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Abstract

This thesis presents a global stability analysis of two-dimensional open cavity flows,
focusing on the influence of Reynolds and Mach numbers on flow instabilities. The
study is conducted using the high-order compressible flow solver IC3, developed by
ISAE-Supaero, which enables direct numerical simulations and global stability com-
putations through a matrix-free approach. To ensure the reliability of the numeri-
cal framework, different domain geometries and boundary conditions are examined
and validated. The linearized Navier-Stokes equations are used to identify domi-
nant instability modes and their dependence on flow parameters. Comparisons with
existing results from literature validate the solver’s implementation, and the anal-
ysis reveals critical thresholds and behaviors associated with the primary shedding
modes. These findings contribute to the understanding of instability mechanisms in
compressible open cavity flows and support future efforts in flow control design.
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Chapter 1

Introduction

1.1 Context
Cavity flows have been a significant topic of interest in the first years of 21st cen-
tury, as it is well evidenced by the recent review articles produced (Louis Cattafesta
et al. [1], Rowley and Williams [2] to cite some of them). However, as with other
archetypical flows, it is still possible to exploit existing knowledge to deepen our
understanding of certain physical behaviours of flows in general that remain unre-
solved. Recent works show that the interest in these flows is still relevant [3]. For
this purpose, cavities are widely used in the study of flow stability because, as the
Reynolds number increases, they are characterized by a rapid generation of unstable
motions, which tend to transition the flow to turbulence.
By studying flow stability using numerical codes, the aim is to one day achieve a
better ability to reduce losses caused by flows becoming turbulent.
From a practical perspective, cavity flows are observed in the aeronautical field,
near landing gear bays, hatches, or even small surface irregularities on an aircraft.
Determining how these behave when subjected to high Reynolds number and com-
pressible flow regimes (approximately high Mach numbers) can, in practical terms,
lead to the development of control methods that reduce flow instabilities around an
aircraft, thereby reducing losses.
The interest in cavity flows then re-emerged these late years by studying possible
ways to suppress the oscillations in the flow-field. Passive methods were insightfully
examined by Prudhomme et al. [3], that could create a passive control method for
oscillations changing the shape of the rear edge of the cavity. In order to study
different configuration to optimize the control methods, it is mandatory to have a
clear and accurate knowledge about the flow characteristics in different regimes, es-
pecially going towards transonic flow conditions. It is then necessary to preliminary
determine the flow instabilities.
The study of instabilities is part of a specific field of fluid dynamics called hydro-
dynamic stability, which emerged in the late nineteenth century through the works
of Helmholtz, Kelvin, Rayleigh, and Reynolds. The studies primarily investigated
low Reynolds number flows under terrestrial conditions, thus treated numerically as
incompressible flows. For years, technological limitations prevented moving away
from these conditions, which, however, have become of great interest in the last
decade as potential applications expand: stratospheric flight, Martian exploration,
or the development of active turbulence control devices are just a few of the goals
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requiring a departure from low Reynolds number and incompressible conditions.
To achieve these goals, it is therefore necessary to investigate high Reynolds and
compressible flows, but a solid physical foundation is still lacking.
With this thesis, we aim to contribute to this field, enhancing the understanding of
these specific flows.

1.2 Governing Equations
The motion of a compressible Newtonian fluid is fully described by the Navier-
Stokes equations, derived by applying the conservation laws of mass, momentum,
and energy. In their conservative three-dimensional form for an ideal gas, they are
expressed as:

∂ρ

∂t
+∇ · (ρu) = 0

∂ρu
∂t

+∇ · (ρu ⊗ u) = −∇p+∇ ·
[
µ(∇u +∇uT )− 2

3
µ∇ · uδij

]
∂ρE

∂t
+∇ · (ρuE + pu) = ∇ · (K∇T ) +∇ ·

(
u
[
µ(∇u +∇uT )− 2

3
µ∇ · uδij

])
(1.1)

where ρ is the fluid density, u the velocity vector, p the pressure, T the temperature,
and E the total energy. The viscosity µ and thermal conductivity K are considered
constant.
From now on, the system will be written in a compact form using the Navier-Stokes
operator:

∂q
∂t

= N (q) (1.2)

with q = (ρ, ρu, ρE) representing the state vector and N the non-linear Navier-
Stokes operator.
Three different dimensionless parameters are also introduced:

Re =
ρ∞U∞D

µ
, M∞ =

U∞√
γ p∞
ρ∞

, St =
fD

U∞
. (1.3)

These are the Reynolds, Mach, and Strouhal numbers, respectively. Quantities with
the subscript ∞ represent free-stream flow properties, D is the reference length, γ is
the ratio of specific heats, and f is the characteristic frequency.
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1.3 Phenomenology
Considering a generic cavity, without focusing too much (for now) on its geometric
characteristics, we can depict a situation similar to that represented in the figure
below (Figure 1.1):

Figure 1.1: Schematic representation of a cavity flow of length L and depth D, represent-
ing qualitatively the feedback mechanism, so the sensitivity of the flow in correspondence
to the upstream edge to the acoustic waves coming from the downstream edge of the cavity.
Picture taken from Cattafesta et al. [4].

As the Reynolds number varies, different phenomena can occur. The flow, initially
assumed to be parallel to the wall, experiences a forced separation point at the
upstream edge of the cavity. As the Reynolds number increases past the threshold
determining instability onset, the characteristic shedding phenomenon occurs. Addi-
tionally, the flow may fail to reattach to the wall after passing the downstream edge
of the cavity, interacting with it instead. The oscillations generated by the interac-
tion between the shear layer (caused by differing flow velocities in the cavity and
the free stream) and the wall, especially at the reattachment point, produce acous-
tic noise in the form of pressure waves. These waves tend to propagate upstream,
interacting with the hydrodynamic part of the flow (receptivity). The mechanisms
governing noise generation are primarily four:

• amplification of disturbances by the shear layer

• shear layer-vortex interaction creating pressure waves

• acoustic wave feedback

• receptivity of the leading edge (pressure waves generate vorticity).

These combined mechanisms can result in a highly unsteady flow field characterized
by discrete tones and background noise. This phenomenon is generally called the
Rossiter mechanism.

In the classical view of cavity flows, from a dynamical systems perspective, the
oscillations are referred to as self-sustained oscillations (Morris [5], Rowley and
Williams [2]): an unstable equilibrium point exists such that small disturbances
can cause continuous oscillation growth. In this case, it is necessary to consider
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the existence of non-linearities that dampen these oscillations. Without considering
non-linearities, the oscillations would continue to grow indefinitely. It is important
to note that even if the disturbance ceases, the oscillations would continue to am-
plify.
The amplification is due to coupling between instabilities in the shear layer and the
acoustic mode in the cavity depth direction.

A different perspective proposed by Rowley suggests the presence of lightly damped
oscillations [6]. These oscillations tend to amplify background noise caused by in-
coming acoustic waves or boundary layer turbulence. In this case, removing the
disturbance stops the amplification.

1.3.1 Kelvin-Helmholtz Instability and Shedding

The first mechanism typical of cavity flows is the Kelvin-Helmholtz instability, lead-
ing to what has previously been referred to as shedding.
To define this instability, it is necessary to briefly introduce the shear layer, promi-
nently present in cavity flows.

The shear layer is a thin region with steep tangential velocity gradients, where
vorticity is usually concentrated.

Figure 1.2: Tangential velocity difference in shear flows. Shear flows are a typical flow
configuration that appears when a steep velocity gradient is present between fluid layers.
To simplify the problem represented on the left (where both U1 an U2 are present), it is a
common procedure to shift the reference system so that the average velocity U is the only
one needed.

In cavity flows, this steep velocity gradient is particularly prominent at the leading
edge. The flow, arriving at the cavity with the free-stream velocity of the undis-
turbed flow, encounters a relatively still flow inside the cavity. This significant
velocity difference leads to the onset of the Kelvin-Helmholtz instability. For suf-
ficiently high Reynolds numbers that make the base flow unstable, these vortical
structures can amplify. The mechanism of periodic vortex shedding from the lead-
ing edge of the cavity corresponds to the shedding phenomenon.
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1.4 Numerical analysis
Without numerical methods it would not be possible to obtain any results on a
notably amount of mathematics problems. Citing one of the most important text-
books in this field, ’numerical analysis is the study of algorithms for problems in
continuous mathematics’ (Trefethen and Bau [7]). Breaking down this definition,
we get some of the main concepts of numerical analysis.
First of all, the concept of algorithm can be understood as a step-by-step process to
get to a result. These processes are said by Trefethen to be used to solve continuous
mathematics, so the part of mathematics that deals with real and complex numbers
(as stated in the book) instead of purely integer values. The aim of numerical anal-
ysis is to get a result which is close enough to the exact solution of the problem.
This is possible analyzing and using numerical methods.

1.4.1 DNS analysis

Coming to fluid dynamics, one of the most preferred techniques to solve the Navier-
Stokes equations is the Direct Numerical Simulation. This method provides a com-
plete three dimensional and time dependent solution of the N-S equations. As it
is easy to understand, DNS need a sufficient computing power and efficiency to be
implemented. Not too many years ago, quite a few flows could practically be studied
using this technique, but technology is evolving at high rates, so that it is now easier
to implement such computationally heavy numerical methods in CFD solvers.
In order to develop and use a powerful method such DNS, it is necessary to adopt
some adjustments in the definition of the CFD simulation. First of all, for the direct
numerical simulation to solve the exact flow equations every scale of the fluid do-
main should be resolved. Particularly when it comes to stability and turbulence, we
are obliged to adopt a grid resolution which is sufficient to solve the eddies from the
biggest to the smallest (Kolmogorov’s) scale. This requirement is the main cause
of the high computational cost of DNS, but it is also the reason why they are an
unsurpassed technique to study turbulence.

In the works of this internship, DNSs are carried out to solve the fluid motion
equations, particularly using the IC3 solver.

1.4.2 IC3

IC3 is a high order compact solver for the solution of the compressible Navier-Stokes
equations developed from ISAE-SUPAERO. The IC3 solver implement different li-
braries in order to solve different fluid dynamics problems, spanning from shocks to
stability using different numerical methods.
Concerning stability analysis, the originality of the IC3 solver is the possibility to run
three dimensional global stability analysis (without imposing simplifications based
on the flow’s characteristics) on a quite vast selection of flows.
The code is still growing to implement different sophisticated numerical methods
and solution techniques.

5



Introduction

1.5 Stability Analysis
When discussing stability, it is necessary to first introduce the concept of order : a
system is perceived as ordered if it exhibits certain symmetry properties. Stability
is strongly tied to the idea of order, as it studies the conditions under which the
system loses symmetry, also known as bifurcation.
The subject of stability is widely studied across various fields, not exclusively fluid
dynamics. However, we will focus on this application for obvious reasons.

The concept of stability is linked to the presence of disturbances, which can en-
ter the system with varying amplitudes. The following schematic is presented:

Figure 1.3: Reference scheme representing the different behaviours of the flow when an
increasing amplitude disturbance is applied to the flow. Going from left to right the distur-
bance’s amplitude is growing leading to different modes and bifurcation in the flow. The
scheme is taken from M.V. Morkovin [8].

The diagram is read from left to right in terms of increasing disturbance amplitude
(path A originates from small disturbances, path E from large ones). Depending
on the system’s characteristics, it may be more or less sensitive to disturbances, a
property known as receptivity.
The following cases can then be distinguished:

• Case A: for small disturbances, the system may transition from stable to unsta-
ble through a primary bifurcation. The mode responsible for this bifurcation is
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thus referred to as the primary mode. Subjecting the system to further pertur-
bations of greater amplitude can result in additional bifurcations, called sec-
ondary bifurcations, caused by secondary modes. In typically two-dimensional
systems, secondary modes lead to the flow becoming three-dimensional. An
example of this phenomenon is schematically represented in the image below
(Figure 1.4).

• Case B : here, the initial disturbance amplitude is larger, and the system ex-
periences a transient growth of the disturbance, leading it back to Case A as
previously shown.

• Case C : the disturbance amplitude is sufficient for the flow to bypass the
primary bifurcation entirely, manifesting the secondary mode directly (Figure
1.4).

• Cases D and E : the disturbances are strong enough to bypass classical modes
entirely and reach (whether or not preceded by transient growth) the stages
leading to turbulence (Figure 1.4).

All these cases lead to a breakdown of structures that subsequently generates tur-
bulence. In these latter phases, the connection to deterministic mathematics is lost,
and statistical formulations become necessary. Stability focuses on the deterministic
part of the problem.

Figure 1.4: Different cases explaining the concept of receptivity (sensitivity to the applied
perturbations). The case A on top shows the behaviour of the flow when a small perturbation
is applied: a first bifurcation (primary) causes the generation of a Tollmien-Schlichting
wave, and increases until a secondary bifurcation brings three-dimensionality to the flow
leading to breakdown; the case C in the middle shows the behaviour of the flow when the
amplitude of the perturbation is sufficient to bypass the first bifurcation; case D on the
bottom immediately manifest transient growth and turbulence. The picture is taken from
Cherubini, Picella, and Robinet [9].
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Another example can be made by representing a cylinder of infinite length immersed
in a fluid with varying Reynolds number (velocity in this case). Imagine increasing
the Reynolds number; the first bifurcation occurs at Re = 47, determining the tran-
sition to the vortex shedding instability. Increasing the Reynolds number further, a
second bifurcation occurs at Re ≃ 102, rendering the problem three-dimensional.

Figure 1.5: Vortex shedding (primary mode) downstream of a cylinder. Considering
an infinite length cylinder, this phenomenon happens exactly when the Reynolds number
reaches the value of Re = 47. Picture taken from Van Dyke [10].

Note that the shedding phenomenon is the one that will represent the first bifurcation
also in the work presented, as it will be shown later in the report.

1.6 Internship goals
The aim of the internship and of this master thesis is to use the IC3 solver in
order to execute a global stability analysis on a cavity flow while assuring the right
boundary condition are applied without altering the results. Moreover the results
are compared to a work published by Sun et al. in 2017 [11]. The ultimate goal is
to implement different numerical methods and solution techniques in the IC3 solver
while always assuring the validity of the results.
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Chapter 2

Stability theory

2.1 Linear Stability Theory
To study flow instabilities and their transition to turbulence, one of the fundamental
methods is linear stability theory.
Linear stability theory determines the stability of solutions of differential equations
and trajectories of dynamical systems under the hypothesis of small perturbations.
However, this study requires the definition of an equilibrium point, which will now
be defined in more detail. Let us first distinguish the possible cases by introducing
the following schematic:

Figure 2.1: Mechanics of a point particle. From left to right we can see the different con-
figurations. Please note that using the linear stability theory applying small perturbations
the ’conditionally stable’ case cannot exist.

A fundamental assumption of linear stability theory is that the amplitude of the
perturbations is small. Specifically, considering ϵ as the perturbation amplitude, it
is assumed that ϵ ≪ 1. Referring to the above schematic, the case of conditionally
stable systems is excluded from linear stability theory, as significant perturbation
amplitude is required for this to manifest.
The starting equations for linear stability theory are the dimensionless Navier-Stokes
equations, here written for incompressible flows for the sake of simplicity:{

∂u
∂t

+ u · ∇u = −∇p+ 1
Re
∇2u

∇ · u = 0
(2.1)

In compact form, this system can be written using the Navier-Stokes operator N :

∂q
∂t

= N (q, C) (2.2)

where C is the flow parameter vector and q is the state vector (whose components
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define the flow state):

q =

{
u
p

}
(2.3)

The equilibrium point around which perturbations are applied can now be defined.
In linear stability theory, oscillations are considered relative to the base flow, which
is the stationary solution of the Navier-Stokes problem. The base flow is defined by
the state variable:

Q =

{
U
P

}
(2.4)

By definition, the base flow can be interpreted as:

Q ≡ q :
∂q
∂t

= N (q, C) = 0 (2.5)

Note: It is crucial to understand that linear stability is only possible when consid-
ering the base flow as a reference point around which perturbations act. This will
now be deduced mathematically.

Using the definition of Q, the flow can be decomposed as:

q = Q + ϵq′ (2.6)

That is, as the sum of the base flow and a perturbation of amplitude ϵ ≪ 1.
Substituting this decomposition into the Navier-Stokes equations:

∂U

∂t
+ ϵ

∂u′

∂t
+U · ∇U+U · ∇ϵu′ + ϵu′ · ∇U+ ϵu′ · ∇ϵu′ =

= −∇P −∇ϵp′ +
1

Re
∇2U+

1

Re
∇2ϵu′

∇ ·U+∇ · ϵu′ = 0

(2.7)

Recalling the components of the state vector, we observe that within the equations:{
∂U
∂t

+ U · ∇U = −∇P + 1
Re
∇2U

∇ · U = 0
(2.8)

These are solutions of the Navier-Stokes equations by definition and can therefore be
eliminated from the perturbed system. Among the remaining terms, the non-linear
terms are very small (and thus negligible), leaving only the linear terms proportional
to the perturbation amplitude ϵ:

∂u′

∂t
+U · ∇u′ + u′ · ∇U = −∇p′ +

1

Re
∇2u′

∇ · u′ = 0
(2.9)

Thus, it has been demonstrated that, in linear stability theory, the base flow is
essential (as it is a solution of the Navier-Stokes equations), and the perturbation
amplitude need not be large (as long as ϵ ≪ 1).
In compact form, this can be written as:

∂q′

∂t
= L (Q, C)q′ (2.10)

10
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Where L is the Jacobian of the Navier-Stokes operator:

L =

(
∂N
∂q

)
q=Q

(2.11)

Note that no assumptions about the form of the perturbation have been made up
to this point.
It is crucial to recognize that near the base state Q, the dynamics of the perturba-
tion can be studied using the dynamics of the linearized system.

2.2 Base Flow characteristics
Based on the spatial and temporal properties of the base flow, some assumptions
and simplifications can be considered.

2.2.1 Modal and Non-Modal Analysis

Concerning the temporal properties of the base flow, two cases can be distinguished:

• For Q = Q (x) stationary and considered a fixed point, a Modal Analysis
is performed. In this case, the perturbation can be represented as a linear
superposition of exponential perturbations with time dependence:

q′(x, t) =
∞∑
j=1

q̂j(x)eωjt + c.c.

=
∞∑
j=1

q̂j(x)e[ℜ(ωj)+iℑ(ωj)]t + c.c. (2.12)

=
∞∑
j=1

q̂j(x)eℜ(ωj)t [cos(ℑ(ωj)t) + isin(ℑ(ωj)t)] + c.c.

where ωj is the complex frequency of the perturbation. Its real part ℜ(ωj)
corresponds to the growth rate of the perturbation (indicating whether the
perturbation is amplified ℜ(ωj) > 0 or damped ℜ(ωj) < 0), and its imaginary
part corresponds to its frequency (ℑ(ωj) = 2πfj pulsation of the perturbation).
Note that, since the perturbations are linearly independent, considering the
asymptotic behavior as t → ∞, the flow dynamics will be determined by the
perturbation with the largest ℜ(ωj), i.e., the most amplified (or least damped)
mode.
Substituting the perturbation form 2.12 into the compact system 2.10, the
following relation is obtained:

∂q̂j(x)eωjt

∂t
= Lq̂j(x)e

ωjt (2.13)

Performing the time derivative and simplifying the exponential:

ωjq̂j(x) = Lq̂j(x) (2.14)

11
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This corresponds to an eigenvalue problem (EVP) in the eigenvalues ωj and
eigenvectors q̂j(x) of the operator L. Consequently, conducting a modal anal-
ysis corresponds to performing a spectral analysis of the linear operator.

• For Q = Q (x, t) time-dependent, a Non-Modal Analysis is performed.
In this case, the base flow is non-stationary, and the perturbation is no longer
assumed to have an exponential form:

q′ = q′(x, t) =
∞∑
j=1

q̂j(x, t) + c.c. (2.15)

Here, the perturbation cannot be considered as a linear superposition of in-
dependent perturbations. Non-modal analysis thus exhibits transient growth
depending on individual perturbations. However, the asymptotic behaviour
for t → ∞ still reflects the least stable mode of the system.

In the present work, a modal analysis is conducted.

2.2.2 Local and Global Approaches

Depending on the spatial properties of the base flow, the type of stability analysis
changes.
Specifically, based on the spatial symmetries of the flow, there may be one or more
directions of homogeneity, and it can be assumed that the perturbation evolves as
a Fourier series along these directions:

• For Q = Q(x1, t), where x2 and x3 are directions of homogeneity, a Local
Approach is used:

q′ = q̂(x1, t)e
[i(αx2+βx3)] + c.c. (2.16)

• For Q = Q(x1, x2, t), where x3 is the direction of homogeneity, a Bi-Global
Approach is used:

q′ = q̂(x1, x2, t)e
(iαx3) + c.c. (2.17)

• For Q = Q(x1, x2, x3, t) with no directions of homogeneity, a (Tri-)Global
Approach is used:

q′ = q′(x1, x2, x3, t) = q′(x, t) (2.18)

Here, α and β are the real wave numbers in the x2 and x3 directions, respectively. If
the form of the perturbation (2.12) is substituted into the spatial evolution system
using the local or bi-global approach, a simplified eigenvalue problem arises, where
the eigenvalues ωj depend on the wave number:{

ωj = ωj(α) in the case of local analysis
ωj = ωj(α, β) in the case of bi-global analysis

(2.19)

These are called dispersion relations.
For tri-global analysis, it is often referred to as Global Stability Theory.
In this case, no directions of homogeneity exist, meaning the spatial evolution of the
base flow cannot be assumed a priori and therefore the dispersion relation loses its
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value.
In this thesis, a global approach is used, even if it is considered interesting to go
back to a fictitious local approach to determine the dispersion relation.
The stable/unstable nature of the base flow Q is determined by the spectral prop-
erties of the linear operator L, following this criteria:

• The base state is said to be globally stable if ℜ(ωj) < 0 ∀ j ∈ N. In this
scenario the perturbations are damped in time and the perturbed flow will
always go back to its initial equilibrium state;

• The base state is considered globally unstable if ℜ(ωj) > 0 at least for a value of j.
It means that there will be at least one perturbation that will grow in time
making the flow diverging from its original equilibrium state. It is not said
within this criteria if the flow will indefinitely diverge or if it will converge to
a different equilibrium state;

• The base state is marginally stable if the leading eigenvalue satisfies ℜ(ωj) = 0.
When this happens, the perturbation is neither damped or amplified.

2.3 Local approach
Even if the analysis that is executed in the work of this master thesis belongs to the
branch of global stability analysis, the local approach deserves some interest, as it
gives us the knowledge to step up to the more general case.
We consider from now on a base flow Q = Q(x1, t) with x2 and x3 homogeneous
directions:

q′(x, t) = q̂(x1, t)e
[i(αx2+βx3)]eωt + c.c. (2.20)

2.3.1 Spatial and Temporal Theory

For flows where only one variable is independent in the equations (e.g., Poiseuille
flow), i.e., using a local stability approach, two different analyses can be conducted:
if the amplification/damping of the perturbation is considered in space, it is called a
spatial approach, whereas if the perturbation evolves over time, a temporal approach
is used. Starting from the local stability equation (2.16):

q′(x, t) =
∞∑
j=1

q̂j(x1)e
i(αx2+βx3)eωt + c.c. (2.21)

For the sake of simplicity and without losing generality, a two-dimensional flow is
considered (the dependence on x3 is lost):

q′(x, t) =
∞∑
j=1

q̂j(x1)e
i(αx2)eωt + c.c. (2.22)

1. In Temporal Theory, α ∈ R and ω ∈ C:

q′(x, t) =
∞∑
j=1

q̂j(x1)e
iαx2eωjt + c.c.

= q̂j(x1) [cos(αx2) + isin(αx2)] e
ℜ(ωj)t... (2.23)

... [cos(ℑ(ωj)t) + isin(ℑ(ωj)t)] + c.c.
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The dominant term is thus the exponential, which governs the decay and
amplification of perturbations:

• ℜ(ωj) < 0 ⇒ the disturbance is damped over time ⇒ stable
• ℜ(ωj) = 0 ⇒ it neither increases nor decreases ⇒ neutral
• ℜ(ωj) > 0 ⇒ the disturbance is amplified over time ⇒ unstable

The disturbance can be considered as a wave packet resulting from the super-
position of periodic waves along the x2 direction, with a wavelength λ = 2π

α
.

Each wave follows the exponential term, decaying/growing over time with a
growth/decay rate determined by ℜ(ωj) and has a phase velocity vϕ =

ℑ(ωj)

α
. In

cases where all waves have the same phase velocity, the medium is referred to
as non-dispersive. It is also possible to define the velocity of the wave packet,
the group velocity, as vg =

d(ℑ(ωj))

dα
.

2. In Spatial Analysis, α ∈ C and ω ∈ R:

q′(x, t) =
∞∑
j=1

q̂j(x1)e
iαjx2eωt + c.c.

= q̂j(x1) [cos(ℜ(αj)x2) + isin(ℜ(αj)x2)] e
−ℑ(αj)x2 ... (2.24)

... [cos(ωt) + isin(ωt)] + c.c.

Similarly to the temporal case, the exponential term governs the system:

• ℑ(αj) < 0 ⇒ the disturbance is amplified in space ⇒ unstable
• ℑ(αj) = 0 ⇒ it neither increases nor decreases ⇒ neutral
• ℑ(αj) > 0 ⇒ the disturbance is damped in space ⇒ stable

To perform a comprehensive and non-simplified analysis, it would be necessary to
use both approaches. It is not always possible to know in advance which method
is more appropriate, and using only one of them might not adequately describe the
flow.

2.3.2 Dispersion relation and phase velocity

While studying hydrodynamic stability by using a local approach and the temporal
theory it is possible to consider the wave as a superposition of perturbation waves, as
in 2.23. Anytime a wave is moving inside a specific medium, it is possible to define
a dispersion relation, that is, a mathematical expression that links the pulsation of
the wave with its wave number based on the characteristics of the base flow and of
the transmission medium.
The dispersion relation is usually represented by the mathematical expression:

F(α, ω,Q, C) = 0 (2.25)

And it is the output of a local stability analysis eigenvalue problem, or from a
different point of view, the existence of an eigenfunction constrains α and ω to
satisfy this relation. Usually the aim of the dispersion relation is to define:

ω = ω(α) (2.26)
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So, as previously said, the pulsation of the wave as a function of the wave number.
From this expression it is possible to define the physical medium as dispersive or
non-dispersive. In a dispersive medium, waves with different wavelengths (wave
numbers) propagates with different speeds, so that the wave packet sees a distortion
while it propagates (vϕ ̸= vg). On the contrary, in a non-dispersive medium the
single waves’ speed is the same as the packet speed (vϕ = vg), so that the wave
packet propagates without any distortion.

In order to better understand the concept, it is necessary to define the phase speed :

vϕ =
ℑ(ω)
α

(2.27)

Where ℑ(ω) = 2πf is the angular pulsation and α the real wave number. Note that
the same definition would still be appropriate if both ω and α were complex, thus
considering the real part of the wave number αr =

2π
λ

(the streamwise wave number)
in 2.27.

Once the phase velocity is defined, it is possible to obtain the group velocity :

vg =
∂ℑ(ω)
∂α

(2.28)

From its definition, it is obvious that vϕ = vg when ℑ(ω) = ℑ(ω(α)) is linear.

2.4 Global approach
The majority of open flows is characterized by a certain loss of homogeneity and
symmetry of the flow. In cases where the three dimensionality of the flow dynamics
is not negligible any more, it is necessary to improve the techniques to run stability
analyses. The global approach then considers a base flow U(x, t) without spatial
symmetries and so does for the perturbations. Also, as the term itself suggests,
global stability analysis considers the changes in the base flow in the whole fluid
domain. As written in paragraph 2.2.2 the perturbation is described by:

q′(x, t) = q̂(x1, x2, x3)e
ωt . (2.29)

The global stability analysis using a modal approach is based on finding the solution
to the eigenvalue problem:

ωjq̂j(x) = Lq̂j(x) (2.30)

which admit a solution when the determinant (L − ωjI) is zero. That is the aim of
the future analyses.

2.4.1 Primary and secondary instabilities

In Paragraph 1.5 the concept of receptivity was introduced, which is an indicator of
the influence of a system to external disturbances. Usually the receptivity relies on
the influence of certain parameters on the system.
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For the sake of the explanation, let’s consider a cylinder of infinite length invested
by the flow (Figure 2.2). The evolution of the flow behind a cylinder has been widely
studied in the past, so that there is quasi-perfect knowledge of the phenomena in-
volved. It is perfectly known the response of the fluid at changes of the Reynolds
number, which is the parameter that controls this type of fluid configuration.
Starting from Re ≃ 0, the flow is perfectly attached to the cylinder’s surface. In-
creasing the Reynolds number until Re ≃ 5 is reached, the flow begins to manifest
two steady counter-rotating vortices behind the cylinder, creating a recirculation
bubble. This situation is recognized to be the first appearance of a convective insta-
bility. Increasing the Reynolds number a first local absolute instability occurs, even
if the convective instability still dominates the dynamics of the flow. However, when
the Reynolds number reaches the value of Re ≃ 47 = Recr1 , the absolute instabili-
ties are large enough to make the flow globally unstable. The instabilities develop
as a series of swirling vortices periodically detaching the cylinder’s surface. This
mechanism is the self-sustained von Karman vortex-sheet, which corresponds to the
so called primary instability of the system. As anticipated in 1.5 the primary modes
rarely alter the spatial symmetries of the flow, which still remains bi-dimensional.
Each time a periodic phenomena develops (making the flow unstable), it is said that
a bifurcation has occurred. A bifurcation occurs each time an equilibrium state is
left to reach another one, not necessarily stable.
Reaching Re ≃ 180 = Recr2 , the wake behind the cylinder becomes three-dimensional,
and a second bifurcation occurs. Usually many different types of secondary bifurca-
tion may occur, but within the scope of this work we will spend a few words on the
primary bifurcation, which will be the only one evidently occurring.

Figure 2.2: Wake behind an infinite cylinder changing the control parameter Re: for
Re < 5 the flow is perfectly attached to the cylinder’s surface (upper left); increasing the
Reynolds number up to Re = 25 a local absolute instability appears behind the cylinder
(upper right). Given that the instabilities are still small, the convective instability still
dominates the wake. After having reached the Recr1 the von Karman mechanism occurs,
resulting in swirling vortices periodically detaching from the cylinder’s surface. Scheme
adapted from Kundu et al. [12].
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2.4.2 Primary instability and bifurcations

Without losing generality, we may affirm that whenever a control parameter varies
we expect some changes in the configuration of the flow. As well as for the cylinder,
many other flow have the same behaviour while changing the Reynolds number:
when Re < Recr1 the solution is stationary, when Recr1 < Re < Recr2 the solution
becomes periodic and a von Karman vortex sheet appears, and for Re > Recr2 a
secondary bifurcation leading to a three-dimensional evolution of the flow occurs.
The two critic values Recr1 and Recr2 act as limits to two different equilibrium
states, which are generally referred to as attractors. The name is a consequence of
the fact that the dynamics of neighbouring initial state will converge towards them
as t → ∞. Please note that the two attractors are two equilibrium states for the
flow, so they are stable solutions, also referred to as fixed points. Fixed points can
also be represented in the phase space (q, q̇), as shown in Figure 2.3.

Figure 2.3: Representation on the phase space of the attractors. In (a) the stable fixed
point is represented (Re < Recr1 with the solutions converging towards it. Case (b) (Recr1 <
Re < Recr2) represents the stationary solution represented as the orange dot is unstable,
and the system evolve towards another stable limit cycle (represented in blue) which is the
periodic solution. Scheme adapted from Rolandi [13].

When a stable fixed point sees a transition towards a limit cycle (defined by the ap-
pearance of a periodic solution), the bifurcation goes by the name of Hopf bifurcation
(Figure 2.4).
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Figure 2.4: Schematic representation of an Hopf bifurcation in the phase space. The
Hopf bifurcation occurs whenever a stable fixed point tends towards a periodic solution
when the values of Recr1 is reached. Please note that if we took a slice of the graph at a
fixed Reynolds number we would obtain what is represented in Figure 2.3. In particular,
considering Re < Recr1 we would obtain Figure 2.3 case (a), while slicing for Re > Recr2
would give us Figure 2.3 case (b). Scheme adapted from Rolandi [13].

Basically Hopf bifurcation is associated to the most amplified eigenvalue of the
Jacobian matrix L which crosses the real axis at Re = Recr1

2.4.3 Limit cycle instabilities

In order to understand how the IC3 solver solves the global stability analysis eigen-
value problem, it is necessary to introduce the Floquet theory, which is useful to
study linear differential equations with time-periodic coefficients. Following the ex-
planation of Charru [14] and Rolandi [13], we can define a periodic linear operator
L(t) = L(t + T ) where T is the oscillation period. In this case the equation 2.10
becomes:

∂q′

∂t
= L(t)q′ (2.31)

The Floquet analysis is based on the study of the limit cycle using the so called
Poincaré section. The concept is to consider an arbitrary Poincaré section Σ which
intersects with the periodic orbit, and to store a single point of the trajectory for
each cycle of motion (Figure 2.5). The points collected on Σ define the Poincaré
map, whose evolution gives valuable informations about the stability of the system.
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Figure 2.5: Schematic representation of the Poincaré map. The orange trajectory in-
tersects with the Poincaré section Σ each cycle of motion. The blue point represents the
intersection between the limit cycle and the Poincaré section. Scheme adapted from Rolandi
[13].

Mathematically speaking, we can introduce the Floquet transition matrix ϕ(0, T )
which relates the states of the systems at the times t = 0 and t = T so that:

q′(T ) = ϕ(0, T ) q′(0) (2.32)

This expression is similar to the analytical solution of 2.10 when an initial condition
at t = 0 is applied:

q′(t) = eLtq′(0) (2.33)

We can observe that ϕ(0, T ) = eLT . The eigenvalues of the Floquet transition
matrix ϕ are usually called Floquet multipliers µ. It is usual connotation to define
the exponential propagator matrix M = eLT .
The Floquet multipliers µ, which are the eigenvalues of the exponential propagator
matrix, and the eigenvalues of the Jacobian matrix L are evidently correlated by
the relation:

µ = eωT (2.34)

In conclusion, the stability of each mode can be deduced either from the real part
of ω or the modulus of µ:{

ωr < 0 or |µ| < 1 ⇒ the flow is stable
ωr > 0 or |µ| > 1 ⇒ the flow is unstable

(2.35)

The IC3 solver finds the eigenvalues of the propagator matrix and determines the
Jacobian matrix’s eigenvalue from them.
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2.4.4 Resolution of the EV problem

It should be clear at this point that the global stability analysis considers a pertur-
bation in the form:

q′ = q̂eωt with q̂ =
[
ρ̂, ρ̂u, ρ̂E

]T
(2.36)

The perturbation acts around the base state Q following the already told equation:

∂q′

∂t
= Lq′ (2.37)

Where L =
(

∂N (q)
∂q

)
Q

is the Jacobian matrix of the Navier-Stokes operator deter-

mined at the base state. Solving the eigenproblem means to find the spectrum of L:
in order to analyse the flow stability the main goal is to study the most amplified
mode that states the asymptotic behaviour of the perturbation.
Given that determining explicitly the Jacobian matrix could result in a very expen-
sive calculation, it is common to apply matrix-free approaches where the Jacobian
matrix’s coefficients are determined evaluating matrix-vector products. There are
multiple matrix free approaches in literature, but the one that is implemented in
IC3 (and then briefly explained in this chapter) is the Krylov-Schur method (Her-
nandez, Roman, and Vidal [15], Stewart [16]). As every Krylov projection method,
its aim is to determine an approximation of the most relevant eigenvalues (hence
eigenvectors) of a matrix.
Basically the Krylov-Schur method solves a generic eigenproblem:

Ax = λx (2.38)

considering a subspace Km of dimension m, which is created from the n× n matrix
A and a vector b of length n:

Km(A,b) = span{b, Ab, A2b, ..., Am−1b} (2.39)

Where {b, Ab, A2b, ..., Am−1b} is usually called Krylov sequence. Under certain
particular assumptions, the Krylov sequence converges towards the eigenvector as-
sociated with the most amplified mode as the subspace dimension m → ∞.
The Krylov-Schur method is a method that implements iteratively the Arnoldi al-
gorithm, which is very shortly presented in the next paragraph without going into
the details.

2.4.5 Arnoldi algorithm and Krylov Schur method

The Arnoldi algorithm simplifies the eigenproblem Ax = λx by approximating the
eigenvalues and eigenvectors of A with those of a reduced matrix (the Hessenberg
matrix, which is a matrix with zero entries under the first subdiagonal) and evalu-
ating the residuals in order to check convergence.

AVm = VmH + residuals (2.40)

where A is the large matrix to approximate, Vm is an orthonormal basis (such that
V T
mVm = I) and H is the Hessenberg matrix.

Usually the Arnoldi algorithm can be applied when a small number of eigenvalues is
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required, otherwise the reduced matrix become too large and too computationally
difficult to compute. Here comes the Krylov-Schur algorithm [17], that uses itera-
tively the Arnoldi factorization implementing a truncation mechanism that reduces
the matrix size.
If k eigenvalues are needed, the Krylov subspace dimension m is fixed so that m > k.
The Arnoldi factorization is then applied for the m dimensioned subspace.
Once the factorization is completed, the subspace is reduced to the k dimension,
where k represents the ’wanted’ eigenpairs (the ones with the largest module eigen-
values). The remaining m − k ’unwanted’ eigenpairs are reordered and truncated.
The dimension of the matrix is then smaller then before, and the Arnoldi algorithm
can be applied again on the k dimensioned subspace. The iteration stops when a
certain tolerance is reached by the Arnoldi residual.
A scheme for the Krylov-Schur method is represented in Figure 2.6:

Figure 2.6: Scheme representing the Krylov-Schur method. The dimension of the Krylov
subspace m is chosen such that if k is the number of eigenvalue needed, m > k. The
Arnoldi factorisation is executed on the subspace to create the Hessenberg reduced matrix
(a); then the ’wanted’ and ’unwanted’ eigenpairs are identified (b) and reordered (c); the
truncation of the unwanted eigenpairs diminishes the dimension of the subspace, making
it easier to apply again the Arnoldi algorithm if not enough eigenvalues have converged.
Scheme adapted from Rolandi [13].
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2.4.6 Implementation in IC3

We have seen how, using the Arnoldi and Krylov-Schur algorithm, it is possible to
determine the eigenvalues of a large scale matrix (the Jacobian matrix in our case)
using only matrix-vector products. This brings us to the matrix free formulation
used in the IC3 solver, which is the time-stepping exponential transformation.

We consider the analytic solution of 2.30, already showed in 2.33:

q′(τ) = Mq′(0) (2.41)

where the propagator M = eLτ . The Arnoldi algorithm can be applied to the
propagator M instead of the Jacobian matrix L, where the matrix-vector product
Mq′ corresponds to the perturbation at a certain time t = τ .
The Chiba method is used as described by CHIBA [18] Tezuka and Suzuki [19], so
that:

Mq′ =
qτ
+ − qτ

−

2ϵ
(2.42)

where qτ
+ and qτ

+ correspond to the DNS solutions corresponding to the initial
conditions (Q + ϵq′) and (Q − ϵq′) integrated until τ . Applying the Krylov-Schur
method on the approximation of Mq′ it is possible to determine the eigenpairs
(µ, q̂M).
At this point the eigenpairs of L (ω, q̂L) can be obtained inverting the exponential
relation between L and M:

ω =
log|µ|+ i arg(µ)

τ
. (2.43)
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Chapter 3

Numerical stability methods and
parametric influences on open cavity
flows

This chapter aims to provide a clearer framework for the analyses carried out during
my time at ISAE-SUPAERO by offering additional context on the various methods
available for conducting stability studies. Moreover, it highlights the key parameters
that must be considered when performing these analyses.

3.1 Numerical methods for stability analyses
The first part of this chapter is focused on the different methodologies adopted to
perform stability analyses. The present is just an overview based on the review
written by Taira et al. [20].
As previously said, we know that we can apply two different approaches:

• The modal analysis is used to determine the asymptotic behaviour of the base
flow. By determining different modes, we can consider the perturbations as
their superposition and determine whether each mode is amplified or damped.
This study, which is basically a spectral analysis of the Navier-Stokes operator,
does not give a very complete overview of the flow’ s behaviour, given that the
transient is not considered.

• The non-modal analysis let us determine the transient growth of the perturba-
tions. This analysis has much more physical sense as an asymptotically stable
base flow may become turbulent during the transient growth.

The importance of transient growth studies is a consequence of the non-normality of
the Navier-Stokes operator. The characteristic of non-normal operators is that their
eigenvectors are non-orthogonal, resulting in what is showed in Figure 3.1. If we
consider two eigenvectors ϕ1 and ϕ2 and we do the difference between them, vector
f is obtained. By decreasing ϕ1 and ϕ2’s lengths the resulting difference vector f
tends to align to the direction of ϕ1 and to increase its norm. This mechanism,
that happens only when a non-normal operator is involved, determines a transient
growth of the perturbations in the short time, and it is the reason why it is useful
to execute a non-modal analysis when it comes to hydrodynamic stability.
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Figure 3.1: Figure representing two non-orthogonal vectors ϕ1 and ϕ2. In the picture,
the vector f represents the difference between ϕ1 and ϕ2. When the lengths of ϕ1 and
ϕ2 decrease differently during the iterations, the difference vector f tends to align to the
direction of ϕ1 while increasing its length. The result is that the superposition of non-
orthogonal eigenfunctions can produce in the short term a growth of the perturbation’s
norm. This would not happen in the case of two orthogonal vectors where the difference
vector f would decrease in length as ϕ1 and ϕ2 shrink. The picture is taken from Schmid
[21].

3.1.1 Modal analysis

This thesis work is focused on the realization of a modal analysis on a cavity flow
using the linear stability theory. This methodology will be fully explained in the
next chapters.
In general, many different approaches to modal analysis exist. The modal decompo-
sition is based on the extrapolation of the most energetic and dynamically important
features of different flows (modes), and mainly two frameworks have been developed
to do so (Taira et al. [20]):

1. When we use the flow field data as input of the modal analysis we can refer
to data-based techniques ;

2. When the analysis is based on discrete operators that derive from the Navier-
Stokes equations we are referring to operator-based techniques.

Whatever it is the chosen technique, the modal analysis is based on the determi-
nation of the eigenvectors having the eigenvalue with the largest magnitude. This
is possible using the Eigenvalue and Singular Value Decomposition (EVD and SVD
respectively), two methods that are used to reduce matrices’ dimensions and ex-
trapolate the eigenvectors. The reader is addressed to Taira et al. [20] for a deeper
understanding of these two methods. The main difference between them is the work-
ing matrix’s size: the eigenvalue decomposition works on square matrices, while the
singular value decomposition works on rectangular matrices. Both extrapolate the
eigenvectors and eigenvalues with the largest magnitude, but while the SVD always
works, the EVD can be applied only in certain cases. The EVD convenience is the
computational cost, a lot smaller than that of the SVD.
Starting from the data-based techniques, we introduce the following: the Proper
Orthogonal Decomposition (POD), the Balanced POD (BPOD), and the Dynamic
Mode Decomposition (DMD).
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The POD provides an algorithm that decompose the data field into modes to cap-
ture the flow features containing high energy. Using as input a snapshot of any
scalar or vector field q(x, t), the POD determine as output a set of modes ϕj(x),
their corresponding temporal coefficients aj(t) and the energy levels identified by
λj. The modes are given in order of their amount of energy. The POD, whose
algorithm is showed in details in Taira et al. [20], is mainly used because of the low
amount of data needed to represent the flow field and its fast convergence proper-
ties. Moreover, its output is a set of basis vectors with the minimal dimensions,
making it a useful method to create reduced order models. However, the modes
that the POD method identifies are arranged in order of energy content but not dy-
namical relevance in the flow, so it is possible to miss some important flow dynamics.

This last issue is covered using the Balance POD (BPOD). This method can de-
termine two different sets of modes, one based on the inputs (for example external
disturbances), one focused on the desired outputs. It is said that BPOD balances the
properties of controllability and observability. The first property defines the features
that are most excited by the inputs, while the second one refers to the modes that
give the largest outputs. When we say that BPOD balances these two properties
the meaning is that this method determines a coordinate system where the most
controllable directions are also the most observable [20].
The two sets of modes are called balancing modes and adjoint modes, and they are
ranked by controllability and observability. The adjoint system solved using this
method will be better explained when non-modal analysis is presented. For now it
is sufficient to know that the study of the adjoint system makes the BPOD a useful
tool to study transient growth and to create input-output model that can be used
to control the perturbations.
On the contrary, the need for the snapshots from the adjoint simulations makes it
difficult to adopt the BPOD on experimental measurements.

The last data-based technique is the Dynamic Mode Decomposition (DMD), that
decomposes time-resolved data into modes, each represented by a characteristic fre-
quency of oscillation and a growth/decay rate. Specifically, the decomposition is
applied to a best-fit linear operator that corresponds to an approximation of the
flow’ s dynamics. Without going into details, instead of calculating the eigenval-
ues λj of the operator A, the eigenvalues µj of the best fit linear operator Ã are
determined, and the relation between them is:

λj =
1

∆t
log(µj) (3.1)

At this point the frequencies and the growth rates of the DMD modes can be ob-
tained observing the real and imaginary parts of λj.
DMD’s advantage is that it is possible to examine separately the different flow dy-
namics without making any a priori assumptions on them. The downside of this
method is that the obtained modes are not ranked by relevance, so it may be difficult
to decide which mode is important or not. Moreover, DMD may not be accurate
when non-linear systems are considered.

Now that the data-based techniques have been shortly introduced, the same is done
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for the operator-based methods. The focus here is put on the operator that de-
scribes the flow dynamics. The methods presented here are the Koopman analysis,
the global linear stability theory and the resolvent analysis.

Koopman analysis is capable of giving a set of modes and a set of eigenfunctions
of a non-linear dynamical system examining a linear, infinite-dimensional operator
(called Koopman operator). The observability of the eigenfunctions produced by
the method makes it a powerful tool for control techniques. A few more words can
be found on Taira et al. [20].

About the global linear stability theory just a few words are spent here. Solv-
ing the eigenvalue problem gives us informations on the spectrum of the linearized
Navier-Stokes for large times, so when t → ∞. It is possible to adopt different
methods to determine the spectrum of the Jacobian matrix (the linear operator)
of the Navier-Stokes equations. The one used in this thesis is the matrix-based ap-
proach: the eigenvalue problem is solved by storing the matrices on memory. If the
matrix is small in size, it is possible to determine it directly, while if the Jacobian
matrix becomes too large to calculate, matrix-free approaches are implemented (the
Krylov-Schur algorithm based on the Arnoldi method is one example).
A different approach is the time stepping approach where the Jacobian matrix is not
directly determined. Further knowledge can be found in the review from Theofilis
[22].
While the global stability analysis is a very powerful tool for determining the spec-
trum of eigenmodes, it is very important to remember that it has its limits: it needs
as the base flow an exact solution of the N-S equations, and it is of course linear.

The Resolvent analysis is a completion of the global linear stability analysis, given
that it gives the possibility to add external forcing to the equations, basically neglect-
ing the hypothesis of small perturbations. The study focuses on the determination
of the maximum amplification of the forcing and how the non-linear forcing itself
relates to the velocity and pressure perturbations. The method gives in output the
most amplified inputs or forcing modes.
The resolvent analysis can be applied using the mean flow as base state, even in
the case of turbulent flows. Moreover, when turbulent flows are studied, the resol-
vent analysis considers the large coherent structures as modal solutions forced by a
turbulent background. The downside of this method is that informations about the
forcing term are required.

3.1.2 Non-modal analysis

It was said that evaluating the asymptotic behaviour of the flow may be a strong ap-
proximation of the flows’ dynamics. While the modal analysis works in the assump-
tion of normal-modes (making it possible to consider an exponential time depen-
dence), it is important to remember that the Navier-Stokes operator is non-normal,
making the short term evolution non-negligible. The time-asymptotic characteris-
tics of the flow and the shape of the least stable mode could be irrelevant under real
conditions. For example, the Couette flow studied using modal analysis appears
to be stable for all Reynolds numbers, while we know from experiments that it is
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unstable also for relatively low Reynolds.
In conclusion, the short term behaviour cannot be neglected.
As described by Schmid [21], the evolution of infinitesimal perturbations is influ-
enced by the governing parameters (as for the asymptotic analysis), by the initial
conditions and by the external forcing. In general two different approaches can
be considered: the flow response to initial conditions and that to external forcing.
Looking into the first approach, this is mostly interested in determining the insta-
bilities in the flow, while the second approach is related to sensitivity analysis (and
control theory).
Whenever the non-modal stability analysis is executed, it is important to choose
an appropriate measure of the disturbance size. The most convenient choice is the
energy E, with an appropriate integration weight.

The response to initial conditions is the first approach shortly described here. Con-
sidering the kinetic energy as the quantity to check, the aim of this approach is
to find its maximum amplification when the initial conditions change. Schmid [21]
defines the amplification factor as:

G(t) = max
q0

||q(t)||2

||q0||2
(3.2)

Evaluating the response to initial conditions, it is considered t → 0+.
It is then needed a quantity that describes the behaviour at this time, which is the
numerical abscissa, defined as:

max
q

1

||q||2

(
d||q||2

dt

)
t=0+

(3.3)

The details are showed in Schmid [21]. The meaning of the numerical abscissa is
the maximum protrusion in the unstable half-plane (the maximum energy growth
at t → 0+).
One last quantity can be defined to evaluate the maximum energy amplification over
time: as said in the review written by Schmid [21], the resolvent analysis (explained
before) can be used to define the Kreiss constant, which is a lower estimate of the
maximum extension in the unstable half-plane of the resolvent contours (obtained
by evaluating its norm).
Using a picture also showed in Schmid [21] for the Poiseuille flow at Re = 1000 and
α = 1, we visualize the eigenspectrum in Figure 3.2.
In the picture the blue dots represent the eigenvalues of the asymptotic time. Please
note that these point are located in the stable half plane. However, the red line rep-
resenting the numerical abscissa and the black dot representing the Kreiss constant
are located in the unstable half-plane, meaning that during the transient growth the
flow is unstable.
It is a direct consequence of this transient growth behaviour of the perturbations
that also the neutral curve will change for this flow, as showed in Figure 3.2, taken
from Schmid [21] as well. It is important to highlight that in normal systems the
critic Reynolds for transient growth and for asymptotic growth of the perturbations
would coincide.
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Figure 3.2: Figures taken from Schmid [21]. (Left): a 2D Poiseuille flow at Re = 1000
and α = 1 is studied using non-modal analysis. The blue lines are the contours of the
resolvent, while the blue dots represent the asymptotic eigenvalues. As it can be seen,
the eigenvalues are in the stable half-plane, so asymptotically this flow would result in a
stable flow. However, the red line representing the numerical abscissa and the black dot
representing the Kreiss constant are located in the unstable half-plane, meaning that during
the transient growth the flow is unstable. (Right): neutral curve for the flow studied. We
can distinguish a dark grey zone of the map (delimited with a blue curve) representing the
unstable region in the asymptotic limit. The light-grey region is asymptotically stable, but
sees a transient growth in the short term. In conclusion, the white region is the only one
where the flow is always stable.

The second approach that is considered in non-modal analysis is the response to
external forcing. In the model considered by Schmid [21], the general solution of
the Navier-Stokes equations sees the homogeneous solution, which represents the
response to initial conditions, and the particular solutions which brings informations
about the sensitivity to external forcing. In a similar fashion to what is done for the
analysis of the response to initial conditions, it is possible to define a parameter for
the maximum response to external forcing, namely R(ω) using Schmid notation, so
that:

R(ω) = max
qin

||qout(t)||2

||qin||2
(3.4)

where qin represent the input forcing, qout the output response, and ω the forcing
frequency.
Many different methods exist to study the flow impulse response or the resonance
frequency of the flow with external perturbations. The one we focus in this short
paragraph, is the adjoint method.

As stated in the review from Luchini and Bottaro [23], the adjoint equations were
first formulated to help reducing the order of any ordinary differential equation.
They then became a useful tool to determine the sensitivity of global quantities
(named objective) at the same computational cost of solving the direct problem.
The adjoint analysis is one of the three common methods to solve the stability of
open flows, alternatively to full numerical simulations of the linearized/non-linear
problem and quasi-parallel approximations of the linearized problem. The advantage
of adjoint analysis is that compared to the others it permits to execute a parametric
study of the perturbations.
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The aim is to determine where and how it is possible to modify the flow structure
in order to produce a great shifting of the unstable eigenvalues in the eigenspectrum
obtained with the direct analysis. As told by Luchini and Bottaro [23] it is possible
to identify a region in space where the oscillation is self-sustained and from which
the instabilities are propagated to the rest of the flow: this region is called wave
maker. This is the region where we desire to insert a control mechanism that alters
the flow making it stable.

3.2 Influence of control parameters
Now that different methods adopted to execute stability analyses have been shortly
introduced, it is important to focus on the control parameters that influence the
flows’ dynamics. We can identify the following:

• Perturbation’s location;

• Perturbation’s frequency;

• Mach number;

• Reynolds number;

• Boundary layer thickness;

• Aspect ratio.

Presenting different scientific articles and papers, the effect that these parameters
have on the flow stability is discussed.

3.2.1 Influence of the perturbation’s location

The perturbation’s position is related to the definition of the optimal perturbation.
This is very closely linked also to the sensitivity and receptivity study that has been
introduced speaking of the non-modal analysis and adjoint method, given that it
represents the basis of control theories.
Different studies have been conducted on open cavities looking for the optimal per-
turbation and identifying the most sensitive regions when a disturbance (or external
forcing) is applied. We bring here the study conducted by Citro et al. [24] analysing
the global modes of a square cavity and executing the sensitivity analysis in order
to find the wavemaker and the best position for the initial perturbation.
The cavity studied in the scientific paper is schematically represented in Figure 3.3.
The boundary conditions applied are of non-slip wall in the upstream, downstream
and cavity surfaces, of velocity inlet for the inflow and stress-free condition for the
outflow. The base flow is considered 2D, while the perturbation applied is three-
dimensional. Symmetry b.c. are applied to the sides as the base flow is obtained.
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Figure 3.3: Domain used by Citro et al. [24]. The square cavity is considered two-
dimensional for the base flow determination, while the applied perturbation is three-
dimensional. The applied boundary conditions are of non-slip wall at the upstream, down-
stream and cavity surfaces; the inflow applies a velocity inlet b.c. while at the outflow a
stress-free condition is applied.

In the paper a global stability analysis is conducted to determine the unstable two-
dimensional modes and the first bifurcation for a flow at Re = 4140. As the different
modes are obtained, the sensitivity analysis is executed on the most amplified one.
The sensitivity analysis is obtained determining the product of the direct and adjoint
fields. By plotting both the direct and adjoint eigenfunctions of the unstable modes
found from the stability analysis, it is discovered that the point most receptive to
external forcing is the leading edge of the cavity. By positioning the perturbation
here, the instability is most efficiently triggered. For a graphic validation of what
said, the contour plots of the absolute value of the direct and adjoint eigenfunctions
of the four unstable modes are taken from Citro et al. [24] and represented in Figure
3.4.

In order to determine the wavemaker, it is necessary to determine the critic Reynolds
and the first mode that becomes unstable. In Citro et al. [24] this mode correspond
to a wavenumber α = 13.4 and at the critic Reynolds Re = 1370. In this conditions
it is possible to plot the sensitivity and observe the regions in the flow where a per-
turbation most alters the eigenvalue of this mode. What is determined in the study
is that the wavemaker corresponds to a region inside the cavity, in particular to the
closed streamline around the main vortex. Moreover, from this study it appears
that the regions above the cavity (characterised by a strong shear) give a negligible
contribute to the sensitivity. In Figure 3.5 the wavemaker identified by Citro et al.
[24] is showed.
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Figure 3.4: Picture taken from Citro et al. [24]. The absolute value of the direct and
adjoint eigenfunctions of the four unstable modes identified by the stability analysis are
depicted here. From the adjoint fields we can see that the leading edge of the cavity is the
most receptive to external forcing, so the instabilities are most efficiently triggered in this
point.

Figure 3.5: Image taken from Citro et al. [24]. The sensitivity of the unstable mode
identified by α = 13.4 at Re = 1370 is showed. From the sensitivity calculation (the
product of the direct and adjoint mode) it is possible to determine the regions of the flow
where the perturbation most alters the eigenvalue. This region is also defined by Citro as
the ’wavemaker’, and for an open cavity flow it appears to be a closed streamline around
the main vortex, and it is not influenced by the strong shear of the regions above.

Summarizing, from the results shown in the paper by Citro et al. [24] we get the
following informations:

• Perturbations in the free-stream do not influence the flow inside the cavity and
on the cavity edges, which are the regions where the instabilities are triggered;

• A perturbation in the upstream, leading edge of the cavity most alters the
flow stability. In the scenario of non-modal stability analysis, it is convenient
to perturb the flow here to have the maximum effect on the instabilities;

31



Context

• The region most triggered by the perturbations and where the perturbations
are self-sustained (the wavemaker) is a closed streamline inside the cavity
around the main vortex and is not influenced by the shear regions above. In
the scenario where a control method has to be designed, it is reasonable to
study this region.

From these informations the adjoint analysis also permits to think of control mech-
anism like suction and/or blowing to control the instabilities.

3.2.2 Influence of the perturbation’s frequency

When a modal stability analysis is executed, it is not mandatory to define the ini-
tial perturbation frequency, given that we are only interested in the asymptotic limit
looking for the dominant mode that will characterise the flow. In this thesis, for
example, the perturbation is introduced as numerical perturbation inside the bound-
ary layer, without imposing a pre-determined frequency to the initial perturbation.
The modal analysis consists in the resolution of the eigenvalue problem, and from
the study of the eigenvalues the natural frequencies of the dominant eigenmodes.
However, there are three scenarios where a well defined initial perturbation (mean-
ing, its frequency) has to be applied to the base flow:

1. To examine the evolution of a modal mode;

2. To insert a forcing term;

3. To optimize a control mechanism.

In the first case it is quite obvious that we first need to define the base flow, then
to determine the most amplified/least stable eigenmodes from the modal analysis,
and to use the frequencies of the dominant modes (or the one whose evolution we
want to track) as initial perturbations. In this way, executing a direct numerical
simulation, we can evaluate the perturbation’s evolution.
If we are forcing the system applying an external perturbation, then it is common
practice to execute a resolvent analysis. A few words about this method have already
been spent, but we refer to the article by Sun et al. [25], where a resolvent analysis
is used to identify the flow response to external forcing on an open cavity flow with
L
D
= 6 at Re = 502 and M = 0.6, exactly the case studied in this thesis work. The

resolvent analysis consists ’simply’ on applying an external forcing to the governing
equation for the perturbation, so that:

∂q′

∂t
= L̃(q)q′ + f′ (3.5)

where L̃(q) correspond to the Navier-Stokes linear operator, q′ is the perturbation
and f′ the forcing term. Without going into details (explained in [25]) a new operator
is defined, which is the resolvent operator. While studying the resolvent operator
two set of modes can be found, called response modes and forcing modes. The link
between these two is the resolvent gain, that basically defines the response to the
external forcing. The gains are meant as energy norms, so that the higher the gain
is, the higher the energy contained in the mode is. It is then possible to find the

32



Context

frequencies related to the highest energy content of the modes. This way we can use
the resolvent analysis to create initial perturbation that force a certain response in
the system.
The same concept is used to design control methods, which is the third item that
needs the initial perturbation’s characteristics to give valuable results.

3.2.3 Influence of the Mach number

In this section we aim to give knowledge about the flow response when the Mach
number is varied, specifically going from low Mach numbers (considering almost
incompressible flows) to transonic and supersonic flows.
Different articles and research papers explore this topic, so we present here a short
review of the most interesting results obtained.
Given the similar case study, we bring here the results obtained by Sun et al. [26]
where different cavity geometries are studied for a Mach number range going from
0.1 to 1.4. First a global stability analysis is executed to determine the global insta-
bilities on a 2D flow. Further details about the analyses can be found in [26]. It is
interesting to examine the influence of Mach number on the case L

D
= 6, which is the

same aspect ratio studied in this thesis work. The Reynolds number is determined
using the boundary layer momentum thickness as reference length, in particular the
results in the paper are showed for Reθ = 19. Using the results obtained using IC3,
the Reynolds number rescaled using the momentum thickness would be Reθ = 21.4,
so we can consider the two cases comparable. Using the images proposed by Sun
et al. [26], we can observe in Figure 3.6 the numerical schlieren, instantaneous vor-
ticity contours and time averaged streamlines of the case studied. Please note that
the average flow seems to change a lot with the Mach number, and apparently this
behaviours differs from open cavity with a smaller aspect ratio. For low Mach num-
bers the shear layer mode dominates, generating a vortex close to the trailing edge
of the cavity. Increasing the Mach number the instantaneous vorticity shows an
even stronger oscillation of the flow, so we expect the flow to be more unstable. It is
interesting that when we are close to a transonic regime, the flow gets more stable,
and as the Mach number reaches M = 1.2 the instabilities disappear making the
flow steady again.
As also reported by Mathias and Medeiros [27] the increasing effects of compress-
ibility tend to enhance instabilities at first and stabilizing the flow for higher Mach
values.
As it was said, this behaviour slightly differs from the one seen in cavities with
smaller aspect ratios. Even though the general trend is the same, the stabilizing
effect of compressibility at higher Mach numbers is greater for cavities with higher
L
D

ratio. The explanation given by Sun et al. [26] is that the longer the cavity is,
the higher is the possibility for the shear layer to amplify disturbances, making the
stabilizing effect of compressibility at transonic Mach more evident.
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Figure 3.6: Picture taken from Sun et al. [26]. In the image, the instantaneous numerical
schlieren ( ∂ρ∂x ∈ [−0.8, 0.8]), the instantaneous vorticity contours (ωzD

U∞
∈ [−2.4, 2.4]) and

time averaged streamlines are shown for different Mach numbers ([0.3, 1.2]), aspect ratio
L
D = 6 and Reθ = 19. It is possible to see compression waves leaving the leading and
trailing edges of the cavity as the Mach number is grater than one. Also for the transonic
case, the schlieren captures compression waves inside the domain.

Looking at the different eigenmodes and eigenvalues from stability analysis, it is a
direct consequence of what was observed in Figure 3.6 that the growth rates tend
to decrease as we approach the transonic regime. The results of the global stability
analysis executed by Sun et al. [26] are not showed here in details, but it is interest-
ing to discuss briefly the results we obtain whenever three-dimensional modes are
considered.
The last analysis run by Sun et al. [26] shows the influence of the Mach number
on the three-dimensional eigenmodes. Confirming the results showed by Brès and
Colonius [28], even if the increasing Mach number tends to stabilize the modes, it
has much less influence than the spanwise structure of the flow. The study reported
in the scientific paper are referred to different ratios λ

D
, where λ is the spanwise

wavelength of the instabilities (the distance between them) and D is the cavity
depth. Apparently, the λ

D
ratio has much more influence on the flow stability than

the Mach number, so in case three-dimensional flows are examined, it is better to
evaluate the influence of this quantity.

In order to further investigate the influence of the compressibility in the incom-
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pressible and transonic regimes, another work is reviewed here. Yamouni, Sipp, and
Jacquin [29] have performed a global stability analysis on an open square cavity
flow for M = [0, 0.9], also studying the influence of the acoustic resonance mode on
the flow response and the connections between the compressible and incompressible
cases. In particular they determined the influence of compressibility on what they
called the ’feedback aeroacoustic mechanism’ and the acoustic resonance.
In the article, the domain showed in Figure 3.7 is used:

Figure 3.7: Picture taken from Yamouni, Sipp, and Jacquin [29]. The domain used in
the paper is showed. The white area represents the domain of interest, while the grey area
is the sponge zone applied to reduce the acoustic reflections. The Γw thick line represents
the non slip condition applied to the cavity walls, while Γa has a slip condition applied. The
inlet condition is used to define the Reynolds number, based on the free stream velocity U∞
and the cavity length L, resulting in Re = 7500.

The domain of interest is the one depicted in white, as the grey area represents
the sponge zone used to damp the acoustic reflections. The boundary conditions
applied are the following: Γw is a non-slip condition that starts at (−B, 0, 0), where
B is fixed to 0.4 in the article; Γa on the contrary is a slip condition; the velocity
inlet defines the free stream velocity which is used for the definition of the Reynolds
number, scaled using U∞ and L as reference length; in conclusion, a pressure outlet
is applied at the outflow.
The base flow is determined for the incompressible case and used to identify the
different modes running a global stability analysis. On the M = 0 case the influence
of the boundary layer momentum thickness is considered, but the results will be
brought to the reader’s attention in the dedicated subsection of this chapter.
The first results from the cited paper brought here are the Strouhal-growth rate
maps for different Mach numbers (Figure 3.8). Picture a) represents the global
spectrum for different Mach numbers: M = 0 (black squares); M = 0.1 (diamonds);
M = 0.5 (triangles) and M = 0.9 (circles). We can see that the general trend
is again discovered: the growth rates of the different modes decrease as the Mach
number reaches higher values. We can also see, however, that as the compressibility
effects increase, the number of amplified modes increase as well. In picture b) the
trajectories of three different modes with the Mach number is showed. It is evident
that the modes have complex trajectories as the Mach increases, and we can also
identify multiple local maxima of the growth rates. Again, whenever we reach high
Mach numbers, the growth rates tend to decrease.
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Figure 3.8: Picture taken from Yamouni, Sipp, and Jacquin [29]. The St − σ maps are
represented here. Picture a) is the global spectrum obtained at Re = 7500 using different
Mach numbers: M = 0 (■); M = 0.1 (⋄); M = 0.5 (▽) and M = 0.9 (◦). Please note
that a similar trend to the one previously showed is represented here, with the growth rate
decreasing as higher Mach values are reached. However, a new behaviour is showed here:
although the growth rates are decreasing, there are new modes (stable at lower Mach) that
are now unstable. In b) different trajectories of three modes are depicted for different Mach
numbers. As we can see, the trajectories are not easily predictable.

These complex trajectories are considered to be the result of the superposition of
two different effects: the feedback aeroacoustic mechanism introduced by Rossiter
and the acoustic resonance mechanism.
The feedback aeroacoustic mechanism is said to depend on the synchronization of
the vortices in the shear layer and of the acoustic waves travelling backward towards
the leading edge of the cavity.
The acoustic resonance mechanism occurs when the wavelengths of the acoustic
waves originating at the trailing edge of the cavity is comparable to the cavity
dimensions, either in length or depth. The paper aims to determine the contributes
of these different mechanisms.
To do so, different branches for the different modes are determined. The branches,
indicated with the letter k in Yamouni, Sipp, and Jacquin [29] differ in the number
k of structures in the shear layer. Using the relation defined by Rossiter for the
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feedback mechanism:
St =

j

1
k
+M

(
1 + 0.514

L/D

) (3.6)

it is possible to represent the actual trajectories in a graph overlapping the theoret-
ical curves for the Rossiter mechanism (Figure 3.9).

Figure 3.9: Picture taken from Yamouni, Sipp, and Jacquin [29]. In the figure the
unstable mode trajectories with a constant number of structures k are showed using grey
shaded circles. The thick solid lines are the feedback aeroacoustic mechanism branches
(obtained using the theoretical relation). The light grey lines are referred to the different
Rossiter branches obtained varying the modes j with a constant k = 0.61. Note that for
low compressibility effects (low Mach numbers) the grey circles and the theoretical branches
overlap perfectly, so there is a dominance of the feedback aeroacoustic mechanism. Please
note that the Rossiter mechanism is also valid in the incompressible regime (M = 0). As
the number of structures in the shear layer increase we see a change of trajectory, meaning
that the Rossiter mechanism isn’t the dominant one any more and other effects have to be
considered.

In conclusion, the paper’s authors show the evolution in time of the global modes
of the branch k = 3, representing the pressure inside the cavity for three different
Mach numbers, specifically M = [0, 0.4, 0.8]. This picture is helpful in finding the
differences between the incompressible and compressible cases, so we propose again
the results here (Figure 3.10). The pictures represents two different segments at
x = −1 : 1.9, y = 0 and at x = 0 : 1, y = −0.25, respectively the left and
right column. Four segments are defined, and their slopes represent the propagation
speeds of the waves: positive slopes mean that the wave is propagating downstream,
while negative slopes mean the propagation’s direction is towards the upstream edge
of the cavity. Considering the slopes of segments (2) and (4) we notice that they
are nearly independent from the Mach number.
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Figure 3.10: Spatio-temporal evolution of the global modes of the branch k = 3 (taken
from Yamouni, Sipp, and Jacquin [29]). The pressure is represented for two segments at
x = −1 : 1.9, y = 0 and at x = 0 : 1, y = −0.25, so considering the cavity and the shear
layer above it (left column) and a region just below the shear layer (right column). The
slopes of the segments (1)−(4) represent the propagation speeds of the structures: if positive
they propagate downstream, while negative slopes mean that the waves are propagating
upstream. As the slope of the segments inside and outside the cavity (segments (2) and
(4)) are not really influenced by the Mach number, the compressibility create reflecting
waves leaving the trailing edge with different speeds (segment (3)). The same pattern is
seen in the shear layer and below it. Also note that the acoustic waves are weaker than the
main structures hitting the trailing edge of the cavity.

The main difference between the incompressible and compressible cases stands in
the reflection of the waves impacting the trailing edge of the cavity. Reflections
propagate upstream with increasing speed depending on the Mach number. The
same pattern is distinguished in the shear layer (left column) and slightly below it
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(right column). On the dotted line for x = 0 it is possible to see two circles point-
ing at the starting end ending points of a wave, considering the reflection too. In
conclusion, note that the reflected waves are less intense respect to the downstream
propagating structures impacting the trailing edge.

In the work of Yamouni, Sipp, and Jacquin [29] the acoustic feedback produced
by the trailing edge of the cavity is evaluated thanks to the compressible formula-
tion used. However, it is possible to capture the acoustic pattern of cavity flows also
considering the incompressible formulation, as it has been done by Bailey, Abbá, and
Tordella [30]. In this article, the cavity is considered as an energy collector. The
pressure transport and kinetic energy transport are considered evaluating the inflow
and outflow from the cavity. This paper aims to link these quantities to pressure
wave emission from the downstream edge of the cavity. A channel Poiseuille flow
is considered here at different Reynolds number based on the bulk velocity and the
semi-height of the channel. A cavity of aspect ratio L

D
= 4 is then located in the

channel. The Mach number defines the incompressible conditions, as it is equal to
M = 1e−3. The authors considered a numerical coefficient α to relate the pressure
and the kinetic energy transport, so that:

pv = αρEv (3.7)

where E is the kinetic energy per unit mass, v the wall normal velocity component,
p the pressure. The Reynolds number considered are in the range Re = [25, 2900]
so that the flow clearly goes from a laminar case to the turbulent one. Given that
turbulence is obtained for Re = 2900, there will surely be acoustic waves production
from the cavity. Although the incompressible formulation is used, for this Reynolds
number the authors identify from the pressure field some high and low pressure spots
that are a sign of acoustic emission (Figure 3.11).

Figure 3.11: Picture taken from Bailey, Abbá, and Tordella [30]. Pressure field inside the
cavity, specifically close to the downstream edge, at Reynolds Re = 2900 and M = 1e−3.
Note that although the incompressible formulation is adopted in this study, we can still
observe some high and low pressure spots leaving the downstream edge surface. These spots
are considered to represent the acoustic waves generated from the impinging flow on the
cavity edge.
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Bailey, Abbá, and Tordella [30] then have extrapolated informations about the
Reynolds number corresponding to the first acoustic emission. The details about
the analyses executed are showed in [30], but we find interesting that from an in-
compressible formulation, it is still possible to determine the range of Reynolds
numbers where we expect the acoustic emission to occur. In this case, observing the
dimensioned absolute values of the pressure and kinetic energy transport across the
cavity mouth varying the Reynolds number, we can suppose that at Re = 1000 the
unsteady features of the flow (so the instabilities) first occur (Figure 3.12).

Figure 3.12: Picture taken from Bailey, Abbá, and Tordella [30]. The dimensioned
absolute values of the pressure and kinetic energy transport are showed for a cavity at
M = 1e−3 at different Reynolds numbers. The dots represent the pressure transport, while
the squares the kinetic energy transport. We put the focus on the change in behaviour
obtained after Re = 1000. It is in fact possible to distinguish a descending behaviour of the
pressure transport interpolation curve (meaning pressure outflow from the cavity becomes
greater than the inflow). This behaviour is considered to be a consequence of the generation
of acoustic waves leaving the cavity. The kinetic energy transport also sees a change in
the behaviour going from an exponential growth to a logarithmic one. Re = 1000 is then
considered the first occurrence of unsteadiness (instabilities).

We conclude that it is possible to gain informations about flow instabilities from an
incompressible study.

3.2.4 Influence of the Reynolds number

The Reynolds number is of course one of the most influencing parameters, so that
multiple papers have been written about its influence on the flow stability.
To discuss its impact on the eigenspectrum we briefly comment the results of Brès
and Colonius [28] and Meseguer-Garrido et al. [31]. First, it is best to repeat that
the influence of the different parameters is usually stronger on two-dimensional cases
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compared to the three-dimensional ones. However, the general trend is always the
same. Brès and Colonius [28] have executed one of the first and most complete
studies on three-dimensional open cavity flows determining the influence of multiple
parameters on the flow stability. Without commenting again the results obtained
for each one of them, the behaviour of the flow with increasing Reynolds number is
the same obtained in this thesis work: as the Reynolds increases, the growth rates
tend to increase as well. There is a difference on the effect of the Reynolds number
on the frequency of the modes depending if the flow is 2D or 3D. Specifically, in
their work, where three-dimensional cavities are considered, the frequency tend to
decrease slightly when the Reynolds number is increased, while in two-dimensional
flows (as the one considered in this thesis) the frequency increases slightly. The
important influence of the Reynolds number is a direct consequence of the change
in viscosity, given that this last one has a stabilizing role on the flow.
Moreover, as explained in Meseguer-Garrido et al. [31], increasing the Reynolds
number also means that there is an increase in the velocity gradient in the shear
layer, which is one of the main mechanisms that brings energy to the smaller per-
turbations.
The Reynolds number also influences the flow reattachment to the cavity down-
stream wall when closed cavity flows are considered. As presented in Bailey, Abbá,
and Tordella [30], when low Reynolds cases (laminar cavities) are considered, reat-
tachment is expected approximately ten cavity depths downstream of the upstream
edge. Of course this can vary depending on the Reynolds but also the aspect ratio
of the cavity. For high Reynolds numbers (turbulent cavities) the reattachment is
considered to be less dependent on the specific Re and is accepted to be around six
cavity depths downstream of the upstream edge (again the aspect ratio can influence
this behaviour). If the aspect ratio is small compared to the channel height or the
cavity flow is open, then the reattachment is considered to be close to the trailing
edge of the cavity without any particular dependence on the Reynolds number. As
we have explained, in this case the Reynolds number influences the position of the
main eddy, that moves towards the trailing edge as the Reynolds increases.

3.2.5 Influence of the boundary layer thickness

Again, as the boundary layer thickness is an important parameter controlling flow
instabilities, many research papers have been published determining its influence. As
it is briefly explained by Meseguer-Garrido et al. [31], the decrease of the boundary
layer thickness has the same effect as increasing the Reynolds number: a thinner
boundary layer leads to larger gradients in the shear layer, making the destabilization
of the flow easier. Again, its effect on two-dimensional flows is greater than on three-
dimensional cases, as introduced by Squire’s theorem and partially verified through
numerical and experimental works. The same conclusion has been obtained by Brès
and Colonius [28], where a relation has been deducted from the numerical results:

ωr ∝
D

θ0
(3.8)

where ωr is the growth rate of the most amplified mode, D is the cavity depth
and θ0 corresponds to the boundary layer thickness. It is said by Brès that for
constants values of ReD, M and aspect ratio, this relation is qualitatively valid.
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Again, the same is obtained by Mathias and Medeiros [27], where the influence of
the Mach number and of the incoming boundary layer thickness is studied. As
previously said, the authors prove again that if the boundary layer is thinner, then
the leading eigenvalues have a grater growth rate. A final demonstration comes from
the visualization of the eigenspectrum obtained by Yamouni, Sipp, and Jacquin [29]
for a square cavity ( L

D
= 1) at M ≈ 0 and Re = 7500 (Figure 3.13).

Figure 3.13: Picture taken from Yamouni, Sipp, and Jacquin [29]. The eigenspectrum
for a cavity with aspect ratio L

D = 1, M ≈ 0 and Re = 7500 is showed for different ratios
L
θ0

: L
θ0

= 231 (■); L
θ0

= 110 (▲); L
θ0

= 52.7 (▼); L
θ0

= 38.9 (▶), L
θ0

= 34.2 (◀). As we
can see, as the thickness is increased the growth rate decreases and the frequency slightly
changes. The number k is related to the number of coherent structure in the shear layer.

The behaviour is coherent with what expected. Using different ratios of L
θ0

we can
see that as the thickness increases the growth rates decrease. The frequency slightly
decreases as well, and this behaviour is also expected given that as the thickness
increases the convection speed of the vortices in the shear layer decreases too.

3.2.6 Influence of the aspect ratio

To conclude this chapter we highlight one last time the influence of the aspect ratio
of the cavity.
Citing what explained by Meseguer-Garrido et al. [31], when the aspect ratio is
close to L

D
= 1 the size of the perturbation is constrained by the one of the cavity.

This tends to stabilize the flow given that the cavity walls limit the growth of the
perturbations inside the cavity itself. On the contrary, when the length-to-depth
ratio increases, the main vortex is not bounded by the walls, making space for other
perturbations to grow inside the cavity. Moreover the increase in the cavity’s length
makes the shear layer able to amplify the disturbances even more, as written also
in Sun et al. [26].
The results obtained by Meseguer-Garrido et al. [31] for the influence of the aspect
ratio are showed in Figure 3.14.
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Figure 3.14: Image taken from Meseguer-Garrido et al. [31]. The neutral curve of an
open cavity flow is showed for different aspect ratios. As the aspect ratio is increased, the
unstable region increases in size, meaning that the critic Reynolds occurs at lower values.
We can see how this parameter has a huge influence on the flow stability.

In the light of the reviewed studies, the following case presented in Chapter 4 was
designed to explore the stability behaviour of an open cavity flow with Re = 502
and M = 0.6, parameters consistent with the literature’s critical ranges.
In this thesis we will also study the influence of the Reynolds number and of the
Mach number our cavity geometry, without exploring deeply the other parameters
cited above.
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Chapter 4

Analysis of a cavity invested by a
flow at Re = 502 and M = 0.6

Now that the theory behind this master thesis’ work is explained, it is possible to
introduce the actual case study taken in consideration for the stability analysis.
As explained in the introduction of this report, the goal is to validate and confirm
the IC3 solvers’ capability of solve global stability analysis problems, checking the
boundary conditions imposed in the different simulations. In order to achieve such
a goal, an article published by Sun et al. [11] in 2017 is examined and considered to
have a qualitative comparison of the results, looking how the boundary conditions
influenced the solutions.

Figure 4.1: Schematic representation of the fluid domain. The dimensions are given as
n · D, where D represents the cavity depth which is also considered as the characteristic
length of the system. The different sizes’ lengths are taken from Sun et al. [11] in order to
obtain comparable results. The origin of the reference system is positioned in the upstream
edge of the cavity.
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4.1 Physical domain
The physical domain is created based on the geometry used in the article of Sun et
al.
Even if the simulation considers a bi-dimensional cavity, the domain has to be cre-
ated as a three-dimensional geometry to make IC3 execute the code. No initial
condition are imposed in the z direction, so in the following paragraphs this coordi-
nate will be neglected, but it is necessary to know that very thin 3D grid elements
have to be used to run simulations.
The geometry is then represented in Figure 4.1.

The reference frame has its origin positioned exactly in the upstream edge of the
cavity, as depicted in the picture. The different sizes are given as a function of the
cavity depth D, which is here considered the characteristic length of the system.
Given that this work is completely numerical, a cavity depth of 1 meter has been
considered, in order to have a grid size that does not require excessive resolution
and computational power to be resolved.
The fluid flows along the x direction, from now on called streamwise direction.

4.1.1 Boundary conditions

With the assumption of the flow moving along the streamwise direction, the fluid
regions are set as it follows (Figure 4.2):

Figure 4.2: With the hypothesis of the fluid flowing along the x direction, the boundaries
are associated with the terms showed in the picture.

One of the goals of this thesis work is to validate different boundary conditions
implemented in IC3 and to evaluate any differences in the results. In particular,
the focus is put on the upper surfaces boundary condition: usually at this surface
a porous boundary condition is applied, which defines the static temperature and
pressure and the undisturbed flow’ s velocity. This condition is valid when we

45



Analysis of a cavity invested by a flow at Re = 502 and M = 0.6

consider to be in the farfield.
However, the top surface during the simulations may see different fluctuations in the
flow, resulting in some perturbations carrying the flow outside/inside the domain,
making the usual free stream condition no more adequate (Figure 4.3 case (a)).
In order to cancel this possible issue and to compare the obtained results, a different
domain geometry is built, using a slightly inclined top surface. In particular, a 2°
angle is applied. Even if the angle is small, it is considered sufficient to contain
every possible fluctuation of the flow (Figure 4.3 case (b)). Of course the boundary
condition applied to the new inclined top surface is no longer of porous surface, but
it becomes a velocity inlet bc.

Figure 4.3: Schematic representations of the fluctuations that could occur at the upper
(top) surface. In (a) the flat surface has a porous boundary condition applied i.e. we
suppose that we already are in the undisturbed farfield with the flow parallel to the (fictitious)
surface. In this configurations, eventually, some oscillations could occur causing the flow
to exit/enter the fluid domain, making the porous bc obsolete. In (b) the slightly inclined
top surface is created in order to contain every eventual fluctuation of the flow. In this
case the applied boundary condition is that of velocity inlet.

The remaining surfaces maintain the same boundary condition in both the two cases.
The applied bcs are resumed in Figure 4.4:
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Figure 4.4: Schematic representations of the boundary conditions applied to the fluid
domain: the two different configurations have the same boundary conditions apart from the
top surface, whose differences between the two cases has been already well discussed.

From a practical point of view, the inlet boundary conditions applied to the fluid
regions are based on the solving of a Riemann problem between a left state containing
the informations provided by the user and a right state being the first fluid cells of
the boundary condition; the pressure outlet is defined by imposing the static pressure
on the subsonic boundary; the wall condition is considered to be adiabatic and the
solver impose automatically a no-slip condition.
Please note that the domain is built as a three-dimensional space. In order to make it
bi-dimensional for the solver periodic boundary conditions are set to the fluid region
(given by the extrusion of the bi-dimensional geometry, schematically represented
in Figure 4.2) so that the domain becomes an infinite extruded domain and can be
considered two dimensional.

4.1.2 Initial conditions

The initial conditions are determined in order to simulate a flow in the same condi-
tions as Sun et al.
In the article it is said that the Reynolds number is Re = 502 and the Mach M = 0.6.
In order to obtain these same non-dimensional values the fluid dynamic similarity is
used, given that no experimental counterpart of the future analysis will be executed.
The initial condition and reference physics quantities are defined as in Table 4.1:

Re = 502; M = 0.6

Ux [m
s
] P [Pa] T [K] ρref [ kg

m3 ] µref [Pa · s]
204.23 101325 288.15 1.225 0.49837

Table 4.1: Table containing the initial condition values and reference physics values im-
posed in the simulation for a flow at Re = 502 an M = 0.6.

Both in Sun et al.’ s article and here, the boundary layer develops from the beginning
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of the fluid domain, for x = −2.4 [m] following the reference system from Figure
4.1.

4.1.3 Mesh

Different meshes are created in order to capture precisely the phenomena happening
inside the cavity and in the shear layer. The mesh is executed using an external
software, ICEM CFD. Using this simple mesher it is possible to build the geometry
and create adequate meshes. Simple quad elements are used to build the non-
uniform grid, although varying the numbers in order to detect any difference in the
results. The goal is to achieve a sufficient grid resolution inside the cavity and close
to the wall, while increasing the cell sizes going towards the farfield. The first mesh
used to run DNS simulations contains 379000 elements (Figure 4.5):

Figure 4.5: First meshes actually used to run simulations. This meshes contained 379000
elements which was later discovered to be an unnecessarily amount. The grids were realized
using the software ICEM CFD. In the picture both the flat top (a) and inclined top (b)
geometries and grids are showed.

Running some DNS simulations using these two meshes some acoustic reflections
are discovered inside the cavity just from the visualization of the pressure (Figure
4.6).
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Figure 4.6: Looking at the visualization of the pressure in the fluid domain using the mesh
depicted in Figure 4.5 it is possible to see pressure fluctuations in the farfield, probably
caused by acoustic reflections from the outlet boundary.

In order to avoid these fluctuations the grid is modified. If such corrections are not
made, the acoustics phenomena happening inside the cavity would be mixed with
the reflections from the outer boundary compromising the results of the simulations.

The grid is modified introducing a sponge zone towards the outer boundary to
mitigate the reflections (Figure 4.7).

Figure 4.7: Schematic representation of the sponge zone inside the fluid domain. The
sizes of the sponge zones here represented are not to scale, they are just meant to show
their position.

The sponge zones are implemented using two different techniques:

• Implementing in the code a sponge zone that automatically mitigates the re-
flections (acting as a filter) without modifying the mesh;
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• Changing the grid towards the boundary increasing the cell size such that
numerical dissipation mitigates the fluctuations

Both the two methods are achieved and used, but given the simplicity of the analyses,
the second (easier) method is the one applied giving optimal results. Moreover, in
this way the number of grid elements is reduced without losing quality in the results.
The final meshes with the application of the sponge zones (as gradient in the grid
elements’ size towards the outlet) are showed in Figure 4.8:

Figure 4.8: Final meshes used for the following analyses for the flat top geometry (a)
and the inclined top geometry (b). Both the meshes have around 127000 grid elements.

4.2 Numerical Methods
Talking about the mesh it was told that simulations are run in order to evaluate
the best grid configuration possible. Any information about the numerical methods
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implemented in IC3 to run the analyses was until now ignored. This paragraph aims
to give the reader some knowledge about the numerical methods applied.

The IC3 solver can solve CFD problems using two spatial numerical schemes:

• Finite volumes : the solution is determined as mean value in each cell and it is
associated to the center of each element (Figure 4.9);

Figure 4.9: Schematic representation of a grid element in which the solution has been
determined implementing finite volumes method. In this case the solution is defined as
mean value of the solution in the grid element and the value is associated to the element’s
center.

• Spectral methods : the values of the flow quantities is determined by the inter-
polation of an n−degree polynomial in different points inside the grid element
, the so-called solution points (Figure 4.10). Given that the number of solution
points is higher than finite volumes, it is possible to use coarser grids without
reducing the total number of degrees of freedom of the mesh. The downside
is that the method is computationally more requiring.
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Figure 4.10: Schematic representation on how spectral methods evaluate the solution
inside the single grid element. Depending on the polynomial’s degree chosen, different
numbers of solution points are allocated inside the element. The solution is determined by
the interpolation of the polynomial of the values in correspondence of the solution points.

Both these two different methods are applied in order to verify that the obtained
results are the same.
For what concerns the time integration method, a third order, three stages Runge-
Kutta method is implemented, which is an explicit method commonly used in CFD
problems. Further knowledge about the Runge-Kutta time stepping method can be
found in Butcher [32].

Figure 4.11: Three different probes are located inside the shear layer in order to determine
the shedding frequency. In particular, the goal is to obtain the same shedding frequency that
Sun et al. determined evaluating the shear layer in (3, 0, 0) [m], i.e. the middle of the cavity.
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4.3 Frequency spectrum
Once the simulations setup is ready, the first goal of the analyses is to determine
the frequency of the shedding phenomena that distinguishes the cavity flow under
the conditions Re = 502 and M = 0.6, as underlined in [11]. In order to capture the
shedding of the vortices in the shear layer, different (fictitious) probes are inserted
inside the fluid domain (Figure 4.11).
The three probes are used to capture the velocity along the x direction Ux of the
cavity, in order to subsequently use the Fast Fourier Transform to determine the
frequency spectrum of the cavity. Even if we expect the shedding frequency to be
small, given the high computational power an acquisition frequency of fs = 10 kHz
is used.

4.3.1 Fast Fourier Transform

The Fast Fourier Transform (FFT) is adopted to determine the frequency spectrum
of the cavity flow studied. The FFT is an algorithm whose purpose is to compute
Discrete Fourier Transform (DFT) efficiently. It is then mandatory to introduce
the DFT before approaching the FFT.
The DFT of a time-based continuous signal using N samples (depending on the
acquisition frequency) produces a frequency range representation with the same
number of samples N . If we call f(t) the continuous time signal that represents
the source of the data and f [0], f [1], f [2], ..., f [N − 1] the N samples that we obtain
from the probes, we have:

F (jω) =

∫ ∞

−∞
f(t)e−jωt dt (4.1)

Which is the Fourier Transform of the original temporal signal. We could consider
each sample f [k] as an impulse having area f [k].
Then, since the integrand exists only at the sample points:

F (jω) =

∫ (N−1)T

0

f(t)e−jωt dt

= f [0]e−j0 + f [1]e−jωT + · · ·+ f [k]e−jωkT + · · ·+ f(N − 1)e−jω(N−1)T

That is equal to:

F (jω) =
N−1∑
k=0

f [k]e−jωkT (4.2)

Moreover, if the signal is periodic, the expression can be considered as:

F [n] =
N−1∑
k=0

f [k]e−j 2π
N

nk, (n = 0 : N − 1) (4.3)

The results are the frequency range representation of the temporal signal. Moreover,
if ∆t is the time interval between the samples the resulting frequency interval will
be:

∆f =
1

N∆t
=

fs
N

(4.4)
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The cost of the Discrete Fourier Transform is quite high, given that it requires N×N
operations that are time and memory intensive.
Here comes the usage of different algorithms that reduce the cost of the DFT. In
particular, the Fast Fourier transform reduces the total number of complex opera-
tion to N · log2N , which gives a great saving. Basically the Fast Fourier Transform
divides the signals in two halfs recursively, recreating the complete spectrum solving
each smaller problem.

4.3.2 Results

Two different methods were used to determine the FFT. Firstly, the FFT is applied
on the streamwise velocity signal Ux that is sensed by the fictitious probes inside
the shear layer. The FFT is calculated using the MATLAB function fft and it is
normalized by the velocity magnitude. As in [11] the spectrum is determined as a
function of the non-dimensional frequency, i.e. the Strouhal number. The obtained
spectrum is the one showed in Figure 4.12:

Figure 4.12: FFT spectrum of the normalized streamwise velocity of a fictitious probe
locted in the middle of the cavity. The aim of the FFT is to determine the frequency
(here non-dimensional as the Strouhal number) of the periodic shedding phenomena that
distinguish a cavity flow under the conditions Re = 502 and M = 0.6. The spectrum is
determined using a MATLAB script that included a high-pass filter to select the desired
data and a function for peaks determination.

As it can be seen from Figure 4.12, the first peak is considered to be indicative
of the vortex shedding, and the other peaks are located for discrete multiples of
the frequencies, representing the harmonics. From the FFT, a Strouhal number of
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St = 0.05728 was identified for the shedding periodic instability. Please note that
we do not know (given the analyses run until now) the critic Reynolds neither when
the Hopf bifurcation happens.

At this point the spectrum is compared with the one obtained by Sun et al. [11]
(Figure 4.13).

X 0.0572805

Y 0.118223

Figure 4.13: FFT spectrum comparison between the one obtained using the IC3 solver
(on the left) and the one obtained by Sun et al. [11] (on the right). It is possible to see the
the Strouhal number that identifies the first harmonic is the same, although the magnitude
changes. A possible cause could be a different way to perform the normalization of the
spectra.

As it is possible to see in the figure above and read in the article, the Strouhal
number obtained for the shedding mode (from Sun called ’wake mode’) is exactly
St = 0.0572 which is very similar to the result obtained performing the FFT using
IC3.

In order to have another confirmation of the results apart from the comparison with
the paper, another script is written and used in order to determine the FFT on the
whole domain, considering a weighting on the grid elements (Figure 4.14).
The script still determines the FFT but taking the Ux data of the whole field. As the
first script does, the local average is removed in order to have a clearer peak finding.
The difference here is that a volume weighting factor is applied to the FFT for each
cell. This is useful considering that the mesh is not uniform: when the goal is to
determine the magnitude of the FFT spectrum in the whole field it is mandatory to
take into account the different elements sizes. The first script ignores this process
because using the point probes inside the cavity there is no significant meaning in
weighting the cells’ contribution.
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Figure 4.14: FFT spectrum obtained using the data from the whole domain instead of a
single point inside the cavity. In this case the magnitude of the frequency signal is weighted
considering the volume of each mesh element.

Using both scripts the results have not changed, and the first three harmonics are
found at these values (Table 4.2):

Re = 502; M = 0.6
Harmonics St [/] f [Hz]

I 0.05728 11.6983
II 0.114561 23.3968
III 0.17184 35.09529

Table 4.2: Table containing the first three harmonics’ Strouhal number and frequency in
the FFT spectrum for a flow at Re = 502 and M = 0.6.

The spectrum showed in this paragraph is determined using the flat top geometry,
but it is discovered that the exact same result is obtained using the inclined top
geometry (Figure 4.15). This means that the different boundary conditions do not
alter the results, hence we are sufficiently far from the wall that the boundary con-
ditions do not alter the system dynamics.

One of the goals of the study is to determine if there were any differences in the
results applying the finite volumes method and the spectral differences. So differ-
ent DNS simulations are run using the two numerical schemes, specifically using
different degrees for the spectral differences interpolating polynomial.
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X 0.0572805

Y 0.118223

X 0.0572805

Y 0.117719

Figure 4.15: FFT spectrum comparison between the one obtained using the flat TOP
surface and the inclined one. As it is possible to see, there is no difference in the results
obtained for the shedding frequency, hence we can consider the top surface to be as far as
needed to not be influenced by the boundary condition applied.

For the study to be valid it is mandatory to modify the grid in order to have the
same amount of degrees of freedom. The dofs when using the spectral differences
are associated to the number of solution points inside the single quad element, so
it is necessary to create different meshes as the interpolating polynomial (equals to
the solution point) changes.
The results are showed for the SD2 method, so using two interpolation point in each
element. This configuration appeares to be the less performing giving the worst
results between the different cases that is studied. The mesh adopted is the one
showed in Figure 4.16.

Figure 4.16: Mesh used for the comparison between the SD2 method and finite volumes.
The new mesh is necessary to have the same amount of degrees of freedom of the mesh
created to apply finite volumes. The degrees of freedom are associated to the solution points
inside the single elements, so comparing FV and SD2 elements there is a ratio of dofs of
1:4.

The results are showed in Figure 4.17. Here we can notice some small differences
in the shedding frequency. The one depicted on the right in the picture is the SD2
method, the one that gave the worst results. Considering that this is the worst case
scenario showing the biggest difference in the obtained shedding frequency, we can
still be satisfied.
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X 0.0572805

Y 0.118223

X 0.0579032

Y 0.135873

Figure 4.17: FFT spectrum comparison between the one obtained using the finite volumes
method and the spectral differences SD2. As we can see in this case we have some small
differences in the results of the order of ∆StD = 6e−4. This difference is reduced by
increasing the order of the interpolating polynomial of the spectral difference method from
SD2 to SD5. Please remember that applying the spectral difference method is convenient in
cases where high numerical robustness is needed, but in terms of simulation time it is not.
Even if we will bring this comparison further, there is a neat convenience of applying the
finite volume method in this study.

The difference is of the order of ∆StD = 6e−4.

It is fundamental to know the shedding frequency for executing the stability analysis,
whose aim is to identify the mode responsible for this phenomena.

4.4 Stability analysis
As deeply explained, the goal of this thesis’ work is to execute a global stability
analysis on an open cavity flow at Re = 502 and M = 0.6.
Repeating in a more detailed fashion, we aspire to execute a modal analysis (con-
sidering a stationary base flow and finding the modes that will amplify/damp the
perturbations inside it for t → ∞) without considering any symmetry in the flow
i.e. performing a tri-global stability analysis.
We apply the small perturbation theory so that (as explained in details in Chapter
2):

q = Q + ϵq′ (4.5)

where Q = Q(x) is the state vector representing the stationary base flow, ϵ represent
the (small) amplitude of the perturbation q′.
Given that we perform a global stability analysis the perturbation form simply is:

q′ = q′(x, t) = q′(x, y, t) = q̂(x)eωt = q̂(x, y)eωt (4.6)

where the exponential temporal evolution of the perturbation is possible due to the
assumption of modal analysis. Note that ω is complex.
To determine the modes that make the base flow stable or unstable, we solve the
eigenvalue problem:

ωjq̂(x) = Lq̂(x) (4.7)

58



Analysis of a cavity invested by a flow at Re = 502 and M = 0.6

It was explained that determining the eigenvalues of the linear operator can be ex-
pensive, so the matrix-free techniques (Krylov-Schur in particular) are applied to
find the eigenvalues of the matrix propagator M.

Please note that we do not suppose the presence of symmetries in the flow, hence
it doesn’t really make sense to talk about a dispersion relation. For the sake of the
completeness of the following analyses, we also do a step backwards to a pseudo-local
approach determining the dispersion relation and studying the medium to determine
if is either dispersive or non-dispersive.
Subsequently we determine the limit cycle to visually examine whether we are close
to the threshold that corresponds to the primary mode or not.

4.4.1 Base flow determination using SFD

The first step to achieve to run a full stability analysis is to obtain the steady base
flow.
Until now, the DNS were performed to discover the shedding frequency, which is the
phenomena that disturb the base flow making it unstable.
The goal of this paragraph is to explain how the base state Q is determined. What
it is done, is basically applying a low-pass filter to the flow. This technique is called
Selective Frequency Damping (SFD) (Åkervik et al. [33], Casacuberta et al. [34]).
As stated in [33], if we consider a generic non-linear system:

q̇ = f(q) (4.8)

where the ˙denotes the derivative with respect to time and f(q) is an operator, then
the steady state qs is given by q̇s = f(qs) = 0. If the operator is unstable, then any
q ̸= qs will depart from the base state quite quickly. The method used to stabilize
the system is to apply a regularization technique, basically adding a linear term to
the right-hand side of 4.8 forcing the system towards a target solution w. The linear
term is:

−χ(q − w) (4.9)

where χ is the so-called control coefficient, in the future also called gain.
The target solution is of course the steady state solution qs, but as we previously
said this is not known a priori. The chosen target solution is then a modified q with
a reduction in the temporal fluctuations. At this point, the low pass filter is applied,
and the new target solution is:

w = T ∗ q (4.10)

that is, the convolution between the temporal filter T and the state q:

(T ∗ q)(t) =
∫ ∞

−∞
T (t− τ) q(τ)dτ (4.11)

For the method to converge to the steady solution, the filter cutoff frequency should
be lower than that of the instabilities. Here is why it is fundamental to define the
frequency of the shedding instability from the frequency spectrum.
As in [33], the modified system becomes:

q̇ = f(q)− χ(I − T ) ∗ q (4.12)
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where I is the identity operator. For further explanations the reader is redirected
to [33].

It is now in our interest to apply this technique to our fluid dynamic case. As
stated in Åkervik et al. [33] and Rolandi [13], when a temporal filter is applied in
the NS equations the system becomes:

∂q
∂t

= N (q)− χ(q − q̄)

(4.13)
∂q̄
∂t

=
q − q̄
∆

where this time we define q̄ as the approximation of the unknown steady state
solution, while χ and ∆ are respectively the gain and the filter’s width. The target
solution is the exact steady state solution q̄0 (so that N (q̄0) = 0), towards which
q and q̄ converge. The convergence towards the steady state is determined by the
choice of the two parameters ∆ and χ. The steady state is obtained when the most
unstable eigenvalue of the modified system 4.13 is stable, so when its real part is
negative. Again, in Åkervik et al. [33] it is possible to see how the most unstable
eigenvalue is related to the two parameters ∆ and χ, whose choice is fundamental
for convergence. Basically the SFD method determines an approximation of the
most unstable eigenvalue. Some criteria for the first choice of these parameters are
showed by Akervik. First it is necessary to determine the cutoff frequency of the
unstable disturbances:

fc =
1

∆
≤ fn (4.14)

where fc is the cutoff frequency that should be equal or smaller than the natural
frequency of the instability.
For what concerns the gain parameter, Åkervik et al. [33] state that it should be at
least:

χ > ℜ(ω) (4.15)

It has to be said that Akervik was one of the first to propose the Selective Frequency
Damping method, and many other studies have been conducted to determine the
best fit for these two parameters but without discovering any general (and at the
same time accurate) criteria.
The parameters that are chosen as input for the IC3 solver are the ones in Table
4.3:

Cutoff frequency fc [Hz] ∆ [s] χ [Hz]
11.6983 0.085602 20

Table 4.3: Table containing the values of the parameters χ and ∆ of the SFD method.
The gain (χ) is the parameter that turns the approximated most unstable eigenvalue stable,
while ∆ is the filter width.

Until now the convergence criteria was not defined. In order to determine if the
steady state had been found, the residuals are monitored. Residuals are indicators
of the numerical error between the left and right hand sides of the equations. This
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is usually called the imbalance of the equations. The residuals are automatically
determined by the solver for the mass balance equation (density Rho), the continuity
equation along the three axis (RhoUx, RhoUy, RhoUz) and the energy equation
(RhoE). When the absolute residuals (without any form of normalization) reach a
value of ≈ 10−8 or lower, convergenc is obtained (and the steady state consequently).
As showed in Figure 4.18 using the SFD parameters defined in Table 4.3 convergence
is reached:

Figure 4.18: Absolute residuals of the SFD analysis run. Given that the residuals have
reached a value of ≈ 10−8 or lower, the base state is considered obtained.

For a visual, further confirm that the base state had been achieved, the streamlines
of the base flow are plotted and qualitatively compared to the base flow found by
Sun (Figure 4.19):

Figure 4.19: Qualitative comparison between the velocity streamlines obtained for the
base flow by Sun et al. [11] (left) and obtained applying the SFD using the parameters in
Table 4.3 in the IC3 solver (right).

Please note that the base flow also represents the fixed point of the system, so in
the phase space it would be defined by a point. The perturbations are applied to
this fixed point.

The study of the differences in the results using the finite volumes method and
the spectral differences is carried on to this point. To examine the differences in the
results, the semi-logarithmic plot of the streamwise velocity Ux, the density ρ and
the total energy E were obtained (Figure 4.20).
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Figure 4.20: Semi-logarithmic plot of the streamwise velocity Ux, the density ρ and the
total energy E using finite volumes and spectral differences to obtain the base flow. It
is possible to see that there are some slight differences, probably due to the differences in
the input files of the simulations. The base flow is obtained using the selective frequency
damping and imposing a cutoff frequency, equals to fcutoff = 11.6 Hz for the FV case
and equal to fcutoff = 12 Hz for the SD2 one. Even considering the small differences, we
obtain convergence approximately after the same amount of iterations and to very similar
values.

We can notice that there are a few differences in the plots, probably given by the
differences in the input files. In fact, the study that is conducted using the FV
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adopted a cutoff frequency to use in the selective frequency damping method equal
to fcutoff = 11.6 Hz, while the SD case adopted fcutoff = 12 Hz. Even considering
these differences, the convergence is obtained after nearly the same amount of itera-
tions (≈ 5e6) and the maximum differences collected on Ux, ρ and E are respectively
∆Ux = 1.5 m

s
, ∆ρ = 1e−4 kg

m3 and ∆E = 0 J after this number of iterations.

4.4.2 Perturbation around the base flow

Once the base state is obtained, it is possible to use it as the fixed point around
which the perturbation is applied. It was well explained how the stability analysis
is performed without directly finding the eigenvalues of the linear operator, but
applying the Krylov-Schur algorithm to determine the eigenvalues of the exponential
propagator M = eLt. From the analytic solution we have:

q′(τ) = Mq′(0) (4.16)

where the product Mq′ corresponds to the perturbation at a certain time t = τ .
The IC3 solver uses Chiba’s method, in which the product Mq′ is approximated by:

Mq′ =
qτ
+ − qτ

−

2ϵ
(4.17)

where qτ
+ and qτ

− are the DNS solutions that correspond to the initial conditions
(Q+ ϵq′) and (Q− ϵq′) integrated until the time τ . In conclusion, as explained in a
detailed fashion in paragraph 2.4.5, a Floquet analysis using time stepping exponen-
tial transformation is used here. The IC3 solver implements this type of analysis,
having in this case to set two different parameters that are ϵ and τ . The first one
(ϵ) is the finite difference parameter used in Chiba’s method, and has to be large
enough to avoid numerical round-off errors but not too large to prevent non-linear
effects. As suggested by Fosas De Pando, Sipp, and Schmid [35], ϵ ∈ [10−8; 10−5].
Running different tests, the value of ϵ = 10−7 turns out to be appropriate.
For what concerns the parameter τ , it represents (conceptually) the time that the
perturbation would need to be convected out of the domain. It is usually better to
use a fraction of the oscillation period of the primary instability mode, and in this
case it is tuned to be τ = 0.008 [s].

Running the analysis the solver automatically creates a MATLAB script where the
propagator eigenvalues (µ) are showed. Using the relation between the linear oper-
ator and the propagator we have:

q̂L = q̂M (4.18)

and the eigenvalues of the linearized operator are simply obtained as:

ω =
log |µ|+ i arg(µ)

τ
(4.19)

For the sake of simplicity we define:

ω = ℜ(ω) + iℑ(ω) = ωr + iωi (4.20)
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where, for the perturbation form adopted in 4.6, ωr represents the temporal growth
rate and ωi the frequency. In the following, the eigenvalues are made non-dimensional:

ω∗
r =

ωr ·D
U∞

(4.21)

ω∗
i = StD (4.22)

Running the IC3 solver the stability analysis is performed and the spectra is obtained
(Figure 4.21):

Figure 4.21: Eigenvalues determined by the IC3 solver using the Chiba method. It is
possible to determine the most amplified mode looking at the growth rate (ω∗

r) of the different
eigenvalues. The most amplified mode is the one referred to the shedding instability.

Showing the values determined for each mode (named from I to IV from the most to
the least amplified), it is reasonable to do the comparison with the modes obtained
by Sun et al. [11] (Table 4.4 and Figure 4.22):
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(ωrD/U∞) + i StD
Mode Sun et al. IC3 solver

I +0.0808 + 0.1307i +0.0763 + 0.1311i
II +0.0685 + 0.1959i +0.0740 + 0.1982i
III −0.0049 + 0.2624i +0.0089 + 0.2663i
IV −0.0002 + 0.0636i +0.0039 + 0.0613i

Table 4.4: Table showing the comparison between the eigenvalues determined by Sun et
al. and the ones determined doing a stability analysis on IC3 perturbing the base flow. The
eigenvalues are listed from I to IV going from the most amplified mode (that represents
the shedding mode) to the least amplified one. It is possible to see that there are some
differences in the results. These can be related to a slight difference in the boundary layer
momentum thickness θ.

Figure 4.22: Figure showing the comparison between the eigenvalues determined by the
IC3 solver (green dots) and the ones determined by Sun et al. (yellow crosses). It is possible
to see that there is a slight difference in growth rates, probably caused by a difference in the
boundary layer momentum thickness θ.

It is evident that there are some differences in the growth rates. In particular, using
the IC3 solver it appears that every mode is amplified given that ω∗

r > 0 for each one
of them. In order to explain this differences some further examinations are executed.

Firstly, a validation of the results obtained by the IC3 solver is investigated. A
DNS simulation is run using the base flow as the input state for the flow. Although
no initial perturbation is imposed, given that the base flow is unstable (as there is
at least an amplified mode), some numerical errors automatically disturb the flow
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and act as initial perturbation. It is then possible to visualize the evolution of the
perturbation until the non-linear interactions become significant and the perturba-
tion reaches its saturation. The results of the DNS simulation is showed in Figure
4.23:

Figure 4.23: Representation of the algebraic growth valid for the linear behaviour of the
perturbations. The aim of this study is to validate the results obtained from the stability
analysis. In this case, an exponential fit curve of the type eω

∗
r t (coloured in magenta in

the pictures) is superimposed on the signal in order to see if the growth rate of the most
amplified mode is capturing the evolution efficiently: the results seem valid.

Using in this case an exponential fit curve (in magenta) that interpolated the peaks
in the signal, a growth rate of ω∗

r = 0.0763 is obtained, confirming the value found in
the spectrum (look at Table 4.4) for the most amplified mode. Once the coherence in
the results obtained using IC3 is confirmed, a further analysis on the possible reason
that causes the differences between our case and Sun et al.’ s one is conducted.
Checking the parameters from the beginning of the study, it is discovered a difference
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in the momentum boundary layer thickness θ, probably due to differences in the wall
model. Between the growth rate of the most amplified mode and the momentum
boundary layer thickness exists a relation (Brès and Colonius [28]):

ωr ∝
U

θ
(4.23)

In Sun et al.’s work [11] it is said that the ratio D
θ
= 26.4 at the leading edge of the

cavity. Using some fictitious probes to analyse in better details the boundary layer
at the upstream edge of the cavity, it is possible to determine this ratio, equal to
D
θ
= 23.4546, causing the growth rate to be lower than in Sun case (Figure 4.24).
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Figure 4.24: Graph showing the velocity profile Ux in correspondence of the upstream edge
of the cavity. In order to determine the momentum boundary layer thickness, the integral
quantity is determined considering the end of the boundary layer as the y coordinate where
Ux = 0.99U∞.

In the end, as proposed by Sun et al., the visualization of the modes (I, II, IV ) of the
real part of Ûx is represented for a symmetric interval, bringing a visual comparison
of the modes (Figure 4.25):

Figure 4.25: Contours of the real part of Ûx of the eigenvectors of the modes I, II, IV .
In particular the contours of Ûx

U∞
∈ [−0.008, 0.008] are showed for Sun et al.’s results

(I(a), II(a), IV (a)) [11] and the IC3 ones (I(b), II(b), IV (b)).
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As it is possible to see, the mode representation is very similar between the paper’s
and the IC3 results.

Again, the results are the same for the two geometries of the domain, underly-
ing that the two different boundary conditions are not influencing the results and
that the top boundary is sufficiently far from the cavity.

4.4.3 Dispersion relation

As it has been said multiple times in the course of this report, the goal of the
thesis work is to execute a global stability analysis on an open cavity flow, without
assuming any symmetry in the flow, i.e. considering a flow without homogeneity
directions. In this case the perturbation form is the one in 4.6.
However, it is considered interesting to do a step back and evaluate whether the
medium is dispersive or not, executing a fictitious local analysis. We repeat that
in a dispersive medium the waves speed depends on their frequency. In order to
do this analysis, the four modes determined are used. From the visualizations also
proposed in Figure 4.25, the values along a line in the shear layer are considered,
determining how ℜ(Ûx) changes on this line (Figure 4.26).

Figure 4.26: Scheme of the line along the streamwise direction that is used to determine
the wave numbers of the four different modes.

Given that the spatial periodicity is quite evident in the visualization of ℜ(Ûx), it
is considered a great choice to use this quantity in particular.
A spatial FFT is performed on the signal to determine the dominant wave number,
which is the one corresponding to the greatest peak in the FFT (Figure 4.27).
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Figure 4.27: The spatial FFT is executed on the real part of Ûx to determine the dominant
α of the four modes. The different wave numbers are collected in Table 4.5.

From the analysis of the wave it is possible to determine the wave numbers of the
modes, and of course the different wave lengths.
The results obtained for the wave numbers and wave lengths are written in Table
4.5:

Mode Wave number α
[
rad
m

]
Wave length λ [m]

I 1.57080 4.0
II 2.09440 3.0
III 2.61800 2.4
IV 0.87632 7.2

Table 4.5: Table containing the dominant wave numbers and wave lengths for the four
modes. They are determined applying a spatial FFT to the signal over a line inside the
shear layer along the x direction.

To have a qualitative validation of the wave numbers (and wave lengths) obtained,
on the visualizations showed in Figure 4.25 a simple ruler is positioned and the wave
lengths are obtained (Figure 4.28):

69



Analysis of a cavity invested by a flow at Re = 502 and M = 0.6

Figure 4.28: Virtual rulers used to qualitatively visualize the wave lengths of the four
modes.

Note that the wave lengths determined qualitatively on the visualizations are very
similar to the results of the FFT.

In order to further validate the results obtained here, the wavelengths have been
compared to literature. First, the wavelengths obtained by Sun are again deter-
mined from the visualisations in Figure 4.25 by simply applying a virtual ruler on
the images from [11] (Figure 4.29).

Figure 4.29: Virtual ruler applied on the four most amplified modes from Sun et al. [11].
As we can see, the wavelengths are similar to the one identified in Figure 4.28. This is an
additional validation of the results obtained.
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The results are also represented in Table 4.6:

Mode Wavelength λIC3 [m] Wave length λSun [m]
I 4.0 4.28
II 3.0 3.19
III 2.4 2.47
IV 7.2 7.61

Table 4.6: Table containing the dominant wavelengths for the four modes obtained using
IC3 and using a virtual ruler on Sun et al. [11] visualizations.

The differences may be related to the low accuracy of the virtual ruler, given that
it is difficult to identify the peaks in the visualizations. We still consider the results
satisfactory.
A different comparison is done using the results obtained by Bailey, Abbá, and
Tordella [30]. We are interested in visualizing the differences in the wavelengths
when the control parameters change.
As previously stated, changing the parameters alters the dynamics of the flow. The
comparison of the present work and the article is then done qualitatively. In partic-
ular, the parameters that change between the two studies are briefly summarized in
Table 4.7:

Parameter Bailey, Abbá, and Tordella [30] Present work
Re 2900 800
M 1e−3 0.6
L
D

4 6
Topology Confined flow Open flow

Table 4.7: Table containing the parameters applied by Bailey, Abbá, and Tordella [30]
for the evaluation of the acoustic standing wave and the parameters used in the present
work. Please note that the Reynolds number is defined using the half height of the cavity
in Bailey’s work (equal to 2D) while in the present work it is considered D as reference
measure. Comparing the Reynolds numbers, this is the most similar case studied in this
thesis to compare with Bailey’s results.

As presented in Chapter 3, Bailey, Abbá, and Tordella [30] determine the pressure
field inside the cavity using an incompressible formulation fro the turbulent case at
Re = 2900. In the article they demonstrate that using the incompressible formula-
tion it is still possible to recognize a pattern resembling an acoustic wave generated
by the impingement of the flow on the trailing edge of the cavity. Our case differs in
terms of parameters and base flow. In particular we suppose that the greater aspect
ratio and the fact that the flow is unconfined will make a great difference in the re-
sults. However, the acoustic wave caused by the impingement of the asymptotically
dominant mode on the cavity wall can still be recognized qualitatively. The visual
comparison is represented in Figure 4.30. A different colour map than usual is used
to highlight the pressure peaks. Using a virtual ruler the wavelength is obtained.

71



Analysis of a cavity invested by a flow at Re = 502 and M = 0.6

Figure 4.30: Comparison between the acoustic wave visualizations obtained by Bailey,
Abbá, and Tordella [30] (left) and using IC3 (right). The colour map is chosen to highlight
the pressure spots. While Bailey et al. found a wavelength approximately equal to 1

8D
the one obtained in IC3 is equal to 4.6D. As we can see the differences are definitely
not negligible. Due to the different aspect ratio, the perturbations in the present work
have more time to be amplified by the shear layer, which has a great influence on the flow
structures. Moreover, as an unconfined flow, the feedback acoustic mechanism altering the
flow dynamics and the consequent acoustic footprint happens more slowly than in a confined
flow, so we expect the wavelength to be greater. We can still see a similar direction of
propagation and phenomena occurring.

It is easily noticeable that the wavelengths differ greatly. As Bailey, Abbá, and
Tordella [30] obtained a wavelength of the acoustic standing wave equal to 1

8
D using

IC3 this is equal to 4.6D. This huge difference is considered to be a consequence of
the different configurations: the Reynolds used from Bailey represents a turbulent
case, while we are not sure that with the Reynolds obtained here the flow will transi-
tion to turbulence; the aspect ratio differs from L

D
= 4 in [30] to L

D
= 6 in the present

work, making the flow more unstable and making it possible for the perturbations
to amplify more; the flow is unconfined in the case studied here, so there is not the
effect of the upper wall that accelerate the feedback aeroacoustic loop, resulting in
a greater wavelength. Moreover, we are considering a two dimensional flow, thus
neglecting the influence of three-dimensionality that, as we have explained, has a
great influence on the flow dynamics. In conclusion, we may observe a difference in
the angle of the acoustic wave compared to the one from Bailey, Abbá, and Tordella
[30]: in the present work the reflection has an angle of approximately 130° while in
the article it makes a 150° with the x-axis. This difference can be again related to
the topology of the flow which is unconfined, and to compressibility.
A few words are spent on the Mach influence on the acoustic wave. Following the
Morkovin hypothesis we may consider low effect on compressibility on boundary lay-
ers. In particular we may account for the differences between compressible turbulent
boundary layers and incompressible boundary layers by incorporating the variations
of mean fluid quantities, given that the dilatation effects are negligible. This hy-
pothesis are said to be true when the Mach number is smaller than M = 0.5. Even
if in the present work we do not have necessarily a turbulent flow, we may consider
low effects of compressibility, although we will see in Chapter 5 that the eigenspec-
trum will change. In the meantime we consider this hypothesis to be valuable, so
we represent also the visualization for Re = 502 and M = 0.4 (Figure 4.31).
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Figure 4.31: Visualization of the pressure field of the dominant mode for the case at
Re = 502 and M = 0.4. Although the acoustic wave is not so evident here, the angle
appears to be greater compared to the one discovered for the Re = 800 and M = 0.6 case.
This could be a consequence of compressibility.

We can notice here that the angle of the backward moving acoustic wave (although
not clearly visible) is greater then the one discovered for the Re = 800 and M = 0.6
case. This effect could be given by the lower effect of compressibility, in accordance
to the Morkovin hypothesis.
We conclude this brief analysis of the acoustic wave’s wavelength saying that the
results show qualitative similarities to the one obtained by Sun et al. [26] and repre-
sented in Figure 12 of their paper. Please keep in mind that in the present work the
focus is on the hydrodynamic modes and not on the acoustic features of the cavity.

Once the wave number and wavelengths are obtained, the graphs of the real and
imaginary parts of ω as functions of α (the wave number) are realized:

0.5 1 1.5 2 2.5 3

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

73



Analysis of a cavity invested by a flow at Re = 502 and M = 0.6

0.5 1 1.5 2 2.5 3

-0.1

0

0.1

0.2

0.3

0.4

0.5

Figure 4.32: Graphs representing the behaviour of the real and imaginary part of ω
for different wave numbers. The four points represents the four modes found during the
stability analysis, and the fit is added in order to find out whether the medium is dispersive
or not. As it was explained in Paragraph 2.3.2, given that the imaginary part of ω shows
a non-linear trend, we can already tell that the medium is dispersive.

It is possible to compare the behaviour of the real part of ω to literature (Nastro
et al. [36]) to consider the parabolic trend reasonable. Moreover, it is already possi-
ble to state that the medium is dispersive, given that the non-linear trend of ℑ(ω)
necessarily means that vϕ ̸= vg.

4.4.4 Phase velocity

The subsequent part of the analyses aims to determine the phase velocities of the
modes and show graphically the differences between them.
Firstly the phase velocities are determined as (Table 4.8):

vϕ =
ωi

α
=

2πU∞StD
Dα

(4.24)

Mode ωi

[
rad
s

]
α

[
rad
m

]
vϕ

[
m
s

]
I 168.2295 1.5708 107.0979
II 254.3332 2.0944 121.4349
III 341.7201 2.6180 130.5272
IV 78.6611 0.8763 89.7630

Table 4.8: Phase velocities determined for the most amplified modes. It is evident that
these four velocities are not equal, so the medium is dispersive as already stated.

In order to display graphically the differences, a sinusoidal wave is used for each
mode identified. For the sake of simplicity it is not considered the temporal growth,
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given that the goal is to show the different phase velocities. Each wave represented
is defined by the dominant wave number found for the corresponding mode, and the
ℑ(ω) is included using the phase velocities:

U ′ = A · sin(αx− αvϕt) (4.25)

where A is a constant amplitude applied in this simplified representation of the
waves. Note that the phase velocities are scaled using mode one’s phase velocity in
order to appreciate in a better fashion the differences in the plots.
Starting from t = 0 we get (Figure 4.33):

0 2 4 6 8 10 12

0 2 4 6 8 10 12

0 2 4 6 8 10 12

0 2 4 6 8 10 12

Figure 4.33: Qualitative plots in order to see the differences in the phase velocities for
the four unstable modes identified. Here it is represented a time t = 0.
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Where we can already appreciate the differences in the wave lengths of each mode.
Looking at the situation after a certain time tf we get (Figure 4.34):

0 2 4 6 8 10 12

0 2 4 6 8 10 12

0 2 4 6 8 10 12

0 2 4 6 8 10 12

Figure 4.34: Qualitative plots in order to see the differences in the phase velocities for
the four unstable modes identified. Here it is represented a time t = tf . Note that, as
expected from the observation of Figure 4.32, the medium is dispersive given that the phase
velocities are different from one another.

A summarizing representation of the phase velocity and dispersion relation is pre-
sented in Figure 4.35:
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Figure 4.35: Summarizing representation of the eigenspectrum (left), the relations ω∗
r (α)

and StD(α) and the phase velocities of the different waves (right).

4.4.5 Limit cycle

Going back to the study of global instabilities, it was explained in paragraph 2.4.2
that when a stable stationary system evolves to a periodic state due to a primary
instability (as it happens for the wake behind a cylinder and the cavity analysed
here), then a Hopf bifurcation has occurred. Even if until now we cannot determine
the critic Reynolds at which the bifurcation occurs, if we section the phase plane
(q, q̇) for a determined Reynolds number (Re = 502 in this case), we can observe
a stationary fixed point and a trajectory that brings us to the limit cycle. As it
was said during the course of this thesis, both the fixed point and the limit cycle
represent two attractors for the system i.e. two different equilibrium states.

It is then represented the limit cycle in the phase plane, specifically in the three-
dimensional plane for the velocity signal ux, so in the plane (u, u̇, ü). Again, the
base flow is used as the input for a DNS simulation, where no perturbation other
then the naturally present numerical one is added to the flow. Given that the base
flow is unstable, even a numerical perturbation of amplitude > 10−15 causes the
instabilities to grow. After the perturbation reaches its saturation, that is, when
the non-linear effects are not negligible any more and the growth is stopped, the
trajectory starts to define the limit cycle, represented in Figure 4.36.
It is possible already to see that the limit cycle is far from a perfect ellipsoid, this
meaning that we are far from the threshold of the marginal stability (the Recrit has
been surpassed already). This is further appreciable looking at the graph in the
plane (u, u̇) (Figure 4.37):
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Figure 4.36: Representation on the phase plane of the limit cycle, obtained perturbing
the base flow (fixed point represented in green) until the perturbation reaches its saturation,
and the non-linear effects become not negligible. In particular, it is considered the velocity
signal ux gotten from a virtual probe located in the middle of the cavity (x = 3 m), to whom
the base flow velocity is subtracted. When the perturbation’s saturation is reached, then the
limit cycle become evident (in red in the picture).

Figure 4.37: Looking at the graph in the plane (u, u̇) it is further appreciable that the
limit cycle is far from a perfect ellipsoid. This means that the critic Reynolds number has
been surpassed.
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Chapter 5

Influence of the Reynolds and Mach
numbers

There are many articles and papers discussing the influence of specific parameters
on open cavity flows (Brès and Colonius [28], Mathias and Medeiros [37], Rowley
and Williams [2]), in particular exploring the results obtained varying the cavity
aspect ratio, the momentum boundary layer thickness and the Reynolds and Mach
numbers. It is considered interesting and intriguing to use different parameters on
the IC3 solver and to examine the results. It is decided to change the Reynolds and
Mach number only, given that an analysis considering every parameter would take
a long time, which is not available.
The same cavity’s geometry as before is used, without modifying the domain nor
the mesh.
The influence of the momentum boundary layer thickness should also be considered,
but it is neglected in this thesis work, hence the flow properties are examined for
constant Reynolds/Mach while varying respectively the Mach/Reynolds numbers
and the momentum thickness.

5.1 Influence of the Reynolds number
Firstly, the Reynolds number’s influence on the flow characteristics is investigated.
Thanks to the many works cited above, we do know what to expect from these
analyses, so it is easy to examine the results and to determine their validity. Again,
in order to change the Reynolds number, and applying the fluid dynamic similarity,
the viscosity is varied in order to obtain the desired flow non-dimensional parame-
ters. The investigated Reynolds numbers are presented in Table 5.1. The interest is
to determine the Reynolds interval where the first bifurcation occurs (find a range
where the Recrit is contained), and to consider higher Reynolds to determine the
phenomena occurring.

Following what stated by Brès and Colonius [28], changing the Reynolds number
has a direct influence on the growth rate of the most amplified mode, so it has a
direct effect on the instabilities development in the flow structure. Increasing the
Reynolds number usually tends to increase the growth rate and to slightly decrease
the oscillation frequency of the modes.
Considering that we are not fixing the momentum boundary layer thickness, it is
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Reynolds
200
250
350
400
450
502
650
800

Table 5.1: Reynolds numbers used for studying its influence on the development of the
instabilities. The interest is to define a range of Reynolds number containing the critical
value to which the first bifurcation occurs, and to see the phenomena occurring to higher
Reynolds numbers.

mandatory for us to consider the influence of the Reynolds number on θ to also
evaluate its influence on the flow. In general, approximating our case with a Blasius
boundary layer profile (even if we are considering a compressible flow), we have a
dependence of the momentum boundary layer thickness with the Reynolds number.
In particular, following Blasius it would be:{

θ ∝ Re−
1
2 for laminar boundary layers

θ ∝ Re−
1
5 for turbulent boundary layers

(5.1)

Even if the solver works in the compressible regime, we consider the momentum
thickness to decrease while increasing the Reynolds number. This approximation is
used also by Yiyang Sun et al. [38]. Consequently, as showed previously, the growth
rate will again increase.
The whole analysis presented in Chapter 4 is again executed to see the influence of
the Reynolds number on the flow’ s stability. The same mesh is used in order to
have the least amount of differences between the cases.
Initially the flow inside the cavity is studied using the Fast Fourier Transform to
extrapolate the shedding frequency inside the shear layer. In Figure 5.1 it is possible
to see how, by increasing the Reynolds number, the Strouhal number relative to the
shedding phenomena occurring in the cavity increases too.
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Reynolds Strouhal ∆ [s] χ
200 / 0.080 15
250 / 0.080 15
350 0.0542 0.085 20
400 0.0551 0.085 20
450 0.0570 0.090 20
502 0.0572 0.090 20
650 0.0591 0.120 40
800 0.0616 0.150 60

Table 5.2: In the table the different Strouhal numbers obtained from the FFT are showed
for each different Reynolds number. It is again possible to see how the shedding frequency
increases as the Reynolds does. In the last two columns the parameters used for the SFD are
listed. As the Reynolds number is increased, it is necessary to increase the gain parameter
to obtain the convergence of the residuals.

Figure 5.1: FFT of the signal inside the cavity, specifically in the position x = 3, y = 0.
It is possible to see that the Strouhal number relative to the shedding phenomena occurring
in the shear layer increases as the Reynolds does. Without putting too much attention on
the peaks’ magnitudes, it is still possible to observe the expected trend. Please note that
for Re = 200 no evident peak is observed, suggesting that the flow is stable under this
condition.

From the FFT it is possible to define the parameters that are used in the Selective
Frequency Damping. In order to find the stationary base flow is in fact necessary to
cut out the instabilities by imposing a low pass filter on the flow. The parameters
that have to be chosen using the SFD are the ∆, which is the filter’s width, and the
gain χ, that determines the convergence’s speed (Table 5.2).
The base flow is then determined for every different Reynolds number. Looking at
the streamlines of the velocity magnitude U it is possible to appreciate the differences
between the different cases (Figure 5.2). In the picture, going from (a) to (h)
the Reynolds numbers listed in Table 5.1 are used. While for the first two cases
(corresponding to Re = 200 (a) and Re = 250 (b)) the DNS simulation is sufficient
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to obtain the fixed point directly, in the other cases the Selective Frequency Damping
had to be applied in order to achieve the base flows. As the Reynolds number is
increased, the main eddy tends to grow in size, and a stretched secondary eddy
appears in the cavity (cases (c)− (f)). Continuing to increase the Reynolds number
a recirculation bubble develops at the bottom of the cavity (case (g)), and its size
grows further increasing the non-dimensional parameter as showed in case (h).

Figure 5.2: Different base flows used for the stability analyses. From (a) to (h) the pic-
tures correspond to the Reynolds numbers listed in Table 5.2. Cases (a) and (b) correspond
to globally stable cases, so it is not necessary to apply the selective frequency dumping tech-
nique to obtain the fixed points. Increasing the Reynolds number (cases (e) and (f)) it is
evident that a secondary eddy starts to develop while the main eddy tends to grow in size.
When higher Reynolds are reached as in (g), a small recirculation bubble develops on the
bottom surface of the cavity, and its size continues to grow until case (h) is obtained.

At this point the global stability analysis is conducted for all the different cases.
The parameters ϵ and τ that define the Chiba method are chosen so that ϵ = 1e−7

for each different Reynolds number and τ = 1
10

·∆, where ∆ is the time parameter
that is already used for setting the SFD.
Twenty eigenvalues are requested to the solver, so in order to set the Krylov-Schur
method the subspace’s dimension is set to m = 100, given that m > k ’wanted’
eigenvalues for the definition of the Arnoldi factorization.
The resulting eigenspectra is showed in Figure 5.3.
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Figure 5.3: Eigenspectra showing the Reynolds influence on the global modes. Please
remember that the momentum boundary layer thickness is not fixed, so we can suppose
that it has an influence on the results. It is evident how the growth rate increases as the
Reynolds number increases, so that the base flow tends to become more unstable. More
detailed comments will be executed soon about each mode.

Given that is is evident how the hierarchy of the different modes changes while
increasing the Reynolds number, we identify the different modes using the different
wave number they are related to.
As it was explained in Chapter 4, in order to determine the wave numbers of the
modes a spatial FFT is executed on the x-component of the real part of the velocity,
ℜ(Ûx). The obtained wave number are the same previously determined (Table 5.3).

Mode Wave number α
[
rad
m

]
mode1.57 1.57080
mode2.09 2.09440
mode2.62 2.61800
mode0.88 0.87632

Table 5.3: Table containing the dominant wave numbers for the four modes denoting the
shedding phenomena. They are determined applying a spatial FFT to the signal over a line
inside the shear layer along the x direction.

It is then possible to study the evolution of each mode as the Reynolds increases
(Figure 5.4):
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Figure 5.4: Again, the influence of the Reynolds number on the eigenspectra is showed.
The four pictures represents the modes with the same wave numbers listed in Table 4.5. The
black arrows aim to put in evidence how each mode evolves with the Reynolds number. It
is possible to see how the general trend is for the frequency to slightly increase, and for the
growth rate to evidently increase as well. The hierarchy of the different modes changes: the
mode1.57 (a) is the most amplified mode at lower Reynolds, while it leaves its place to the
mode2.09 as the Reynolds reaches values of Re = 650 − 800. Moreover, mode0.88 becomes
the least stable mode at Re = 200, as it is possible to see in picture (d). In conclusion, we
can see that some modes are not present any more when the Reynolds decreases: specifically
in picture (c) note that mode2.62 disappears as the Reynolds is lower than Re = 350.

Looking at the different pictures it is possible to see how the hierarchy of the differ-
ent modes changes. In subplot (a) the mode1.57 is the most amplified/least stable
from Re = 250 to Re = 502, while going to higher Reynolds number it is possible
to see how the most amplified mode becomes mode2.09, whose evolution is well rep-
resented in subplot (b). Please note that mode2.62 (subplot (c)) is not present for
Reynolds number lower than Re = 350. In conclusion, mode0.88 become the least
stable mode when the Reynolds number reaches value around Re = 250 or lower.

From this study it is also possible to determine the critic Reynolds for this con-
figuration of the cavity. Looking at Figure 5.4 it is evident that for Reynolds lower
than Re = 250 there are not any amplified modes, so the base flow is stable. In
order to determine qualitatively the critic Reynolds Recrit it is possible to analyse
the dominant mode in the eigenspectra, which in this case is mode1.57, for the two
Reynolds numbers Re = 250 and Re = 350.
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Considering a linear evolution of the eigenvalue in the plot, it is possible to execute
a simple calculation to obtain an approximation of the Recrit, in particular, weight-
ing the contributions of the growth rates of the modes at the different Reynolds
numbers:

Recrit =
∆Re(

|ω∗
r,Re=350|

|ω∗
r,Re=250|

)
+ 1

+Re250 (5.2)

Using this technique (maintaining a certain degree of simplification), the critic
Reynolds is (Figure 5.5):

Recrit = 268.54 (5.3)

Figure 5.5: Evaluation of the critic Reynolds by weighting the growth rates of the domi-
nant mode (which is mode1.57). By considering a linear behaviour between the two values,
it is possible to define a critic Reynolds equal to Re = 268.54. This result surely is an
approximation that could be improved by executing analyses for Reynolds numbers inter-
mediate to the two adopted here.

Looking at the eigenspectra in Figure 5.3, some final observations can be made.
When a higher Reynolds number is studied, new modes appears in the spectra.
Particularly from Re = 502 to Re = 800 two new non-negligible modes are present
(Figure 5.6):
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Figure 5.6: Two different modes appear when the Reynolds number is increased towards
higher values. It is evident that the frequency of these modes changes in a greater fashion
then for the shedding modes. No further studies are executed on these two modes, but we
can suppose that they are a direct consequence of a new destabilizing phenomena.

These two different modes have a different behaviour compared to the four shedding
modes analysed before: the frequency is in fact increasing with the Reynolds num-
ber, especially the mode represented in (b). The phenomena that generates these
modes is not further investigated, but as shown in Brès and Colonius [28] we can
suppose these modes refers to centrifugal instabilities occurring in the cavity.

To complete the study about the influence of the Reynolds number on the global
modes of the cavity, the fictitious local stability analysis is performed in order to see
how the dispersion relation changes. In particular, the study is conducted on the
first four modes listed in Table 5.3. Applying again a spatial Fast Fourier Transform
on the velocity signal ℜ(Ûx) for each mode, the dominant wave number is extrapo-
lated. As expected, the wave number is the same already discovered, so we can use
this first study as a check for the results previously obtained.
Following the procedure explained in Chapter 4, as the wave number are calculated
again, it is possible to plot the dispersion relation as ω∗

r(α) and StD(α).
The two plots are represented in Figure 5.7.
Looking at the ω∗

r(α) graph, it is again evident how the hierarchy of the different
modes changes, as previously explained in details. It would be possible to extrap-
olate the critic Reynolds from this plot instead of using the same method applied
to the eigenspectra. Again we can see that we have a parabolic behaviour coherent
with bibliography (Nastro et al. [36]).
Similar comments may be done about the StD(α) graph. Please note that a generic
polynomial curve has been fitted with the values obtained. The fit curve is probably
not representative of the real behaviour of the Strouhal number, but it is important
to note that the behaviour is most certainly not linear, given that different phase
velocities are obtained for the modes and that the medium is definitely dispersive.
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Figure 5.7: The two plots represent the influence of the Reynolds number on ω∗
r (α) and

StD(α) for a fixed Mach number M = 0.6. Looking at the plot representing ω∗
r (α) it

is possible to again appreciate the changes in the hierarchy of the different modes: while
mode0.88 is dominant (it is the least amplified mode) for low Reynolds number, mode1.57
is the most influencing for intermediate Reynolds number and mode2.09 becomes the most
amplified at Re = 650− 800. From this graph the critic Reynolds can be obtained applying
the method previously shown. From the StD(α) graph, we again get the information about
the medium, clearly dispersive as the general trend is not linear. Please note that the
polynomial fit used to interpolate the results on this graph is not necessarily the real trend
of StD(α), but it is used to put in evidence the non-linear behaviour of the frequency.
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5.2 Influence of the Mach number
After the study about the Reynolds’ influence on the global modes of the cavity, as
it was said during the introduction of this chapter, the Mach number’s influence is
investigated.
As well as for the Reynolds’ influence analyses, the boundary layer momentum
thickness is let a free parameter, so we can consider again an influence of this
parameter on the results. The Reynolds number was this time fixed to Re = 502,
as in the original case also proposed by Sun et al. [11].
The fluid dynamic similarity is again introduced in order to obtain the desired non-
dimensional parameters for the flow. Basically, the fluid velocity and the dynamic
viscosity are modified to change the Mach number. A list of the adopted Mach
numbers is showed in Table 5.4.

Mach
0.3
0.4
0.5
0.6
0.7

Table 5.4: Mach numbers used for studying its influence on the development of the in-
stabilities. The interest is to define a range of Mach number vast enough to compare the
general trend of the different modes with the one suggested from bibliography.

Following what stated by Yamouni, Sipp, and Jacquin [29], Mathias and Medeiros
[37], changing the Mach number has a direct influence again on the growth rate ω∗

r ,
that sees different behaviours as the Mach increases. At lower Mach numbers, the
compressibility effects are still negligible, and the most amplified modes are con-
nected to the incompressible shear layer modes, with a destabilizing effect of the
Mach number. As we increase the Mach number, once the compressibility effect
starts acting on the boundary layer, there appears to be a stabilizing effect. As told
by Mathias and Medeiros [37], we should then see a peak in the growth rate for a
certain intermediate Mach number.
The frequency is told by Brès and Colonius [28] to not be influenced by the Mach
numbers, especially when low compressibility effects are taken into consideration.
Going towards higher values of M though, we will note a slight change in the Strouhal
number: this may be a consequence of using higher Mach numbers where the com-
pressibility effects cannot be neglected.
It was said that the boundary layer momentum thickness is not fixed to a constant
value. As a consequence, we expect it to decrease as the Mach increases: as the
compressibility effects are not negligible any more, they tend to make the bound-
ary layer thinner. The momentum thickness decreases influencing the growth rates
of the different global modes as previously described: given that ωr ∝ U

θ
, we can

suppose that there is a slight destabilizing effect of the momentum thickness on the
results.

The analyses executed changing the Mach number were realized on the first mesh
produced characterized by 127000 elements. The residuals are constantly monitored
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to verify that the mesh is suitable for the different cases.
Firstly the velocity signal Ux is analysed in the middle of the cavity (x = 3; y = 0)
to get the characteristic frequency of the shedding phenomena (Figure 5.8).

Figure 5.8: The Mach’s influence on the frequency spectrum is depicted here. As the
Mach number increases, the Strouhal number of the characteristic shedding phenomena
decreases slightly, possibly for the stabilizing effect of compressibility.

It is possible to see from the frequency spectrum that the characteristic shedding
frequency decreases as the Mach number increases. This is probably due to the
stabilizing effects of compressibility.

Once the frequencies are obtained it is again possible to apply the Selective Fre-
quency Damping technique to obtain the steady base flow. The different parameters
applied are listed in Table 5.5:

Mach Strouhal ∆ [s] χ
0.3 0.069 0.143 40
0.4 0.0643 0.114 30
0.5 0.0598 0.110 25
0.6 0.0572 0.090 20
0.7 0.0534 0.079 20

Table 5.5: In the table the different Strouhal numbers obtained from the FFT are showed
for each different Mach number. It is again possible to see how the shedding frequency
decreases as the Mach does. In the last two columns the parameters used for the SFD are
listed. As the Mach number is decreased, it is necessary to increase the gain parameter to
obtain the convergence of the residuals.
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Applying these parameters the base flows are obtained for the different configura-
tions of flow. Again the visualization of the streamlines of the velocity magnitude
U are brought to the reader’s attention in Figure 5.9.

Figure 5.9: The base flows obtained for the different Mach numbers are here showed using
the streamlines of the velocity magnitude U . Compared to the influence of the Reynolds
number on the base flow, here there are no evident differences between the cases going from
M = 0.3 to M = 0.7. Even if the increasing value of the Mach number should move the
main eddy towards the downstream edge of the cavity, here this effect is not clearly visible.
This does not mean that the increasing Mach number won’t influence the perturbation’s
dynamics, as we will see in the eigenspectra.

We would have expected the main eddy to move towards the downstream edge of
the cavity as the Mach number increases. This behaviour is not clearly visible, but
we will see that the perturbation’s dynamics still changes.
In fact, once the base flow is obtained for each configuration, it is possible to run the
stability analysis using again the Chiba difference method, so imposing τ = 1

10
·∆

which is the integration time step, and ϵ which is imposed at 10−7 as always. The
eigenspectra is then obtained for the different cases (Figure 5.10).
From the eigenspectra a few observations can be done: analysing the general trend
we can see that each mode reaches a maximum growth rate for intermediate values
of the Mach number. In particular, the dominant mode (the most unstable one)
reaches a peak value in the growth rate around M = 0.5. This behaviour is similar
to the one obtained by Mathias and Medeiros [37]. The stabilizing effect of the
compressibility tends to influence the perturbation’s dynamics approaching higher
values of the Mach number, while it is not present when the Mach is still small.
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Figure 5.10: Eigenspectra obtained running the global stability analysis using Chiba dif-
ference method on a cavity with aspect ratio L

D = 6, Re = 502 and variable Mach. Following
the evolution of each mode, it is possible to see that the maximum growth rate of the leading
modes is obtained around M = 0.5. For higher Mach numbers a stabilizing effect occurs.
This is a similar behaviour to the one obtained by Mathias and Medeiros [37].

Looking at the behaviour of each mode in Figure 5.11, we acknowledge that the
hierarchy remains unvaried between the different cases. There is a single exception
which is the most amplified mode: the dominant mode in the range from M = 0.3
to M = 0.6 becomes the second dominant mode at M = 0.7.
The general trend is the same for each one of the four mode studied: going from
M = 0.3 to M = 0.5 the growth rate increases resulting in a destabilizing effect,
while for higher Mach numbers this behaviour reverses. This trend is similar to the
one showed by Mathias and Medeiros [37].

91



Influence of the Reynolds and Mach numbers

Figure 5.11: The figure depicts the behaviour of the four modes given by the shedding
phenomena at different Mach numbers. Please note that the hierarchy of the different modes
remains the same apart from the most amplified mode: while it is the most amplified for
Mach going from M = 0.3 to M = 0.6, it becomes the second dominant one at M = 0.7.
The other modes maintain the same hierarchy for all the different Mach that were studied.
In general we can see how the behaviour changes increasing the Mach number: as from
M = 0.3 to M = 0.5 the growth rate increases carrying a destabilizing effect, the trend
reverses after M = 0.5 is reached. This behaviour is similar to the one obtained by Mathias
and Medeiros [37] for an open cavity flow.

In order to be sure that the different modes are always related to the shedding phe-
nomena and not to the acoustic resonance, the contours of the real part of Ûx

u∞
are

showed in the range [−0.008, 0.008] (Figure 5.12).
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Influence of the Reynolds and Mach numbers

Figure 5.12: Visualization of the eigenmodes at M = 0.4 showed as contours of the
real part of Ûx

u∞
. In particular, Ûx

u∞
∈ [−0.008, 0.008]. From (a) to (d) the different

modes are depicted from the most amplified to the least. The representation is found to be
similar for the other cases at different Mach. From this visualizations, similar to the ones
showed under the Reynolds influence, we can assume that the shedding phenomena is the
one responsible for the flow instability.
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Chapter 6

Conclusions

A modal, global stability analysis has been conducted on a 2D open cavity with
aspect ratio L

D
= 6 under different conditions (specifically changing the Reynolds

and Mach numbers) and applying different numerical methods.
The study carries out different results that are coherent with bibliography.
First, a cavity at Re = 502 and M = 0.6 has been studied in order to compare the
results with the paper written by Sun et al. [11]. The same domain used in the article
is recreated here to compare the results; a DNS using compressible Navier-Stokes
equations is run to determine the frequency of the shedding phenomena develop-
ing inside the shear layer of the cavity; applying the Selective Frequency Damping
method, the base flow is obtained; the perturbations are applied in form of numerical
round-off errors in the boundary layer of the base flow. The eigenspectrum that is
obtained shows a great similarity to the one presented in [11]. It is also possible to
execute a fictitious local analysis in order to determine the dominant wave numbers
of the amplified modes and to obtain their phase velocities.
The same analysis is executed changing the Re and M numbers to consider their
influence on the base flow stability. Once again the results obtained show coherence
with bibliography. By changing the Reynolds number from lower to higher val-
ues, the growth rates of the most amplified (least damped) eigenmodes increase, as
showed in Brès and Colonius [28]. It is also possible to determine the critic Reynolds
for this cavity geometry, that is found to be equal to Recrit = 268.54 considering the
cavity depth and freestream velocity as characteristic length and speed respectively.
By changing the Mach number, a similar trend to the one obtained by Mathias and
Medeiros [37], Yamouni, Sipp, and Jacquin [29] and Sun et al. [26] is obtained. As
the Mach goes from low to high values, we first see a destabilizing effect of com-
pressibility that tends to stabilize again the flow approaching the transonic regime.

A future development of this study would be to increase the Reynolds number
approaching turbulent flows, and developing stability analysis on a system stud-
ied using the RANS equations. Furthermore, it would be useful to determine a
map of critic Reynolds and Mach numbers for different Mach and Reynolds number
respectively.
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