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Abstract

The WIVERN (WInd VElocity Radar Nephoscope) mission, recommended by
ACEO committee, aims to deliver global, three-dimensional observations of at-
mospheric winds, alongside measurements of reflectivity and brightness tempera-
ture linked to clouds and precipitation. A critical requirement for fully exploiting
WIVERN data is distinguishing between convective and stratiform cloud regions.
Convective areas, marked by strong vertical motions (|w| > 1m/s), are associated
with intense precipitation and severe weather, while stratiform regions are broader
with weaker vertical motion. This distinction is essential for improving numerical
weather prediction (NWP), as WIVERN’s horizontal wind measurements (VH-
LoS) are only valid in stratiform zones. This thesis proposes developing an Arti-
ficial Intelligence (AI) model for binary convective/stratiform classification using
WIVERN observables such as vertical profiles of radar reflectivity and Doppler
velocity (VLoS). The selected model is the U-Net neural network, widely used in
biomedical image segmentation, here adapted for meteorological radar data. The
network will be trained on synthetic datasets generated by WIVERN’s end-to-
end (E2E) simulator, which mimics radar observations based on high-resolution
atmospheric models and accounts for radar physics, geometry, and satellite dy-
namics. This allows for large-scale, labelled training data without relying on
costly field campaigns. The model will perform pixel-wise classification of simu-
lated radar images, labelling each point as convective or stratiform based on the
strength of vertical motions. The study will also explore the potential for further
classification and analyze the influence of dataset characteristics on performance.
Evaluation metrics will include Precision, Recall, F1-score, and Equitable Threat
Score (ETS). The goal is to create a reliable tool to support WIVERN’s scientific
objectives and enhance global weather prediction.



1 Introduction

Earth observation from space plays a crucial role in the understanding of meteo-
rological dynamics, especially in relation to the increasing frequency and intensity
of extreme weather events. Recent decades have shown how global warming and
changing climate patterns are influencing cloud formation, precipitation regimes,
and storm behavior across multiple scales. As a result, there is a growing need
for high-quality, global, and vertically resolved atmospheric observations to better
support weather prediction, early warning systems, and climate research.

Within this context, the WIVERN mission (WInd VElocity Radar Nepho-
scope) emerges as one of the most promising satellite-based initiatives in Earth
observation. Proposed as part of the European Space Agency’s Earth Explorer
11 programme and recommended by the Advisory Committee for Earth Obser-
vation (ACEQO), WIVERN is designed to address one of the most critical gaps
in current atmospheric observation systems: the lack of direct, global measure-
ments of wind profiles within clouds. The mission aims to provide high-resolution,
three-dimensional measurements of line-of-sight winds, along with radar reflectiv-
ity profiles and brightness temperature values linked to clouds and precipitation.

A key requirement for fully leveraging WIVERN's potential is the ability to dis-
criminate between stratiform and convective cloud regions. As will be discussed
in detail in Chapter 2, this distinction is vital for the correct interpretation of
Doppler velocity measurements, particularly for the derivation of horizontal wind
components (VHLoS), which are only valid in stratiform areas where vertical mo-
tions are negligible. Convective regions, in contrast, are characterized by strong
vertical motions and are typically associated with severe weather systems such
as thunderstorms or tropical cyclones. Proper identification of these regions is
therefore essential not only for the scientific exploitation of WIVERN data, but
also for improving Numerical Weather Prediction (NWP) models.

Traditional approaches to convective/stratiform classification often rely on em-
pirical thresholds applied to radar reflectivity fields or on features observed in
previous satellite missions (e.g., TRMM, GPM). However, these methods can be
limited in flexibility, and their accuracy may degrade in complex atmospheric
conditions or with instruments operating at different frequencies or viewing ge-
ometries. The growing availability of synthetic data from satellite simulators,
together with advances in Artificial Intelligence (Al), opens up new possibilities
for automated and scalable classification methods based on data-driven learning.

In this thesis, we propose the development of a deep learning model to auto-
matically classify WIVERN-like radar observations into convective or stratiform
regions, using the observable fields of radar reflectivity and Doppler velocity as in-
put. The selected model architecture is the U-Net, a convolutional neural network
originally developed for biomedical image segmentation, which has demonstrated
excellent performance in geophysical and remote sensing applications. U-Net’s



encoder—decoder structure, combined with skip connections, allows the network
to simultaneously capture fine spatial details and global context—making it par-
ticularly well-suited for pixel-wise segmentation tasks on radar images.

The model is trained on synthetic datasets generated using WIVERN’s end-
to-end (E2E) simulator, which realistically replicates radar measurements based
on high-resolution atmospheric models such as WRF or SAM. These simulations
account for radar physics, satellite orbit, scanning geometry, and signal degrada-
tion effects, allowing the creation of a diverse and representative training dataset
without the need for costly field campaigns or yet-unavailable in-orbit observa-
tions.

The classification task is explored in three different configurations:

e Binary classification, distinguishing between stratiform and convective re-
gions;

e (lassification using continuous probability masks to describe transition re-
gions;

e Multi-class classification, aimed at recognizing different intensities of con-
vective activity.

Each scenario is addressed through careful preprocessing of input and target data,
architecture tuning, and evaluation of the learning performance. The model’s
performance is assessed using standard classification metrics, such as Precision,
Recall, F1-score, and the Equitable Threat Score (ETS), with particular attention
to the model’s ability to generalize to unseen simulated scenes.

Ultimately, the objective of this work is to contribute to the development
of an Al-based tool capable of supporting the scientific and operational goals
of the WIVERN mission. By enabling accurate and automated segmentation of
convective structures in radar images, this research aims to enhance the reliability
of global wind retrievals, improve weather forecast systems, and advance the use
of Al in the next generation of satellite meteorology.



2 WIVERN Mission Context

Earth observation performed by satellites plays a crucial role in studying and
understanding the meteorological phenomena of our planet. Satellites provide a
unique, comprehensive perspective that enables the monitoring and, most impor-
tantly, the study of certain phenomena. The global warming observed in recent
years has led to consequences across multiple aspects that cannot be overlooked.
Changes in cloud configurations and precipitation patterns have been noted, which
are reflected in the increasing frequency of extreme meteorological events. These
atmospheric changes introduce new dynamics that must be studied to improve
prediction capabilities and, consequently, better manage their impacts.

It is essential to emphasize the importance of accurate weather forecasts, both at
the local level and for large-scale macro-regions. The increase in extreme weather
events cannot be ignored, and accurate meteorological predictions not only help
manage emergencies in terms of public safety but also mitigate economic losses
and damages [1].

The instruments used in this field are continuously evolving, and, as a result, so
are the data and information they require. For instance, the World Meteorological
Organization (WMO) has identified a lack of globally distributed direct wind ob-
servations, which poses a limitation to the WMO’s observation system. The data
obtained from such observations are crucial for Numerical Weather Prediction
(NWP) models, which require parameters related to wind, clouds, and precipita-
tion to accurately represent the current atmospheric state, upon which the model
bases its weather forecast [2]. Furthermore, the use of more advanced climate
models demands new observations with higher spatial resolution (approximately
1 km) to fully leverage the increased complexity of these next-generation models
[3]-

2.1 Objectives and Measurements of the WIVERN Mis-
sion

The WIVERN (Wind VElocity Radar Nephoscope) mission, recommended by
ACEO committee, will help bridge the gaps in current atmospheric observations
by providing a range of valuable data and information for Earth observation.

e One of the key products of the WIVERN mission is the measurement of
winds within cloud formations. This will help fill the gaps in the WMO
observation systems, which require such data for studying the dynamics
of certain events, including extreme ones, as well as for their prediction.
Numerical Weather Prediction (NWP) models will also be able to use this
missing wind information in stratiform cloudy regions to improve forecast
accuracy. The precision of these forecasts depends not only on the most
recent observations—provided in real-time by WIVERN-—but also on having



as much information as possible about the current state of the atmosphere.
It is evident that vertically resolved wind measurements within clouds on
a global scale are highly valuable, significantly enhancing the accuracy of
NWP model predictions . These data were previously unavailable but
will now be accessible thanks to the WIVERN mission, which will provide
wind information within cloud formations, including those associated with
cyclones and tropical storms, for the first time. The conically scanning
radar onboard WIVERN measures the Doppler shift of water particles in
the atmosphere, allowing for the calculation of wind speeds within cloud
formations and in regions affected by extreme weather events.

e Another product of the WIVERN mission are the reflectivity profiles and
brightness temperature values, which will be provided with higher spatial
and temporal resolution. This informations are useful for studying the mi-
croscopic properties of clouds and precipitation. The observations are in
real time and provide an excellent basis for climate models and NWP mod-
els, which, thanks to this data, improve their ability to predict and simulate
precipitation and the evolution of cloud systems . The increase in the
spatial resolution of these models, which is expected to reach 1 km, makes
it necessary to have this new data at the same resolution for validation .

Figure 1: The figure shows a qualitative diagram of the WIVERN mission .

WIVERN uses a conically scanning dual-polarization Doppler radar at 94 GHz
to measure line-of-sight winds (via the Doppler shift) and reflectivity profiles with
a resolution of 640 m. Dual polarization helps prevent the decorrelation of the re-
turn signal phases caused by the satellite’s motion. The polarization is orthogonal,
allowing the two signals, emitted within a very short time interval (7}, = 20 us),



to propagate independently. This approach enables more precise measurements,
as the signals do not interfere with each other, allowing for much shorter time
intervals between emissions and maintaining phase correlation for a more accu-
rate Doppler velocity estimation ﬂ@ﬂ The radar antenna has a 800 km wide swath
that allows a revisit time of 1.5 days at the equator and 1 day over 50° latitude [3].
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Figure 2: This scheme represents the various products derived from the measure-
ments of the WIVERN mission. At “Level-0” are the raw instrument measure-
ments, progressing to “Level-3” where averaged maps are produced. The classifi-
cation work is positioned at “Level-2B” | just before the final product levels. From
the diagram, it is clear that the data used are the calibrated Line-Of-Sight (LOS)
wind speed component and the calibrated reflectivity, available at “Level-2A” [4].
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2.2 Convective and Stratiform Regions in Weather Dy-
namics

Convective regions are of great importance for the study of atmospheric dynamics,
with consequences for meteorological phenomena. Convective clouds are respon-
sible for the transport of large air masses to the upper regions of the troposphere
[7] and are linked to regional climate changes, which in turn affect short-term
seasonal forecasts [8]. The intensity and strength of certain storms and meteo-
rological events are related to upward movement and transport: the greater this
phenomenon, the larger the quantities carried to higher regions, increasing the
likelihood of particularly extreme and severe weather events. Knowing this, it is
crucial that such dynamics are well represented in prediction models. However,
these models struggle to accurately estimate convective characteristics in the at-
mosphere. The lack of observations limits the progress of Numerical Weather
Prediction (NWP) models, representing a gap that the WIVERN mission aims
to fill. Distinguishing convective cloud regions from stratiform ones also provides
valuable information. Winds in stratiform cloud regions have proven to be highly
important, allowing for improved forecasting of severe weather events through
NWP models and the global observation system. Effectively distinguishing these
regions based on the primary collected data is one of the key aspects to develop.

In this context, this work involves developing an artificial intelligence model capa-
ble of using data obtained through WIVERN observations — namely reflectivity
and Doppler velocity measurements - to distinguish between convective and strat-
iform regions in the observed cloud formations. The model will need to be trained
to perform this classification based on a dataset that enables this analysis to be
carried out as effectively as possible

2.3 Background of AI and Radar Images

In recent years, various approaches have been developed to perform classification
or distinction in the atmosphere of precipitation or other meteorological phenom-
ena. The classical methods employed are those based on low-frequency radars
(TRMM, GPM) used on orbiting satellites. These are capable of identifying pre-
cipitation in stratiform regions as a bright band, i.e., a strong horizontal signal
at around 4-5 km altitude. At this height, snowflakes melt and become coated in
a layer of water, which reflects the radar signal [9]. For precipitation in convec-
tive areas, on the other hand, strong reflectivity signals are observed extending to
high altitudes without showing a transition region where the phase change occurs
[10]. High-frequency radars, such as the one used by WIVERN, present certain
limitations. Despite their greater sensitivity, the signal becomes saturated and un-
readable during heavy rainfall, as the water attenuates it [11] and causes multiple
scattering [12], which distorts it. In such cases, it has been decided to observe the
tops of clouds in order to detect overshooting of particles rapidly ascending into
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the atmosphere, which indicates the presence of convection. These approaches
are based on vertical reflectivity profiles and therefore do not take into account
information about the velocity of precipitation.

There are also other approaches to classification using ground-based radar through
the use of various algorithms. Threshold-based methods or simple pixel-wise in-
structions on measured field images have been employed. An example is [13],
which implements classification based on the presence of a reflectivity peak and
the contrast between it and its surroundings. There are also fuzzy logic-based
methods, where instead of a hard classification, an uncertainty value is assigned
to a point or pixel of interest [14].

The application of machine learning has represented a further step forward, lead-
ing to an increase in the accuracy of the results produced. Rather than applying
rules and logic to the measured data fields, mathematical models such as neural
networks are trained to autonomously learn to recognise and classify image pixels
after being exposed to a number of already labelled examples. For instance, a
CNN [15] can be used to perform multi-class classification based on the observa-
tion of overshooting from the tops of clouds.

The use of the U-Net architecture has become standard practice for tasks in-
volving image segmentation and classification. It is widely used in the biomedical
field, but it has also found application in geophysical contexts such as surface
observation through multispectral imagery [16] or classification of such imagery
[17]. From the perspective of atmospheric studies, U-Net has been used in sev-
eral works. Its performance has been demonstrated in tasks such as forecasting
downpours within 30 minutes of observation [18], or in the recognition and identi-
fication of convective cold pools in the atmosphere [19]. It has also been possible to
generate hurricane risk maps by applying U-Net to fields produced by forecasting
models [20].
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3 Introduction to Artificial Intelligence and Ma-
chine Learning

Artificial Intelligence (AI) refers to that branch of science which studies how
to use computers to imitate human behaviour and its characteristics—such as
decision-making processes that allow problems of varying complexity to be solved
with minimal or no human intervention. The goal of Al is to build systems capable
of solving problems that may match or, in some cases, surpass human performance
in specific tasks. Therefore, AI must evolve to address a variety of problem types,
each requiring different techniques and tools which will define the machine’s learn-
ing, perception, communication, and, more simply, reasoning processes.

The main challenge lies in the difficulty of replicating and programming what we
humans refer to as tacit knowledge - that is, intuition or the implicit understanding
we employ unconsciously when carrying out more complex tasks. For relatively
simple tasks, it is possible to define explicit rules that help the machine identify
and solve the problem. However, for more complex tasks, setting parameters and
rules becomes significantly more challenging, and tacit knowledge becomes nearly
impossible to define and program into a computer.

Machine Learning (ML) is a subfield of Artificial Intelligence that enables the
replication of this more advanced aspect. Instead of providing the computer with
precise rules and describing how to solve a specific problem, the computer learns
autonomously - using the data and information provided, and through experience
- how to solve it and even improve its performance over time (in a manner similar
to human learning). In practice, this is achieved by using algorithms that learn
iteratively from training data contained in a dataset. These algorithms enable
the machine to identify hidden or more complex patterns with the aim of building
analytical models capable of making repeatable and accurate decisions.

Within the field of Machine Learning, three main types of learning approaches
can be distinguished:

e Supervised Learning requires a training dataset that contains both in-
put data and corresponding output responses (targets). Training is per-
formed using solved examples contained in the dataset. During the learning
phase, the model’s parameters are appropriately adjusted based on these
input—target pairs. Training is considered complete once the model is able
to predict the target for a new, previously unseen input. We distinguish
between regression problems, where a numerical value is predicted, and clas-
sification problems, where the model must assign the correct class label.

e Unsupervised Learning occurs when the model is asked to identify pat-
terns and features within a dataset that contains only input data - without
targets or labels, in contrast to supervised learning.
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e Unlike supervised and unsupervised learning, reinforcement learning does
not rely on a static dataset. Instead, data is generated dynamically through
interaction with the environment subject to certain constraints that produce
effects, thereby altering the system’s state. If an action leads to a positive
result for the system, it is rewarded with a score (reward). The model’s
training in this scenario leads it to independently find the best strategy to
maximise the reward (and minimise error), ultimately solving the given task.

Machine Learning still requires data processing before the data can be provided
to the model. The dataset must accurately represent the features that need to be
extracted, and human intervention is often necessary to ensure this.

With Deep Learning (DL), some of these limitations are overcome by using
more complex models which, although they require greater computational re-
sources, are capable of extracting features directly from raw data without the
need for preprocessing or any other human intervention on the input dataset.

Machine
Learning

Deep
Learning

Figure 3

3.1 Deep Learning and Artificial Neural Network (ANN)

Deep Learning is a subcategory of Machine Learning. It developed as a result
of the increased computational power of computers and the larger amounts of
data that can be made available for training models. Unlike a Machine Learning
model, a Deep Learning model is capable of working with raw data and extracting
features from a dataset without the need for human intervention or manipulation.
Models that use this type of learning have structures that are similar to our neu-
rons, both functionally and sometimes even structurally.
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Figure 4: Neuron structure. It takes 2 input-which are weighted-and returns the
output after an activation function.

In this context, there are Artificial Neural Networks (ANNs). These models
are based on the biological neural model, which is replicated as a mathematical
model and forms the foundation of more complex models and networks used in
deep learning. The smallest unit that makes up a neural network is the neuron
itself. It takes in input data, and through a function with weights, it can activate
and produce an output. Multiple neurons make up what is called a layer in the
neural network. An ANN can consist of several layers, with each one receiving
information and producing an output. The initial layers take in the data and
extract the simplest, low-level features. As the numbers of layers increase and
the architecture of the network becomes more complex, it becomes possible to
extract more abstract features: in this case, we refer to Deep Neural Networks
(DNNs). The learning process can occur through backpropagation: based on the
output provided by the network and the target given in the training dataset (with
supervised training), the model’s weights can be updated at each iteration us-
ing backpropagation combined with an optimization algorithm such as stochastic
gradient descent (SGD) or Adam.

3.2 Convolutional Neural Network (CNN)

A Convolutional Neural Network (CNN) is a deep neural network architec-
ture specialised in image analysis, but it is also employed in other fields such as
computer vision, speech processing, and face recognition. The structure of a CNN
is based on the perceptron model, but this time with multiple layers arranged in
succession. In the case of image analysis, the image enters the network through an
input layer, then passes through the hidden layers, and finally produces a result
via an output layer. Each individual layer forms the basic building block upon
which the CNN structure is based. Unlike a perceptron, each layer in a CNN
performs various operations on the input image.

e Convolution is perhaps the most important step carried out. It involves
applying filters to the image, which are understood as smaller matrices of
weights (w), known as kernels. These matrices move across the image both
vertically and horizontally. At each position of the filter over the image,

15



a sum is calculated by multiplying the pixel values of the image with the
corresponding weights of the overlapping filter. This produces a new image
called a feature map, which, depending on the filter used (i.e., how the
weights in the kernel are chosen), highlights certain characteristics present
in the image. The application of these filters for performing convolution can
be modified using specific parameters. Stride defines how many pixels the
kernel moves across the image (increasing the stride reduces the size of the
resulting feature map). Padding refers to the value of pixels added around
the image so that the kernel can still interact with the border pixels during
convolution.

e Pooling is an operation that reduces the size of the feature maps and is
performed after convolution. The goal is to generalise the dominant infor-
mation extracted during the convolution phase. Pooling involves a kernel
that moves across the feature map and extracts a value using an opera-
tion (e.g., taking the maximum or calculating the average) from the pixels
covered by the kernel at each position.

e Activation functions are what allow this type of architecture to be so
accurate. The non-linearity of these functions enables the model to learn
more complex features that a linear combination of nodes could never cap-
ture (in the absence of non-linearity). Common activation functions include
SIGMOID, which returns a value between 0 and 1; and ReLU, the most
commonly used activation function in CNNs, which offers low computational
cost.

The structure of a CNN consists of a sequence of layers where these operations are
carried out. Different network architectures can be created based on the number
and arrangement of these layers.

e The Input layer consists of nodes that take the image as input to the CNN
and pass it to the nodes in the subsequent layers.

e The Convolution and Pooling layers are where the above operations are
performed. The nodes in these layers pass information to the next layer
through activation functions.

e The Flatten layer may be used to convert a sequence of two-dimensional
nodes (corresponding to the feature maps from previous layers) into a one-
dimensional configuration, if required by the output layer.

e A Fully Connected Layer (FC Layer) connects every node in the current
layer to every node in the following layer.

The parameters of the network that must be learned during training are the
weights (w) and the biases (b). In convolutional layers, the weights are the values
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in the filter matrices (kernels) that slide across the image and help extract the
relevant features. In fully connected layers, each connection between nodes has
an associated weight and bias that allow the model to map the extracted fea-
tures to output classes. Biases are values added to the weighted sum of inputs
and allow neurons to activate even when the input is zero. There is one bias per
kernel and per node connection in FC layers. An important aspect of CNNs is
weight sharing in convolutional layers. The weights, defined by the filter matrix,
are shared across the entire image; thus, the number of parameters depends not
on the image size but on the size of the filter and the number of filters used per
layer. This significantly reduces computational complexity compared to FC lay-
ers, where weights are defined for every single connection between nodes, leading
to a rapid increase in the number of parameters as image size grows. Unlike a
standard neural network, a CNN is not affected by translation. Therefore, the
recognition or segmentation of a subject does not depend on its position within
the image. This is due to the fact that weights and biases are shared across all
neurons in a given layer.

FC Layers

47 Convolution Fatten Layers S

Output

Input > > > — —

Figure 5: CNN architecture. Blue: convolutional layers. Purple: Fully connected
layers.

3.3 U-Net for Image Segmentation

U-Net networks are a convolutional neural network architecture developed pri-
marily for image segmentation, where each pixel in the image is assigned to a
specific class (for example, identifying object boundaries or distinguishing specific
areas within the image). Originally introduced for biomedical image segmenta-
tion, U-Net has demonstrated great versatility and has spread to many other
fields, including radar image analysis. Its name “U-Net” derives from its char-
acteristic U-shaped architecture, which effectively balances the capture of global
context and the preservation of spatial details. The structure of U-Net can be
conceptually divided into two main paths: a contracting path (or encoder) and
an expanding path (or decoder)

e The contracting path (Encoder) is similar to a typical CNN used for clas-
sification and serves to extract features present in the input image and
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progressively acquire higher-level contextual information. The encoder con-
sists of multiple levels, each comprising a convolutional layer followed by a
pooling layer (typically max-pooling). This reduces the spatial dimension
of the image while simultaneously increasing the number of feature maps
obtained through convolution. The number of levels in the encoder branch
(which is then mirrored in the decoder) defines the network’s complexity
and its ability to extract increasingly abstract features from the images. As
the spatial resolution decreases, the feature maps contain more abstract and
position-invariant information.

e The expanding path (Decoder) is responsible for reconstructing the seg-
mentation of the image at the same resolution as the input image. The
flow begins at the bottom of the U with the low-resolution feature maps
generated by the encoder. These are “decoded” through a series of up-
sampling operations (such as deconvolution or transposed convolution) and
convolutions. Upsampling operations, particularly transposed convolu-
tion are crucial in the expanding path. Unlike standard convolution that
reduce spatial dimensions, transposed convolution operates “in reverse,” ap-
plying filters to expand the spatial dimensions of the input. This process
is designed to learn a transformation that reconstructs the spatial resolu-
tion lost during pooling. Practically, transposed convolution distributes the
values of low-resolution feature maps over a larger area, thereby creating a
higher-resolution feature map. This is vital for transitioning from abstract,
low-resolution features back to a detailed, full-resolution representation re-
quired for pixel-level segmentation.

e A crucial aspect of U-Net lies in the skip connections, which link corre-
sponding feature maps in the contracting path of the encoder with those
in the expanding path of the decoder. The skip connections connect fea-
ture maps that have the same spatial resolution but originated from dif-
ferent stages of the network (encoder). The fusion of these maps typically
occurs via concatenation. This means that the features learned by the en-
coder (which contain fine spatial information) are “stitched” together with
the decoded features from upsampling (which contain high-level contextual
information). This allows the decoder to combine semantic richness (the
“what” of an object) with spatial precision (the “where” it is located and
its exact boundaries), significantly improving the quality of the final seg-
mentation. At the end of the expanding path, a final convolution and an
activation function (such as sigmoid for binary segmentation or softmax
for multi-class segmentation) produce the final segmentation map, which
matches the input image in size.

Compared to a traditional CNN used for classification, U-Net offers significant ad-
vantages for segmentation tasks. U-Net produces a prediction for each individual
pixel, making it ideal for tasks that require pixel-level understanding. The skip
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connections are the key to the model, allowing the network to combine high-level
information (semantic context) with low-level information (spatial details) — a
crucial requirement for accurate segmentation.

Furthermore, U-Net is known for its ability to achieve good results even with
relatively small training datasets, thanks to its efficient architecture that exten-
sively leverages context expansion through encoding and the recovery of details
through decoding and skip connections.

However, its main drawback compared to simpler architectures lies in its
greater computational complexity, especially during the expansion phase, and
in the need for more substantial hardware resources for training, due to the large

number of parameters and the multiple convolutional and upsampling operations
involved.
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Figure 6: U-Net architecture. Yellow: convolutional layers. Red: pooling layers.
Blue: unpooling layers. Purple: output

3.4 Training the Network

During the training of a neural network, the main objective is to optimise the
network’s weights and biases so that it can produce predictions that are as precise
and accurate as possible. This process is driven by various factors and parame-
ters, which must be carefully selected in order to ensure a successful outcome.

One of the fundamental elements involved is the loss function, which quanti-
fies the discrepancy between the model’s predictions and the expected values (la-
bels). In classification problems, such as the one under consideration, commonly
used loss functions include cross-entropy, which measures the distance between
the predicted probability distributions and the actual ones. In regression tasks,
on the other hand, functions such as the mean squared error (MSE) or mean ab-
solute error (MAE) are typically employed, as they provide a numerical indication
of the model’s prediction error. Minimising the loss function thus corresponds to
reducing the model’s error and consequently improving its predictive performance.

Loss minimisation is achieved through an iterative process in which, at each train-

ing cycle, the input is propagated through the layers of the network (forward pass)
to generate an output. The resulting error is then propagated backward through
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the network (backpropagation) to update the weights. Backpropagation, or
error backpropagation, is the fundamental algorithm that enables the efficient
computation of the gradients of the loss function with respect to each of the net-
work’s parameters. After the forward pass, the loss is computed by comparing the
network’s output with the true label. This error is then propagated backwards
through the layers using the chain rule of differential calculus, yielding the partial
derivatives of the loss with respect to each weight. At each layer, these gradients
indicate how much each weight contributed to the final error. With this informa-
tion, the weights are updated in a way that progressively reduces the loss. The
parameter update follows the rule:

oL
Whpew = Wold — 7 % <1)

where 7 is the learning rate, L is the loss function, and 0L /0w is the gradient of
the loss with respect to the weight, computed via backpropagation. This formula
represents the basic principle of weight update in gradient-based optimization,
where parameters are adjusted in the direction that reduces the loss. In practice,
more sophisticated optimization algorithms are often employed—such as Adam,
RMSprop, or AdaGrad—which extend this basic rule by introducing mechanisms
like adaptive learning rates and momentum. Despite these differences, the under-
lying idea remains the same: weights are updated using gradient information to
iteratively minimize the loss function. This mechanism is particularly efficient due
to the layered structure of neural networks, which allows the reuse of intermediate
gradients computed in deeper layers to efficiently calculate those in earlier layers.

The behaviour of the training process can be significantly influenced by a set
of hyperparameters, which are not learned by the network but must be set in
advance:

e The learning rate is among the most critical: it determines the magnitude
of the weight updates. If set too high, training may become unstable or
diverge; if too low, it may converge extremely slowly or get stuck in local
minima.

e The batch size defines how many samples are processed simultaneously for
each weight update. Small batch sizes produce noisier gradients, which can
enhance generalisation; larger batches offer more stable gradient estimates
but require more memory and may lead to less flexible solutions.

e The number of epochs refers to how many times the entire dataset is
processed by the network. Increasing this number can improve performance,
but beyond a certain point it can lead to overfitting.

Optimisation algorithms are responsible for updating the weights and directly
influence the learning efficiency. The most basic is gradient descent, which up-
dates weights proportionally to the gradient of the loss function. More advanced
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variants, such as Stochastic Gradient Descent (SGD), use a random subset (mini-
batch) of the dataset for each update, speeding up training and introducing vari-
ability that can help escape local minima. More sophisticated optimisers like
Adam (Adaptive Moment Estimation) combine the speed of SGD with an adap-
tive adjustment of the learning rate for each parameter, using estimates of the
gradient’s first and second moments (mean and variance), making it particularly
effective for deep networks.

Another crucial aspect is managing overfitting, which occurs when the model
learns not only useful patterns from the data but also noise and dataset-specific
irregularities, thus performing poorly on unseen data. Several techniques can be
employed to mitigate this issue: regularisation (L1 or L2, also known as weight de-
cay), which penalises excessively large weights; dropout, which randomly disables
a portion of neurons during training, preventing the network from becoming overly
reliant on specific internal pathways; and early stopping, which halts training once
performance on the validation set begins to degrade. An additional approach is
data augmentation, which increases dataset variety by generating synthetic ex-
amples through transformations such as rotations, translations, noise addition,
and zooming, thereby encouraging the network to learn more robust representa-
tions. Finally, batch normalisation, which normalises neuron activations within
each batch, can improve training stability and speed, while also contributing to
better generalisation.

The interaction among all these components — loss function, optimisation al-
gorithm, backpropagation, hyperparameters, and regularisation techniques — is
fundamental in determining the effectiveness of the training process and the final
quality of the model.
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4 Dataset for ML Model Training

Creating a dataset with the right information that best represents the character-
istics we aim to recognise is a fundamental aspect—if not the most important
one—in developing and training a solid and accurate Al model. For this reason,
it can also be one of the main challenges to tackle and overcome. It is therefore
crucial to describe the type of data being used and how it is generated, as this
helps define how to effectively proceed with the analysis we want the model to
learn to perform.

In this context, the network we intend to train will work with data related to
velocity and reflectivity fields, which WIVERN will eventually be able to pro-
duce. Additional information will also be available for the network to learn from
and will be employed in the training process. All of this data will be provided by
an end-to-end (E2E) simulator, which allows for the generation of image and data
datasets with relative ease, without the need for in-situ observation campaigns.

While such campaigns could be effective [21], they undoubtedly require a greater
effort on multiple fronts and might not meet the demands for the quantity of data
and information that a model would need to have at its disposal. In this regard,
the simulator can generate an image and data dataset of any necessary size, with
the only limitation being the capacity of the model handling it and, consequently,
the computational cost associated with the training phase.

4.1 E2E Simutaor

The simulator is a software tool developed to evaluate the performance of WIVERN’s
Doppler radar prior to its deployment. The simulator replicates the entire process
of data acquisition and measurement that the radar will need to perform, start-
ing from high-resolution cloud models that recreate the atmospheric scenes to be
observed, all the way to the generation of final data, also taking into account the
errors that may affect the measurements [5|. Below are the models used by the
simulator to reproduce the measurements.

e Atmospheric Model. The atmospheric model is what enables the gen-
eration of the atmospheric scenes targeted by the radar observations. It is
based on the use of global circulation models (ECMWF) and high-resolution
models such as the System of Atmospheric Modelling (SAM). The latter,
in particular, is capable of explicitly representing turbulence within cloud
structures in the atmosphere. It can generate three-dimensional wind pro-
files, hydrometeor distributions, and other profiles of atmospheric variables
such as temperature and relative humidity. These profiles are then interpo-
lated to match the resolution of the WIVERN radar. The high resolution
of the model allows testing the performance of the WIVERN mission radar
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in measuring Doppler velocity and reflectivity under conditions such as con-
vective storms, stratiform clouds, and tropical cyclones [5].

Orbital Model and Scanning Geometry.This model allows for the de-
scription of WIVERN’s orbit around the Earth and the orientation of the
radar. With this information, it is possible to determine which portion of
the atmosphere is being observed and, based on the satellite’s attitude, at
what angle. Orbital data is provided by the model at every moment, mak-
ing it possible to replicate the effect of the observation angle on the Doppler
velocity and to optimize the mission design in terms of observation coverage

[5]-

Parameter Value
Satellite altitude, hgqy 500 km
Satellite velocity, vy 7600 m/s
Off-nadir pointing angle 38°¢
Incidence angle, ¢ 41.6°
Output frequency 94.05 GHz
Pulse width 3.3 us
Antenna beamwidth (3 dB) 0.071°
Circular antenna diameter 3m
Rotation speed 12 rpm
Footprint speed 500 km/s
Transmit polarisation Hor V
Cross-polar isolation < 25dB
Single pulse sensitivity 18 dBZ
H-V pair repetition frequency 4 kHz
Range sampling distance (rate) 100 m (1.5 M Hz)
Number of H-V pairs per 1 km integration length 8

Table 1: WIVERN radar system parameters

W-band Scattering. The model must compute, at each point, the scat-
tering properties of the atmosphere caused by rain, snow, cloud droplets,
or ice crystals. Each type of particle interacts with the signal in a different
way, so the model takes into account how and in what quantities particles
are distributed in the atmosphere in order to properly weigh their effects.
Scattering properties are based on tabulated values that consider the char-
acteristics of the particle distributions (such as diameter and also tempera-
ture). Electromagnetic interactions are modelled using Mie theory, which is
accurate as long as the particles are spherical. The diameter distributions
for rain and snow are exponential in nature [6].The effects of dichroic media
— materials that behave differently depending on the signal’s polarization
— are not modelled. However, neglecting these aspects can lead to Doppler
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measurement errors due to signal pulse decorrelation. To mitigate this error,
the simulator uses statistical values of LDR (Linear Depolarization Ratio)
derived from past observations at the Chilbolton Observatory. These are
sufficient to estimate the impact of ghosts, secondary phenomena that cause
subtle distortions in the measurements but do not result in significant errors

[o]-

Surface Model. This model describes the behaviour of the radar signal
reflected from the Earth’s surface. The LDR value is used as a measure of
how much the polarization of the radar signal changes after being reflected
by the surface; this parameter is related to the surface roughness. The
oo value describes how much of the radar signal is reflected back to the
sensor by the surface and is normalized by unit area. Coastal regions, being
transitional zones, assume intermediate values between those of land and
sea [5].

Point Target Response. This model describes the radar’s capability
to detect and characterize point targets. It enables the assessment of the
radar’s spatial resolution and discretization performance. This evaluation is
carried out through comparisons with experimental measurements on known
targets or by applying transfer functions [5].

Antenna Pattern. The antenna pattern is defined using a simple circular
Gaussian. This model is important for describing how the radar signal
illuminates the scene and how the reflected signals are received. The pattern
includes a main lobe and, if necessary, side lobes that can be added to
the modelling. Off-axis attenuations are also considered, as they affect the
quality of the radar measurements [5].

2
G(0) = Go - exp (—4log2~ ( Oa ) ) = Gy fu(0a) (2)
0345

Mispointing Modelling. To measure and calculate wind velocity accu-
rately, it is essential to know precisely where the radar is pointing, as small
errors can lead to significant and non-negligible measurement inaccuracies
[22]. In orbit, the elevation angle is easier to control and its error can be
known with greater precision, unlike the azimuth angle. For this reason,
azimuth-related errors are modelled using a Power Spectral Density (PSD),
which describes how much energy the error contains at each frequency (low-
frequency components are typically associated with thermal deformation
of the antenna, while high-frequency components are linked to vibrations).
The spectrum derived from the PSD allows the generation of a realistic time
series of pointing errors using an Inverse Fast Fourier Transform (IFFT).
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These errors are then incorporated into the wind measurement process. De-
spite modelling a realistic sequence of errors, the final measurement error
remains small [5].

The radar determines velocity through the phase shift between two consecutively
transmitted pulses. However, when the target velocity is too high, ambiguity can
arise between signals, making them indistinguishable to the radar. This results
in a maximum detectable velocity known as the Nyquist velocity, which depends
on the radar wavelength and the time interval between pulses.

A

Ny = PR ()
To increase this limit, the Pulse Repetition Interval (PRI) can be reduced. How-
ever, this also decreases the maximum unambiguous range and reduces pulse-to-
pulse correlation, which in turn affects measurement accuracy. By transmitting
pulses with different polarisations at very short intervals (e.g., 7 = 3.3 us) and
using a low repetition frequency (4 kHz), it is possible to increase the Nyquist
velocity while maintaining unambiguous detection.

The radar records time series of the I and Q components (in-phase and quadra-
ture) [23], but the model provides level 1 observables, which are the Doppler
velocity and the reflectivity. A method based on established theories is used
to directly estimate the measurement uncertainty. Contributions from surface
scattering (signal reflected by the ground or the ocean) and atmospheric volume
scattering (such as clouds, rain or snow) are taken into account.

e Reflectivity. The signal received from the atmosphere is calculated by in-
tegrating over the entire atmospheric volume from which the radar return
is received. The return N is expressed as a function of the water content in
dBZ. The integration is performed over the solid angle of the radar beam to
obtain the return at different distances. The radar power reflected from the
surface is calculated by integrating over the surface in view of the radar, tak-
ing into account atmospheric attenuation, distance, and the radar equivalent
cross-section of the surface (which depends on the type of terrain consid-
ered) [24]. This second contribution is always expressed in dBZ. The sum
of these two contributions determines the total radar return.

Zov(r) = 2 (r) + 235 (r) (4)

The different polarizations of the radar signals can create ghost signals due
to the fact that part of the vertically polarized signal can end up in the
channel of the other polarization and vice versa. These cross-polarization
contributions are also simulated [5].

e Doppler Velocity. Doppler velocity is estimated by processing the pulse
pairs generated by the radar. The phase measurements that lead to the
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estimation of Doppler velocity are noisy. They can be influenced by elec-
tronic noise, signal width (Doppler spread), and unwanted returns (ghosts).
A normally distributed Gaussian random noise is generated and then added
to the simulated velocity. If the obtained velocity exceeds the Nyquist limit,
it is folded back into its range (aliasing phenomenon) [5].

4.2 Dataset features
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Figure 7: Representation of the Hurricane Milton scene, which will be the subject
of WIVERN measurement simulations via the E2E simulator. The hurricane’s
trajectory is depicted, alongside the categories reached during its evolution. The
WIVERN ground track is also shown, with the corresponding passes of the radar’s
conical scanning.

The observables used for this study were obtained through measurements simu-
lated using the end-to-end WIVERN simulator. Specifically, the WRF (Weather
Research and Forecasting) model was used to simulate the evolution of Hurricane
Milton, which serves as the case study. The event was observed from 6 October
2024 at 10:00 UTC to 8 October 2024 at 00:00 UTC at hourly intervals, for a total
of 39 hours during which it evolved from a tropical storm into a category 5 hurri-
cane. Each simulated scene spans 1250x1250x20 km?, with a horizontal resolution
of 1 km and a vertical resolution of 70 m. For each of these scenes, WIVERN
measurements were simulated for intervals of 200 seconds, corresponding to 40
radar rotations. Simulations included 13 satellite ground tracks between -6° and
6° longitude, spaced at 1° intervals. The available dataset covers a total of 5.5
million kilometres along the satellite’s ground track. This was divided into 500
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km segments, resulting in 10,912 images saved in NetCDF4 format using 32-bit
floating-point precision. It is important to note that convective regions repre-
sent a minority in the dataset, as is typical in atmospheric systems. Areas with
strong convection (w > 3 m/s) account for just 0.62 % of the dataset, while those
with moderate convection (1 m/s < w < 3 m/s) make up 3.67 %. Convective
regions are under-represented and constitute a minority. From the simulations of
WIVERN measurements and observations, the three variables used for training
the network are obtained.

e One of WIVERN’s products is the Doppler velocity, which represents the
velocity component of particles along the radar’s line of sight. It has been
observed that large variability in Doppler velocity indicates the presence of
convection [40]. Despite some attenuation, the WIVERN radar at 94 GHz
is still sensitive to these variations in V' LoS.

e Radar reflectivity is another WIVERN observable available for network
training. High reflectivity values (in particular above 10 dBZ and beyond 10
km altitude) indicate the presence of large precipitation particles, such as
rain or hail, which are lifted by intense updraughts typical of deep convection
[25][26].

e Vertical velocity is not a direct WIVERN product; it is computed through
simulation and corresponds to the projection along the line of sight of the
true vertical velocity component (wLoS). To obtain the actual vertical
component, this is divided by the sine of the line-of-sight incidence angle.
This is the measurement used to construct the target images employed for
model training. Depending on the processing applied, it is possible to build
various types of maps and address multiple case studies.
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5 Methodology

The aim of this work is to develop a neural network model that can be used for
the segmentation and classification of convective and stratiform regions, based
on measurement products derived from WIVERN observations. The simplest
approach taken in this work involves binary segmentation of the two required
classes. A further development of the network includes multi-class segmentation,
which can be used both to differentiate between varying intensities of detected
convection. Several approaches were used to address the problem, both from
the perspective of pre-processing the dataset images and in terms of network
architecture, employing models of varying size.

Below is the general methodology adopted for the various case studies, including

the pre-processing of the input images, the approach chosen for training along with
the related measures adopted, and an overview of the validation metrics selected to
assess the results obtained with the model. The individual case studies addressed
are then considered, presenting the processing of the targets that the network
must learn to reproduce, any specific measures adopted for the training phase in
relation to the case study in question, and the values of the metrics described
earlier.

5.1 Model Architectures

The chosen network architecture, as previously mentioned, is the U-Net. Sev-
eral variants of this architecture have been employed, differing only in their
depth—that is, in the number of layers present in the encoder and decoder. The
greater complexity of the deeper networks results in models that can achieve bet-
ter performance, but also come with a higher computational cost during training
due to the significant increase in the number of parameters to be computed. All
architectures implement the same features, such as skip connections between cor-
responding encoder and decoder layers, bilinear up-sampling, and dropout at the
bottleneck with a probability of 0.2 to prevent overfitting during training.
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Figure 8: U-Net architecture (Small model). Yellow: convolutional layers. Red:
pooling layers. Blue: unpooling layers. Purple: output. It is reported the number
of channel for each layers.
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Figure 9: U-Net Encoder architecture (Larger model). Yellow: convolutional
layers. Red: pooling layers. Blue: unpooling layers. Purple: output. It is
reported the number of channel for each layers. It is reported the number of
channel for each layers.

5.2 Training Setup

The entire dataset available was divided into two parts. The training dataset
consists of 90% of the files and is used by the model to learn the features of the
fields provided as input. The validation dataset consists of the remaining 10% of
the total files, and the information it contains is not used for training the net-
work. These images are used to compute the evaluation metrics for the models
being trained and to calculate the loss using the loss function at the end of each
training epoch. During training, the model with the lowest loss on the validation
dataset is saved, along with the model obtained at the end of the final training
epoch. A learning rate schedule has been implemented, consisting of a reduction
in the learning rate by a factor v after the loss on the validation dataset fails
to improve for a specified number of consecutive epochs (patience). The speci-
fications of the computer used for computation and training are reported in table

CPU GPU
AMD Ryzen 7 9700x | NVIDIA 5070 Ti

Table 2: Computer specification

Multiple training iterations were carried out to obtain a better understand-
ing of the influence of certain parameters. Several values were used for the loss
function weight; the performance was observed when using only one of the two
available inputs; and finally, the impact of the model’s size on its performance
was assessed. For each training run, both the final model at the end of training
and the model that achieved the lowest loss on the validation dataset (calculated
at each epoch) were saved. In general, the other training hyperparameters were
kept unchanged across iterations, in order to highlight the effect of these specific
modifications (Table [3)).
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Epochs | Batch Size | Learning Rate | Patience | LR Factor ~
100 16 0.001 5 0.5

Table 3: The Patience is the number of consecutive epochs without improvement
in the validation loss that has to be waited before reducing the Learning Rate
(LR) by the factor v (Learning Rate Scheduler).

The training were carried out using different loss function based on the purpose
of the case study.

e For binary segmentation the BCEWithLogitsLoss loss function was used.
This function takes the logits output by the network (which are the values
representing the probabilities of belonging to the target class) and applies
the Sigmoid activation function, thereby generating a probability map with
continuous values in the range between 0 and 1. The model weights are then
updated based on the loss, which is calculated by comparing the prediction
just obtained with the target from the dataset associated with the input.
Given the imbalance of the classes represented in the dataset, the loss func-
tion is adjusted with a specific weight that makes the model more sensitive
to the positive class, penalising false negatives to a greater extent. In the
training process for the continuous target case study, the same loss function
is used.

e For multi-class segmentation, the CrossEntropyLoss loss function was used.
This function is suitable for problems in which each pixel can belong to one
of several classes. The network outputs a tensor of logits for each class, and
the CrossEntropyLoss internally applies the Softmax activation function
to convert these logits into a probability distribution across the classes. The
loss is then computed by comparing the predicted class probabilities with the
ground truth labels, which are provided as integer class indices for each pixel.
In cases where the dataset exhibits class imbalance, the loss function can be
weighted accordingly to give more importance to underrepresented classes,
thereby reducing the likelihood of the model ignoring minority classes during
training.

In all cases, a dropout of 0.2 is implemented at the bottleneck of the network (i.e.,
20% of the neurons are “switched off” to limit overfitting).

5.3 Input Fields Processing

The following describes the pre-processing that was applied to the images repre-
senting the inputs that will be used by the network, namely the measurements
made by WIVERN of the Doppler velocity field and radar reflectivity. This pre-
processing was found to be useful during the various initial iterations of the study
of the problem.
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Figure 10: Reflectivity field. On top there is the raw file, on the bottom there is
the processed image before the normalization.

e For the reflectivity field, NaN values were replaced with -20 dBZ. Values
lower than approximately -20 dBZ are associated with areas that do not
belong to cloud structures and are therefore not of interest. Consequently,
all pixels with values lower than this threshold were also set to -20 dBZ.
The reflectivity field was then normalised to the [0, 1] interval in order to
secure a better stability during the training process.

e For the Doppler velocity, similarly, NaN values were replaced with the
neutral value of 0 m/s. A mask based on radar reflectivity was then ap-
plied, setting to 0 m/s all pixels where the reflectivity was less than or equal
to -20 dBZ. This mask serves to clean the Doppler velocity field of measure-
ments taken outside the cloud structures, which consist of noise. Finally,
the absolute value of the Doppler velocity field was normalised to the [0, 1]
interval in order to improve generalization of the information in the field.

31



(

my/s)
1k ey

30
20
= 10
=
2 0
=
£ -10
-20
-30
Ground track (km)
Doppler Velocity Processed (m/s)
17
30
13 o et 20
£ T 10
2 :
= 0
o 81
2 -10
44 & =20
o -30
0 - T
0 100 300
Ground track (km)
Module Doppler Velocity (m/s)
17
35
13 4 30
3 - 25
= peen
o 20
& 81
£ 15
ad 4 10
5
0 . 0

300
Ground track (km)

Figure 11: Doppler velocity field. On top there is the raw file, on the bottom
there is the processed image before the normalization.

5.4 Output Target Processing

One of the most important aspects in developing a reliable model is performing
appropriate processing of the target data that the model will see during training.
These target images are, in fact, what the model should learn to replicate once it
is queried after training. All target images are based on the vertical velocity field
along the line of sight, available from simulations, and on the reflectivity field.
Several case studies have been addressed, and for each of them, the target images
may vary depending both on the type of classification or segmentation desired,
and on how different processing strategies can improve the model’s training.
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Figure 12: Steps for the generation of the target map from the vertical velocity
field for binary segmentation. In this case the target is discrete. The yellow pixels
are the convective cases.

¢ Binary segmentation. For this case study, the aim is to train a model
capable of recognising convective areas within the observed scene and pro-
ducing as output a map that directly highlights them. The target images,
which the network will need to learn to reproduce, are binary maps in which
each pixel (t) is assigned a value according to the corresponding class. In
this case, we are dealing with binary segmentation, as there are two classes
to distinguish: the background or stratiform areas and the convective ar-
eas. The construction of these target images is carried out by applying a
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threshold to the magnitude of the vertical velocity field w (Figure .

K ) 1 if 2> —20dBZ and w > 1.5 m/s
w, z) = _
0 if 2 <=-20dBZ or w<=15m/s
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Figure 13: The processing of the vertical velocity in order to obtain the contin-
uous mask for the training and the binary target for the evaluation and metric
calculation.

e Binary segmentation with continuous mask. The aim to observe how
the model can improve if the target is not represented as a binary map
with only discrete values, but rather as a probability field. In the previous
case, the target maps contained only 0 and 1 to represent the two possible
cases that the network must learn to recognise and classify for each pixel.
In this case, however, the target map also contains values between 0 and
1 to represent the transition region between the two classes in terms of
probability. A binary map with discrete values can later be obtained by
applying a threshold to the continuous target constructed for this case study.
Below are the definitions used for constructing the probability maps with
reference to vertical velocity (w) and reflectivity (z). A linear function has
been chosen to represent the probability transition between stratiform and
convective within the specified velocity interval. Other functions may be
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employed, as well as wider or narrower interval, depending on how strictly
one wishes to define the convective case (Figure [13).

0 — |w| <1m/s or z> —20 dBZ
tw, z) =C |lw|—1 = 1m/s<|w|<2m/s and z > —20 dBZ
1 — |w| >2m/s and z> —20 dBZ
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Figure 14: Example of multi-class target image for training ad the masked image
used foe the evaluation.

e Multi-class segmentation. The following case study involves training a
model capable of performing multi-class classification. In this scenario, the
network is not only required to distinguish between convective and strati-
form classes, but also to differentiate between multiple types of convection,
as defined specifically for this case study.

In particular, three classes are defined in the construction of the target
images (Figure [14):

B Class 0 (Stratiform): defined according to the reflectivity and verti-
cal velocity conditions described below. It can also be considered as
the background class and is by far the most frequent class within the
dataset.

|lw| < 1m/s and z > —20 dBZ (5)
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B Class 1 (Weak Convection): represents regions where convection be-
gins to appear and can be interpreted as a transitional area between
stratiform regions and stronger convective zones. Its frequency in the
dataset is significantly lower than that of Class 0.

lm/s <|w| <25m/s and z> —20 dBZ (6)

B Class 2 (Strong Convection): associated with the most intense convec-
tive events and the highest vertical velocities. Consequently, it is the
least frequent class in the dataset—more so than in any of the previous
cases addressed.

lw| >2.5m/s and z > —20 dBZ (7)
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6 Evaluation

The trained models are evaluated on the images belonging to the validation
dataset, which are therefore not used for training the model. The predictions
made by the network from the input fields are compared with the targets con-
structed according to the specific case study. A qualitative evaluation is carried
out by observing the differences between the two resulting images — that is, the
predicted image and the target image. A quantitative evaluation is performed
through the calculation of metrics in order to obtain an overall view of the per-
formance of the trained model. The main metrics calculated are listed below and
are based on the values of the confusion matrix.

e POD (Probability of Detection), also called Recall, expresses the frac-
tion of positive pixels that the model manages to identify. It is not a reliable
estimate as it does not take false positives into account. Low values indicate
that positive pixels are not being recognised by the model.

TP
POD = ——
TP+ FN
e FAR (False Alarm Rate) expresses the fraction of false positives relative
to the number of active pixels in the prediction made by the model. High
values indicate that the network assigns many pixels to the object class that
do not actually belong to it.

P

FAR= —
R=Tpi7p

e BIAS compares the number of active pixels in the prediction with those
in the target. Values close to 1 indicate that the network is close to repro-
ducing the number of active pixels present in the target, although it is not
guaranteed that these are in the same position. Values much greater than 1
indicate that the model tends to over-predict the object within the image,
while the opposite is true for very low values close to zero.

TP+ FP

Bigs — —— 1
ST TP I EN

e ETS (Equitable Threat Score) takes into account the “hits” obtained by
chance and is therefore a more reliable metric. It penalises both false posi-
tives and false negatives.

B TP — TP,
TP+ FP+FN —TP,;

(TP+ FN)x (TP+ FP)

ET
o TP+ FN+FP+TN

where T'P,cf =
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e F1 Score (F1) is the harmonic mean of precision and recall, and provides an
overall assessment of the model’s quality by considering both the avoidance
of false positives and false negatives. A high F1 score means that the U-Net
has both good precision and good recall.

2xTP

Fl1=
2xTP+FP+FN

e Precision expresses the proportion of positive pixels that are actually pos-
itive. High values indicate that the model tends not to make mistakes when
classifying a pixel as positive.

TP

P . _
recitsion TP+ FP

The evaluation metrics are calculated on the validation dataset, which consists
of images not used during training. Before computing these metrics, however,
both the target and predicted images are appropriately processed. Specifically,
the metrics are not calculated over all pixels of the image, but only over those
that meet a reflectivity threshold condition.

2> 20 dBZ (8)

As a result, not all pixels in the image are considered valid; a mask is therefore
applied to exclude from the calculation any pixels that do not satisfy this condition
. An example of this processing, applied to both the predictions and the targets
of the dataset, is shown in Figure [I5] Once the valid pixels have been identified
for each image, a confusion matrix is constructed for each pair of target and
prediction, calculating the values of true positives (TP), false positives (FP), true
negatives (TN), and false negatives (FN). The values reported for each metric
correspond to the average values obtained across all image pairs in the validation
dataset.

6.1 Binary Segmentation Results

Below are the metrics used to evaluate the trained models. As previously men-
tioned, the results of the various iterations carried out during the training phase
are reported, in order to obtain the most accurate model and to observe its be-
haviour as certain parameters vary. In general, one of the most important aspects
influencing the network’s performance is the dataset used for training. An appro-
priate representation of the features and of the class to be recognised is crucial
for both the training process and the model’s performance. Since class 0 is much
more frequent in the dataset compared to the under-represented convective class
(Class 1), the model will learn very quickly and easily to classify pixels as belong-
ing to class 0. For this reason, one of the first aspects we aimed to investigate
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Figure 15: Processing for evaluation. It is represented the application of the
mask based on the reflectivity in order to have the valid pixels for the metrics
calculation. The green pixels are those whose reflectivity meets condition

was the effect of the weight assigned to the positive class in the loss function.
Starting from w = 1, which implies a neutral impact of the weight on the loss
function during training, its value was gradually increased. Higher values of w
penalise false negatives more heavily and force the network to attempt to predict
the under-represented positive class in the dataset. Of course, excessively high
values tend to produce models that over predict the positive class. The results
are presented in the following tables (Table [4] and [f]).
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Figure 16: Best validation loss models. On the left it is used w = 2, on the right
w = 3.

w | POD FAR Bias ETS F1 Precision | Recall
2 | 0.5454 | 0.4401 | 1.1106 | 0.3570 | 0.4971 0.5599 | 0.5454
3 10.6092 | 0.4935 | 1.4026 | 0.3578 | 0.5005 | 0.5065 | 0.6092

Table 4: The metrics refer to the models trained with different weights (w) for
the loss function with the best validation loss.

w | POD FAR Bias ETS F1 Precision | Recall
2 1 0.5278 | 0.4614 | 1.1003 | 0.3446 | 0.4846 0.5386 0.5278
3 1 0.5952 | 0.5109 | 1.4090 | 0.3484 | 0.4909 0.4891 0.5952

Table 5: The metrics refer to the models trained with different weights (w) for
the loss function. These are obtained after all the epochs of the training.

From the metrics calculated in the highlighted cases (Table [4)), it is interesting
to note that varying the weight value does not necessarily lead to an improvement
across all metrics. With w = 2, the model tends to under-predict convective events
associated with the pixels, as indicated by a lower POD. However, this comes with
the advantage of a lower FAR, suggesting that the model is also less prone to false
positives and behaves more cautiously in classification. This is also reflected in
the Bias, which is closer to 1. On the other hand, with w = 3, we observe higher
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Figure 17: Models results after the whole training cycle. On the left it is used
w = 2, on the right w = 3.

values. Precision tends to be better with a lower weight, albeit at the expense of
a poorer recall. A model with a higher weight tends to improve recall and thus
detects a larger portion of the positive target pixels, whereas precision is better
with a lower weight, meaning the model tends to minimise false positives.

To gain an overall understanding of the optimal value of w to use, other metrics
such as ETS and F1 score are considered. The ETS value is generally acceptable,
indicating that the model predictions are better than random guesses and that
features in the images are beginning to be recognised. As the weight increases,
its value improves slightly, as does the F1 score. The harmonic mean between
precision and recall gives an idea of the most advantageous trade-off between the
two metrics, and even if only slightly, with w = 3 the results are better.

Comparing the results obtained (Table []) with those associated with the mod-
els trained for the entire training cycle (Table[f]), we note that all metrics (except
for the Bias, which is best for w = 2 compared to all other iterations) have
worsened. According to these values, the models obtained at the end of the full
training cycle have degraded in performance due to overfitting. From a qualitative
perspective, it is noticeable from the images that the structures of larger convec-
tive cells are detected, and microstructures are often highlighted as well. Despite
the worsening metrics, it is noteworthy that in Figure |17, all the main convective
phenomena have been recognised and segmented in a very similar shape.

A larger model (introduced in the previous chapter) was trained and its metrics
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were then compared with those of the smaller model, with all training parameters
kept the same. The larger model includes one additional layer, and the initial
layer of the encoder contains twice as many feature maps (increased from 32 to
64). The number of parameters to be computed becomes considerably higher and,
as a result, so does the computational cost. In fact, the training time more than
tripled, increasing from 2 hours and 45 minutes to approximately 10 hours.

Target Target

Height (km}
Height (km)

T
200 300 200 300
Ground track (km) Ground track (km)

Prediction (w=3) Prediction (w=3)

Height (km}
Height (km)

T T
200 300 400
Ground track (km)

200 300 400
Ground track (km)

T T
CONV CONV

Figure 18: On the left the result of the smaller model, on the right of the larger
one.

Size POD FAR Bias ETS F1 Precision | Recall
Small | 0.6092 | 0.4935 | 1.4026 | 0.3578 | 0.5005 0.5065 0.6092
Large | 0.6193 | 0.4912 | 1.3861 | 0.3645 | 0.5083 0.5088 0.6193

Table 6: The metrics refer to two different size models, both with w = 3.

As expected, all metrics improve when using a larger model. Not only does
the number of events recognised by the network increase, but false positives also
decrease. The network’s predictions begin to be more accurate, as both precision
and recall increase, and consequently, the F1 score improves as well. The ETS
inevitably rises, indicating a model with overall better performance. However,
it should be noted that the metric improvements are not significant, and from a
qualitative perspective, they are not easily appreciable. As shown in Figure 10,
the detection of convective events remains reliable, and in some cases, the seg-
mentation of certain contours improves. An increase in model size and number
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of parameters certainly ensures improved recognition of more complex patterns
and greater accuracy, but it is also important to consider the computational cost
required for training, and whether this cost is justified for this particular task.

An evaluation was carried out to assess how much the two inputs could affect
the performance of the trained model. In this regard, keeping the same selected
weight value, two networks were trained using only one of the two available ob-
servables at a time.

Height (km)
Height (km)

200 300
Ground track (km) Ground track (km)

Prediction (Reflectivity only) Prediction (Doppler Velocity only)

Height (km)
Height (km)

Ground track (km) Ground track (km)

T T
STRAT CONV STRAT CONV

Figure 19: Results using only one input field. On the left it has used only the
reflectivity field, on the right only the Doppler velocity field

Input | POD | FAR Bias ETS F1 Precision | Recall
VDP | 0.4385 | 0.5374 | 1.1753 | 0.2659 | 0.3951 | 0.4626 | 0.4385
DBZ | 0.5160 | 0.4373 | 1.0173 | 0.3506 | 0.4888 | 0.5627 | 0.5160

Table 7: The metrics refers to models trained with only one type of observable as
input. VDP is the the model trained with only the Doppler velocity, while DBZ
is the one trained with only the reflectivity.

From the metric results obtained (Table 7), it is evident that the variable with
the greatest influence on model training is reflectivity. Doppler velocity alone
does not yield acceptable results, as it not only results in a lower POD but also
a higher FAR. Although the bias is close to 1 in both cases—indicating that
events are neither underpredicted nor overpredicted—the model trained solely
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with reflectivity shows higher precision and recall. This leads to an F1 score
that is approximately 10% higher, though still lower than that of models trained
with both inputs. The ETS, which provides a more general assessment of model
performance, also has a higher value for the model trained with reflectivity alone.
From a qualitative perspective, by observing the images (Figure 11), we note that
smaller-scale events are not identified individually; instead, the model tends to
merge the convective structures present in the scene.

6.2 Binary Segmentation with Continuous Target Results

In this case study, for the evaluation phase, post-processing of the images is carried
out, since the validation metrics are based on the comparison of binarised images.
The continuous targets in the validation dataset are transformed into discrete bi-
nary targets by applying a threshold value to distinguish between the two classes.
What changes is the reduced distance between the network predictions and the
targets (during the training process), which are now continuous rather than dis-
crete. For the network predictions, the sigmoid function is applied to the model’s
output, thereby producing a continuous heatmap with values between 0 and 1,
which is then converted into a discrete binary map by applying a threshold value
of 0.5.

Model POD FAR Bias ETS F1 Precision | Recall
Discrete 0.5719 | 0.4616 | 1.2082 | 0.3607 | 0.5016 0.5384 0.5719
Continuous | 0.6154 | 0.4854 | 1.4087 | 0.3641 | 0.5070 0.5146 0.6154

Table 8: The metrics refers to the small model trained with continuous values
target map.

The table [§| reports a comparison between the metrics computed for the model
trained with binary discrete targets and the one trained with continuous targets.
From the values presented, it can be observed that the model trained with contin-
uous targets shows a better ability to detect actual events (higher sensitivity) in
this case study. Both models generate a similar number of false alarms and tend to
overestimate events, particularly the model with continuous targets. The F'1 score
is slightly higher for the model with discrete targets, indicating a better balance
between recall and precision. The ETS is also slightly higher for the continuous-
target model, suggesting a generally well-balanced overall performance.

In conclusion, for this case study, the model trained with continuous targets
tends to detect a greater number of events but also produces more false alarms.
From a qualitative perspective, the images (ﬁgure show that the model demon-
strates a better ability to segment even smaller and isolated events, as well as to
approximate the larger convective structures present in the scene.
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Figure 20: The prediction is compared with the ground truth for the model trained
using a continuous mask.

6.3 Multi-class Segmentation Results

The objective of this case study is to evaluate the performance of a model trained
to recognize more than two classes. In particular, in addition to the stratiform
class, there are also the convective and strong convective classes. For this case
study, it was important to analyse how the model’s performance varies according
to the weight values assigned in the loss function.

It is important to note that, in the binary segmentation setup, the positive
class (Class 1) was already under-represented. Now, for this multi-class case study,
that class is further divided into two subclasses, which are therefore even more
under-represented in the dataset. As a result, it becomes essential to understand
which weights should be assigned to the loss function for each class the model
must learn to detect and segment.
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From the early stages of training, Class 2, to which a weight of w, = 8 was
assigned, showed good performance metrics. Consequently, the focus shifted to
identifying the optimal value of w for Class 1. Multiple training sessions of the
same model were therefore conducted, varying the weight w;.

For each of these training runs, average metric values were calculated for both
classes.

Model POD FAR Bias ETS F1 Precision | Recall
wy = blwy = 8 | 0.5283 | 0.6428 | 1.7682 | 0.3405 | 0.3863 | 0.3572 | 0.5283
wy = 3|we = 8 | 0.4663 | 0.5959 | 1.2849 | 0.3501 | 0.3934 | 0.4041 | 0.4663
wy = 2|wy = 8 | 0.4039 | 0.5493 | 0.9877 | 0.3434 | 0.3828 | 0.4507 | 0.4039
wy = 1wy = 8 | 0.2769 | 0.4666 | 0.5461 | 0.3063 | 0.3288 | 0.5334 | 0.2769

Table 9: Performance Metrics for Class 1.

Model POD FAR Bias ETS F1 Precision | Recall
wy = blwy =8 | 0.5702 | 0.4252 | 1.1456 | 0.3799 | 0.5058 | 0.5748 | 0.5702
wy = 3lwy = 8 | 0.6183 | 0.4679 | 1.3422 | 0.3792 | 0.5055 | 0.5321 | 0.6183
wy = 2lwe = 8 | 0.6507 | 0.5045 | 1.5106 | 0.3704 | 0.4986 | 0.4955 | 0.6507
wy = 1wy =8 | 0.6914 | 0.5422 | 1.7750 | 0.3615 | 0.4895 | 0.4578 | 0.6914

Table 10: Performance Metrics for Class 2.

For Class 1 (Table @, it is observed that as the weight assigned to this class
increases, the POD (Probability of Detection) tends to rise. This means that the
model is able to detect more positive events belonging to this class. However,
this increase is accompanied by a rise in the FAR (False Alarm Rate), indicating
a greater number of false alarms, i.e., incorrect positive predictions — and not
false negatives, as previously mistakenly indicated. The model with a weight of
wy = 2 for Class 1 shows a bias very close to 1, suggesting near-optimal calibra-
tion: the model neither overestimates nor underestimates the frequency of Class
1 events. From this perspective, it is the most balanced among those analysed.
The ETS (Equitable Threat Score) and F1 Score metrics for Class 1 are generally
low across all models, suggesting that predicting this class is inherently more dif-
ficult. Among all configurations, the model with weight w; = 3 represents a good
compromise, showing the highest values for both metrics, at the cost of a slight
loss in calibration.

Regarding Class 2 (Table , the metrics are significantly better than those for
Class 1. The [w; = 5wy = 8] model, which corresponds to a higher weight as-
signed to Class 1 (w; = 5), achieves the highest ETS and F1 Score values for
Class 2, indicating excellent overall performance in this category.

An interesting aspect is how changing the weight for Class 1 indirectly affects
the performance of Class 2. The model with the best calibration for Class 2

46



Height (km)
Height (km)

Ground track (km) Ground track (km)

Prediction Prediction

Height (km)
Height (km)

Ground track (km) Ground track (km)
STRAT. CONV. STRONG CONV. STRAT. CONWV. STRONG CONV.
(a)wlzl,w2:8 (b)w1:2,w2:8
Target Target
17 9 17 g

Height (km)
Height (km)

Ground track (km) Ground track (km)

Prediction Prediction

Height (km)
Height (km)

Ground track (km) Ground track (km)

STRAT. CONV. STRONG CONV. STRAT. CONV. STRONG CONV.
(c) w1 =3, wy =38 (d) w1 =5, wg =8

Figure 21: Predictions of all the iterations for the multi-class segmentation.

(bias closest to 1), namely [w; = blws = 8], tends to overestimate Class 1, as
indicated by its high bias for that class. This reflects a tension between the two
classes: improving performance for one may penalize the other. The aggregate
metrics for Class 2, such as ETS and F1 Score, show only slight variations as
the weight for Class 1 changes. However, the best model for Class 2 ([wy =
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5|lwe = 8]) turns out to be suboptimal for Class 1. Therefore, when considering
the overall balance between the two classes — especially given the challenges in
predicting Class 1 — an intermediate weight such as w; = 3 appears to be the most
effective compromise, offering good overall performance and a balanced trade-
off. This analysis highlights the importance of jointly evaluating performance
across different classes, especially in the context of imbalanced classification. The
definition of the “best” model strongly depends on the application goals and the
importance assigned to different types of errors.
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7 Conclusion

This work aimed to develop an Artificial Intelligence model capable of distin-
guishing, within simulated radar images from the WIVERN mission, convective
regions from stratiform ones. The underlying idea is simple: to harness the power
of deep learning to automate a complex task that typically requires meteorological
expertise or the use of threshold-based algorithms or tabulated values.

To tackle this problem, a well-known architecture in the field of image seg-
mentation was chosen: the U-Net. This network proved particularly suitable for
the radar meteorology context thanks to its ability to capture both the overall
structure of the images and their finer details. In fact, the results obtained with
binary segmentation—i.e., simply distinguishing convective from non-convective
areas—showed that the model was quite effective at correctly identifying many
relevant structures.

One of the main strengths of the work was precisely the use of the U-Net ar-
chitecture: its characteristic “U”-shaped structure, with direct connections be-
tween encoding and decoding layers, allowed for acceptable predictions even in
the presence of complex or isolated events. Originally developed for biomedical
applications, this type of network proved to be just as versatile in this context.

Another key element was the generation of training data using an end-to-
end simulator, which allowed the model to be trained on realistic meteorological
scenarios (such as the case study of Hurricane Milton) without needing to wait
for real satellite observations. This approach turned out to be not only practical
but also very effective in providing a wide range of examples—something essential
for training a neural network properly.

The tests carried out showed that the most informative observable is radar
reflectivity, which alone was able to guide the model effectively. Doppler velocity
contributed less when used on its own, but when combined with reflectivity, it
enhanced model performance in a synergistic way.

Among the most effective strategies used during the project was the implemen-
tation of a weighted loss function, which helped address the strong class imbalance
in the dataset. Convective regions, in fact, make up only a tiny fraction of the data
compared to stratiform ones. Without this adjustment, the model would likely
have ignored the convective class almost entirely. Thanks to class weighting, the
network was pushed to detect even weak or isolated signs of convection.

The use of continuous masks instead of discrete binary labels also helped the
network learn the transition from stratiform to convective more gradually, im-
proving overall prediction quality, particularly in ambiguous situations.

Finally, the project also explored a multi-class approach, distinguishing be-
tween weak convection, strong convection, and stratiform areas. While more
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complex and challenging to train due to the underrepresentation of certain classes,
this method produced promising results that deserve further exploration.

That said, a few limitations emerged. The most significant was the severe class
imbalance: convective areas are so scarce relative to the total dataset that even
well-trained models tended to underestimate them. To address this, future work
could employ targeted data augmentation techniques to artificially increase the
frequency of convective regions, or use more balanced sampling strategies.

Another difficulty encountered was overfitting in the more complex models.
Adding depth and parameters led to only marginal improvements in performance,
but significantly increased training time and reduced the model’s generalization
on validation data. In this case, it would be helpful to apply techniques such
as early stopping, more aggressive dropout, or regularization to make the model
more robust.

Lastly, while larger models were promising, they also introduced high compu-
tational costs. With an eye toward possible operational use—such as real-time
application or on-board satellite processing—it would be worth considering lighter
and more efficient architectures.

In conclusion, this work laid the groundwork for applying Artificial Intelligence
to the classification of convective structures in spaceborne radar data. The devel-
oped model demonstrated acceptable segmentation capabilities and adapted well
to complex scenarios. Although there is still room for improvement, the strate-
gies adopted—both in terms of architecture and data preparation—pointed in the
right direction.

This approach has strong potential for future integration with real data from
the WIVERN mission, contributing not only to better segmentation and classifi-
cation models, but also to improved numerical weather prediction and a deeper
understanding of atmospheric processes on a global scale.
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