"

f"?nonce={nonce}&mask={mask}&partial={partial}

&ima_ml_entry={ima_ml_entry}&pod_id={pod_id}"

)

try:

r = requests.get(agent_url, timeout=10)

r.raise_for_status()

quote_data = r.json()

except requests.RequestException as e:

quote_data = {"error": f"Failed to get quote: {e}"}

results.append({

"pod_id": pod_id,

"node_ip": node_ip,

"whitelist": whitelist,

"exclude_list": exclude_list,

"quote": quote_data

})

else:

results.append({

"pod_id": pod_id,

"error": "Node IP not found"

102

Developer Manual

})

else:

results.append({

"error": "Pod ID missing"

})

return jsonify({"message": "Verification completed", "results": results}), 200

Systematically, the verification function performs:

1. Obtain and check the verifier’s credentials and its authorization to attest specific pods.

2. For each pod in the request, it verifies the pod-verifier mapping and retrieves the node IP
for the pod and sets a global variable expected_responses to the number of pods to attest.

3. It compiles results for each pod, including errors if any occur.

4. if checks are passed, send the integrity request to the right worker node by setting the url
with the node_ip variable just retrieved.

5. It initiates the forwarding process by launching a separate thread to forward the quote back
to the verifier. The master-node-url should be set to the actual IP and Master’s port.

This function serves as the entry point for the verifier, sending the integrity request to the right
worker node and setting up the necessary information for subsequent steps.

Concurrent Response Collection

The following code snippet implements a custom mechanism for concurrently collecting re-
sponses from worker nodes:

@app_collect.route(’/collect’, methods=[’POST’])

def collect():

global expected_responses

data = request.get_json()

Extract quote from JSON payload, if present

response_json = data.get("response")

if not response_json:

return jsonify({"error": "Missing ’response’ field"}), 400

with responses_lock:

responses.append(response_json)

if len(responses) == expected_responses:

all_responses_received.set()

return jsonify({"message": "Response collected"}), 200

This implementation uses threading primitives (Locks and Events) to safely collect responses
from multiple worker nodes. The collection function is started together with the verification
function, which signals the forward function when all the expected responses have been received.

103

Developer Manual

Forwarding Operation

The forward function is responsible for aggregating collected responses and forwarding them
to the cloud verifier. It’s exposed as a POST endpoint at /forward:

def wait_and_forward_tcp(verifier_id, expected_responses,

all_responses_received, responses, responses_lock):

print(f"Wainting for {expected_responses} response...")

if not all_responses_received.wait(timeout=10):

print("Timeout waiting for all response.")

return

with responses_lock:

if not responses:

print("No valid response.")

return

quote_response = responses[0] # full response JSON from Rust

responses.clear()

all_responses_received.clear()

host = "localhost" # Assuming the verifier TCP server is running on localhost

port = 9999

try:

with socket.create_connection((host, port), timeout=5) as sock:

data = json.dumps(quote_response).encode()

sock.sendall(data)

print("Quote send to the verifier by TCP")

response = sock.recv(4096)

print("Response from verifier:", response.decode())

except Exception as e:

print(f"Error to send: {e}")

This code checks for the presence of a verifier ID and the expected number of responses.
Using the all_responses_received event, it waits for all expected responses to be collected
and then sends a single aggregated response to the Cloud Verifier. The verifier receives the
quote, without exposing any API, but listening to the response on a specific port through a
script that runs a custom TCP server (script provided in the thesis source code under the name
quote_tcp_server.py).

B.5 Authorised workload deployment

This section describes how workloads are deployed with verifier-based authorisation using a custom
Python script that replaces the standard kubectl apply -f command.

The Usage of the new proposed command is the following:

$ python3 kubectl_apply.py -f <deployment.yaml> -verifier <verifierID>

The system checks the mapping verifierID to podUUID before forwarding any attestation
request to check first if the Verifier is authorised to attest specific pods. If the mapping is
missing, the request is blocked.

104

Developer Manual

def get_pod_uuids(deployment_name):

result = subprocess.run([’kubectl’, ’get’, ’pods’, ’-l’,

f’app={deployment_name}’, ’-o’, ’json’], capture_output=True, text=True)

pods = json.loads(result.stdout)

pod_uuids = [pod[’metadata’][’uid’] for pod in pods.get(’items’, [])]

return pod_uuids

def insert_verifier_pod_mapping(verifier_id, pod_uuids):

conn = sqlite3.connect(’verifier_pod_mapping.db’)

cursor = conn.cursor()

for pod_uuid in pod_uuids:

cursor.execute(’INSERT INTO verifier_pod_mapping (verifier_id, pod_uuid)

VALUES (?, ?)’, (verifier_id, pod_uuid))

conn.commit()

conn.close()

def main():

...

deployment_file = args.file

verifier_id = args.verifier_id

subprocess.run([’kubectl’, ’apply’, ’-f’, deployment_file], check=True)

with open(deployment_file, ’r’) as file:

deployment = yaml.safe_load(file)

deployment_name = deployment[’spec’][’selector’][’matchLabels’][’app’]

pod_uuids = get_pod_uuids(deployment_name)

insert_verifier_pod_mapping(verifier_id, pod_uuids)

First, the script performs a classic deployment of the workload using the kubectl apply com-
mand and then it extracts the app label from the YAML file to identify the newly scheduled pods.
It then retrieves pod UUIDs via the kubectl command and inserts (verifierID, podUUID) entries
into the authorisation database, recording them to enforce access control for future verification
requests.

105

	Introduction
	Trusted Computing and Trusted Platform Module TPM
	Trusted Computing Group
	Trusted Computing Base
	Root of Trust
	Trusted Platform Building Blocks
	Boot Types
	TPM 2.0
	Architecture
	Main features
	Securely storing data
	Implementations
	TPM Platform Configuration Register PCR
	Secure Identity

	Remote Attestation (RA)
	Execution flow

	Integrity Measurement Architecture (IMA)
	Overview
	Design
	IMA-Measurement

	Policies
	IMA Templates
	ML Integrity Verification and Entries Validation

	Kubernetes (K8s)
	Docker container
	Overview
	State-oriented approach
	Architecture
	Workload Resources
	Deployment

	Custom Resource

	Keylime Framework
	Overview
	Design
	Main Features
	Operational Phases
	Physical Node Registration Protocol
	Three Party Bootstrap Key Derivation Protocol
	Continuous Remote Attestation

	Related works
	Container-IMA
	Architecture
	New components
	Measurement Mechanism
	Attestation Mechanism
	Consideration

	Docker Integrity Verification Engin (DIVE)
	Consideration

	Docker Container Attestation
	Kubernetes Pod Attestation
	Consideration

	Proposed solution - Design
	Problems addressed
	Proposed Solution
	Measurement Log Analysis
	Architecture of the Proposed Solution
	Registration Process
	Worker Node
	Master Node
	Master Node Capabilities
	Verifier Registration
	Verifier Authorisation

	Verification Process
	Privacy and guessing analysis

	Proposed solution - Implementation
	IMA Template and Kernel modification
	Keylime modification
	Tenant modification
	Agent modification
	Registrar modification
	Verifier modification

	Kubernetes Capabilities integration
	Proxy Feature
	Verifier Authorisation
	State Aggregation Feature

	Tests
	Testbed
	Functional Tests
	Test with a correct Verifier permission
	Attestation test with an unrecognised Verifier
	Attestation test with an unrecognised pod for a given Verifier

	Comparison with standard Keylime
	Performance Tests

	Conclusions and future works
	Bibliography
	User Manual
	Attester machine
	Patching the Linux kernel
	Preparing the kernel before compiling
	Compiling and installing the new kernel
	TPM2 tools Installation
	Keylime installation
	Keylime Agent installation
	Configuring Keylime Agent
	Installing and configuring Kubernetes

	Verifier machine
	Keylime Verifier and Registrar installation
	Installing and configuring Kubernetes
	Proxy Kubernetes Master node
	Deploy Pod Distribution Service Pod

	Developer Manual
	IMA patch
	|ima-slt| template implementation

	Filtering Measurement Log
	Filtered ML verification
	New |ImaSlt| Class
	Modified Entry Class
	Processing the Measurement List

	Pod Distribution Service script
	Kubernetes Node IP Retrieval
	Verifier and Pod Mapping Checks
	Multi-Application Concurrent Execution

	Authorised workload deployment

