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Abstract

One of the key challenges in vision-language models is the modality gap, which
refers to the misalignment between image and text embeddings when projected into
a shared latent space due to the inherent differences between the two modalities.
This gap poses significant challenges for tasks that rely on seamless integration of
visual and textual information, such as image-text retrieval, caption generation,
and cross-modal understanding. While previous research has explored the causes
of the modality gap and its effects on various downstream tasks, comprehensive
studies on how model architecture influences this gap remain limited.

This thesis investigates the role of model architecture in contributing to the
modality gap, with a particular focus on shared-encoder architectures, where both
images and text are processed by the same encoder network. Shared-encoder models
offer potential benefits in terms of efficiency and parameter sharing, but they also
introduce challenges related to modality-specific representations.

Building on prior work, this thesis proposes a novel method to mitigate the
modality gap within the shared-encoder architecture. The proposed approach
integrates specific loss functions and fine-tuning strategies designed to encourage
better alignment between visual and textual embeddings. The effectiveness of this
method is evaluated through extensive experiments, demonstrating its impact on
reducing the modality gap and improving performance on two critical downstream
tasks: image-text retrieval and vector arithmetic-based operations.

Furthermore, the thesis provides a comparative analysis of the shared-encoder
architecture against the more traditional dual-encoder architecture, highlighting
the strengths and limitations of each in terms of modality alignment, computational
efficiency, and downstream task performance. The findings contribute to a deeper
understanding of the modality gap in vision-language models and offer insights
into architectural choices and training strategies that can enhance cross-modal
learning.
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Chapter 1

Introduction

Humans perceive the world through multiple sensory inputs. For instance, our
eyes provide visual information about our surroundings, while our ears allow us to
localize sounds from various objects. The human brain processes these multimodal
inputs simultaneously, efficiently integrating complementary information from
different senses to enable us to perform a wide range of tasks [1].

Inspired by the brain’s multimodal processing capabilities, the deep learning
community has adopted the concept of learning from multiple modalities to tackle
diverse tasks effectively. In recent years, there has been a surge in large, pre-trained
multimodal foundation models [2], which are trained on web-scale datasets spanning
multiple modalities. These models learn versatile data representations that can
be transferred to numerous uni-modal and multimodal downstream tasks [3, 4, 5,
6, 7, 8,9, 10, 11, 12, 13, 14, 15]. This thesis focuses specifically on pre-trained
vision-language models, which are designed to learn joint representations of image
and text data.

One notable challenge in the field of vision-language models is the modality
gap. When images and text are projected into a common latent space, their
embeddings often do not align perfectly due to inherent differences in the nature
of the two modalities. The modality gap, its roots, and consequences have been
studied extensively [1, 16, 17, 18, 19, 20, 21, 22, 23]. Most analyses have focused
on CLIP-like (dual-encoder) vision-language models. However, in recent years,
a new architecture, the shared-encoder, has been introduced and employed by
vision-language models [24, 25].

This thesis aims to investigate and reduce the modality gap in the shared-encoder
architecture. Furthermore, the effect of reducing the modality gap on downstream
tasks is analyzed, followed by a comparison with the dual-encoder architecture.
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Introduction

1.1 Thesis Outlines

In Chapter 2, vision-language models and the tasks they can solve are introduced.
Next, models specifically designed for image-text tasks are categorized based on
architectures and pre-training objectives. The shared-encoder architecture is then
presented. Additionally, CLIP and VISTA are discussed as examples of dual-
encoder and shared-encoder architectures, respectively. Chapter 3 thoroughly
examines the modality gap, exploring its causes and its effects on downstream tasks.
Chapter 4 introduces the method for reducing the modality gap in the shared-
encoder architecture. Experimental results are provided in Chapter 5, including
comparisons between dual-encoder and shared-encoder architectures and discussions
on the relationship between gap reduction, retrieval, and vector arithmetic. Finally,
Chapter 6 concludes the thesis.

1.2 Contributions

To the best of our knowledge, the contributions of this thesis are as follows:

o While previous studies have explored the impact of factors such as random ini-
tialization and dataset mismatches on the modality gap, this thesis investigates
the role of model architecture in contributing to the modality gap.

o Building upon prior work, this thesis proposes a method to reduce the modality
gap in shared-encoder architectures.

o This thesis examines the effect of modality gap reduction on the performance
of shared-encoder models in tasks such as retrieval and vector arithmetic, and
provides a comparative analysis with dual-encoder architectures.



Chapter 2
Vision-Language Models

In this chapter, an overview of vision-language models is presented, focusing on
the tasks they handle, the diverse architectures employed, and the pre-training
objectives that guide their learning. Special attention is given to CLIP, one of the
most influential models in this domain. Finally, the shared-encoder architecture
(unified-encoder) is introduced, with VISTA presented as an example of this type of
architecture. Through this discussion, readers are provided with a comprehensive
understanding of key advancements in vision-language modeling.

2.1 Vision-Language Pre-trained models (VLPs)

Vision-Language (VL) research exists at the intersection of computer vision and
natural language processing (NLP), focusing on developing models that can learn
from both images and text simultaneously. Building on the success of language pre-
trained models in NLP, such as BERT [26], RoBERTa [27], GPT-3 [28], BART [29],
and T5 [30], Vision-Language Pre-trained models (VLPs) have gained significant
attention. VLPs are VL models trained on large multimodal datasets and aim to
learn representations that can be transferred to a variety of both uni-modal and
multi-modal downstream tasks. These models are designed to generalize across
tasks, leveraging their ability to understand and process both visual and linguistic
information simultaneously [31, 1].

2.2 VL Tasks

Generally, VL tasks can be formulated as y = f(z;0), where a VL model f
parameterized by 6 is trained to generate output y based on input z. From two
perspectives, VL tasks can be categorized [31].

3



Vision-Language Models

1. Based on the modalities of z and y: VL tasks can be grouped into image-text

and video-text tasks.

2. Based on how y is generated: VL tasks can be divided into understanding

(e.g. image-text retrieval) and generation (e.g. image captioning) tasks. In
the former, y is selected by f from a candidate list, and in the latter, y is
generated by f.

This thesis focuses specifically on understanding image-text tasks, which are detailed
in the following section.

2.3 Image-Text Tasks

Image-text tasks can be subdivided into several categories:

o Image-to-Text Retrieval: retrieving textual description(s) given an image as
the query. (Figure 2.1)

Text-to-Image Retrieval: retrieving image(s) given a text as the query. (Figure
2.1)

Vector Arithmetic in Multimodal Embeddings: inspired by the well-known
analogy properties of word embeddings (e.g., king - man + woman = queen),
this task explores algebraic transformations within the shared latent space of
vision-language models, specifically examining how textual modifications can
be applied to image embeddings for retrieval [20]. These transformations are
represented as delta vectors in the multimodal space. Given an image and a
corresponding text transformation query (e.g., cat to dog), the transformation
is computed as the difference between the embeddings of the two words
and subsequently added to the image embedding. The resulting modified
embedding is then used to retrieve the most similar image from a database,
ideally capturing the intended change while maintaining other visual elements.

Visual Question Answering (VQA): providing a correct answer to a question
based on an image given the question and image. The answer can be chosen
from a candidate list (multiple-choice) or it can be open-ended [32]. Figure
(2.1)

Image Captioning: generating a (single-sentence or multiple-sentence) caption
for a given image. (Figure 2.1)

Visual Reasoning: evaluating specific reasoning capabilities (e.g. spatial
understanding [33], logical reasoning [34], and commonsense reasoning [35]).
Most visual reasoning tasks are formulated as VQA [31]. (Figure 2.1)

4



Vision-Language Models

o Visual Grounding: Aligning a text query with the relevant object in an image
and predicting its bounding box. In phrase grounding (Figure 2.2), multiple
entities in the text are mapped to corresponding regions in the image, while
in referring expression comprehension (Figure 2.3), specific objects mentioned
in the text are localized with bounding boxes [31].

Image-text Retrieval (Text-to-Image Retrieval)
Text Query: A dog lying on the grass next to a frisbee

Match Not Match

Visual Question Answering Visual Reasoning
Q: What is the dog holding with its paws? Q: Is the dog in the air AND is the frisbee in the air?
A: Frisbee. A: Yes
Image Captioning (Paragraph) . .

y A - ] y Image Captioning (Single Sentence
Caption: There is a white dog lying on a grass field. There are a Cantion: A dog tries to catch a vellow, flving frisbee.
lot of leaves on the grass field. There is a chain-link fence next to P : & Y - Tlving :
the dog. There is a red frisbee under the dog’s left-front paw.

Figure 2.1: Examples of image-text retrieval, visual question answering, visual
reasoning, and image captioning. Adopted from [31].

A dog is lying on the grass next to a frisbee.

Figure 2.2: Example of visual ground- )
ing (phrase grounding). Adopted from The red frisbee next to the dog.

31
[31] Figure 2.3: Example of visual ground-

ing (referring expression). Adopted from
[31]

The tasks mentioned above have been extensively studied, leading to the devel-
opment of various models to address them. In the remainder of this section, an

5



Vision-Language Models

in-depth analysis of VLPs designed for image-text tasks is presented, focusing on
their architecture and pre-training objectives.

2.3.1 Architectures

Typically, VLPs have an architecture where image and text features are extracted
by separate encoders, an image encoder for visual features and a text encoder for
linguistic features. After extraction, these features are passed to a multimodal
fusion phase to generate a cross-modality representation. This representation is
then either passed directly to the output layer or first processed through a decoder
layer before reaching the output layer (Figure 2.4).

Image Encoder

Decoder

Multimodal :
(Optional)

Fusion

Output Layer

Abrown dog is jumping Text Encoder

Figure 2.4: General architecture of a VLP

Considering the multimodal fusion, the architectures of VLPs can be categorized
into two main types [31]:

e Dual Encoder: In this architecture, images and text are encoded separately,
and a simple cosine similarity is used to measure the intersection between
the encoded images and text, facilitating modality interaction or multimodal
fusion [31].

o Fusion Encoder: Similar to the dual encoder, images and text are encoded
separately; however, multimodal fusion is achieved through Transformer [36]
layers [31].

The dual encoder is effective for image retrieval and can produce a robust image
encoder trained from scratch. However, it is less suitable for VQA and visual
reasoning due to its limited deep multimodal fusion capabilities [31]. Conversely,
the fusion encoder demonstrates superior performance in VQA and visual reasoning
but is less effective for image retrieval, as it encodes all possible image-text pairs
to compute similarity scores [31]. See Table 2.1 for the examples of each type.

In the context of fusion-encoder methods, two key perspectives for deeper
categorization are the training procedure and the application of Transformer
[36] layers for multimodal fusion [31]. Considering the training procedure, there
are two main approaches:




Vision-Language Models

o Two-Stage Pre-training: Earlier VLP methods typically followed this approach,
where the model first relied on a pre-trained object detector to extract image
region features. In this stage, the object detector was used to identify and
describe important parts of an image, and only after this step were these
features passed on to the main model to learn the relationship between the
image and the corresponding text. This approach separates the process of
feature extraction and model learning into two distinct phases [31].

o End-to-End Pre-Training: More recent methods have adopted this approach,
where the model learns to extract image features and understand their relation-
ship with text in a single, unified process. Instead of relying on a pre-trained
object detector, these models use convolutional neural networks (CNNs) [37],
vision transformers (ViTs) [38], or image patch embeddings to directly process
the images. Since the gradients of the model can flow back through the entire
system, including the vision backbone, the model can improve its feature
extraction and relationship learning simultaneously. This end-to-end method
has led to state-of-the-art performance across major vision-language tasks, as
it enables more efficient and integrated learning compared to the two-stage
process [31]. See Table 2.1 for the examples of each approach.

Considering the application of Transformer [36] layers for multimodal fusion,
there are two main types:

o Merged Attention: Text and visual featuLLU res are concatenated and fed into
a single Transformer [36] block for joint processing [31].

o Co-Attention: Text and visual features are processed separately through
distinct Transformer blocks, with cross-attention mechanisms facilitating cross-
modal interaction. Also, it is possible to use only image-to-text cross-attention
modules [31]. See Table 2.1 for the examples of each type.

2.3.2 Pre-Training Objectives

Various pre-training objectives are used by VLPs, with the following being four of
the most popular [31].

» Masked Language Modeling (MLM): Given an image-text pair (0, w), some
tokens (e.g. m) of the text are randomly masked (,,) and then it is tried
to predict them based on the image (0) and the unmasked tokens () by
minimizing the negative log-likelihood:

EMLM(@) = _E(ﬁ),f})wD lOg Pg(wmlwm, 17) (21)
7



Vision-Language Models

VLPs
; Encoder
Fusion
Encoder
PN
3

based on training based on application

procedure of Transforms for
multimodal fusion

‘WO-Stage
Merge _
Co-Attention

Figure 2.5: Possible categories for the classification of VLPs

where 6 shows the learnable parameters and D indicates the training data
(31].

There are three variants of MLM. One of them is Seq-MLM, which modifies
the standard MLM objective by introducing a causal attention mechanism.
In Seq-MLM, when predicting a masked token, the model can only use the
tokens that precede it in the sequence. This mirrors the process of language
generation during tasks such as image captioning, where the model generates
words sequentially without knowledge of future words. By restricting the
model’s attention in this way, Seq-MLM enhances its ability to perform tasks
that require a step-by-step generation of language, aligning more closely with
real-world applications [31].

Another variant is Direct Language Modeling (LM), which differs from
MLM by focusing on generating entire sentences from scratch. In this approach,
the model is trained to produce captions by predicting each token one by
one, relying on the image and previously generated tokens. There are no
masked tokens in this process; instead, the model learns to create coherent and
contextually relevant sentences based on its training. This method effectively
teaches the model to produce new language outputs by leveraging both visual
and linguistic information [31].

Finally, Prefix-LM introduces a hybrid strategy that combines elements of
MLM and autoregressive generation. In this approach, the input sentence is

8



Vision-Language Models

Dual or Fusion Multimodal Having

Model Encoder Fusion Decoder

VILBERT [39]
LXMERT [40]
Visual BERT [41]
VL-BERT [42]
UNITER [43] Fusion Encoder No
OSCAR [44] (Two-Stage)
VILLA [45]
VinVL [46]
UNIMO [47]
VL-T5 [48]
StmVLM [12]
MDETR [49] Yes
UniTAB [50]
OFA [51]
PixcIBERT [52]
SOHO [53]
CLIP-ViL [54]
VLT [55]
Visual Parsing [56] | Fusion Encoder

GIT [57] (End-to-End)
VLMo [58)

BEIT-3 [59]
Flamingo 3] | - No-
ALBEF [60] Co-Attention

BLIP [7] (Only Image-to-Text)
CoCa [15]
METER [4]
FIBER [61]

CLIP [10]
ALICN [5]

Co-Attention

Co-Attention

Dual Encoder Cosine Similarity

Table 2.1: Classification of VLPs based on training procedure, multimodal fusion,
and having decoder. Based on [31].

split into two parts: a prefix and a remaining sequence. The model utilizes
bi-directional attention for the prefix, allowing it to incorporate context from
both the prefix and the accompanying image. However, when generating the
remaining tokens, it adopts a causal attention mechanism, ensuring that each

9



Vision-Language Models

word is predicted based only on the preceding words. This innovative structure
enhances the model’s ability to understand and generate natural language in
a way that reflects realistic writing and speaking patterns [31].

Image-Text Matching (ITM): Involves determining whether a given image
and caption correspond to each other. The model is trained to analyze pairs
of images and captions, some of which are correct matches and others are
not, and then predict which pairs go together. Many VLPs approach this by
treating the task as a simple classification problem, where the model decides
whether the pair is a match or not. To help the model understand both the
image and the text together, a special token (/CLS]) is added to the input,
which allows the model to capture a joint representation. During training, the
model is presented with both matching and non-matching pairs and learns to
predict whether they are correct matches. The model assigns a score to each
pair, indicating the likelihood of a match (p(y)), and this score is optimized
using cross-entropy loss [31]:

Lirm(0) = —E(s,5)~D [ylogp(y) + (1 —y)log(1 — p(y))] (2.2)

Image-Text Contrastive Learning (ITC): Given a batch of N pairs of image-
text, ITC aims to predict the N matched pairs from all possible ones (N?).
It is worth mentioning that ITC is used on top of the embeddings generated
by the image and text encoders, before the multimodal fusion (i.e., the use of
(w,v) instead of (w,d)). LTC is usually the average of image-to-text (L%h.)

and text-to-image (L) contrastive losses [31]:

12t T t2e T

SiG = U Wy, 817 = W; v
_ 1N exp(s 12t/0.)
L2 =——Y log
He N ; Sl exp(si /o) (2.3)
' 1 X exp( t2z/0_)
LA =——Y log
e = TN L ST e o)

where o is a learned temperature hyper-parameter. Also, {v}¥, and {w}¥,
indicate the normalized image vectors and text vectors in a batch, respectlvely.

Masked Image Modeling (MIM): Given an image-text pair (0,w), some parts
of the image (e.g. m) are randomly masked (7,,) and then it is tried to predict
them based on the text (w) and the remaining parts of the image (05) by
minimizing the negative log-likelihood [31]:

EMLM(@) = —E(wi,),\,D lOg Pg('ljm|’ﬁm, 11)) (24)
10



Vision-Language Models

There are different approaches for masking parts of an image in VLPs. Models
that rely on object detectors for image feature extraction divide the image into
regions, and the features from some random regions are masked by replacing
them with zeros. These models are then trained to reconstruct the original
features by minimizing the mean squared error. In some cases, labels are
generated for the regions, and the models are trained to predict the labels
rather than reconstruct the original region features [31].

On the other hand, end-to-end VLP models work with image patches for
masking. For example, DALL-E [62] uses VQ-VAE [63] to convert image
patches into discrete tokens. First, the image is divided into patches, and each
patch is assigned a discrete token. Some tokens are randomly masked, and the
model is trained to predict the missing tokens. Additionally, some models use
in-batch negatives for masked patch reconstruction. In this approach, each
image in a batch is divided into patches, creating a pool of candidate patches.
The model is trained to select the correct patches for each masked region from
this candidate pool [31].

In this thesis, the retrieval task is addressed through the use of Dual Encoder
architectures. Specifically, well-established CLIP-like architectures are utilized,
where contrastive pre-training is employed to align visual and textual representations
in a shared embedding space.

2.4 CLIP model

Contrastive Language-Image Pre-training (CLIP) [10] is a dual-encoder vision-
language model that leverages image-text contrastive learning (ITC) to maximize
the similarity between an image and its corresponding caption while minimizing the
similarity between unrelated images and captions. Given N image-text pairs, CLIP
constructs an N x N matrix, where (7,j)-th element represents the similarity between
the i-th image and the j-th caption. The model is trained to identify true image-text
pairs from this matrix. CLIP jointly trains image and text encoders to learn a shared
image-text embedding space. It uses a modified Transformer [36] network as the
text encoder and supports different variants of ResNet [37] or Vision-Transformer
[38] as the image encoder. Each encoder is equipped with a linear projection
head that maps image and text representations into the shared embedding space.
Notably, the embeddings of both images and text are l,-normalized confining the
joint embedding space to a unit hypersphere.

CLIP has redefined the possibilities of AI by demonstrating exceptional per-
formance in a vast array of visual tasks. Its robust embedding space not only
aligns text and image modalities seamlessly but also empowers it to excel in diverse
downstream applications. From accurately classifying images into unseen categories

11



Vision-Language Models

[64] and retrieving images based on textual descriptions [65] to precisely segmenting
objects [66] within scenes, CLIP’s versatility is truly remarkable. It has even
ventured into the realm of object detection [67], video understanding [68], depth
estimation [69], and creative tasks like image captioning [70] and visual question
answering [54]. This groundbreaking model has reshaped the landscape of computer
vision, opening up new avenues for innovation and problem-solving.

Pepper the \‘
; Text
aussie pup —> e
Y Y Y Y
T T, T3 Tn

—> L LT | LTy | LTy | o | I'Tn
—>» I LT | LTy LTy | .. |ITn

Image
— I I3+T; | 3Ty | I3T I3 T,
s —>» I3 374y | 43l | 430l 3"IN
—> Iy INTy | INTy | INT3 | . | INTy

Figure 2.6: Contrastive Pre-Training. Adopted from [10]

2.5 From Dual-Encoders to Unified-Encoder

The human brain, a key inspiration for neural networks, exhibits remarkable parallel
processing capabilities. It seamlessly integrates information from various senses
(vision, hearing, touch, etc.) concurrently. Moreover, knowledge acquired in one
domain can significantly improve understanding in others. In contrast, current
deep-learning perception models are constrained by inductive biases and specific
assumptions. They are typically designed for individual modalities and lack gener-
alizability across different sensory inputs. For instance, image processing models
effectively leverage the 2D grid structure of images, employing 2D convolutional
operations. However, this specialized architecture cannot be readily applied to
process text data, which exhibits a fundamentally different structure.

Recent advancements have seen the emergence of models capable of processing
diverse modalities with a unified approach. These models typically involve a
preprocessing step to adapt data from different sources (vision, text, audio) into
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a suitable format, followed by a shared architecture for representation learning.
For example, Perceiver [71] initially converts data into a byte array through a
preprocessing step. Subsequently, a Transformer-like [36] architecture learns a
latent representation of this processed data. Data2Vec [72] utilizes a modality-
specific preprocessing step (such as converting images into a sequence of patches)
and then employs a teacher-student framework based on Transformers [36]. In this
framework, a teacher model generates representations of the complete input, while
a student model learns to predict these representations using a masked portion of
the input. Meta-Transformer [73] also adopts a modality-specific data-to-sequence
tokenization step. This tokenized data is then fed into a shared Transformer-based
[36] encoder for learning a latent representation across different modalities.

Vision-Language Pre-trained models (VLPs) typically employ separate encoders
for vision and text, often with an additional encoder for multimodal fusion (for
details, see Section 2.3.1). This conventional architecture presents two key limi-
tations. Firstly, it necessitates extensive training data. For instance, CLIP [10]
was trained on 400 million image-text pairs, while ALIGN [5] and SimVLM [12]
required approximately 1 billion pairs. Secondly, these models often exhibit a
substantial number of parameters. FLAVA [11], for example, has 437 million pa-
rameters, while FLAMINGO [3] boasts 4.6 billion. These limitations result in high
computational resource demands and prolonged training times. Recent research
has explored the use of unified encoders to address these challenges. MoMo [24],
for instance, converts both text and images into tokens and patches, subsequently
feeding them into a shared encoder. It incorporates a unique three-stage training
procedure, enabling it to learn representations from text-only, image-only, and
combined text-image inputs. VISTA [25] represents another approach, utilizing
a unified encoder to process text tokens alongside hidden states extracted from
image tokens. This architecture allows for the generation of representations for
text-only, image-only, and text-image inputs.

2.5.1 VISTA

The VISTA model is designed to integrate a Vision Transformer (ViT) [38] encoder
as an image tokenizer into a pre-trained text encoder, enabling it to process
text, images, and multi-modal data efficiently. The text encoder, based on a
pre-trained BERT model, serves as the foundation for text embedding and remains
frozen during the training process to maintain its strong text retrieval capabilities.
Meanwhile, ViT acts as an image tokenizer, converting images into sequences of
visual tokens, which are then fed into the text encoder. This design allows the
model to incorporate image representations while preserving the structure of text
embeddings.

The encoding process in VISTA follows a structured approach for different types
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of data. For text encoding, the model directly tokenizes a given text sequence
and passes it through the pre-trained BERT encoder, generating a corresponding
text embedding (Figure 2.7c). For image encoding, the input image is divided into
patches, which are processed by the ViT encoder to produce image tokens. These
tokens are then fed into the text encoder, ensuring compatibility between text
and image representations (Figure 2.7a). When encoding composed image-text
data, the image tokens and text tokens are concatenated into a single interleaved
sequence and jointly processed by the text encoder, producing a unified multi-modal
embedding (Figure 2.7b). This method ensures seamless integration of text and
visual information within a common embedding space.

[ Pre-trained Text Encoder ] [ Pre-trained Text Encoder ] [ Pre-trained Text Encoder ]
~CGmsrmia>
[ ViT Encoder ] [ Text Tokenizer ] [ ViT Encoder ] [ Text Tokenizer ] [ ViT Encoder ] [ Text Tokenizer ]
Image Image Text Text

(a) The input is just image (b) The input is image-text (c) The input is just text
pair

Figure 2.7: The way that the VISTA [25] encodes the input. It is worth mentioning
that ViT [38] operates as a tokenizer for the image
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Chapter 3

Modality Gap

In this chapter, the concept of the modality gap in vision-language models is
explored, with a focus on its causes, consequences, and implications. The causes
of the modality gap are discussed, stemming from fundamental differences in how
visual and linguistic data are represented in a shared latent space. Its consequences
are then examined, emphasizing the impacts it creates for downstream tasks such
as retrieval, classification, and vector arithmetic. Through this discussion, a deeper
understanding of the modality gap and its significance in multimodal learning is
provided.

3.1 What is modality gap

The modality gap refers to the significant disparity in the way that vision language
models (VLMs) represent information from different modalities (images and text).
Essentially, the models struggle to align the semantic meanings of visual and textual
data within a shared embedding space. Visual and textual representations often
occupy separate clusters or regions within the model’s embedding space, hindering
direct comparisons and cross-modal interactions [1, 18, 17, 23, 22].

To demonstrate the modality gap, the embeddings of images and their corre-
sponding captions from the MSCOCO [74] validation set, generated by various
models are visualized in Figure 3.1 using UMAP [75]. The models include:

o ALBEF: it employs a dual-encoder architecture that aligns image and text
representations before fusing them. It utilizes three main pre-training objec-
tives including an image-text contrastive loss to ensure alignment, a matching
loss for better representation of paired data, and a masked language modeling
task to enhance text understanding [60].

o ALIGN: it features a dual-encoder setup consisting of EfficientNet [76] for
15
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image processing and BERT [26] for text representation. It is trained on a
massive dataset of noisy image-text pairs, leveraging self-supervised learning.
The primary pre-training objective focuses on contrastive learning, which
allows the model to learn robust embeddings [5].

o CLIP: it is a dual-encoder vision-language model that leverages image-text
contrastive learning to maximize the similarity between an image and its
corresponding caption (more details are provided in Section 2.4).

o CyCLIP: it enhances the original CLIP [10] model by introducing cyclic
contrastive learning. Its architecture includes separate encoders for images
and text, similar to CLIP, but adds cycle consistency constraints that enforce
geometric alignment between embeddings across modalities [77].

« FLAVA: it follows a tri-branch transformer architecture integrating both
unimodal and multimodal encoders—specifically Vision Transformers [38]
for images and BERT [26] for text. Its pre-training objectives are diverse,
combining contrastive learning for alignment and generative tasks to enhance
understanding across modalities [11].

« ImageBind: it is designed to create a shared embedding space for six modalities:
image, text, audio, depth, thermal, and IMU data. Its architecture revolves
around using images as a pivot for binding these diverse modalities together.
The pre-training objective focuses on cross-modal retrieval without requiring
paired data beyond images [78].

» VISTA: The VISTA model is designed to integrate a Vision Transformer (ViT)
[38] encoder as an image tokenizer into a pre-trained text encoder, enabling
it to process text, images, and multi-modal data efficiently (more details are
provided in Section 2.5.1).

Image and text embeddings are found to be distinctly separated in the shared
multi-modal space. This finding is unexpected given the typical behavior of VLMs
trained with contrastive loss. Contrastive loss aims to bring embeddings of paired
images and texts closer together in the embedding space, while simultaneously
pushing embeddings of different image-text pairs further apart. However, the
observed behavior deviates from this expected pattern.

Moreover, Figure 3.2 highlights the modality gap. Since MSCOCO [74] does
not provide positive examples for images, the images are grouped into classes
based on shared objects—i.e., images containing the same objects are placed in
the same class. This process results in 438 classes, each containing at least two
images. Two images and their corresponding captions are selected from each class,
and the cosine similarities among text-text, image-image, and image-text pairs
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Figure 3.1: UMAP [75] visualization of generated embeddings from pre-trained
models on MSCOCO [74] validation split.

are analyzed. Despite the models being explicitly trained to maximize paired
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image-text cosine similarities, the image-text similarities remain significantly lower
than the text-text and image-image similarities (VISTA [25] is an exception). This
observation indicates that the image and text embeddings reside in distinct regions
of the shared multi-modal embedding space.
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Figure 3.2: Visualization of cosine similarities of the generated embeddings from
pre-trained models on MSCOCO [74] validation split.

In addition to the charts, quantitative metrics can also be used to measure the
modality gap. One of the metrics introduced by [17] defines the modality gap as
the difference between the center of image embeddings and text embeddings

1 n

1 n
- ; - ; y (3.1)
where x; and y; are the L2-normalized image embedding and text embedding. This
metric is named Centroids Difference (CD) in the rest of the thesis.
Another metric is Central Moment Discrepancy (CMD) [79], which measures the
distributional difference between two feature sets by comparing their higher-order
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moments. CMD is widely used in domain adaptation, where the objective is to align
the feature distributions of a source domain and a target domain. It iteratively
computes discrepancies for each moment, starting from the first moment (mean)
and proceeding to higher-order moments such as variance, skewness, and kurtosis.
Formally, given two feature sets—source (S) and target (7)—CMD calculates the
difference between their corresponding central moments up to a specified order and
sums these differences to obtain the final value.

E_:l 1" (S) = " (T)]2 (3-2)

where " indicates the n-th order central moment. By summing the discrepancies
across multiple moments, CMD captures differences in both the central tendency
and the shape of the distributions.

In vision-language models, the embeddings of images and text are mapped into
a shared latent space. There is usually a modality gap in the latent space, and the
resulting distributions of image embeddings and text embeddings often do not align
perfectly. CMD can be adapted to quantify the modality gap by treating the image
embeddings as one domain and the text embeddings as another. CMD measures
the discrepancy between the distributions of the embedding sets, providing a metric
for how well-aligned the two modalities are in the shared space.

The two metrics are computed for some pre-trained models based on their
generated image and text embeddings on the validation split of MSCOCO [74] and
are shown in Table 3.1.

Model CMD | CD
ALBEF 1.1 1.05
ALIGN 0.98 |0.96
CLIP_RN50 | 0.87 | 0.82
CLIP_ViT 0.86 | 0.82
CyCLIP 0.87 | 0.87
FLAVA 0.83 | 0.81
ImageBind 0.71 0.7
VISTA 0.44 | 0.44

Table 3.1: Central Moment Discrepancy (CMD) and Centroids Difference (CD)
computed for some pre-trained models based on their generated image and text
embeddings on the validation split of MSCOCO [74]
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3.2 Causes of modality gap

The causes of the modality gap have been a subject of considerable debate in the
literature. According to [17], the modality gap exists at the model’s initialization
due to the Narrow Cone Effect, and the contrastive loss commonly employed
by vision-language models maintains this gap throughout training. The narrow
cone effect occurs because the encoder’s effective embedding space is confined to
a cone-shaped subregion of the overall embedding space, a consequence of the
model’s random initialization and non-linear activation functions. Furthermore,
[17] identifies two key factors influencing the modality gap in relation to contrastive
loss: temperature settings and data mismatches. High temperatures facilitate a
more effective reduction of the gap, whereas low temperatures, combined with data
mismatches, contribute to sustaining the gap. While [1] supports the notion that
higher temperatures reduce the modality gap, it argues that the impact of data
mismatches does not hold under all circumstances.

In contrast, [18] attributes the modality gap primarily to the contrastive loss
function’s dual objectives: alignment and uniformity. The alignment objective
aims to increase the similarity between paired image-text embeddings by bringing
them closer in the latent space, whereas the uniformity objective pushes apart
negative pairs from different modalities without ensuring consistent spacing within
each modality. The inherent tension between these two goals creates local minima,
leading to the separation of modalities. Their experiments confirm that the
contrastive loss naturally induces such local minima, making it difficult for the
model to bridge the gap during training.

On a different note, [16] contends that even if the modality gap does not exist
at initialization, contrastive loss can still induce it. They propose modifying the
contrastive loss by incorporating alignment and uniformity properties from unimodal
contrastive frameworks into the multimodal setting. By adding these enhanced
terms, the embeddings are distributed more evenly across the representational space,
effectively mitigating the modality gap. Additionally, [31] suggests that achieving
high alignment and uniformity is essential for optimal loss function performance.

3.3 Consequences of modality gap

Intuitively, it might be expected that minimizing the distance between image
and text embeddings (the modality gap) in multimodal models would enhance
performance on downstream tasks. However, research has shown a more nuanced
picture. While modifying the modality gap can improve performance on downstream
tasks (e.g. classification), as demonstrated by [17], the optimal gap size and the
direction of change are not always clear. [19] observed that CLIP’s embedding
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space displays a noticeable separation between image and text representations,
resulting in suboptimal alignment and uniformity. Although the study does not
explicitly address the modality gap, it demonstrates that improving alignment and
uniformity enhances the model’s capacity to transfer knowledge across modalities,
thereby boosting performance in downstream tasks such as retrieval, classification,
and captioning. Further, [16] discusses how the modality gap negatively impacts
downstream tasks like image classification, retrieval, and vector arithmetic [20].
Meanwhile, [21] highlights that reducing the modality gap can enhance cross-modal
transferability. However, several studies, including [22] and [1] have highlighted
that simply closing the modality gap may not consistently improve downstream
performance (e.g. classification, retrieval, and vector arithmetic) and can even be
detrimental in certain cases. These findings suggest that the relationship between
the modality gap and downstream performance is complex and requires further
investigation.

Figure 3.1 illustrates that VISTA [25], as a single-encoder architecture with
shared parameters across modalities, exhibits distinct behavior. Meanwhile, Figure
3.2 shows that the cosine similarities between image-text pairs in VISTA are nearly
identical to those of text-text pairs. Additionally, Table 3.1 indicates that VISTA
demonstrates a smaller modality gap compared to dual-encoder models. These
observations suggest that modality gap reduction may have different implications for
shared-encoder architectures than for dual-encoder ones. Therefore, the extent to
which modality gap reduction benefits these two types of vision-language pretraining
(VLP) models is analyzed in this thesis, with a particular focus on cross-modal
retrieval and vector arithmetic [20].
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Chapter 4

Methodology

In this chapter, the methodology designed to address the modality gap in vision-
language models is presented, with a focus on its impact on downstream tasks.
Building upon prior works, where specific loss functions [16] or fine-tuning strategies
[80] were explored individually on dual encoder architecture i.e. CLIP [10], an
innovative combination of these techniques is proposed and applied on the unified
(shared-encoder) architecture. Specifically, tailored loss functions are integrated
with fine-tuning strategies and applied to VISTA [25]. The impact of combining
these approaches on the modality gap, and downstream tasks, including retrieval,
and vector arithmetic [20], is evaluated. Additionally, to ensure a fair comparison
between dual-encoder and shared-encoder architectures, the same pipeline is applied
to CLIP [10].

4.1 Tailored Loss Functions

Uniformity refers to the property of embeddings being evenly distributed across the
contrastive latent space. In contrast, alignment describes the closeness of positive
pairs within the latent space [16].

The authors of [16] conducted a controlled experiment to indicate the modality
gap arises not from differences between modalities but as an inherent consequence of
contrastive learning itself. In another experiment, they reduced CLIP’s embedding
space to three dimensions to visualize how embeddings evolve during training.
Initially, the embeddings form distinct clusters within separate cones. As training
progresses, they transition into arcs, then rings, and eventually disperse across the
sphere. The authors argue that in higher-dimensional spaces, embeddings fail to
distribute uniformly and remain misaligned, contributing to the contrastive gap.

To address this, the authors fine-tune CLIP by incorporating explicit uniformity
and alignment terms into the contrastive loss. Their results demonstrate that this
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fine-tuning significantly mitigates the contrastive gap.

According to [81], uniformity and alignment are desirable characteristics in uni-
modal contrastive representational spaces, and models exhibiting high uniformity
and alignment tend to perform better on downstream tasks. [16] extends the con-
cepts of uniformity and alignment to the multimodal contrastive space. Specifically,
it enforces uniformity through two terms: in-modality uniformity (L yngform) and
cross-modality uniformity (Lxuniform,)-

The in-modality uniformity term encourages uniformity among embeddings
within each modality, while the cross-modality uniformity term enforces uniformity
among negative image and text samples. The in-modality uniformity loss is defined
as follows:

Lo T
LUniform = i(LUniform + LUniform) (41)

where L{; .. promotes uniformity among image embeddings and is given by:

Horn =108 ( 132 32 0 (21 — E{J)
Uniform — 108 N == exXp g k

Where Ej is the image embedding of the j pair and N indicate the size of a batch.
A similar term can be defined for text embeddings. The cross-modality uniformity
term is expressed as:

1 XX 2
LxUniform = log N Z Z exXp (‘2 HEJI - EkTH ) (4.2)
A

Where E}T is the text embedding of the k% pair. Additionally, [16] introduces a
term to improve the alignment of positive image-text pairs:

Ltin = — fj (HE] . ETH2> (4.3)
Align — Nj:1 j j .

Using the three terms, [16] proposes two new loss functions:
LCUA - LC’LIP + LUniform + LAlz'gn (44)

Levaxv = Leva + Lxuniform (4.5)

Here, Lorrp corresponds to the same objective defined in Formula 2.3. In this
thesis, these two loss functions are employed along with fine-tuning strategies
(explained in Section 4.2) and applied on the unified architecture to examine their
effects on the shared embedding space and, consequently, on downstream tasks.
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4.2 Fine-Tuning Strategies

A common strategy for learning image embeddings involves leveraging a large,
well-curated dataset of labeled datasets. The combination of extensive scale
and high-quality annotations enables the development of state-of-the-art image
embeddings. However, this approach has a fundamental limitation: it is restricted
to a predefined set of categories, meaning the resulting models can only reason
about those specific classes.

In contrast, image-text data does not suffer from this constraint, as it learns
from free-form text that encompasses a much wider range of real-world concepts.
Nonetheless, the quality of available image-text data may be lower for training
image embeddings compared to meticulously curated datasets.

[80] introduce contrastive tuning to leverage both labeled image data and image-
text data by initializing contrastive pre-training with an image model already
trained on cleaner, labeled data. This allows image-text alignment to be learned
independently of image embeddings, benefiting from both data sources. The
approach is flexible enough to integrate various pre-trained models, including self-
supervised ones, to produce meaningful representations. A similar strategy can
also be applied to text encoders, utilizing powerful pre-trained models that rely on
text-specific data and learning techniques.

Contrastive tuning requires several key design decisions. First, the model
components handling different modalities (e.g., image and text) can either be
randomly initialized or derived from a pre-trained model. For pre-trained models,
there are at least two main approaches: keeping them entirely frozen or allowing full
fine-tuning. Additionally, various intermediate strategies exist, such as selectively
freezing specific layers or applying customized learning rates.

Following [80], this thesis adopts a two-character notation to represent design
choices. Each character corresponds to the configuration of the image model
and text model, respectively. There are two settings: L (locked/frozen weights,
initialized from a pre-trained model) and U (unlocked/trainable weights, also
initialized from a pre-trained model).

For CLIP [10], four distinct fine-tuning strategies are explored:

1. LL: Both the image and text encoders remain frozen (Figure 4.1a).

2. LU: The image encoder is frozen, while the text encoder is fine-tuned (Figure

4.1b).

3. UL: The text encoder remains frozen, whereas the image encoder is fine-tuned
(Figure 4.1c).

4. UU: Both the image and text encoders are fine-tuned (Figure 4.1d).
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In all configurations, models are initialized with pre-trained weights, and the
projection layers are always fine-tuned.

[ Loss Function (i.e. Ld,p cua OF Leyaxu) ’ [ Loss Function (i.e. Ld,p cua OF Leuaxu) ’
(a) LL setting (b) LU setting

‘ Loss Function (i.e. Leiip, Leua OF Leuaxu) ’ ‘ Loss Function (i.e. Leip, Leua OF Leuaxa) ’
(c) UL setting (d) UU setting

Figure 4.1: Different settings for the fine-tuning of the CLIP [10]. The blue color
means the component is Locked (frozen), while the red one means the component
is (Unlocked) going to be fine-tuned.

Similarly, fine-tuning settings are defined for VISTA [25]. However, the LL
configuration is not applicable, as the architecture lacks projection layers (Figure

e i i

(a) LU setting (b) UL setting (c) UU setting

Figure 4.2: Different settings for the fine-tuning of the VISTA [25]. The blue color
means the component is Locked (frozen), while the red one means the component
is (Unlocked) going to be fine-tuned.
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Chapter 5

Experiments

The experiments conducted in this work aim to evaluate the impact of the modality
gap in shared-encoder architectures across downstream tasks, including retrieval
and vector arithmetic, using well-established datasets. This chapter provides an
overview of the downstream tasks, the datasets employed, the experimental setup,
and the results obtained.

5.1 Downstream Tasks

This thesis evaluates and compares the impact of different fine-tuning strategies and
loss functions on dual-encoder and shared-encoder architectures through observing
their performances on two downstream tasks: image retrieval and vector arithmetic.

o Image Retrieval: is a fundamental vision-language task that assesses the
alignment between visual and textual representations. This study considers
both image-to-text and text-to-image retrieval scenarios, evaluating retrieval
performance at ranks 1, 5, and 10.

o Vector Arithmetic in Multimodal Embeddings: applies textual transformations
to image embeddings for retrieval by adding a delta vector derived from word
differences (e.g., cat to dog). Key parameters include A for scaling the delta
vector and N for the number of nearest neighbors in retrieval, both set to 1 in
the experiments.

5.2 Datasets

In this thesis, three datasets—Microsoft Common Objects in Context (MSCOCO)
[74], Conceptual Captions [82], and SIMAT [20]—were utilized for experimental
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purposes. The first two datasets supported contrastive fine-tuning and image
retrieval tasks, whereas SIMAT was solely employed for vector arithmetic analysis.

e MSCOCO: is a large-scale dataset designed for multiple computer vision
applications, including object detection, segmentation, and image captioning.
Each image in this dataset is accompanied by five descriptive captions. The
2017 version of MSCOCO was used in this study.

o Conceptual Captions: consists of over 3.3 million image-caption pairs sourced
from the web. Unlike MSCOCO, where captions are manually annotated,
this dataset features automatically generated captions derived from image
metadata, with a single caption assigned to each image. Due to its scale
and diverse linguistic variations, it is particularly beneficial for large-scale
vision-language pre-training. For this research, a random subset of 100,000
images with their corresponding captions was selected as a benchmark dataset.

o SIMAT: is specifically designed for examining vector arithmetic in multimodal
embeddings. It provides a structured collection of image and text embeddings,
facilitating an in-depth study of relationships between these representations
through algebraic operations. This dataset enables the investigation of how
the modality gap influences vector arithmetic and allows for the evaluation
of different loss functions in improving cross-modal consistency. By leverag-
ing SIMAT, this thesis explores whether enhanced alignment leads to more
semantically meaningful vector transformations within multimodal spaces.

5.3 Experimental Setup

In all experiments, the ViT-B/32 version of CLIP [10] and the BAAI/bge-base-en-
v1.5 version of VISTA (with mean pooling) were fine-tuned for 10 epochs with a
batch size of 128 using the AdamW optimizer [83] (learning rate = 5 x 1075, eps =
1 x 1078, and weight decay = 0.1) and a cosine learning rate scheduler [84]. The
experiment code was implemented in PyTorch, and all experiments were conducted
on an NVIDIA RTX 2080 Ti GPU.

5.4 Results

This section examines the impact of fine-tuning strategies and loss functions
on downstream task performance. First, it analyzes the effectiveness of various
strategies and loss functions in enhancing retrieval performance and reducing the
modality gap. Next, it explores the relationship between retrieval performance and
the modality gap. Additionally, a similar analysis is conducted to investigate the
relationship between the modality gap and performance on the vector arithmetic.
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5.4.1 Retrieval and Modality Gap

The retrieval results of fine-tuned models with L, using different strategies are
reported in Table 5.1. The findings indicate that LU is the most effective strategy
when combined with Ly, for improving retrieval performance. The difference
between LL and LU in CLIP is minimal in terms of T—I (R@1 and R@5) on the
Conceptual Captions, making their performance nearly equivalent.

This is particularly interesting because [80] previously suggested that locking
the image encoder while tuning the text encoder is the best strategy for CLIP
(a dual-encoder architecture). Here, it is observed that the same strategy is also
optimal for VISTA (a shared-encoder architecture).

Another notable finding is that in the text-to-image zero-shot setting, VISTA
slightly outperforms CLIP (except in R@10 on MSCOCO), whereas CLIP demon-
strates significantly better performance in the image-to-text zero-shot setting. This
discrepancy can be attributed to VISTA’s use of a text encoder as its backbone,
which may be less effective at processing images compared to CLIP’s more robust
visual encoder, potentially leading to difficulties in capturing all relevant features.

A similar analysis was conducted for Locya and Leoyaxy, with results provided
in Appendix A. The results for L, are presented here because models fine-tuned
with this loss function outperform those fine-tuned with other loss functions.

To study the effects of fine-tuning on the modality gap and its relationship with
retrieval performance, the retrieval performance of the LU strategy (identified as
the best strategy) across different loss functions is compared to the modality gap
in Table 5.2. The results indicate that Lcya and Leoyaxu are both highly effective
in reducing the modality gap. Models fine-tuned using these two loss functions
exhibit a significantly lower modality gap compared to those fine-tuned with Leyp,
with Loua consistently achieving the minimal gap. However, the best retrieval
performance is obtained with Lgj;,. This finding suggests that reducing the modality
gap and retrieval performance are inversely related, regardless of the architecture.
One possible explanation for this inverse relationship is that modality-specific
features in the image and text embeddings contribute to retrieval performance.
When the modality gap is reduced by bringing image and text embeddings closer
together, these modality-specific features may be eliminated, potentially affecting
retrieval effectiveness.

5.4.2 Vector Arithmetic and Modality Gap

The SIMAT scores of fine-tuned models using different loss functions and strate-
gies and their corresponding modality gaps are presented in Table 5.3 and 5.4,
respectively.

The findings reveal a positive correlation between reducing the modality gap
and improving SIMAT scores. Notably, Lcya and Leyaxuy effectively minimize the
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MSCOCO Conceptual Captions

Ra@1 R@5 R@10 R@1 R@5 R@10

Text to Image
CLIP | LL | 0.4038 0.6797 0.7860 | 0.3895 0.6374 0.7276
LU | 0.4175 0.7012 0.8030 | 0.3856 0.6349 0.7322
UL | 0.3799 0.6603 0.7680 | 0.3028 0.5419  0.6393
UU | 0.3910 0.6816  0.7898 | 0.3012 0.5466  0.6449
ZS™ | 0.3082 0.5504 0.6620 | 0.3255 0.5527  0.6454
VISTA | LU | 0.4725 0.7482 0.8360 | 0.4273 0.6676 0.7460
UL | 0.4001 0.6852 0.7885 | 0.2910 0.5283  0.6216
UU | 0.3954 0.6869 0.7954 | 0.2906  0.5240 0.6254
ZS" | 0.3201 0.5743 0.6048 | 0.3547  0.5673 0.65
Image to Text
CLIP | LL | 0.5334 0.7348 0.8168 | 0.3937 0.6370 0.7265
LU | 0.5608 0.7696 0.8490 | 0.3954 0.6502 0.7392
UL | 0.4682 0.6888 0.7896 | 0.3024 0.5391  0.6357
UU | 0.5068 0.7144  0.8094 | 0.3014 0.5469  0.6505
7ZS" | 04674 0.6662 0.7554 | 0.3517 0.5771  0.6688
VISTA | LU | 0.5842 0.7816 0.8608 | 0.4043 0.6480 0.7339
UL | 04734 0.6938 0.7948 | 0.2754 0.5025 0.6043
UU | 0.4954 0.7188 0.8180 | 0.2727 0.5161 0.6161
7S | 03054  0.495  0.6048 | 0.2938 0.5014  0.5820

Table 5.1: Retrieval results of CLIP [10] and VISTA [25] on MSCOCO [74]
and Conceptual Captions [82] datasets. Fine-tuned using L. ZS" stands for
Zero-Shot, indicating that it has not been fine-tuned. The best performance of
each model is bold.

gap while enhancing the SIMAT score, particularly for CLIP, which improves from
a zero-shot score of approximately 16 to around 45. This improvement may be
attributed to the inherently high modality gap in CLIP due to its dual-encoder

architecture (see Appendix B.1). Thus, reducing the gap significantly improves its
SIMAT score.

In most strategies (except for UL of VISTA on Conceptual Captions), the best
score and gap are achieved with these two loss functions. However, the highest
score and the smallest gap do not coincide, indicating a limit to gap reduction.
For instance, CLIP’s minimum gap of 0.02 (LU strategy on Conceptual Captions)
results in a score of 36.7420, significantly lower than its highest score of 45.4611
(UU strategy on MSCOCO). This disparity is even more notable for VISTA, where
the minimum gap of 0.05 (UU strategy on Conceptual Captions) corresponds to
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Experiments

MSCOCO
Letip Leua  Levaxu 2SS
CLIP (LU) T—l@Ql 0.4175 0.3830 0.3954 0.3082

[—»Ta@1l 0.5608 0.5188 0.5384 0.4674
Modality Gap | 0.80 0.05 0.14 0.82
VISTA (LU) T—la1 0.4725 0.4362 0.4467 0.3201

[—»T@1l 0.5842 0.5416 0.5682 0.3054
Modality Gap | 0.30 0.18 0.22 0.44
Conceptual Captions
CLIP (LU) T—lal 0.3856 0.3394 0.3470 0.3255

[-Ta@1l 0.3954 0.3780 0.3807 0.3517
Modality Gap | 0.60 0.02 0.03 0.81
VISTA (LU) T—l@l 0.3954 0.3872 0.4028 0.3547

[-Ta1l 0.4043 0.3881 0.3956 0.2938
Modality Gap | 0.24 0.14 0.16 0.35

Table 5.2: Modality Gap vs. Retrieval: The retrieval performance of the LU
strategy across different loss functions is compared to the modality gap to examine
the relationship between retrieval effectiveness and the modality gap.

scores of 12.3750 and 34.1871, both below the zero-shot score (44.27793).

The results suggest that the optimal fine-tuning strategy for CLIP in the vector
arithmetic task is UU, offering a near-optimal balance with a score of 45.4273 and
a gap of 0.03 compared to the highest score (45.4611) and lowest gap (0.02). For
VISTA, the LU strategy (similar to retrieval) yields the highest score (48.9935)
with an acceptable gap of 0.18, relative to the minimum possible gap of 0.05. In
both cases, Lcuya emerges as the most effective loss function. Additionally, dataset
selection is crucial in fine-tuning, as Conceptual Captions, with fewer and less
diverse captions compared to MSCOCO (one caption per image versus five), enables
greater modality gap reduction that is less favorable for SIMAT scores.

Interestingly, in the zero-shot setting, VISTA’s SIMAT score is more than double
that of CLIP. One possible explanation is that the SIMAT score is correlated with
the modality gap. VISTA’s architecture (see Appendix B.1) inherently results in a
lower modality gap, which contributes to its superior SIMAT score in the zero-shot
setting.
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Experiments

fine-tuned on MSCOCO
Leiip Lcua Lcuaxu
CLIP | LL | 20.7555 39.7298 35.9161
LU | 23.1801 42.7115 40.8420
UL | 20.7623 41.7190 38.4732
UU | 24.9087 45.4273 45.4611
VISTA | LU | 44.8295 48.9935 48.2509
UL | 37.0861 39.3065 38.3298

UU | 42.2497  1.0530 44.0940
fine-tuned on Conceptual Captions

CLIP | LL | 21.3792 28.6908 27.8886

LU | 25.7402  36.7420 35.7245

UL | 14.4948  32.2853 33.8313

UU | 20.5068  34.9658 37.2335
VISTA | LU | 42.2328  40.7463 43.6419

UL | 26.8703 29.4735 27.5182
UU | 30.9459 12.3750 34.1871
ZS™
CLIP 16.3259
VISTA 44.27793

Table 5.3: SIMAT [20] scores of CLIP [10] and VISTA [25] fine-tuned on MSCOCO
[74] and Conceptual Captions [82] datasets using different loss functions. ZS" stands
for Zero-Shot, indicating that it has not been fine-tuned. The highest score for
each model is bold.
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Experiments

fine-tuned on MSCOCO
Laip,  Lcua Lcuaxu

CLIP | LL | 0.83 0.09 0.20
LU | 0.80 0.05 0.14
UL | 0.83 0.07 0.15
UuU | 0.90 0.03 0.10
7S 0.82

VISTA | LU | 0.30 0.18 0.22
UL | 0.38 0.36 0.72
UU | 0.24 0.87 0.05
7S 0.44

fine-tuned on Conceptual Captions

CLIP | LL | 0.67 0.08 0.16
LU | 0.60 0.02 0.03
UL | 0.59 0.04 0.6
UuU | 0.67 0.03 0.03
7S 0.81

VISTA | LU | 0.24 0.14 0.16
UL | 0.29 0.33 0.62
UU | 0.14 0.05 0.05
7S 0.35

Table 5.4: Modality gap of CLIP [10] and VISTA [25] fine-tuned on MSCOCO [74]
and Conceptual Captions [82] datasets using different loss functions. ZS" stands
for Zero-Shot, indicating that it has not been fine-tuned. The minimum gap for
each model is bold.
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Chapter 6

Conclusion and Future Work

In this thesis, an analysis was conducted to investigate the effect of model archi-
tecture on the modality gap. Building upon previous work, a novel combination
of fine-tuning strategies and tailored loss functions was proposed to mitigate the
modality gap in the shared-encoder architecture. Similar to the dual-encoder
architecture, it was observed that there is a negative relationship between modality
gap reduction and retrieval performance. Conversely, a positive relationship was
found between modality gap reduction (to some extent) and vector arithmetic
performance.

Additionally, it was demonstrated that in a zero-shot setting, the shared-encoder
architecture exhibits a lower modality gap and outperforms the dual-encoder ar-
chitecture in text-to-image retrieval and vector arithmetic, while the dual-encoder
architecture shows better performance in image-to-text retrieval. Beyond reduc-
ing the modality gap, the proposed method also proved effective in enhancing
performance in both retrieval and vector arithmetic tasks.

The LU strategy, which involves locking the image-processing components while
unlocking the text-processing components, combined with the L, loss function,
was identified as the most effective approach to improve retrieval performance in
both architectures. Moreover, this strategy, when combined with the Leya loss
function, also yielded the best performance improvements for the shared-encoder
architecture in vector arithmetic tasks. However, for the dual-encoder architecture,
the UU (Unlocking-Unlocking) strategy combined with the same loss function
exhibited the best results for enhancing vector arithmetic performance.

Despite the interesting findings, there is still work to be done for further
improvement:

o Considering more downstream tasks such as image captioning and visual
question answering. It was observed that reducing the modality gap has
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Conclusion and Future Work

different effects on retrieval and vector arithmetic. Moreover, different fine-
tuning strategies and loss functions were found to be effective in improving
performance on these downstream tasks. Thus, it is worth exploring more
downstream tasks.

o Considering more datasets. As mentioned in the vector arithmetic analysis, the
dataset selected for fine-tuning plays an important role. Testing on additional
datasets may lead to interesting findings.

o VISTA uses a text encoder as its backbone, which may introduce bias to the
model. An interesting direction could be to use modality-agnostic models
such as Perceiver, Data2Vec, etc., as the backbone in the shared-encoder
architecture.
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Appendix A

Retrieval Results of Lcpa
and Lcuaxu

The retrieval results related to fine-tuning with Lcya and Leoyaxu are provided in
Tables A.1 and A.2. As mentioned in Section 5.4.1, the models fine-tuned with L,
achieve the best performance compared to the other two loss functions, and the
results presented here support this finding. While the overall pattern aligns with
the explanation in Section 5.4.1, there is a notable difference: when fine-tuning
CLIP with Lcya and Louaxu, the best strategy is LL rather than LU.
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Retrieval Results of Loya and Loyaxu

MSCOCO Conceptual Captions
R@1 R@5 R@10 R@1 R@5 R@10
Text to Image

CLIP
FT" by | LU | 0.4175 0.7012 0.8030 | 0.3856 0.6349  0.7322

Lclip
CLIP | LL | 0.3796 0.6534 0.7636 | 0.3777 0.6285 0.7178
LU | 0.3830 0.6653 0.7663 | 0.3394 0.5970  0.6965
UL | 0.3566 0.6284 0.7368 | 0.3005 0.5415  0.6420
UU | 0.3499 0.6319 0.7440 | 0.2706  0.5163  0.6215
ZS" | 0.3082 0.5504 0.6620 | 0.3255 0.5527  0.6454

VISTA
FT by | LU | 04725 0.7482 0.8360 | 0.4273 0.6676  0.7460
Lclip
VISTA | LU | 0.4362 0.7116 0.8073 | 0.3872 0.6264 0.7164
UL | 0.3875 0.6668 0.7769 | 0.2978 0.5276  0.6244
UU | 0.0004 0.0026 0.0065 | 0.0810 0.2392 0.3416
ZS" | 0.3201 0.5743 0.6048 | 0.3547  0.5673 0.65
Image to Text

CLIP
FT" by | LU | 0.5608 0.7696 0.8490 | 0.3954 0.6502  0.7392

Laip
CLIP | LL | 0.4828 0.6986 0.7998 | 0.3840 0.6373 0.7279
LU | 0.5188 0.7380 0.8304 | 0.3780 0.6296 0.7246
UL | 0.4222 0.6364 0.7484 | 0.2776 0.5190 0.6228
UU | 0.4458 0.6722 0.7726 | 0.2752 0.5211  0.6252
ZS* | 0.4674 0.6662 0.7554 | 0.3517 0.5771  0.6688

VISTA
FT" by | LU | 0.5842 0.7816 0.8608 | 0.4043 0.6480 0.7339
Lclip
VISTA | LU | 0.5416 0.7526 0.8344 | 0.3881 0.6315 0.7248
UL | 0.4438 0.6668 0.7756 | 0.2690 0.4986  0.6003
UU | 0.0002 0.0020 0.0044 | 0.0802 0.2307 0.3318
ZS" | 0.3054  0.495  0.6048 | 0.2938 0.5014  0.5820

Table A.1: Retrieval results of CLIP [10] and VISTA [25] on MSCOCO [74]
and Conceptual Captions [82] datasets. Fine-tuned using Leya. ZS™ stands for
Zero-Shot, indicating that it has not been fine-tuned. FT” stands for Fine-Tuned.
The best performance of each model is bold. For the convenience, the results
related to models fine-tuned by Ly, in LU setting are provided.
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Retrieval Results of Loya and Loyaxu

MSCOCO Conceptual Captions
R@1 R@5 R@10 R@1 R@5 R@10
Text to Image
CLIP
FT" by | LU | 04175 0.7012 0.8030 | 0.3856 0.6349  0.7322
Lclip
CLIP | LL | 0.3831 0.6596 0.7675 | 0.3778 0.6285 0.7186
LU | 0.3954 0.6788 0.7846 | 0.3470 0.6111  0.7070
UL | 0.3644 0.6381 0.7440 | 0.3038 0.5437  0.6444
UU | 0.3623 0.6429 0.7496 | 0.2842  0.5270 0.6303
7ZS" | 0.3082 0.5504 0.6620 | 0.3255 0.5527  0.6454
VISTA
FT by | LU | 04725 0.7482 0.8360 | 0.4273 0.6676  0.7460
Lclip
VISTA | LU | 0.4467 0.7217 0.8134 | 0.4028 0.6394 0.7278
UL | 0.3064 0.5838 0.7029 | 0.2515 0.4757 0.5734
UU | 0.3587 0.6477 0.7630 | 0.2722 0.5074 0.6054
ZS" | 0.3201 0.5743 0.6048 | 0.3547  0.5673 0.65
Image to Text
CLIP
FT" by | LU | 0.5608 0.7696 0.8490 | 0.3954 0.6502  0.7392
Lot
CLIP | LL | 0.5028 0.7102 0.8018 | 0.3888 0.6383 0.7310
LU | 0.5384 0.7528 0.8344 | 0.3807 0.6374  0.7261
UL | 04308 0.6548 0.7534 | 0.2861 0.5264 0.6324
UU | 0.4530 0.6764 0.7794 | 0.2869 0.5361  0.6350
ZS™ | 0.4674 0.6662 0.7554 | 0.3517 0.5771  0.6688
VISTA
FT by | LU | 0.5842 0.7816 0.8608 | 0.4043 0.6480 0.7339
Lclip
VISTA | LU | 0.5682 0.7622 0.8408 | 0.3956 0.6397 0.7293
UL | 0.3714 0.5882 0.6970 | 0.2313 0.4541 0.5531
UU | 0.4436 0.6804 0.7822 | 0.2578  0.4978  0.6036
ZS" | 0.3054 0495  0.6048 | 0.2938 0.5014  0.5820

Table A.2: Retrieval results of CLIP [10] and VISTA [25] on MSCOCO [74]
and Conceptual Captions [82] datasets. Fine-tuned using Leyaxu. ZS™ stands for
Zero-Shot, indicating that it has not been fine-tuned. FT” stands for Fine-Tuned.
The best performance of each model is bold. For the convenience, the results

related to models fine-tuned by Ly, in LU setting are provided.
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Appendix B

Modality Gap Measured by
CD and CMD
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Modality Gap Measured by CD and CMD

MSCOCO

Laip | Leua | Lcuaxu
Ch CMD CD CMD CD CMD
CLIP | LL {0.83 0.86 0.09 0.10 0.20 0.22
LU | 080 083 0.05 0.06 0.14 0.15
UL | 083 0.85 0.07 0.08 0.15 0.17
Uu | 090 0.92 0.03 0.04 0.10 0.11
7S" 0.82 \ 0.86
VISTA | LU | 0.30 0.30 0.18 0.18 0.22 0.22
UL | 038 039 036 037 0.72 0.72
UU | 024 0.24 0.87 0.90 0.05 0.05
zs" 0.44 \ 0.44
Conceptual Captions
CLIP | LL | 0.67 0.72 0.08 0.10 0.16 0.18
LU | 060 064 0.02 0.03 0.03 0.04
UL | 059 0.63 0.04 0.05 0.06 0.07
UU | 0.67 0.71 0.03 0.03 0.03 0.04
7S" 0.81 \ 0.85
VISTA | LU | 0.24 024 0.14 0.14 0.16 0.16
UL | 029 030 033 034 0.62 0.63
UuU | 0.14 0.14 0.05 0.05 0.05 0.05
Al 0.35 \ 0.36

Table B.1: Modality gap (measured by CD and CMD) of CLIP [10] and VISTA
[25] on MSCOCO [74] and Conceptual Captions [82] datasets. Fine-tuned using
different loss functions. ZS™ stands for Zero-Shot, indicating that it has not been
fine-tuned. The minimum of each model is bold.
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