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Summary

This thesis presents a comprehensive machine learning framework for forecasting
product sales and generating product recommendations in a retail context using the
ContosoRetailDW dataset. The investigation begins with an extensive exploration
of the data stored in a Microsoft SQL Server environment. Relevant numeric and
categorical attributes are merged and refined, bringing important features such
as product identifiers, location information, and temporal details. To capture the
underlying complexity of real-world sales transactions, detailed feature engineering
steps became essential, such as target encoding for high-cardinality variables. This
preprocessing phase ensures that the dataset remains both indicative of retail trends
and effectively structured for further steps. The sales prediction section includes
gathering a range of regression models, such as Ridge Regression, Random Forest,
Gradient Boosting, Support Vector Regression, and XGBoost. Although initial
experiments suggest that Ridge Regression performs well as a baseline, after a
thorough hyperparameter tuning phase with cross-validation, the most reliable
predictor, XGBoost, achieves the lowest root mean squared error on unseen data.

The two primary methods that are examined in the product recommendation
section are content-based filtering and collaborative filtering. The Surprise library’s
algorithms are implemented to provide collaborative filtering, which considers past
user-item interactions. The best performing collaborative model is determined by
comparing rating predictions across multiple approaches, ultimately selecting a KNN-
based algorithm that provides the highest accuracy in user preference prediction.
Contrarily, content-based filtering relies on textual product descriptions encoded
using TF-IDF vectorization and categorized using KMeans clustering. This allows
suggestions to remain in line with textual similarity even when comprehensive user
feedback is absent. The final result is integrated into a production-ready pipeline.
FastAPI endpoints are designed to process prediction and recommendation requests,
and a Gradio interface provides an accessible web-based front-end.

This comprehensive solution successfully brings together data ingestion, feature
engineering, model training, hyperparameter tuning, and practical deployment,
demonstrating the transformative potential of machine learning in sales forecasting
and product recommendation within the retail sector.
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Chapter 1

Introduction

This thesis presents Dyna ML - A Machine Learning Approach to Sales Forecasting
and Product Recommendations Prediction, a company-driven research initiative
aimed at addressing critical challenges encountered by retailers. Accurate product
sales forecasts and personalized product suggestions have become crucial elements for
attaining long-term business success in the dynamic and competitive retail industry.

Sophisticated data-driven strategies are necessary to sustain profitability and
improve customer satisfaction in an environment of rapid advances in technology,
evolving consumer behaviors, and changing market trends. By analyzing historical
sales data, customer demographics, promotional activity, and external influencing
factors, sales prediction estimates future sales quantity. Retailers could improve
profitability by proactively planning promotional activities and optimizing inventory
management with the help of accurate sales forecasting. However traditional forecast-
ing techniques, which frequently rely on simplistic linear assumptions, find it difficult
to identify the complex patterns and nonlinear relationships present in actual sales
data, especially when there are a large number of categorical and numerical variables.

Product recommendation systems have become essential in e-commerce and retail,
enhancing user experience by proposing relevant items based on prior customer
interactions (collaborative filtering) or specific item characteristics (content-based
filtering). Efficient recommendation systems can markedly enhance customer satis-
faction and loyalty by precisely aligning product offerings with consumer preferences,
hence improving purchase likelihood and promoting long-term client retention. This
research clearly addresses the interrelated challenges of accurately forecasting sales
quantity and delivering relevant, customized product suggestions.

The primary objectives of this project are twofold: first, to employ advanced
machine learning techniques, including Random Forest, Gradient Boosting, and
XGBoost, to enhance sales prediction accuracy beyond traditional regression models;
second, to implement and assess recommendation systems via collaborative filtering
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Introduction

methods, utilizing historical customer interactions and content-based filtering ap-
proaches that incorporate detailed product metadata. This study aims to provide a
comprehensive and reliable solution that can increase forecast accuracy and produce
substantial commercial value through useful product suggestions by combining these
approaches into a single analytical framework.

The significance of this research lies in its innovative integration of diverse machine
learning approaches specifically tailored to the complexities of retail data. Through
systematic evaluation and benchmarking of various predictive and recommendation
algorithms, this thesis aims to provide both academic contributions and practi-
cal applications, enabling retailers to adopt effective data-driven decision-making
strategies.
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Chapter 2

Literature Review

Sales Prediction

Sales prediction is an an essential procedure of analysis that enables retailers to
foresee consumer demand and manage inventory effectively, guaranteeing optimized
allocation of resources and maximized profitability. Because of their accessibility
and interpretability, traditional forecasting methods such as exponential smoothing,
moving averages, and linear regression have been frequently adopted. However,
given the existence of high-dimensional categorical variables along with additional
influencing factors like promotions, seasonality, and economic conditions, these
methods frequently fall short when dealing with the complexity and non-linearity
present in modern-day retail data.

The latest advances in ML are resulting in sophisticated predictive models that
significantly improve forecasting precision. For the reason they can detect complex,
non-linear correlations and interactions between variables, tree-based ensemble ap-
proaches such as Random Forests and Gradient Boosting algorithms have achieved
exceptional performance in sales forecasting [27][29]. XGBoost, a variant of Gradi-
ent Boosting, further boosts prediction accuracy and computational efficiency by
incorporating regularization terms and improved handling of missing values.

The superiority of ML approaches over traditional statistical methods in sales
forecasting has been demonstrated by numerous research. In order to estimate
retail sales, for instance, Pavlyshenko (2018) [39] shows that ensemble approaches
perform better than standard statistical models because of their greater generalization
capabilities and flexibility in modeling nonlinear interactions. Similar to this, a
study by Ma and Fildes (2021) [40] highlights the significance of advanced feature
engineering, which includes efficiently encoding categorical variables and greatly
enhances model performance while lowering forecast errors.
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Product Recommendation Systems

Technologies and methods known as recommender systems make recommendations
for products that consumers would find useful [55]. In both online and offline retail
settings, they have greatly increased client engagement and sales and have proven
essential in providing individualized customer experiences. Two main approaches
have been applied in this project: content-based filtering and collaborative filtering.

In order to suggest products based on the similarity of consumers or products,
Collaborative Filtering (CF) utilizes user-item interactions, including ratings and
past purchases. Basic collaborative filtering algorithms were presented by Sarwar et
al. (2001), who showed that they were successful in providing customized recommen-
dations solely based on past interactions [57]. Recent developments have expanded
these conventional techniques using complex algorithms such as nearest neighbor
methods (KNN variations) and matrix factorization (SVD, NMF), which achieve
superior performance thanks to their capacity to learn latent user-item interactions
and handle sparse data efficiently.

In contrast, Content-Based Filtering utilizes product attributes, typically derived
from product descriptions and metadata, to recommend products similar to those
the user has already liked or interacted with. TF-IDF vectorization and clustering
methods, such as KMeans, are widely applied in content-based systems to group
products with similar features and textual characteristics [56][47]. This method is
especially effective for recommending new or less popular products lacking sufficient
interaction history (cold-start problem).

Hybrid recommendation systems, which integrate collaborative and content-based
methods, are frequently proposed as the best solutions, as they utilize the advantages
of both approaches while mitigating their respective limitations [58]. Nevertheless,
hybrid techniques add complexity and can present computational difficulties, requiring
thorough planning of the methodology.

Contributions and Gaps

While extensive research has explored sales prediction and recommendation systems
separately, integrated studies that address both challenges simultaneously within
a unified analytical framework remain limited. Existing studies often neglect the
complexities introduced by real-world retail scenarios, such as high cardinality cate-
gorical variables, missing data, and highly imbalanced consumer-product interactions.
Furthermore, practical deployment considerations such as computational efficiency,
real-time prediction requirements, and interpretability are often inadequately ad-
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dressed in the current literature.

This study bridges this gap by presenting a comprehensive analytical framework
that integrates advanced ML techniques for sales prediction with robust recommen-
dation methodologies. By leveraging pipeline structures that include sophisticated
encoding strategies (target encoding, one-hot encoding), robust cross-validation, and
hyperparameter optimization, this research aims to enhance predictive performance.
Furthermore, the integration of collaborative and content-based filtering methodolo-
gies within a single, practical application further distinguishes this study from the
existing literature.

Through this integrated approach, this thesis seeks to provide meaningful contri-
butions to academic literature and industry practice, allowing retail organizations to
benefit from more accurate forecasts and actionable personalized recommendations,
ultimately supporting informed and strategic decision-making.
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Chapter 3

Methodology

3.1 Data Description and Acquisition

This research utilizes the ContosoRetailDW dataset, a comprehensive and publicly
available retail dataset provided by Microsoft, specifically designed to demonstrate
business intelligence and analytical tasks in the retail industry [1] [2].

Figure 3.1: Contoso DB Dataset

The dataset includes rich and diverse data sources, which makes it particularly
suited for advanced analytical projects such as sales forecasting and personalized
product recommendation.

The dataset comprises several fact and dimension tables that collectively provide
a comprehensive analytical foundation. Our analysis focused mainly on two fact
tables, FactSales and FactOnlineSales, which contain detailed transaction-level data,
including sales quantities, pricing, and promotional details, and many dimension
tables such as DimCustomer, DimProduct, DimStore, DimPromotion, DimGeography,
and DimProductSubcategory offer contextual and descriptive attributes that enrich
feature engineering and enhance predictive capability.

To optimize the accuracy and reliability of analyses, two specialized views,
V_Sales and V_ProductRecommendation, were meticulously developed through
exploratory data analysis and sophisticated feature engineering processes. The
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V_Sales view integrates essential columns from multiple tables, including FactSales,
DimStore, DimGeography, DimProduct, and DimPromotion, combining strategically
selected variables identified as relevant predictors of sales volumes.

Similarly, the V_ProductRecommendation view aggregates meaningful features
from FactSales, DimCustomer, and DimProduct, effectively addressing the needs of
recommendation systems by capturing detailed interactions and product attributes.

Table 3.1: Tables and Views Used in Contoso DB for Dyna ML

Fact Tables Dimension Tables Custom Views
FactSales DimStore V_Sales
FactOnlineSales DimProduct V_ProductRecommendation

DimPromotion
DimGeography
DimProductSubcategory
DimDate
DimProductCategory
DimCustomer

While the complete ContosoRetailDW dataset encompasses around 10 million
transaction records, this project strategically employs a randomly selected subset
of 10,000 records. This decision was made to ensure computational feasibility and
efficiency without compromising the diversity and representativeness necessary for
rigorous model development and validation of the models. A dedicated ETL (Extract,
Transform, Load) pipeline was implemented to process these data. Irrelevant columns
were excluded, dates were transformed into actionable temporal characteristics (year,
month, weekday), categorical variables were appropriately encoded (one-hot encoding
for low cardinality features and target encoding for high cardinality features), and
numeric data were standardized using robust scaling techniques. These comprehensive
preprocessing steps substantially elevated the performance of analytical models,
effectively addressing the intricate and dynamic nature of retail data.

3.2 Machine Learning Overview and Theoretical
Background

The term machine learning (ML) describes computational techniques and algorithms
that enable computers to learn from data patterns on their own and make predictions
or judgments without direct guidance [25]. Supervised, unsupervised, and reinforce-
ment learning are the three main categories into which ML techniques fall [26]. In
order to effectively forecast target variables, this research primarily use supervised
learning, where algorithms learn from labeled data.
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Regression and classification tasks are two further subcategories of supervised
learning, where regression involves continuous target variables and classification
involves categorical target variables. Regression techniques were used in this project
to forecast sales quantities and other continuous numerical outcomes. The supervised
regression models that were chosen are SVR, XGBoost, Random Forest, Gradient
Boosting, and Ridge Regression.

Ridge regression is a regularized linear regression approach that introduces an L2
penalty to reduce model complexity, thus mitigating multicollinearity and improving
predictive stability [16][26]. Random Forest, an ensemble learning method, con-
structs multiple decision trees during training and produces the average predictions,
effectively reducing variance and overfitting issues [37][15][26]. Gradient Boosting
iteratively builds weak learners, usually decision trees, optimizing predictive accu-
racy by minimizing a differentiable loss function; this method excels in capturing
complex non-linear relationships within the data [35]. XGBoost extends the gradient
boosting framework with additional regularization terms and advanced optimization
techniques, providing superior computational efficiency, and improved prediction
accuracy, which is particularly beneficial for large-scale datasets [36][12].

Two main approaches were investigated for recommendation systems: content-
based filtering and collaborative filtering. Using latent connections discovered by
algorithms like Singular Value Decomposition (SVD) and Non-negative Matrix Fac-
torization (NMF), collaborative filtering approaches make product recommendations
based on user-item interaction patterns [45]. Content-based filtering, on the contrary,
uses product attributes and descriptions, typically represented using TF-IDF (Term
Frequency-Inverse Document Frequency) vectorization and clustering techniques,
such as KMeans, to recommend similar products based on their inherent features
[56] [46].

3.3 Technologies and Tools

The implementation and deployment phases of this research rely heavily on a metic-
ulously selected set of technologies, libraries, and platforms that form a robust
analytical ecosystem. Each component was strategically chosen based on its capa-
bility to fulfill specific requirements in data handling, model experimentation, and
effective dissemination of results. This section provides a comprehensive overview of
all the major technologies and libraries utilized, the rationale behind their selection,
and their respective roles within the project.
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Database and Data Storage

Microsoft SQL Server forms the foundational data layer of this project. It hosts the
ContosoRetailDW dataset, providing efficient storage and quick retrieval through
customized SQL views (V_Sales, V_ProductRecommendation). Its robust querying
capabilities facilitated rapid data exploration and sophisticated feature engineering,
which are crucial to preparing data for subsequent stages of ML modeling [2][1][5].
To interact programmatically with this database in Python, SQLAlchemy was
employed as the core SQL toolkit, ensuring reliable connections, intuitive abstrac-
tions for queries, and streamlined operations for both small- and large-scale data
manipulations. This maintainable database interaction served as a strong foundation
for iterative experimentation.

Figure 3.2: Technologies and Tools Utilized for the Data Management

Python Ecosystem and Development Environments

Python Serves as the primary programming language for data pre-processing,
model building and deployment tasks. Python’s expansive ecosystem of packages and
its easy readability accelerated the overall implementation. Additionally, it offered
an extensive standard library for core functionalities such as system interactions and
math operations, reducing development overhead [24].

Jupyter Notebook and Visual Studio Code Both environments played a
pivotal role in supporting different stages of the data science workflow [17][10]. Jupyter
Notebook was particularly suited for exploratory data analysis (EDA), interactive
visualizations, and iterative experimentation, enabling quick data inspection and
real-time result interpretation. In parallel, Visual Studio Code offered an integrated
and extensible environment for tasks such as advanced debugging, Git version control,
project organization, and end-to-end model pipeline development. This combination
ensured both flexibility in experimentation and rigor in code maintenance.
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Figure 3.3: Technologies and Tools Utilized in the Python Development

Data Manipulation and Numerical Computation

Pandas Used as the primary tool for loading, cleaning, transforming, and preparing
datasets [4]. Its DataFrame structure, with methods for grouping, merging, reshaping,
and statistical summaries, significantly simplified the process of handling large tabular
data. Additionally, Pandas integrates seamlessly with libraries such as NumPy and
scikit-learn, thus serving as the central data structure throughout the modeling
process.

NumPy Serves as the foundational library for numerical operations in Python
[3]. Many other libraries, including Pandas and scikit-learn, build upon NumPy
arrays for performance and memory-efficiency reasons. Its vectorized operations,
linear algebra routines, and broadcasting rules made it vital for large-scale rapid
numerical computations, especially when training models or performing complex
transformations on multidimensional arrays.

Figure 3.4: Technologies and Tools Utilized for Data Manipulation

Machine Learning and Model Development

scikit-learn (sklearn) The core toolkit for general purpose ML tasks, providing a
uniform API for regression, classification, and clustering. It was widely used to create
end-to-end pipelines, perform hyperparameter tuning via GridSearchCV, and evaluate
model performance using cross-validation. scikit-learn’s feature engineering utilities,
such as OneHotEncoder, StandardScaler, and custom TransformerMixin classes,
streamlined data processing and integration into reproducible, robust experimentation
pipelines.

10



Methodology

XGBoost A high-performance library for gradient boosting that often yields
competitive results in structured data tasks [36]. Its parallelized tree-building,
effective handling of missing data, and robust parameter tuning options made
it particularly attractive for capturing non-linear relationships. Using advanced
boosting strategies, XGBoost typically offered strong predictive capabilities in tabular
data, which proved valuable for our sales quantity predictions.

joblib Enables efficient serialization and deserialization of Python objects, including
entire scikit-learn pipelines. This was particularly crucial when it came to saving
trained models (along with their pre-processing transformations) so they could
be reloaded for inference without retraining from scratch, thereby accelerating
deployment workflows [11].

Figure 3.5: Technologies and Tools Utilized in Model Development

Recommendation System Approaches

Surprise A specialized Python library for building and analyzing recommender
systems. It focuses on collaborative filtering (e.g., user–item rating predictions)
and thus provides an intuitive framework for implementing techniques like SVD,
KNNBasic, or SlopeOne with minimal overhead [9]. Using Surprise simplified the
process of exploring a variety of collaborative filtering methods under a common
interface. Its built-in tools for cross-validation and performance reporting (e.g.,
RMSE and MAE) on sparse rating matrices also helped efficiently compare algorithm
variants.

Figure 3.6: Surprise: A Python scikit for recommender systems

Content-Based Filtering Built primarily through scikit-learn but in conjunction
with TF-IDF vectorization and KMeans clustering. Product descriptions and related
metadata from the database were transformed into numerical feature vectors, which
allowed the system to recommend items based on text similarity. This method
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proved particularly valuable when user–product interactions were limited or needed
supplementary item-centric analysis.

Data Visualization

matplotlib Serves as the foundational Python library for creating static, animated,
and interactive visualizations. Used extensively for fundamental charting operations,
such as scatter plots to examine the relationships between features, bar plots to
compare model performance, and histograms to illustrate data distributions.

seaborn Built on top of matplotlib, Seaborn offers advanced statistical plotting
aesthetics and concise syntax. During EDA, it helped quickly reveal data patterns,
correlations, and potential outliers through more detailed and visually appealing
plots, such as pairplots, heat maps, and regression plots [18].

Figure 3.7: Technologies and Tools Utilized for Data Visualization

API Development and Deployment

FastAPI Chosen for its performance, modern design, and straightforward integra-
tion with asynchronous Python features [6]. FastAPI exposed our trained models
(both predictive and recommender) via RESTful endpoints, enabling real-time pre-
dictions and recommendations. This framework provided automatic data validation,
documentation, and error handling, thus reducing the likelihood of runtime failures
due to malformed requests.

Pydantic Works in conjunction with FastAPI to validate incoming requests against
well-defined schemas. It enforced strict typing, ensuring that only well-structured
data reached the core inference logic. Using Pydantic models, errors could be caught
at the request layer and quickly relayed to end-users or client applications [23].

requests A convenient and human-readable HTTP library that can interact with
our FastAPI endpoints. It simplified testing various scenarios programmatically and
allowed other parts of the code (e.g., Gradio applications) to make prediction or
recommendation requests internally without complicated networking logic [22].
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Figure 3.8: Technologies and Tools Utilized for API Development

Interactive Interfaces and Testing Tools

Gradio A user-friendly toolkit to quickly create interactive web interfaces. By
attaching our Python functions for sales forecasting or product recommendations, to
Gradio UI components, non-technical stakeholders could directly input features or
specify parameters in a simple browser-based interface [8]. This accelerated feedback
loops and facilitated demonstrations of model behavior.

Postman Used extensively to test, debug, and document FastAPI endpoints. By
mimicking real HTTP requests (GET, POST, etc.), Postman ensured robust verifica-
tion of all API functionalities and simplified rapid iteration during development.

Figure 3.9: Technologies and Tools Utilized for Interface and Testing

Summary of Integration

Collectively, these technologies, libraries, and tools form a comprehensive ecosys-
tem for modern data science workflows. Python’s scientific stack (Pandas, NumPy,
and scikit-learn) anchors data transformations and traditional predictive modeling.
SQL Server and SQLAlchemy provide high-performance data ingestion capabilities.
Surprise and TF-IDF-based methods address collaborative and content-based recom-
mendation scenarios, respectively, while XGBoost extends predictive performance on
structured data. Finally, model exposure to end-users and stakeholders is enabled
through FastAPI for production-grade endpoints, Gradio for interactive exploration,
and Postman for thorough testing and monitoring. By employing this carefully
orchestrated suite of technologies, the project ensures robustness, scalability, and
ease of future enhancements.

3.4 Model Evaluation Metrics

The Root Mean Squared Error (RMSE) is an extensively utilized statistic for evaluat-
ing the prediction accuracy of a model when the outcome is a continuous numerical
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variable. The value provides an indication of the average amount of the prediction
errors between the estimated values of the model and the corresponding true (ob-
served) values [29]. Formally, if yi represents the true value and ŷi represents the
predicted value for the i-th sample, then the RMSE over N samples is given by

RMSE =

öõõô 1
N

NØ
i=1

1
ŷi − yi

22
. (3.1)

The differences ŷi − yi in the summation represent the individual prediction
errors.These errors are first squared and then averaged, indicating that that larger
errors incur a most significantly higher penalty. In practical or business applications,
taking the square root makes the measure easy to understand because it returns it
to the same unit as the target variable.

Due to the fact that it squares each error before averaging, RMSE penalizes big
individual variations more severely than smaller ones, which makes it very useful.
RMSE is a suitable option in situations where lowering the frequency of significant
outliers or mispredictions is the aim. The Mean Absolute Error (MAE), on the
other hand, is one alternative statistic that does not heavily penalize particular
significant deviations. As a result, in time-series forecasting, rating prediction tasks,
and regression issues, RMSE frequently acts as a common comparison benchmark.

RMSE also provides an intuitive understanding of where those predictions might
be, on average, when the target variable’s size is important to stakeholders. For
example, when a product sales forecast model’s RMSE is 5.0, it means that estimates
usually vary by five units sold from the actual quantity sold. Depending on the
necessities of the business, this threshold may or may not be acceptable.

RMSE additionally allows it to be possible for internal and external stakeholders
to assess model accuracy by offering a single, simply comprehensible result. RMSE
is essential for assessing and justifying the models used for sales predictions and
recommendation system user preference prediction when paired with other metrics
or domain-specific performance indicators.

RMSE in Sales Prediction

In the context of predicting product sales, each ŷi denotes the model’s estimated
number of product units sold during a specific period, and each yi denotes the actual
sales observed. If N test samples are evaluated, the RMSE of Equation 3.1 indicates
how accurately the model captures overall demand patterns.

An RMSE value must be interpreted as being about the typical scale of the
time-series or the seasonal sales range. For example, if a product regularly sells
around 100 units daily, an RMSE of 4.19 implies a modest level of error compared
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to daily volumes. On the other hand, if a product commonly sells only 10 units a
day, an RMSE of 4.19 constitutes a substantial error proportionally.

When multiple models (for instance, Linear Regression, Random Forest, Gradient
Boosting, and XGBoost) are compared, presenting both the RMSE of cross-validation
and RMSE of the final test set is a clear way to convey the performance generalization
of each candidate. This presentation demonstrates which method offers the smallest
RMSE, thus providing a quick comparison that is both numerical and intuitive.

RMSE in Product Recommendation Systems

Many collaborative filtering algorithms internally handle the recommendation task
as a rating prediction problem, despite the fact that recommendation systems are
frequently focused on ranking or classification approaches. When a user–item pair is
not observed, the system tries to estimate the user’s unknown rating r̂ui. This can
be compared to the true rating rui if the pair is ever observed in a test set [54].

The fundamental metric in rating prediction is the RMSE. In the test set, every
data record represents a user–item interaction for which the user gave an actual
rating rui. The rating r̂ui predicted by the system might differ from this ground
truth. The average error magnitude of the system can be expressed as a single value
by adding up and averaging the squared deviations, then taking the square root
as in Equation 3.1. This is useful when the objective is to give extremely precise
numerical predictions of how a user would rate specific items or products.

For example, in a collaborative filtering experiment employing algorithms like
K-Nearest Neighbors (KNNBaseline), Non-negative Matrix Factorization (NMF),
and Singular Value Decomposition (SVD), one may evaluate the RMSE of each
approach to see which yields the best accurate rating estimations. The system is
often forecasting ratings that are closer to what people would really assign when the
RMSE is smaller. If KNNBaseline produces an RMSE of 0.2731 and SVD produces
0.3147, it implies that KNNBaseline yields lower average errors for rating predictions.

It is important to keep in mind that, despite being a reliable statistic for numerical
predictions, RMSE does not fully convey the quality of a recommender system. Other
performance metrics that concentrate on ranking accuracy include Precision@k and
Normalized Discounted Cumulative Gain (NDCG). Nonetheless, RMSE continues to
be a consistent and comprehensible statistic when the rating value itself is important.

15



Chapter 4

Sales Prediction

4.1 Initial Data Exploration and Feature
Engineering

The sales prediction component of the Dyna ML project began with an extensive
exploratory data analysis (EDA) using the primary fact table, FactSales. Initial
investigation revealed that the raw variables provided by FactSales were insufficient
to adequately portray the complexity and unpredictability inherent in the sales data.

As a result, a comprehensive feature engineering process was carried out by examin-
ing related dimension tables (DimStore, DimProduct, DimPromotion, DimGeography,
DimProductSubcategory, DimDate, DimProductCategory, DimCustomer) to identify
additional meaningful attributes that could improve predictive accuracy. V_Sales is
a custom SQL view created using advanced SQL joins and aggregation techniques.
This view included essential data such as promotional details, product subcategories,
geographical information, and a variety of temporal features (year, month, weekday),
allowing for more exact and reliable sales forecasts.

4.2 Attributes and Target Variable

The target variable for the sales prediction task was defined explicitly as SalesQuan-
tity, a numeric measure that indicates the number of products sold. The predictor
variables were divided into two main categories:

• Categorical Features: PromotionKey, StoreKey, ProductKey,
channelKey, RegionCountryName, ProductSubcategoryKey,
PoductCategoryKey, year, weekday, month.

• Numerical Features: UnitCost, UnitPrice, ReturnQuantity,
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ReturnAmount, DiscountQuantity, DiscountAmount, TotalCost,
SalesAmount, DiscountPercent.

Since ML algorithms need numerical input to process data, categorical variables
in predictive analytics typically need to be encoded. Discrete labels or text are
frequently used to convey categorical information that algorithms cannot automati-
cally comprehend. For models to comprehend and take advantage of the underlying
correlations between these features and the target variable, encoding techniques
translate these categorical labels into numerical forms.

4.3 Data Preprocessing

In order to guarantee model stability and forecast accuracy, these features needed
to be preprocessed effectively. Various kinds of pre-processing techniques were used
meticulously:

Time-based Features

The original date attribute (DateKey) was converted to a datetime format and
subsequently decomposed into more detailed and instructive components:

• year: capturing the annual sales cycle.

• month: reflecting seasonal variations.

• weekday: revealing weekly purchasing patterns.

Categorical Feature Encoding

Different cardinalities required specific encoding techniques for categorical features.
The following are some notable effects of high cardinality (features with many unique
values) versus low cardinality (features with fewer unique values) on the choice of
encoding method.

One-Hot Encoding:

Categorical variables are transformed into binary columns using one-hot encoding,
each of which indicates whether a specific category is present or not. Categorical
variables with low cardinality are best suited for this encoding since it avoids the
introduction of unintentional ordinal relationships and guarantees the simplicity and
interoperability of the algorithm [34].
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Motivation: For categorical variables with comparatively few unique values,
the one-hot encoding works quite well and avoids arbitrarily establishing numerical
correlations between categories.

Table 4.1: Low-cardinality Categorical Features

Feature Unique Values
year 3
channelKey 4
weekday 7
ProductCategoryKey 8
month 12
PromotionKey 28
ProductSubcategoryKey 32
RegionCountryName 35

One-hot encoding enables a categorical feature with k unique categories to be
transformed into k distinct binary indicators, making it clear which specific category
exists for each instance. Because the resulting design matrix is still computationally
manageable, this method works particularly well for features where k is quite small.
Formally, each observation with X = cj is mapped to the vector if a categorical
feature X can take values x ∈ {c1, c2, . . . , ck}.

1
0, 0, . . . , 1, . . . , 0

2
,

where the j-th position is 1 and the remaining positions are 0. One-hot encoding
guarantees that the model doesn’t derive any arbitrary ordering among categories in
tasks involving linear or distance-based learners. However, the newly formed binary
columns may add sparsity to the data and greatly increase dimensionality if the
categorical variable has a high cardinality.

Target Encoding:

The mean of the target variable for each category is substituted for the category in the
target encoding [50]. In cases where one-hot encoding would provide an unreasonably
high number of features, resulting in sparsity and computational inefficiency, it is
especially helpful for high-cardinality categorical data. KFold cross-validation, which
calculates the encoding using training folds and applies the smoothed encoding to
the validation folds, was used to implement target encoding in order to prevent
overfitting and information leaking.

Motivation:Target encoding provides numerical representations that improve
model performance, especially for high-cardinality categorical variables, while also
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dramatically reducing dimensionality and accurately capturing category-target corre-
lations.

Table 4.2: High-cardinality Categorical Features

Feature Unique Values
StoreKey 306
ProductKey 2298

Target encoding provides an alternative for categorical features that demonstrate
high cardinality [33]. This approach gives each category a numerical value that
represents a statistical summary of the target variable rather than creating a large
number of new columns. Target encoding in its most basic form is described as
follows:

TargetEncode(cj) =
q

instances i where X=cj
yi

number of instances where X = cj

,

where yi is the target for instance i. However, overfitting may result from depending
only on this naive mean, particularly when dealing with sparse or unbalanced data.
KFold cross-validation is used to reduce overfitting by ensuring that the mean used
to encode every observation is only calculated from folds that do not include that
observation. When a category has a limited sample size, it is common practice to
add an extra smoothing factor to bring the per-category mean closer to the global
average. The smoothing can be shown as follows:

Smoothed(cj) = nj yj + α y

nj + α
,

where nj is the count of category cj , yj is the mean target for that category, y is the
global target mean, and α is a positive parameter.This regularization helps prevent
overly deflated or inflated target-encoded values from being acquired by categories
with small sample sizes. Target encoding reduces the possibility of information
leakage while capturing the relationship between each categorical value and the
target by using such smoothing and integrating cross-validation in the transformation
step.

Numeric Feature Scaling

Numeric features UnitCost, UnitPrice, ReturnQuantity, ReturnAmount,
DiscountQuantity, DiscountAmount, TotalCost, SalesAmount, and
DiscountPercent were standardized using the StandardScaler method from scikit-
learn.
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The objective of standard scaling is to reduce bias resulting from significant
variations in numerical ranges by transforming each numeric feature to have a zero
mean and unit variance. The sample mean µ is subtracted from each data point xi

in this method, and the result is divided by the standard deviation σ, which can be
written mathematically as:

zi = xi − µ

σ

Standardization guarantees that learning is not dominated by features with huge
sizes by transforming all numerical variables into a comparable scale. When each
dimension has a similar scale, techniques like distance-based algorithms and gradient-
based optimizers frequently converge more rapidly and consistently. Additionally,
standard scaling improves overall model performance and offers more consistent
training dynamics for algorithms that are sensitive to feature magnitude. The
StandardScaler from scikit-learn is a popular first choice for preprocessing numerical
features due to its inherent simplicity and effectiveness, especially when the goal is
to normalize the influence of features across all numeric variables and the underlying
distribution of values is not extremely heavy-tailed.
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Figure 4.1: Feature Encoding and Preprocessing Pipeline

The data was successfully prepared using this thorough and strategically justified
preprocessing pipeline, ensuring that the ML models could fully utilize feature-target
correlations for accurate sales prediction.

4.4 Baseline and Model Selection

Initially, several supervised ML methods were examined in order to tackle the sales
prediction challenge methodically. The process of choosing an appropriate model
began with a baseline to set a performance standard, and then more complicated
models were evaluated to better describe the dataset’s underlying complexities.

Ridge Regression (Baseline Model) Ridge regression is a linear regression
variation that includes L2 regularization. Ridge regression successfully addresses
multicollinearity among predictor variables by adding a penalty term appropriate
to the squared size of the coefficients. This strengthens coefficient estimates and
improves generalization performance on unseen data. It is the ideal baseline model
because of its ease of use and computational effectiveness.
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Random Forest The ensemble technique, Random Forest, builds several decision
trees during training and averages their results (for regression problems) to generate
a stable and reliable prediction [37]. Because of its integrated ensemble averaging,
the approach is particularly effective in handling high-dimensional data, managing
noisy datasets, and capturing nonlinear relationships. However, if tree complexity is
not properly controlled, it could overfit training data.

Gradient Boosting Another powerful, iterative ensemble approach for successively
creating predictive models is gradient boosting. Particularly for datasets with
intricate, nonlinear interactions, each successive model (often shallow decision trees)
is built to reduce residual errors from earlier trees, producing incredibly precise
predictions [35]. Although gradient boosting is renowned for its precision and
adaptability, it usually necessitates meticulous hyperparameter adjustment to prevent
overfitting and preserve generalization.

XGBoost Extreme Gradient Boosting, or XGBoost, is a sophisticated gradient
boosting algorithm that is renowned for its speed, scalability, and enhanced reg-
ularization methods [12]. XGBoost is a popular approach in predictive modeling
challenges because it provides many regularization parameters (such L1 and L2),
improved computation through parallel processing, and effective handling of sparse
data. When properly adjusted, its robustness and performance efficiency frequently
lead to higher predictive skills [36].

Support Vector Regression (SVR) Regression difficulties are addressed by
Support Vector Regression (SVR), which applies the ideas of Support Vector Machines
(SVM). SVR efficiently captures intricate correlations by using kernel functions to
map input data into higher-dimensional regions. SVR is computationally demanding
and extremely sensitive to hyperparameter selection, which makes it difficult to
use for very large or high-dimensional datasets, despite its theoretical stability and
efficacy in nonlinear modeling [28] [27].

4.5 Initial Model Performance Comparison

An initial evaluation of these models provided the following cross-validation (CV)
and test set performances are shown in Table 4.3:
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Table 4.3: Initial Model Performance Comparison (RMSE)

Model CV RMSE Test RMSE
Ridge Regression (Baseline) 19.96 ± 5.15 15.57
Random Forest 10.76 ± 4.17 16.74
Gradient Boosting 8.16 ± 2.99 21.52
XGBoost 10.34 ± 4.53 17.44
SVR 28.57 ± 9.07 28.88

Figure 4.2: Initial Model Performance Comparison (RMSE)

The simpler Ridge Regression model was initially the best-performing model
on the test set, despite expectations that more sophisticated, tree-based ensemble
models may perform better because of their capacity to capture nonlinearities and
complicated feature interactions.

Our baseline model, the Ridge Regression model, uses L2 regularization to manage
complexity and decrease feature multicollinearity. The dataset’s underlying relation-
ships may primarily display linear characteristics, or at the very least, not complex
enough to justify more complex, nonlinear modeling at first attempt, according
to its strong generalization capability in our initial tests (achieving a Test RMSE
of 15.57). Ridge Regression obtained the lowest test RMSE among initial choices
because of its built-in regularization capacity, which also successfully reduced the
risk of overfitting to the training data and allowed it to retain consistent predictions
on unseen observations.

On the other hand, because of their versatility in simulating complex, non-linear
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relationships seen in retail sales data, ensemble approaches like Random Forest,
Gradient Boosting, and XGBoost showed noticeably better cross-validation results.
Their higher cross-validation results, however, were not reflected in their prediction
performance in the test dataset, which is a clear indication of overfitting. This
disparity between test and cross-validation performance in ML typically indicates
either a lack of regularization or a lack of hyperparameter tuning, leading to models
that overadapt to the oddities of the training subsets and fail optimal generalization.

Specifically, the Gradient Boosting and XGBoost models, despite their promising
cross-validation outcomes, revealed an important discrepancy between training and
testing errors. This pattern suggests that these models might have performed poorly
when tested on completely unseen data because they may have picked up on fine
details or noise unique to the training data subsets used during cross-validation. In
the same way, the Random Forest model displayed a smaller but still significant
difference, suggesting that while ensemble approaches are capable of effectively
utilizing complicated relationships, careful hyperparameter tuning is necessary to
achieve robust generalization.

Another nonlinear model, SVR, had the highest error of all the models that
were evaluated. This suggests that either the dataset’s essential properties, such as
categorical features encoded through linear-target relationships, made SVR less than
ideal for this predictive scenario, or that its default hyperparameters were inadequate
to capture underlying complexities.

Critical insights were obtained from this preliminary investigation, which showed
that although complicated ensemble models have a lot of potential, they need to be
systematically optimized for hyperparameters before they can be deemed superior.
Therefore, we made the decision to carry out thorough hyperparameter optimization
in order to fully utilize the sophisticated models and produce forecasts that are more
accurate. In order to properly balance the bias-variance trade-off and guarantee
increased performance and generalization capabilities on unseen retail sales data,
this tuning procedure was crucial. As explained in the following sections, subsequent
tuning attempts confirmed this theory and significantly shifted the performance
rankings in favor of ensemble-based models.

4.6 Hyperparameter Tuning for Improved Perfor-
mance

The predictive accuracy and generalization capacity of the models are greatly im-
pacted by the settings of the many hyperparameters that are commonly included
in ML methods. The complexity, learning dynamics, and general behavior of ML

24



Sales Prediction

algorithms are controlled by hyperparameters, which are external parameters that
are defined prior to the learning process. Finding the ideal hyperparameter values is
essential since inadequate settings can lead to overfitting, poor performance, or an
inability to generalize well to new data.

We used GridSearchCV to conduct a thorough hyperparameter tuning procedure
in order to resolve the performance issues found during the first modeling stage.
To find the best settings, this approach methodically tests an established number
of hyperparameter combinations. GridSearchCV evaluates every hyperparameter
setting by conducting a thorough search and cross-validating the results across the
training set. This method’s primary benefit is its comprehensiveness and rigorousness
in covering the parameter space, which guarantees the selection of hyperparameters
that minimize the prediction error by best generalizing to unknown data.

In this study, the specific objectives and anticipations of hyperparameter tuning
were:

• To significantly decrease the model prediction error (RMSE) on test data that
is unseen.

• To enhance the models’ capacity to capture the complicated relationships and
nonlinearities present in retail sales data.

• To improve model robustness and reduce overfitting by managing complexity
appropriately.

4.6.1 GridSearchCV Hyperparameter Tuning

Cross-validation and a predefined hyperparameter search space were used to thor-
oughly fine-tune each model. Using cross-validation to assess each set, GridSearchCV
is a hyperparameter optimization method that thoroughly examines every possible
combination of parameters within a preset grid. Based on the selected scoring criteria,
in this case, the RMSE, it chooses the parameter combination that produces the
best performance. GridSearchCV was selected because of its extensive and system-
atic approach, which guarantees a thorough investigation of the hyperparameter
space and finds the most reliable model configuration. In particular, each model’s
hyperparameters were optimized as follows:

• Ridge Regression: The regularization strength (alpha), which balances the
magnitude of the coefficients, was optimized with the objective of handling
multicollinearity and controlling complexity in order to avoid overfitting and
enhance stability.
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• Random Forest: The maximum depth (max_depth) and the number of trees
(n_estimators) were adjusted. While controlling tree depth keeps each tree
from fitting extremely specific patterns, increasing the number of trees improves
generalization by reducing variance through prediction averaging.

• Gradient Boosting and XGBoost: The number of estimators
(n_estimators), learning rate (learning_rate), and maximum depth
(max_depth) were among the hyperparameters that were adjusted. Each tree’s
rate of error correction from previous trees is determined by its learning rate.
Optimizing the number of trees and tree depth at the same time balances
complexity and effectively reduces residual errors in the model.

• Support Vector Regression (SVR): The purpose of optimizing hyperpa-
rameters like epsilon, regularization (C), and kernel types was to improve the
model’s ability to capture complex nonlinear interactions.

4.6.2 Tuned Model Results

Hyperparameter optimization led to substantial performance improvements, as
summarized clearly in Table 4.4 and illustrated visually in Figure 4.4.

Table 4.4: Model Performance Comparison (RMSE) Before and After Tuning

Model Test RMSE (Before Tuning) Test RMSE (After Tuning)
Ridge Regression 15.57 16.21
Random Forest 16.74 5.14
Gradient Boosting 21.52 5.57
XGBoost 17.44 4.19
SVR 28.88 23.36
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Figure 4.3: Model Performance after Hyperparameter Tuning (RMSE)

The ensemble-based approaches (Random Forest and XGBoost) showed the most
notable increases, confirming that hyperparameter tuning is an effective technique
for improving generalization and prediction accuracy.

Figure 4.4: Bar Plot of Test RMSE Comparison (Before and After Hyperparameter
Tuning)
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4.7 Interpretation and Final Model Selection

The comparative model performance landscape was significantly changed by the
hyperparameter tuning stage. Out of all the tuned models, XGBoost outperformed
the rest by achieving the lowest test RMSE (4.19). The advanced gradient-boosting
framework XGBoost iteratively creates decision trees to reduce residual errors,
successfully capturing the complicated feature interactions and elaborate nonlinear
patterns common in retail sales datasets.

Random Forest additionally showed substantial improvement, achieving a com-
petitive test RMSE of 5.14. Its small underperformance in comparison to XGBoost,
however, despite its great generalization, demonstrated XGBoost’s advantage in
modeling complex relationships between a large number of numerical and categorical
parameters.

Gradient Boosting closely matched Random Forest and demonstrated significant
improvement (RMSE = 5.57). Although its iterative residual correction capacity
greatly improved predictions, it was still marginally less successful than XGBoost,
perhaps as a result of minor variations in optimization approach or sensitivity to
hyperparameter selection.

Ridge Regression, given its simplicity and interpretability, did not improve
considerably after tuning (RMSE = 16.21). The need for more adaptable models
was highlighted by the fact that its underlying linear assumption was insufficient to
describe the intricate, non-linear interactions present in retail data.

SVR, remained the least effective even after hyperparameter tuning (RMSE =
23.36), probably because of its inherent computational limitations when handling
high-dimensional data with significant categorical encoding, as well as its sensitivity
to feature scaling and kernel selection.

XGBoost was chosen as the final model because of its outstanding generalization
to unknown data and better predicted accuracy. Highly accurate and actionable sales
predictions are now achievable mainly to the systematic saving of this finely trained
model (as best_model.joblib) and its integration into the Dyna ML analytical
framework.
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4.7.1 Final Model and Practical Implications

Implementing the improved XGBoost model yields precise and trustworthy sales
projections, which are crucial for strategic decision-making, inventory optimization,
focused marketing campaigns, and operational effectiveness. In retail settings, its
remarkable predictive powers guarantee significant, data-driven insights that boost
profitability and customer satisfaction.

Figure 4.5: Top 15 Feature Importance in XGBoost Model

Knowing how much each feature contributes to the final predictions is a crucial
part of predictive modeling. The top 15 most significant features identified by
the tuned XGBoost mode based on the calculated significance scores are shown in
Figure 4.5. The degree to which each attribute helps reduce the loss function when
employed in the model’s ensemble of decision trees is commonly used for evaluating
feature relevance in XGBoost.

Notably, the one-hot encoded ProductSubcategoryKey_33 is the most influential
feature with an approximate importance score of 0.35, indicating that the specific
product subcategory it represents captures a substantial portion of the variance
in sales behavior. Following this, PromotionKey_23 exhibits an importance of
around 0.10, underscoring the significant impact of certain promotional campaigns
on sales volume. Additionally, ProductSubcategoryKey_38 contributes with an
importance score of approximately 0.09, highlighting the value of granular product-
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level segmentation in capturing critical sales trends. Temporal indicators further play
a pivotal role, as shown by year_2009 with an importance value between 0.07 and
0.08 and year_2008 with an importance of about 0.04, which together capture the
influence of historical context and macroeconomic conditions on sales performance.
The feature TotalCost, with an importance score of roughly 0.06 to 0.07, likely
reflects the effect of production or acquisition costs on pricing strategies and overall
profitability.

The geographic indicator RegionCountryName_United States (approximately
0.05) and the temporal feature weekday_2 (also around 0.05) illustrate the impact
of regional market characteristics and day-of-the-week effects on sales. Economic
variables, including DiscountQuantity (around 0.02), UnitCost (approximately
0.01), and UnitPrice (approximately 0.01), highlight the sensitivity of customer
demand to pricing strategies. Moreover, StoreKey_TE, a target-encoded identifier for
stores with an importance of roughly 0.02, captures location-specific historical sales
patterns, whereas ProductSubcategoryKey_41 (with an importance below 0.01)
and ProductKey_TE (approximately 0.00) contribute minimally to the predictive
performance of the model.

The overall findings confirm that a combination of finely grained product details,
strategic promotional tracking, and both temporal and regional contextual data is
fundamental for generating accurate and actionable sales forecasts. These insights
validate the feature engineering and encoding strategies employed in this study,
demonstrating that focusing on key product subcategories, effective promotions, and
localized as well as historical trends can substantially improve inventory management,
resource allocation, and operational efficiency in retail analytics.

The analysis reveals that the dominant predictors in our model are product-related
features, particularly the product subcategory indicators ProductSubcategory
Key_33 and ProductSubcategoryKey_38, which capture the most significant vari-
ance in sales results. In contrast to conventional high-cardinality features such
as ProductKey_TE and StoreKey_TE, whose contributions are minimal in this
context, these subcategory features, along with targeted promotional signals like
PromotionKey_23 and PromotionKey_21, highlight the superior predictive strength
of more aggregated and contextually enriched representations. This finding reinforces
the effectiveness of our feature engineering and encoding strategy, which transforms
granular categorical data into robust numeric predictors that drive model accuracy.

The comparatively lower importance of generalized categorical features, such
as broad temporal or geographic indicators not ranked among the top predictors,
underscores that the fine-grained product subcategories and specific promotional
variables exert a more pronounced influence on sales volume predictions. In our
results, while certain temporal features (for example, year_2009 and year_2008)
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and regional markers (for example, RegionCountryName_United States) play a
supportive role, it is the detailed product and promotion signals that capture the
nuanced dynamics of consumer behavior, thereby confirming that specificity in feature
representation is critical for forecast accuracy.

By offering precise and useful data for the retail strategy, this comprehensive
feature importance study verifies our feature engineering methodology. In order to
improve inventory management, enhance promotional campaigns, and more efficiently
allocate resources, retailers can prioritize product subcategories with historically
strong sales signals and use targeted promotional and temporal indicators. In order
to improve financial performance and operational efficiency, the results indicate a
strategic focus on data-driven, precisely customized features that reflect market-
specific and product-specific dynamics.
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Chapter 5

Product Recommendation

Recommendation systems contribute significantly to business success by improving
customer experience and driving sales through personalized suggestions [55]. The
two main approaches used in this project, Collaborative Filtering and Content-
Based Filtering, are covered in detail in this section. The emphasis focuses on the
rationale behind the implemented rating system, detailed preprocessing steps, and
how these systems leverage the unique data view created specifically for optimal
recommendation performance.

Despite their strength, recommendation systems face a number of obstacles and
limitations when used in practical settings. Among these difficulties, the most
prominent ones are as follows:

• Cold-Start Problem: Insufficient information about new users or new prod-
ucts in a system might lead to this situation [51][48]. New users or items
with limited interactions result in poor recommendations because collaborative
filtering depends mainly on user-item interaction histories.

• Data Sparsity: Users frequently rate or buy only a small portion of the
items in huge catalogs, which leads to extremely sparse user-item matrices.
Traditional neighborhood-based techniques and matrix factorization strategies
may become less successful due to sparsity.

• Diversity & Serendipity: To maintain high user engagement, systems need
to achieve a balance between offering popular items that users are likely to
enjoy and making new or less evident recommendations.

The cold-start problem is the most noticeable of these difficulties. A common
scenario is when a new user registers for a service and the system does not have
enough interaction history to provide precise, specific recommendations. Similarly,
because there are little to no user-item interaction data, recently released products
also have limited exposure in collaborative filtering models [51][48][52].
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In order to address the cold start problem, platforms frequently use hybrid
strategies that combine content-based features with collaborative signals. By imple-
menting a content-based strategy for products with inadequate interaction data and
a popularity-based recommendation layer for new clients, our project can partially
address the cold-start problem. Users with similar interests may still be recommended
new or less-rated products based on product descriptions. Even in instances where
collaboration signals are scarce or nonexistent, this method preserves the overall
quality of the proposal.

5.1 Collaborative Filtering

An effective technique in recommendation systems is collaborative filtering, which
takes advantage of past user-product interactions to forecast future references [53][55].
This project uses collaborative filtering to create personalized product recommenda-
tions based on past purchases made by users. Collaborative filtering’s main advantage
is its capacity to make recommendations based only on users’ prior interactions,
without the need for specific details on the characteristics of the products. It finds
patterns of similarity between users or items and recommends products with which
similar users have had positive experiences in the past [57].

Collaborative filtering was chosen because it has been shown to be successful
in identifying user preferences and making appropriate product recommendations,
especially when there is enough historical data available. This method immediately
benefits from a robust rating system that precisely evaluates user-product interactions,
greatly impacting the level of quality and applicability of the suggestions produced.

5.1.1 Initial Data Preparation and Rating System

The sales, customer, and product tables each have useful but insufficient information
that cannot be used solely to accurately estimate client preferences. It was crucial
to develop a thorough and unified data representation in order to achieve its full
predictive potential. In order to compile the required dimensions and metrics from
several relevant columns, a specialized SQL view (V_ProductRecommendation) was
created. The final dataset constructed through this view contains the following
columns: ProductCategoryName, ProductSubcategory, Product, ProductKey,
CustomerKey, DateKey, SalesQuantity, SalesAmount,
ReturnQuantity, ReturnAmount.

This enriched dataset guarantees a comprehensive representation of consumer
behavior and makes meaningful recommendation modeling appropriate. The con-
structed view offers consolidated customer-product interaction data, including prod-
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uct categories, subcategories, aggregated sales quantities, and financial figures related
to sales and returns. This enriched dataset allows for an extensive and efficient
analysis of customer behavior and product performance, greatly enhancing recom-
mendation outcomes.

5.1.1.1 Development of Rating System

For collaborative filtering to be effective, user preferences must be precisely deter-
mined. Direct, trustworthy ratings were difficult to extract due to the transactional
nature of the data, which is characterized by intrinsic skewness and variation. As a
result, we created a custom rating system that accurately captures the user-product
engagement.

In order to determine net sales figures that accurately reflected real client interest,
return quantities, and amounts were first subtracted from total sales. These metrics
are computed formally as follows:

NetSalesQuantity = SalesQuantity − ReturnQuantity, (5.1)
NetSalesAmount = SalesAmount − ReturnAmount (5.2)

We used a square-root transformation since the net sales data showed a high
degree of skewness:

NormalizedQuantity =
ñ

NetSalesQuantity,

NormalizedAmount =
√

NetSalesAmount
(5.3)

Following the square-root transformation, these metrics were further scaled onto
a standard range of 0–1 by dividing by their corresponding maximum values:

NormalizedQuantity = NormalizedQuantity
max(NormalizedQuantity) , (5.4)

NormalizedAmount = NormalizedAmount
max(NormalizedAmount) (5.5)

Lastly, a weighted linear combination was used to calculate the ratings, with a
greater emphasis on the financial value (sales amount):

Rating = 1 + 4 × (0.4 × NormalizedQuantity + 0.6 × NormalizedAmount)
(5.6)
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To better understand the distribution of the generated ratings, the following table
(Table 5.1) shows the frequency of products within each rating category:

Table 5.1: Distribution of Products by Rating Category

Rating Category Number of Products
1 – 1.5 0
1.5 – 2 2114
2 – 2.5 4851
2.5 – 3 2143
3 – 3.5 346
3.5 – 4 126
4 – 4.5 6
4.5 – 5 0

Furthermore, the top-rated products according to the average calculated rating
are displayed in Table 5.2, highlighting the efficiency and reliability of the created
rating system in capturing customer preferences and product popularity.

Table 5.2: Top 10 Products by Average Rating

Product Name Average Rating
SV 16xDVD M360 Black 224
Adventure Works 26" 720p LCD HDTV M140 Silver 200
A. Datum SLR Camera X137 Grey 98
Contoso Telephoto Conversion Lens X400 Silver 90
SV Keyboard E90 White 81
Contoso In-Line Coupler E180 Silver 78
Contoso Optical USB Mouse M45 White 69
Cigarette Lighter Adapter for Contoso Phones E110 Red 65
Contoso 4G MP3 Player E400 Silver 63
Reusable Phone Screen Protector E120 62

These comprehensive assessments confirm the reliability of our rating system and
guarantee that it accurately reflects customer preferences and product performance,
providing a solid basis for later collaborative filtering recommendation modeling.

5.1.2 Model Development and Evaluation

After building a strong rating system, we used the Surprise library, a well-known
Python toolkit for recommender systems, to apply collaborative filtering algorithms
to the data. In general terms, there are two types of collaborative filtering techniques:
matrix factorization methods and neighborhood-based approaches [45]. Finding the
best predictive model for our dataset is the basic justification for comparing several
collaborative filtering strategies.
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Recommender model creation and benchmarking are made easier by Surprise’s
many benefits [9]. First, it has a standardized data loading system that enables to
use of built-in datasets or create rating datasets from pandas DataFrames. Second,
the library reduces redundant code and encourages reproducible experiments by
automating hyperparameter tuning and cross-validation. Third, by offering uniform
metrics (for example, RMSE and MAE) and consistent API calls for training, testing,
and predictions, it makes it easier to compare various collaborative filtering algorithms.
These architectural approaches allow researchers and practitioners to focus on model
selection instead of technical details.

Encapsulating user-item-rating triplets, the Dataset class is the foundation of
Surprise. By defining the rating_scale and column ordering, a Reader object
controls the parsing of raw rating data. After loading, typical splitting or cross-
validation procedures can be employed to instantiate test and train sets. Because of
the library’s modular design, experimenting with different recommendation algorithms
can be done rapidly. As illustrated in the listing below, a typical workflow includes:

1. Loading or building a Dataset from a built-in dataset or pandas DataFrame.

2. Selecting an algorithm from the supported algorithms (for example, SVD,
KNNBaseline, NMF).

3. Evaluating model performance using cross-validation based on MAE or RMSE.

4. The final model is trained using the complete dataset and produces top-N
recommendations or predictions.

The model_selection methods enable cross-validated parameter searches, and the
accuracy module calculates RMSE and other metrics for evaluation.

A wide range of matrix factorization and neighborhood-based algorithms, as well
as baseline and naive predictors, are implemented by the Surprise library [9]. The
following classes were essential to our project:

• SVD, SVD++, and NMF for factorizing the user-item rating matrix into latent
representations.

• KNNBasic, KNNWithMeans, KNNBaseline, and KNNWithZScore for neighbor-
hood based approaches.

• BaselineOnly for modeling global baseline ratings derived from user/item
biases.

• SlopeOne, CoClustering, and NormalPredictor as baseline or substitute
techniques that are appropriate for comparison.
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This variety of techniques allows for a comprehensive comparison of accuracy, scala-
bility, and conceptual complexity, guaranteeing that the chosen model best suits the
properties of the dataset.

Surprise was the main engine for collaborative filtering experimentation in our
recommendation pipeline. A pandas DataFrame with three crucial columns—
CustomerKey, ProductKey, and Rating—was created using the data from our SQL-
based rating system. We used cross-validation procedures to compare the performance
of the chosen algorithms after enclosing these data in a Surprise Dataset. The
primary criterion for evaluating accuracy was the RMSE, which is consistent with
best practices for assessing prediction tasks.

Figure 5.1: Conceptual Overview of the Surprise Library Framework

Figure 5.1 provides a simplified overview of how the Surprise library fits into our
recommendation workflow, demonstrating how raw rating data is transformed into
trainable datasets and subsequently used by a variety of collaborative filtering
algorithms to generate predictions.

The RMSE, which is generally considered as a reliable indicator of the accuracy
of rating prediction, was the evaluation parameter used to compare these algorithms.
To ensure that performance estimations are reliable, we conduct cross-validation.
The compared performance metrics are outlined in Table 5.3.

Based on the benchmarking results, KNNBaseline emerged as the optimal
algorithm, achieving the lowest RMSE score of 0.2731. Therefore, KNNBaseline was
selected as the final collaborative filtering model for further training and deployment.
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Table 5.3: Collaborative Filtering Algorithms Benchmarking Results

Algorithm Mean RMSE
KNNBaseline 0.2731
SVDpp 0.2964
BaselineOnly 0.3065
NMF 0.3109
SVD 0.3147
KNNBasic 0.3180
KNNWithMeans 0.3409
KNNWithZScore 0.3439
SlopeOne 0.4727
NormalPredictor 0.5421
CoClustering 0.5875

5.1.3 Final Model Selection and Evaluation

KNNBaseline’s significant performance advantage is due to its sophisticated method
of calculating similarities. KNNBaseline specifically uses Alternating Least Squares
(ALS) optimization to adjust the baseline ratings according to user-item deviations
from the global average, resulting in more accurate and reliable predictions.

SVD and NMF, two matrix factorization-based techniques, also demonstrated
commendable performance, demonstrating their ability to successfully capture la-
tent factors [29][27]. However, because of the unique features of our dataset, like
sparsity and variability in user-item interactions, they were slightly less accurate
than KNNBaseline. Although they offered useful comparative insights, baseline
approaches lacked the granularity and depth of more sophisticated algorithms.

The performance of KNNBasic and other less complex neighborhood techniques
was average. The lower performance of CoClustering and NormalPredictor indicates
that these algorithms are less appropriate for datasets with skewed interactions and
high sparsity, which are characteristics of real-world sales data.

KNNBaseline was chosen as the final model for deployment after these thorough
tests, re-trained on the entire training dataset, and then serialized to be employed in
producing dynamic recommendations in real-time scenarios.

This comprehensive benchmarking procedure not only validated our model selec-
tion, but also described the benefits and drawbacks of each method, providing useful
data for future study and practical applications in related domains.

Personalized product recommendations are capable of being dynamically gener-
ated by the trained collaborative filtering algorithm. Estimated ratings for products
with which each client has never interacted with before are used to generate recom-
mendations. These anticipated ratings are then used to choose the best products,
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therefore, customizing the recommendations.
Figures illustrating the distribution of the calculated ratings and the top products

recommended to customers are presented in Figures 5.2 and 5.3, respectively.

Figure 5.2: Distribution of Ratings

Figure 5.3: Top 10 Products by Average Rating

These visualizations demonstrate how well the system can differentiate between
products according to consumer preferences, confirming the rating system’s applica-
bility and efficacy.
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In conclusion, the meticulous algorithm selection procedure and the customized
grading system ensured that collaborative filtering generated high-quality personalized
suggestions. To increase the precision and scope of recommendations, future studies
could investigate the combination of this process with other approaches, including
hybrid recommendation systems.

5.2 Content-Based Filtering

Content-based filtering suggests products that are similar to items that customers
have liked or engaged with positively in the past by using item-specific characteristics
or descriptions. The cold-start problem, where there is limited or no historical user
interaction data, can be successfully handled via content-based methods rather than
collaborative filtering. Additionally, they are not dependent on significant amounts
of user interaction. This method works particularly well when descriptive textual
data or particular product characteristics are readily available.

In this study, textual product descriptions have been utilized to implement
content-based recommendations leveraging clustering methods and Term Frequency-
Inverse Document Frequency (TF-IDF) vectorization. In particular, we adopted the
KMeans clustering approach due to its scalability and robustness.

Figure 5.4: TF-IDF Vectorization Pipeline for Product Data
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5.2.1 Data Preparation and Text Vectorization

The product data, including detailed descriptions, were retrieved from the ‘DimProd-
uct‘ database table. Textual descriptions went through a cleaning process to remove
stop words, followed by the application of the TF-IDF algorithm.

Since it offers a method based on mathematics for determining the corresponding
importance of terms in a document, TF-IDF has proven to be a key component of
text mining and information retrieval. TF-IDF highlights terms that are particularly
prevalent in certain documents while minimizing words that are common to most
documents by recording both the frequency of a term in a single document (Term
Frequency, TF) and the term’s distribution throughout the entire corpus (Inverse
Document Frequency, IDF) [47].

Formally, let t be a term, d a document, and D the corpus. The TF-IDF weight
of t in d is computed as:

TF-IDF(t, d) = TF(t, d) × log
3

N

|{ d′ ∈ D : t ∈ d′}|

4
, (5.7)

where TF(t, d) represents the frequency of t in d, N is the number of documents
in D, and { d′ ∈ D : t ∈ d′} denotes the set of documents containing. Terms that
appear frequently in a limited number of papers are given higher weight by this
formula, which makes them more representative of the content of those documents.
In contrast, words that are extensively used (such as articles or stop words exclusive
to a given domain) have lower weights and have less of an effect on the representation.

For the product descriptions in the DimProduct table, common stop words
were eliminated, and text was normalized (converted to lowercase, removed from
punctuation). The specific preprocessing stages depend on linguistic and domain-
specific requirements, however, stemming or lemmatization procedures could be
implemented to optionally reduce morphological variability. Each product description
was tokenized into terms after normalization, and Equation (5.7) was used to convert
these terms into TF-IDF vectors. This conversion produces sparse, high-dimensional
vectors that are ideal for tasks involving similarity or clustering and efficiently capture
distinctive textual properties.

The primary benefit of TF-IDF is derived from it being able to bring attention to
unique noticable terms of a product while minimizing the importance of ubiquitous
terms. This design improves the representational quality of textual descriptions,
leading to more precise assessments of similarity and superior subsequent recommen-
dations. Sparse representations also facilitate efficient computing, which is beneficial
for extensive e-commerce catalogs.
As depicted in Figure 5.4, each product undergoes a text-cleaning process, tokeniza-
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tion, and TF-IDF weight assignment, resulting in a numeric representation conducive
to effective clustering and search. The next section illustrates how these TF-IDF
vectors feed into a KMeans clustering model, enabling the grouping of semantically
similar products into coherent clusters that serve as the basis for content-based
recommendations.

5.2.2 KMeans Clustering Implementation

We utilized the KMeans clustering algorithm for grouping products into separate
clusters in order to generate the TF-IDF vector representation. Because of its
computational efficiency and ease of use, K-means is one of the most widely used
clustering algorithms in data mining and ML. Data points are separated into k

distinct clusters using this method, each of which is defined by the mean (centroid)
of its points. K-Means aims to minimize overall within-cluster variance, also known
as the sum of squared errors or within-cluster sum of squares (WCSS), by iteratively
updating the points allocated to clusters and the centroids’ locations.

Formally, if S1, S2, . . . , Sk denote the k clusters, then K-Means seeks to solve:

arg min
S

kØ
i=1

Ø
x∈Si

∥x − µi∥2, (5.8)

where x represents a data point, µi is the centroid (mean vector) of the cluster
Si, and k is the prescribed number of clusters. The algorithm typically proceeds in
the following iterative manner:

1. Initialization: Choose k initial centroids, usually by random sampling from
the dataset.

2. Assignment Step: By applying a selected distance metric (which is typically
Euclidean), assign each data point to the cluster whose centroid it is closest to.

3. Update Step: Take the mean of all the points that have been allocated to
each cluster to recalculate its centroid.

4. Repeat: Switch between the assignment and update phases until convergence,
which usually occurs when the cluster’s assignment stops changing or reaches
a maximum iteration threshold.

K-Means is a default clustering technique in many situations due to its computa-
tional efficiency and relative simplicity of use. In this study, we employed K-Means
to cluster TF-IDF vectors derived from product descriptions. Each document vector
x corresponds to the textual characteristics of a product, and the algorithm groups
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products into semantically coherent clusters. After experimenting with different
values of k, we fixed k = 10 to achieve an interpretable balance between cluster
compactness and thematic coherence among products. The chosen value of k al-
lowed different product categories to emerge within each cluster, simplifying the
interpretation and visualization of the groups.

By mapping new items or keywords to the nearest cluster centroid, the algorithm
successfully recognizes similar products, thereby allowing content-based recommen-
dations [57]. This approach is not only scalable but also straightforward: items that
share particular descriptive characteristics are more likely to lean toward the same
cluster, improving the quality and reliability of recommendations in cases where user
interaction data may be limited or scarce.

k = 10 =⇒ (Balance between interpretability and cluster cohesion) (5.9)

Throughout the procedure of assignment and update steps, Euclidean distance was
utilized as the principal similarity measure, which is commonly used for textual feature
vectors in TF-IDF format. Content-based recommendations, which concentrated
on the cold-start problem by recommending newly released products even in the
absence of any noteworthy feedback from customers or interactions, were based on
the latter clusters.

5.2.3 Cluster Analysis and Interpretation

The interpretability of each cluster was enhanced by analyzing the top terms within
them, obtained from their respective TF-IDF vectors. Table 5.4 illustrates represen-
tative terms for each cluster, facilitating understanding of their semantic content.

Table 5.4: Top Terms per Product Cluster

Cluster Top Terms
0 pedestal, duet, drawer, washer, dryer, inch, metal, construction, oscillating, fan
1 definition, high, standard, 720p, 1080i, vga, 1080p, contrast, angle, 47
2 cubic, foot, capacity, watt, refrigerator, oven, microwave, 1100, sized, design
3 camera, digital, oz, compact, SLR, product, type, weight, mode, dimensions
4 inches, 15, pounds, 17, 10, fax, printer, 11, 23, jet
5 battery, rechargeable, hour, flip, swivel, degree, 180, screen, coffee, life
6 LCD, 16, GB, screen, widescreen, brightness, touch, control, aspect, ratio
7 wash, programs, dry, tumble, cleaning, rinse, temperature, washing, action, steam
8 home, power, watts, theater, cooking, channel, total, speakers, interior, defrosting
9 memory, usb, light, feet, air, rooms, conditioner, btu, square, channel

Each cluster was characterized by a set of top terms derived from the centroid’s
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highest TF-IDF values, providing clear interpretability of product groupings and
improving user trust in recommendations.

5.2.4 Keyword-Based Recommendation

The ability to promptly provide recommendations based on a user-inputted term
is an essential aspect of our content-based strategy. The trained KMeans model is
then used to allocate the term to a cluster once it has first been transformed into
its matching TF-IDF vector. In order to ensure that product recommendations are
appropriate and in line with user intent, recommendations are then derived from
inside this specified cluster.

Figure 5.5: Word Cloud of Product Names Weighted by Ratings

In Figure 5.5, frequently occurring and highly rated product-related terms are
displayed more prominently, reflecting their relative significance in the corpus of
item descriptions. Larger words, such as “digital camera,” “720p,” and “cubic foot,”
indicate popular or distinctive features that tend to appear in highly rated items. For
instance, “digital camera” suggests a frequent and well-rated category of products
focused on photography, whereas “720p” and “LCD HDTV” point to a group of
television or display items that users have positively rated. The term “cubic foot”
refers to capacity or volume, hinting at product categories such as refrigerators or
microwaves with defining size attributes.
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Crucially, this word cloud illustrates the variety of textual features that the
TF-IDF representation captures. Terms related to consumer electronics (for example,
“hard drive,” “HDMI,” “widescreen,” and “touch screen”) appear alongside more gen-
eral concepts (for example, “foot capacity,” “rechargeable battery,” and “wireless”).
Such diversity indicates the system’s ability to differentiate between product specifi-
cations and domains, ultimately helping in the keyword-based recommendation step.
When a user inputs a keyword (for instance, “camera”), the content-based approach
takes advantage of these TF-IDF-weighted terms to identify similar items within the
same cluster, even if specific collaborative filtering data are lacking for those products.

Content-based filtering produced useful recommendations by meticulous textual
data preparation, vectorization, and clustering; it was highly effective where there
was none or limited previous user data. This strategy, which exhibits accuracy
and versatility in conjunction with collaborative filtering approaches, is essential for
tackling the cold-start problem associated with recommendation systems.
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Deployment

The deployment phase is a critical component of ML projects, involving the tran-
sition of developed predictive models and recommendation systems into practical,
user-accessible services. The primary goal of this phase is to provide end users with
actionable insights generated by complex analytical processes. This thesis presents a
comprehensive deployment approach that uses FastAPI for API generation, Postman
for meticulous API testing, and Gradio for intuitive and interactive user interface
development [6][7][8]. These platforms and tools were specifically chosen for their
robustness, ease of use, scalability, and compatibility with the Python program-
ming ecosystem. This section provides detailed explanations and justifications for
each technology used, along with custom methodologies applied to handle specific
deployment requirements.

6.1 API Development with FastAPI

FastAPI is a cutting-edge, high-performance web framework for Python RESTful
API development. Its choice was motivated by its superior performance, ease of
use, automatic documentation capabilities, and excellent support for asynchronous
programming, which collectively ensure robust and efficient API operations [6]. Fur-
thermore, FastAPI integrates seamlessly with Pydantic for effective request validation,
serialization, and error handling, significantly improving data integrity and API
reliability. Three primary API endpoints were developed:
Prediction Endpoint (/predict): Provides predictions of sales quantities based
on user-input transactional data.
Collaborative Filtering Endpoint (/recommend/collaborative): Offers per-
sonalized product recommendations leveraging collaborative filtering techniques.
Content-Based Filtering Endpoint (/recommend/content-based): Provides
recommendations based on keyword input, using content clustering methods.
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Figure 6.1: FastAPI, Postman, and Gradio Integration Pipeline

The Sales Prediction API includes specialized preprocessing steps distinct from
the initial training preprocessing. These differences stem primarily from the need
to handle the RegionCountryName field in real-time inference scenarios. Custom
transformers, such as DropAndDateTransformer and SinglePassTargetEncoder,
were developed to handle high-cardinality categorical variables effectively, ensuring
that the model could perform accurate predictions in various geographical regions.
The prediction pipeline was serialized using Joblib to enable rapid loading and
execution during API calls.

Pipeline-Based Preprocessing with Custom Transformers

Making sure that the entire pre-processing procedure is reliable and repeatable is
crucial in contemporary predictive modeling, particularly when working with high-
dimensional data that comes from feature engineering and category encoding. Instead,
we combined all data transformation processes into a single, cohesive scikit-learn
pipeline, eliminating the need to manually construct a multitude of features (in our
instance, 132) from raw input data. In terms of automation, maintainability, and
consistency between the training and inference stages, this method has clear benefits.

Manually creating and maintaining an extensive array of features is not always
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feasible when dealing with high-cardinality and multi-level categorical data. Any
discrepancy between the feature engineering in the training phase and the process
applied during inference risks leading to critical prediction errors. In contrast,
encapsulating the entire workflow in a pipeline guarantees that the transformations
applied to new (unseen) data match precisely those performed during training.
Similarly, during the implementation of the sales prediction system, we encountered a
critical mismatch between the training and inference stages: although the model was
trained on a dataset with 132 encoded features, the API received only 18 unprocessed
features at inference time. This discrepancy resulted in a runtime error indicating
that the model expected 132 input features while being presented with far fewer.
To address this, we adopted a unified scikit-learn pipeline that consolidates all data
preprocessing steps into a single workflow, ensuring that inference data undergoes
the same transformations as those used during training.

The deployed pipeline includes specialized preprocessing transformations like
DropAndDateTransformer for date feature extraction like DateKey and dropping
unnecessary columns, and SinglePassTargetEncoder for encoding high-cardinality
categorical variables (e.g., StoreKey, ProductKey). The choice of these custom trans-
formers enhances the model’s predictive performance and allows accurate inference
across various geographical regions.

By incorporating preprocessing steps and model training into a single pipeline,
we streamline the workflow in three important ways. First, the pipeline accepts raw
input data and applies all transformations automatically, eliminating the need for
the manual construction of numerous encoded or scaled features. Second, consistency
across training and inference is maintained through a unified procedure that minimizes
the likelihood of data leakage or transformation errors. Third, saving the pipeline
as a single object (for example, using joblib) substantially eases deployment: the
same processing steps are reloaded at inference time, ensuring reproducible results.

In summary, the integration of custom transformers within a unified pipeline
represents a robust and maintainable strategy for complex feature engineering in
sales prediction tasks. This design choice not only simplifies the deployment process,
particularly when interfacing with services like FastAPI or tools such as Postman and
Gradio, but also enhances the reliability and performance of the predictive system
as a whole.

6.2 API Testing with Postman

Postman is extensively employed in this project to test the robustness and accuracy
of the API endpoints developed [7]. Its capabilities for detailed request-response
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inspection, automated testing scripts, and widespread usage within the software
development industry underpin its selection.

For the Prediction API, collaborative filtering, and content-based recommendation
APIs, comprehensive testing scenarios were created and validated. The tests confirm
endpoint responsiveness, prediction accuracy, and relevance of the recommendation.
Example scenarios used during the tests are included in the documentation to
demonstrate successful API interactions and the reliability of the deployed services
[7].

The following are sample tests executed in Postman to verify API reliability and
correctness:

Sales Prediction API Postman Test:
Request:

1 {
2 " DateKey " : "2009 −03 −04" ,
3 " StoreKey " : 307 ,
4 " ProductKey " : 1114 ,
5 " channelKey " : 2 ,
6 " PromotionKey " : 1 ,
7 " RegionCountryName " : " United Sta t e s " ,
8 " ProductCategoryKey " : 4 ,
9 " ProductSubcategoryKey " : 24 ,

10 " UnitCost " : 153 .59 ,
11 " UnitPr ice " : 334 .00 ,
12 " ReturnQuantity " : 0 ,
13 " ReturnAmount " : 0 . 00 ,
14 " DiscountAmount " : 0 . 0 ,
15 " TotalCost " : 4607 .70 ,
16 " SalesAmount " : 10020 .00 ,
17 " DiscountPercent " : 0
18 }

Response:

1 { " pred ic ted_sa le s_quant i ty " :13 .956844577223194}

Collaborative Product Recommendation API Postman Test:

Request:
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1 {
2 " customer_id " : 333
3 }

Response:

1 {
2 " customer_id " : 333 ,
3 " recommended_products " : [
4 {
5 " ProductKey " : 1860 ,
6 " Product " : "NT Washer & Dryer 21 in E2100 Blue "
7 } ,
8 {
9 " ProductKey " : 249 ,

10 " Product " : " Contoso Home Theater System 2 .1 Channel E1220 Black "
11 } ,
12 {
13 " ProductKey " : 1817 ,
14 " Product " : "MGS MechCommander 2009 E173 "
15 } ,
16 {
17 " ProductKey " : 1686 ,
18 " Product " : "SV Hand Games f o r s tudents E40 Yellow "
19 } ,
20 {
21 " ProductKey " : 1668 ,
22 " Product " : "MGS Hand Games f o r s tudents E400 Black "
23 }
24 ]
25 }

Content-Based Recommendation API Postman Test:
Request:

1 { " keyword " : " photo "}
2 \end{minted}
3

4 \ t e x t b f {Response : }
5 \ begin { l s t l i s t i n g } [ language=json ]
6 {
7 " keyword " : " photo " ,
8 " p r ed i c t ed_c lu s t e r " : 6 ,
9 " top_terms " : [ " d e f i n i t i o n " , " high " , " 720 p " , " standard " , " channel " ,
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10 " usb " , " 1080 i " , " watts " , " wash " , " c o f f e e " ] ,
11 " recommended_products " : [
12 {
13 " ProductKey " : 2 4 8 ,
14 " ProductName " : " Contoso Home Theater System 5 .1 Channel M1530

Black "
15 } ,
16 {
17 " ProductKey " : 1 7 3 ,
18 " ProductName " : " SV 8xDVD E120 Black "
19 } ,
20 {
21 " ProductKey " : 2 1 0 6 ,
22 " ProductName " : " Contoso Water Heater 4 .3GPM M1250 Grey "
23 } ,
24 {
25 " ProductKey " : 9 1 4 ,
26 " ProductName " : " SV 160GB USB2. 0 Portable Hard Disk M65 Grey "
27 } ,
28 {
29 " ProductKey " : 1 6 4 4 ,
30 " ProductName " : " Contoso DVD External DVD Burner M200 Blue "
31 } ,
32 {
33 " ProductKey " : 2 3 2 ,
34 " ProductName " : " Litware Home Theater System 4 .1 Channel M413 Brown

"
35 } ,
36 {
37 " ProductKey " : 1 3 6 5 ,
38 " ProductName " : " Contoso 2−Line Corded Cord le s s Telephone M202

White "
39 } ,
40 {
41 " ProductKey " : 2 2 2 ,
42 " ProductName " : " Litware Home Theater System 5 .1 Channel M515

S i l v e r "
43 }
44 ]
45 }

6.3 User Interface Development with Gradio

The thesis utilizes Gradio, a user-friendly interface building tool, chosen specifically
for its ability to quickly prototype and showcase complex ML models through intuitive
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and interactive web interfaces without extensive front-end development knowledge
[8]. Gradio was instrumental in achieving the goal of making the developed models
directly accessible and easily interpretable by users. The resulting Gradio application
interfaces directly with the FastAPI endpoints and provides clear, immediate feedback
for sales prediction and personalized recommendations [8].

The interface is structured into three distinct functional tabs:

1. Sales Prediction: Users can enter transaction-specific details and instantly
receive a prediction for sales quantities.

2. Collaborative Recommendations: Users input their customer ID to receive
personalized product suggestions.

3. Content-Based Recommendations: Users enter keywords to obtain relevant
product recommendations based on content similarity.

To demonstrate how users interact with the deployed services, the Gradio interface
provides separate tabs for sales prediction, collaborative filtering, and content-based
filtering. In the sales prediction section, users can enter essential parameters such as
date, store information, product details, country of sale, and cost/price figures. After
receiving these inputs, the system computes and displays a predicted sales quantity
in real time, employing a trained model and deployment-specific preprocessing steps.

In the collaborative recommendation section, users are prompted to input a
customer ID. This input is used to generate a list of recommended products derived
from analyzing purchasing patterns between multiple users. In contrast, the content-
based recommendation section allows a user to submit a specific keyword, which
is then compared against product descriptions through TF-IDF vectorization and
KMeans clustering. The interface subsequently returns items that align the most
closely with the user keyword, reflecting the system’s capability to identify relevant
products based on textual similarity.
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Conclusion

This thesis presented a comprehensive exploration of ML methodologies applied to
sales forecasting and product recommendation problems within the retail sector.
Utilizing the ContosoRetailDW dataset, we successfully developed, optimized, and
deployed predictive models capable of accurately forecasting sales quantities and
generating personalized product recommendations. The research contributes to
practical industry applications, especially in handling the real-world complexities
inherent in retail analytics.

We first carried out extensive exploratory data analysis (EDA) in the sales
prediction field, which was followed by precise preprocessing steps. Notably, our
models’ predictive ability was greatly increased by the application of strategic
feature engineering. The intricate correlations in retail sales data were successfully
captured by the targeted approach to categorical variable encoding, specifically one-
hot encoding for low cardinality variables and target encoding with cross-validation
for high cardinality variables. Furthermore, the model’s performance was further
stabilized and enhanced by standard scaling of numerical attributes.

Numerous prediction algorithms, such as Ridge Regression, Random Forest,
Gradient Boosting, XGBoost, and SVR, were methodically benchmarked and assessed.
According to the first assessments, ensemble approaches had a lot of potential but
were hampered by overfitting in the absence of adequate regularization. The resilience
and prediction accuracy of ensemble models were greatly improved by thorough
hyperparameter tweaking using GridSearchCV and cross-validation techniques, which
finally resulted in the choice of XGBoost as the final model. With the lowest RMSE
of 4.19, the optimized XGBoost model showed exceptional predictive accuracy,
confirming its ability to handle complex nonlinear connections that are common in
retail data.

Two different methods, Collaborative Filtering and Content-Based Filtering, were
thoroughly applied and assessed for product recommendations. Using advanced
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algorithms from the Surprise library, the collaborative filtering approach made use of
past customer-product interactions. With the lowest RMSE of 0.2731 and the best
ability to suggest appropriate items based on previous user behavior, KNNBaseline
became the best model. Textual data preprocessing using KMeans clustering and
TF-IDF vectorization allowed the content-based recommendation system to produce
precise and significant recommendations, particularly in cases in which data was
sparse or the cold-start problem was present.

The practical effectiveness and understanding of the models were greatly improved
by combining these approaches into a single, FastAPI-powered RESTful API and by
using Gradio to provide an easy-to-use, interactive user interface. Through an easily
available web-based platform, stakeholders may now directly facilitate strategic and
well-informed business decisions by utilizing the deployed models.

7.1 Future Works

The work described in this thesis can be expanded upon in the future by investigating
a number of promising directions. First, adding real-time streaming data may improve
the prediction models’ ability to adapt to changing consumer trends and dynamic
market situations. Retail organizations could receive instant, actionable information
by using real-time analytics platforms like Apache Spark Streaming or Apache Kafka.

Additionally, investigating deep learning methods like Transformer-based models,
Long Short-Term Memory (LSTM) networks, and Recurrent Neural Networks (RNN)
may reveal more intricate temporal patterns and correlations in sales data. These
techniques could greatly improve prediction accuracy, especially in cases with notice-
able temporal dynamics, even if they demand bigger datasets and more processing
power.

The creation of hybrid recommendation systems that combine collaborative and
content-based methodologies to use the advantages of both approaches is another
interesting area of research. Furthermore, adding contextual information like real-time
feedback could greatly improve the recommendations’ accuracy and customization.

Lastly, addressing deployment environments’ scalability and efficiency is a crucial
area for further study. Utilizing containerization technologies (like Docker and
Kubernetes) and cloud services (like AWS, Azure, and Google Cloud) will enable
scalable, dependable deployments, guaranteeing the smooth and effective functioning
of ML models in production.

In conclusion, this thesis has offered a thorough methodological framework
together with real-world applications of cutting-edge ML techniques for product rec-
ommendations and sales forecasting. In addition to achieving notable improvements
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in prediction performance, the provided research presents an important foundation
for future advancements in data-driven decision-making in the retail industry by
filling in existing gaps in the literature and addressing practical problems.
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