
Politecnico di Torino

Master’s Degree in Aerospace Engineering

A.Y. 2024/2025

Graduation Session July 2025

Integrating Data-Driven and
Model-Based Systems Engineering

for End-to-End Small-Satellite
Design

Academic Supervisors:
Prof. Fabrizio Stesina
Prof. Sabrina Corpino
PhD(c). Serena Campioli

Candidate:
Carlotta Deiana

Summary

The aerospace industry is currently experiencing a significant transition towards
the digitalisation of spacecraft development processes. This shift presents sev-
eral challenges, including technical limitations in data exchange systems and the
increasing complexity of space systems. Over the years, a variety of System En-
gineering (SE) approaches have been adopted with the objective of managing
information as it passes between engineering teams, ensuring consistent design data
across different projects and activities, and reducing mission costs and development
times. The most relevant of these approaches are Data-Driven Systems Engineering
(DDSE) and Model-Based Systems Engineering (MBSE). The DDSE centralises
and integrates all space mission engineering data, creating a single source of truth
for rapid and collaborative decision-making and enabling faster automation and
iteration. The MBSE employs a model-centric approach to the design of complex
space systems, promoting a coherent understanding and early validation of mission
architectures.

To address the challenges currently being experienced in the aerospace industry, the
design of small satellites requires a methodology that is more agile than traditional
approaches. Moreover, a single modelling tool is often inadequate. This thesis
proposes an integration of the Data-Driven System Engineering (DDSE) and Model-
Based System Engineering (MBSE) methodologies with the aim of enhancing and
facilitating the preliminary small satellite design development. To achieve this
objective, two complementary tools have been selected: Valispace, a DDSE tool
that provides a user-friendly digital environment for engineering data, ensuring the
integrity of data while encouraging real-time collaboration; Capella, an MBSE tool
that implements the ARCADIA method to create, visualize and simulate the mod-
els of the systems, improving the comprehension of the project even at an early stage.

The integrated approach is based on the combination of these two methodologies,
thereby ensuring a more comprehensive and clear understanding of the space system

ii

being modelled, and achieving a more efficient and dynamic management of all data.
This, in turn, allows for the maintenance of a single source of truth, guaranteeing
the continuity of information between the two tools and fostering the collaboration
between engineering teams and stakeholders. The present thesis illustrates the
methodology, the integration of the tools and the results from a small-satellite case
study. It demonstrates how the combination of DDSE and MBSE has optimised the
design development process, thereby ensuring a more agile solution that mitigates
risks and improves decision-making processes.

iii

Table of Contents

List of Figures viii

List of Tables xi

List of abbreviations xii

Introduction 1

1 State of Art 3

1.1 Systems Engineering . 3

1.2 Data-Driven Systems Engineering 5

1.3 Model-Based Systems Engineering 8

1.3.1 Methodologies . 10

1.3.2 Modelling languages . 13

2 Systems Engineering Tools 15

2.1 Valispace . 17

2.2 Capella . 20

3 Valispace-Capella Integration 27

3.1 DDSE-MBSE approach . 27

3.2 Integration . 30

v

Stakeholders Needs Analysis 32

System Analysis . 32

System Design . 33

Subsystems Design . 34

3.3 Python for Capella . 34

Export_SF_MO.py . 36

Export_System_Actor.py 36

Export_Logical_Component.py 36

Export_modes.py . 37

3.4 Valispace Python API . 37

Import_Requirements.py . 37

Import_System_Components.py 38

Import_LC_Hierarchy.py 38

Components_bridge.py . 38

Import_All_Modelists.py . 39

4 Case study 40

4.1 Mission Overview . 40

4.2 Stakeholders Needs Analysis . 42

4.3 System Analysis . 49

4.4 System Design . 59

4.5 Subsystem Design . 69

Conclusions 72

A Python for Capella scripts 75

A.1 Export_SF_MO.py . 75

A.2 Export_System_Actor.py . 78

A.3 Export_Logical_Component.py . 79

vi

A.4 Export_modes.py . 81

B Valispace Python API scripts 83

B.1 Import_Requirements.py . 83

B.2 Import_System_Components.py . 85

B.3 Import_LC_Hierarchy.py . 86

B.4 Components_bridge.py . 88

B.5 Import_All_Modelists.py . 95

C Capella diagrams 97

Bibliography 102

vii

List of Figures

1.1 The engineering data pyramid [5]. 7

1.2 The PMTE Elements and Effects of Technology and People. [3] . . 11

2.1 Valispace V-model [18]. 18

2.2 Valispace overview. 19

2.3 The main engineering levels of the Architecture Analysis & Design
Integrated Approach (ARCADIA) Method [17]. 21

3.1 Tools integration process. 31

3.2 Python for Capella architecture [22]. 35

4.1 Operation Capabilities Blank (OCB) Operational Capabilities . . . 44

4.2 Operational Activity Interaction Blank (OAIB) Mission Lifecycle . . 45

4.3 OAIB [Scientific Obj] Urban Heat Island (UHI) effect mapping and
detection . 45

4.4 OAIB [Technological Obj] Deep space technologies validation in Low
Earth Orbit (LEO) . 46

4.5 Operational Architecture Blank (OAB) Operational Entities 47

4.6 Operational Scenario (OES) Mission Lifecycle 48

4.7 Context System Actors (CSA) System 50

4.8 System Components imported from Capella to Valispace. 51

4.9 Mission and Capabilities Blank (MCB) Mission and Capabilities
Blank diagram . 52

viii

4.10 System Functions Breakdown Diagram (SFBD) To maintain system
operability . 52

4.11 SFBD To satisfy mission objectives 53

4.12 Mission Requirements imported from Capella to Valispace. 54

4.13 System Data Flow Blank (SDFB) To reach the operational orbit . . 55

4.14 SDFB Data flow . 55

4.15 ConOps visual. 56

4.16 System Architecture Blank (SAB) Structure 57

4.17 SAB Operative phase . 58

4.18 Logical Functions Breakdown Diagrams (LFBD) To satisfy mission
objectives . 60

4.19 LFBD To maintain system operability 61

4.20 Logical Component Breakdown Diagram (LCBD) Space Segment . 62

4.21 Logical Component imported from Capella to Valispace. 63

4.22 Component_bridge.py output in console when Thermal Control
System (TCS) component is missing in Valispace. 63

4.23 Logical Architecture Blank (LAB) Structure 64

4.24 Modes and State Diagrams (MSM) Operative modes 66

4.25 Operative modes imported into Valispace from Capella 67

4.26 "Power" property associated with Attitude and Orbit Contro Sys-
tem (AOCS)&Guidance, Navigation and Control (GNC) component,
depending on the operative modes. 68

4.27 Power budget estimation on Valispace for In-orbit check-out mode. 68

4.28 Physical Architecture Blank (PAB) Structure Electrical Power Sys-
tem (EPS) . 70

4.29 Battery trade-off on Valispace. [32] [33] 71

C.1 SFBD To position the system . 97

C.2 SFBD To perform ground operations 97

C.3 SFBD To implement disposal operations 97

ix

C.4 SAB Integration & Testing (I&T) 98

C.5 SAB Launch and Early Orbit Phase (LEOP) 99

C.6 SAB End Of Life (EOL) . 100

C.7 Mass budget estimation on Valispace. 101

C.8 Volume budget estimation on Valispace. 101

x

List of Tables

1.1 Strenghts and weaknesses of Data-Driven Systems Engineering (DDSE) 7

1.2 Strenghts and weaknesses of Model-Based Systems Engineering
(MBSE) . 10

2.1 Overview of types of diagrams available in Capella [17]. 24

3.1 DDSE and MBSE integration. 28

3.2 Valispace and Capella capabilities [20]. 29

4.1 High Level Requirements and Drivers 41

4.2 Operational Analysis terminology [19]. 42

4.3 System Analysis terminology [19]. 49

4.4 Logical Architecture terminology [19]. 59

4.5 Physical Architecture terminology [19]. 69

xi

List of the abbreviations

AIV/T Assembly, Integration, Verification and Testing

AOCS Attitude and Orbit Contro System

ARCADIA Architecture Analysis & Design Integrated Approach

API Application Programming Interface

AutomationML Automation Modeling Language

CAM Collision Avoidance Manoeuvre

ConOps Concept of Operations

COTS Commercial-Off-The-Shelf

CRUD Create-Read-Update-Delete

CSA Context System Actors

DDSE Data-Driven Systems Engineering

DSL Domain-Specific Language

xii

EO Earth Observation

EOL End Of Life

EPBS End Product Breakdown Structure

EPS Electrical Power System

ESA European Space Agency

FDIR Failure Detection, Isolation and Recovery

GNC Guidance, Navigation and Control

HTTP Hypertext Transfer Protocol

ID Identification

IDE Integrated Development Environment

IML Interdisciplinary Modeling Language

INCOSE International Council on Systems Engineering

IVVQ Integration, Verification, Validation, and Qualification

I&T Integration & Testing

JPL Jet Propulsion Laboratory

LAB Logical Architecture Blank

xiii

LCBD Logical Component Breakdown Diagram

LEO Low Earth Orbit

LEOP Launch and Early Orbit Phase

LFBD Logical Functions Breakdown Diagrams

LST Land Surface Temperature

MBSE Model-Based Systems Engineering

MCB Mission and Capabilities Blank

MCC Mission Control Center

MDD Model-Driven Development

MDS Model-Driven System

MNDWI Modified Normalised Difference Water Index

MSM Modes and State Diagrams

NDBI Normalised Difference Built-up Index

NDVI Normalised Difference Vegetation Index

OA Operationa Analysis

OAB Operational Architecture Blank

xiv

OAIB Operational Activity Interaction Blank

OCB Operation Capabilities Blank

OES Operational Scenario

OOSEM Object-Oriented Systems Engineering Methodology

OPD Object-Process Diagram

OPL Object-Process Language

OPM Object-Process Methodology

PAB Physical Architecture Blank

PCDU Power Control and Distribution Unit

PCU Power Control Unit

PDU Power Distribution Unit

PI Principal Investigator

REST Representational State Transfer

RUP Rational Unified Process

RUP-SE Rational Unified Process for System Engineering

s/c Spacecraft

xv

SA System Analysis

SAB System Architecture Blank

SDFB System Data Flow Blank

SDL System Definition Language

SE Systems Engineering

SFBD System Functions Breakdown Diagram

SYSMOD Systems Modeling Process

SoI System of Interest

SoW Statement of Work

SQL Structured Query Language

SysML Systems Modeling Language

TCS Thermal Control System

TRL Technology Readiness Level

UHI Urban Heat Island

UML Unified Modeling Language

VPMS ViewPoint Modes and States

xvi

Introduction

The present thesis is contextualised within the field of Systems Engineering (SE),
with a specific focus on the methodologies employed in the aerospace industry for
small satellite missions.
Among these methodologies, the ones that have emerged most recently are DDSE
and MBSE. The DDSE approach promises centralised management of quantitative
and qualitative engineering data, ensuring consistency throughout the entire prod-
uct life cycle. In contrast, MBSE adopts a model-centric approach to modelling
system architecture and functionalities, guided by the ARCADIA method.
However, a more exhaustive methodology is required, capable of combining the
strengths of both approaches with the aim of enhancing the design process of small
satellites. To achieve this objective, two tools have been selected: Valispace and
Capella, which represent the DDSE and MBSE methodologies, respectively.
The proposed solution in this thesis is based on the exploitation of the advantages
of each approach shown in each respective tool, whilst simultaneously covering each
other’s weaknesses through the integration of them. The developed integration acts
as a bridge between the two environments, with the objective of facilitating the
transfer of information between them while ensuring the retention of a single source
of truth. Consequently, each tool will be responsible for managing the project
activities for which it is optimally suited, whilst also acquiring information from
the other tools in order to ensure a consistent and constantly updated workflow.
The execution of this process is supported by the utilisation of the Application
Programming Interface (API) of the two software programs.

In summary, the thesis deals with the integration of these two methodologies
for the development of a small satellite mission and is structured as follows.
The initial chapter presents a thorough overview of the thesis’s background, delv-
ing into the domain of SE, with a particular emphasis on the two methodologies
employed: DDSE and MBSE.
The second chapter conducts a meticulous investigation into the tools that have
been selected, Valispace and Capella, including a detailed examination of their

1

Introduction

potentialities, strengths and weaknesses.
The third chapter of this work of thesis focuses on the proposed solution, the inte-
gration between the two tools, and provides a detailed explanation of its application
in the early stages of the mission, with a particular focus on the Python codes that
made it possible.
The fourth chapter presents a case study, consisting in a small satellite mission,
called GeoProfundo, with dual objectives: the emulation of an interplanetary
environment and Earth observation.
Finally, a concise section on conclusions summarises the outcomes of this work and
provides a prospectus for future research related to the present thesis.

2

Chapter 1

State of Art

1.1 Systems Engineering
The SE multi-disciplinary and methodical [1] approach is described by the
International Council on Systems Engineering (INCOSE) as "a means to enable
the realization of successful systems” and “focuses on defining customer needs and
required functionality early in the development cycle, documenting requirements,
then proceeding with design synthesis and system validation while considering the
complete problem" [2]. SE can be defined as the art of developing a functioning
system capable of both satisfying requirements and observing the constraints
imposed on it. Its objective is to enhance the project as a whole, balancing
operational, technical, economic, and logistical factors, and producing a product
that is not dominated by the perspective of a single discipline. It is a holistic
and integrative discipline in which engineers with different backgrounds work in
collaboration to produce a coherent outcome [1] [3].

Indeed, a system can be defined as a collection of different elements that,
when considered as a whole, produce results that would not be obtainable by
the elements alone. The elements may involve hardware, software, equipment,
facilities, personnel, and procedures that are necessary for the purpose in question.
In summary, these are all the elements that are indispensable for the generation of
system-level results. The quality of the system is primarily determined by the
interaction and interconnection among its parts, with the aim of improving global
system performance. [1]

SE is a "logical way of thinking" [1], a unique way of viewing reality, with
the capacity to increase awareness of the entire system and the way in which

3

State of Art

its components interact. The SE process is characterised by an iterative
methodology, which supports discovery, learning and continuous improvement. It
combines technical and management processes, both of which depend on effective
decision-making. [1]

In the contemporary era of SE, it is crucial to address several pivotal challenges.
Firstly, handling complexity is of primary importance, given that current
products are complex systems composed of subsystems, components, and parts,
frequently equipped with smart functionalities and communication capabilities.
Conventional tools are no longer sufficient to manage the increasing complexity of
systems. [4]
Secondly, it is essential to ensure traceability across the entire life cycle. In the
event of inadequate traceability during the development of products, costs for the
manufacturer can increase rapidly.
Furthermore, model creation, digitalisation, reusability, and automatic
documentation [4] are vital aspects. In order to ensure that users and operators
are fully informed about system operation, maintenance, and even failures, it is
necessary to produce comprehensive documentation that is both complete and
exhaustive. This approach serves to reinforce the manufacturer’s expertise and
provides a framework for enhanced user support. In contrast to static documents,
models offer significant advantages in terms of reusability, sharing, and storage for
automated documentation production.
Finally, SE aims to reduce system development costs, human mistakes,
and late re-engineering activities [4]. The growing prevalence of SE within
the industrial sector can be attributed to its efficacy in managing multidisciplinary
engineering projects.

As demonstrated in the literature [4], there are four key areas of interest
in SE: (i) the methodology, based on digital models, which are easily shared
within a community of users and stored by a data management system; (ii)
the tools, encompassing both theoretical tools, which include several typical
diagrams and certain engineering methods, and software that provides a digital
and virtual environment managed by a standard language; (iii) the language,
establishing a common terminology or a tool that is easily understood and
applied by all developers is necessary for promoting efficient cooperation; (iv) the
data management, that requires a common environment with authorised user
access, including hardware and software. The platform enables interoperability,
automatically transferring data without user intervention.

The fundamental principles of SE have been delineated. It is evident that
this field is undergoing a constant evolution to address increasingly exigent

4

State of Art

challenges, especially those driven by the growing complexity of systems and the
necessity for enhanced integration between the physical and digital domains. In
this context, two modern methodologies are transforming the approach to SE:
DDSE and MBSE. These two concepts will be analysed more in detail in the
following sections.

1.2 Data-Driven Systems Engineering
DDSE is a "methodology where engineering data and associated structure, links and
connections constitute the foundation of the systems engineering process" [5]. The
DDSE is founded on the principle of data collection in a unified database, with
concurrent access for all engineers engaged in the project. The main objective
is the establishment of a centralised location for data management, which is
constantly updated and monitored. This database must have the capacity to
immediately detect and respond to changes while also maintaining a comprehensive
overview of the relationships between values. [5]

While document-centric approaches involve the creation of documents to
report on the current state at the conclusion of each development phase, DDSE
focuses on working with data from a single source of truth. The concept of
a single source of truth implies that all data points are created, utilised and
stored within a unified database. The engineers benefit from total oversight of
the project data and its latest changes, facilitating the ability to make optimal
decisions and trade-offs with all the relevant information in real time. While
the document-centric approach has historically been an adopted methodology in
engineering activities, a data-driven approach offers the potential to minimise
inconsistencies in engineering data and the time expended on document updates
and information acquisition. [6]

The majority of companies in the space industry continue to utilise a
document-driven approach to engineering. In traditional SE, the outcome of each
design stage is a set of documents that outline deliverables of the activity that
serve as input for the succeeding stage in the development process. The documents
are then often subjected to further modifications, which serve to increase the level
of design of the product. This process can introduce further dependencies and
technical changes, which, in turn, may result in document inconsistencies. The
necessity for accurate and effective data management is increasing significantly,
and the DDSE allows for this consistency. [5]

The DDSE approach offers a wide range of benefits. The creation of a

5

State of Art

consistent database of connected engineering values is of crucial importance,
not only for DDSE, but also for SE as a whole. This leads to the establishment
of accurate assumptions and analyses at the early stages of the project. The
identification of discrepancies during the latter stages of a project can indeed
be a costly and time-consuming process, often necessitating additional expenses
and rework. Furthermore, it is crucial that engineering values are interconnected
through the utilisation of formulas or simulations, thereby facilitating automatic
propagation that ensures consistency throughout the entire development life cycle.
Another feature pertains to automation. The use of scripts to execute manual
operations has been demonstrated to enhance efficiency and to reduce the
probability of errors. APIs support the integration of tools and the exchange of
data, thereby establishing connections between different disciplines and areas of
research.
In the context of traceability and transparency, DDSE exhibits multi-user
functionality and facilitates clear interconnections between data and users, thereby
transforming data into a dynamic entity. Traceability is the ability to identify the
value derived at any moment by anyone on a project.
In conclusion, DDSE facilitates the implementation of optimisation processes,
thereby empowering engineers to exploit the modelled relationships and enable the
automatic derivation of optimised versions of the project. [5]

However, this methodology has also its limitations. Incomplete or incor-
rect data can compromise design choices. It is evident that any analysis or model
that is constructed on the basis of these elements will inevitably produce incorrect
results and lead to erroneous decisions. Moreover, the significant reliance on data
leads to increased costs. The implementation of a DDSE infrastructure necessitates
a substantial initial investment, in addition to continuous maintenance expenses.
Data privacy and security represent another key concern. Complex systems
frequently manage sensitive and private data and are thus required to comply with
regulations.
Finally, it is important to highlight the DDSE’s capacity to generate large volumes
of data, as this can delay decision-making and project organisation, thus increasing
development costs and times.
The following table 1.1 provides a summary of the advantages and disadvantages
of this methodology.

6

State of Art

Table 1.1: Strenghts and weaknesses of DDSE

DDSE features

Strenghts Weaknesses

Consistent database of engineering data Critical dependence on data
Automation through APIs High costs on infrastructure

Traceability and transparency Data privacy and security
Constant project optimization Slow decision-making process
Expert personnel not required

In order to implement DDSE, it is first necessary to establish an infrastructure
that permits simple instrumentation and data access for all relevant stakeholders.
The processes of data collection and storage are at the foundation of an engineering
data management system, as shown in figure 1.1.

Figure 1.1: The engineering data pyramid [5].

In the domain of engineering data management, the "hierarchy of data needs" states
that certain fundamental elements of data storage and structure are prerequisites
for the effective execution of data analytics, optimisation algorithms and machine
learning. For this reason, after the data collection into a unified database, the
subsequent stage of the process involves the integration of a structured framework
within the data. In order to facilitate clear communication and analysis, values are
structured using a simple data model, thus enhancing collaboration and greater

7

State of Art

transparency. Finally, the levels at the top of the pyramid allow advanced explo-
ration, powerful data analytics and automation. [5]
In order to fully embrace a data-driven approach, it is important to establish con-
nections between tools and systems across various disciplines through the utilisation
of open APIs. The assurance of consistency in the final design of a space project is
dependent on the effective exchange of data between various engineering tasks and
their corresponding tools during the design phases. [5]

1.3 Model-Based Systems Engineering
Nowadays, the increasing complexity of systems has led to the evolution of
concepts and to the research of innovative approaches to implement SE. MBSE has
emerged as a strong methodology to support the management of complexity, the
maintenance of consistency, and to assure traceability during system development.
It is a SE approach defined by the INCOSE as "the formalized application of
modeling to support system requirements, design, analysis, verification and
validation activities beginning in the conceptual design phase and continuing
throughout development and later life cycle phases" [2].
The MBSE methodology is a collection of processes, methods and tools, both
theoretical and software, that support the discipline of SE within a "model-based"
context. Models are considered the fundamental technical baseline for a project,
with the purpose of supporting and facilitating the performance of the systems
engineering tasks throughout the system’s life cycle. These models, which can be
physical, mathematical, or otherwise logical representations of a system, entity,
phenomenon or process, are utilised from requirements and analysis definition,
through design and implementation, and finally to the verification of the system.
A model is not merely a collection of representations, but an integrated repository
of the project’s knowledge. [7] [8]

MBSE stands as a pillar of the digital transformation in SE. It provides
a "more holistic, collaborative, and efficient approach" [9] to develop complex
systems. In the document-based method, system information and specifications
are primarily generated as documents. The huge number of documents often leads
to significant management and updating challenges. It becomes crucial to prevent
different team members from simultaneously working on conflicting versions of the
same document, thereby mitigating communication issues. Model-Based Systems
Engineering, in contrast, formalizes systems engineering practices, utilizing
coherent digital system and engineering domain models as the primary means of
exchanging information, feedback, and requirements. [9]

8

State of Art

This approach has been demonstrated to offer significant advantages. These
include an increased productivity through the reuse of existing models and
automated generation of documentation, thus reducing both time and costs.
Furthermore, this approach enhances communication, thereby optimising the
exchange of information and establishing a common language not only among
engineers from diverse backgrounds, but also between designers and clients.
In addition, the methodology improves the quality of the system through the
establishment of a unique, authoritative system model that supports rigorous
requirements traceability, enhanced system design integrity and consistent
documentation.
MBSE also offers a significant improvement in complexity management,
facilitating the effective handling of intricate systems by decomposing them into
more manageable components. This, in turn, enables the effective mitigation of
risk.
It is finally characterised by its ability to facilitate early defect detection,
thereby minimising inconsistencies and errors, to achieve a more robust and
reliable final product. The validation of requirements through design verification
serves to increase reliability and reduce risks. [10] [11]

Nevertheless, this approach has its drawbacks. Initially, the adoption of
this approach is not an immediate, but rather a gradual process, that necessitates
substantial change and training for the team. This involves the acquisition of
new instruments and the assimilation of novel modelling languages. It is not
unexpected that teams familiarised with more user-friendly, document-based
methods may be resistant to such a transition.
Financially, MBSE requires an initial investment to procure the necessary tools for
implementation and to support personnel training. Beyond the immediate costs,
lack of standardisation presents another issue. As will be demonstrated in the
following sections, although international standards do exist, their implementation
can vary depending on the tools adopted, leading to inconsistencies.
Finally, integrating MBSE with traditional methodologies can be quite difficult,
especially when it comes to converting existing documentation into detailed models.
The following table 1.2 provides a summary of the advantages and disadvantages
of this methodology.

9

State of Art

Table 1.2: Strenghts and weaknesses of MBSE

MBSE features

Strenghts Weaknesses

Increased productivity Steep learning curve
Enhanced communication Initial high costs

Improved quality Lack of standardisation
Complexity management Complexity in system migration

Early defect detection

The following sections will delve more deeply into the principles of MBSE, a
methodology that, in comparison with DDSE, has been extensively described in the
literature. Firstly, the MBSE methodologies currently employed in the industrial
sector will be presented, followed by a subsequent section dedicated to the languages
employed.

1.3.1 Methodologies

According to J. A. Estefan in [7], the word methodology can be defined as a col-
lection of related processes, methods and tools. A process is a logical sequence
of tasks designed to achieve a specific objective. It outlines "WHAT" needs to be
done, without clarifying "HOW" each task is executed. Processes are structured in
layers, allowing for analysis and definition at various levels. A method provides the
techniques for performing a task; it defines the "HOW" for each task. Every task
within a process is executed using methods. A tool is an instrument that enhances
the efficiency of a task when applied correctly to a specific method. Its primary
purpose is to make performing the "HOWs" easier. In systems engineering, most
tools are software-based, allowing creating models using appropriate languages.
Tools should also integrate with each other to ensure completeness, correctness and
consistency across the project.
There is also the environment, defined as the surrounding circumstances, external
objects, conditions, or factors that impact the actions of an object or an entity.
These conditions may be categorised as social, cultural, personal, physical, organi-
sational, or functional. In the context of a project, the environment is designed to
facilitate the effective integration and support of its tools and methods. [7]

10

State of Art

Figure 1.2: The PMTE Elements and Effects of Technology and People. [3]

As can be seen in the figure 1.2, when selecting the right mix of Processes, Methods,
Tools and Environment (PMTE) elements, both the capabilities and limitations of
the technology and the knowledge, skills and abilities of the people are included.

As already mentioned in the previous section, MBSE is about elevating
models in the engineering process to a central and governing role in the
specification, design, integration, validation, and operation of a system. A variety
of models exist to represent the different aspects and types of a system: from
models that, in the early life cycle of a system, define different mission and system
concepts, to models that support system design solutions. But also models that
support the integration of software and hardware components, together with
system verification, can be implemented. [7]
Several approaches have been developed in recent years to support MBSE and to
implement it. A summary of the leading MBSE methodologies, as detailed in the
Handbook [4], is presented below.

INCOSE Object-Oriented Systems Engineering Methodology (OOSEM)
It has been developed by the INCOSE since 1998. It can be defined as a "scenario-
driven approach" [4], integrating the process in a fully object-oriented context
within the model-based approach. A fundamental aspect of the methodology
is the delineation of the system’s objectives, mission, and operational scenarios.
The V-diagram is the most suitable model for the implementation of the product
life cycle. It adopts the Systems Modeling Language (SysML) language for the
specification, analysis, design and verification of the system.

11

State of Art

The IBM Rational Telelogic Harmony-SE The process is based on the
“V” life cycle model, using an iterative workflow through the three phases of
requirements analysis, system functional analysis, and design synthesis. It supports
the Model-Driven Development (MDD) approach, where the model is the central
work product, based on the SysML structure diagrams. However, IBM provides
support for Harmony within the IBM Rational tools packages.

The IBM Rational Unified Process for System Engineering (RUP-SE) It
enhances the Rational Unified Process Rational Unified Process (RUP) of concurrent
design and iterative development for Model-Driven System (MDS) through the
utilisation of the spiral model and object-oriented principles. The approach employs
business modelling, the first discipline of iterative tasks, to ensure the system’s
conformity to business activities. The product is characterised by the presence
of either a series or a single product with multiple versions. It is also defined by
market permanence and service.

The Vitech Model-Based System Engineering This approach involves
Vitech’s CORE® environment as a system design repository, connecting stakehold-
ers, source requirements, behaviour and architecture domains, and verification and
validation. The approach is founded on a model of product development, the Onion
Model, composed of layers that enable users to progress from the source documents
of the customer to the final specifications. The language employed for technical
communication is the System Definition Language (SDL), which is predicated on
relationships, entities and attributes.

The Jet Propulsion Laboratory (JPL) State Analysis (SA) The JPL has
established a methodology for defining model- and state-based control architecture.
The states delineate the conditions that the system attains as it evolves over time,
while the models specify the evolution of the system states themselves. This method
supports the evolution of the system model during the project life cycle, through an
iterative modelling process and the state analysis information, which are collected
in a Structured Query Language (SQL) database.

The Object-Process Methodology (OPM) It is a "holistic system paradigm"
[4] based on objects, defined as entities which simply exist, and processes, which
are described as transformation patterns applied to the objects. The methodology
delineates the system development, life cycle support, and evolution through three
stages: requirement specification, analysis and development, and implementation.
The OPM integrates the Object-Process Language (OPL) (process-oriented ap-
proach) with the Object-Process Diagram (OPD) graphic model (object-oriented
approach), supported by the OPCAT software environment.

12

State of Art

The ARCADIA Method It is a model-based engineering methodology for
systems, hardware and software architecture design, which has been created by
Thales between 2005 and 2010. It is recommended that three mandatory interrelated
activities are implemented: Need Analysis and Modelling, Architecture Building
and Validation, and Requirements Engineering. The ARCADIA is supported by
a standard modelling tool (the Melody Advance/Capella) that depends on the
Unified Modeling Language (UML) and SysML languages.

The Systems Modeling Process (SYSMOD) It is a user-oriented methodol-
ogy for requirements engineering and system architectures. It involves stakeholders
analysis, requirements and system context definition, requirements analysis, domain
model definition, and system architecture definition by levels (functional, logical,
physical). It relies on the SysML modelling language.

1.3.2 Modelling languages
In the SE context, while numerical modeling can rely on a solid mathematical
apparatus, functional modeling has long suffered from a lack of suitable tools.
Fortunately, the development of meta-models based on intuitive graphical
languages has filled this gap, allowing designers to communicate effectively with
users through the functional model. This summary will explore the main languages
used in SE, with a particular focus on UML and SysML.

In the domain of software engineering, the design by objects was effec-
tively supported by the UML language, which was subsequently elaborated,
enhanced and adapted to the system design as the SysML. UML’s primary
objective was to create a language that did not rely on mathematics, but on
standard diagrams and modeling elements with defined rules and semantics. It
allows for a clear description of activities, architecture, operational rules, and
interactions (even with the user) through a graphical meta-model.

The adaptation of UML to more general and complex systems led to the
birth of SysML. Developed starting in 2001, with significant contributions from
INCOSE, SysML is a true customization of UML for systems engineering. It
distinguishes itself from UML by introducing modeling blocks instead of classes
and robustly supports the modeling of requirements, structure, behavior, and
parameters of a system, its components, and its environment. It’s fundamental for
the MBSE, as it permits key concepts to be visualized through simple effective
diagrams. Each block serves as the basic structural unit of the model, representing
a system element. [4]
SysML is structured into four main types of diagrams: (i) requirements diagrams,

13

State of Art

specifically introduced in SysML to link the system model to the preliminary
elicitation of requirements, a crucial aspect of systems engineering; (ii) structure
diagrams, which describe the composition of the system, its components, and
their relationships; (iii) behavior diagrams, which illustrate dynamic interac-
tions, activities, and flows within the system; (iv) parametric diagrams that
represent a significant innovation, enabling the quantitative modeling of sys-
tem behavior and architecture, essential for numerical simulations and optimization.

More recently, new updates and evolutions of those languages are proposed to
more properly fit some specific applications and domains. A lack of entities in the
original UML and SysML has been identified, particularly in sectors like industrial
engineering. This has led to the research and development of new generations
of communication and modeling tools, such as the Interdisciplinary Modeling
Language (IML) or the Automation Modeling Language (AutomationML). Their
main goal is not specifically the SE, but their focus is predominantly on the
technical domains in which they are currently engaged. In summary, while SysML
remains a prevalent tool for SE due to its robustness and versatility, the emergence
of new languages and ongoing research indicates a field in constant evolution,
requiring increasingly specific and powerful tools to address the growing complexity
of modern systems. [4]

14

Chapter 2

Systems Engineering Tools

The present chapter is dedicated to the analysis of tools suitable for implementing
SE, which are a fundamental part of the present thesis project. As mentioned
in the previous chapter, the implementation of SE necessitates the utilisation of
software tools for the collection of requirements and the realisation of the modelling
activity delineated in [4].
Firstly, an introductory overview of the most significant SE tools currently
available on the market is presented. Subsequently, the focus is directed towards a
detailed exposition of two environments selected for the purpose of integration.

The following list outlines some of the most relevant software programs.

IBM Rational DOORS - Rhapsody The IMB Corporation has designed IMB
Rhapsody to work together with DOORS to track and manage design requirements
throughout the project’s life cycle and to enable navigation between design and
requirements. DOORS is currently used for the requirements elicitation, while
Rhapsody implements the typical tools of the SysML language, performing system
specification and modeling. The interface works by sharing information between
the Rhapsody model and the DOORS database. [4][12]

Cameo System Modeler Dassault Systemes has developed an industrial MBSE
environment which provides tools for the creation of SysML models and diagrams.
The software supports the analysis of the design, the requirements verification, and
the decision-making process, while preserving model consistency and monitoring
design progress. Its key benefits are: requirements management, traceability among
different levels of the project, reports customisation, resolution of parametric
models, development and configuration management. [13]

15

Systems Engineering Tools

System Composer It is an MBSE tool, developed by MathWorks, for the
purpose of defining, analysing, and simulating system and software architectures.
It deeply integrates with the MathWorks ecosystem, including Simulink for detailed
behavioral modeling, simulation, and design validation using various diagrams
and models, Embedded Coder for direct code generation from software, and
Requirements Toolbox for requirement allocation and traceability. It offers robust
analysis capabilities for trade studies and comprehensive documentation generation.
[14]

Papyrus It is an industrial-grade open source MBSE tool that offers support for
both SysML and UML languages. It has notably been used in industrial projects
and is the base platform for several industrial modeling tools. It enables engineers
to create complex models of systems and to support the entire modelling life
cycle, from requirements specification and architecture definition to analysis and
simulation via additional plugins, ensuring data traceability during the project.
[15]

Valispace The DDSE web-based platform is utilised by engineers for the creation
of logical models of a product, in addition to the management of requirements,
technical parameters, and design modifications. Technical properties are stored
in a single database, with formulas connecting them. It allows engineers from
different disciplines and external stakeholders to work simultaneously on a project.
Moreover, the single database provides consistency throughout all project phases.
It easily integrates with other engineering tools through an API, thus facilitating
the tracking of relationships that are situated outside the tool itself. [16]

Capella It is a comprehensive MBSE tool and method to specify and design
system architecture, and to manage complexity. It is based on the ARCADIA
method. It provides a conceptual framework for the analysis and modelling of
system architecture at different levels of abstraction, from operational and system
analysis to logical and physical architecture. It offers diagrams and viewpoints
to support the engineering process, facilitating collaboration, consistency and
traceability. [17]

This was a brief summary of the SE tools that have been most frequently cited in
the literature and that appear to be the most widely used in industry.
The next sections focus on the two main tools upon which the thesis is based:
Valispace, for DDSE implementation, and Capella, for MBSE. A more detailed
description of the features and capabilities of the two software instruments is
provided, as well as the method they implement.

16

Systems Engineering Tools

2.1 Valispace

DDSE focuses on managing all engineering information as interconnected data
points within a single source of truth, and Valispace is a web-based platform that
perfectly embodies and enables the DDSE philosophy. It acts as a central hub
for all engineering data, moving beyond outdated documents to manage dynamic
information. [6].
This approach empowers engineers with a complete, real-time overview of project
data and status. It enables the development of logical models, with all their
technical properties being stored in a unified, consistent database, with the relevant
formulas connecting these properties. This fundamental feature significantly
differentiates Valispace from current solutions. The integration of properties with
formulas facilitates the immediate visualisation of parameter dependencies, thereby
providing a comprehensive understanding of the impact of design modifications
on the system. Furthermore, this tool has been demonstrated to significantly
enhance collaboration, aiding all engineers engaged in a project in working with
consistent project data. It facilitates the exchange of data with suppliers and
customers, providing a comprehensive overview of complex systems in real-time
and ultimately reducing overall development time. Moreover, Valispace supports
the reuse of design information between projects, further increasing efficiency. [16]

An thorough investigation into its main strengths reveals that Valispace
is, above all, characterised by its ease of use. The tool does not require training
for its use, due to the intuitive web interface design. It has been designed to
incorporate a user-friendly workflow, with the objective of reducing the time and
effort required for training, thus mitigating one of the disadvantages of current
SE tools. As the model becomes more intricate, users can gradually familiarise
themselves with the tool’s functionality.
Another feature that can be observed is the consistency. Valispace is based
on a consistent database. The identification of discrepancies during the early
stages of a project is facilitated, thereby avoiding costly and time-consuming
consequences that may require additional expenses and rework. Furthermore, the
user is automatically informed of any alteration of the engineering data via an
integrated notification system.
As a browser-based tool, it does not necessitate installation or a specific platform.
It can be deduced that flexibility represents a further strength. Systems engineers
have the potential to access data remotely via web browser and to create, store
and manage engineering data from anywhere. Additionally, the exportation,
importation and direct access of data from alternative tools is facilitated by a
dedicated API that enables automated processes and scripting capability.
Finally, the adaptive nature of the web interface allows the configuration of diverse

17

Systems Engineering Tools

perspectives that are aligned with the requirements of different stakeholders. It is
not necessary to comprehend a specific MBSE methodology or modelling language
in order to obtain pertinent information about the system. [16]

Valispace optimises the engineering process from requirement definition to
system design, testing, verification and validation. This systematic methodology is
guided by the principles of the "V model", as shown in figure 2.1. [18]
Starting from the Product specification, Valispace allows the integration of

Figure 2.1: Valispace V-model [18].

engineering data (e.g. mass, volume and power consumption) with formulas,
calculations and simulations through the parametrization of requirements. Indeed,
it makes the requirements dynamic, associating them with technical properties,
thus guaranteeing that calculations are automatically updated in the event of any
change.
In the context of System Design, Valispace supports the interaction of physical
properties and requirements. Consequently, any changes made will be visible to
all members of the engineering team, together with the effect that component
variations have on the system as a whole. The tool supports not only rapid
design iterations, but also trade-offs. Furthermore, by connecting requirements
and components to formulas and calculations, it guarantees that the team is
always dealing with the latest data, eliminating the need to check numerous other
documents to verify the correctness of the data.
In Valispace, the "V model" is characterised by the automatic and real-time
execution of Product Verification. This process occurs in conjunction with the
progression of the system model, and by establishing interconnections between
requirements, physical units, parameters and calculations. Concurrently, the

18

Systems Engineering Tools

collection, analysis, and integration of requirements and performance data take
place.
The system is capable of concurrent management of two distinct data types:
requirements data and performance data. These two types of data are continuously
checked against each other through automatic verification. Moreover, Valispace
allows the creation of customised test procedures based on specific criteria. Once
the execution of the requirements has been completed, their verification will be
conducted automatically.
Finally, it is possible to conduct Reviews of the data. It is important that all the
teams have the capacity to execute and verify any actions that come from reviews
conducted directly on the data rather than in additional documents. The efficacy
of this system in reducing the time engineers spend retrieving documents has been
demonstrated, thereby ensuring that all team members are aware of the actions
they need to take.

The Valispace platform is articulated in the following sections, as shown
in figure 2.2.

Figure 2.2: Valispace overview.

Project Module It provides a project management overview. Users can have
access to a range of features to manage the project timeline and to coordinate with
colleagues.

Components Module It shows the mission architecture and the product tree
of the components constituting the system. The tool lets the user assign different
types of properties to each component. These are called valis for numerical values
and formulas, dataset for varying values, textvali for text, datevali for date and
matrix for properties with different values per state. It is also possible to associate
modelists with components, which represent the operational modes of the component
in question and which, together with the other properties, will then allow project
budgets to be calculated. Another option provided by Valispace is the ability
to create trade-offs, offering a clear view of the different alternatives with their
respective parameters, thus enabling the most suitable option to be chosen.

Requirements Module It provides an intuitive and effective way to manage
the project’s requirements. They can be assigned to components or components’

19

Systems Engineering Tools

values, and their verification status can be tracked throughout the design phases.
A requirements hierarchy can also be outlined and visualised clearly due to the
parent-child relationships.

Analyses Module It gives users the ability to write and manage all the project
documents, including graphs, tables, budgets and reports that will be stored in
this module.

Scripting Module It allows users to write and run simulations using the Octave
or Python programming languages. More complex calculations are what the module
is designed to perform.

Tests Module It provides a single place to perform all verification activities,
from creation to organisation and tracking. Users can create procedures to verify
requirements, equipped with attached files and tags.

2.2 Capella

Capella represents an open-source solution for MBSE, that adopts the ARCADIA
method. The ARCADIA methodology was developed by the Thales Group and
has been employed since 2011 in several projects across a variety of domains,
including satellite systems. This "structured engineering method" is dedicated to the
definition and validation of the architectures of complex systems [19]. It promotes
collaboration between all stakeholders, encouraging an enhanced understanding of
real customer needs and facilitating the sharing of product architecture. It enables
the execution of iterations from the definition phase onwards, thereby ensuring the
alignment of the architecture with all identified needs.
The ARCADIA method is founded on a series of "Golden Rules" [17] that have
been established to ensure the robustness and feasibility of architectural design.
The integration of need analysis, requirements and architecture definition and
validation as essential and interrelated activities is central to the approach.
This method is here elucidated with particular regard to its fundamental principles.
The figure 2.3 provides a visual representation of its main engineering levels.

20

Systems Engineering Tools

Figure 2.3: The main engineering levels of the ARCADIA Method [17].

The following is an overview of these levels [19].

Operational Analysis "What the users of the system need to accomplish." [19]
This encompasses more than simply meeting system requirements; it concerns a
detailed understanding of the problem from the user and stakeholders’ perspectives,
before any thought of a technical solution. The process involves the identification
of the needs, the establishment of the relevant actors and their respective roles, the
formulation of high-level objectives to be accomplished, and the definition of the
specific activities to be performed by the actors in order to achieve these aims. The
main output is a clear understanding of the overall stakeholders’ needs, which is
achieved by creating a clear overview of the mission as it is envisioned, independent
of any system that might eventually support it.

System Analysis “What the system has to accomplish for the users." [19]
In this sections, the focus shifts from the needs of the user to the needs of the
system itself. The objective is to define how the system will satisfy those needs
and what its expected behaviours and qualities will be. At this stage, system
functions and data exchanges are delineated, but also non-functional constraints
and interactions between systems and operators are clarified. The primary purpose
is to verify the feasibility of customer requirements. The main outputs include
system functions, interactions between users and external systems, and consolidated

21

Systems Engineering Tools

system requirements. This phase is crucial for specifying the design and requires
customer validation.

Logical Architecture “How the system will work to fulfill expectations." [19]
This entails an internal functional analysis, which involves the decomposition of
system functions into sub-functions and the identification of logical components.
The initial step in this process is to define the solution’s expected behaviour
using functions, interfaces and data flows, taking into account both the system’s
functional and non-functional needs. These functions are then allocated to one or
more logical components. The result is a detailed, structured logical architecture
that comprises components, justified interfaces, scenarios, modes and states.

Physical Architecture "How the system will be developed and built." [19]
This level shares the same core objective as the Logical Architecture, that is to
define how the system will fulfill its expectations. However, it establishes the final
concrete architecture of the system. This perspective introduces the necessary
details and design decisions for implementation. It incorporates all the functions
required by the specific technical choices and implementation details, while also
highlighting behavioral components (e.g. software components) that will perform
these functions. The primary output of this engineering phase is the selected
physical architecture, detailing the components that need to be produced.

End Product Breakdown Structure (EPBS) “What is expected from the
provider of each component." [19]
It represents the final and most detailed level of architectural definition. In this
section, the conditions that each component of Physical Architecture must fulfil
in order to satisfy the constraints and design choices are identified. This level
breaks down the physical architecture, thereby ensuring that each individual
component meets its specific performance requirements and limitations. This,
in turn, facilitates its integration into the system design. This phase is crucial
for preparing a robust and secure Integration, Verification, Validation, and
Qualification (IVVQ) process.

The method can be both top-down or bottom-up, depending on the project’s
status. The ARCADIA method supports iterative and recursive application across
the system’s hierarchy. Any subsystem can be considered the "system" for the
next level of analysis, a breakdown that continues until specific subsystems or
Commercial-Off-The-Shelf (COTS) are reached. [19]

ARCADIA’s objective is to transform the engineering field through the im-
plementation of a model-based approach, that diverges from the conventional

22

Systems Engineering Tools

document-centric methodologies. In order to achieve this result, Thales developed
a unified architectural modelling language, Capella, starting in 2007. In contrast
to most of the companies that adopted existing tools, Thales prioritized developing
the ARCADIA method, based on functional analysis and the allocation of functions
to architecture elements, something more familiar to engineers. As a result,
Capella intuitively integrates both the method and its associated language. This
synergy enables engineers to focus on defining architectures rather than dealing
with complex modeling languages like UML or SysML. Capella is a comprehensive
framework encompassing the full range of engineering activities, from the initial
identification of client requirements to integration, verification, and validation. [19]

A detailed analysis of Capella’s characteristics reveals that one of its key
strengths is its ability to facilitate enterprise-wide collaboration and
co-engineering initiatives. All engineering teams share a common methodology,
a unified exchange of information, and a model. This shared model is fundamental
to the formalisation of the analysis of operational and functional needs, as
well as the definition and justification of the architecture models. The Capella
models, constructed for each ARCADIA engineering phase, are integrated through
transformations and connected by justification links, enabling comprehensive
impact analysis, particularly during evolutions.
Moreover, Capella has been designed for the purpose of architectural design,
relying on a Domain-Specific Language (DSL) rather than general languages
like UML or SysML, making it easier for users. It manages and scales complexity
through its abstraction levels, facilitating model maintenance, large-scale modelling
and enabling model evolution and reuse.
Another fundamental aspect of the proposed framework is the focus on the early
verification of architectural design to ensure the robustness and feasibility of
the design itself. The method establishes a set of rules for preliminary verification,
with the aim of validating architectural design in a way that is efficient in terms of
time and cost.
The final advantage delineated is the ability to adapt to different projects and
organizational needs, ensuring that this solution is not a rigid solution but
a flexible framework. Capella balances design drivers (like functionality,
performance, cost, safety and security) and constraints to optimise designs and
handle different product configurations. This is what renders Capella suitable for
this approach, in terms of adaptability and flexibility. [19] [17]
The following areas are shown when entering the Capella interface [19].

Activity Browser It provides guidance through the various engineering phases
of your architectural modeling. The software facilitates the generation of new
diagrams, while providing a means of creating "transitions" between different

23

Systems Engineering Tools

phases.

Semantic Browser It assists in navigating the model. When an item is selected,
the Semantic Browser displays all its references, including contained and related
elements, and every diagram related to it.

Project Explorer It is a traditional tree-view diagram that shows the entire
Capella model. It provides an overview of all the items and diagrams.

Diagram It presents a graphical representation of a specific component of the
model, allowing the processes of creation, modification, and deletion of items, as
well as adjustment of their organization or aesthetic characteristics.

Properties This section displays all the properties associated with any selected
item.

In conclusion, a brief summary of the types of diagrams available in Capella is
presented in the table 2.1.

Table 2.1: Overview of types of diagrams available in Capella [17].

Diagram Type Description
Capabilities Available in all engineering lev-

els. Used to manage relationships
among Missions, Actors, and Ca-
pabilities.

24

Systems Engineering Tools

Diagram Type Description
Breakdown Present at all levels. Show hierar-

chical decomposition of Functions
and Components.

Data Flow Represent exchange of informa-
tion between functions. Enable
highlighting of Functional Chains.
Used across all levels.

Operational Architecture Built at the Operational Analysis
level. Allocate Operational Activ-
ities to Entities. Highlight Oper-
ational Processes.

Architecture Used in all levels. Allocate Func-
tions to Components. Highlight
Functional Chains.

25

Systems Engineering Tools

Diagram Type Description
Scenario Represent "vertical sequence of

messages" exchanged among ele-
ments. Multiple variants avail-
able.

Mode and State Represent UML/SysML-like
state machines. Link to Func-
tions, Exchanges, and other
concepts.

Class Model precise data structures.
Associate with Functional Ex-
changes, Components, and more.

26

Chapter 3

Valispace-Capella
Integration

This chapter outlines the methodology employed by this thesis, which is based
on the complementary nature of the DDSE and MBSE approaches, as well as the
integration of Valispace and Capella tools.
After an initial section that provides a justification for the choices made regarding
the adopted methodologies, the core of the integration process is explained. The
steps and the roles of the two tools are then highlighted, along with the modalities
of their integration.
Finally, the scripts created to export engineered data from Capella for import into
Valispace and to compare and ensure conformity between the two environments
are detailed.

3.1 DDSE-MBSE approach
MBSE has become a widely adopted methodology for the design of complex
systems, offering substantial improvements in terms of efficiency and efficacy
compared with traditional document-based approaches. However, MBSE tools are
currently considered excessively complex as they attempt to address the numerous
technical challenges faced by systems engineers. To overcome these limitations, the
emerging approach of DDSE has been introduced to complement MBSE. DDSE
simplifies the design process and improves collaboration. In particular, it works
with engineering data and its associated structures and links to form the basis of
the systems engineering process.

27

Valispace-Capella Integration

The present thesis aims to develop a methodology that is more agile and
flexible than traditional approaches. This research project is inspired by the
concept outlined in the paper [20] by Elecnor Deimos, which aims to develop
a methodology that exploits the complementarity of DDSE and MBSE, and
consequently of multiple tools, with the objective of reducing development costs
and times without the necessity for extensive training of personnel. Deimos asserts
that this methodology has been successfully employed in numerous missions,
encompassing both Earth observation, deep space and scientific missions [20].

The integration of these approaches produces a powerful combination, ca-
pable of compensating for each other’s weaknesses. In consideration of the
conclusions reported in tables 1.1 and 1.2, which provide a detailed exposition
of the respective benefits and limitations of the individual methodologies, it is
possible to proceed with the critical analysis of the complementarity of the two
methodologies, that is summarised in table 3.1.

Table 3.1: DDSE and MBSE integration.

DDSE MBSE Integration
System
representation

Engineering data Models Models provide context for
data, that validates models

Complexity
handling

Management of
datasets and re-
quirements

Hierarchical decom-
position of compo-
nents and functions

Management of complexity
from different perspectives

Decision
making

Decisions based on
simulations and
analysis

Decisions based on
system design and
architecture

Decisions based on anal-
ysis results and design
choices

Traceability Traceability of data,
results and require-
ments

Traceability of mod-
els

Enhanced traceability of
the project through inte-
gration

Ease of use Easy to learn, user-
friendly procedure

Steeper learning
curve

Initial complexity of
MBSE mitigated by famil-
iarity with DDSE

The MBSE provides the architecture and functional connections, thus demonstrat-
ing the system’s functionality. The model created in Capella serves as a reference
structure for the DDSE in managing the data and the requirements derived from it.
Conversely, the DDSE supports MBSE models through the definition of concrete
engineering data that can be used for analyses and simulations, thereby enhancing
the completeness of the project. Together, these tools provide comprehensive
support throughout the entire mission life cycle of the product. Moreover, their
integration allows for more comprehensive management of project complexity. The

28

Valispace-Capella Integration

DDSE provides consistent management of all collected data, while the MBSE
breaks down the various components and their functions, making the models easier
to understand.
The decision-making process and traceability are also improved, with the two
methodologies complementing each other in terms of analysis and simulation
results and design choices. Finally, the ease with which the DDSE can be adopted,
given its widespread use among companies, mitigates the initial difficulty of
approaching the MBSE methodology.
Their combination ensures the continuity of information and the preservation of a
"single source of truth." The objective of the integration is to illustrate the efficacy
of the design process by allowing for rapid change management, thereby increasing
both effectiveness and efficiency.

In view of the numerous challenges and tasks with which the field of SE
is confronted, the adoption of a single tool often proves insufficient [20][21]. The
present thesis implements this approach using two software tools, Capella for
MBSE and Valispace for DDSE, thereby pursuing continuity and conformity
between the two through continuous data exchange throughout the entire project.
The two tools selected for implementation, conversely, aspire to attain a more
robust design, leveraging each other’s strengths and limitations. While Capella
demonstrates proficiency in architecture definition, functional analysis and
operative modes definition, Valispace offers a user-friendly environment, capable of
managing engineering data and requirements, in addition to budget estimation, in
real time.
The following table 3.2 summarises the main strengths and weaknesses of the two
tools.

Table 3.2: Valispace and Capella capabilities [20].

Valispace Capella
Requirements Excellent for requirements man-

agement, including digitization,
flow-down, traceability, and ease
of export; highly user-friendly.

Strong in requirements man-
agement, including propagation
and traceability with model
elements.

Concept of
Operations

Poorly suited. Very strong for defining
ConOps through sequence di-
agram and VPMS Add-On.

Modes and
States

Not very strong, but it allows
for modes definition and alloca-
tion to components and their
values (useful for budgets).

Strong for detailed modeling of
modes and states with triggers
and transitions.

29

Valispace-Capella Integration

Valispace Capella
Functional
Analysis

Poorly suited. Very strong for modeling of
functionalities and functional
interfaces at various levels
through the use of breakdown
diagrams.

Architectures Weak, it allows the physical
architecture definition but it is
intended for use in engineering
data management. Useful for
trade-offs.

Very strong for logical and phys-
ical architecture definition, func-
tions allocation to components
and functional chains.

Budgets and
Simulations

Very strong for modeling com-
ponents with "non-static sizing
values", providing budgets and
simulations.

Weak, its main focus is on
static data related to compo-
nents.

Team
collaboration

Very strong for real-time col-
laboration, including reviews,
notes, and notifications.

Strong with the support of Add-
Ons.

Real-time
coordination

Very strong, it supports real-
time coordination, with con-
stantly updated information
shared among all participants.

Weak, it allows shared models,
but not in real time.

3.2 Integration
In view of the considerations expressed in the previous section about the
DDSE-MBSE approach, this section elaborates on the integration process of the
two tools, Valispace and Capella, the responsibilities of each of them, and the
measures implemented to guarantee compliance between the two. The figure 3.1
provides a high-level overview of the process, which will now be analysed in detail.

Firstly, it is essential to clarify the roles of the two tools: Capella will be
established as the master, the principal entity responsible for the mission and
system architecture, while Valispace will fulfil a supporting role, managing all
engineering data, requirements and budgets. It is important to note that Valispace
will be the entity that must adapt to the changes and choices made by Capella.
In order to achieve this objective, a number of Python scripts have been developed.
These scripts execute two main functions: firstly, they enable the export of data
from Capella, and secondly, they allow the subsequent import of this data into
Valispace. Furthermore, these scripts verify the consistency between the two at
the system level. To implement this solution, it was determined that the Capella
add-on, designated Python for Capella [22], and the Valispace API [23] would be
utilised. These will be explored in greater depth in the following sections.

30

Valispace-Capella Integration

Figure 3.1: Tools integration process.

The next paragraphs will analyse the integration process step-by-step. As shown
in figure 3.1, the two environments Valispace and Capella have been divided to
highlight the functionality attributed to each. In addition, the various engineering

31

Valispace-Capella Integration

levels are presented from the top to the bottom according to the ARCADIA
method.
It is possible to discern different types of arrows. The first type of red arrow
displays a script above it, which defines the implementation of the Python code and,
consequently, the establishment of the connection between the two environments.
The red ones without any reference above represent a possible connection between
the two environments via codes not implemented in this study. Finally, the black
arrow simply defines the flow of the work.

The following discussion will proceed through a gradual examination of
each respective level.

Stakeholders Needs Analysis

The initial phase of the project begins with the Statement of Work (SoW), which
delineates the objectives and constraints of the project. The initial mission and
customer needs are then identified and defined as requirements on Valispace.
The subsequent phase involves conducting the actual Operational Analysis on
Capella, encompassing the stakeholder needs analysis, the identification of the
entities involved, and the allocation of related activities to them, thus producing
the Operational Architecture. The diagrams generated on Capella will facilitate the
definition and refinement of the high-level requirements on Valispace, also providing
the necessary context for their consolidation during the system’s architectural
definition on Capella. In this particular instance, the implementation of a script was
not considered a required measure to ensure the consistency of the two environments.
It is evident that the stakeholder needs analysis is more successfully executed
on Capella. Conversely, Valispace exclusively handles the management of the
requirements themselves.

System Analysis

The objective of this level is to establish the configuration of the system that will
satisfy the requirements of the users. In this context, the process begins with the
System Analysis on Capella, where a functional analysis is conducted and the
involved actors are determined. In this case, two sets of scripts are implemented to
facilitate the process.
Starting from the functional analysis, the Export_SF_MO.py script
(3.3) exports the functions of interest modelled on Capella and the Im-
port_Requirements.py (3.4) imports them into Valispace in the form of
Requirements. Among the other scripts, Export_System_Actor.py (3.3)
exports the actors defined on Capella and Import_System_Components.py
script 3.4 imports them into Valispace as Components, thereby enabling the

32

Valispace-Capella Integration

definition of a compliant mission architecture in the DDSE environment.

The next step of the process is the elaboration of the detailed System Architecture
on Capella, along with the definition of the Concept of Operations (ConOps) in the
same environment, through the use of the ViewPoint Modes and States (VPMS)
Add-On [24]. As previously observed, the diagrams developed in Capella help to
consolidate and satisfy the requirements stored in Valispace. This statement is
applicable to all levels.

System Design

The process at this level also begins with Capella’s Logical Architecture,
which defines the detailed internal logical structure of the system, enabling the
decomposition of the functions and their allocation to Logical Components (in
this case, the subsystems of the system). In this phase, there are multiple scripts
available to facilitate the integration. As with the previous level, the first two sets
of Python scripts follow the same logic as the two implemented in the System
Analysis.
Although not implemented in this particular instance, it is possible to establish
new requirements on Valispace, starting from the Logical Functions defined on
Capella, by making minor changes to the scripts Export_SF_MO.py and
Import_Requirements.py.
The second set of scripts is responsible for the exportation of the com-
plete hierarchy of Logical Components created on Capella through the
Export_Logical_Component.py script 3.3, subsequently bringing them into
Valispace using the Import_LC_Hierarchy.py code 3.4, while ensuring the
maintenance of the hierarchy.

At this point, a "bridge script" has been formulated in order to ensure
conformity between the two environments. The script in question is Compo-
nents_bridge.py 3.4 and its function is to compare the entire hierarchy of
components (i.e. the Product Tree) established in the two tools, compare them,
and show a report to the user underlining the discrepancies between the two
environments. Consequently, if a component appears to be missing in Valispace
when Capella is considered the master, the missing component will be imported
into Valispace automatically to restore conformity.

Another activity undertaken on Capella has been the definition of the
modes and states diagram, which facilitates a detailed analysis of the operative
modes. These modes are exported from Capella through the Export_modes.py
script 3.3, and then imported via the designated script Import_All_Modelists

33

Valispace-Capella Integration

3.4 on Valispace as Modelists, and assigned to the component of interest.
The final steps involve the development of a Logical Architecture on Capella, with
the allocation of functions to components, and the estimation of budgets (mass,
volume, power) on Valispace. The latter process exploits the imported operative
modes and the engineering data, already defined and assigned to the components
on Valispace.

Subsystems Design

The final level to be implemented is the physical one, which, in this case, has not
been completely developed but has barely been started with the aim of showing
the process and of completing it in the future. The objective of this phase is to
define the final physical architecture of the system, including the selected physical
components and their technical characteristics.
The procedure starts on Capella with the definition of the Physical Architecture.
In this particular case, the development of a single subsystem has been conducted
with the purpose of demonstrating certain functionalities of the process. As in the
previous phases, the requirements defined on Valispace are consolidated by the
architectures defined on Capella.
The same scripts that facilitate the establishment of requirements and the transfer
of components from Capella to Valispace are also applicable at this level, with
minor changes.
This level also allows for an increasingly detailed analysis of the system, both of the
architectural model and of the operative modes, which can now be applied to the
physical components, consequently creating more detailed budgets on Valispace.
Furthermore, it is important to demonstrate Valispace’s capacity to efficiently
manage trade-offs between components.

3.3 Python for Capella
Python for Capella is an open-source add-on of Capella that enables interaction
with models built on Capella via Python. This solution supports the creation of
Python scripts, which are utilised for the extraction and importation of information
from and about the model itself. Given that the extraction of model information
constitutes a crucial step in the execution of the project, the add-on proved to be
very useful.
Technically, Python for Capella includes Eclipse EASE to allow script execution,
PyDev for script edition and finally a Python Interpreter. It therefore supports
the use of a common coding language, Python, and provides high-level example
scripts that are accessible to the user but can be totally customised and modified,
as well as being easily shared and used. [22] It is crucial to acknowledge that the

34

Valispace-Capella Integration

execution of these codes is exclusively possible within the Capella framework, as
Python for Capella constitutes an internal API.

The figure 3.2 illustrates the architectural levels on which this solution is
based. The purpose of the solution is highlighted in red, while the contributions of
the users are indicated in blue.

Figure 3.2: Python for Capella architecture [22].

Among these levels, the Java API bridges Python with Java, providing support
for data extraction and import. Python Technical Libraries simplify operations
for users by enabling the definition of high-level scripts. They provide libraries,
including the definition of the Capella metamodel. Lastly, High-Level User
Scripts define the environment within which users implement specific actions to
be performed, with default examples provided to demonstrate the capabilities.
Python for Capella is supplied with default libraries and relies on a simplified meta-
model to facilitate the definition of scripts by end-users. Moreover, documentation
is generated from this model to know more about its content [25]. This solution
is highly customizable, extensible for Capella metamodel add-ons, and clearly
separates technical scripting from high-level user scripts. In summary, Python for
Capella empowers users with programmatic access and automation capabilities
to manage, analyze, and exchange data within their Capella models more efficiently.

Starting from the scripts already available in Python for Capella environ-
ment [22], these were modified and adapted to be able to satisfy the requests
of the project. The following codes have been implemented within the Capella
environment and utilised for the purpose of integration. In order to obtain a more
accurate understanding of them, it is recommended to consult the appendix A,
where the complete scripts are available.

35

Valispace-Capella Integration

Export_SF_MO.py

This script extracts from Capella all the functions of the layer of interest, in this
case the System Analysis level, and exports them into an Excel file, divided into
three sheets. The first sheet "All System Functions" comprises all the functions of
the level of interest and their characteristics, that include the name, ID, description
and the identification of those functions which are leaf functions. The second sheet
"Leaf Functions" contains only the leaf functions and their related information.
The third sheet "Mission Objectives" contains the leaf functions relating to a root
function of the user’s choice. This layout has been configured with two objectives
in mind: firstly, to facilitate the complete export of all functions, and secondly, to
enable their import into Valispace.
The configuration of the Excel file is totally customisable. In this particular instance,
the script was implemented with the objective of deriving the leaf functions from
the root function "To satisfy mission objectives", and subsequently creating new
requirements in Valispace, based on the aforementioned functions.
The script is readily adaptable, allowing for its implementation in other Capella’s
levels and for the generation of a distinct Excel file format.

Export_System_Actor.py

This script simply extracts all the System Actors created at the System Analysis
layer on Capella and lists them in Excel format.

Export_Logical_Component.py

This script extracts all the Logical Components defined at the Logical Architecture
level on Capella. The extraction process starts with the selection of a component
by the user, from which all the components that originate from it are exported.
The script reports the component’s hierarchy throughout the extraction process.
In order to facilitate the import operation into Valispace, the data is extracted in
Excel format as follows: the names of the components are placed in one column,
the names of its parent in another, and a number indicating its hierarchy level in a
third. If the number of the hierarchy level is 1, the component is at the top of the
hierarchy tree; if the number is 2, the component is one level down, and so on.
It is important to note that, with negligible alterations, this code can be executed
on different Capella levels, thereby encompassing the components of interest and
their respective hierarchies.

36

Valispace-Capella Integration

Export_modes.py

The purpose of this script is to enable the exportation of Capella’s Modes, defined
via the MSM diagram, as a list of them in Excel format.

3.4 Valispace Python API
Valispace exposes an open Representational State Transfer (REST) API, which can
be queried using Python libraries. Its primary objective is to facilitate the process
of interacting with Valispace’s data. In this project, the software was employed to
develop customised scripts capable of interacting with the platform and with data
previously extracted from Capella. This solution is characterised by its simplicity
and ease of use.
The initial step involves the installation of the library within the selected Integrated
Development Environment (IDE). Subsequent to this, authentication on Valispace
is required, which can be achieved through the utilisation of either API tokens
generated on Valispace or via Valispace’s username and password. It offers a
simple and intuitive method of executing Create-Read-Update-Delete (CRUD)
operations, which represent the fundamental vocabulary for interacting with any
data management system. In particular:

• Create (C) to add new data into Valispace through POST Hypertext Transfer
Protocol (HTTP) method;

• Read (R) to retrieve existing data from Valispace through GET HTTP method;

• Update (U) to modify existing data in Valispace through PUT/PATCH HTTP
method;

• Delete (D) to remove existing data from Valispace through DELETE HTTP
method.

The following list comprises the scripts created exploiting this API. The primary
function of these codes is to support the import of data previously exported from
Capella into Valispace, as well as to enable a comparative analysis of the data
defined in the two environments.

Import_Requirements.py

The present script retrieves the functions associated with the mission objectives
and their corresponding descriptions from the Excel file that has been generated by
the Export_SF_MO.py 3.3. These functions are then imported into Valispace
as new Requirements.
The user is required to specify the Identification (ID) of the Specification under

37

Valispace-Capella Integration

which the new requirement will be allocated. The script will then generate a new
Requirement with an identification number that is consistent with the nomenclature
and in line with the previous ones in terms of numbering.
In order to facilitate this process, it has been determined that the "description"
section of the System Functions in Capella should include the text of the asso-
ciated requirement, thus enabling it to be imported automatically and without
modification.

Import_System_Components.py

This script imports the list of System Actors, that has been previously exported
from Capella to an Excel file, through the Export_System_Actor.py script
(3.3), as new Components in Valispace.

Import_LC_Hierarchy.py

The present script utilises the export results of the Ex-
port_Logical_Component.py code (3.3), which contains the components
with their hierarchy derived from the Capella design, and imports them into
Valispace while maintaining consistency. The user is required to specify the ID of
the component from which the import process shall begin.

Components_bridge.py

This script has been created with the intention of creating a bridge between the
two tools, Valispace and Capella, verifying the correctness and consistency of their
Product trees. In this case, a comparison among the various components, checking
also the coherence of their hierarchy, is made at the Logical Architecture layer of
Capella.
In particular, the code has been implemented through six main func-
tions: once all the Components have been retrieved from the Val-
ispace project through the get_all_project_components function, the
get_valispace_parent_child_hierarchy function builds the hierarchy by iden-
tifying their parent-child relationships. Then, the get_excel_data function
reads the Excel file extracted from Capella, taking all the values and converting
them into a string, ensuring that the format is compatible with Valispace’s one.
The compare_lists function compares the two lists of parent-child relationships,
derived from the two tools, and displays a report of the analysis in the console,
specifying which components are inconsistent.
Furthermore, considering Capella as the master tool, an automation process has
been implemented through the comps_to_import_to_Vali function which, in
the event that elements present in Capella are missing in Valispace, automatically

38

Valispace-Capella Integration

proceeds to insert these missing components into the Valispace environment, while
maintaining compliance with Capella.

Import_All_Modelists.py

The present script, starting from the export of the Capella operative modes through
the Export_modes.py script (3.3), imports these as Modelists into Valispace
and assigns them to the Component defined by the user.

39

Chapter 4

Case study

The present chapter is dedicated to the practical implementation of the methodology
delineated in the previous chapter, with the objective of validating its efficacy in a
space mission context. In order to illustrate this process, a case study is presented,
which relates to the design of a small satellite mission, which has been named
GeoProfundo. The mission has two objectives: the first concerns the emulation
of an interplanetary environment in LEO, and the second is an Earth observation
objective. The subsequent paragraphs provide a detailed study of this mission,
outlining the phases to be followed in accordance with the integration methodology.
The work carried out on Valispace and Capella is also provided, emphasising
how the adopted approach ensured compliance and conformity between the two
tools.

4.1 Mission Overview
This section addresses the objectives of the GeoProfundo mission, which is framed
within two domains: deep space exploration and Earth observation.
The first domain represents a technical challenge for small satellites. Due to the
reduced costs and rapid development cycles, these satellites are destined to play an
increasingly significant role in the future of deep space missions. In the context of
the mission, they should serve as cost-effective in-orbit demonstrators of critical
technologies for future deep space applications, within the limitations of the
LEO environment. In particular, the demonstration should focus on navigation,
communication and operations capabilities, which are critical for deep space.
On the other hand, the Earth Observation domain presents the scientific challenge
of monitoring the effects of UHI phenomenon in European cities. The UHI
phenomenon has been shown to have a significant impact on the thermal

40

Case study

environment of urban areas, causing them to exhibit higher temperatures in
comparison to suburban and rural regions. It is caused by the "heatwaves", defined
as prolonged periods of extremely high temperatures. [26] [27] Whilst it is true
that this service already exists, this can be further supported by small satellites,
that can be specifically targeted towards a designated area, with the objective of
addressing the specific requirements of the relevant stakeholders and end users.

The mission statement of the Geoprofundo mission has been defined as
follows: "The mission should act as a technology demonstrator in LEO for
future deep-space small satellite missions, focusing on navigation, communication
and operations technologies. Additionally, the mission should monitor relevant
environmental parameters across European urban area providing critical insights
into the UHI effect."
The mission goals that can be derived are: (i) to validate small satellites’
technology capabilities for deep-space navigation, communication, and operations
in a LEO environment and (ii) to monitor and quantify relevant environmental
parameters providing critical insights into the UHI effect. The SoW provides
a list of drivers and high-level requirements, which can be consulted in the table 4.1.

Table 4.1: High Level Requirements and Drivers

Req.ID Statement
R-MIS-010 The mission shall support autonomous operation for a minimum

of 10 (TBC) days without human intervention.
R-MIS-020 The mission shall simulate Mars communications architecture,

achieving a minimum delay of 13 TBC minutes for signal trans-
mission.

R-MIS-030 The mission shall support in-situ mapping with a spatial resolu-
tion of at least 100 (TBC) meters.

R-MIS-040 The mission shall be operative with only 1 launch.
R-MIS-050 The mission shall be operative with only 1 launch.
R-MIS-060 The mission shall be compatible with at least 2 commercial

launchers.
R-SYS-010 The spacecraft mass shall not exceed 50 kg.
R-SYS-020 The spacecraft shall have propulsion capability onboard. Ra-

tionale: towards zero debris policy e.g. Collision Avoidance
Manoeuvre (CAM)

R-DES-010 The mission shall be compliant with respect to Space Debris
Mitigation Policy of the European Space Agency.

D-MIS-010 The mission shall preferably use European technologies.
D-MIS-020 The Mission should reuse as much as possible existing Earth

infrastructures, ground antennas and logistics for operations.
D-MIS-030 Existing off-the-shelf products and technologies for both Ground

and Space Segments should be selected when possible.

41

Case study

4.2 Stakeholders Needs Analysis
The process starts with the importation of the initial mission and client needs,
derived from the SoW and listed in table 4.1, into Valispace as high-level
requirements and drivers.
Then, preliminary mission studies concerning the stakeholder needs analysis are
conducted on Capella. This analysis is implemented at the first level of the
ARCADIA method, known as Operationa Analysis (OA), which is the current
focus. As previously stated, this phase entails the identification of the entities,
i.e. the stakeholders, who will interact with the system, along with the activities
allocated to them and the interactions between these entities.
The primary objective of this study is to identify the needs and objectives of the
users. The Operational Analysis in Capella involved the creation of a "domain
model" [19], independently of the future system to be realized. The idea is to
voluntarily create a level of abstraction from the system under study in order to
focus on the “real” needs of the different stakeholders.
Before proceeding to the description of the process, it is first necessary to provide
a summary of the terminology employed in this particular context 4.2.

Table 4.2: Operational Analysis terminology [19].

Symbol Element Description

Operational
Capabilities

Organisation’s capacity to provide a service that sat-
isfies the highest level objectives.

Operational Entity A real-world entity that interacts with the system
and its users.

Operational
Activities

The steps that a process must take in order to achieve
a specific objective and which are realised by an entity.

Operational
Interaction

The exchange of information between the various
activities.

Operational
Processes

Distinct set of activities and interactions that are
interconnected by a common capability.

To proceed with the description of the procedure, the first diagram created on
Capella was the OCB diagram 4.1, that allows for the creation of Operational
Capabilities, Operational Entities and the relations between them. Initially, the
main stakeholders involved in this mission were identified. A key stakeholder is the
European Space Agency (ESA), which can be interested in both the implementation
and testing of new technologies in deep space, and in complementing and improving

42

Case study

the service offered by Copernicus on UHI analysis [26] [28]. Furthermore, research
bodies and universities are interested in both aspects of the mission, depending
on their field of research. This interest is related to the data collected and the
goodness of knowledge return. Furthermore, the space industry is to be considered,
in terms of companies interested in testing new technologies for deep space and
Earth observation. The objectives of these companies are dual: firstly, to increase
the Technology Readiness Level (TRL) of their products, and secondly, to gain
experience.
The last Entity is associated with end users, who will benefit from the outcomes of
the scientific part of the mission. In this case, there are many different entities
involved, including national and regional governments seeking to improve the
quality of life in cities and to support green urbanism, in the latter case together
with architects and urban planners; environmental organisations and public
authorities interested in protecting the environment and public health, but also
concerned about the effects of climate change. [29][30][31] Finally, there are energy
providers who are interested in monitoring the UHI effect in order to make new
improvements in the management of increasingly demanding energy.
Despite the potential involvement of numerous other stakeholders in the mission,
the individuals with the greatest influence and power are highlighted here. This is
illustrated in the legend of the figure 4.1, which differentiates between Promoters,
who possess significant interest and influence, and Defenders, who have a high
level of interest but less influence.

Consequently, three Operational Capabilities were delineated. The first
one is the "Mission Lifecycle" and concerns the steps that the satellite design
and development process must go through in order to realise the final product.
These steps begin with the funding of the mission and end with the release of the
satellite into the orbit. The other two Capabilities focus on the mission’s high-level
objectives: one is the scientific objective of "[Scientific Obj] UHI effect mapping
and detection", and the other is the technological objective of "[Technological Obj]
Deep space technologies validation in LEO". These objectives align with those
previously mentioned in the Mission Overview section (4.1) and will be addressed
in greater detail subsequently.
Finally, the interactions between Capabilities and Entities are highlighted in the
diagram.

43

Case study

Figure 4.1: OCB Operational Capabilities

The following step in the process is the creation of an OAIB diagram for each
of the Operational Capabilities. The OAIB is a data flow diagram that can
be related to each Capability and allows for the creation of a set of Activities,
as well as the Interactions that links them. The OAIBs created are shown in
figures 4.2, 4.3 and 4.4. They enable a more detailed analysis of the high-level
mission objectives at an abstract level, without going into the technical specifics
of implementation. In summary, they establish a comprehensive and precise
understanding of the system’s operational requirements before the implementation
process is addressed. For instance, the diagram in the figure 4.3 illustrates the
process that the collected environmental data should follow in order to reach
the various users. Among the environmental data necessary for measuring the
UHI effect, Land Surface Temperature (LST) data and several spectral indices
have been selected, including Normalised Difference Vegetation Index (NDVI),
Normalised Difference Built-up Index (NDBI) and Modified Normalised Difference
Water Index (MNDWI). However, here the focus is on the path that the data
will follow to satisfy stakeholders. The same applies to the OAIB Technological
Objective diagram in the figure 4.4.

44

Case study

Figure 4.2: OAIB Mission Lifecycle

Figure 4.3: OAIB [Scientific Obj] UHI effect mapping and detection

45

Case study

Figure 4.4: OAIB [Technological Obj] Deep space technologies validation in LEO

Finally, the OAB architecture diagram was created. It is probably the most
important at each level of engineering since it offers the most complete overview of
the level. It essentially allows the Activities, defined in the OAIB diagrams, to be
allocated to each responsible Entity that will perform them.

In order to address the complexity involved in developing a space mission,
Consortia (i.e. strategic partnerships) are frequently established. These are
temporary collaborations among multiple entities with the objective of achieving a
common goal, in this case the development of the satellite itself. Initially, roles
related to the Consortium were identified and assigned to the relevant entities,
as illustrated in the figure 4.5 by the purple rectangles. The definitions under
discussion are primarily related to the "Mission Lifecycle" Capability, as illustrated
by the use of blue arrows to denote the associated Operational Process.
The roles in question include that of the Sponsor, in this case the ESA, that is
responsible for financing the mission, defining its general objectives and, in this case,
also acting as the regulatory entity. Then the role of Principal Investigator (PI)
was introduced as the scientific responsible for the mission. In this particular
instance, given the dual purpose of the mission, two PIs have been delineated: one
related to the scientific objective of the mission, i.e. the Department of Aerospace
Engineering of a university, and the other connected to the technical scope, i.e. an
aerospace company.
Additionally, a Prime Contractor, named Prime, is involved and is defined as an
entity responsible for the overall management of the technical implementation of
the product.
The diagram also illustrates the Operational Processes associated with the two
primary mission objectives identified in this study, which are represented by
red and green to denote scientific and technological Capabilities, respectively.
Consequently, all interactions between the entities and the functions assigned to
them are clearly visible.

46

Case study

Figure 4.5: OAB Operational Entities

47

Case study

Finally, an OES diagram shows the process represented in the OAIB or in the
OAB diagrams, but focusing on the chronological aspects, thus describing the
sequence of interactions in time. In this case, an OES diagram for the "Mission
Lifecycle" Capability has been developed and it is shown in the figure 4.6. LOOP
fragments in it indicate that the process represented is repeated every day.

Figure 4.6: OES Mission Lifecycle

Subsequent to the completion of the Operational Analysis on Capella, the process
returns to Valispace, where any newly identified mission requirements will be
integrated and the analysis conducted on Capella will be verified as a means of
ensuring compliance with the requirements imposed on Valispace.

48

Case study

4.3 System Analysis
The focus now shifts to the System Analysis, which is initially implemented at
Capella’s System Analysis level. In this case, the emphasis is directed towards the
system itself, defining its functionality and its external interfaces. This is achieved
through a high-level functional analysis and a definition of the Actors involved.
These actions will subsequently result in the definition of the ConOps and the
mission architecture.
As in the previous section, the table 4.3 provides a concise summary of the main
Capella’s concepts that are highlighted in this section.

Table 4.3: System Analysis terminology [19].

Symbol Element Description

System A group of elements that function as a single entity
("black box") and respond to user needs.

System Actor An entity external to the System (whether human or
not) with which the System itself interacts.

System Capability The System’s capacity to provide a service that en-
ables the accomplishment of high-level objectives.

System Function A function accomplished by the System itself, or by
an Actor, constituting a behaviour of the system.

Functional Exchange A unidirectional exchange of information between
two Functions.

Component
Exchange An interaction between the System and the Actors.

Functional Chain
A specific pathway among all possible functional
paths, which is useful for the identification of con-
straints.

As outlined in the manual [19] included in the bibliography, there are two methods
for transitioning from the Operational Analysis to the System Analysis level on
Capella. One method uses the "transition" function to move Operational Entities,
Capabilities and Functions directly from one level to another. The other solution,
which has been chosen for this case study, keeps the two levels separate, even if a
certain continuity is noticeable. In the System Analysis level, the focus is indeed
on defining high-level System Functions that are no longer associated with the role
of the stakeholders. The System is identified as a modeling element, i.e. a “black
box” containing no other structural elements. [19]
The design process starts with the CSA diagram in figure 4.7, which is one of the

49

Case study

first diagrams to be realised in the System Analysis on Capella. It defines the
System of Interest (SoI), namely the "Space Segment", that, in this case study, is
the GeoProfundo satellite, and new System Actors.
Some of the Operational Entities previously identified at OA have been transitioned
to System Analysis (SA). The definitive set of System Actors comprises the Launch
Site and Launcher, which belong to the Launch Segment; the Mission Control
Center (MCC), which plans operations; the Ground Segment, which manages
ground operations; Copernicus, which integrates the collected environmental data
with its models; and finally an entity called Environment, which embodies space
environmental behaviour.

Figure 4.7: CSA System

These Actors defined on Capella were then imported as Components into Valispace
using the two aforementioned scripts, Export_System_Actor.py (3.3) and
Import_System_Components.py (3.4). This ensures consistency between the
two tools at an early stage, avoiding errors later on. These new System Components
are included in the System Design section of Valispace, under the GeoProfundo
Component. The figure 4.8 below shows the results of the import process.

50

Case study

Figure 4.8: System Components imported from Capella to Valispace.

The subsequent part of the process involves the creation of the MCB diagram,
which defines System Missions, i.e. system objectives, and new System Capabilities.
Moreover, it identifies the System Actors involved in each System Capability.
In this instance, a series of System Capabilities are derived from a generic Mission
Capability, thereby establishing the foundations upon which the subsequent
functional analysis is to be conducted. The defined System Capabilities can be
observed in the figure 4.9, where they are also related to the Actors through
relationships labelled "Capability Involvements".

Subsequently, the decomposition of System Capabilities is conducted, thereby
leading to the realisation of a rigorous functional analysis through the SFBD
diagram, that allows the creation of functions and sub-functions. It is significant
to observe that the Functions indicated in light blue are those that have been
allocated to the Actors. As recommended in the manual [19], it is considered
a best practice to modify the color of the parent functions that can no longer
be allocated to white. Consequently, the only functions, namely leaf functions,
displayed in green, are those allocated to the System. The figures 4.11 and 4.10
show snapshots of the conducted functional analysis. The other SFBDs diagram,
related to the remaining System Capabilities, can be consulted in the appendix C.

51

Case study

Figure 4.9: MCB Mission and Capabilities Blank diagram

Figure 4.10: SFBD To maintain system operability

52

Case study

Figure 4.11: SFBD To satisfy mission objectives

Once the initial preliminary functional analysis has been conducted on Capella,
the mission requirements on Valispace have been updated. By employing the
Export_SF_MO.py (3.3) and Import_Requirements.py (3.4) scripts, which
respectively export the leaf functions of the selected root function from Capella
and then import them as new requirements on Valispace, Valispace is maintained
in compliance with the initial design choices implemented on Capella. In order
to execute the code, the user is required to submit the Capella root function of
interest, in this case "To satisfy mission objectives", along with the Specification
ID on which the requirements will be imported into Valispace. Consequently,
the script enables the generation of new requirements with an identifier that is
consistent with the adopted convention, with a consecutive index with respect to
the last requirement in the selected specification.
The figure 4.12 presents a screenshot of the Valispace platform, which illustrates
the results of this process . In this particular example, the requirements refer to
the testing of deep space technologies and they have been imported under the
"MISSION" Specification. The technologies selected for this mission encompass the
validation of navigation by landmarks, the testing of optical communication, and
the automation of certain on-board operations.
In any case, this constitutes one potential method for directly creating requirements
on Valispace from a System Function on Capella. The process could also be
performed by creating a requirement on Capella and importing it into Valispace,
or by managing the requirements manually in the Valispace environment.

53

Case study

Figure 4.12: Mission Requirements imported from Capella to Valispace.

Returning to the Capella environment, the SDFB has been created. This is a data
flow diagram that defines Functional Exchanges and allocates them to the Functions.
The functions constituting a Capabilities can be organised using these diagrams,
as shown in figure 4.13. The same type of diagram has also been developed to
illustrate Functional Exchanges involving multiple Capabilities, interconnected by a
shared concept, in this case, the data flow. The figure 4.14 illustrates the functions
involved and their mutual interactions.

It is possible to observe all of the System Functions involved in this level in the SAB
diagram, as shown in figure 4.16 where the Functions are allocated to the System
or to the Actors. In this instance, a global diagram has been chosen; however,
it can also be partial, enabling the user to select the entities to be displayed.
Additionally, it introduces the concept of Component Exchange, that, according to
the ARCADIA method, represents an exchange that crosses the System or an Actor
boundary. As previously stated, the System Analysis does not incorporate the
concept of subsystems. However, examining the diagram in figure 4.16, a graphi-
cal representation of the functions that belong to each subsystem could be gathered.

Another feature offered by Capella exploited in this level is the definition
of the ConOps. In order to implement this functionality, it is necessary to exploit
the VPMS add-on , which offers the capability to create the "Configurations",
that can be associated with the phases of the ConOps. The "Configurations"
determined in this case have been I&T, LEOP, the Operative Phase and the

54

Case study

Figure 4.13: SDFB To reach the operational orbit

Figure 4.14: SDFB Data flow

55

Case study

EOL. The initial I&T phase concerns the integration and testing operations
conducted prior to launch, while the LEOP encompasses the launch, the release
into the target orbit, the deployment, the detumbling, and the commissioning
phases. The Operational Phase is comprised of two distinct sub-phases. During
the first sub-phase, environmental data is collected and a database on Earth
mapping is created for the purpose of implementing navigation by landmark. In
the subsequent sub-phase, while the collection of environmental parameters for
Earth Observation (EO) purposes is continued, the deep space technologies are
tested. Finally, the EOL phase involves de-orbiting, passivation and re-entry.
The figure 4.15 shows a visual representation of ConOps.

Figure 4.15: ConOps visual.

In the context of Capella, these phases are modelled by indicating, for each
configuration, which System Functions are active and which are not, as illustrated
in the figure 4.17 for the Operative configuration. The operational status of each
function is denoted by a specific colour: green indicates that the function is active,
while red signifies that it is inactive. The remaining configurations are delineated
in the appendix C.

56

Case study

Figure 4.16: SAB Structure

57

Case study

Figure 4.17: SAB Operative phase

58

Case study

4.4 System Design
Once the high-level functions and architecture have been defined in the System
Analysis, the following step is to understand how the system works to meet the
objectives and then open the so-called "black box". This procedure is denoted
in Capella as "Logical Architecture" and involves a further decomposition of
the functions of the previous level, as well as a breakdown of the System into
Logical Components, assimilated to the concept of subsystems. It is important to
note that the present analysis does not encompass technical considerations and
implementation choices, which will be addressed in the next level.
Similarly as in the previous sections, the table 4.4 provides a brief summary of the
logical architecture terminology and elements employed in this layer.

Table 4.4: Logical Architecture terminology [19].

Symbol Element Description

Logical Component Structural element within the System, with ports to
interact with other Logical Components or Actors.

Logical Actor An external entity to the System (human or non-
human) with which the System itself interacts.

Logical Function
Behaviour or service provided by Logical Components
or Actors that can communicate with other functions
through the Functional Exchanges.

The initial step consists in the transition of the System Functions derived from the
System Analysis to the current level. Thereafter, a review of these functions has
been executed, with the majority of them being broken down. This breakdown
specifically impacted those functions derived from the root functions "To maintain
system operability" and "To satisfy mission objectives". The results are visible in
the LFBD (figures 4.18 and 4.19), which allow for the hierarchical identification of
the new Logical Functions.
The system’s approach to testing deep space technologies in the various areas
of interest is now clearer. The steps that led to the testing of navigation by
landmarks and laser communication are noted. As for autonomous operations
on board, these are to be managed through the Failure Detection, Isolation
and Recovery (FDIR) algorithm, that will help the transition between oper-
ating modes, with commands from the ground being kept to a minimum. It
is also important to note that the System Functions derived from the previ-
ous level and no longer allocated to any entity in this level have been coloured white.

59

Case study

Figure 4.18: LFBD To satisfy mission objectives

60

Case study

Figure 4.19: LFBD To maintain system operability

61

Case study

Subsequently, the logical structure has been modelled. The System is thus broken
down into a series of Logical Components, thereby creating a real hierarchy, as
illustrated in the LCBD diagram in figure 4.20.

Figure 4.20: LCBD Space Segment

As soon as the logical structure of the System has been completed, all the Logical
Components created are imported into Valispace, maintaining the hierarchy and,
therefore, the parent-child relationships. The scripts that implement this step are
firstly Export_Logical_Components.py (3.3), which exports the Logical Com-
ponents from Capella to an Excel file, and then Import_LC_Hierarchy.py (3.4),
which imports the Excel file into the Valispace environment and, in this case, under
the "Space Segment" component. The result of the import process is illustrated in
the following figure 4.21. As clearly shown, continuity and consistency are preserved.

At this stage in the design process, it was deemed necessary to create a
link, or "bridge", that would involve both tools simultaneously in order to verify
their compliance. The exploitation of this instrument during the design reviews
is proposed, for instance, to facilitate the verification of the consistency of
components between the tools [20]. The Component_bridge.py (3.4) code is
capable of implementing this process, exporting the list of components present on
Valispace and Capella, comparing them, and displaying a report of the current
status. This report indicates which components are present on Valispace but
not on Capella, and vice versa. Furthermore, given the adoption of Capella as
the "master" tool of the project, in the event that a component is not present on
Valispace, the structure is automatically updated in Valispace, thereby restoring
conformity. The figure 4.22 shows the output that the code displays in the console
when a component is absent on Valispace.

62

Case study

Figure 4.21: Logical Component imported from Capella to Valispace.

Figure 4.22: Component_bridge.py output in console when TCS component
is missing in Valispace.

Following the identification of the new components and functions, the architecture
is modelled, allocating Logical Functions to designated Logical Components or
Actors. New Functional and Component Exchanges are also created. The outcome
of the logical architecture is showcased in the LAB diagram, displayed in figure
4.23, which is the result of design choices and decisions involving all the subsystems.

63

Case study

Figure 4.23: LAB Structure

64

Case study

Another potential feature that can be exploited on Capella is the use of MSM
diagrams to define operative modes. Modes are defined in the manual [19] as
the "expected behaviour", in a specific condition, of an entity (System, Actor,
Component). This enables a highly detailed analysis of operative modes through
the use of the "transition" functionality, which describes the reaction of a structural
element when an event occurs. A transition can be defined as a process which
contains a source and a target State, and a Trigger. The diagram employed for
this mission is illustrated in the figure 4.24.
In this case, 11 operative modes have been defined: (1) Dormant, during which the
Spacecraft (s/c) is integrated into the launcher and the entire system is powered off;
(2) In-orbit checkout, in which the s/c is released into orbit, turned on, and goes
through the detumbling, the deployment of solar panels, and the commissioning
of all the subsystems; (3) Basic, where the satellite is orbiting areas irrelevant to
the mission and is therefore in low power mode; (4) DataBase Creation, when it
is in sunlight and is mapping the Earth in order to test navigation by landmark
in the future; (5) Transmission, during which the s/c downlinks payload and
telemetry data to ground ; (6) Science EO, when it captures science data for UHI
measurements; (7) Manoeuvre, in which it performs station-keeping, transfer and
de-orbiting manoeuvres; (8) Autonomous Deep, that is activated once the Earth
mapping database has been completed and it is dedicated to testing navigation by
landmark and autonomous operations on board; (9) Transmission Deep, that
tests laser communication; (10) Safe, that activates in case of failure and recovers
either autonomously or via command from ground if necessary; (11) Passivated,
which is entered once the mission is complete and disposal operations are carried
out.
In the figure, four main transitions are delineated: automatic transitions are
represented by black, telecommand transitions by blue, failure detection transitions
by red, and the recovery transitions by green. Recovery transitions can occur in
both automatic and telecommand modality.

65

Case study

Figure 4.24: MSM Operative modes

66

Case study

The operative modes were subsequently imported into Valispace and associated
with the Space Segment, and with the different subsystems. The import pro-
cess was achieved through the use of the Export_modes.py (3.3) and Im-
port_All_Modelists.py (3.4), which enable the export of the modes from
Capella and the creation of what are defined as Modelists on Valispace by indicat-
ing the ID of the component in interest. The figure 4.25 illustrates the outcome of
the import process into Valispace, in this instance applied to the "Space Segment".
The same procedure was applied to the various subsystems.

Figure 4.25: Operative modes imported into Valispace from Capella

Although the operative modes are significantly clearer and more explanatory on
Capella, the process of importing them into Valispace was useful in order to exploit
its capacity for budget calculation. Indeed, within the Analysis section of Valispace,
it is possible to create a variety of budgets by taking advantage of the properties
defined and associated with the various components. The creation of a "Power"
matrix property connected to each subsystem, which defines the different power
values depending on the operative mode, enables the tool to automatically compute
a power budget (4.26).

67

Case study

Figure 4.26: "Power" property associated with AOCS&GNC component, depend-
ing on the operative modes.

The results can be viewed both in table form, as shown in the figure 4.27, and in
report form. Furthermore, it introduces the possibility of customising the budget
through the application of margins, for instance.

Figure 4.27: Power budget estimation on Valispace for In-orbit check-out
mode.

68

Case study

Additionally, the Valispace feature was employed to compute a preliminary mass
and volume budget, employing the "mass" and "volume" properties associated with
each subsystem. The results can be seen in the appendix C. It is evident that
this procedure may also be conducted on physical components, which are to be
delineated in the subsequent phase of the project, thus performing increasingly
complex and detailed analyses.

4.5 Subsystem Design
The next step in the methodology is to achieve a further level of detail by analysing
the various subsystems that constitute the satellite. In this case, the process has
only been started to give an hint on how it might proceed, but it has not yet
been fully implemented. The focus is on the EPS, which serves as an example to
demonstrate the potential of Capella and Valispace at this stage of the project.
As in the previous case, the work has started with Capella at the Physical
Architecture level. The objectives of the Physical Architecture are equivalent to
those of Logical Architecture. However, Physical Architecture defines the concrete
physical components that constitute the system. Consequently, it delineates the
definitive architectural configuration of the system, accurately representing how it
should be integrated. The focus shifts to the functions associated with technical
and implementation choices. Furthermore, the components that perform these
functions are also defined. [19]
The following table 4.5 provides a comprehensive list of the new concepts
introduced in this chapter [19].

Table 4.5: Physical Architecture terminology [19].

Symbol Element Description

Behaviour Physical
Component

Physical component that executes the allocated Phys-
ical Functions, contributing to the behaviour of the
System.

Node Physical
Component

Physical component that provides the material re-
sources for Behaviour Components.

Physical Port
Non-oriented port that belongs to an Node Compo-
nent; the Component Port belongs to a Behaviour
Component.

Physical Link Non-oriented connection between Node Components.

To begin this new phase starting from Capella, the "transition" feature is used to

69

Case study

transfer all the Functions defined at the Logical level.
The next step is to define the Behaviour and Node Components, which in this
case have been represented only for the EPS. Three Node Components have been
defined: the solar arrays, the Power Control and Distribution Unit (PCDU), which
is composed internally of Power Control Unit (PCU) and Power Distribution
Unit (PDU), and the battery pack. Each of these components has been then
associated with a Behaviour component, to which the functions already defined at
the Logical level could be allocated. The figure 4.28 shows the PAB diagram, which
illustrates all the aforementioned choices. It is also possible to define Functional
and Components exchanges. The Component Exchanges were categorised as either
relating to data, commands, or power lines.

Figure 4.28: PAB Structure EPS

70

Case study

Meanwhile, on Valispace, in addition to continuous requirements management at
every level, the components must now be updated. With minor modifications,
the codes implemented for the Logical Architecture can be used to bring the new
components defined on Capella to Valispace. Again, this is the same iterative
process followed in the previous sections, which can also be implemented here using
the same Python code, with a few adjustments.
A further capability of Valispace is highlighted: its ability to manage trade-offs
between different components. To demonstrate this, an example regarding batteries
has been provided in figure 4.29.

Figure 4.29: Battery trade-off on Valispace. [32] [33]

Valispace provides a clear overview of the components involved in the trade-off by
displaying all engineering information in a format that is easy to compare. It also
enables to iterate quickly through budgets, as it only requires the selection of one
component to update all analyses (for example, mass and volume budgets).

71

Conclusions

The present thesis explores the various methodologies employed in the domain of
System Engineering to create a more agile and effective approach to the design
of small satellite missions. The study was based on two of the most innovative
methodologies of recent years: DDSE and MBSE. The complementarity of these
two approaches, along with the integration of Capella and Valispace tools, enables
the analysis of the mission from different perspectives and throughout the entire
life cycle of the product.
Capella has been proven to be the most suitable option for system and subsystem
architectures definition and development, ensuring strong consistency and an
integrated vision. The ARCADIA method implemented by Capella provides a
clear and guided path through the different phases of system engineering, thus
helping to structure the design process. Additionally, it facilitates the conception
of ConOps and operative modes. In summary, Capella enhances efficiency, quality
and reliability in the development of complex systems, providing a structured
model-based approach that is essential for addressing the challenges of modern
systems engineering.
In parallel, Valispace has been demonstrated to excel in the management of
dynamic requirements and engineering data in real-time, facilitating collaborative
interactions among diverse teams. Furthermore, the software is designed to
estimate budgets and monitor their progression in accordance with the evolution
of the design, thereby ensuring accurate tracking of alterations.
However, the true strength of this methodology lays in the integration of the
two tools, which enables the bridging of the gaps between them, resulting in the
creation of a unified, promising tool capable of completely managing all the early
stages of the mission. The seamless interaction between these two tools has been
made possible by their capacity to offer APIs, which facilitate not only their own
integration but also integration with other platforms.

It is relevant to note that the present study has been conducted exclu-
sively on the preliminary stages of the project, with the intention of exploring

72

Conclusions

the potential applications of this work. Additionally, it could also function as a
starting point for subsequent iterations and increasingly detailed levels, supporting
the mission design project in the definition of the physical architecture and the
consolidation of the final design. With regard to the design of subsystems, which
has only been outlined here, there are numerous possibilities for enhancing the
integration of the two tools. For instance, it is possible to associate metadata with
components on Capella and then transfer them to Valispace, thus creating new and
increasingly realistic budgets. Furthermore, the potential for its application in the
domain of Assembly, Integration, Verification and Testing (AIV/T) management is
promising, especially if Capella is used in combination with the Test section in
Valispace.
Other areas that may be worthy of future investigation include requirements
management. Valispace has demonstrated a proven expertise in requirements
management, which influenced the decision to utilise this platform for management
purposes exclusively. An alternative strategy could be to formulate some relevant
requirements in Capella before proceeding to import them into Valispace. This
would replace the existing process of going through the functions defined in Capella.
In this particular instance, the potential disadvantages may be associated with the
replication of information across the two software programs. Nevertheless, this
remains an alternative that is worth of further consideration.
In summary, the project appears to offer a wide range of possibilities and establishes
the foundations for future research into the integration of these two tools.

It appears that Valispace and Capella are complementary in nature, and
the integration of these platforms via their respective APIs, Valispace Phyton API
and Python for Capella, has shown promising results. The APIs facilitate the
automation of repetitive and time-consuming workflows and tasks, thereby ensuring
data synchronisation and reducing human error. The result is an integrated and
cohesive toolchain that is fully customisable by the user through Python scripts.
This solution is accessible to users with even limited coding expertise, as both
APIs provide example codes that can be utilised as a foundational starting point
to acquire competencies. In addition, it is widely acknowledged that the selected
programming language, Python, is considered to be among the most accessible for
beginners.
There are numerous steps that can be pursued in the future. One of these is related
to the difference between the two APIs: Valispace exposes a REST API that
facilitates interaction with data via HTTP requests from the Python language. In
contrast, Python for Capella is an "internal" API that enables direct manipulation
of models on Capella through scripts executed within the Capella environment
itself. It is therefore reasonable to consider an alternative Capella API, designated
capellambse [34], which was developed before Python for Capella. This API allows

73

Conclusions

models to be read and written on Capella via Python scripts executed outside the
Capella environment. The difference is that the capellambse API, in combination
with the Valispace API, would enable the creation of an independent bridge that
can read data from Capella and integrate it into Valispace without the necessity
of launching the Capella application. However, further investigation is required
into the functionality of this API, in order to evaluate its ability to match the
capabilities of Python for Capella.

Finally, a next improvement of the tool is the development of a user inter-
face. At present, the integration procedure necessitates the execution of a series of
scripts. While these are designed to be straightforward and intuitive for the user,
they are still disconnected and fragmented. It is therefore important to be aware
of the process outlined in the chapter 3 dedicated to the integration of the tools.
The subsequent step could be the creation of a user interface that simplifies the
procedure for users with no prior experience of the integration process. This
would minimise the training required to familiarise users with the procedure. The
implementation of such a system would result in the establishment of an automated
and efficient workflow, thereby enhancing product quality and team productivity.

In conclusion, this approach offers new possibilities in the implementation
of the MBSE methodology associated with DDSE, potentially throughout the
entire life cycle of a small satellite. It raises the issue of the creation of new tools
capable of managing the potential of both Capella and Valispace solutions while
maintaining a single source of truth.

74

Appendix A

Python for Capella scripts

A.1 Export_SF_MO.py
1 # include for the Capella modeller API
2 include (’workspace :// Python4Capella / simplified_api / capella .

py’)
3 if False:
4 from simplified_api . capella import *
5

6 # include to read and write xlsx files
7 from openpyxl import *
8

9 # insert the path of your Capella model
10 aird_path = ’’
11

12 model = CapellaModel ()
13 model.open(aird_path)
14

15 # enter the System Analysis level
16 se = model. get_system_engineering ()
17 sa = se. get_system_analysis ()
18 root_function_MO = "To satisfy mission objectives "
19

20 # prepare Excel file export
21 project_name = aird_path [0:(aird_path .index("/", 1) + 1)]
22 project = CapellaPlatform . getProject (project_name)
23 folder = CapellaPlatform . getFolder (project , ’script results ’

)

75

Python for Capella scripts

24 xlsx_file_name = CapellaPlatform . getAbsolutePath (folder) + ’
/’ + ’Export_SF_MO .xlsx ’

25

26 # create a workbook
27 workbook = Workbook ()
28

29 # write Excel file header
30 worksheetSF = workbook . active
31 worksheetSF .title = ’All System functions ’
32 worksheetSF ["A1"] = ’SF name ’
33 worksheetSF ["B1"] = ’ID’
34 worksheetSF ["C1"] = ’Description ’
35 worksheetSF ["D1"] = ’leaf function ’
36

37 worksheetLF = workbook . create_sheet ("Leaf Functions ")
38 worksheetLF ["A1"] = ’Leaf functions name ’
39 worksheetLF ["B1"] = ’ID’
40 worksheetLF ["C1"] = ’Description ’
41

42 worksheetMO = workbook . create_sheet (" Mission objectives ")
43 worksheetMO ["A1"] = ’MO functions name ’
44 worksheetMO ["B1"] = ’ID’
45 worksheetMO ["C1"] = ’Description ’
46 worksheetMO ["D1"] = ’Root function name ’
47 worksheetMO ["E1"] = ’Specific Ancestor found ’
48

49 # retrieve all the system functions from the model
50 all_SF = sa. get_all_contents_by_type (SystemFunction)
51

52 # examine the hierarchy between functions
53 def is_descendant_of_specific_function (current_function ,

root_function_name):
54 parent = current_function . get_container ()
55 current_path = []
56

57 while parent :
58 if isinstance (parent , SystemFunction):
59 current_path . append (parent . get_name ())
60 if parent . get_name () == root_function_name :
61 return True , parent . get_name ()
62 parent = parent . get_container ()
63 return False , "Not Found"
64

65 i = 2
66 j = 2

76

Python for Capella scripts

67 k = 2
68

69 for sf in all_SF :
70 worksheetSF ["A" + str(i)] = sf. get_name ()
71 worksheetSF ["B" + str(i)] = sf. get_id ()
72 worksheetSF ["C" + str(i)] = sf. get_description () if sf.

get_description () else ’’
73

74 # determine if it’s a leaf function and place ’X’
75 is_leaf_function_marker = ’’
76 owned_functions_list = []
77

78 if hasattr (sf , ’get_owned_functions ’):
79 owned_functions_list = sf. get_owned_functions ()
80

81 if not owned_functions_list :
82 is_leaf_function_marker = ’X’
83 worksheetLF ["A" + str(j)] = sf. get_name ()
84 worksheetLF ["B" + str(j)] = sf. get_id ()
85 worksheetLF ["C" + str(j)] = sf. get_description ()
86 j = j + 1
87 is_descendant , SF_root_name =

is_descendant_of_specific_function (sf , root_function_MO)
88

89 if is_descendant :
90 parent_sf_name = sf. get_container (). get_name ()

if sf. get_container () else "No Parent "
91 worksheetMO ["A" + str(k)] = sf. get_name ()
92 worksheetMO ["B" + str(k)] = sf. get_id ()
93 worksheetMO ["C" + str(k)] = sf. get_description ()
94 worksheetMO ["D" + str(k)] = parent_sf_name
95 worksheetMO ["E" + str(k)] = SF_root_name
96 k = k + 1
97

98 worksheetSF ["D" + str(i)] = is_leaf_function_marker
99 i = i + 1

100

101 # save the Excel file
102 workbook .save(xlsx_file_name)
103

104 print(’saving excel file ’)
105

106 # refresh
107 CapellaPlatform . refresh (folder)
108 print(’Script execution finished .’)

77

Python for Capella scripts

Listing A.1: Export_SF_MO.py script [22].

A.2 Export_System_Actor.py
1 # include for the Capella modeller API
2 include (’workspace :// Python4Capella / simplified_api / capella .

py’)
3 if False:
4 from simplified_api . capella import *
5

6 # include to read and write xlsx files
7 from openpyxl import *
8

9 # insert the path of your Capella model
10 aird_path = ’’
11

12 model = CapellaModel ()
13 model.open(aird_path)
14

15 # enter the System Analysis level
16 se = model. get_system_engineering ()
17 sc = se. get_system_analysis ()
18

19 # get all System Actors
20 comps = sc. get_system_component_pkg ()
21 actors_list = comps. get_all_contents_by_type (SystemActor)
22

23 # examine System Actors hierarchy
24 def actor_hierarchy (system_actors_list):
25 selected_system_actors =[]
26 for actor in system_actors_list :
27 container = actor. get_container ()
28 if isinstance (container , SystemComponentPkg):
29 selected_system_actors . append (actor. get_label ())
30 return selected_system_actors
31

32 actors_to_export = actor_hierarchy (actors_list)
33

34 # prepare Excel file export
35 project_name = aird_path [0:(aird_path .index("/", 1) + 1)]
36 project = CapellaPlatform . getProject (project_name)

78

Python for Capella scripts

37 folder = CapellaPlatform . getFolder (project , ’script results ’
)

38 xlsx_file_name = CapellaPlatform . getAbsolutePath (folder) + ’
/’ + ’Export_System_Actors .xlsx ’

39

40 # create a workbook
41 workbook = Workbook ()
42

43 # write Excel file header
44 worksheet = workbook . active
45 worksheet .title = ’System actors ’
46 worksheet ["A1"] = ’Name ’
47

48 i = 2
49

50 for single_actor in actors_to_export :
51 worksheet ["A" + str(i)] = single_actor
52 i = i + 1
53

54 # save the Excel file
55 workbook .save(xlsx_file_name)
56

57 # refresh
58 CapellaPlatform . refresh (folder)

Listing A.2: Export_System_Actor.py script [22].

A.3 Export_Logical_Component.py
1 # name : Export Logical Component
2 # script -type : Python
3 # description : Export Logical Component
4 # popup : enableFor (org. polarsys . capella .core

.data. capellacore . CapellaElement)
5

6 # include for the Capella modeller API
7 include (’workspace :// Python4Capella / simplified_api / capella .

py’)
8 if False:
9 from simplified_api . capella import *

10

11 # include to read/write xlsx files
12 from openpyxl import *
13

79

Python for Capella scripts

14 # retrieve the element from the current selection
15 selected_elem = CapellaElement (CapellaPlatform .

getFirstSelectedElement ())
16

17 # insert the path of your Capella model
18 aird_path = ’’
19

20 model = CapellaModel ()
21 model.open(aird_path)
22

23 hierarchy_data = []
24

25 # go through the hierarchy of Logical Components and places
it on hierarchy_data

26 def traverseHierarchy (elem , parent_name =None , level =1):
27 elem_name = elem. get_name ()
28 hierarchy_data . append ({
29 ’Component Name ’: elem_name ,
30 ’Parent Name ’: parent_name ,
31 ’Hierarchy Level ’: level
32 })
33

34 # if the current element is a Logical Component , search
for children

35 if isinstance (elem , LogicalComponent):
36 lc = elem
37 for sub_elem in lc. get_owned_logical_components ():
38 if isinstance (sub_elem , LogicalComponent):
39 # recursive function , passing the name of

the current element as parent
40 traverseHierarchy (sub_elem , elem_name , level

+ 1)
41

42 # get System Engineering
43 se = model. get_system_engineering ()
44 print(’starting export of model ’ + se. get_name ())
45

46 # prepare Excel file export
47 project_name = aird_path [0:(aird_path .index("/", 1) + 1)]
48 project = CapellaPlatform . getProject (project_name)
49 folder = CapellaPlatform . getFolder (project , ’results ’)
50 xlsx_file_name = CapellaPlatform . getAbsolutePath (folder) + ’

/’ + ’Export_LC .xlsx ’
51

52 # create a workbook

80

Python for Capella scripts

53 workbook = Workbook ()
54

55 # write Excel file header
56 worksheet = workbook . active
57 worksheet .title = ’LC export ’
58 headers = [’Component Name ’, ’Parent Name ’, ’Hierarchy Level

’]
59 worksheet . append (headers)
60

61 # search for first level Logical Components and call the
function

62 for elem in se. get_logical_architecture (). get_logical_system
(). get_owned_logical_components ():

63 if isinstance (elem , LogicalComponent):
64 traverseHierarchy (elem)
65

66 # write the list on Excel
67 for row_data in hierarchy_data :
68 worksheet . append ([
69 row_data [’Component Name ’],
70 row_data [’Parent Name ’],
71 row_data [’Hierarchy Level ’]
72])
73

74 # save the Excel file
75 workbook .save(xlsx_file_name)
76

77 # refresh
78 CapellaPlatform . refresh (folder)

Listing A.3: Export_Logical_Component.py script [22].

A.4 Export_modes.py
1 # include for the Capella modeller API
2 include (’workspace :// Python4Capella / simplified_api / capella .

py’)
3 if False:
4 from simplified_api . capella import *
5

6 # include to read/write xlsx files
7 from openpyxl import *
8

9 # insert the path of your Capella model

81

Python for Capella scripts

10 aird_path = ’’
11

12 model = CapellaModel ()
13 model.open(aird_path)
14

15 # examine the Logical Architecture level
16 se = model. get_system_engineering ()
17 la = se. get_logical_architecture ()
18 log_comp = la. get_logical_component_pkg ()
19

20 # get all modes
21 modes = log_comp . get_all_contents_by_type (Mode)
22

23 # prepare Excel file export
24 project_name = aird_path [0:(aird_path .index("/", 1) + 1)]
25 project = CapellaPlatform . getProject (project_name)
26 folder = CapellaPlatform . getFolder (project , ’script results ’

)
27 xlsx_file_name = CapellaPlatform . getAbsolutePath (folder) + ’

/’ + ’Export_modes .xlsx ’
28

29 # create a workbook
30 workbook = Workbook ()
31

32 # write Excel file header
33 worksheet = workbook . active
34 worksheet .title = ’Operative modes ’
35 worksheet ["A1"] = ’Modes ’
36

37 i = 2
38

39 for mode in modes:
40 worksheet ["A" + str(i)] = mode. get_label ()
41 i = i + 1
42

43 # save the Excel file
44 workbook .save(xlsx_file_name)
45

46 # refresh
47 CapellaPlatform . refresh (folder)

Listing A.4: Export_modes.py script [22].

82

Appendix B

Valispace Python API
scripts

B.1 Import_Requirements.py
1 import valispace
2 import pandas as pd
3 from tqdm import tqdm
4

5 deployment = input(" Deployment Name:")
6

7 # Authentication to Valispace
8 try:
9 valispace = valispace .API(url="https ://"+ deployment +".

valispace .com",
10 session_token =" Bearer ...") # insert your access token
11 print(" Successful authentication using the provided

Token")
12

13 except Exception as e:
14 print(f"An error has occurred : {e}")
15

16 # insert your Excel file path
17 csvFilePath = r"..."
18

19 # insert the ID of the specification the requirements should
added to

20 specification_ID = int(input("Enter the ID of the project :")
)

83

Valispace Python API scripts

21

22 # generate the new identifier for the imported requirement
23 def getNextReqIdentifier (last_req_identifier , increase = 10)

:
24 splitted_req_identifier = last_req_identifier .split(’

-’)
25 splitted_req_identifier_len = len(

splitted_req_identifier)
26 next_index = int(splitted_req_identifier [

splitted_req_identifier_len -1]) + increase
27 next_idenfier = f"{’-’. join(splitted_req_identifier [:

splitted_req_identifier_len -1]) }-{f"{str(next_index):03}"
}"

28 return next_idenfier
29

30 # get the identifier of the last requirement created in that
specification

31 def getLastReqIdentifier (specificationID):
32 try:
33 SpecRequirements = valispace .get(f’

requirements / specifications /{ specificationID }/’)
34 SpecRequirements = SpecRequirements [’

requirements ’]
35 req_identifiers = []
36 for req in tqdm(SpecRequirements ,desc="

Getting informations of the specification requirements "):
37 req_identifier = valispace .get(f’

requirements /{ req}’)[’identifier ’]
38 req_identifiers . append (req_identifier

)
39 last_identifier = ""
40 biggest_index = 0
41 for identifier in req_identifiers :
42 splitted_identifier = identifier .

split(’-’)
43 index = int(splitted_identifier [len(

splitted_identifier) -1])
44 if index > biggest_index :
45 biggest_index = index
46 last_identifier = identifier
47 return last_identifier
48 except :
49 Exception (’Error while getting specification

requirements !’)
50

84

Valispace Python API scripts

51 # get all requirements in the selected specification
52 def import_req (csvFilePath , specification_ID):
53 reqs = pd. read_excel (csvFilePath)
54 last_req_identifier = getLastReqIdentifier (

specification_ID)
55 for index , row in reqs. iterrows ():
56 next_req_identifier = getNextReqIdentifier (

last_req_identifier)
57 last_req_identifier = next_req_identifier
58 req = {
59 " specification ": specification_ID ,
60 " identifier " : next_req_identifier ,
61 "title" : row[’Function ’],
62 "text" : row[’Description ’]
63 }
64 requirementPosted = valispace .post(’

requirements /’, req)
65

66 import_req (csvFilePath , specification_ID)

Listing B.1: Import_Requirements.py script.

B.2 Import_System_Components.py
1 import valispace
2 import pandas as pd
3

4 deployment = input(" Deployment Name:")
5

6 # Authentication to Valispace
7 try:
8 valispace = valispace .API(url="https ://"+ deployment +".

valispace .com",
9 session_token =" Bearer ...") # insert your access token

10 print(" Successful authentication using the provided
Token")

11

12 except Exception as e:
13 print(f"An error has occurred : {e}")
14

15 # insert the Excel file path
16 excelFilePath = r"..."
17

18 # insert the ID of the parent component

85

Valispace Python API scripts

19 parent_component = 0
20

21 # import System Components
22 def import_comp (excelFilePath , parent_component):
23 comps = pd. read_excel (excelFilePath)
24 for index , row in comps. iterrows ():
25 component = {
26 "name": row[’Name ’],
27 " parent ": parent_component
28 }
29 # replace spaces with underscores
30 for key , value in component .items ():
31 if isinstance (value , str):
32 component [key] = value. replace (’ ’, ’_’)
33 componentPosted = valispace .post(" components /",

component)
34

35 import_comp (excelFilePath , parent_component)

Listing B.2: Import_System_Components.py script.

B.3 Import_LC_Hierarchy.py
1 import valispace
2 import pandas as pd
3

4 deployment = input(" Deployment Name:")
5

6 # Authentication to Valispace
7 try:
8 valispace = valispace .API(url="https ://"+ deployment +".

valispace .com",
9 session_token =" Bearer ...") # insert your access token

10 print(" Successful authentication using the provided
Token")

11

12 except Exception as e:
13 print(f"An error has occurred : {e}")
14

15 capella_id_to_valispace_id_map = {}
16

17 # insert the Excel file path
18 excelFilePath = r"..."
19 name_to_valispace_id_map = {}

86

Valispace Python API scripts

20

21 # inserts the ID of the parent component from which to start
the import

22 top_parent_id_in_valispace = 0
23

24 # hierarchy import
25 def import_full_hierarchy_by_name (excelFilePath ,

top_level_valispace_parent_id =0):
26 print(f"Start importing LC hierarchy from file: {

excelFilePath }")
27 try:
28 comps_df = pd. read_excel (excelFilePath)
29 all_levels = sorted (comps_df [’Hierarchy Level ’].

unique ())
30 for current_level in all_levels :
31 components_at_current_level = comps_df [comps_df [

’Hierarchy Level ’] == current_level]
32

33 # replace spaces with underscores
34 for index , row in components_at_current_level .

iterrows ():
35 current_elem_name = row[’Component Name ’]
36 parent_elem_name_from_excel = row[’Parent

Name ’]
37 current_elem_name_cleaned =

current_elem_name . replace (’ ’, ’_’). replace (’&’,’_’)
38 if pd.notna(parent_elem_name_from_excel):
39 parent_elem_name_cleaned =

parent_elem_name_from_excel . replace (’ ’, ’_’). replace (’&’
,’_’)

40 else:
41 parent_elem_name_cleaned = None
42 # determine the ID of the parent of the

current component
43 valispace_parent_id = None
44 if current_level == 1:
45 valispace_parent_id =

top_level_valispace_parent_id
46 else:
47 valispace_parent_id =

name_to_valispace_id_map .get(parent_elem_name_cleaned)
48 if not valispace_parent_id :
49 print(f" Attention : parent ID ’{

parent_elem_name_from_excel }’ for ’{ current_elem_name }’
not found.")

87

Valispace Python API scripts

50 continue
51

52 component_data = {
53 "name": current_elem_name_cleaned ,
54 }
55 if valispace_parent_id :
56 component_data [" parent "] =

valispace_parent_id
57

58 try:
59 # import the component on Valispce
60 component_posted = valispace .post("

components /", component_data)
61 valispace_id = component_posted .get(’id’

)
62 valispace_name_from_vs =

component_posted .get(’name ’)
63 name_to_valispace_id_map [

current_elem_name_cleaned] = valispace_id
64

65 except Exception as e:
66 print(f" Error: {e}")
67 continue
68

69 print("\ nImport of hierarchy completed .")
70

71 except FileNotFoundError :
72 print(f"Error :’{ excelFilePath }’ excel file not found

")
73 except Exception as e:
74 print(f"Error: {e}")
75

76 import_full_hierarchy_by_name (excelFilePath ,
top_parent_id_in_valispace)

Listing B.3: Import_LC_Hierarchy.py script.

B.4 Components_bridge.py
1 import valispace
2 import pandas as pd , json
3

4 deployment = input(" Deployment Name:")
5

88

Valispace Python API scripts

6 # Authentication to Valispace
7 try:
8 valispace = valispace .API(url="https ://"+ deployment +".

valispace .com",
9 session_token =" Bearer ...") # insert your access token

10 print(" Successful authentication to Valispace using the
provided Token")

11

12 except Exception as e:
13 print(f"An error has occurred : {e}")
14

15 # insert the Valispace project ID
16 Valispace_project_ID = 100
17

18 # specify the ID of the component from which to start the
hierarchy

19 start_component_ID = 30856
20

21 # Excel file of the Logical Component
22 excel_file_path = r"..." exported from Capella
23 excel_sheet_name = ’LC export ’
24 excel_parent_column = ’Parent Name ’
25 excel_component_column = ’Component Name ’
26

27 # Function that extracts all components from Valispace
project ID

28 def get_all_project_components (project_id):
29 all_components = valispace .get(f" components /? project ={

str(project_id)}")
30 return all_components
31

32 # Function that builds the parent -child hierarchy of
components

33 def get_valispace_parent_child_hierarchy (all_components ,
start_id =None):

34

35 component_id_to_name = {comp[’id’]: comp[’name ’] for
comp in all_components }

36 component_id_to_obj = {comp[’id’]: comp for comp in
all_components }

37

38 # Search for the starting component of the hierarchy
39 first_component = None
40 if start_id :
41 first_component = component_id_to_obj .get(start_id)

89

Valispace Python API scripts

42 if not first_component :
43 print(f" WARNING : starting component not found")
44 return []
45 else:
46 print("ERROR: Define the correct ID")
47 return []
48

49 # Recursive internal function to extract the parent -
child relationships

50 def get_relationships_recursive (current_component_id):
51 Valispace_relationships = []
52 current_component_name = component_id_to_name .get(

current_component_id)
53

54 # Find all direct children of the current component
55 children = []
56 for comp in all_components :
57 if comp.get(’parent ’) == current_component_id :
58 children . append (comp)
59

60 for child in children :
61 child_name = child[’name ’]
62 Valispace_relationships . append ({" Parent ":

current_component_name , "Child": child_name })
63

64 # Call the function recursively for the child ’s
children

65 Valispace_relationships . extend (
get_relationships_recursive (child[’id’]))

66 return Valispace_relationships
67

68 # Start recursion from the chosen initial component
69 parent_child_relationships = get_relationships_recursive

(first_component [’id’])
70 return parent_child_relationships
71

72 # Function that reads Excel data from Capella
73 def get_excel_data (file_path , sheet_name , parent_col ,

child_col):
74 excel = pd. read_excel (file_path , sheet_name = sheet_name)
75

76 Capella_relationships = []
77

78 for index , row in excel. iterrows ():
79 # Retrieves values and converts them into strings

90

Valispace Python API scripts

80 parent = str(row[parent_col]).strip () if pd.notna(
row[parent_col]) else None

81 child = str(row[child_col]).strip () if pd.notna(row[
child_col]) else None

82

83 # Replace spaces with underscores
84 if parent is not None:
85 parent = parent . replace (" ", "_"). replace ("&", "

_")
86 if child is not None:
87 child = child. replace (" ", "_"). replace ("&", "_"

)
88

89 # Normalise the string ’None ’ or empty to a true
None for the parent

90 if parent == ’’ or (isinstance (parent , str) and
parent .lower () == ’none ’):

91 parent = None
92

93 if child:
94 Capella_relationships . append ({" Parent ": parent ,

"Child": child })
95

96 return Capella_relationships
97

98

99 # Function that compares the component relationships of
Capella and Valispace

100 def compare_lists (valispace_relationships ,
capella_relationships):

101 valispace_rel_set = set ((rel[’Parent ’] if rel[’Parent ’]
is not None else ’’, rel[’Child ’]) for rel in
valispace_relationships)

102 capella_rel_set = set ((rel[’Parent ’] if rel[’Parent ’] is
not None else ’’, rel[’Child ’]) for rel in

capella_relationships)
103

104 rel_only_in_valispace = valispace_rel_set -
capella_rel_set

105 rel_only_in_capella = capella_rel_set -
valispace_rel_set

106

107 if not rel_only_in_valispace and not rel_only_in_capella
:

91

Valispace Python API scripts

108 print("Parent -Child relationships are IDENTICAL in
Valispace and Capella ")

109 else:
110 if rel_only_in_valispace :
111 print("\ nRelationships PRESENT in Valispace but

NOT in Capella :")
112 for parent , child in sorted (list(

rel_only_in_valispace)):
113 print(f" - Parent : ’{ parent if parent else

’None ’}’, Child: ’{child}’")
114

115 if rel_only_in_capella :
116 print("\ nRelationships PRESENT in Capella but

NOT in Valispace :")
117 for parent , child in sorted (list(

rel_only_in_capella)):
118 print(f" - Parent : ’{ parent if parent else

’None ’}’, Child: ’{child}’")
119

120 # Function that defines the components to be imported into
Valispace

121 def comps_to_import_to_Vali (valispace_relationships ,
capella_relationships):

122 capella_rel_set = set ((rel[’Parent ’] if rel[’Parent ’] is
not None else ’’, rel[’Child ’]) for rel in

capella_relationships)
123 valispace_comps_set = set ((rel[’Child ’]) for rel in

valispace_relationships)
124 capella_comps_set = set ((rel[’Child ’]) for rel in

capella_relationships)
125 comps_only_in_capella = capella_comps_set -

valispace_comps_set
126 only_capella_child_parent = {child: parent for parent ,

child in capella_rel_set }
127

128 components_to_import_to_valispace = []
129 for comp in comps_only_in_capella :
130 parent_of_comp = only_capella_child_parent .get(comp ,

’’)
131 components_to_import_to_valispace . append ({
132 "name": comp ,
133 " parent ": parent_of_comp
134 })
135 if not comps_only_in_capella :

92

Valispace Python API scripts

136 print("\ nValispace and Capella have the same
components ")

137 else:
138 print("\ nComponents that are PRESENT in Capella but

NOT in Valispace :")
139 print(f"\n{ components_to_import_to_valispace }")
140

141 print("\ nComparison completed .")
142 return components_to_import_to_valispace
143

144

145 print("Start of Valispace and Capella data extraction
programme ...")

146

147 all_project_components = get_all_project_components (
Valispace_project_ID)

148

149 valispace_hierarchy = []
150 if all_project_components :
151 valispace_hierarchy =

get_valispace_parent_child_hierarchy (
152 all_project_components ,
153 start_id = start_component_ID
154)
155

156 capella_data = get_excel_data (
157 excel_file_path ,
158 excel_sheet_name ,
159 excel_parent_column ,
160 excel_component_column
161)
162

163 if valispace_hierarchy and capella_data :
164 compare_lists (valispace_hierarchy , capella_data)
165 else:
166 print("\ nUnable to compare : no valid data from Valispace

or Capella .")
167

168 new_vali_comps = comps_to_import_to_Vali (valispace_hierarchy
, capella_data)

169

170 if new_vali_comps :
171 print("\n--- Import to Valispace ---")
172

173 for component_data in new_vali_comps :

93

Valispace Python API scripts

174 component_name = component_data [’name ’]
175 parent_name = component_data [’parent ’]
176 parent_id = None # initialisation
177

178 if parent_name :
179 try:
180 search_parent_ID = valispace .get(’components

’, params ={
181 ’name ’: parent_name ,
182 ’project ’: Valispace_project_ID
183 })
184

185 if search_parent_ID :
186 for found_component in search_parent_ID :
187 if found_component .get(’name ’) ==

parent_name :
188 parent_id = found_component .get(

’id’)
189 print(f" SUCCESS : Parent ’{

parent_name }’ with { parent_id } was found.")
190 break
191

192 if parent_id is None:
193 print(f" WARNING : Parent ’{

parent_name }’ of the component ’{ component_name }’ not
found. The component will be created without a parent .")

194 else:
195 print(f" WARNING : No results found for

the parent ’{ parent_name }’. The component ’{
component_name }’ was not imported .")

196 continue
197

198 except Exception as e:
199 print(f"ERROR: {e} \ nParent ’s ID search

failed for the ’{ component_name }’.")
200 continue
201

202 valispace_payload = {
203 "name": component_name ,
204 " project ": Valispace_project_ID
205 }
206 if parent_id is not None:
207 valispace_payload [" parent "] = parent_id
208

209 # Post the component on Valispace

94

Valispace Python API scripts

210 component_posted = valispace .post(" components /",
valispace_payload)

211

212 else:
213 print("\ nThere are no components to import .")

Listing B.4: Components_bridge.py script.

B.5 Import_All_Modelists.py
1 import valispace
2 import pandas as pd
3

4 deployment = input(" Deployment Name:")
5

6 # Authentication to Valispace
7 try:
8 valispace = valispace .API(url="https ://"+ deployment +".

valispace .com",
9 session_token =" Bearer ...") # insert your access token

10 print(" Successful authentication using the provided
Token")

11

12 except Exception as e:
13 print(f"An error has occurred : {e}")
14

15 # insert the ID of the project
16 project_ID = 0
17 # insert the ID of the component of interest
18 component_ID = 0
19 # insert the name of new Modelist to be imported
20 modelist_name = " Operative Modes"
21

22 # insert Excel file path
23 excel_file_path = r"..."
24

25 # Import Modelist on Valispace
26 def import_modes (excelFilePath , component_ID , modelist_name)

:
27 modes = pd. read_excel (excelFilePath)
28 mode_name_string = [
29 [str(row[’Modes ’]).strip (). replace (’ ’, ’_’)]
30 for index , row in modes. iterrows ()
31 if str(row[’Modes ’]).strip ()

95

Valispace Python API scripts

32]
33 num_rows = len(mode_name_string)
34 cleaned_modelist = modelist_name .strip (). replace (’ ’, ’_

’)
35 modelist = {
36 " mode_names ": mode_name_string ,
37 " parent ": component_ID ,
38 "name": cleaned_modelist ,
39 " number_of_rows ": num_rows ,
40 " matrices_referring ": [],
41 " matrices_linking ": []
42 }
43 print(modelist)
44 modePosted = valispace .post(" modelists /", modelist)
45

46 import_modes (excel_file_path , component_ID , modelist_name)
47 print(" Modelist was imported ")

Listing B.5: Import_All_Modelists.py script.

96

Appendix C

Capella diagrams

Figure C.1: SFBD To position the system

Figure C.2: SFBD To perform ground operations

Figure C.3: SFBD To implement disposal operations

97

Capella diagrams

Figure C.4: SAB I&T

98

Capella diagrams

Figure C.5: SAB LEOP

99

Capella diagrams

Figure C.6: SAB EOL

100

Capella diagrams

Figure C.7: Mass budget estimation on Valispace.

Figure C.8: Volume budget estimation on Valispace.

101

Bibliography

[1] NASA. NASA System Engineering Handbook. NASA, 2007 (cit. on pp. 3, 4).
[2] D.D. Walden, G.J. Roedler, K.J. Forsberg, R.D. Hamelin, and T.M. Shortell.

INCOSE Systems engineering handbook. Wiley, 2015 (cit. on pp. 3, 8).
[3] S. Corpino. Space Missions and Systems Design – SMSD. Tech. rep. lectures,

Politecnico di Torino, 2025/26 (cit. on pp. 3, 11).
[4] E. Brusa, A. Calà, and D. Ferretto. System Engineering and Its Application

to Industrial Product Development. Springer, 2018 (cit. on pp. 4, 11–15).
[5] L. Lindblad, M. Witzmann, and S. Vanden Bussche. Data-Driven System

Engineering: turning MBSE into industrial reality. 2021. url: https://
www.valispace.com/wp-content/uploads/2021/03/Valispace-2018-
Turning-MBSE-Into-Industrial-Reality-SECESA.pdf (cit. on pp. 5–8).

[6] M. Ackley. Efficient Engineering 101 (II): Document-Driven vs. Data-Driven
Systems Engineering (DDSE). 2019. url: https://www.valispace.com/
efficient-engineering-101-ii-document-driven-vs-data-driven-
systems-engineering-ddse/ (cit. on pp. 5, 17).

[7] Jeff A. Estefan. «Survey of Model-Based Systems Engineering (MBSE)
Methodologies». In: ResearchGate.net (2008) (cit. on pp. 8, 10, 11).

[8] NDIA. Model-Based Engineering Subcommittee, Final Report. Tech. rep.
NDIA, 2011 (cit. on p. 8).

[9] M. Peres. The Complete Guide to Model-Based Systems Engineering (MBSE).
Valispace. 2023. url: https://www.valispace.com/the-complete-guide-
to-model-based-systems-engineering-mbse/ (cit. on p. 8).

[10] P. Guardabasso, L. Lindbland, M. Witzmann, and S.Siarov. «Evaluation of
the Learning Process of a Data-Driven Systems Engineering Methodology in a
Workshop Environment». In: International Astronautical Congress (IAC-19).
2019 (cit. on p. 9).

102

https://www.valispace.com/wp-content/uploads/2021/03/Valispace-2018-Turning-MBSE-Into-Industrial-Reality-SECESA.pdf
https://www.valispace.com/wp-content/uploads/2021/03/Valispace-2018-Turning-MBSE-Into-Industrial-Reality-SECESA.pdf
https://www.valispace.com/wp-content/uploads/2021/03/Valispace-2018-Turning-MBSE-Into-Industrial-Reality-SECESA.pdf
https://www.valispace.com/efficient-engineering-101-ii-document-driven-vs-data-driven-systems-engineering-ddse/
https://www.valispace.com/efficient-engineering-101-ii-document-driven-vs-data-driven-systems-engineering-ddse/
https://www.valispace.com/efficient-engineering-101-ii-document-driven-vs-data-driven-systems-engineering-ddse/
https://www.valispace.com/the-complete-guide-to-model-based-systems-engineering-mbse/
https://www.valispace.com/the-complete-guide-to-model-based-systems-engineering-mbse/

BIBLIOGRAPHY

[11] G. Dinolfo. «Application of MBSE to reverse engineering a rendzvous and
docking space mission». MA thesis. Politecnico di Torino, 2022 (cit. on p. 9).

[12] IBM. Integrating Rhapsody and DOORS. 2025. url: https://www.ibm.com/
docs/en/engineering-lifecycle-management-suite/design-rhapsody/
10.0.1?topic=tools-integrating-rhapsody-doors (cit. on p. 15).

[13] Dassault Systemes. Cameo System Modeler. 2025. url: https://www.3ds.
com/products/catia/no-magic/cameo-systems-modeler (cit. on p. 15).

[14] MathWorks. System Composer. 2025. url: https://www.mathworks.com/
products/system-composer.html (cit. on p. 16).

[15] Eclipse. Eclipse Papyrus. 2023. url: https://eclipse.dev/papyrus/ (cit.
on p. 16).

[16] L. Lindblad, M. Witzmann, and S. Vanden Bussche. System Engineering
fro a web browser: turning MBSE into industrial reality. 2016. url: https:
//www.valispace.com/wp-content/uploads/2021/02/Lindblad-SECESA-
2016-Valispace-web-browser-engineering.pdf (cit. on pp. 16–18).

[17] Capella. url: https://mbse-capella.org/arcadia.html (cit. on pp. 16,
20, 21, 23, 24).

[18] url: https://www.valispace.com/ (cit. on p. 18).
[19] P. Roques. System Architecture Modeling with the Arcadia Method - A pratical

guide to Capella. ISTE, 2018 (cit. on pp. 20–23, 42, 49, 51, 59, 65, 69).
[20] P. Minacapilli, F. C. Zurita, S. Criado Zurita, S. Campo Pérez, A. Rodríguez

Pérez-Silva, and D. Escudero Lasheras. «Small satellites mission design en-
hancement through MBSE and DDSE toolchain». In: Model Based Space
Systems and Software Engineering - MBSE2022 (2022) (cit. on pp. 28, 29,
62).

[21] J. Whitehouse. MBSE at ESA: State of MBSE in ESA Missions and Activities.
MBSE 2021 Conference. url: https://indico.esa.int/event/386/
timetable/#5-mbse-at-esa-state-of-mbse-in (cit. on p. 29).

[22] Labs for Capella. Python for Capella. Valispace. url: https://github.com/
labs4capella/python4capella (cit. on pp. 30, 34, 35, 78, 79, 81, 82).

[23] Valispace Python API. url: https://github.com/valispace/ValispaceP
ythonAPI (cit. on p. 30).

[24] Capella. Capella Add-Ons. url: https://mbse-capella.org/addons.html
(cit. on p. 33).

103

https://www.ibm.com/docs/en/engineering-lifecycle-management-suite/design-rhapsody/10.0.1?topic=tools-integrating-rhapsody-doors
https://www.ibm.com/docs/en/engineering-lifecycle-management-suite/design-rhapsody/10.0.1?topic=tools-integrating-rhapsody-doors
https://www.ibm.com/docs/en/engineering-lifecycle-management-suite/design-rhapsody/10.0.1?topic=tools-integrating-rhapsody-doors
https://www.3ds.com/products/catia/no-magic/cameo-systems-modeler
https://www.3ds.com/products/catia/no-magic/cameo-systems-modeler
https://www.mathworks.com/products/system-composer.html
https://www.mathworks.com/products/system-composer.html
https://eclipse.dev/papyrus/
https://www.valispace.com/wp-content/uploads/2021/02/Lindblad-SECESA-2016-Valispace-web-browser-engineering.pdf
https://www.valispace.com/wp-content/uploads/2021/02/Lindblad-SECESA-2016-Valispace-web-browser-engineering.pdf
https://www.valispace.com/wp-content/uploads/2021/02/Lindblad-SECESA-2016-Valispace-web-browser-engineering.pdf
https://mbse-capella.org/arcadia.html
https://www.valispace.com/
https://indico.esa.int/event/386/timetable/#5-mbse-at-esa-state-of-mbse-in
https://indico.esa.int/event/386/timetable/#5-mbse-at-esa-state-of-mbse-in
https://github.com/labs4capella/python4capella
https://github.com/labs4capella/python4capella
https://github.com/valispace/ValispacePythonAPI
https://github.com/valispace/ValispacePythonAPI
https://mbse-capella.org/addons.html

BIBLIOGRAPHY

[25] M2Doc from Capella model. Python4Capella Simplified Metamodel. url:
https : / / github . com / labs4capella / python4capella / blob / master /
specification/M2Doc%20generation/Python4Capella%20Simplified%
20Metamodel.docx (cit. on p. 35).

[26] ECMWF Copernicus Climate Change Service. Demonstrating heat stress in
European cities. 2019. url: https://climate.copernicus.eu/demonstrat
ing-heat-stress-european-cities (cit. on pp. 41, 43).

[27] Copernicus Land Monitoring Service. A method to combat the Urban Heat
Island effect. url: https : / / land . copernicus . eu / en / use - cases / a -
method- to- combat- the- urban- heat- island- effect/a- method- to-
combat-the-urban-heat-island-effect (cit. on p. 41).

[28] Copernicus Climate Data Store. Climate variables for cities in Europe from
2008 to 2017. 2019. url: https://cds.climate.copernicus.eu/datasets/
sis-urban-climate-cities?tab=overview (cit. on p. 43).

[29] ECMWF. Destination Earth Use Case. Addressing urban heat island effect.
url: https://stories.ecmwf.int/destination-earth-use-case/ (cit.
on p. 43).

[30] Cure Copernicus. Copernicus for Urban Resilience in Europe. url: https:
//cure-copernicus.eu/thecuresystem.html (cit. on p. 43).

[31] ESA. Urban Heat Islands and Urban Thermography. Tech. rep. The UHI
project - Executive Summary, 2011 (cit. on p. 43).

[32] AAC Clyde Space. OPTIMUS-80. Datasheet. url: https://www.aac-clyde.
space/what-we-do/space-products-components/cubesat-batteries
(cit. on p. 71).

[33] GOMspace. NanoPower BPX. Datasheet. url: https://gomspace.com/
shop/subsystems/power/nanopower-bpx.aspx (cit. on p. 71).

[34] Github. Python-Capellambse. url: https://github.com/DSD- DBS/py-
capellambse (cit. on p. 73).

104

https://github.com/labs4capella/python4capella/blob/master/specification/M2Doc%20generation/Python4Capella%20Simplified%20Metamodel.docx
https://github.com/labs4capella/python4capella/blob/master/specification/M2Doc%20generation/Python4Capella%20Simplified%20Metamodel.docx
https://github.com/labs4capella/python4capella/blob/master/specification/M2Doc%20generation/Python4Capella%20Simplified%20Metamodel.docx
https://climate.copernicus.eu/demonstrating-heat-stress-european-cities
https://climate.copernicus.eu/demonstrating-heat-stress-european-cities
https://land.copernicus.eu/en/use-cases/a-method-to-combat-the-urban-heat-island-effect/a-method-to-combat-the-urban-heat-island-effect
https://land.copernicus.eu/en/use-cases/a-method-to-combat-the-urban-heat-island-effect/a-method-to-combat-the-urban-heat-island-effect
https://land.copernicus.eu/en/use-cases/a-method-to-combat-the-urban-heat-island-effect/a-method-to-combat-the-urban-heat-island-effect
https://cds.climate.copernicus.eu/datasets/sis-urban-climate-cities?tab=overview
https://cds.climate.copernicus.eu/datasets/sis-urban-climate-cities?tab=overview
https://stories.ecmwf.int/destination-earth-use-case/
https://cure-copernicus.eu/thecuresystem.html
https://cure-copernicus.eu/thecuresystem.html
https://www.aac-clyde.space/what-we-do/space-products-components/cubesat-batteries
https://www.aac-clyde.space/what-we-do/space-products-components/cubesat-batteries
https://gomspace.com/shop/subsystems/power/nanopower-bpx.aspx
https://gomspace.com/shop/subsystems/power/nanopower-bpx.aspx
https://github.com/DSD-DBS/py-capellambse
https://github.com/DSD-DBS/py-capellambse

	List of Figures
	List of Tables
	List of abbreviations
	Introduction
	State of Art
	Systems Engineering
	Data-Driven Systems Engineering
	Model-Based Systems Engineering
	Methodologies
	Modelling languages

	Systems Engineering Tools
	Valispace
	Capella

	Valispace-Capella Integration
	DDSE-MBSE approach
	Integration
	Stakeholders Needs Analysis
	System Analysis
	System Design
	Subsystems Design

	Python for Capella
	Export_SF_MO.py
	Export_System_Actor.py
	Export_Logical_Component.py
	Export_modes.py

	Valispace Python API
	Import_Requirements.py
	Import_System_Components.py
	Import_LC_Hierarchy.py
	Components_bridge.py
	Import_All_Modelists.py

	Case study
	Mission Overview
	Stakeholders Needs Analysis
	System Analysis
	System Design
	Subsystem Design

	Conclusions
	Python for Capella scripts
	Export_SF_MO.py
	Export_System_Actor.py
	Export_Logical_Component.py
	Export_modes.py

	Valispace Python API scripts
	Import_Requirements.py
	Import_System_Components.py
	Import_LC_Hierarchy.py
	Components_bridge.py
	Import_All_Modelists.py

	Capella diagrams
	Bibliography

