
Politecnico di Torino

Master’s Degree in Architecture for Heritage
A.Y. 2024/2025

Graduation Session September 2025

Reconstructing Architectural Complexity:
An Integrated HBIMWorkflow for the Monumental Atrium of Palazzo Barolo

Supervisor: Candidate:
Giovannini Elisabetta Caterina (DAD) Wu Yushan

Abstract
Historic Building Information Modeling (HBIM) combines survey data with parametric
modeling to support the digital reconstruction of architectural heritage. Yet its application
becomes problematic when elements present irregular forms together with typological
variation. This paper takes the atrium and staircase area of Palazzo Barolo in Turin as a
case study and proposes a HBIM workflow centered on components: by combining
semantic segmentation and the LoIN (Information Demand Level) framework, and
selecting matching parametric strategies for different components.
The research focuses on three representative systems: columns, vaults and railings. The
column system adopts a proportional method nested family based on "base diameter" as
the global parameter, converting the classic rules into re-usable parameter logic. The vault
is modeled using the "floor-hosted void families" generated by Dynamo, ensuring precise
positioning, stable host interaction and typological flexibility, covering three specific case
in this project: atrium, transition and staircase. The oblique components in the railings are
not suitable for the native rotational family and need to undergo shear transformation in
Rhino before being imported into Revit. This demonstrates that the HBIM workflow can
adopt cross-platform geometric modeling when dealing with special cases, rather than
forcibly maintaining the parametric logic within a single platform. All components are
generated based on point cloud segmentation and orthophotos, and are supplemented by
consistent naming and lightweight semantic encoding to ensure traceability.
The results show that this workflow achieves a balance between geometric accuracy and
parameter control, and has the potential for migration in similar heritage environments.
The methodological contribution lies in: establishing a bridge between "form-driven" and
"type/rule-driven", adopting corresponding strategies for different components - such as
the host-void cutting mode for arches and the nested family parameter transfer for
columns - while the cross-platform processing of individual free-form shapes is only a local
supplement and does not affect the stability of the overall framework. The proposed
component-based HBIM method in this paper provides a reusable modeling path for
heritage protection, architectural analysis, and future reuse.

Riassunto
L’Historic Building Information Modeling (HBIM) integra i dati di rilievo con la modellazione
parametrica, offrendo un percorso affidabile per la ricostruzione digitale dei componenti
del patrimonio architettonico. Tuttavia, l’applicazione dell’HBIM rimane complessa quando
gli elementi architettonici presentano al tempo stesso geometrie irregolari e variazioni
tipologiche. Questo studio, prendendo come caso di riferimento l’atrio e la scala
monumentale di Palazzo Barolo a Torino, propone un flusso di lavoro HBIM basato sui
componenti, che combina la segmentazione semantica con il quadro del Level of
Information Need (LoIN), selezionando strategie parametriche adeguate per ciascun tipo di
elemento.
La ricerca si concentra su tre sistemi rappresentativi: colonne, volte e balaustre. Le
colonne sono ricostruite mediante una strategia a famiglie annidate, governata dal
parametro del “diametro di base”, che traduce le regole proporzionali classiche in logiche
parametriche riutilizzabili. Le volte sono modellate tramite famiglie di vuoto ospitate da
solai (floor-hosted void families) generate con Dynamo, garantendo posizionamento
preciso, interazione stabile con gli elementi ospitanti e flessibilità tipologica in atrio, zone
di transizione e scala. Per le balaustre, gli elementi inclinati—non compatibili con le
famiglie native a rivoluzione—sono ottenuti attraverso trasformazioni di shear in Rhino e
successivamente integrati in Revit, dimostrando che, in presenza di geometrie eccezionali,
è possibile ricorrere a modellazioni cross-platform senza mantenere necessariamente la
piena editabilità parametrica in un unico ambiente. Tutti i componenti sono derivati da
segmentazioni di nuvole di punti e proiezioni ortofotografiche, accompagnati da una
nomenclatura coerente e da una codifica semantica leggera per garantirne la tracciabilità.
I risultati mostrano che il flusso di lavoro proposto raggiunge un equilibrio tra accuratezza
geometrica e controllo parametrico, risultando al contempo trasferibile a contesti
patrimoniali simili. Dal punto di vista metodologico, esso costruisce un ponte tra approcci
“form-driven” e approcci basati su tipologie e regole, adottando strategie mirate per
ciascun sistema—come il modello ospite-vuoto per le volte e la trasmissione parametrica
nelle famiglie annidate per le colonne—mentre i trattamenti cross-platform di forme libere
restano interventi locali senza compromettere la coerenza generale. La ricerca propone
quindi un metodo HBIM component-based, riutilizzabile, a supporto della conservazione,
dell’analisi e del riuso futuro del patrimonio architettonico.

Content
1. Introduction ...1

1.1 Research Background .. 1
1.2 Research problems ..2
1.3 Research objectives ...3
1.4 Scope of the research ..4
1.5 Case study: Palazzo barolo .. 4
1.6 Structure of the thesis ...5
1.7 Acknowledge ... 6

2. Literature Review .. 7
2.1 Informative and geometrical modeling ...7
2.2 From Segmentation to Modeling Strategies ... 8

2.2.1 Semantic segmentation in HBIM ..8
2.2.2 Geometric and parametric approaches in HBIM application 8

3. Methodology ... 11
3.1 Strategies comparison: Geometric vs. Parametric ..11
3.2 Modeling framework ...13
3.3 Column.. 17

3.3.1 Method Evaluation and logic of proportional strategy17
3.3.2 Proportional Logic and Nested Family Strategy for Columns 21
3.3.3 Parameters Transformation in Nested family ..22
3.3.4 Proportional Control in Component Detail Modeling23

3.4 Vault .. 24
3.4.1 Analysis of architectural geometric forms ... 24
3.4.2 Method Evaluation: Void Family vs. DirectShape .. 26
3.4.3 Hosted Family Types for Void Forms. ...28

3.5 Railing .. 30
3.5.1 Normal railing system in standard component and in historical building ...30
3.5.2 Treatment of Special-Geometry Inclined Balusters 31

4. Implement and Result ... 34
4.1 Column.. 34

4.1.1 Two types Column in Atrium and Staircase ... 34
4.1.2 Modeling for column system... 38

4.2 Vault system.. 47
4.2.1 Final Modeling Outcomes and Comparative Assessment47
4.2.2 Vault atrium(VAU_ATR) ..50
4.2.3 Vault intermediate(VAU_INT) .. 61
4.2.4 Vault Staircase(VAU_STA) .. 67

4.3 Railing .. 71
4.3.1 Segmented Elements By Revit system... 71
4.3.2 Normal Baluster and Oblique Baluster ...73

4.4 Outcome after all .. 76
5. Discussion .. 80
6. Conclusion and Recommendations ...82
Bibliography ...84
Appendix ..93

1

1.Introduction
1.1 Research Background
Historic Building Information Modeling (HBIM) (Murphy et al., 2009)is an emerging
methodology within the broader domain of digital heritage that integrates
traditional documentation methods (such as archival research and architectural
drawing) with digital techniques including laser scanning, photogrammetry, and
parametric modeling. Unlike conventional BIM used for new construction, HBIM
must accommodate irregular geometries, data gaps, and historically specific forms
and materials. Its goal is not only to model the geometry of heritage architecture,
but to embed it with semantic meaning, historical stratification, and spatial logic.
For example, UNESCO(2003)explained in the Charter on the Preservation of Digital
Heritage that digital tools are needed to protect cultural resources. ICCROM also
emphases this idea in its report The Digital Imperative (Van Malssen et al., 2021),
which described digital preservation as a key step for saving collective memory.
More recently, ICOMOS and ICCROM (2023) published guidance for recovery after
disasters and conflicts, and they included digital documentation and modeling as
part of this process. These documents show that HBIM is not only a technical choice,
but also follows international heritage policies. Recent case studies such as the
Basilica di Collemaggio (Brumana, Della Torre, et al., 2018), Santa Croce(D’Agostino
et al., 2024) in Florence, and Palazzo Pitti(Bonora et al., 2023) in Florence have
explaineds how HBIM can serve as a platform for intergrated collaboration, which
enables architects, historians, engineers, and conservators to co-develop and
manage knowledge about built heritage.
In this context, parametric modeling has become a widely adopted strategy in HBIM
workflows, particularly suited to the reconstruction of classical and typologically
organized architectural elements. By encoding scale logic, geometric constraints,
and hierarchical relationships, tools such as Revit1 (especially in system families) and
Dynamo2, the visual programming language based on its API3, enable the generation
of structured digital components that reflect formal and construction intent. There
are some case studies proved the feasibility of this approach in modeling historically
complex systems-such as vaulted ceilings reconstructed through generative rules
and adaptive thickness profiles (Liberotti & Gusella, 2023), or Greco-Roman column
assemblies derived from laser-scanned profiles and encoded as reusable parametric
families (Elsaid et al., 2019; Scianna et al., 2020).

1 Revit is a Building Information Modeling (BIM) authoring software developed by Autodesk. It provides tools for creating
parametric 3D models combined with non-geometric information, enabling coordinated design, documentation, and analysis
across disciplines. Accessed from https://help.autodesk.com/view/RVT/2026/ENU/
2 “Dynamo is a graphical programming interface that lets you customize your building information workflow. Dynamo is an
open source visual programming platform for designers. It is installed as part of Revit along with Revit specific programming
nodes..” accessed from https://help.autodesk.com/view/RVT/2026/ENU/?guid=RevitDynamo_Dynamo_for_Revit_html
3 Application programming interface(API) is a connection between computers or between computer programs. Here means
the connection between Revit and Dynamo.

2

These strategies enable not only geometric precision but also semantic clarity,
allowing for the reuse, adaptation, and analysis of components across typologically
similar architectural contexts.

From a technical standpoint, HBIM relies on frameworks such as the Level of
Information Need (LoIN; ISO, 2024) to define the fidelity, purpose, and scalability of
models. LoIN addresses the type, amount, and quality of information that should be
embedded within a model to meet documentation and management goals in
heritage contexts. Rather than focusing solely on geometric precision--what Banfi
(2017) refers to as Grades of Generation (GoG), LoIN emphasizes purposeful
modeling tailored to analysis, communication, or conservation.
The present study builds upon this tradition by developing a component-based HBIM
model of Palazzo Barolo, focused on the staircase and atrium zone. Special attention
is given to parametric modeling methods that allow not only geometric
reconstruction but also typological classification and semantic enrichment.

1.2 Research problems
Although Building Information Modeling (BIM) has become a standard tool in
architectural design and documentation, its native modeling environment often
proves insufficient when applied to the geometrical complexity of historic
architecture. Elements such as elliptical vaults with irregular boundaries,
non-orthogonal junctions between oblique walls, or oblique decorative balusters
exceed the representational capabilities of default Revit modeling tools(Brumana et
al., 2019; Moyano et al., 2021).

The complexity is further amplified in projects requiring fine control of family nesting,
cross-family parameter binding, and adaptive shape logic. In the column system, for
example, classical proportional rules require multi-level formula inheritance across
nested families. Vault forms-especially those with lunettes or three-centered
arches-often fail to conform to Boolean operations in Revit, leading to reliance on
Dynamo-generated voids(Medina, 2020). Similarly, oblique balusters demand a
geometry that rotates or shears along non-orthogonal planes, which Revit's native
family templates cannot support.

In such cases, relying solely on native family types and editing commands leads to
rigid approximations, fragmented geometries, or excessive manual workarounds. To
address these challenges, this study integrates a visual programming language (VPL)
environment--specifically Dynamo--to generate geometry that cannot be directly
modeled in Revit. This VPL-based approach enhances the precision, consistency, and
adaptability of complex geometric configurations within a heritage modeling
context.(Hitech CADD Services, 2019; Marcello, 2022)

3

Apart from geometric constraints, the three core family types in Revit - system
families, loadable families, and local families - cannot directly handle many complex
shapes in the user interface. When non-standard families are used to build these
geometries, semantic information is often lost. This happens because the chosen
family for some specific elements in historical buildings does not match the Revit
system family, so parameters cannot be recorded correctly and the data cannot be
linked. Many heritage elements--such as vaults with non-rectangular bases, obliquely
decorative balusters, or columns with a typical classical proportions--cannot be
accurately represented by using existing family templates due to the limitation of
software’s system. For example, no default family exists for multi-centered vault
typologies(and even the normal simple vault), and standard baluster families restrict
the rotation and deformation of elements along inclined host surfaces.(Autodesk
Community Forums, 2014; Autodesk Help, 2025)

Moreover, managing these irregular forms requires a high degree of parameter
control and family nesting, which significantly increases modeling complexity. The
definition of shared parameters, the establishment of nested reference geometries,
and the transfer of dimensional control across multiple family levels all pose
technical challenges, particularly when dealing with non-standard shapes and spatial
arrangements. These issues are further compounded when attempting to ensure
semantic consistency across different categories of architectural
components.(Quattrini et al., 2015)

Beyond geometric and parametric challenges, the encoding of semantic information
within BIM environments remains a persistent issue in heritage modeling. While
parametric families can define dimensional behavior and geometry, they rarely
reflect Typological hierarchies, historical classifications, or functional roles of the
architectural elements they represent. For instance, a column family may contain
size parameters but fail to convey whether it belongs to a Doric, Ionic, or Composite
order, or what its contextual meaning may be.

Taken together, these issues point to a methodological gap: there is a lack of
integrated strategies that allow for the coordinated management of geometry,
parameter logic, and semantic interpretation in the modeling of heritage
architecture. This gap defines the core technical and conceptual challenge that the
present study seeks to address.

1.3 Research objectives
The main objective of this study is to construct a parametric modeling workflow
capable of addressing the geometric and Typological complexity of selected heritage
components from Palazzo Barolo, through the integration of BIM tools-specifically, a
Revit- and Dynamo-based workflow focused on classical architectural systems.
This study specifically aims to:

4

Construct structured parametric families for columns, vaults, and balustrades,
based on Typological decomposition and nested relationships;

Apply proportion-driven modeling strategies informed by historical architectural
treatises;

Develop a reusable and transferable logic applicable to heritage contexts with
comparable architectural typologies.

By approaching these aims, the research proposes a modeling framework that
ensures the accurate reconstruction of complex geometries, while at the same time
supporting their semantic interpretation and enabling future re-usability.

1.4 Scope of the research
This research focuses on the parametric reconstruction of selected architectural
components in Palazzo Barolo, namely the columns, vault system, and decorative
balustrades. These elements were selected for their representative geometric
complexity and their structural and ornamental significance within the palace's
circulation scheme. The study excludes analysis of internal material layers, structural
behavior simulations, or building services (mechanical/electrical systems). Instead, it
adopts the Level of Information Need (LoIN) framework defined in ISO 7817-1:2024
to define the granularity and accuracy of the digital models. The modeling is based
on point cloud data and orthophoto projections and limited to external and interior
surface geometry. The primary objective is to establish a reusable and semantically
structured parametric modeling workflow.

This method is oriented to heritage modeling practitioners, architectural heritage
scholar, and digital archiving professionals. It aims to deliver parametric modeling
that are structurally coherent semantically interpretative, and procedural
sustainable thereby supporting future analysis, communication and long-tern
conservation efforts.

1.5 Case study: Palazzo barolo
Palazzo Barolo stands at the corner of Via delle Orfane and Via Corte d’Appello in
Turin. It is considered an important example of Baroque and Rococo architecture
linked with the aristocracy of the city. The palace was first built in the late
seventeenth century, when Count Ottavio Provana di Druent, a high court officer
under Vittorio Amedeo II of Savoy, transformed an earlier residence into a new
monumental house. The commission was assigned to Gian Francesco Baroncelli, who
reorganized the residence with a monumental layout. His design placed the atrium
at the center and introduced a forked staircase directly connected to it. This spatial
choice was unconventional for the late seventeenth century, since staircases were
usually set along the side wings, and it marked the atrium as the true focus of the
palace. (Fenoglio, 1928)4

4 Giulio Fenoglio, “Il Palazzo dei Marchesi di Barolo,” Torino: Rivista mensile municipale, vol. VIII (1928): 164–171, accessed
July 16, 2025, https://www.museotorino.it/resources/pdf/books/528/files/assets/common/downloads/page0164.pdf.

https://www.museotorino.it/resources/pdf/books/528/files/assets/common/downloads/page0164.pdf.

5

The building was inherited by the Falletti di Barolo family in the early 18th century.
In 1727, under Ottavio Giuseppe Falletti, the interiors were redesigned by Benedetto
Alfieri to reflect the Rococo taste of the time. The palace remained the family's
residence until the extinction of the lineage with the death of Giulia Falletti di Barolo
in 1864. According to her will, the property was donated to the Opera Pia Barolo, a
charitable foundation she had established. Today, restoration initiatives supported
by the Compagnia di San Paolo and the Fondazione CRT have opened the historical
apartments of the palace to the public.5

This layered architectural evolution, spanning over two centuries, makes Palazzo
Barolo an exemplary case for heritage-oriented parametric reconstruction. The
palace shows a mix of spatial complexity, unusual construction rules, and stylistic
changes from different periods. These features make it a suitable case for applying
and testing advanced HBIM methods. Beyond its formal and historical significance,
Palazzo Barolo also holds a unique position within the urban fabric of Turin. The
building's axial organization, central monumental staircase, and sequential vaulted
ceilings reflect a spatial strategy that merges aristocratic representation with urban
permeability. These characteristics-while widely discussed in historical
literature-have rarely been analyzed through the lens of digital reconstruction. As
such, this project does not only serve as a technical modeling case but also as a
cultural and spatial interpretation of Baroque heritage through contemporary tools.

1.6 Structure of the thesis
This thesis is organized into six chapters and an appendix, moving from the
background and theoretical framework toward the modeling implementation and
the broader implications of the research.
Chapter 1 introduces the background of the study, outlining the HBIM research
context, the main problems addressed, and the objectives. It also explains the
methodological approach adopted in this work.
Chapter 2 presents a literature review that situates the research within current
scholarship. It discusses the development of HBIM, with a focus on parametric
modeling strategies applied to heritage case studies, and examines frameworks such
as the Level of Information Need (LoIN), which inform decisions about modeling
depth and information management.
Chapter 3 defines the methodology. It explains how different strategies—geometric,
parametric, and hybrid approaches—were considered, and sets out the rationale for
choosing void-based parametric families as the main modeling framework. It also
introduces the specific tools (Revit, Dynamo, Rhino) and explains how they are
combined in the workflow.
Chapter 4 illustrates the implementation. This chapter applies the methodology to
the selected case study components, describing the modeling steps in detail and
presenting the resulting parametric families for vaults, columns, and balusters.
Chapter 5 provides the discussion. It evaluates the strengths and weaknesses of the
adopted workflow, compares the outcomes with existing approaches in HBIM

5 Opera Barolo. (n.d.). Il Palazzo. Accessed from July 16, 2025, from https://www.operabarolo.it/palazzo-barolo/

6

research, and considers the potential re-usability of the method in other heritage
contexts.
Chapter 6 presents the conclusions. It reflects on the research objectives and
summarizes how they were achieved. The chapter also identifies the contributions of
the study and highlights possible directions for further investigation.
Chapter 7 contains the bibliography and references, gathering all the sources cited
throughout the thesis.
Overall, the structure is designed to guide the reader from the general background
of HBIM to the specific modeling solutions tested in this study, and ultimately to the
evaluation of their broader significance.

1.7 Acknowledge
The research data and digital acquisition were part of an ongoing project, directed by
Roberta Spallone and Marco Vitali, which is currently going on with the precious
collaboration of Prof. Concepción López González (who joined the group thanks to
the international collaboration project “Nuevas tecnologías para el análisis y
conservación del patrimonio arquitectónico”, funded by the Ministry of Science,
Innovation and the University of Spain)

7

2.Literature Review
2.1 Informative and geometrical modeling
The traditional notions of Level of Development (LOD) and Level of Information (LOI)
originate respectively from the AIA E202 BIM Protocol (American Institute of
Architects, 2008) and the British PAS 1192-2:2013 specification (British Standards
Institution, 2013), distinguishing between geometric completeness and metadata
richness. Within HBIM scholarship, the additional concept of Level of Geometry (LOG)
was introduced to address the geometric variability and modeling challenges specific
to heritage workflows. The need to manage non-standardized data-including various
inputs such as laser scans, orthophotos, archival drawings, and descriptive reports --
led to the formal proposal of LOG within an extended LOD framework (Lombardini &
Cantini, 2017). LOG in this context functions to differentiate modeling strategies
based on data quality, reconstruction method, and intended fidelity. This structure
was subsequently formalized by Brumana et al. (2019), who aligned LOG thresholds
(LOG 300, 400, 500) with the broader framework of Grades of Generation (GOG) and
Grades of Accuracy (GOA), facilitating clearer typological segmentation and
reconstruction strategies. More recently, the concept of Level of Information Need
(LoIN), as defined in ISO 7817-1:2024, consolidated these dimensions into a unified,
purpose-driven framework that links modeling depth to documentation intent,
delivery phase, and actor roles (Bonora et al., 2023; ISO 7817-1, 2024).

Semantic segmentation in HBIM is not merely a geometric decomposition process,
but a semantically driven structuring operation that precedes modeling decisions. It
directly aligns with the Level of Information Need (LoIN) framework defined in ISO
7817-1:2024, which organizes modeling requirements through six contextual
dimensions: why (purpose), who (actors), what (objects), how (methods), when
(phases), and where (delivery environments) (ISO 7817-1, 2024). Within this
structure, segmentation becomes a way of filtering raw spatial data into functionally
or typologically meaningful parts—columns, vaults, lunettes, or balusters—before
any geometric modeling occurs(Brumana, Della Torre, et al., 2018; Quattrini et al.,
2015). Empirical studies have demonstrated that segmentation decisions are tightly
coupled with the selection of modeling strategies. Zhao et al. (2024) developed a
weakly supervised model (SQN-DLA, Semantic Query Network based on Dual Local
Attention) for semantically segmenting heritage building point clouds, providing
classification structures that directly informed HBIM component generation. Giuliani
et al.(2024) proposed stratified segmentation of masonry structures using image
analysis, guiding how individual layers were modeled based on semantic hierarchy.
Zhao et al. (2023) provided a systematic review of semantic segmentation
techniques for cultural heritage point clouds, reinforcing their foundational role in
heritage-oriented modeling pipelines. Together, these studies support the idea that
segmentation, when driven by LoIN logic, serves not as neutral data preparation but

8

as a strategic act that determines granularity, typological integrity, and the selection
between mesh-based or parametric modeling methods.

2.2 From Segmentation to Modeling Strategies

2.2.1 Semantic segmentation in HBIM
In HBIM, semantic segmentation is not equivalent to geometric modeling; rather, it
serves as a crucial interpretive layer that precedes the creation of any parametric
families. It breaks down heritage buildings into meaningful architectural components
such as columns, vaults, walls, and decorative elements, based not merely on
geometry, but on typological, functional, and morphological reasoning (Parisi et al.,
2019). Werbrouck et al. (2020) emphasize that segmentation constitutes a
preliminary organizational logic that informs model structure before any geometric
generation. This process facilitates the structuring of parametric libraries in software
environments like Revit, where segmented elements can be transformed into
reusable families with coherent naming rules, parameter hierarchies, and semantic
grouping.
For instance, Werbrouck et al. (2020) define segmentation as a central step in their
scan-to-graph framework, translating raw point cloud data into semantically
structured graphs that directly inform HBIM object generation. Similarly, Parisi et al.
(2019) demonstrate how semantic partitions can be used to organize modeling logic
by coupling parameters with classification taxonomies. Croce et al. (2021) propose a
semiautomatic segmentation-to-HBIM pipeline in which architectural typologies
drive object classification and model enrichment. Sanseverino et al.(2022) further
integrate point cloud segmentation with orthophoto analysis to generate accurate,
georeferenced parametric families. Moyano et al.(2022) note that existing
classification standards such as Omniclass, Uniformat II, and Uniclass 2015 are not
fully compatible with heritage architecture. Their workflow includes restructuring
classification layers and adapting semantic codes based on national vocabularies,
with mappings extended to IFC categories.

2.2.2 Geometric and parametric approaches in HBIM application
The distinction between geometric and parametric approaches in HBIM first appears
implicitly in studies focusing on modeling complexity. Brumana et al. (2018) used the
phrase “geometric complexity” to describe the modeling of vaults and lunettes in the
Basilica di Collemaggio, where shape irregularity prevented the use of reusable
parametric types. In contrast, Banfi (2020) explicitly contrasted “geometric
modeling,” based on mesh or NURBS surfaces, with “parametric modeling,” which
relies on rule-based libraries and repeatable logic. Banfi (2019) further associated
geometric approaches with workflows driven by morphological accuracy, using tools
such as Rhino for direct modeling, especially when typological consistency could not
be assumed. On the other hand, Quattrini et al. (2015) defined parametric modeling
in HBIM as a process of encoding semantic and typological relationships into
predefined object families. Aubin (2013) exemplified this logic in Renaissance-style

9

components, where classical rules guide the creation of column families with nested
parameters.

In HBIM, a geometric-driven approach is often applied when dealing with
architectural elements that exhibit complex or irregular geometry not suited for
rule-based modeling. Allegra et al. (2020) describe how unique elements at the
Castle of Maredolce, such as the pleated pavilion of the Aula Regia, were modeled in
Rhinoceros and imported into Revit as generic families, bypassing parametric
definitions due to their uniqueness and morphological complexity. Similarly,
Costantino et al. (2023) reconstructed the church of San Nicola in Montedoro using
Rhino and Grasshopper by slicing point clouds into geometric sections, then building
NURBS surfaces without embedding them in native Revit family logic. Another
important case is presented by Diara and Rinaudo (2019), who reconstructed a rib
vault based on LiDAR scans using manual loft and patch modeling in Rhino. Although
the final geometry was later exported to BIM-compatible formats solid via STEP
through platforms such as FreeCAD, the initial process was fully morphology-driven
and not based on parametric objects. Yang et al. (2019) also report a mesh-to-HBIM
strategy at the St-Pierre-le-Jeune Church, where triangulated surfaces were
thickened and imported into BIM environments without typological structuring or
parameterized reuse. These examples demonstrate that geometric modeling
workflows--often described as “morphology-driven,” “scan-to-mesh,” or
“non-parametric”--serve as critical alternatives to parametric logic when dealing
with heritage structures whose geometry cannot be generalized.

Parametric modeling in HBIM not only allows for geometric control through
dimensions and formulas, but also supports the creation of structured libraries of
reusable components. These libraries encode typological rules, geometric variations,
and placement logic, serving as the operational core of reusability in HBIM
workflows. In ArchiCAD, ArchiRADAR provides GDL-based parametric vault objects
such as the volta a doppia stella, where users can adjust curvature, dimensions, and
materials within a typology-aware family structure (ArchiRADAR, n.d.). Edificius
offers a built-in library of vaulted components, allowing users to select from various
typologies—such as barrel, sail, pavilion, and polygonal cross vaults—and adjust key
parameters directly within the BIM environment, without external modeling tools
(ACCA Software, n.d.). In contrast, Autodesk Revit lacks predefined vault families,
forcing users to create custom parametric families or repurpose system components.
Medina (2020) modeled the ground-floor groin vaults of Notre-Dame by adapting
the “roof” family system, illustrating a functional parametric substitution. Capone et
al. (2019) applied rule-based generation in Grasshopper to build adaptive rib vault
families with trapezoidal bases, linking ideal geometric logic with real-world
deformation. Similarly, Calvano et al. (2023) used Grasshopper to generate mass
families from B-Rep geometry and applied “roof by instance” mappings to
incorporate them as parameter-controlled vaults in Revit.

10

A crucial contribution is offered by Croce et al. (2021), who proposed a
semi-automatic workflow from semantic point cloud segmentation to the
instantiation of predefined HBIM families. Their method uses supervised
classification and geometry–type matching to populate parametric libraries,
reinforcing the idea that the parametric system serves both as a modeling strategy
and a tool for semantic structuring. These studies also underline the essential role of
libraries—not merely as repositories of components, but as the fundamental
mechanism enabling typological consistency and re-usability. In Natta’s (2024)
doctoral research, this logic is extended through the integration of Rhino.Inside.Revit
and Human UI. A customized interface within Revit allows users to select from
predefined vault typologies and input geometric parameters, facilitating more
structured control and management of vaulted elements during modeling.

In HBIM studies, geometric and parametric modeling are not treated as opposite
choices but are often used together. The decision usually depends on the kind of
architectural element. Irregular and unique parts are better handled with
geometry-based methods, while regular and typologically stable ones are more
suitable for parametric tools. Both rely on segmentation, yet their aims are different:
geometry seeks to rebuild formal complexity, while parametric modeling focuses
more on typological order and reuse.

11

3.Methodology
3.1 Strategies comparison: Geometric vs. Parametric
In HBIM (Historic Building Information Modeling), there are two main modeling
strategies: the Geometrical approach and the Parametric approach. These two
methods differ from how the geometry is generated and managed(see Table 3-1).
This section refers to Banfi's (2017) concept of Grade of Generation (GoG) , which
clarify how the geometric approach is generated. Geometrical Approach: This
method generates shapes based on point clouds. Geometry may be reonstructed by
slicing or extracting boundaries from point caloud-dericed meshed, or by porducing
non-parametric curves after typological comparison. It focuses on geometric
accuracy, but usually lacks parametric control. The GoG can range from 3-where
simplified or abstructed curves are transformed though extrude, sweep, or revolve
operations to 10-where mesh boundaries or slices extracted from point data are
re-lofted to rebuild complex geometry. Parametric Approach: This method uses tools
like Revit, Dynamo, or Grasshopper to build models using parameters, formulas, and
algorithmic logic. It allows for easier editing, reuse, and integration of semantic
information (when it was in the same editing enviroment). The GoG typically ranges
from 4 to 8.

Table 3-1 Difference between Geometric approach and Parametric approach

Aspect Geometrical Approach Parametric Approach

GoG Level 3–10 4–8

Generation method Curve fitting, surface modeling Parameter formulas, algorithmic scripts

Editability Low (requires manual changes) High (controlled by parameters)

Reusability Low High

Best suited for
Freeform, historically deformed
elements

Modular, rule-based architectural
elements

BIM interoperability Weak (geometry only) Strong (semantic and parametric data)

Information modeling Added manually Embedded during modeling

Examples
Scan-to-Mesh, Rhino NURBS,
Boolean operations

Dynamo-based vaults, adaptive Revit
families

For Types of geometrical modeling: Manual profile extraction is a traditional
approach where basic profiles (e.g., vertical sections) are interpreted from point
cloud data. These profiles are often semantically classified in advance and then used
to build simple 3D forms such as revolved solids. According to Banfi's GoG
classification, this method corresponds to low GoG levels (e.g., GoG 3), because
although it results in a 3D object, it lacks parametric control and represents only
formal characteristics without internal logic.

12

Scan-to-Mesh refers to the generation of high-resolution 3D meshes directly from
point clouds, often using tools such as Autodesk ReCap. These meshes are especially
valuable in the reconstruction of damaged, deformed, or richly detailed surfaces.
According to Banfi (2017), when these mesh models are further processed through
NURBS fitting-such as reconstructing surface edges or slicing through sections for
geometric logic-they may correspond to GoG 10.
These models are not parametric but offer very high levels of geometric fidelity and
are especially suited for visualization, simulation, or structural analysis workflows.
Parametric modeling strategies vary depending on the platform and complexity of
the architectural element. In the context of HBIM, parametric modeling is especially
valuable for systematically controlling geometry, adapting to Typological variations,
and embedding information. The following Table 3-2 presents key categories of
parametric modeling approaches used in heritage-related applications:

Table 3-2 Parametric modeling approaches used in heritage-related applications

Method Platform Features Application
GDL6 object
libraries

ArchiCAD with
GDL scripting

Parametric objects with
adjustable dimensions

Standard vault
families

System family
modeling

Edificius
Built-in tools to modify
curvature, thickness, materials

Fast modeling of
simple vaults

Manual family
with voids

Revit
Manual creation of void
geometries for vaulted forms

Custom complex
vaults

Visual
Programming
(VPL)

Dynamo,
Grasshopper +
Rhino.Inside

Algorithmic control using
parameters and logic rules

Irregular vaults,
adaptive geometry,
typological variation

Main Benefits:
Fully compatible with BIM standards (e.g., IFC, LOIN); High reusability and

flexibility; Supports Scan-to-BIM workflows with semantic enrichment.

This study focuses exclusively on the parametric approach, recognizing that
geometrical and parametric modeling follow fundamentally different logics, offer
distinct levels of reusability, and serve different purposes. Parametric modeling is
chosen specifically for its ability to support the reuse of modeling processes and the
reuse of geometry after typological or semantic analysis. Rather than integrating
different modeling logics, this approach prioritizes the consistency and adaptability
of a parameter-driven workflow that aligns with both analytical reconstruction and
BIM-oriented information management.
Based on the comparative analysis above, this study adopts a parametric modeling
strategy as its exclusive approach. The following sections detail how this strategy
was applied to selected architectural components from Palazzo Barolo.

6 “GDL(Geometric description language) is a parametric programming language,...GDL provides solutions for creating rules for
the object’s parameters and creating graphical UI for the elements. These objects are called library parts.” (Graphisoft, n.d.,
para. 1). Accessed August 22, 2025, from https://gdl.graphisoft.com/reference-guide/gdl-definition/

13

3.2 Modeling framework
The parametric modeling in this study is guided by three main objectives. First, the
models aim to remain faithful to the geometry of the original architecture. Second,
they are structured to allow parametric control, making them adaptable for reuse
and for handling typological variations. Third, whenever possible, semantic
information is embedded into the digital components. These goals follow the logic of
the Level of Information Need (LoIN) framework (ISO 7817-1:2024), which defines
how much detail and what kind of information should be included in the model,
depending on the documentation and analysis requirements, and "one purpose of
defining the level of information need is to prevent delivery of too much
information". (ISO 7817-1:2024, p.2)

Figure 3-1 Information need table for this study (reproduced from ISO 7817-1:2024, Table B.3)

To contextualize the modeling goals within a standardized information framework,
this study adopts the Level of Information Need (LoIN) structure proposed by ISO
7817-1:2024.
Table 3-2 translates this structure into the specific requirements of this project,
defining the expected purpose, object granularity, geometric detail, and
alphanumerical scope for the HBIM components modeled.
Although no formal shared parameters were implemented, a consistent naming
convention was employed to encode typological and procedural logic across families.
This lightweight strategy ensures a degree of semantic traceability, even in the
absence of embedded metadata.
This LoIN interpretation also clarifies the modeling boundaries adopted in this
study-focusing on external and structural geometry, excluding materials or

14

behavioral simulations, and emphasizing reuse and adaptability through parametric
control.

Table 3 Level of Information Need (LoIN) applied to
component-based parametric modeling in Palazzo Barolo

Category Content

Purpose(why) Reconstruction and semantic enrichment of classical architectural
components in HBIM

Delivery Stage(when) Post-survey modeling phase

Actors(who) Developed by author, Intend for:
Heritage scholars,
HBIM practitioners,
digital archiving professionals

Object(what) Vault/ Column/ Balustrade

Geometric
information(How)

Detail: Medium
Dimensionality: 3D
Location: Accurate
Apperance: Geometric appearance only; no texture or material
properties assigned(which could be in the further work)
Parametric behaviour: High.

Alphanumerical info No embedded parameters were used. However, family and type
names were encoded systematically to reflect typology, construction
logic, and model variants (e.g.,COL_ATR, VAU_LUN_H1).

Documentation Point cloud, orthophoto, historical references (treatises and archive
drawings)

In order to implement this strategy effectively, each architectural component is
evaluated according to its typological characteristics, geometric regularity, and level
of integration within the building system. These criteria inform both the selection of
modeling methods (e.g., nested families, void-based systems, adaptive components)
and the assignment of shared parameters.
The toolset used throughout this process primarily consists of Autodesk Revit,
enhanced by Dynamo for parametric generation and custom logic implementation.
In certain cases involving complex deformations or oblique geometries, Rhino and
Grasshopper are employed for their advanced modeling flexibility and geometry
transformations.

15

Figure 3-2 Workflow of parametric modeling in this study

The diagram above(Figure 3-2) illustrates the core modeling framework adopted in
this study, which combines segmented point cloud data with typological knowledge
and dimensional parameters to enable accurate and reusable parametric
reconstruction of heritage components. As mentioned in 1.7, the pointcloud and
digital acquisitions used in this project were provided within the ongoing research
project , directed by Roberta Spallone and Marco Vitali, with the collaboration of
Prof. Concepción López González.
The process begins with the segmentation of the point cloud model. A basic
segmentation, typically performed in software such as ReCap and CloudCompare,
divides the dataset according to architectural components-columns, vaults,
balustrades-and allows for dimensional extraction using CAD tools like Revit or
AutoCAD. These measurements serve as the basis for defining proportional
parameters, including heights, diameters, or curvature radii.
In parallel, a more advanced segmentation is conducted. This includes the
generation of orthophotos, extraction of contour lines or feather curves, and surface
reconstruction via tools such as CloudCompare or MeshLab. This layer of analysis
enables the classification of geometric typologies, referencing formal logic found in
historical construction treatises and architectural manuals.
The integration of these two sources-parameter control from basic measurements
and typological logic from advanced geometric interpretation-is further supported

16

by historical documentation, which informs idealized component structures and
semantic rules (e.g., column orders, vault classifications). By synthesizing these three
axes (Parameter + Typology + Historical Logic), the modeling process achieves both
geometric precision and semantic fidelity.
This multi-source strategy is then implemented using Revit, Dynamo, and Rhino,
each serving different functions depending on the component’s complexity. The
result is a consistent, component-based HBIM model that reflects not only the
surveyed geometry but also the historical rationale behind architectural forms.

Figure 3-3 Component-based modeling strategy: geometric interpretation and method evaluation

Based on the integrated framework described above, the modeling process proceeds
through two complementary stages. The first stage focuses on the geometric reading
and typological classification of each architectural component, using both digital
documentation (e.g., orthophotos and 3D slices) and historical references (e.g.,
treatises on proportions and vault construction). This phase ensures that each
element is understood not merely as geometry, but as a rule-based architectural
type.
The second stage involves a component-specific evaluation of modeling strategies,
testing and comparing different Revit and Dynamo-based methods according to each
element’s typological and geometrical complexity. This comparative approach allows
the selection of appropriate techniques for each family-whether nested
parameterization, geometry-driven voids, or adapted railing workflows-ensuring
both modeling accuracy and semantic traceability.
The following sections detail how these strategies were applied to three key
elements-columns, vaults, and balustrades-through parametric workflows developed
in Revit and Dynamo.

17

3.3 Column

3.3.1 Method Evaluation and logic of proportional strategy
In this study, the column modelling method adopts the strategy of
“Primary–Proportional Control Strategy”. A global parameter serves as a control
variable for all the dimensions and is consistently applied across nested families. This
strategy enables the structure assembly of the components and establishment of
dimensional linkages within a nested family system in BIM software.

This method differs from directly tracing section profile7 extracted from the point
cloud for modeling. The advantages of this method include the capacity to partially
reconstruct the construction logic and proportional system among column
components in historical architecture, while also re-usability of family files in future
projects.

The proportional system used in this study is mainly cased on the analysis and
construction rules described by “The classical Orders of Architecture”(Chitham,
2005). In that book, each order, such as Doric, Ionic, or Composite, has a relatively
stable set of proportions (Figure 3-4 left). For example there are standards for the
radio between the column height and the base diameter, the height ratios of the
base and plinth, and the proportions between the lines of the capital moldings.
These classical proportions have developed over history to form the basic logic of
column components, and they provide a measurable reference for parametric
modeling.

Figure 3-4 Main parts of the order, reproduced from Chitham (2005, p.209 left, p.57 right)

7 A 2D outline extracted from the point cloud, often representing a vertical or horizontal cut through the object

18

In the actual modeling process, this study refers to these historical standards and
selects the Base Diameter8 as the main control parameter for the entire column.
From this parameter, all the other dimensions of the base, shaft, capital, and the
associated molding lines are calculated. For example (see Figure 3-4 right), the
capital height is set as Base Diameter * 0.5, the shaft height as Base * 6, and the base
height as Base * 0.5, resulting in a total column height of Base * 7. All these
dimensions could be linked via Revit's formula system within the main family and
progressively associated in nested families.
The choice of the Base Diamater as the key global parameter follows both
tranditional theory and parctical experience in digital modeling. In the study of
classical orders, Chitham(2005, p. 23) explains that all proportions are set out as
decimal parts of the column’s base diamter. This rule makes the clculation process
more straight forward and ensures consistent scaling actoss didfferent components.
A similar logic is later applied in digital workflows. Aubin and Milburn(2013, p. 39),
for example, adopt the Base Diameter as the reference parameter in “Renaissance
Revit”, where it drives the proportional contral of the shaft, base, and capital inside
nested families.
Although the reference book provides a systematic model of classical column orders,
the columns in this case belong to a baroque-period historical building and do not
strictly follow classical standards. Therefore, during the early modeling stage, the
proportional parameter system needed to be adjusted using measurements from the
point cloud and orthophoto9 generated via the FARO As-Built plugin, which converts
point cloud data into geometrically corrected 2D projection images. Unless
otherwise specified, the term orthophoto in this thesis refers exclusively to this type
of architectural image. This made it possible to balance the “historical
standards”with the actual measurements of the building.

In contrast, the tracing section profile method(Figure 3-5) from the point cloud can
reproduce the current shape more directly, but it lacks structural logic, which cannot
be reused, and it is hard to control with unified parameter. This makes it unsuitable
for large-scale or systematic family construction.

8 Base Diameter: the column diameter at it base. In this project, it is used as a global parameter to govern the nested families
in correct proportion.
9 Orthophoto refers here to a 2D projection image extracted from point cloud data using FARO As-Built. This term will be used
consistently throughout the thesis to indicate such projection views, unless otherwise specified.

19

Figure 3-5 Tracing section profile from column in project

Therefore, the Primary–Proportional Control Strategy is preferred in this study, as a
comprehensive strategy to achieve both geometric restoration, construction logic,
and family system management.

At the beginning of the project, an attempt was also made to build the columns by
tracing directly from orthophotos or point cloud sections, in order to quickly get the
shape and height information. However, this method showed limitations clearly in
practice, especially when dealing with local deformations and errors that are
extrumely common in historical buildings as mentioned before. For example, due to
ground settlement, structural loads, or later construction changes, columns of the
same type might have a height difference in actual measurements. Eventhough,
during the modeling stage, the reference level couldn’t be change or even slightly
adjusted, which made correction more difficult.

If the whole column shape is generated by direct tracing, it is very difficult to adjust
the reference planes or unify the proportional logic later. This can easily lead to
misalignment between parts or confusion in the structural logic. In contrast, the
proportion-based modeling method allows the whole column to be divided into
several sub-elements and controlled by a unified global parameter.

Even if there is a need to change the height of some parts, it can be corrected
consistently by changing local parameter formulas or moving the reference plane.
This makes the system more flexible and adaptive. Therefore, although direct tracing
can quickly create a basic mass at the beginning, its limitations do not meet the
needs for later fine control and batch copying.

20

It should be noted that the proportion-based modeling strategy is mainly applied to
column parts with higher geometric regularity and more unified types, such as the
base, shaft, and the capital. Within the scope of this study, the more complex
decorative components, such as floral ornaments or carved patterns on the capital,
were not rebuilt using proportional methods. These decorative parts usually show
strong individual differences and handmade features, which make them more
suitable for reconstruction through mesh or direct modeling. Although it is possible
to build these elements as parametric families In Revit, this study doesn't focus on
them because of their complexity.

Table 3-4 Comparison between
Primary-Proportional Control Strategy and Direct Tracing Method for Column Modeling

Criteria Primary–Proportional Control Strategy Direct Tracing from Section Profile

Modeling logic
Based on predefined proportions linked
to a global control parameter (Base
Diameter)

Based on tracing 2D profiles from
orthophotos or point cloud slices

Control system
Formula-driven dimensional control via
nested families and global parameters

Manual shape tracing without
consistent parameterization

Geometric
consistency

High: components scale proportionally
and stay aligned

Low: prone to misalignment due
to manual segmentation or
irregular shapes

Flexibility and
adaptability

High: local parts can be adjusted without
breaking the global logic

Low: hard to modify once
geometry is fixed

Re-usability
High: parametric families can be reused
in other projects

Low: model is case-specific and
hard to generalize

Suitability for
historical
deformation

Allows correction through proportional
adjustments and reference plane shifting

Sensitive to irregularities and
deformation in scan data

Application scope
Ideal for components with repetitive
geometry (e.g., base, shaft, capital)

Better for unique or highly
ornamental features

Efficiency in batch
modeling

Supports systematic family creation and
control

Manual and time-consuming for
large-scale components

Limitations
Less effective for free-form, highly
detailed ornament

Lacks construction logic; poor
scalability

Software support
Requires careful formula setup and
family management in BIM software

Simpler in geometry tools, but less
robust in BIM

A comparative summary of the two modeling methods is presented in Table 3-4. As
shown, the Primary--Proportional Control Strategy offers greater consistency,
flexibility, and re-usability for systematic reconstruction, while the Direct Tracing

21

method may be useful for certain decorative exceptions but is generally unsuitable
for structured parametric workflows.

3.3.2 Proportional Logic and Nested Family Strategy for Columns
In this study, the column modeling strategy refers to the classical principles
summarized by Chitham (2005), with a clear separation of the base, shaft, and
capital and pedestal parts. These elements are organized using a nested family
structure inside the Revit system family of columns. The overall proportions of the
column are guided by classical standards, which provide reliable rules for the height
and width relationships among the three main elements. These references help
maintain architectural consistency and create a measurable, parametric framework
in the BIM environment. This approach also supports better visualization and easier
editing, because each part of the column can be managed separately but still stays
connected to the main parameter.
In Revit, the shaft is usually placed with its elevation controlled by an offset from the
base reference level. The base and capital are then linked to the shaft through
nested families, sharing the same main control parameter, for example the base
diameter. All size changes are passed through Revit's formula system, so the nested
elements can stay consistent. This nested strategy makes it possible to adapt the
column to different floor heights, levels, or structural changes without rebuilding the
entire model.
Figure 3-6 redrawn from Chitham (2005) can be included here to show the typical
proportion logic and construction of classical columns, and to illustrate how these
parts are associated in the nested family system. These images help to explain which
parameters are connected, and how the reference planes support the vertical
stacking of the elements. In addition, the figures can make clear which geometric
references and constraints are needed to align the base, shaft, and capital correctly
in 3D space. As a result, this method provides a practical solution to combine
traditional proportional rules with flexible parametric modeling in Revit.

22

Figure 3-6 Schema of the column, redrawn and reproduced from Renaissance Revit (Aubin & Milburn,
2013, Figure 3.25), modified to reflect the parameter structure used in this study.

3.3.3 Parameters Transformation in Nested family
In this study, the complete modeling process proposed in the book "Renaissance
Revit (2013)" was adopted for the column modeling. This method, as a parametric
tutorial for modeling classical architectural columns, provides clear structural
decomposition, proportion control, nested family organization, and parameter
management strategies. It was fully absorbed and applied in the reconstruction of
the columns of Palazzo Barolo.

Figure 3-7 Family structure tree diagram (Column main family nested Capital/Shaft/Base/Pedestal)

Within this method framework, the columns are decomposed into four logical
components: Capital, Shaft, Base, and Pedestal, and each is built as an independent
Generic Model family. These families are then nested to form the main family. The
core logic is to select Base Diameter as the unified control parameter, thereby
deriving the total height of the column and the dimensions of each sub-component
at a fixed ratio. This choice is not only because Base Diameter is the "modular unit"
in column construction, but also because in Revit, the total height of the column is
controlled by Base Level and Top Level, so the elevation is determined by the system
parameters, while the diameter can serve as a stable core for the construction ratio.

To transfer parameters between the host family and nested components, this study
uses the Associate Family Parameter10 function in Revit. This operation allows a
parameter -- such as the Base Diameter -- defined in the parent family to be bound
to corresponding parameters in nested sub-families. Without this association, nested
elements retain default dimensions and do not scale with the host, breaking the
parametric logic, even the modeler has already input the formula among the needed
parameters. Otherwise, if a certain component is not bound, it will remain in its
original size after loading and cannot automatically scale with the parameters,
resulting in incorrect proportions, geometric misalignment, and even errors in the
system when the project is loaded(see Figure 3-8).

10 “In Revit, the Associate Family Parameter function allows parameters in a host family to be linked with those of nested
families, so that type or instance values can be controlled from the project environment. Parameters must be of the same type
to be associated (Autodesk, 2022).”

23

Figure 3-8 Situation without associated parameter(capital)

To ensure the consistency of parameter logic, this study further formulated the
following nested management principles in the actual modeling process:

All nested families uniformly adopt Base Diameter as the key parameter name to
avoid name conflicts;

Each nested family is verified for parameter binding in its type parameter panel
after being completed;

Multiple types are set in the main family for testing to ensure consistent
deformation responses of nested components;

For nested components that need to be enabled/disabled (such as column bases
or carvings), type condition formulas are used for visibility control.

Although this method is highly structured, due to the fact that Revit itself does not
support the automatic recursive transmission of parameters, the entire process still
requires modelers to perform step-by-step manual operations and be supplemented
by logical checks. The completeness of nested family management directly affects
the stability, controllability, and later scalability of the modeling.

3.3.4 Proportional Control in Component Detail Modeling
In the construction of column families, detailed parts such as the base and capital
usually contain many curved moldings and complex profiles. The modeling accuracy
of these details directly affects the visual quality and structural expression of the
whole column. To achieve parametric control of these detailed elements, this study
uses a combined strategy of unified proportion rules and external supporting
references.

24

For proportion control, the dimensions of all detailed components are based on the
“Base Diameter” as a key parameter. Each size is calculated as a multiplier coefficient,
and expressed through formulas in the nested families, in order to guarantee
consistent proportion relationships among components, and improves the
re-usability and scalability of the families. This was particularly relevant for historic
buildings, where many pieces appear similar but still show small variations.
Revit’s Profile families are restricted to 2D work planes and cannot verify vertical
section geometry. Because of this, it was often hard to check the correctness of
complex profiles directly in the modeling environment. To address the issue, this
study used external references, including orthographic views created with the Faro
AsBuilt plugin and section outlines measured in AutoCAD. These drawings were
brought into the family editor and applied as sketch guides, which helped to improve
the accuracy of the modeled profiles.
Although this workflow can achieve a high-fidelity digital reconstruction, the
modeling process still relies on manual calculations, parameter management, and
collaboration between multiple tools. It is a high-cost, high-precision modeling
pathts with complete information that require precise representation. As mentioned,
this modeling process remains highly labor-intensive. As demonstrated in Brumana's
HBIM case study of the Basilica di Collemaggio (2018), the development of
high-fidelity parametric models without generative tools required over 600 hours of
expert BIM modeling, in addition to 200 hours of preparatory procedures and the
assistance of students over 120 working days. Even with improved workflows, later
iterations still involved 300+120 hours of professional input. These figures support
the assertion that high-precision digital reconstruction is a high-cost modeling path,
particularly when applied to historic components with complete geometric
information.

3.4 Vault

3.4.1 Analysis of architectural geometric forms
The formal classification of vaulted structures in historical architecture has long been
an essential part of architectural education and construction practice. One of the
most influential 19th-century pedagogical treatises in Italy, L'arte di Fabbricare by
Giovanni Curioni (1868), systematized a vocabulary of vault types such as volta a
botte (barrel vault), volta a padiglione (pavilion vault), volta a vela (sail vault), volta a
crociera (groin vault), and volta a conca (basin or cloister vault)(see Figure 3-9).
These typologies were not only geometrical distinctions but were directly linked to
masonry techniques, load-bearing behavior, and proportional reasoning in
architectural construction.

25

Figure 3-9 Geometrical principles for vault construction, reproduced from Giovanni Curioni, L’arte di
Fabbricare (Torino: Negro, 1868), Tav. XII–XIII.

Diagrams include pavilion, sail, and groin vaults based on descriptive geometry.

Building on this tradition, recent research has explored ways to translate classical
vault forms into digital frameworks. A key example is the doctoral thesis of F.
Natta(2024), which applied VPL-to-HBIM (Visual Programming Language to Historic
Building Information Modeling) methods to organise these forms into a systematic
digital structure. As shown in Figure 3-10, both simple and composite vault
typologies are summarised in a readable way, serving as a digital interpretation of
historic geometric logic, which was adapted for contemporary parametric modeling
workflows.
These combined typological references provide the theoretical foundation for the
vault modeling strategy in this study. The specific vaults in Palazzo Barolo may not
strictly conform to textbook typologies, but they could be understood as
combinations or geometric variants of these standard forms. This modeling approach
relies on the principles of classical vault logic. It is then adapted to address the
irregular conditions and structural differences typical of heritage reconstruction.

26

Figure 3-10 Typologies of simple and composite vaults digitally reconstructed through a VPL-to-HBIM
pipeline. Reproduced from F. Natta, PhD Thesis, Politecnico di Torino, 2024

This typological framework forms the conceptual foundation of the vault modeling
methodology developed in this research. While the vaults of Palazzo Barolo do not
replicate these types identically, their geometry can be interpreted as variants or
hybridizations of these canonical forms. The detailed classification and
project-specific adaptation are discussed in Chapter 4.2.

3.4.2 Method Evaluation: Void Family vs. DirectShape
During the modeling of this project, to achieve the complex geometry of the vault
and the requirement for parametric control, a comparative evaluation of two typical
Revit-based modeling approaches is in the following part: Hosted void families11 and
DirectShape12. There are significant differences between these two methods in
terms of modeling workflow, parametric control, re-usability, host interaction,
geometric complexity, BIM data integration, performance and visual output. 错误！

未定义书签。 presents a detailed comparison to prove the selected optimal
solution.

As an initial trying, the vault geometry was modeled using the node
(FamilyType.ByGeometry13) in Dynamo to create parametric solid families. However,
due to the large number of separated and not-continuous elements, it was
extremely difficult to combine them in to a unified solid. Boolean operations14 - such

11 Hosted family is a family in Revit that must be placed on or within another system element(eg.,wall, floor, face).
12 “This element type can store arbitrary geometry obtained from import operations or calculation in either a project or family
document. “ Autodesk(2018).DirectShape. Revit API Developer Guide.
DirectShape is a static geometry element in Revit, often used to represent complex forms imported via Dynamo or API scripts.
It does not support native parameters or host interactions, making it unsuitable for parametric control.
13 FamilyType.ByGeometry is a node in Dynamo for Revit that enables the creation of a loadable Revit family (.rfa) directly from
a solid geometry. The node requires a geometry input and a specified family template path. It is often used to automate family
generation for complex shapes, but the resulting geometry is static and cannot be parameterized or hosted.
14 Boolean operation refers to a geometric operation in 3D modeling that combines or modifies solid forms through union
(addition), subtraction (cutting), or intersection (overlap). In Revit and Dynamo, Boolean functions are used to create complex
volumes or to generate void forms that interact with host geometry.

27

as union, subtraction, or intersection of solids - often failed and the resulting solids
could not be easily reused or controlled. As a result, this approach was abandoned in
favor of using DirectShape. Multiple solids were imported in batches and grouped
automatically by node inside the Revit project environment as an integrated
geometry to simplify management, also without any need of positioning.

The vault geometry was initially constructed by generating surfaces and applying a
Thicken operation to convert them to solid forms. But due to the non-continuous
and segmented nature of these surface, the resulting solid could not be unified
through Boolean operations in Revit, the same problem as FamilyType.ByGeometry.

While DirectShape is effective for representing highly complex or free-form
geometry, particularly through Dynamo or the Revit API15, it has several critical
limitations. It cannot be nested into families, doesn't support for type or instance
parameters, and has no interactive relationship with system families such as floors or
walls. Further more when the geometry is dense or finely detailed, DirectShape
often produces triangulated mesh surfaces, leading to visible faceted edges in 3d
Views and 2d documentation, which reduces both clarity and aesthetic quality.

In contrast, void families, particularly those suing floor-hosted templates or created
via node(FamilyType.VoidByGeometry) in Dynamo, offer robust parametric control,
alignment constraints, and direct host interaction. Although void elements do not
carry their own materials, they visually inherit the materials of the host elements
they cut, such as floors. These families can be reused, nested, and fully integrated in
to Revit's family system.

Based on these evaluations, the void family approach was ultimately selected as the
main method of modeling. This method provides a more stable, controllable, and
BIM-compliant workflow for vault reconstruction. It balanced the need for geometric
flexibility with the requirments of precision, performance, and documentation
integrity.

15 Revit API (Application Programming Interface) is the official programming interface provided by Autodesk for automating,
extending, or customizing Revit functionalities. It allows developers to access Revit's geometry engine, parameters, families,
and modeling logic through .NET-based languages (such as C# or Python). Many Dynamo nodes operate by invoking underlying
API methods.

Table 3-5 Comparison between hosted void family, and DirectShape

Aspect Void family (Hosted) DirectShape (Solid)

Modeling
Method

Created in family editor using void
forms and host interaction/or use
FamilyType.VoidbyGeometry with
hosted family template, adjust the

Imported into the project via dynamo or
API as static geometry.

28

3.4.3 Hosted Family Types for Void Forms.
After void families were chosen as the main modeling solution, the next task was to
decide which hosted type could work best. This decision was influenced by multiple
constraints: the vault geometry was reconstructed based on orthophotos, and it
needed to be placed in relation to existing walls and floors that is already modeled in
the project environment. For this reason, precisious positioning was important. It
was not derived directly from point cloud coordinates, but from a framework
established in the BIM context.

Two Revit family types were evaluated (Table 3-6): face-based and floor-based
templates. Not-host family was excluded in this comparison completely, because the
voids which was created in Revit can't cut the system family elements, such as floors
or walls, which have already loaded and posited in the project.
Face-based families can be attached to almost any planar surface in the model,
which makes them very flexible, but it also means a big cost: they are not so stable
while attached on the host family. A known issue by the platform of users, is that the
instance in the project environment rotates by twice the intended angle during
placement or copy-rotate operations. As noted by Revit users: “When I rotate an
item in Revit using the rotate command and I want to make a copy, the new instance
of the item appears 2x the angle that I entered.”(Autodesk Community Forum, 2019)

16 The void's material appearance is derived from the host element it cuts, such as a floor or wall.

host-cut by manual

Parametric
control

Fully supports Revit parameters,
constrains, and formulas, highly
flexible

Static geometry, no native parameter
support

Re-usability Can be saved as family in void cut,
reused, and nested.

Complex shapes require multiple solids
and separate assembly, could be created
by grouped

Host interaction Can cut system elements (e.g.,floors) No interaction with hosts

Geometric
complexity

Moderate flexibility within family
environment

Very high; Supports complex or free-form
shapes

BIM data
support

Supports materials16 and
type/instance parameters

Limited metadata; geometry only

Performance for
hardware

Lightweight; efficient even with
multiple instances

Heavy geometry may degrade
performance, especially with multiple
shapes

Visual quality
/ 2D Output

Clean geometry, smooth surfaces, no
triangle edges

Visible triangle edges in views and
documents

Recommended
for Vault

Yes. Precise, parametric, and stable No, Can't be controlled when the
geometry is combined with multiple solid
and can't be in a family

29

This behavior leads to misalignment and makes precise placement almost
impossible.
Furthermore, face-based void families must be carefully modeled in the correct
orientation before insertion, and the base of the void must be aligned with the face
host after rotation. During placement, the user must select the floor surface from
bottom to top, following a reversed modeling logic. Such complexity often results in
angular errors, flipped geometry, or even host loss. Due to these constraints,
face-based families are unsuitable for vault modeling where accuracy and reliability
of host interaction are essential.

Instead, floor-based family shows more stability and reliability. Although floor based
families cannot be rotated around the vertical axis(Z-axis), once the element was
placed in the project environment, the limitation contributes its reality. As every
element was created in their own orientation, it is better not to rotate them in the
project, avoiding to make misalignment. This constraint also simplifies the loading
process, because each instance would maintain the same spatial relationship with
the host, avoiding the rotation bug which is found in face-based families
The only things to do is to align the void base to the floor reference plane(base), and
make the family horizontal center inside the void projection on the horizontal plane.
So it is better to predefined the thickness of host in the family as it is same as the
corresponding floor. In this project, it is also convenient to be consistent with wall,
floor, and other components, without any reverse transformation.

In terms of family management, the floor-based approaches require creating
separate families for each unique lunette, as the fixed orientation is already modeled
before loaded. But, if the rotation behavior and the host worked correctly, the same
geometric logic could be represented using a single family with different types or
instance parameters.

And for position of the quadrilateral bottom edges of some irregular-shaped vault,
the adaptive family is used as the container of four reference point, which arrange
the named reference point in the project environment as a group, to mark the
springing line and zone of bottom. But these adaptive components is only used for
the position, which don't contains a real void form. Due to the limited of system in
Revit, void form created inside the adaptive family can't interact with system family.
Therefore, the most important logic of modeling “cut host by void” doesn't make
sense.

The final void geometry is firstly created as a solid, based on the reference point in
the project. Then it is converted to void form by node
(FamilyType.VoidByGeometry17), with the floor-based family template. Finally, adjust
the thickness of the host in the family environment, and align the base to the

17 Same as FamilyType.ByGeometry, but it creates void geometry forms in families, used specifically for cutting host elements
such as walls or floors.

30

reference level, and make sure the origin of the family is in the horizontal zone of the
void form.

Table 3-6 Void family performs in floor-based and face-based family

Floor-based Face-based

Cut system family? Yes Yes

Alignment and Stability The same angle as it was
created, always hosted on
the floor

Not accuracy along to the edges,once the
face is cut by other geometry, it might
lost host.

Rotation behavior No rotation along Z axis, but
fixted orientation avoids
misalignment

Bug: input rotation angle is
doubled(e.g.,30° becomes 60°).

Amount of Family
types (in this project)

One lunette per family,
fixed orientation

Reusable via types or instance
parameters, if orientation works correctly

Modeling Workflow Simple: place and align Complex: requires pro-rotation in family,
reverse insertion logic in project.

Suitability for vault
reconstruction

Perferred: stable,
repeatable, easier
alignment for vaults cutouts

Not recommended due to instability and
rotation error

All geometry reconstructions presented in this study are focus on external surface
data captured by Point Cloud. Internal structural layers and materials are not
available. and remain subject to interpretative uncertainly.

3.5 Railing

3.5.1 Normal railing system in standard component and in historical
building
In the Revit railing system, three primary family types work together to satisfy
structural expression, repeatability, and parametric management requirements:

Baluster Family
This represents the typical repetitive vertical elements of the railing, usually small
posts placed at fixed intervals according to the railing system's distribution rules.
These balusters primarily serve protective and structural functions, and are
automatically arrayed through parameters such as spacing and distribution mode
defined within the railing type.

Baluster Post Family
Used at the start, end, or turning points of a railing, the baluster post provides
enhanced support. These posts are typically larger and structurally stronger than
regular balusters, and their positions are automatically identified by the railing

31

system at corners or endpoints, allowing different post family types to be inserted in
combination with balusters.

Baluster Panel Family
This family is applied between balusters as an infill element, such as glass panels or
metal grilles, serving both protective and aesthetic functions. It can be specified
within the railing panel settings, with parametric definitions for height, thickness,
and materials, supporting flexible appearance customization.
These three families are combined within a Revit railing type and managed together,
so that the repeating vertical elements, strengthening nodes, and intermediate
panels can work in a coordinated and systematic manner while remaining
independently replaceable or adjustable.

In historical buildings, the balusters (vertical posts) also display a wide variety of
shapes and styles. The examples shown in Figure 3-11 summarize the typical shapes
of different historical periods, including single-chamber, double-chamber,
square-column, and complex-decorated styles, among others. These styles often
changed with regional styles and classical preferences, but the basic logic didn’t
change. In the most cases the balusters were arranged in repetition, their sections
keeps slender for protection, and the proportions adjusted in a way that created
smooth transition (Donghi, 1935). Such historical reference also support the
definition of standard baluster families in Revit, allowing modern digital modeling to
follow the idea of grouped arrangement and modular generation.

Figure 3-11 Variations of baluster forms historically used in Italian architecture,
adapted from Donghi (1935, p.194).

3.5.2 Treatment of Special-Geometry Inclined Balusters
In this study, the staircase railing system requires a set of inclined balusters (oblique
balusters) arranged according to the same repetitive logic as standard baluster
families, yet with a geometry distinct from conventional vertical or rotationally
symmetric members. As illustrated in Figure 3-12, historical balusters generally
maintained a continuous symmetrical profile generated through revolved solids,
while their upper and lower connections were adapted to the slope of the stair
through trimming operations. This results in a spatial configuration where the

32

baluster appears sheared or inclined as a whole. Such geometries cannot be fully
achieved using standard Revolve or Sweep commands in Revit, and are therefore
classified as non-standard baluster components.

Figure 3-12 Examples of common baluster profiles in historical architecture,
and their profile-end trimming when adapted to an inclined staircase.

Left: adapted from Chambers (1968, p. 102); right: adapted from Donghi (1935, p. 194).

But these oblique balusters still need to be placed in a repetitive sequence and
aligned with the stair treads, it doen’t matter whether the treads are flatten or
sloped. The Revit railing system would assume vertical arrangement of baluster
elements, and the family editor does not support custom rotation or shear of
revolved geometry. This makes the direct generation of oblique elements in Revit
particularly challenging.

Therefore, this research categorizes them as a form of "special geometry" and
explores three alternative solutions for modeling and BIM integration:

1.Contour slicing and lofting in Dynamo, where the standard horizontal baluster
is sliced into uniform-height contours and reconstructed into an inclined solid
through loft operations;

2.Shear transformation in Rhino/Grasshopper, where the standard horizontal
geometry is generated and then globally transformed using a shear node to precisely
match the stair slope;

3.Void-based sweep or extrusion within Revit, creating a cutting volume to
manually trim a standard baluster, approximating the inclined shape.

The choice among these methods depends on requirements for geometric accuracy,
ease of editing, and long-term maintenance. Compared to conventional balusters,
the geometry of oblique(sheared) balusters require additional steps for transferring
of geometric formats among different software programs, which means involved
more cross-platform modeling workflows, intermediate formats (such as SAT18), or

18 SAT (Standard ACIS Text) is a file format based on the ACIS geometric modeling kernel, supporting the exchange of NURBS or
B-rep solids between CAD/BIM platforms.

33

manual adjustments, in order to achieve alignment with the slope and preserve
historical authenticity.

It is also worth noting that while Revit supports importing SAT geometry to integrate
complex freeform solids, these imported elements generally behave as static
geometry without native parametric controls, which limits their adaptability and
connection to the railing system's family parameters. Among available exchange
formats, SAT is preferable because it preserves NURBS(Non-Uniform Rational
B-Splines)-based solid geometry, whereas formats such as OBJ19 or STL20 are
triangulated meshes that not only lose volumetric consistency but also introduce
unnecessary triangulation edges in Revit's views, compromising the visual clarity and
reducing the overall readability of the model.

The specific implementation steps and comparative evaluation of these three
solutions are discussed in detail in Section 5.4.3.

19 OBJ is a widely used polygon mesh exchange format, originally developed for 3D graphics, which represents geometry as a
collection of planar faces (usually triangles).
20 STL (Stereolithography) is a mesh-based file format commonly used in rapid prototyping and 3D printing workflows, storing
only tessellated triangular surfaces without solid or parametric data.

34

4. Implement and Result
4.1 Column

4.1.1 Two types Column in Atrium and Staircase

During the parametric stage, this study first classified the columns based on their
spatial distribution in the architectural plan. Two categories were defined: Atrium
Columns(COL_ATR) and Staircase Columns(COL_STA) (see Figure 4-1). These two
types differ from their spatial position, and besides their porportion. As the atrium
columns played a tructural role, and the ones which is in staircase were more
decorative and thin to provide good sense of higher spatial atmosphere.
To facilitate logical segmentation and proportional control in the subsequent Revit
family construction, a basic decomposition of each column was carried out based on
the point cloud data, identifying the boundaries of the capital, shaft, base, and,
where applicable, the pedestal, as illustrated in Figure 4-2. This segmentation was
based on height ranges and approximate geometric boundaries, rather than fine

Figure 4-1 Two types of column in atrium and staircase

Column Atrium

(COL_ATR)

Column Staircase

(COL_STA)

35

decorative details, providing a reference framework for proportional
parameterization.
Table 4-1 summarizes the core proportional parameters for the two column types:
both adopt a total height of approximately Base Diameter × 8, but differ in the
distribution of capital and shaft heights. The COL_ATR features a relatively shorter
capital and a taller shaft to emphasize the continuity of the arcade, while the
COL_STA has a more prominent capital and a slightly shorter shaft to enhance the
visual focus and structural presence of the staircase area. In addition, the pedestal
height is subject to project-specific adjustments.
Through this segmentation and proportional analysis, the subsequent nested family
components can be developed based on a unified master parameter (Base Diameter),
while still preserving the distribution characteristics of historical construction. This
approach supports a flexible yet historically accurate digital reconstruction workflow.

Figure 4-2 Segmented Column of Pointcloud in Atrium and in Staircase(type)

Table 4-1 segmented element in column (Pointcloud)

COL_ATR COL_STA

Capital

Shaft

36

Final Modeling Outcome

Figure 4-3 distribution of columns within the project

After completing the parametric segmentation of columns, designing the profiles,
and organizing the family files, these components were loaded into the Revit project
for testing and placement. Figure 4-3illustrates the overall distribution of columns
within the project, where both atrium and COL_STA are controlled by their
respective parametric families and aligned precisely with the slab and wall nodes.
Using the master parameter Base Diameter and instance parameters such as Shaft

Base

Pedestal

Note Column= Base Diameter*8
Capital : Shaft : Base = 0.6 : 6.9 : 0.5
Pedestal(depends in project)

Column= Base Diameter*8
Capital : Shaft : Base = 0.8 : 6.7 : 0.5
Pedestal(depends in project)

37

Elevation, the columns can be flexibly adjusted across different levels and elevation
conditions. The connection with the structural system confirms the feasibility of the
family logic within the project coordinate system, ensuring portability and reuse.
However, due to the resolution limitations of the point cloud in capturing fine
sculptural details, the more intricate ornaments of the capitals were not fully
recreated within the parametric family and are instead reserved for mesh models or
later complementary modeling. Future research could explore using Dynamo or
other automation scripts to further integrate the segmentation and parameter
transfer of these complex details.
When the column family is loaded into the project environment, its instance
properties, as shown in the left of Figure 4-4, include constraints for Base Level, Top
Level, and their respective offsets. Therefore, it is only necessary to set the correct
reference levels in the project. Meanwhile, the offset values can be fine-tuned if
needed - for example, the pedestal height can be ajusted to match floor slopes or
local elevation differences.
Because all elements in the family are consistently governed by the global Base
Diameter parameter, even when the level is changed, the proportional logic is
preserved, preventing any geometric distortion or constraint conflicts. The
illustration demonstrates the correct behavior of the columns placed on different
levels within the project, confirming that the combination of system reference levels
and parametric controls ensures robust digital reconstruction(see the right of Figure
4-4).

Figure 4-4 System column families under different height-level constraints in the project.
(Correct representation of constraints)

38

4.1.2 Modeling for column system

Logic in column system family
The implementation of the parametric column family requires addressing the
limitation that Revit's system column family only provides two reference
levels-namely Base Level and Top Level. However, historical columns in this project
are subdivided into at least three or four parts, including the base, shaft, capital, and
in some cases a pedestal. To ensure proper vertical segmentation and maintain
correct positioning of the shaft, an additional intermediate parameter named Shaft
Elevation was introduced within the column family. This parameter was configured
as an instance parameter and defined by the following formula: Shaft Elevation =
Base Diameter * 0.5 (equals to Base height)
As illustrated in Figure 4-5, this parameter ensures that the shaft segment can be
flexibly adjusted on a per-instance basis while maintaining a consistent proportional
relationship to the base diameter. This design improves adaptability when minor
vertical deviations are encountered on-site.
Figure 4-6 shows how family parameters were created in the column family to
handle these additional controls, establishing a clear linkage between the measured
proportions of the historical columns and the parametric framework within Revit.

Figure 4-5 The two preset reference levels and the added measured family parameter (column height)

39

Figure 4-6 Create family parameters in column family

In terms of constraining the other sub-components, namely the base, capital, and
pedestal, these were aligned and locked to the two existing reference levels
provided by the system family, without requiring additional parameters. As shown in
Figure 4-7 and Figure 4-8, these elements could be stably positioned simply by
aligning their reference planes to the system's Base Level and Top Level constraints,
then applying lock constraints to fix them in place.

Figure 4-7 Parameter mapping between instance-level constraints and family level associations in revit

40

Figure 4-8 Constraints for Base, Capital, and Pedestal
(aligned to Lower Ref. Level, Upper Ref. Level, and Lower Ref. Level respectively)

For each nested family loaded into the column family (e.g., the nested shaft, base, or
capital families), it was necessary to open its type properties and link its pre-defined
“Base Diameter” parameter to the one defined in main column family. As shown in
Figure 4-9, this link guarantees that any changes made at the main family level is
passed down automatically to each nested component. Otherwise, without this step,
nested families would retain their default dimensions and fail to scale with the
column as expected(see Chapter 3, Figure 3-8).

41

Figure 4-9 Associated Base Diameter Type Properties
(Base diameter parameter in family type already created with formula)

42

Logic in Nested family

Figure 4-10 Classical moulding profiles extracted from Donghi (1935, p. 154).

Before discussing the nested family approach, it is worth briefly recalling the role of
architectural ornament, particularly moldings, which represent one of the most
widespread categories of architectural decoration. As described by Donghi (1935),
classical moldings were standardized profiles used to articulate architectural orders
and to define transitions between structural parts, from base to cornice. These
profiles, while seemingly simple, exhibit a parametric logic of curvature, fillets, and
projections, designed to generate consistent yet flexible decorative elements across
different scales of architecture (Donghi, 1935).
This traditional logic of composing standard profiles resonates strongly with the
Revit concept of nested families, where a simple repeated geometry can be
parameterized and recombined to form more complex architectural systems. In this

43

sense, the nested family strategy adopted in this study can be seen as a digital
reinterpretation of the compositional rules historically applied to classical mouldings
and similar decorative elements.

Figure 4-11 pointcloud data in dxf and modeling

Figure 4-12 Section of Base

For this component's parametric control, it is necessary to calculate the proportional
relationships between each vertical (Y-direction) element and the Base Diameter.
Since the total base height is predefined, it can be conveniently subdivided into
simpler fractional proportions (for example, 0.09 + 0.125 + 0.125 + 0.16) relative to
the overall 0.5 * Base Diameter height. This approach supports consistent
management of parameters in the family and simplifies the proportional
calculations.
In the reconstructed base of this study, the composition from bottom to top includes
the plinth, a lower torus molding, a scotia (with fillet), and an upper torus. This
layered sequence is characteristic of classical architecture: the plinth provides the
raised platform and horizontal reference, while the lower and upper torus elements
help visually anchor and consolidate the base. The scotia in between, with its
concave curvature, introduces shadow contrast and enhances the sense of rhythm
and proportional harmony.

44

Therefore, in the modeling process, it is only necessary to create the following
components:

1.a plinth modeled as an extrusion, with constraints for its height and its plan
dimensions, and with its bottom center aligned to the family's central reference
point;

2.a cylindrical extrusion whose height is defined by subtracting the plinth's
height, and which is placed on top of the plinth to serve as the reference for
retrieving profile edges during the sweep operation.

3.On the perimeter of this cylindrical base, the following moldings can be
positioned(see Figure 4-13):

(1)a torus at the top;
(2)a scotia in the middle;
(3)another torus at the lower part.

Among these, the top and lower torus moldings can be created as the same type
with variable instance parameters for vertical positioning or scale, in order to
improve modeling efficiency and reduce the redundancy of family definitions.

Figure 4-13 Nested Profile families in Column Base family

Figure 4-14 Parameters in Torus Profile family

Figure 4-14 shows a parametric profile family for a molding that can switch between
elliptical and circular shapes. The dimensions are linked proportionally to the Base

45

Diameter, with multiplier parameters such as X Mult, Y Mult, and Projection Mult. A
boolean parameter named Elliptical allows switching of the profile geometry.
Formula-driven constraints keep the width, height, and projection in proportion,
which allows the same family to scale consistently within various details.

Figure 4-15 Parameters in Scotia Profile family

Figure 4-15 shows a flex-profile family used to control the geometry of column base
or capital moldings in a parametric way. In the “Family Types” panel on the left, the
profile's dimensions are driven by the global parameter “Base Diameter”, with
additional multipliers (e.g., X/Y Mult, Projection Mult) to automatically adjust its
geometry. The main parameters are summaried as following(see Table 4-2):

Table 4-2 Short description of parameters in Scotia Profile family

Parameter Description

Ellipse X / Ellipse Y Semi-major and semi-minor axes of the elliptical portion of the profile

Projection Horizontal projection distance

R1 / R2 Corner radii to ensure smooth transitions in the curve

Y1 / Y2 Vertical positioning of the profile’s midpoint or split, enabling symmetry

Top Y Mult
/ Bottom Y Mult

Proportions of the top and bottom the profile height, supporting shape
variety

The sketch on the right of Figure 4-15 identifies projection, radii, and elliptical
dimensions relative to the reference planes. This configuration allows the profile to
be scaled to various column diameters and molding shapes. At the same time, it
reduces the effort needed to maintain multiple separate family files. When all profile
is done, load all of them into column base family and open the type property to link
the base diameter to guarantee the global parameter transforming correctly.
Once all the profiles have been completed, they should be loaded into the column
base family. Within the type properties, it is necessary to associate their local Base
Diameter parameters with the global Base Diameter of the parent family to ensure
that the master parameter propagates correctly across all nested profiles.
Following the same logic as in the previous section, family parameters were created
within this profile family (for example, the vertical offset of the profile, see Figure

46

4-16), and then associated to instance parameters. This approach ensures that the
nested profile components can be flexibly positioned while maintaining consistency
with the overall column geometry. And also association of base diameter is
needed(in type properties, see Figure 4-17).

Figure 4-16 Associated Vertical Profile offset to Upper Torus Y

47

Figure 4-17 Associated Base Diameter in Type Properties

4.2 Vault system

4.2.1 Final Modeling Outcomes and Comparative Assessment

Figure 4-18 Vault position in Reflected Ceiling Plan

Honor Room
Not in research

Vault Staircase
(VAU_STA)

Vault Intermediate
(VAU_INT)

Vault Atrium
(VAU_ATR)

48

Figure 4-19 Segmented vault system from Point Cloud(CloudCompare)

In this project, three distinct vaulted systems were identified and modeled based on
their spatial location and structural characteristics. To streamline management and
clarify component identity, each vault was encoded using the prefix VAU_ followed
by a type abbreviation:

VAU_ATR: the atrium vault, located above the central honor space, composed of
a main barrel vault and ten surrounding lunettes;

VAU_INT: the intermediate vaults, located in the corridor between the atrium
and the grand staircase, consisting of two lateral bays (Type A and Type B) with
transitional geometric roles;

VAU_STA: the staircase vault, located above the staircase connecting to the
Honor Room, with a barrel-vault-with-cloister-end configuration.

Although the three types differ in scale, complexity, and in the logic of integration,
they were all produced within a single parametric framework built on floor-hosted
void families. The following paragraphs provide a comparative analysis, focusing on
geometric characteristics, strategies of control, and specific issues that arose during
implementation.
The VAU_ATR has a surface similar to the combination of barrel and conca(on
surface), and 10 non-standard Barrel lunettes. Therefore, it requires the highest
degree of geometric abstraction and parameter control. In contrast, the geometric
shape of the VAU_STA is relatively regular and is reconstructed through a

49

combination of scanning and lofting, requiring an extremely low degree of
approximation. The VAU_INT between atrium and staircase although having a
relatively simple geometric structure, introduces unique main interaction and
direction adjustment, making it an important transitional case in this method.

Figure 4-20 Floor displace

50

The following Table 4-3 summarizes the key differences of each dome and the
modeling strategies adopted:

Table 4-3 Summary of geometric and modeling strategies across vault system

Feature/Vault VAU_ATR VAU_INT (between
Staircase and Atrium)

Staircase Vault

Barrel vault with cloister
end (Structure)+edge or
corner lunette(not single
barrel shape)

Central vault(Type 1):
Ellipsoidal pendentive
Lateral vaults(Type 2):
So-called “spherical
panels built on arcs of
variable shape”

Barrel vault with cloister
end (clear shape)

Control points
used

None (mainly by axis) 4 6

Surface/solid
strategy

Loft, Extrude revolve,Patch Extrude, Loft by rule

Family type Metric Generic Model floor-based

Host and cut
geometry

Floor and Cut with free-form void (Transformed by geometry), semi-auto offset and
cut by manual.

Challenge The judgment is made
based on structural logic
modeling or based on
surface fit.

The form is simple, but
the geometric definition is
not unique.

Standard historical
structure, with highly
consistent
geometric/surface
representation

Note: Family type and host strategy are shared across all three vaults, enabling
consistent integration and Cut Geometry operations within the same BIM framework
The following sections (4.2.2 to 4.2.4) provide a detailed account of the modeling
process for each vault type respectively - VAU_ATR, VAU_INT, and VAU_STA -
focusing on their geometric segmentation, parameter framework, and
implementation through floor-hosted void families.

4.2.2 Vault atrium(VAU_ATR)

Final Modeling Outcome
The final model of VAU_ATR (Figure 4-22) reproduces the geometry of the vault with
precision. Each void family instance was set up with shared parameters, so that it
records not only the geometric rules but also semantic data such as orthophotos or
linked drawings. In this way, the model can be used for both visual checks and
documentation tasks. Because the voids are organized as independent families, their
position, geometry, and materials can be modified later without affecting the rest of
the assembly. This structure makes the system easier to maintain and allows updates

51

or replacements when new survey data becomes available. However, as the focus of
this study is on the modeling process, these aspects are not further discussed here.

Figure 4-21 VAU_ATR in section and reflecting ceiling plan

Figure 4-22 and Figure 4-23 illustrate the outcome. The lunettes connect with the
central barrel through cut operations that follow shared reference planes, keeping
the arrises continuous and the junctions clear. Since each void remains modular,
adjustments can be made with limited disruption. Vaults and other components
follow the same type logic, which means that the Dynamo script/node can be reused
in different projects by simply changing the parameter inputs. This ensures that the
reconstruction is accurate for the present study while remaining adaptable for future
heritage modeling.

52

Figure 4-22 Generation of VAU_ATR as solid(left) and
VAU_ATR Result Modeled with Floor Hosts and Cutting Voids(right)

Figure 4-23 VAU_ATR Result in section

53

Geometric Composition
The vault solid was reconstructed based on orthophoto and point cloud. Its
geometry can be described as a central barrel vault with ten lunettes surrounding. As
the structure consists of multiple repeated components, the strategy of modeling is
to create the lunette and the barrel separately and transform as void forms.
Especially for lunettes, were created separately but generated in series(see section
Batch Creation of Void Family with Dynamo).
Figure 4-24 shows the segmented point cloud of the VAU_ATR, which could be
distinguished clearly of the components. This segmentation result supports the
subsequent classification and geometric abstraction.

Figure 4-24 Segemented PC: barrel with rib(left), 10 lunette(right)

Rib profile and Edge loft
Although the Vault barrel shown in the Figure 4-26 looks like a typical barrel vault in
the section, the actual geometry is more complex. Orthographic section analysis and
curve reconstruction using CAD system shows that the structure includes an
additional edge extension, forming a loft-like surface, that connects to the central
barrel.
These side forms resemble half pillow shaped geometries, with their vertical section
connecting seamlessly to the semi-elliptical surface of the central barrel. Particularly,
the top vector is not performed horizontal as usual, but oblique. Here the 'vector'
refers to the direction of the intersection line between the pillow-like geometry and
the plane formed by the barrels extrusion direction and the vertical axis. This oblique

54

vector results in a discontinuous curvature at the connection, where the tangents
are not aligned.

Figure 4-25 Sliced coutour in CloudCompare

A A
B B

Section A-A

Section B-B

Figure 4-26 Form of barrel in plan and section

55

Further simulation in CAD system shows that the rib profile consists of two
connected arcs. The first arc starts at the edge and sweep upwards by approximately
36°(by simulation), centered at the 1/4 the length of the span. Then it transitions
into the second arc with tangent continuity, forming a smooth curve. Although its
shape is quite similar to the three-center or multi-center arched structure, it does
not extend all the way to the very top of the arch. To be precise, it is more like a
partial application of the multi-center logic, and its function is to adjust the degree of
curvature between the edge-extending part and the cylindrical part. Structures like
the three-center arch (also known as the handle arch or segmented arch), and
elliptical vaults, which are multi-center arched structures, were widely used in
Renaissance and Baroque architectural styles(Duvernoy, 2015). This approach makes
the building's outline more gentle and ensures the structural integrity. These forms
are typically composed of three or more arcs with different radii and centers, joined
tangentially to form continuous profiles. This method is often found in historical
vault construction, balanced structural feasibility with visual continuity. For a
comprehensive discussion of multi-centered geometry in architecture, see Migliari,
R.(2009). Geometria descrittiva - Volume II - Tecniche e applicazioni, section 2.2.3
“profile ovale”.

Figure 4-27 Left: Vault structure: barrel vault with pavilion end
(volta a botte con teste di padiglione). reproduced from: Curioni, G. Geometria pratica: applicata

all'arte del costruttore. L'arte di fabbricare (III), Tav. 131.
Right: structure assumption in this project

Although this vault visually exhibits the characteristics of a "Barrel with conca"
structure, from the perspective of structural rationality and historical construction
practices, it is more likely that the original construction was a "Barrel with cloister
ends" type (Figure 4-27 shows the reference of barrel with cloister and the right one
shows which fits in this project. Its appearance might have been caused by the
extensive use of decorative layers and the resulting concealment of the structure.
(Elet, 2020)

56

Classification and parametric strategy for lunettes
Table 4-4 three types of lunette

Ortho image
with
Contour
Export from
CloudCompare

Element Name Lunette Corner Lunette Edge-Vertical Lunette Edge-Horizontal

Element
Encoding

Void-Lun-C# Void-Lun-V# Void-Lun-H#

Amounts 4 2 4

Geometric
analysis

Parameter
control in
Dynamo
(Not
represented in
family)

Length/Width
Height
Rise
Fillet Radio
(Except the
positioning parameter)

Length/Width
Height
Rise
Chamber X/Y
(Except the
positioning parameter)

Length/Width
Height
Rise
Chamber X/Y
(Except the
positioning parameter)

57

Figure 4-28 Form of lunette in plan

Based on geometric characteristics(Figure 4-28), the lunettes were classified into
three types(Table 4-4): corner, edge-horizontal, and edge-vertical.
Each type has slightly different parameters to control, including length/width, height,
lift amount, and such as "chamfer X/Y" circular radius or deformation values. To
facilitate model management and data extraction, all void forms have been assigned
shared parameters, such as "graphic", which enables linking of orthophotos
corresponding to each segmented element. The classification logic, encoding, and
parameter are detailed in the accompanying tables and diagrams.

Figure 4-29 Structural hypothesis of the whole vault without stucco, derived from Dynamo showing
the underlying geometry used for parametric reconstruction.

58

Batch Creation of Void lunette Families with Dynamo

To avoid manually creating numerous family files and to maintain consistent spatial
logic between components, Dynamo was used for batch generation of void families.
A predefined list of string names (e.g., "Void_Lun_H1", "Void_Lun_V2") enabled the
mapping of each void element to its designated location. The Dynamo graph
manages the iteration process, spatial transformations, and family creation,
culminating in the use of the Dynamo node(FamilyTypes.VoidByGeometry) to
convert solid geometries into family instances. Once generated, these void families
can be loaded into the Revit project in batches and managed systematically by their
names and indices21.
Figure 4-31 illustrates the complete Dynamo graph developed for automating the
modeling of vault elements within the atrium. The workflow begins with the
selection of reference elements from the Revit project environment, which serve to
locate each vault geometry precisely in 3D space. A central point is established as the
coordinate base, from which transformation parameters for each element are
derived. The core of the process involves list structuring and batch logic operations:
geometries are categorized into corner lunettes, edge lunettes, and the central
barrel, each undergoing filtering, translation, and alignment. These steps ensure that
each geometry is spatially accurate before conversion. Finally, the solids are passed

21 Note: The term “indices” in this context refers not only to the naming convention (e.g., “H1”, “V2”), but also to the positional
identifiers used in the Dynamo list management process. During batch generation of void families, a series of list
transformations - such as Transpose, FirstItem, Combine, Join, and Map - are applied. Maintaining a consistent and traceable
index structure is essential for ensuring that each geometric element is matched with the correct spatial transformation, host
alignment, and family instance. The index effectively links geometry, placement logic, and family output across the entire vault
system.

Code Block:
[
"Void_lun_H1",
"Void_lun_H2",
"Void_lun_V1",
"Void_lun_H3",
"Void_lun_H4",
"Void_lun_V2"
];

Figure 4-30 batch-created lunette family

59

through the node(FamilyTypes.VoidByGeometry) to generate separate family files.
This structure enables scalable, repeatable generation of void forms, although
coordinate resetting at the family level necessitates additional handling at the
placement stage. The modularity of this graph ensures that the logic can be
extended to additional vault types or reused in similar projects.

1.Select elements from

project, to locate

everything

2.Define the central as the

reference, input the parameters

of location and elements

3.batch transformations,

generate, split, and filter.

From left to right are lunette

Corner, lunette Edge, and barrel.

4.Once the solid is done, use the

node

FamilyTypes.VoidByGeometry to

create the family in the project

without cutting the host.

Figure 4-31 Dynamo Nodes of VAU_ATR

Integration of Floor Hosts and Manual Cut Workflow
For modeling stability, all void families were created using the floor-based family
template. Although this limits the ability to rotate instances in the project, it greatly
enhances placement precision and host consistency. Each void is embedded into a
floor host whose thickness matches its horizontal projection. The floor provides

60

rendering material, structural layer control, and cutting support, while the void
sculpts the spatial geometry.
Since the Revit API does not support programmatic execution of Cut Geometry
operations, and because the internal coordinate reset issue22 caused by the
(FamilyTypes.ByGeometry) node, the void was created over than the surface (z>=0),
a PyRevit23-assisted script was used to batch-move the voids into place .
Unfortunately, while batch placement is achievable, the Cut operation still needs to
be performed manually within the Revit UI. This limitation is acceptable in the
current workflow, as the manual cut requires only a single click per instance and
ensures precision. This approach is simple, efficient, and fully acceptable within the
workflow.

22 A known issue has been reported in the Autodesk Revit Forum, where users noted that “solid imported by Dynamo doesn’t
cut on sections” (Autodesk Community, 2024).
23 pyRevit is an open-source IronPython-based scripting environment for Autodesk Revit. It extends Revit's native interface by
allowing custom toolsets, buttons, and scripts ... is widely used forautomating repetitive tasks, batch processing families, and
interacting with Revit's API without full plugin development. (pyRevit, n.d.)

61

4.2.3 Vault intermediate(VAU_INT)

Final Modeling Outcome
The three vaults analysis in this study are located along the ground-floor corridor,
connecting the atrium and the grand staircase to the Honor Hall(Figure 4-32). they
act as transitional supports, connecting two major circulation spaces and precisely
defined the spatial hierarchy.

Figure 4-32 VAU_INT in reflecting ceiling plan

Figure 4-33 VAU_INT Type1&2 with Host(left) and without host(right)
Vault Combination together(lower)

62

Geometric shape analysis
These three voult chould be classified in 2 types based on geometry and
complexity(Table 4-5).

Central vault(Type A): Ellipsoidal pendentive
Lateral vaults(Type B): So-called “spherical panels built on arcs of variable

shape”

Table 4-5 Vault intermediate (VAU_INT)

Pointcloud
orthography

Contour By
cloudcompare

Geometric analysis Curve extract for
modeling

TypeA:
North
Vault

TypeB
Central
Vault

TypeA:
South
Vault

The central vault(TypeA) adopts a simple ellipsoidal pendentive geometry. It is
constructed by intersecting an ellipsoid with a vertical prism extruded from a square
base. This approach results in a smooth, regular surface that efficiently channels
loads to the corners. In some historical cases, the surface is always covered with
stucco work visually, which minimize the visibility of structure joins.

To simplify the generation, the geometry is revolved by a elliptical arc. The
parametric data requires:

Four points location, for the base dimensions, the length of the side etc.
Vertical curvature: The minor axis of the elliptical arc.
The height of the stucco. (for visual)

63

The second vault type, as shown in the Table 4-5, is modeled with reference to the
concept of “spherical panels built on arcs of variable shape” as described by Curioni
in Algorithmic Modelling as a Key Tool for Ribbed Vault Geometry.(Bagnolo et al.,
2022)
This approach differs from strictly hemispherical geometry by allowing the curvature
of the arcs defining the vault's surface to vary, resulting in an ellipsoidal or hybrid
vault form that remains geometrically controlled yet adapts to irregular constraints.
The geometric analysis in this case identifies a curvature profile derived from an
adjustable arc family, enabling a more flexible interpretation of historical vaulting
strategies. The parametric data requires:

Four points location,
a diagonal arc across the bay
a central apex arc
four vertical edge arcs rising from corners.
The height of the stucco.

Curve Extraction and Surface Construction
Instead of following a conventional scan-to-mesh workflow or slice-based lofting
from raw sections, this study adopts a method based on geometric interpretation.
Curves are not extracted at fixed intervals. They are chosen with reference to
architectural rules, such as structural axes, spatial symmetry, and known vault types.
The aim is to rebuild not only the surfaces, but also the underlying geometric logic,
so that the model can be reused and kept consistent within a parametric framework.

For Type A (ellipsoidal pendentive vaults), the process begins with three points that
define a circle on the horizontal plane. This circle provides the center for an elliptical
arc. The major radius comes directly from the circle, while the minor radius is set by
a fourth, higher point that marks the vault’s apex. With these references, an arc is
revolved around the vertical axis to create the main vault body. The interior volume
is then isolated by extruding the base rectangle upward and intersecting it with the
revolved shape. Finally, a horizontal cut is applied at the height of the stucco layer to
trim the top and obtain the final volume.

For Type B (variable-curvature vaults), three types of elliptical arcs are extracted
from the same four corner points:

Four vertical elliptical arcs rising from the base, one at each corner;
A diagonal elliptical arc, forming a 90° sector, with its major axis equal to the

length from center to corners, and its minor axis inferred from the estimated vault
height;

A central apex arc, whose tangent aligns with the vectors from the vault center
to the midpoints of each boundary arc.
These three arc types define a closed spatial boundary, which is then passed to node
(Surface.ByPatch) to generate the vault shell.

64

For Type B, the three curve connect to each other as a closed loop(not a plane loop)
and then insert for node(Surface.ByPatch). This operation produces a continuous
curved surface representing the vault, which adapted to local geometrical variation
while maintaining the coherence.
However, while the resulting surface appears correct within Dynamo geometry
engine, it oftern encounters interoperability issues when transferred to Revit. In
particular, surfaces created by node(Surface.ByPatch) or Solids created by
node(Solid.ByJoinedSurface) may fail to register as valid BRep solids in Revit, due to
the following issues:

Boundary discontinuity or mismatched tangency,
Invalid or open edge loops,
Non-manifold topology24

These issues prevent Revit from recognizing the geometry as a closed solid, and
consequently coid elements generated from such geometry cannot perform boolean
operations(e.g., Cutting system families).
Indeed, surfaces generated through sweep or revolve maintain simpler Typological
structures and are more compatible wtih revit's solid kernel. However, while such
geometric primitives are effective for ensuring Revit compatibility, they are often
insufficient for capturing the nuanced curvature and irregular forms found in
historical architecture. Many vaulted systems, particularly those with asymmetrical
springing, compound curvature, or non-canonical profiles, demand more expressive
modeling strategies beyond sweep- or revolve-based forms.
In this context, freeform surface construction remains essential despite its
limitations, as it allows for a more accurate semantic representation of the built
form.

Integration of Floor Hosts and Manual Cut Workflow
To guarantee that the void is placed correctly and properly cuts through the host
geometry, it is recommended to align the base of the void form with the based of
the floor.
To ensure accurate alignment, it is better to pre-adjust the thickness of the floor in
the family editing environment so that it matches the thickness of the host floor in
the project before loading it. As described previously, edit the existing family already
loaded in the project environment by node (FamilyType.VoidbyGeometry) (Instance
not yet be created), and reload it after modification. Then create the instance, insert
it to ensure it to be hosted on the floor.

24 While Autodesk dos not provide fully detailed public specification for BRap validation in revit, both developer experience
and forum reports indicate that revit's geometric kernel will reject solids that violate standard BRep integrity rules- such as
closed manifold topology continuous surface normals, and valid edges loops.(Autodesk Community, 2023)

65

Vault Modeling Based on Reusable adaptive Point Logic
As mentioned in Section 3.2.3, adaptive components can deal with irregular
geometry by means of adaptive points. However, Revit’s system has a key limitation:
the voids created inside adaptive families cannot perform Boolean cuts on system
families. In this project, the adaptive component is therefore used only as a
container. It organizes four reference points that mark the springing line and the
lower zone of the vault, but it does not contain any real void that could cut the host.
To overcome this problem, a Dynamo node group was developed. By selecting a new
set of four adaptive points inside the project, the same cutting logic can be applied
to different quadrilateral vault configurations. This makes it possible to reuse the
modeling approach and reduces the need for manual rework. The Dynamo routine
reads the four points as its input, generates the base geometry, and then creates the
voids that cut the system families. In this way, both accuracy and parametric control
are maintained.
The Dynamo graph(Figure 4-34) begins by selecting four adaptive points from a
placed reference family (Select Model Elements), which serve as spatial anchors for
the vault geometry.
From these points, boundary lines are generated by node(Line.ByStartPointEndPoint)
and used to construct a reference circle by node(Circle.ByThreePoints). This circle
guides the construction of elliptical arcs by node(EllipseArc.ByPlaneRadiiAngles),
which define the curvature of the vault shell. The resulting arc is revolved into a
three-dimensional solid by node(Solid.ByRevolve), which is then trimmed using
planar cutting surfaces by node(Geometry.Split) to isolate the internal vault volume.
Finally, the processed solid is converted into a Revit-compatible void element using
node(FamilyType.VoidByGeometry), with its family category and template path
specified for correct insertion.
They are following this logic:

1. Geometry Input and positioning
2. Coordinate reset and alignment
3. Geometry construction
4. Void family conversion

In this alternative Dynamo definition(Figure 4-35), the modeling process begins by
selecting four adaptive points from a placed reference family (Select Model

1 2 3 4

Figure 4-34 Dynamo Graph for Parametric Construction of Type A Vault

66

Elements), which serve as geometric anchors. Straight lines are created between
them using node(Line.ByStartPointEndPoint), followed by the generation of elliptical
arcs node(EllipseArc.ByPlaneRadiiAngles) along both the diagonals and side edges.
A central top arc is constructed via node(Arc.ByStartPointEndPointStartTangent),
aligning tangentially with the spatial direction of the bounding curves. These three
types of arcs are organized into a list structure and passed into
node(Surface.ByPatch) to create a freeform surface bounded by the arcs.
Multiple surfaces are then joined via node(Solid.ByJoinedSurfaces) to form a closed
solid, which is trimmed using node(Geometry.Split) and finally converted into a void
family through node(FamilyType.VoidByGeometry), with its category and template
path defined for integration into the Revit environment.
They are following this logic:

1. Geometry Input and positioning
2. Vector Construction and support geometry
3. Geometry construction
4. List management and Boolean preparation
5. Void family conversion

1 2 3 4 5

Figure 4-35 Dynamo Graph for Parametric Construction of Type B Vault

67

4.2.4 Vault Staircase(VAU_STA)

Figure 4-36 Vault staircase in reflecting ceiling plan

Final Modeling Outcome
The final model of the staircase vault successfully integrates both the cloistered and
barrel components into a coherent and geometrically faithful digital reconstruction.
Through the combination of sweep, extrusion, and loft operations, the hybrid
curvature of the vault was accurately captured. The use of a six-point adaptive family
enabled precise placement of the reference geometry within the existing
architectural context, with each point aligned directly to previously modeled
structural elements such as walls and floor slabs.
Once generated, the solid was converted into a void form using node
(FamilyTypes.VoidByGeometry), embedded within a floor-based family template to
ensure system host interaction. After placement, a manual Cut Geometry operation
was applied in the project environment to sculpt the ceiling slab, producing a crisp
spatial articulation between vault and host.
The result achieves both visual continuity and material consistency with the
surrounding architectural framework. The geometric logic is fully traceable,
parameterized, and reproducible, and the modular family-based structure ensures
maintainability and future extensibility. Together, these outcomes demonstrate that
even geometrically readable vaults-such as cloistered barrel types-benefit from a
structured, data-driven modeling approach when reconstructed within a BIM
context.

68

Geometric shape analysis
Unlike the other vaults studied in this project, the ceiling of the staircase connecting
the atrium to the Honor Room presents a geometry that is visually straightforward
to interpret. Despite the presence of elaborate stucco decoration, the underlying
structure remains clearly legible and can be confidently identified as a barrel vault
with cloister ends. While this initial assessment is visually evident, it was further
verified through sectional analysis, using slices created from as-built orthophotos
and geometric simulation performed in CAD system.
The horizontal cross-section consists of two elliptical arcs connected by a central
straight segment, forming a continuous and smooth projection that conforms to the
typical geometry of cloister vaults. These vaults can be understood as the result of
two intersecting barrel vaults, producing a lowered intersection profile-a condition
that distinguishes them from groin vaults, where the intersection creates raised
ridges.

Figure 4-37 Clear line for cloister edge

Curve Extraction and Surface Construction
For traditional modeling methods, using standard regular quadrilaterals or
rectangles makes it very easy to create arches.

69

In historic buildings, the base edges of vaults are rarely true rectangles. Several
reasons explain this irregularity. Manual construction was never perfectly precise,
and over time thrust and settlement have caused further deformation. In some cases,
builders also made intentional adjustments to fit the vault into the surrounding
structures. Because of these conditions, the four corner points of the springing line
are usually not aligned on a single horizontal plane. Opposite sides may differ in
length, or even show slight curvature. For this reason, standard rectangular
templates cannot be applied. Instead, the base edge is defined by four independent
points that form an irregular quadrilateral. This point-driven strategy follows the
geometry visible in the point cloud and gives a representation closer to the actual
built form.

Figure 4-38 Geometric decomposition of Vault staircase section

The modeling of this vault, despite its geometrically recognizable form, still requires
a composite construction logic to reflect its differentiated surface structure. The
cloistered portion of the vault was modeled using sweep and extrusion, while the
barrel segment was generated through Loft by Rule. Specifically, the top horizontal
line and the two long base edges were extracted as the first guiding set, and the two
lateral curves formed the second guiding set, enabling the surface to be split and
generated as two symmetrical lofted parts.

70

Figure 4-39 Dynamo node for vault staircase

The essential geometric parameters required for reconstruction are limited to six
points: the four corner points of the base, and the projection and height of the apex
point. The base points determine the overall plan footprint, while the projection
point of the apex on the base plane (XY) and its vertical offset (Z) define the dome's
rise. The apex height was acquired either from orthographic projection in CAD
system or directly measured in Revit using native annotation tools.

As a result, the Generic Model Adaptive family described earlier can still be used, but
with one small change: the adaptive component is expanded from four points to six.
The order of these points is fixed inside the family, so Dynamo can recognize them
consistently during reconstruction.
In this context, placing the adaptive points is relatively straightforward. The project
already contains an architectural framework, including walls and floor slabs. Each
reference point can therefore be aligned directly to these system families with the
Align (AL) command or the standard snapping tools in Revit. This reduces uncertainty
in positioning and makes the overall process more accurate. In practice, the adaptive
component functions as a spatial container that relies on the existing geometry,
giving the modeler an intuitive and repeatable way to set the points.

Figure 4-40 Vault Staircase with Host(left) and without host(right)

71

4.3 Railing

4.3.1 Segmented Elements By Revit system

Figure 4-41 Location of each element

Post

Lower Panel

Upper Panel

Baluster

Normal Baluster

Oblique Baluster

72

In this project, the balustrade system was composed of two types of balusters and
four corner/end posts with slight geometric differences, in addition to the upper and
lower panel elements. These were carefully positioned to follow the structural logic
and historical references of the staircase. Figure 4-41 illustrates the distribution and
placement of each element within the balustrade layout: Four posts at corners and
ends, with minor variations to adapt to the local geometry; Upper and lower panel;
Oblique and Normal baluster. This combination aimed to maintain both geometric
consistency and visual coherence across the entire stair railing.

Table 4-6 Segmentation by the Revit Railing System

El
em

en
t

Fa
m
ily

Te
m
pl
at
e Posts 1

Generic model

Posts 2

Generic model

Posts 3

Generic model

Posts 4

Generic model

El
em

en
t

Fa
m
ily

Te
m
pl
at
e Oblique baluster

Baluster

Normal baluster

Baluster

Lower panel

Baluster-Panel

Upper panel

Baluster-Panel

73

To further clarify the organization of these elements within the Revit environment,
the balustrade components were segmented according to the internal logic of the
Railing System (Table 4-6). This classification reflects the three family categories
introduced in Section 3.5.1: Balusters, including both the normal and oblique
variants, were modeled as Baluster families; Panels were defined as Baluster-Panel
families for the upper and lower horizontal elements, represented in practice as
profile-based components; Posts were represented as Generic Model families,
subdivided into four slightly different types to adapt to corner and end conditions.
It should be noted that, according to the Revit Railing System, the Baluster Post
Family is normally part of the baluster system and should have been used in this
context. However, in the staircase of Palazzo Barolo, the posts display a high degree
of decorative complexity and contain multiple asymmetric ornamental attachments.
While the system requires the posts to behave symmetrically within the overall
balustrade layout, their individual geometry is not symmetrical. As a result, the
Baluster Post family template could not be adopted without significant distortion.
Instead, the posts were modeled as Generic Models, which allowed the overall
symmetry of the railing system to be preserved while accommodating the individual
irregularities of each post.

4.3.2 Normal Baluster and Oblique Baluster

Final modeling outcome

Figure 4-42 Outcome of two types of baluster in rhinoceros 8

The final modeling outcome of both the normal and the oblique balusters is shown
in Figure 4-39, based on the parametric design process carried out in Rhinoceros 8.

74

Normal Baluster by revolve or sweep

Three method of Oblique Baluster
For the oblique post, it can be interpreted as an evolved form of the standard
vertical post, using the same profile revolved around a vertical axis. However, the
oblique version undergoes an additional transformation by rotating around the
X-axis on the XZ-plane at an inclination of approximately 20–30 degrees(depends on
the ramp). This results in a coordinate system where the XY and YZ planes remain
perpendicular, while the XZ plane is no longer orthogonal. The initial geometry is
then scaled proportionally within this transformed frame.

Figure 4-43 Normal Baluster Modeling by Sweep in Revit(left) and Rhinoceros(right)

Figure 4-44 Examples of historical balustrade systems with square and circular profiles.
Left: square-plan balusters from the Italian Renaissance, Sta. Maria della Salute, Venice;

center: a system of square balusters at Palazzo Pesaro, Venice;
right: circular-plan balusters in modern Italian style.

reproduced from Meyer (1900, pp. 224–225).

75

Due to the complexity of this transformation logic, achieving the most accurate
parametric representation directly in Revit proved impractical. Therefore,
Rhinoceros was employed to carry out the geometric transformation in a more
flexible and precise way, by applying a simple shear or rotation operation to
approximate the oblique shape.
In practice, three methods for generating the oblique baluster were evaluated (as
explained in section 3.3.2):

Contour slicing and lofting in Dynamo
Shear transformation in Rhino/Grasshopper
Void-based sweep or extrusion within Revit

Among these, the Rhino-based workflow was chosen for the final model, due to its
better control of geometry precision and simpler management of the inclined
coordinate system.

The characteristics of the three alternative methods are summarized in Table 4-7:
Contour slicing and lofting in Dynamo: This method is comparable to extracting slices
of a mesh generated from defined positioning points, then reconstructing a smooth
surface through lofting. Since Dynamo does not support shear transformation

Table 4-7 Comparison with three modeling method of oblique baluster

Method Contour slicing + loft
(Dynamo)

Shear transform
(Rhinoceros)

Void-based trimming
(Revit)

Result

Advantages Simple to automate;
parametric in Dynamo

Accurate; preserves
NURBS; good control

Quick; stays within Revit
environment

Limitation Low detail if slices are
few; cannot directly
shear

Requires fine
subdivision of profiles
for sweep to shear

Approximate result;
possible curve
distortions

Interoperability Needs SAT
export/import

Needs SAT
export/import

No external export

76

directly, the slicing strategy is adopted instead. However, if too few slices are
generated, the extracted contour features will be insufficient, causing the resulting
loft surface to lose critical details and fail to capture the decorative features of
mouldings. Additionally, this method requires exporting the geometry as SAT and
reimporting it into Revit for further integration.

Shear transformation in Rhino/Grasshopper: This approach is accurate and effective
because Rhino preserves the NURBS geometry throughout the shear transformation,
maintaining perfect curve continuity. By exporting and importing via SAT, the NURBS
characteristics of the profiles are also retained within Revit. The main limitation is
that the initial sweep geometry must be subdivided with sufficient detail (not slicing
contours, but rather the detailed segmentation of the moulding profiles) to
guarantee a successful shear transformation.

Void-based sweep or extrusion within Revit: This method can be performed entirely
in the family environment of Revit. A solid is extruded and trimmed by a void
extrusion manually, without requiring Dynamo or Rhino. The process is simple and
direct, which only provides an approximate representation and cannot reliably
preserve the smooth curves of the decorative profiles. And in many case it results in
geometrically distorted or jagged edges.

After testing this comparative evaluation, the Rhino-based shear transformation was
selected as the final modeling solution. It gave the best results in preserving the
architectural moulding elements and allowed the decorative features to be
reconstructed with greater accuracy.

4.4 Outcome after all

77

Figure 4-45 Section of the outome

AA A

B B

Section A-A

Section B-B

78

Figure 4-46 Render in Atrium

79

Figure 4-47 Render in staircase

80

5.Discussion
The modeling strategy for the column clearly shows the potential of using
proportional systems to express knowledge in parametric modeling. By using the
Base Diameter as the main control parameter, the traditional proportional rules of
classical column types were transformed into a set of formulas. These formulas
allowed not only the creation of geometry, but also preserved the construction logic.
This modeling method, which centers on “proportion – logic – nested components,”
can be seen as a way to digitize and structure historical architectural norms. It offers
a useful path for semantic modeling and typological classification of heritage
components. Although the column component has a clear parametric structure, it
relies on deep nesting. All proportional control depends on parameter transfer from
the main family to the nested families. When a user needs to adjust detailed
proportions, such as the ratio between the base and the shaft, or change a local
profile like the base molding, they must enter and edit the nested family directly.
This increases the difficulty for users who are not experienced. While deep nesting
helps to keep geometric consistency, it also brings high maintenance cost in model
delivery, teaching, and teamwork situations.

The vault components are classified into three main position types: VAU_ATR
(atrium), VAU_INT (intermediate), and VAU_STA (staircase). Each type represents to
a different structural form and geometric feature. This classification follows the
historical distinction between “simple vaults” and “composite vaults”, which helps
each type maintain a clear modeling logic and parameter framework. The complex
vaults VAU_ATR is decomposed and reconstructed from a barrel and multiple
lunettes. Because of the Simplicity if the lunette structure but its large quantity(10
pieces), these parts are controlled by the same parameters such as span, rise, and
fillet radius, and all values follow a consistent naming rule (e.g., Void_Lun_H1), and
the generated in the same logic. So, if the geometric is in the same logic, what we
need is to position it and get the input parameter, without reconstruct the logic. In
this way, the UI or the component library are in need. For the load of geometry, all
voids are built as floor-based families, which can be placed in floors of different
thickness. Their positions are defined by adaptive point families or model lines,
which do not take part in geometry creation, making it easier to keep construction
logic separate.
During the modeling process of the arch, the main technical issues stem from the
geometric incompatibility brought by the native Revit environment of Dynamo for
Revit. When creating complex surfaces or solids using nodes such as Surface.ByPatch
or Solid.ByLoft, the generated geometry often has problems such as non-manifold
boundaries, open loops, or normal flips. For this reason, Revit can not recognizs
them as valid BRep entities. The more complex geometry (such as hyperboloids), the
higher the failure rate, which limits the universality of this method. The most direct
result it causes is that the void family cannot perform the "cut geometry" operation.
Even if the correct family template and valid entities are used, users still need to
manually move the void form and cut the host in the Revit family environment,

81

which reduce the automation and repeatability of the process. Unlike the method of
generating geometry in other software and implanting it into Revit or the
DirectShape import method, the arch modeling in this study focuses on integrating
typological classification, host interaction, and void cutting logic. The form of the
arch is not only reconstructed based on point cloud data but also achieved through
grouping, segmentation, and parametric operations. This process reflects the digital
expression of historical construction logic and lays the foundation at the model level
for future work such as arch typological classification, component packaging, and
semantic coding.

The modeling of the oblique baluster(complex geometry) completely failed in the
native Revit environment. This is because its geometry is based on a revolved shape
followed by a shear transformation, which is not supported in either Revit or
Dynamo. Attempts in Revit to use sweep combined with void cutting could not
create accurate curved shapes. In Dynamo, methods like lofting from sliced contours
also lacked precision. In the end, the workable solution was to model the shape in
Rhino(other software or platforms), to apply the shear transformation to the
revolved solid in NURBS, and to export it as a SAT file(with logical curve) into Revit.
This component became the only one in this study that had to be fully removed from
the parametric modeling process and based on other modeling software, which
shows a clear boundary of Revit’s geometric capabilities. Although the oblique
baluster does not use parametric control, it expresses the geometric features of
historical form accurately through NURBS surfaces. This approach shows another
path for “non-parametric semantic modeling.” The goal here is not to allow
adjustable dimensions, but to keep the identity and decorative structure of the
component. This suggests that in HBIM, decorative or non-repetitive components
should follow a strategy of “high shape fidelity first, structure logic second,” to
complement the parametric modeling of structural elements.

Although the modeling strategies developed in this research follow a
component-based logic, a reusable library of parametric components was not
established. This is mainly because the dataset used in this study was relatively small
and fragmented. For each typology—whether columns, vaults, or balusters—only
one or two instances were available for modeling. As a result, it was not possible to
define consistent patterns or variation ranges that would support the construction of
a typology-wide family library. Instead of creating a database of parametric types,
the modeling focused on reconstructing each component in detail and evaluating the
logic behind its geometric and semantic structure. This limitation reflects the nature
of the source data, which came from a specific case study and did not include a
broad or statistically rich sample. In future work, expanding the dataset and
collecting more examples of each architectural type could make it possible to create
a structured, searchable HBIM component library.

82

6.Conclusion and Recommendations

Figure 6-1 The Integrated HBIM Workflow

This study tested a multi-layered modeling workflow for reconstructing historical
architectural components in a BIM environment. Figure 6-1 gives an overview of the
process. The diagram outlines both the common HBIM framework and the specific
strategies used for columns, vaults, and balusters. The approach brings together
typological classification, parameter structuring, and geometry-based logic. With
these tools, the team was able to construct complex vault systems, proportion-based
columns, and balusters with ornamental detail(or other low-damand parameter
element). Although the steps varied for each component type, the same
methodology was kept throughout, so that the models remained semantically
traceable and adaptable to different scales and formats.
The workflow follows a component-based HBIM logic. After segmentation, each
element type is assigned to either a high-demand parametric path (columns, vaults)
or a low-demand path (balusters and ornamental details). These two branches
require different levels of parameterization and construction logic.
As shown in the Figure 6-1, three specific element are discussed:
The column system was modeled with a proportional method. A single base
diameter served as the main control, and other measurements—such as the shaft
height and the capital—were calculated from it through formulas. In Revit this logic

83

was applied by using the native Column family as the host, while the base, shaft,
capital, and pedestal were added as nested Generic Model families. Parameters
were passed from the host to the nested parts so that the sizes stayed linked, though
this also required careful handling to avoid instability.
For vaults, the first step was to sort them into typological groups, separating simple
from composite forms. Their geometry was then defined by a few main curves, such
as the span, rise, and the arcs of the fillet. Floor-based void families were chosen to
generate the forms, because they cut into the host floor directly and remain stable in
most cases. This solution helped to avoid problems that often appear when trying to
build solids in Dynamo or when importing surfaces from Rhino into Revit.
For oblique balusters and other decorative elements with low parametric demand,
full parameterization was not necessary. Instead, the focus was placed on preserving
construction logic and geometric fidelity. The components were modeled externally
in Rhino which use NURBS transformations and then imported into Revit as SAT files.
This solution avoided the limitations of Revit’s family editor while ensuring that the
distinctive historical form of the balusters was accurately represented.

The original research questions focused on how to embed semantic meaning within
the geometry of historic elements and how to build reusable, parameter-controlled
families for different structural and decorative types. These objectives have been
partially fulfilled. The vault families demonstrated clear parametric logic based on
geometric subdivision and typological grouping. The column system translated
historical proportional rules into nested family logic. Even in the case of balusters,
where parametric control was not feasible, geometric fidelity was maintained
through an alternative pipeline.
However, due to the limited number of instances for each component type, this
research did not develop a reusable library of parametric families. The modeling
focused on reconstructing individual elements rather than generalizing typologies,
which limited the scalability of the results across broader heritage contexts.
Academically, this research contributes to the development of HBIM by offering a
structured modeling methodology that links architectural typology with parametric
logic. It shows how classical rules and geometric hierarchies can be transformed into
reusable digital assets. In practice, the method supports future workflows that
require both semantic richness and model scalability, particularly in heritage
conservation projects where documentation, classification, and reconstruction must
coexist in a single environment.
However, the research also encountered technical limitations, especially in dealing
with non-standard geometries within the Revit environment. The lack of native
support for operations such as shear transformations, and the instability of
Dynamo-generated solids, remain challenges. Future work may focus on building
geometry preprocessing pipelines, extending parametric logic to other heritage
components, and developing a reusable library that integrates geometry, metadata,
and typological knowledge, especially when broader datasets become available..

84

Bibliography
Books and Reference

ACCA Software. (n.d.). Disegni volte e cupole di molteplici tipologie scegliendo tra

tantissimi oggetti.

https://www.acca.it/edificius-bim-modeling-volte-e-cupole

Allegra, V., Di Paola, F., Lo Brutto, M., & Vinci, C. (2020). SCAN-TO-BIM for the

MANAGEMENT of HERITAGE BUILDINGS: The CASE STUDY of the CASTLE of

MAREDOLCE (PALERMO, ITALY). The International Archives of the

Photogrammetry, Remote Sensing and Spatial Information Sciences,

XLIII-B2-2020, 1355–1362.

https://doi.org/10.5194/isprs-archives-XLIII-B2-2020-1355-2020

American Institute of Architects. (2008). Document E202—Building information

modeling protocol exhibit. AIA.

ArchiRADAR. (n.d.). Volte 3D parametriche per ArchiCAD.

https://www.archiradar.it/it/oggetti/volte-3d-parametriche-archicad

Aubin, P. F., & Milburn, A. (2013). Renaissance Revit: Creating classical architecture

with modern software. G3B Press.

Autodesk. (2022). Associate Family Parameters [Manual]. Autodesk.

https://help.autodesk.com/view/RVT/2022/ENU/?guid=GUID-E2E6B19B-E47

F-4F35-9F6D-1273A3248A50

Autodesk Community. (2023, April 18). BRepBuilder fails without explanation.

https://forums.autodesk.com/t5/revit-api-forum/brepbuilder-fails-without-e

xplanation/td-p/11905308

85

Autodesk Community. (2024). Solid imported by Dynamo doesn’t cut on sections.

https://forums.autodesk.com/t5/revit-structure-forum/solid-imported-by-dy

namo-doesn-t-cut-on-sections/td-p/12609256

Autodesk Community Forum. (2019). Rotate & copy doubles rotation angle.

https://forums.autodesk.com/t5/revit-architecture-forum/rotate-amp-copy-

doubles-rotation-angle/td-p/9063514

Autodesk Community Forums. (2014). Loading railing family.

https://forums.autodesk.com/t5/revit-architecture-forum/loading-railing-fa

mily/td-p/6378465

Autodesk Help. (2025). About the different kinds of families.

https://help.autodesk.com/view/RVT/2025/ENU/?guid=GUID-403FFEAE-BFF6

-464D-BAC2-85BF3DAB3BA2

Bagnolo, V., Argiolas, R., & Vanini, C. (2022). Algorithmic Modelling as a Key Tool for

Ribbed Vault Geometry. Nexus Network Journal, 24(1), 147–166.

https://doi.org/10.1007/s00004-021-00570-z

Banfi, F. (2017). BIM orientation: Grades of generation and information for different

type of analysis and management process. The International Archives of the

Photogrammetry, Remote Sensing and Spatial Information Sciences,

XLII-2/W5, 57–64. https://doi.org/10.5194/isprs-archives-xlii-2-w5-57-2017

Banfi, F. (2019). HBIM GENERATION: EXTENDING GEOMETRIC PRIMITIVES AND BIM

MODELLING TOOLS FOR HERITAGE STRUCTURES AND COMPLEX VAULTED

SYSTEMS. The International Archives of the Photogrammetry, Remote Sensing

and Spatial Information Sciences, XLII-2/W15, 139–148.

https://doi.org/10.5194/isprs-archives-XLII-2-W15-139-2019

86

Banfi, F. (2020). HBIM, 3D drawing and virtual reality for archaeological sites and

ancient ruins. Virtual Archaeology Review, 11(23), 16.

https://doi.org/10.4995/var.2020.12416

Bonora, V., Meucci, A., Conti, A., Fiorini, L., & Tucci, G. (2023). Knowledge

representation of built heritage mapping an ad hoc data model in ogc

standards: The case study of pitti palace in florence, italy. The International

Archives of the Photogrammetry, Remote Sensing and Spatial Information

Sciences, XLVIII-M-2–2023, 281–288.

https://doi.org/10.5194/isprs-archives-XLVIII-M-2-2023-281-2023

British Standards Institution. (2013). PAS 1192-2:2013—Specification for information

management for the capital/delivery phase of construction projects using

building information modelling. BSI.

Brumana, R., Banfi, F., Cantini, L., Previtali, M., & Della Torre, S. (2018). Generative

HBIM modelling to embody complexity (LOD, LOG, LOA, LOI): Surveying,

preservation, site intervention—The basilica di collemaggio (l’aquila). Applied

Geomatics, 10(4), 545–567. https://doi.org/10.1007/s12518-018-0233-3

Brumana, R., Banfi, F., Cantini, L., Previtali, M., & Della Torre, S. (2019). Hbim level of

detail-geometry-Accuracy and survey analysis for architectural preservation.

The International Archives of the Photogrammetry, Remote Sensing and

Spatial Information Sciences, XLII-2/W11, 293–299.

https://doi.org/10.5194/isprs-archives-xlii-2-w11-293-2019

Brumana, R., Della Torre, S., Previtali, M., Barazzetti, L., Cantini, L., Oreni, D., & Banfi,

F. (2018). Generative HBIM modelling to embody complexity (LOD, LOG, LOA,

LOI): Surveying, preservation, site intervention—the Basilica di Collemaggio

87

(L’Aquila). Applied Geomatics, 10(4), 545–567.

https://doi.org/10.1007/s12518-018-0233-3

Calvano, M. & others. (2023). Script VPL in Grasshopper per la generazione di una

famiglia di massa da B-Rep e applicazione dell’istanza parametrica di tetto

alla massa per la modellazione della volta. In L. Carlevaris & G. M. Valenti

(Eds.), Digital & documentation. Reading and communicating cultural

heritage (pp. 170–183). Pavia University Press.

Capone, M., & Lanzara, E. (2019). SCAN-TO-BIM vs 3D IDEAL MODEL HBIM:

PARAMETRIC TOOLS TO STUDY DOMES GEOMETRY. The International

Archives of the Photogrammetry, Remote Sensing and Spatial Information

Sciences, XLII-2/W9, 219–226.

https://doi.org/10.5194/isprs-archives-XLII-2-W9-219-2019

Chitham, R. (2005). The classical orders of architecture (2nd ed). Architectural Press.

Costantino, D., Pepe, M., & Restuccia, A. G. (2023). Scan-to-HBIM for conservation

and preservation of Cultural Heritage building: The case study of San Nicola in

Montedoro church (Italy). Applied Geomatics, 15(3), 607–621.

https://doi.org/10.1007/s12518-021-00359-2

Croce, V., Caroti, G., De Luca, L., Jacquot, K., Piemonte, A., & Véron, P. (2021). From

the Semantic Point Cloud to Heritage-Building Information Modeling: A

Semiautomatic Approach Exploiting Machine Learning. Remote Sensing, 13(3),

461. https://doi.org/10.3390/rs13030461

Curioni, G. (1868). Geometria pratica: Applicata all’ arte del costruttore: ... / Giovanni

Curioni. In Geometria pratica: Applicata all’ arte del costruttore: ... Negro.

88

D’Agostino, P., Antuono, G., & Elefante, E. (2024). Algorithmic approaches for HBIM.

The great cloister of the opera di santa croce in florence (pp. 539–548).

Diara, F., & Rinaudo, F. (2019). FROM REALITY TO PARAMETRIC MODELS OF

CULTURAL HERITAGE ASSETS FOR HBIM. The International Archives of the

Photogrammetry, Remote Sensing and Spatial Information Sciences,

XLII-2/W15, 413–419.

https://doi.org/10.5194/isprs-archives-XLII-2-W15-413-2019

Donghi, D. (1935).Manuale dell’architetto. Vol. 2: La composizione architettonica.

Parte II: Decorazione od estetica architettonica. UTET.

http://digit.biblio.polito.it/id/eprint/5643

Duvernoy, S. (2015). Baroque Oval Churches: Innovative Geometrical Patterns in

Early Modern Sacred Architecture. Nexus Network Journal, 17(2), 425–456.

https://doi.org/10.1007/s00004-015-0252-x

Elet, Y. (2020). Stucco as Substrate and Surface in Quattrocento Florence (and

Beyond). In A. R. Bloch & D. M. Zolli (Eds.), The Art of Sculpture in

Fifteenth-Century Italy (1st ed., pp. 283–313). Cambridge University Press.

https://doi.org/10.1017/9781108579322.019

Elsaid, M. E., Ayoub, M., & Hassan, H. (2019). Scan-to-Building Information Modelling

vs. HBIM in Parametric Heritage Building Documentation. IOP Conference

Series: Earth and Environmental Science, 397(1), 012015.

https://doi.org/10.1088/1755-1315/397/1/012015

Fenoglio, G. (1928). Il palazzo dei marchesi di barolo. Torino: Rivista Mensile

Municipale, VIII, 164–171.

89

Giuliani, F., Gaglio, F., Martino, M., & De Falco, A. (2024). A HBIM pipeline for the

conservation of large-scale architectural heritage: The city Walls of Pisa.

Heritage Science, 12(1), 35. https://doi.org/10.1186/s40494-024-01141-4

Hitech CADD Services. (2019). How revit dynamo improves BIM workflows.

https://www.hitechcaddservices.com/news/how-revit-dynamo-can-improve-

bim-workflows/

ICOMOS and ICCROM. (2023). Guidance on post‑ disaster and post‑ conflict

recovery and reconstruction for heritage places of cultural significance.

ISO 7817-1. (2024). ISO 7817-1:2024—Building information modelling—Level of

information need. https://www.iso.org/standard/78171.html

Liberotti, R., & Gusella, V. (2023). Parametric Modeling and Heritage: A Design

Process Sustainable for Restoration. Sustainability, 15(2), 1371.

https://doi.org/10.3390/su15021371

Lombardini, N., & Cantini, L. (2017). Non-standardized data in the BIM process. The

management of construction systems data in the cultural heritage

conservation. Atti Di Convegno. https://hdl.handle.net/11311/1045041

Marcello. (2022). Dynamo workflow to recreate complex geometry from imported

SAT file.

https://forum.dynamobim.com/t/dynamo-workflow-to-recreate-complex-ge

ometry-from-imported-sat-file/81912

Medina, A. (2020). Parametric modeling of vaults for Notre Dame in revit.

Migliari, R. (2009). Geometria descrittiva. Città Studi Edizioni.

Moyano, J., Carreño, E., Nieto-Julián, J. E., Gil-Arizón, I., & Bruno, S. (2022).

Systematic approach to generate Historical Building Information Modelling

90

(HBIM) in architectural restoration project. Automation in Construction, 143,

104551. https://doi.org/10.1016/j.autcon.2022.104551

Moyano, J., Gil-Arizón, I., Nieto-Julián, J. E., & Marín-García, D. (2021). Analysis and

management of structural deformations through parametric models and

HBIM workflow in architectural heritage. Journal of Building Engineering, 45,

103274. https://doi.org/10.1016/j.jobe.2021.103274

Murphy, M., McGovern, E., & Pavia, S. (2009). Historic building information

modelling (HBIM). Structural Survey, 27(4), 311–327.

https://doi.org/10.1108/02630800910985108

Natta, F. (2024).Modellazione computazionale per l’interpretazione geometrica di

sistemi voltati complessi fra teoria e realizzazione [PhD Thesis, Politecnico di

Torino]. https://hdl.handle.net/11583/2991327

Parisi, P., Lo Turco, M., & Giovannini, E. C. (2019). The Value of Knowledge Through

H-BIM Models: Historic Documentation with a Semantic Approach. The

International Archives of the Photogrammetry, Remote Sensing and Spatial

Information Sciences, XLII-2/W9, 581–588.

https://doi.org/10.5194/isprs-archives-XLII-2-W9-581-2019

pyRevit. (n.d.). pyRevit: An open-source scripting extension for Autodesk Revit.

https://github.com/eirannejad/pyRevit

Quattrini, R., Malinverni, E. S., Clini, P., Nespeca, R., & Orlietti, E. (2015). From TLS to

HBIM: high quality semantically-aware 3D modeling of complex architecture.

The International Archives of the Photogrammetry, Remote Sensing and

Spatial Information Sciences, XL-5/W4, 367–374.

https://doi.org/10.5194/isprsarchives-xl-5-w4-367-2015

91

Sanseverino, A., Messina, B., Limongiello, M., & Guida, C. G. (2022). An HBIM

Methodology for the Accurate and Georeferenced Reconstruction of Urban

Contexts Surveyed by UAV: The Case of the Castle of Charles V. Remote

Sensing, 14(15), 3688. https://doi.org/10.3390/rs14153688

Scianna, A., Gaglio, G. F., & La Guardia, M. (2020). HBIM data management in

historical and archaeological buildings. Archeologia e Calcolatori, 31(1),

231–252. https://doi.org/10.19282/ac.31.1.2020.11

UNESCO. (2003). Charter on the preservation of the digital heritage.

Van Malssen, K., Tandon, A., & Hazejager, K. (2021). The digital imperative:

Envisioning the path to sustaining our collective digital heritage. ICCROM /

AVP / NISV.

Werbrouck, J., Pauwels, P., Bonduel, M., Beetz, J., & Bekers, W. (2020).

Scan-to-graph: Semantic enrichment of existing building geometry.

Automation in Construction, 119, 103286.

https://doi.org/10.1016/j.autcon.2020.103286

Yang, X., Lu, Y.-C., Murtiyoso, A., Koehl, M., & Grussenmeyer, P. (2019). HBIM

Modeling from the Surface Mesh and Its Extended Capability of Knowledge

Representation. ISPRS International Journal of Geo-Information, 8(7), 301.

https://doi.org/10.3390/ijgi8070301

Zhao, J., Hua, X., Yang, J., Yin, L., Liu, Z., & Wang, X. (2023). A Review of Point Cloud

Segmentation of Architectural Cultural Heritage. ISPRS Annals of the

Photogrammetry, Remote Sensing and Spatial Information Sciences,

X-1/W1-2023, 247–254.

https://doi.org/10.5194/isprs-annals-X-1-W1-2023-247-2023

92

Zhao, J., Yu, H., Hua, X., Wang, X., Yang, J., Zhao, J., & Xu, A. (2024). Semantic

segmentation of point clouds of ancient buildings based on weak supervision.

Heritage Science, 12(1), 232. https://doi.org/10.1186/s40494-024-01353-8

93

Appendix
The appendices provide enlarged views of Dynamo node graphs used in the vault
construction process.
Each diagram corresponds to a specific vault type or construction stage described in
the main text, with step-by-step breakdowns of geometry creation, list management,
and family generation.

Appendix-1 VAU_ATR (Vault in Atrium)
Barrel Vault with conca end and mutiple lunette- General description

Appendix-2 VAU_ATR (Vault in Atrium)
Barrel Vault with conca end

Appendix-5 VAU_ATR (Vault in Atrium)
Lunette Vertical and horizontal (Not at corner)

Appendix-8 VAU_ATR (Vault in Atrium)
Lunette at Corner

Appendix-11 VAU_INT_1 (Vault in Intermediate position Type 1)
So-called “spherical panels built on arcs of variable shape”

Appendix-13 VAU_INT_2 (Vault in Intermediate position Type 2)
Ellipsoidal pendentive

Appendix-14 VAU_STA (Vault in staircase)
Barrel Vault with Cloister

Appendix - 1

Geometry Construction

Output to Revit FamilyParameter Input & Pre-processing

Reads existing reference geometry such as model
lines, adaptive points, or placement markers
from the project. This ensures that all subsequent
geometry construction is aligned to the actual site
conditions.

Generates base profiles and transforms
them into solids through lofting, revolving,
or patching operations. At this stage, the
geometry is still a Dynamo object, not yet
integrated into the Revit family system.

Applies family templates (e.g., floor-
hosted void) to create BIM-compatible
components. These can then be loaded into
the project for placement and interaction
with host elements.

Description: Inputs dimension values (e.g., span,
rise, radius) and computes derived values such
as midpoints, vectors, or axis directions to guide
geometry generation. This step ensures that the
geometric logic is fully parametric and adaptable.

Data inputGeneral Overview

In addition to the explanations of the four main functional
modules (Data Input, Parameter Pre-processing, Geometry
Construction, Output to Revit Family), the P1 diagram includes
a detailed enlargement of Module “Geometry Construction” to
illustrate the geometric generation process in greater depth.
This section also provides a separate table of list-processing nodes
used in the workflow. These nodes (e.g., List.Create, List.Combine,
etc.,) represent general-purpose data-handling methods applied
across all Dynamo scripts in this study.
Since their functions remain consistent throughout the workflows,
they are documented here once in P1 and will not be repeated in
the appendices for subsequent diagrams.
General Dynamo Graph Overview: VAU_ATR

Node Name
List.Create
List.Combine
List.Transpose
List.Flatten
List.GetItemAtIndex
List.FirstItem
List.LastItem
List.RestOfItems
List.Join
List.Map
List.DropLastItem

List Node used in this project
Function Description
Creates a list from multiple input items.
Applies a function across multiple lists simultaneously.
Swaps list levels to reorganise the data structure.
Flattens nested lists into a single-level list.
Retrieves a specific item from a list by index.
Returns the first element in a list.
Returns the last element in a list.
Returns all elements except the first item.
Merges multiple lists into a single list.
Applies a given function to each item in a list.
Removes the last element from a list. (Clockwork package)

Appendix - 2

This Dynamo workflow is organised into three main
functional clusters, each corresponding to a specific stage in
the generation of the intermediate vault geometry.

These planes are later used to construct multiple multi-centred arcs which are
lofted to approximate a conca-like shape forming the end of the barrel vault.
As described in Section 4.2.1 of the main text, this geometry is derived directly
from scanned point cloud data rather than typological references.

1.EllipseArc in Central Surface
Defines the central reference plane using (Vector.XAxis) and
(Vector.ZAxis), combined in (Plane.ByOriginXAxisYAxis).
C re a te s t h e m a i n e l l i p t i c a l a rc w i t h (E l l i p s e A rc .
ByPlaneRadiiAngles), driven by radius and angle parameters
from a code block.
2.Solid Barrel
Identifies the short arch curve at the vault's centre, extracts
its start and end points, and joins them into a closed

General Dynamo Graph Overview: VAU_ATR

① ②

③

PolyCurve via (PolyCurve.ByJoinedCurves).
Extrudes the polycurve into a solid using (Curve.ExtrudeAsSolid).
Together with Step 1, this sequence defines the geometric logic for
constructing the central section of the barrel vault.
3.Plane List for End Geometry Construction
Generates a set of planes using (Sequence), (Math.RemapRange), and
(Geometry.Translate), oriented by (Vector.YAxis) and (Vector.ZAxis).
Uses (Geometry.Intersect) and AxisAB to align planes for slicing and
subsequent curve generation.

Appendix - 3

4. Arc Construction on each plane
	 This step calculates the intersection points between each reference plane and the
target curves, using them as base points.
	 Two arcs are constructed on each plane: the first defined by a known centre
point, start point, and sweep angle; the second defined by a known start point, start-
point tangent, and end point.
	 Key nodes used in this step: Geometry.Intersect, Curve.PointAtParameter, Arc.ByS
tartPointEndPointStartTangent, Arc.ByCenterPointStartPointSweepAngle.

General Dynamo Graph Overview: VAU_ATR

④

Appendix - 4
General Dynamo Graph Overview: VAU_ATR

5. Solid construction of Barrel with conca
	 Manages the above curve lists to loft a surface,
patches two additional planes, and creates a list of three
surfaces without multi-level nesting.
	 Key nodes: Surface.ByLoft, Surface.ByPatch, List.
Flatten.

6. Rotate to complete the vault
	 Rotate the geometry along the central Z-axis,
flatten the list, and union all elements into a single solid.
	 Key nodes: Solid.ByJoinedSurfaces, Solid.ByUnion,
Geometry.Rotate.

⑤ ⑦

⑥

7. Create Family in the Project (Output to Revit Family)
	 This step is at last of the workflow by converting the
completed solid geometry into a floor-hosted void family. The
process assigns the family name and category, specifies the
template path, and prepares the family for placement within
the Revit project environment.
	 Key nodes: FamilyType.VoidByGeometry, Categories,
File Path, String.

Appendix - 5

This graph generates the normal (non‑corner) lunettes as
barrel‑type segments; cutting/boolean operations are performed
later in the workflow.

Note: Outputs here are pre‑cut solids representing standard barrel‑vault
lunettes. Subsequent steps perform trimming(geometry construction) and
void conversion.

1.LunetteH – Create Point
Define and position control points for horizontal lunettes.
Key nodes: Object.Identity, Geometry.Translate, Vector.ZAxis.
2.LunetteH – Edge
Build edge curves on the working plane (lines + ellipse arcs).
Key nodes: Line.ByStartPointEndPoint, Curve.PointAtParameter,
Plane.ByOriginXAxisYAxis, EllipseArc.ByPlaneRadiiAngles
3.LunetteH – Solid
Join edges and generate a provisional solid for horizontal lunette.
General Dynamo Graph Overview: VAU_ATR

Key nodes: PolyCurve.ByJoinedCurves, Geometry.Translate.
4.LunetteV – Create Point
Define and position control points for vertical lunettes (same logic as H).
Key nodes: Object.Identity, Geometry.Translate, Vector.ZAxis.
5.LunetteV – Edge
Build edge curves for vertical lunettes on the working plane.
Key nodes: Line.ByStartPointEndPoint, Curve.PointAtParameter, Plane.
ByOriginXAxisYAxis, EllipseArc.ByPlaneRadiiAngles
6.LunetteV – Solid
Join edges and generate a provisional solid for the vertical lunette.
Key nodes: PolyCurve.ByJoinedCurves, Geometry.Translate.

①

④

②

⑤

③

⑥

Appendix - 6

7. Cuttinng the normal lunette
	 Basic logic: extrude surfaces and subtract from lunette solids.
	 Real difficulty: list management. Need to handle intersecting lists with many
operations (Transpose/Filter/Merge/Combine).
	 Step uses large number of nodes. Most for data organising and alignment.

General Dynamo Graph Overview: VAU_ATR

⑦

Appendix - 7

8. Solid Cut
	 Cutting the lunettes by extruding cutting surfaces and splitting the solids. This step requires
intensive list operations to isolate, join, and rotate geometry segments before combining them into
the final cutting set.
	 Key nodes: Curve.ExtrudeAsSolid, Geometry.Split, List.FirstItem, List.LastItem, List.Join,
Geometry.Rotate, Vector.ZAxis.

9. Lunette E Void Family (Output to Revit Family)
	 This step converts the cut lunette solids into void families. The (FamilyType.VoidByGeometry)
node supports batch creation from multiple solids.
	 The index of each list item must accurately correspond to the intended solid. A string list
is manually arranged in the same order, ensuring a one-to-one mapping between solids and their
assigned family names. The category is set to Generic Models, and a predefined template path is
specified for family creation.
	 Key nodes: FamilyType.VoidByGeometry, Categories, File Path, Code Block.

General Dynamo Graph Overview: VAU_ATR

⑧

⑨

Appendix - 8

1.Point Positioning
Control points for the corner lunette are located using Object.
Identity and multiple Geometry.Translate operations, establishing
the reference positions in relation to the vault’s central axis.

2.Lunette Arch Edge
Edge curves are defined on working planes using Node(Line.
ByStartPointEndPoint), (Curve.PointAtParameter), (Plane.
ByOriginXAxisYAxis), and (EllipseArc.ByPlaneRadiiAngles). These
curves form the perimeter of the lunette arch.

General Dynamo Graph Overview: VAU_ATR

This is the most complex lunette construction due to the
stucco decorations. The structure geometry is hiding, which
makes its typology impossible to identify precisely. The shape
is approximated as a combination of half a cloister and half a
lofted surface.

①
② ③

3.Cloister Surface
Surfaces are extruded from curves (Curve.Extrude) and
processed through Geometry.Intersect and Geometry.Split
to isolate the target geometry. List.GetItemAtIndex is used to
select the correct segments for the final assembly of the lunette
surface.

Appendix - 9
General Dynamo Graph Overview: VAU_ATR

④

4.Half-Loft Arch Construction (LunetteC)
	 This stage constructs half of the lofted arch for the corner lunette. Due to the complexity of intersecting lines, defined plane shapes, and
the need for precise alignment, the workflow involves intensive list management. The process includes:

a. Intersection and Base Geometry Definition
Calculate intersections between guide curves and reference planes.
Extract and organise the intersection points into structured lists.
b. List Management for Loft Preparation
The organization of list Node(List.Transpose), (List.Combine),(List.
GetItemAtIndex) arranges cross-section curves and guide curves in the
correct sequence. Each set of curves is associated with its corresponding
reference plane.
c.Loft Generation and Edge Refinement
Generate the lofted surface using (Surface.ByLoft).
Since lofting may produce edges that are not perfectly coincident, re-extract
the side edges using (Surface.PerimeterCurves).
d.Edge Remapping for Planarity
Project or pull the extracted edges back onto the intended reference plane
using (Curve.PullOntoPlane).Replace the original edges in the surface
definition to ensure an approximately planar side boundary.

④

Appendix - 10
General Dynamo Graph Overview: VAU_ATR

⑤ ⑥

⑦5. LunetteC Edge Surface
Constructs the edge surfaces for the
corner lunette.
Multiple sets of points are created
and transposed into the correct
s e q u e n c e (L i s t . C r e a t e , L i s t .
Transpose).
Profiles are generated (PolyCurve.
By Po i nt s) , p atc h e d (S u r fa c e .
ByPatch), and lofted (Surface.
ByLoft) to form the edge surfaces.
This step involves extensive list
restructuring (List.FirstItem, List.
LastItem, List.Transpose) to maintain
correct alignment between curve
sets and surface operations.

6. Surface to Solid
Converts the assembled surfaces
into solids and prepares them for
integration.
Surfaces are combined into closed
profiles (PolyCurve.CloseWithLine,
Surface.ByPatch) and joined into
solids (Solid.ByJoinedSurfaces).
Node(List.flatten) and Node(list.
transpose) ensures proper geometric
grouping before rotation (Geometry.
Rotate) into position. The node of list
organization(mentioned in the first
page of appendix)(List.Map) applies
transformations uniformly across all
solid instances.

7. LunetteC Void Family (Output to Revit Family)
This step converts the final corner lunette solids into void families. The node(FamilyType.
VoidByGeometry) supports batch creation from multiple solids; therefore, the index of each
list item must correspond precisely to the intended solid. A manually ordered string list
ensures a one-to-one mapping between solids and their assigned family names. The category
is set to Generic Models, and a predefined template path is specified for family creation.
Key nodes: FamilyType.VoidByGeometry, Categories, File Path, Code Block.

Appendix - 11
General Dynamo Graph Overview: VAU_INT_1

1.Centre Definition
Define the central axis and reference points from adaptive
geometry.
Key nodes: Circle.ByCenterPointRadius, Geometry.Translate.

2.Diagonal Arcs
Generate arcs along diagonal planes to connect the centre with
the vault corners.
K e y n o d e s : E l l i p s e A r c . B y P l a n e R a d i i A n g l e s , P l a n e .
ByOriginXAxisYAxis.

3.Top Midline Arcs
Create arcs along the vault’s top midline, ensuring symmetry with
the central axis.
Key nodes: Arc.ByCenterPointStartPointSweepAngle, Vector.XAxis.

4.Side Boundary Arcs
Build side arcs using ellipse arcs or standard arcs, depending on
profile geometry.
K e y n o d e s : L i n e . B y S t a r t P o i n t E n d P o i n t , E l l i p s e A r c .
ByPlaneRadiiAngles.

Data input Geometry Construction

Output to Revit FamilyParameter Input & Pre-processing

①

②

③

④

Appendix - 12
General Dynamo Graph Overview: VAU_INT_1

5. List Organization
Organises multiple curve sets for surface generation. Lists are restructured to ensure the correct pairing of cross-sections and guide curves before joining
into closed profiles.
Key nodes: List.RestOfItems, List.FirstItem, List.LastItem, List.AddItemToEnd, List.Create, List.Transpose, List.Map, List.Join

6. Union and Cut
Patches closed curves into surfaces, combines all surfaces into a single solid, and repairs the geometry before applying top-face cutting operations.
Key nodes: Surface.ByPatch, Solid.ByJoinedSurfaces, Solid.Repair, Geometry.Split

7. Family create
As demonstrated in previous examples, the FamilyType.VoidByGeometry node is used here to convert the final solid geometry into a void family.
Key nodes: FamilyType.VoidByGeometry

⑤

⑥

⑦

Appendix - 13
General Dynamo Graph Overview: VAU_INT_2

Data input

Geometry Construction

Output to Revit Family

Parameter Input & Pre-processing

①

②

1.Revolved Half-Ellipsoid
Construct a half-ellipsoid by revolving an ellipse arc around its axis.
Key nodes: EllipseArc.ByPlaneRadiiAngles, Solid.ByRevolve.

2.Cutting Operations
Use planes formed by the edge curves and the Z-axis to cut the
half-ellipsoid, and apply an additional top cut.
Key nodes: Geometry.Split, Surface.ByPatch.

Appendix - 14
General Dynamo Graph Overview: VAU_STA

Data input

Geometry Construction

Output to Revit Family

Parameter Input & Pre-processing

①

②

①

1.Create Ellipse Arc
Define the elliptical profile for the vault using geometric references
and parameters for radii, start, and sweep angles.
Key nodes: List.Create, Vector.ZAxis, Line.Direction, Plane.
ByOriginXAxisYAxis, EllipseArc.ByPlaneRadiiAngles.
2.Barrel by Loft
Organise cross-section curves and guide curves via list operations,
then loft them into the main barrel surface.
Key nodes: List.GetItemAtIndex, List.Map, List.Reverse, List.Create,
List.Transpose, Curve.StartPoint, PolyCurve.ByPoints, Surface.ByLoft.
3.Cloister End
Sweep the cloister-end profile along a defined path and split it with
intersecting geometry to match vault boundaries.
Key nodes: List.Create, Surface.BySweep, Geometry.Split.
4.Base
Join base boundary curves and patch them into a planar surface.
Key nodes: List.Create, PolyCurve.ByJoinedCurves, Surface.ByPatch.
5.Solid by Joined Surfaces
Combine the barrel, cloister end, and base surfaces into a single
solid.
Key nodes: List.Join, Solid.ByJoinedSurfaces.

④

③

⑤

	1.Introduction
	1.1Research Background
	1.2Research problems
	1.3Research objectives
	1.4Scope of the research
	1.5Case study: Palazzo barolo
	1.6Structure of the thesis
	1.7Acknowledge

	2.Literature Review
	2.1Informative and geometrical modeling
	2.2From Segmentation to Modeling Strategies
	2.2.1Semantic segmentation in HBIM
	2.2.2Geometric and parametric approaches in HBIM applic

	3.Methodology
	3.1Strategies comparison: Geometric vs. Parametric
	3.2Modeling framework
	3.3Column
	3.3.1Method Evaluation and logic of proportional strate
	3.3.2Proportional Logic and Nested Family Strategy for
	3.3.3Parameters Transformation in Nested family
	3.3.4Proportional Control in Component Detail Modeling

	3.4Vault
	3.4.1Analysis of architectural geometric forms
	3.4.2Method Evaluation: Void Family vs. DirectShape
	3.4.3Hosted Family Types for Void Forms.

	3.5Railing
	3.5.1Normal railing system in standard component and in
	3.5.2Treatment of Special-Geometry Inclined Balusters

	4. Implement and Result
	4.1 Column
	4.1.1Two types Column in Atrium and Staircase
	Final Modeling Outcome

	4.1.2Modeling for column system
	Logic in column system family
	Logic in Nested family

	4.2Vault system
	4.2.1Final Modeling Outcomes and Comparative Assessment
	4.2.2Vault atrium(VAU_ATR)
	Final Modeling Outcome
	Geometric Composition
	Rib profile and Edge loft
	Classification and parametric strategy for lunette
	Batch Creation of Void lunette Families with Dynam
	Integration of Floor Hosts and Manual Cut Workflow

	4.2.3 Vault intermediate(VAU_INT)
	Final Modeling Outcome
	Geometric shape analysis
	Curve Extraction and Surface Construction
	Integration of Floor Hosts and Manual Cut Workflow
	Vault Modeling Based on Reusable adaptive Point Lo

	4.2.4Vault Staircase(VAU_STA)
	Final Modeling Outcome
	Geometric shape analysis
	Curve Extraction and Surface Construction

	4.3Railing
	4.3.1Segmented Elements By Revit system
	4.3.2Normal Baluster and Oblique Baluster
	Final modeling outcome
	Normal Baluster by revolve or sweep
	Three method of Oblique Baluster

	4.4Outcome after all

	5.Discussion
	6.Conclusion and Recommendations
	Bibliography
	Books and Reference

	Appendix

