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Abstract

Transitional flows play a critical role in many low- to moderate-Reynolds-number aerodynamic
applications, including unmanned aerial vehicles, gliders, and wind turbines. Traditional turbu-
lence models often fail to capture laminar-to-turbulent transition accurately, leading to erroneous
predictions of boundary-layer behavior and aerodynamic performance. To address this limitation,
this work focuses on the integration of the Langtry–Menter k–ω–γ–Reθt transition model into
the high-fidelity RANS solver ADflow, with support for gradient-based design optimization via
algorithmic differentiation.

The implementation enables the simulation of transitional flows using a local, correlation-based
approach suitable for complex geometries and optimization tasks. Although the gradient verification
for the transitional model remains incomplete, initial results show promise. Deviations in sensitivity
accuracy and prediction fidelity indicate areas for further development and validation.

To demonstrate the framework’s optimization capability, a shape optimization study was con-
ducted on a supercritical airfoil using the Spalart–Allmaras model. The optimization successfully
improved aerodynamic performance under constraints, showcasing the practical utility of ADflow’s
gradient-based infrastructure. This study lays the groundwork for future efforts in adjoint-based
transitional flow optimization and highlights the importance of transition modeling in modern
aerodynamic design.
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XI



LIST OF TABLES

Symbol Description SI Unit

u Flow velocity m/s
U Mean flow velocity m/s

U∞ Freestream flow velocity m/s
u′ Fluctuating flow velocity m/s

x/c Normalized axial coordinate –
y+ Wall coordinate, ρyuτ /µ –
ω Specific turbulence dissipation rate 1/s
Ω Vorticity magnitude,

ñ
2ΩijΩij 1/s

Ωij Vorticity tensor, 0.5(∂Ui/∂xj – ∂Uj/∂xi) 1/s

XII



Chapter 1

Introduction

1.1 Motivation

The accurate prediction of transitional flows remains a key challenge in Computational Fluid
Dynamics [1]. While high Reynolds number applications often exhibit minimal laminar regions,
model-scale tests and many practical systems—such as UAVs [2], gliders [3], small submarines [4],
and wind turbines [5]—operate at moderate or low Reynolds numbers, where transition is significant.
In such regimes, traditional Reynolds-Averaged Navier-Stokes (RANS) models often mispredict early
transition, especially near stagnation points, due to their fully turbulent assumptions.

In some contexts, e.g., marine propeller testing [6] or laminar flow wing design [7], transition
prediction becomes critical, particularly when flow tripping is absent or laminar flow is desired. Con-
sequently, transition-sensitive models have been developed to extend RANS applicability. However,
these models are still under refinement and lack the maturity of conventional turbulence models.

Transition modeling has gained traction through efforts like the NASA Transition Modeling
Workshop [8], and the AIAA Transition Modeling Workshops [9].

Standard turbulence models (k–ϵ, k–ω, Spalart–Allmaras) are inadequate for transition due to
calibration against fully turbulent or isotropic turbulence data [10, 11]. For example, the k–ω model
predicts transition at Re = 8100 [12], resulting in a negligible laminar flow region for Re < 105.
Early transition prediction and sensitivity to tripping or initial conditions limit their reliability [13].

Transition is triggered by mechanisms like freestream turbulence, roughness, separation, wakes,
and crossflow [14, 15], requiring models that incorporate instability physics. High-fidelity methods
DNS offers accuracy but are too costly for routine use [16], while Large Eddy Simulation (LES)
accuracy depends significantly on the subgrid-scale (SGS) model employed [17]. The eN method
accurately predicts natural transition [18]; however, its empirical basis and non-local nature hinder
integration into RANS solvers and HPC frameworks employing parallel domain decomposition,
where non-local computations are costly and difficult to implement efficiently [19].

Low-Re models with damping functions show limited success [20], and some k–ϵ variants suffer
from instability [21]. Correlation-based models address these gaps. The γ–Reθ model [22] is widely
adopted for its locality and generality. Others, like k–kL–ω [23] and the Amplification Factor
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Transport model [24], replicate eN capabilities within RANS.
Several studies have employed the γ–Reθ transition model for aerodynamic shape optimization.

Khayatzadeh and Nadarajah [25, 26] applied this model in the adjoint-based optimization of the S809
and the natural laminar flow NLF(1)-0416 airfoils at low Reynolds numbers. Further applications
of the Langtry–Menter model have been demonstrated in optimization frameworks using the Non-
Dominated Sorting Genetic Algorithm II (NSGA-II) as the search algorithm, with Kriging-based
surrogate models introduced to enhance the efficiency of the optimization process [27, 28]. Robitaille
et al. [29] relied on first-order finite-difference approximations for optimization, which tend to
be computationally expensive. To address this limitation, Rashad and Zingg [30] developed an
adjoint-based methodology using a two-dimensional RANS solver in combination with either a
simplified eN method or the Arnal–Habiballah–Delcourt (AHD) transition criterion [31], enabling
efficient optimization of laminar flow airfoils. Halila et al. [32] developed a modified version of the
original Amplification Factor Transport (AFT) model, termed AFT-S, for adjoint aerodynamic shape
optimization using the RANS-based solver ADflow with derivatives calculated using algorithmic
differentiation. Their fully integrated approach embeds transition modeling directly within the
flow solver, incorporates the transition transport equations into the adjoint system, and removes
the need for external transition modules. The optimization campaign spans a broad range of
flow conditions—including subsonic and transonic regimes—and considers both fully turbulent and
transitional flows. The results demonstrate clear aerodynamic benefits from including transition
modeling. Moreover, the robustness of the optimized airfoils was assessed under early-transition
scenarios induced by freestream disturbances, showing that designs optimized with transition effects
retained favorable performance even under degraded conditions. Never a 4 equation transition model
has been implemented with derivatives calculated using forward-mode algorithmic differentiation.

1.2 Objectives

This work pursues three main objectives:

1. Implementation of a Transitional Turbulence Model: This entails incorporating a
transitional turbulence model— the Langtry-Menter γ–Reθt model—into ADflow to effectively
simulate laminar-to-turbulent transition. The objective is to improve prediction accuracy and
solution stability in flows where transition significantly influences aerodynamic behavior.

2. AD Gradient Verification in Forward Mode: A critical step is verifying the correctness
of forward mode AD gradient calculations within ADflow when employing the transitional
model in the flow solver. This ensures that the computed derivatives are consistent, reliable,
and physically meaningful for subsequent optimization tasks.

3. Model Validation: Finally, the implemented model will be validated against established
benchmark cases from the literature by comparing ADflow’s predictions with experimental data
or high-fidelity numerical simulations. This step evaluates the model’s ability to accurately
represent transition behavior.

2



Introduction

To further demonstrate the capabilities of adjoint-based optimization with derivatives computed
via algorithmic differentiation in ADflow, an aerodynamic shape optimization will be performed
using the fully turbulent Spalart–Allmaras model on an airfoil configuration.
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Chapter 2

Transition - Theory and Modelling

2.1 Mechanisms of Flow Transition

Transition from laminar to turbulent flow results from the amplification of instabilities, triggered by
environmental factors such as freestream turbulence, surface roughness, and pressure gradients [14,
15]. Several transition pathways exist:

• Natural transition: Initiated by low-amplitude disturbances evolving into Tollmien-Schlichting
(TS) waves and turbulent spots. This can be analyzed using linear stability theory (LST) [33,
34]. Decomposing the flow into a steady base state U(y) and a perturbation ũ(x, y, t) leads to
the Orr-Sommerfeld equation [33, 35]:

(U – c)(ϕ′′ – α2ϕ) – U′′ϕ = – i
αRe(ϕ′′′′ – 2α2ϕ′′ + α4ϕ),

where ϕ(y) is the disturbance shape function and c = ω/α the complex phase speed. Receptivity
theory investigates how external disturbances—acoustic waves, freestream turbulence, or surface
imperfections—introduce initial perturbations into the boundary layer. While linear theory
captures the early growth phase, the full transition process, including nonlinear interactions and
secondary instabilities, requires advanced models such as the Parabolized Stability Equations
(PSE) [36, 37].

• Bypass transition: In high-disturbance environments, TS waves are bypassed and turbulence
forms directly, typical in turbomachinery flows [38].
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Figure 2.1: Illustration of natural and bypass transition mechanisms [33].

• Crossflow transition: Found in three-dimensional boundary layers (e.g., on swept wings),
arising from crossflow velocity components and inviscid instabilities [39].

• Separation-induced transition: This mechanism occurs when a laminar boundary layer
is subjected to an adverse pressure gradient and separates from the surface before becoming
turbulent; the resulting free shear layer contains an inflection point in the velocity profile, making
it highly susceptible to instability [40]. Transition can then occur through natural mechanisms,
bypass transition, or Kelvin–Helmholtz instabilities (non linear mechanism [33])[40]. If the
pressure gradient is not excessively strong, the turbulent shear layer may reattach, forming a
laminar separation bubble (LSB) in a time-averaged sense. The size and impact of the LSB
depend on Reynolds number, surface roughness, pressure gradient, and freestream turbulence
intensity. Long bubbles—extending up to 20–30% of the chord—can induce a pressure plateau
in the pressure distribution [41]. LSBs strongly affect airfoil performance, especially in UAV and
wind turbine applications, through increased drag and modified lift and moment behavior [42].
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Figure 2.2: Time-averaged flow visualization of a laminar separation bubble over an airfoil at low
Reynolds number, illustrating separation, transition, and reattachment [40].

Figure 2.3: Pressure distribution over a "short" LSB [41].

2.2 Transition Modelling Techniques

Predicting laminar-to-turbulent transition is critical in high-fidelity aerodynamic simulations, as it
significantly affects boundary layer development, separation, and skin-friction drag [43, 42]. Several
modelling strategies are used, each balancing physical fidelity and computational cost.

• Direct Numerical Simulation (DNS) and Large Eddy Simulation (LES): DNS resolves
the full range of spatial and temporal scales of turbulence by directly solving the Navier–Stokes
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equations without any turbulence model:

∂ui
∂t + uj

∂ui
∂xj

= – 1
ρ

∂p
∂xi

+ ν
∂2ui
∂x2

j
(2.1)

where ui are the velocity components, p is pressure, ρ is density, and ν is kinematic viscosity.
Large Eddy Simulation (LES) resolves the large scales of turbulence while modeling the
smaller, more isotropic eddies through a subgrid-scale (SGS) model. Although LES offers
higher accuracy than Reynolds-Averaged Navier-Stokes (RANS) methods, Direct Numerical
Simulation (DNS) remains prohibitively expensive for high-Reynolds-number flows [44]. The
accuracy of LES strongly depends on the choice of the SGS model [17].

• eN Method: Based on linear stability theory (LST), the eN method predicts the amplification
of Tollmien–Schlichting (TS) waves in a laminar boundary layer. The transition onset is
assumed to occur when the non-dimensional disturbance amplitude reaches a critical threshold:

A = A0eN (2.2)

where N is the amplification factor, A0 is the initial disturbance amplitude, and transition
typically occurs when N ∈ [9, 11]. This method is accurate in low-disturbance environments
(e.g., wind tunnels) but not suited for general CFD applications due to its empirical basis and
non-local nature [19].

• Empirical Correlations: These models use semi-empirical relations derived from experimental
data to estimate transition onset. A well-known example is the Abu-Ghannam and Shaw
correlation [45], which relates transition Reynolds number to turbulence intensity (Tu) and
pressure gradient (λ):

Reθ,tr = f(Tu,λ) (2.3)

where Reθ = Ueθ
ν is the momentum-thickness Reynolds number.

• Low-Reynolds-number (Low-Re) Turbulence Models: These modify standard RANS
models to explicitly resolve the viscous sublayer by introducing damping functions in turbulence
models. For example, in the Wilcox k–ω model, near-wall damping is achieved by modifying
the turbulent viscosity:

νt = k
ω
· fµ(y+) (2.4)

where k is turbulent kinetic energy, ω is specific dissipation rate, and fµ is a damping function of
the wall coordinate y+. Models such as the k–ϵ can capture transition indirectly; however, their
predictions are highly sensitive to initial conditions and the numerical solution procedure [21].

• Transition Transport-Equation Models: Transition prediction using transport equations
represents a key advance in RANS-compatible methods. These models typically solve additional
transport equations for intermittency and other transition-relevant quantities, enabling local
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formulations compatible with structured and unstructured grids [22].

The model proposed by Steelant and Dick [46] employs conditionally averaged Navier–Stokes
equations and solves separate continuity and momentum equations for the laminar/transitional
and turbulent flow regions. Intermittency is modeled using a transport equation guided by the
intermittency distribution of Dhawan and Narasimha [47], while turbulence closure is achieved
with a k–ϵ model.

Suzen and Huang [48] introduced a single intermittency transport equation that blends features
from earlier models [49, 46]. Their approach multiplies the eddy viscosity from the k–ω
SST model by intermittency, enabling accurate prediction of both streamwise and crossflow
transition. Pecnik et al. [50] refined the Steelant and Dick model by incorporating a turbulence
weighting factor that accounts for freestream turbulence intensity, resulting in improved
transition prediction.

Menter et al.[51, 52] developed a local intermittency-based model coupled with the k–ω SST
turbulence model, eliminating non-local dependencies. This formulation evolved into the γ–Reθ

model[22], which solves two transport equations: one for intermittency and another for the
transition onset momentum-thickness Reynolds number, determined via empirical correlations.
Although widely adopted, the model has limitations: it is not Galilean invariant, lacks surface
roughness and crossflow sensitivity, and increases computational cost.

To overcome these drawbacks, Menter et al.[53] proposed the simplified γ model, replacing the
Reθ equation with an algebraic correlation. This version retains a local and robust formulation,
is Galilean invariant, and can be coupled with both SST and Spalart–Allmaras turbulence
models[54, 55, 56].

Alternative methods include the k–kL–ω models [23], which rely on laminar kinetic energy kL
to capture both bypass and natural transition without empirical correlations. These models
use local transport equations and are fully RANS-compatible.

The Amplification Factor Transport (AFT) model [24] aims to replicate linear stability theory
within a local RANS framework. Initially coupled with Spalart–Allmaras and later with
SST [57], it estimates transition onset based on a critical amplification factor. While effective
for natural transition, it performs less accurately in bypass-dominated regimes.

Among the various transition models, the most established are the γ–Reθ, γ, k–kL–ω, and
AFT models, each tailored to specific transition mechanisms. The γ–Reθ model is widely used for
general transition prediction, the simplified γ model offers improved robustness and locality, the
AFT model targets natural transition, and the k–kL–ω model is effective for bypass transition [58].
This work focuses on models with local formulations, selecting the γ–Reθ model as the representative
of correlation-based methods.
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Chapter 3

Governing Equations

3.1 Reynolds-Averaged Navier–Stokes (RANS) Framework

The Reynolds-Averaged Navier–Stokes (RANS) equations form a cornerstone in the modeling of
turbulent flows, widely adopted in engineering due to their balance between computational tractability
and predictive capability [12]. The nomenclature follows [58].

This study assumes a single-phase, incompressible, Newtonian fluid. Under these conditions, the
governing equations for conservation of mass and momentum can be written as [59, 60]:

∂ui
∂xi

= 0, (3.1)

ρ
∂ui
∂t + ρuj

∂ui
∂xj

= – ∂p
∂xi

+ ∂

∂xj

C
µ

A
∂ui
∂xj

+
∂uj
∂xi

BD
, (3.2)

where ui denotes the instantaneous velocity components, p the pressure field relative to the
hydrostatic baseline, ρ the fluid density, and µ the dynamic viscosity. The indices i, j = 1, 2, 3
correspond to spatial Cartesian coordinates.

To capture turbulent fluctuations, each flow variable is decomposed into a mean and a fluctuating
part via Reynolds decomposition:

ui = Ui + u′
i, (3.3)

p = P + p′, (3.4)

where uppercase symbols (Ui, P) represent time-averaged values, while primes indicate deviations
from these means. For statistically stationary flows, the mean quantities are defined by long-time
averaging:

Ui = ui = lim
T→∞

1
T

Ú t0+T

t0
ui(t) dt. (3.5)
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Applying this averaging procedure to the instantaneous equations (3.1) and (3.2) and substituting
the decomposed variables leads to the Reynolds-averaged equations:

∂Ui
∂xi

= 0, (3.6)

ρ
∂Ui
∂t + ρUj

∂Ui
∂xj

= – ∂P
∂xi

+ ∂

∂xj

C
µ

A
∂Ui
∂xj

+
∂Uj
∂xi

BD
– ∂

∂xj

1
ρu′

iu′
j
2

. (3.7)

Here, the Reynolds stress tensor u′
iu′

j represents the momentum transfer caused by turbulent
fluctuations. Since these new terms introduce additional unknowns, the system requires closure via
turbulence models.

3.2 Turbulence Modeling

The Reynolds-Averaged Navier–Stokes (RANS) equations (Section 3.1) introduce the Reynolds
stress tensor u′

iu′
j, which accounts for the effects of turbulent fluctuations on the mean flow. In

three dimensions, this yields six additional unknowns, making the system underdetermined and
necessitating closure models [60, 61].

Reynolds Stress Models (RSM) address this by solving transport equations for each stress
component [62], capturing turbulence anisotropy with improved fidelity, but at significantly higher
computational cost and complexity.

A more practical alternative are eddy viscosity models (EVM), which rely on the Boussinesq
approximation to relate the Reynolds stresses to the mean strain rate:

–ρu′
iu′

j = µt

A
∂Ui
∂xj

+
∂Uj
∂xi

B
– 2

3ρkδij, (3.8)

where µt is the eddy viscosity, k = 1
2u′

iu′
i the turbulent kinetic energy, and δij the Kronecker

delta. This approximation assumes isotropic turbulence and underpins most RANS models.
This formulation introduces µt and k as additional unknowns, which must be modeled to achieve

closure.

3.3 The k–ω Shear Stress Transport (SST) Turbulence Model

The k–ω Shear Stress Transport (SST) model is a widely adopted two-equation turbulence model
that combines the robustness of the k–ω model near walls with the free-stream insensitivity of the
k–ϵ model. This hybrid strategy was developed to overcome the limitations inherent in using either
formulation independently. Specifically, while the k–ω model performs well in resolving near-wall
turbulence, it tends to be overly sensitive to free-stream values of ω. Conversely, the k–ϵ model is
more stable in the free-stream but less accurate near solid boundaries. The SST model achieves
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a smooth transition between these two behaviors through the use of blending functions [63]. The
version considered is the one of 2003, that follows [64].

The SST formulation is governed by two transport equations: one for the turbulent kinetic energy
k, and another for the specific dissipation rate ω. These equations can be expressed as follows:

∂(ρk)
∂t +

∂(ρUjk)
∂xj

= Pk – Dk + ∂

∂xj

C
(µ+ σkµt)

∂k
∂xj

D
, (3.9)

∂(ρω)
∂t +

∂(ρUjω)
∂xj

= α
ω

k Pk – ρβω2 + ∂

∂xj

C
(µ+ σωµt)

∂ω

∂xj

D

+ 2(1 – F1)ρσω2
1
ω

∂k
∂xj

∂ω

∂xj
. (3.10)

In these expressions, Pk denotes the production of turbulent kinetic energy, while Dk represents
its dissipation. To prevent excessive turbulence production in regions of adverse pressure gradients
or stagnation, the production term is limited:

Pk = min
A
τij
∂Ui
∂xj

, 10β∗ρωk
B

. (3.11)

The dissipation term Dk is modeled as:

Dk = ρβ∗kω. (3.12)

The cross-diffusion term in Eq. (3.10) accounts for the transformation of the ϵ-based k–ϵ model
into the ω-based framework and is activated by a blending function F1, which facilitates the transition
between near-wall and free-stream modeling regions. This function is defined as:

F1 = tanh
1
arg4

1
2

, (3.13)

arg1 = min
I

max
A √

k
β∗ωd, 500ν

d2ω

B
, 4ρσω2k
CDkωd2

J
, (3.14)

CDkω = max
A

2ρσω2
1
ω

∂k
∂xj

∂ω

∂xj
, 10–10

B
, (3.15)

where d is the distance to the nearest wall and ν is the kinematic viscosity. The blending
mechanism also modulates the model constants. Any such constant ϕ is computed as:

ϕ = F1ϕ1 + (1 – F1)ϕ2, (3.16)

allowing for a smooth interpolation between the two regimes.
The eddy viscosity, which is central to closing the RANS equations, is evaluated using a limiting

formulation designed to suppress turbulence in regions of high strain rate anisotropy:
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µt = ρa1k
max (a1ω, SF2) , (3.17)

where S is an invariant measure of the strain rate tensor and F2 is a second blending function
given by:

F2 = tanh
1
arg2

2
2

, (3.18)

arg2 = max
A

2
√

k
β∗ωd, 500ν

d2ω

B
. (3.19)

The SST model constants are listed in Table 3.1, corresponding to the 2003 refinement of the
model.

Table 3.1: Model constants for the 2003 version of the k–ω SST model [65].

α1 α2 σk1 σk2 σω1 σω2 β1 β2 β∗ κ a1

5/9 0.44 0.85 1.0 0.5 0.856 0.075 0.0828 0.09 0.41 0.31
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3.4 The k–ω–γ–Reθt Langtry–Menter Four-Equation Transitional
SST Model

The k–ω–γ–Reθt Langtry–Menter transitional shear stress transport (SST) turbulence model is
coupled with the SST model, presented in Section 3.3. The nomenclature follows [66]. The 2009
version is considered.

3.4.1 Model Formulation of SST2003-LM2009

The Langtry–Menter SST transitional model extends the classical two-equation SST framework by
adding two transport equations for the intermittency variable γ and the transition onset momentum
thickness Reynolds number Reθt [22]. The intermittency γ is a scalar field that controls the
production of turbulence, where γ = 0 corresponds to laminar flow, γ = 1 to fully turbulent flow,
and intermediate values indicate transitional regions. This enables prediction of laminar-to-turbulent
transition by modeling the onset and extent of intermittency in the boundary layer.

The resulting four-equation system couples these new equations with the standard turbulent
kinetic energy k and specific dissipation rate ω transport equations. The intermittency γ controls
turbulence production, delaying it in laminar regions and activating it during transition.

The governing transport equations are:

∂(ρk)
∂t +

∂(ρUjk)
∂xj

= P̂k – D̂k + ∂

∂xj

C
(µ+ σkµt)

∂k
∂xj

D
(3.20)

∂(ρω)
∂t +

∂(ρUjω)
∂xj

= α
ω

k Pk – ρβω2 + ∂

∂xj

C
(µ+ σωµt)

∂ω

∂xj

D
+ 2(1 – F1)ρσω2

1
ω

∂k
∂xj

∂ω

∂xj
(3.21)

∂(ργ)
∂t +

∂(ρUjγ)
∂xj

= Pγ – Eγ + ∂

∂xj

C3
µ+ µt

σf

4
∂γ

∂xj

D
(3.22)

∂(ρR̂eθt)
∂t +

∂(ρUjR̂eθt)
∂xj

= Pθt + ∂

∂xj

C
σθt (µ+ µt)

∂R̂eθt
∂xj

D
(3.23)

These equations are expressed in conservative form, consistent with standard turbulence modeling
practice [63, 12].

3.4.2 Source Terms for the γ Equation

The source terms in the γ-equation govern the evolution of intermittency in the transition model.
These include the production term Pγ , which initiates the transition process, and the destruction
or relaminarization term Eγ , which suppresses turbulence in laminar regions. They are defined as
follows:
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Pγ = Flength ca1 ρS (γFonset)0.5 (1 – ce1γ) ,
Eγ = ca2 ρΩ γ Fturb (ce2γ – 1) .

(3.24)

The source terms are augmented by several auxiliary functions, which are detailed below.
The critical momentum thickness Reynolds number, at which the flow begins instability [67], Reθc,

is obtained from an empirical correlation based on the transition momentum thickness Reynolds
number R̂eθt:

Reθc =


–3.96035 + 1.01207× 10–1 R̂eθt – 8.68230× 10–4 R̂e2

θt

+6.96506× 10–7 R̂e3
θt – 1.74105× 10–10 R̂e4

θt, R̂eθt ≤ 1870,

R̂eθt –
1
593.11 + 0.482

1
R̂eθt – 1870

22
, R̂eθt > 1870.

(3.25)

Transition onset is triggered by the function Fonset, which comprises three components. The
function Fonset1 compares the local vorticity-based Reynolds number ReV with Reθc:

ReV = ρSd2

µ
, (3.26)

Fonset1 = ReV
2.193Reθc

, (3.27)

A steep ramp-up is enforced via:

Fonset2 = min
1
max

1
Fonset1, F4

onset1
2

, 2.0
2

, (3.28)

To account for feedback due to increased turbulence, a damping term based on the turbulence
Reynolds number RT is used:

RT = ρk
µω

, (3.29)

Fonset3 = max
C
1 –

3RT
2.5

43
, 0
D

, (3.30)

The final onset function is then given by:

Fonset = max (Fonset2 – Fonset3, 0) . (3.31)

The transition length function Flength governs the spatial growth of the intermittency variable γ
and depends on the transition momentum thickness Reynolds number R̂eθt. To prevent nonphysical
spikes in skin friction at low Reynolds numbers, the function Fsublayer is introduced to ensure that
Flength attains a maximum value within the viscous sublayer.

The piecewise definition of the intermediate function Flength,1 is given by:
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Flength,1 =



39.8189 – 1.1927× 10–2 R̂eθt – 1.32567× 10–4 R̂e2
θt, R̂eθt < 400,

263.404 – 1.23939 R̂eθt + 1.94548× 10–3 R̂e2
θt – 1.01695× 10–6 R̂e3

θt, 400 ≤ R̂eθt < 596,

0.5 – 3.0× 10–4
1
R̂eθt – 596

2
, 596 ≤ R̂eθt < 1200,

0.3188, R̂eθt ≥ 1200.
(3.32)

The Reynolds number Reω based on the specific dissipation rate ω and wall distance d is

Reω = ρω d2

µ
. (3.33)

Using Reω, the sublayer damping function Fsublayer is defined as

Fsublayer = exp
C
–
3Reω

200

42D
. (3.34)

The final transition length function Flength combines these as

Flength = Flength,1
1
1 – Fsublayer

2
+ 40.0 Fsublayer. (3.35)

Additionally, the intermittency production modifier Fturb is expressed as

Fturb = exp
C
–
3RT

4

44D
, (3.36)

3.4.3 Source Term of the R̂eθt Equation

The source term for the R̂eθt equation is given by:

Pθt = cθt
ρ

T
1
Reeq

θt – R̂eθt
2

(1.0 – Fθt) (3.37)

To ensure dimensional consistency in the transport equation for R̂eθt, a timescale T is introduced.
The source term is formulated such that in the freestream, where Fθt = 0, the value of R̂eθt
asymptotically approaches its equilibrium value Reeq

θt . The timescale and associated auxiliary
functions are defined as follows:

T = 500µ
ρU2 , (3.38)

where U is the local velocity magnitude, given by

U =
ð

UkUk. (3.39)

To damp transition production in the wake region, the wake suppression function is defined as
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Fwake = exp
C
–
3 Reω

1× 105

42D
, (3.40)

The transition suppression function also depends on the boundary layer edge thickness scale δ:

δ = 375 Ωµ R̂eθt d
ρU2 , (3.41)

where Ω is the absolute value of vorticity magnitude.
The final form of the transition trigger function Fθt, which controls the source term in the R̂eθt

equation, is defined as

Fθt = min
C
max

A
Fwake exp

C
–
3d
δ

44D
, 1.0 –

3ce2 γ – 1
ce2 – 1

42B
, 1.0

D
, (3.42)

The local acceleration along a streamline is:

dU
ds = UmUn

U2
∂Um
∂xn

(3.43)

The pressure-gradient parameter and turbulence intensity are defined as:

λθ = ρθ2
t
µ

dU
ds (3.44)

Tu = 100

ñ
2k
3

U (3.45)

The correlation function F(λθ) accounts for pressure-gradient effects:

F (λθ) =


1 +

1
12.986λθ + 123.66λ2

θ + 405.689λ3
θ

2
exp

3
–
1

Tu
1.5
21.54

, λθ ≤ 0

1 + 0.275 (1 – exp (–35.0λθ)) exp
1
– Tu

0.5
2

, λθ > 0
(3.46)

The correlation function Reeq
θt is then given by turbulence intensity and pressure gradient:

Reeq
θt =


1
1173.51 – 589.428Tu + 0.2196Tu–2

2
F (λθ) , Tu ≤ 1.3

331.50 (Tu – 0.5658)–0.671 F (λθ) , Tu > 1.3
(3.47)

Note that Reeq
θt is an implicit function of θt, also expressible as:

Reeq
θt = ρUθt

µ
(3.48)

This is solved iteratively using the secant method. While U is ideally the boundary-layer edge
velocity, the model applies it as the local velocity. In regions close to the wall where U is small,
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Reeq
θt is correspondingly small, and the Fθt term compensates by reducing the source term in the

boundary layer.

3.4.4 Modification of the SST k Source Terms

To enable the SST turbulence model to capture laminar–turbulent transition, the production and
dissipation source terms for the turbulent kinetic energy equation are modified based on intermittency
control.

First, a reattachment factor is defined to suppress turbulent production in regions with low
turbulent Reynolds number:

Freattach = exp
C
–
3RT

20

44D
, (3.49)

Next, a separation-sensitive intermittency function γsep is introduced:

γsep = min
3

s1 max
5
0,
3 ReV

3.235 Reθc

4
– 1
6

Freattach, 2
4

Fθt, (3.50)

The term γsep captures the effect of separation-induced transition and can exceed 1, allowing for
stronger activation of turbulent production during flow separation.

The final effective intermittency used to modulate production and dissipation is:

γeff = max
!
γ, γsep

"
, (3.51)

ensuring that turbulence generation is driven by either natural transition (via γ) or separation-
induced mechanisms (via γsep), whichever dominates.

This effective intermittency is then used to scale the k-equation source terms:

P̂k = γeff Pk,SST (3.52)

D̂k = min (max (γeff, 0.1) , 1.0) Dk,SST (3.53)

where:

• P̂k and D̂k are the modified production and dissipation terms,

• Pk,SST and Dk,SST are the original SST source terms.

The constants are summarized in Table 3.2.

Table 3.2: Model constants for the k–ω–γ–Reθt Langtry–Menter model [22].

ca1 ca2 ce1 ce2 cθt s1 σf σθt

2.0 0.06 1.0 50 0.03 2.0 1.0 2.0
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3.4.5 Modification of the SST F1 Blending Function

In laminar boundary layers, the original SST blending function F1,SST may approach zero, deactivat-
ing turbulence modeling prematurely. To correct this, a modified auxiliary function F3 is introduced
to enforce F1 = 1 in laminar regions:

Ry = ρd
√

k
µ

(3.54)

F3 = exp
C
–
3 Ry

120

48D
(3.55)

Here, Ry is a local Reynolds number based on the turbulent velocity scale
√

k and the wall
distance d. The function F3 approaches 1 when k is very small (laminar flow), and rapidly decays as
turbulence grows.

The modified blending function is defined as:

F1 = max
1
F1,SST, F3

2
(3.56)

This formulation ensures that F1 remains close to 1 in both turbulent near-wall regions (via
F1,SST) and laminar boundary layers (via F3), maintaining the activation of the SST model necessary
for correctly modeling transition behavior.

3.4.6 Boundary Conditions for γ and R̂eθt
The boundary conditions for the intermittency function γ and the transition Reynolds number R̂eθt
are set as follows.

At the wall, the normal derivative of the intermittency function is zero,

∂γ

∂n

----
wall

= 0, (3.57)

which implies no flux of intermittency through the impermeable wall boundary.
In the farfield, the intermittency is set to unity,

γfarfield = 1, (3.58)

representing fully turbulent flow entering the domain.
Similarly, the wall boundary condition for R̂eθt enforces a zero normal gradient,

∂R̂eθt
∂n

----
wall

= 0, (3.59)

which prevents flux of the transition Reynolds number across the wall.
The farfield value of R̂eθt depends on the freestream turbulence intensity Tu∞ through a piecewise
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empirical correlation:

R̂eθt,farfield =


1173.51 – 589.428 Tu∞ + 0.2196 Tu–2

∞, Tu∞ ≤ 1.3,

331.50 (Tu∞ – 0.5658)–0.671, Tu∞ > 1.3.
(3.60)

This correlation captures different regimes of turbulence intensity, using a polynomial fit for low
intensities and a power-law fit for higher intensities.

3.4.7 Numerical Limits for Robustness

For numerical robustness, the following three limits are enforced:

• –0.1 ≤ λθ ≤ 0.1

• Tu ≥ 0.027

• Reeq
θt ≥ 20
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Chapter 4

Computing Derivatives

Accurately and efficiently computing derivatives is a fundamental task [68, 69]. Whether the interest
is in understanding how an output changes with respect to input parameters or in optimizing a
system, derivatives form the mathematical backbone of the analysis.

There are several methods for computing derivatives, each with its own advantages and limitations.
The most familiar technique is symbolic differentiation, which involves manipulating mathematical
expressions directly. This approach produces exact results, as in the classic example:

d
dx(x2 sin x) = 2x sin x + x2 cos x. (4.1)

However, symbolic differentiation quickly becomes impractical for large, complex codes, especially
when the function of interest is defined algorithmically rather than analytically [70].

A more general approach is numerical differentiation, which approximates derivatives using
differences between function evaluations. The simplest example is the forward finite difference:

df
dx ≈

f(x + h) – f(x)
h , (4.2)

and its more accurate counterpart, the central difference:

df
dx ≈

f(x + h) – f(x – h)
2h . (4.3)

While easy to implement, these methods suffer from truncation and round-off errors, particularly
when the choice of h is suboptimal [71]. Moreover, they require at least one additional function
evaluation per input variable, making them computationally expensive in high-dimensional settings.

A lesser-known but powerful alternative is the complex step method, which leverages complex
arithmetic to achieve very high accuracy [71]. By evaluating the function at a small imaginary
perturbation,

df
dx ≈

ℑ(f(x + iϵ))
ϵ

, (4.4)

it can avoid the subtractive cancellation that plagues finite differences. This method is both simple
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and numerically stable, provided the function is analytic and can handle complex inputs.

4.1 Automatic Differentiation

Automatic Differentiation (AD) computes exact derivatives by systematically applying the chain
rule to each elementary operation in a given algorithm. Unlike symbolic or numerical differentiation,
AD avoids truncation errors, round-off errors, and the growth of symbolic expressions. It works by
constructing and traversing the computational graph of the target function and operates in two
primary modes: forward and reverse. The content of this section and its subsections is adapted
from [72].

4.1.1 Forward Mode

In forward-mode AD, derivatives are propagated from inputs to outputs. Given a sequence of
intermediate variables vi, the total derivative with respect to an input vj is defined as:

v̇i = dvi
dvj

. (4.5)

Using the chain rule, the propagation of derivatives follows:

v̇i =
i–1Ø
k=j

∂vi
∂vk

v̇k. (4.6)

Assuming v̇1 = 1 and incrementing i, let’s illustrate forward-mode AD on a simple sequence of
variables:

v̇1 = 1,

v̇2 = ∂v2
∂v1

v̇1,

v̇3 = ∂v3
∂v1

v̇1 + ∂v3
∂v2

v̇2,

v̇4 = ∂v4
∂v1

v̇1 + ∂v4
∂v2

v̇2 + ∂v4
∂v3

v̇3 ≡
df
dx .

(4.7)

This process yields the following Jacobian structure:

Jv =


1 0 0 0

dv2
dv1

1 0 0
dv3
dv1

dv3
dv2

1 0
dv4
dv1

dv4
dv2

dv4
dv3

1

 . (4.8)

The first column of the Jacobian has been computed using a forward sweep (from top to bottom)
and corresponds to the directional derivative (or tangent) with respect to the input variable v1. In
forward-mode automatic differentiation, derivatives with respect to additional output variables can
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be obtained at no additional computational cost once the forward pass is performed.

4.1.2 Reverse Mode

In reverse-mode AD, sensitivities are propagated backward from outputs to inputs. For a seeded
output vi, the adjoint variables v̄j are defined as:

v̄j = dvi
dvj

. (4.9)

Using the chain rule in reverse:

v̄j =
iØ

k=j+1

∂vk
∂vj

v̄k. (4.10)

Starting with v̄4 = 1, it propagates adjoints backward:

v̄4 = 1,

v̄3 = ∂v4
∂v3

v̄4,

v̄2 = ∂v3
∂v2

v̄3 + ∂v4
∂v2

v̄4,

v̄1 = ∂v2
∂v1

v̄2 + ∂v3
∂v1

v̄3 + ∂v4
∂v1

v̄4 ≡
df
dx .

(4.11)

The corresponding Jacobian is:

Jv =


1 0 0 0

dv2
dv1

1 0 0
dv3
dv1

dv3
dv2

1 0
dv4
dv1

dv4
dv2

dv4
dv3

1

 . (4.12)

The last row of the Jacobian has been computed using a reverse sweep (from right to left) and
corresponds to the gradient of the scalar function f = v4. In reverse-mode automatic differentiation,
once the reverse pass is performed, computing derivatives with respect to additional input variables
incurs negligible additional cost.

4.1.3 Forward vs. Reverse Mode

Let Jf = ∂f
∂x denote the Jacobian of the outputs f with respect to the inputs x. In a computational

graph, the full Jacobian of all intermediate variables is represented by Jv, where the input variables
x appear early and the output variables f appear later. The Jacobian of the output variables Jf is
embedded as a sub-block in the lower-left portion of Jv, as visualized below.
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Jv =

· · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · ·
Jf · · · · · · · · · · · ·

(4.13)

nx

nf

Forward and reverse modes of automatic differentiation differ in traversal and cost. Forward
mode computes derivatives in a column-wise manner and is typically efficient when the number
of inputs nx is much smaller than the number of outputs nf . In contrast, reverse mode proceeds
row-wise and is preferred when nf ≪ nx. When nx ≈ nf , both modes have comparable computational
efficiency.

Each AD pass generally incurs a cost of about 2–3 times that of the original function evaluation.
Reverse mode, however, requires storing the full computational graph for backpropagation, increasing
memory usage. One solution could be couple it with implicit differentiation.

4.1.4 AD in the Context of Simulation and Optimization

In large-scale problems such as PDE-constrained simulations, AD is often used in combination with
implicit differentiation in order to avoid storing the full computational graph and save memory. For
a residual system r(u, x) = 0, where the state u depends implicitly on the design variables x, the
total derivative of an objective function f(u, x) is:

df
dx = ∂f

∂x + ∂f
∂u

du
dx . (4.14)

Differentiating the residual equation yields:

∂r
∂u

du
dx + ∂r

∂x = 0, ⇒ du
dx = –

3
∂r
∂u

4–1 ∂r
∂x . (4.15)

Substituting this into the total derivative expression gives:

df
dx = ∂f

∂x – ∂f
∂u

3
∂r
∂u

4–1 ∂r
∂x . (4.16)

When computing total derivatives in large-scale systems, two efficient strategies are commonly
employed depending on the relative dimensions of the input and output spaces.

The direct method is advantageous when the number of design variables nx is small. It involves
solving for the sensitivity matrix

ϕ =
3
∂r
∂u

4–1 ∂r
∂x , (4.17)
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which is then substituted into the total derivative expression:

df
dx = ∂f

∂x – ∂f
∂u ϕ. (4.18)

In contrast, the adjoint method is more efficient when the number of objective or constraint
functions nf is small. It avoids explicitly forming ϕ by solving the adjoint equation:

3
∂r
∂u

4T
ψ =

3
∂f
∂u

4T
, (4.19)

and computes the total derivative via:

df
dx = ∂f

∂x – ψT ∂r
∂x . (4.20)

4.1.5 Tools and Applications

Automatic differentiation (AD) is widely applied in scientific computing and machine learning
[73]. Source-code transformation tools such as Tapenade [74] support languages like Fortran and
C. By providing accurate and scalable sensitivity information, AD is essential in modern design
optimization workflows [70, 75].

In the ADflow solver, forward mode AD is used to compute derivatives during simulation, while
reverse mode AD is employed by the adjoint solver for efficient gradient-based optimization.
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Chapter 5

Flow Solver and Numerical Setup

5.1 Overview of ADflow Solver

ADflow is a multi-block, overset structured flow solver originally developed at Stanford University as
part of the Department of Energy’s Advanced Strategic Computing (ASC) Initiative. It solves the
compressible Euler, laminar Navier–Stokes, and Reynolds-Averaged Navier–Stokes (RANS) equations
using a second-order finite volume discretization scheme [75].

Originally designed for simulating flow in rotating jet engine components, ADflow has evolved
into a versatile CFD tool widely applied to external aerodynamic flows and other complex scenarios.
It is optimized for massively parallel computing via the Message Passing Interface (MPI [76]), with
parallelism abstracted from the user. Users interact with unified grid and solution files regardless of
processor count, simply specifying the number of processors through commands such as mpirun.

ADflow supports steady compressible flows and a variety of turbulence models, including Spalart–
Allmaras, k-ε, SST, and v2-f. Input/output operations conform to the CGNS standard, with built-in
MPI-IO support for efficient parallel file access, and utilities for data conversion between CGNS and
other formats.The computational mesh, provided in metric units, is internally nondimensionalized.

Residuals can be solved via Runge–Kutta, the diagonalized-diagonally-dominant alternating
direction implicit (D3ADI) scheme [77], or an approximate Newton–Krylov (ANK) solver [78], which
also supports the full Newton–Krylov method [79]. This study adopts the ANK solver for its proven
robustness and numerical efficiency [80]. Turbulence equations can be tightly coupled with the mean
flow using the coupled ANK (CANK) approach, which supports second-order accurate (SANK) and
coupled second-order accurate (CSANK) formulations [81].

Spatial discretization employs a second-order difference scheme, stabilized by multiple artificial
dissipation techniques. Fully parallel preprocessing tools handle domain decomposition and load
balancing, enabling scalability across thousands of processors.

Boundary conditions are automatically derived from flight parameters—reference length, reference
area, Mach number, Reynolds number, and angle of attack—minimizing manual input and reducing
errors.
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5.2 Verification and Validation

The outcome of CFD simulations is a numerical solution to the governing equations. To assess its
quality, a rigorous Verification and Validation (V&V) process is required [82]. Verification ensures
that the equations are solved correctly (“solving the equations right”), whereas validation assesses
whether the correct equations are being solved (“solving the right equations”) [82].

Verification is divided into Code Verification (checking for programming errors) and Solution
Verification (quantifying numerical error). The total error E in a quantity of interest ϕ is

E = ϕS – ϕT, (5.1)

where ϕS is the simulation result and ϕT the true value. This error is decomposed as

E = Em + Einput + Enum, (5.2)

where Em is the modeling error, Einput the input error, and Enum the numerical error. The latter
includes:

• Round-off error (Eround-off) from finite precision arithmetic [83],

• Iterative error (Eit) from non-linear solver convergence [84],

• Discretization error (Edisc) due to spatial discretization [82],

• Statistical error (Estat) from initial conditions or stochastic sampling [85].

Enum = Eround-off + Eit + Edisc + Estat. (5.3)

In this work, double precision is used, rendering Eround-off negligible. Iterative convergence is
enforced to residual norms normalized with respect to the values of the first 5 iterations below 10–6

(2D), minimizing Eit. The dominant contribution is Edisc, as simulations are mostly steady.
Discretization error is estimated via grid refinement studies [82], modeled as

Edisc = ϕi – ϕ0 ≈ αhp
i , (5.4)

where ϕi is the result on grid i, hi its characteristic size, α a constant, and p the observed order of
accuracy.

Code verification of the ADflow solver and its turbulence models has been extensively conducted
in prior studies employing the order-of-accuracy assessments, and Jacobian consistency checks [86,
87, 75, 80]. These efforts confirm the correct implementation of the discretized governing equations
within the solver. As this work focuses on the implementation and verification of a transition model
within ADflow, the core solver code verification is considered complete, with the exception of the
derivatives related to γ and Reθt . The derivatives, computed via the automatic differentiation tool
in forward mode, are subject to verification against finite difference approximations to ensure their
accuracy.
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Validation compares numerical results to experimental and simulation data, which must include
associated uncertainties [82]. However, due to incomplete experimental characterization and lack
of inlet turbulence data, formal validation is not feasible in this work. Nevertheless, qualitative
comparisons are made to highlight the benefits of transition modelling.

5.2.1 Grid Refinement Study

Mesh convergence is assessed using error estimations based on Richardson extrapolation and the
Grid Convergence Index (GCI) [82, 88]. The refinement ratio between two grids is defined as:

r = hcoarse
hfine

, with h = N–1/d, (5.5)

where h is the representative grid spacing, N the number of cells, and d the domain dimension.
The estimated order of accuracy p from three grid levels is:

p =
ln
3

fL2–fL1
fL1–fL0

4
ln(r) , (5.6)

where fL2 , fL1 , and fL0 are solutions on the coarse, medium, and fine grids, respectively.
Using p, the approximate discretization errors are:

E1 =
fL2 – fL1

1 – rp , (5.7)

E2 = rpE1. (5.8)

The GCI quantifies the relative error:

GCI = FSE, (5.9)

where FS is a safety factor and E is the estimated error.
Finally, the extrapolated solution as h→ 0 is given by:

f(h = 0) = fL0 +
fL0 – fL1

rp – 1 , (5.10)

assuming smooth and monotonic convergence.

5.3 Solution Procedure

The transport equation for a scalar quantity ϕ is given by [89]:

∂(ρϕ)
∂t +∇ · (ρϕU) = ∇ · (Γ∇ϕ) + ρF, (5.11)
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where Γ denotes the effective diffusivity and F is a volumetric source term. Applying the finite
volume method to a control volume V with boundary surface S and outward unit normal n, the
integral form becomes [90]:

∂

∂t

Ú
V
ρϕ dV +

Ú
S
ρϕU · n dS =

Ú
S

Γ∇ϕ · n dS +
Ú

V
ρF dV. (5.12)

The first term in the integral form, representing the time derivative, is neglected under the
steady-state assumption and thus omitted from the discretized equation.

The source term is integrated over the control volume and approximated using the midpoint rule:Ú
V
ρF dV ≈ ρcFc ∆Vc, (5.13)

where ρc, Fc, and ∆Vc are the density, source term, and volume evaluated at the cell center,
respectively.

The convective term is discretized as:

Ú
S
ρϕU · n dS ≈

NfØ
f=1

ρfϕf Uf · Sf , (5.14)

where Sf = Sfnf is the face area vector, defined as a vector normal to face f, pointing outward
from the control volume, with magnitude equal to the area of the face. The scalar quantity ϕf is
reconstructed at the face using a second-order upwind scheme with the Van Albada flux limiter [91]
to reduce numerical oscillations near steep gradients. The face value is computed as:

ϕf = ϕU + 1
2ψ(r)(ϕD – ϕU), (5.15)

where the limiter function is given by:

ψ(r) = r2 + r
r2 + 1, r = ϕU – ϕUU

ϕD – ϕU + ϵ
, ϵ≪ 1. (5.16)

Here, ϕU is the value in the upwind cell, ϕD the value in the downwind cell, ϕUU the second upwind
value, and ϵ is a small regularization parameter used to avoid division by zero.

The diffusive term is discretized as:

Ú
S

Γ∇ϕ · n dS ≈
NfØ
f=1

Γf(∇ϕ)f · Sf , (5.17)

where Γf is the diffusivity interpolated at face f, and Sf is again the face area vector. The gradient
(∇ϕ)f at the face is computed using the Gauss divergence theorem:

(∇ϕ)f ≈
1

∆Vc

Nf,cØ
j=1

ϕjSj, (5.18)
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Combining all contributions, the steady-state discretized transport equation for each control
volume is expressed as:

NfØ
f=1

(ρfϕf Uf · Sf – Γf(∇ϕ)f · Sf) = ρcFc ∆Vc. (5.19)

5.4 Freestream Decay of Turbulence Quantities in the SST k–ω

Model

The downstream evolution of turbulent kinetic energy, k, and specific dissipation rate, ω, can be
characterized using normalized variables defined as

k̃ = k
U2

∞
, ω̃ = ωL

U∞
, x̃ = x

L,

where L is a representative length scale. The decay behavior follows from the turbulence transport
equations (fully derived in [58]) and is given by:

k̃(x̃) = k̃∞è
1 + α(x̃ – x̃∞)k̃∞

1
µ
µt

2
∞

Re
éα∗

α

, (5.20)

ω̃(x̃) = ω̃∞

1 + α(x̃ – x̃∞)k̃∞
1

µ
µt

2
∞

Re
, (5.21)

with the eddy-viscosity ratio decaying according to

µt
µ

(x̃) =

1
µt
µ

2
∞è

1 + α(x̃ – x̃∞)k̃∞
1

µ
µt

2
∞

Re
éα∗

α –1
. (5.22)

The empirical model constants are typically taken as

α = 0.072, α∗ = 0.09,

based on calibration against homogeneous isotropic turbulence decay [12].
These relations indicate that k and ω diminish rapidly downstream, whereas the eddy-viscosity

ratio µt/µ decays more slowly, controlled by the exponent α∗
α – 1. The rate of decay increases

with Reynolds number but can be alleviated by elevating the inlet eddy-viscosity ratio. This effect
is especially important over long upstream domains where inflow boundaries are positioned to
approximate far-field conditions or prevent artificial feedback into the computational region.

Since these decay laws stem from turbulence model calibration, they provide an approximate but
not exact description of freestream turbulence decay in real flows [92].
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5.5 Computation of y+ from Skin Friction Coefficient and Reynolds
Number

The dimensionless wall distance, y+, is defined as [90]:

y+ = uτ y
ν

where:

• uτ =
ñ

τw
ρ is the friction velocity,

• y is the distance from the wall to the center of the first cell (first cell height),

• ν = µ/ρ is the kinematic viscosity.

The wall shear stress can be expressed using the skin friction coefficient Cf :

τw = 1
2ρU2

∞Cf ,

and thus,

uτ = U∞

ó
Cf
2 .

Substituting into the y+ expression:

y+ = U∞y
ν

ó
Cf
2 .

Using the Reynolds number definition,

ReL = U∞L
ν

=⇒ U∞
ν

= ReL
L ,

the final formula becomes

y+ =
3y · ReL

L

4óCf
2 .

This formulation follows standard boundary layer theory and wall scaling arguments [35, 12],
commonly used in turbulence modeling and CFD meshing guidelines [33].

5.6 Grids for 2D Test Cases

The computational grids employed for the three 2D airfoil test cases are all O-type meshes, specifically
designed to accurately resolve the boundary layers and wake regions. The first cell height is fixed at
s0 = 1× 10–6 meters to ensure sufficiently fine near-wall resolution. These meshes are generated
using pyHyp [93], a hyperbolic mesh generator that automatically creates two- or three-dimensional
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meshes around simple geometric configurations. The approach begins with an initial surface (or
curve) representing the geometry of interest, then grows or extrudes the mesh in successive layers
until reaching a desired distance from the original surface, effectively meshing the entire surrounding
domain. The grids, as well as the flow domains, are visualized using ParaView [94].

5.6.1 SD7003

The SD7003 is a low Reynolds number airfoil extensively studied in wind turbine and micro-air
vehicle aerodynamics due to its favorable performance at low speeds [95, 96]. Simulations were
conducted at angles of attack of 4° and 6°, with a Mach number of M = 0.1 and a Reynolds number
of Re = 6 × 104. The maximum skin friction coefficient for the baseline case is approximately
Cf = 0.05.

The primary grid used in this study, denoted SD7003_L0, is an O-type mesh with 119201 total
cells, 240000 nodes, and 200 layers in the wall-normal direction. Near-wall resolution is ensured by
a first cell height of s0 = 1× 10–6 m. To verify mesh-independence of the results, two additional
coarser grids—SD7003_L1 and SD7003_L2—were constructed while keeping the geometry and
boundary layer clustering consistent.

Table 5.1: Grid parameters for SD7003 mesh convergence study

Grid ID Cells Nodes Wall Cells Wall Nodes Layers s0 [m] Max y+

SD7003_L0 119201 240000 599 1200 200 1× 10–6 0.0095
SD7003_L1 66901 135000 449 900 150 1× 10–6 0.0095
SD7003_L2 44551 90000 299 600 150 1× 10–6 0.0095
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Figure 5.1: O-type grid for the SD7003 airfoil (SD7003_L0). Left: full domain view. Right: zoom
near the airfoil surface. The inlet and outlet boundaries are placed at 100 chord lengths from the
airfoil.

5.6.2 NACA 0015

The NACA 0015 is a symmetric airfoil with a 15% thickness ratio, frequently used as a baseline
for aerodynamic studies [97]. Simulations were conducted at angles of attack of 3° and 10°, with a
Mach number of M = 0.1 and a Reynolds number of Re = 1.8× 105. The maximum skin friction
coefficient is approximately Cf = 0.03.

Table 5.2: Grid parameters for the NACA0015 airfoil

Parameter Cells Nodes Wall Cells Wall Nodes Layers s0 [m] Max y+

Value 119201 240000 599 1200 200 1× 10–6 0.0220

32



Flow Solver and Numerical Setup

Figure 5.2: O-type grid for the NACA0015 airfoil. Left: full domain view. Right: zoom near the
airfoil surface. The inlet and outlet boundaries are placed at 100 chord lengths from the airfoil.

5.6.3 Eppler 387

The Eppler 387 is a thick, high-lift airfoil designed specifically for wind turbine applications, notable
for its gentle camber and thick trailing edge [98]. Simulations were performed at angles of attack of
0° and 4°, with a Mach number of M = 0.1 and a Reynolds number of Re = 2× 105. The maximum
skin friction coefficient is approximately Cf = 0.03.

Table 5.3: Grid parameters for the E387 airfoil

Parameter Cells Nodes Wall Cells Wall Nodes Layers s0 [m] Max y+

Value 119201 240000 599 1200 200 1× 10–6 0.0245
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Figure 5.3: O-type grid for the E387 airfoil. Left: full domain view. Right: zoom near the airfoil
surface. The inlet and outlet boundaries are placed at 100 chord lengths from the airfoil.

5.7 Aerodynamic Performance Quantities for Transition Analysis

The first aerodynamic quantity of interest is the pressure coefficient, Cp, defined as:

Cp = p – p∞
1
2ρV2

∞
(5.23)

The distribution of Cp is often indicative of the transition location, especially in cases of separation-
induced transition [40]. Experimental data for Cp is available for all validation cases.

The skin-friction coefficient (Cf) is defined as

Cf = τw
1
2ρV2

∞
(5.24)

where τw is the wall shear stress, computed from the no-slip condition as

τw = µ
∂Ut
∂xn

----
w

(5.25)

with Ut the tangential velocity, xn the wall-normal coordinate, and the subscript w denoting
evaluation at the wall [59].

The skin-friction coefficient (Cf) distribution is a valuable indicator for detecting flow separation
and transition in two-dimensional boundary layers [59]. Regions where Cf < 0 indicate reversed flow,
with separation and reattachment points defined by the locations where Cf = 0; the transition onset
is typically identified just downstream of the local minimum in the Cf curve, where Cf begins to
increase due to laminar breakdown and the development of turbulence [58]. This point corresponds
to the transition Reynolds number, which differs from the critical Reynolds number—the location
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where small disturbances first become unstable. The point associated with the critical Reynolds
number cannot be directly inferred from the Cf distribution; it is generally located upstream of the
transition onset and must be identified through linear stability analysis [67]. The transition region
typically ends at the local maximum of Cf [58]. The relevant points are illustrated in Figure 5.4.
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Figure 5.4: Skin-friction coefficient (Cf) distribution along the surface, highlighting key points.

Lift and drag coefficients are defined as

Cl = l
1
2ρV2

∞c
, Cd = d

1
2ρV2

∞c
(5.26)

where l and d are lift and drag per unit span, and c is the chord length [59].
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Chapter 6

Results Part 1: Implementation,
Calibration and Numerical Aspects

6.1 Code Implementation

The Fortran routines implementing the Langtry–Menter γ–Reθ transition model have been developed
and integrated into the ADflow solver framework [99]. The transition model is now compatible
with all available solvers, including D3ADI, multigrid, and ANK. It is coupled to the mean flow
variables and solved simultaneously via the coupled ANK formulation (CANK), and it also supports
the second-order accurate and coupled second-order accurate implicit formulations (SANK and
CSANK) [81]. In the Python interface pyADflow.py, key modifications enable the specification of
freestream turbulence intensity (TI∞) and freestream eddy viscosity ratio (µt/µ)∞, allowing users
to control these parameters directly through ADflow options in their run scripts.

6.2 Code Documentation

Clear and comprehensive documentation is essential to ensure that even well-designed code remains
usable, maintainable, and extensible over time. This section provides detailed documentation for
the implementation of the Langtry–Menter transition model, excluding minor components such as
integrations within specific solver routines, that are documented in Appendix B. The goal is to
present the documentation in a straightforward and descriptive manner, enabling future developers
to understand, modify, or build upon the codebase effectively. The author hopes that this effort will
facilitate ongoing development and foster collaboration within the community.

6.3 GammaRethetaModel module

The GammaRethetaModel module implements the Langtry–Menter correlation-based transition
model. It includes routines to compute, diffuse, and scale the transition variables: the intermittency
γ and the transition onset Reynolds number Reθt.
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6.3.1 Core Functionality

• solve_local_Re_thetatt_eq: Solves an implicit equation for the local transition Reynolds
number Reθt using a secant method. This involves:

– Computing local velocity magnitude and gradients.

– Evaluating turbulence intensity and relevant flow parameters.

– Iteratively solving the nonlinear correlation with convergence checks and clipping for
numerical stability.

• GammaRethetaSource: Computes source terms for the transition transport equations. It:

– Loops over all interior cells.

– Calculates velocity gradients, vorticity, turbulence intensity, and local Reθt.

– Applies empirical correlations and blending functions to evaluate transition onset and
progression.

• GammaRethetaViscous: Computes viscous diffusion terms for the transition variables in
the ξ, η, ζ directions. Specifically:

– Loops over all interior grid points (excluding ghost cells).

– Computes direction-specific volume metrics, e.g.,

voli = 1
vol(i, j, k) ,

volmi = 2
vol(i, j, k) + vol(i, j, k – 1) , etc.

– Uses central differences to approximate second derivatives of the form:

∂

∂ζ

3
µ
∂ϕ

∂ζ

4
≈ 1
ρ

#
c1mϕk–1 – c10ϕk + c1pϕk+1

$
– Includes two distinct contributions following the model:

∗ The diffusion term in the γ-equation uses laminar and eddy viscosity, scaled by the
calibration constant rLMsigmaf (defined in paramTurb).

∗ The Reθt-equation applies a similar diffusion model, scaled by rLMsigmathetat (also
in paramTurb).

– Updates the scratch array with directional contributions for each cell.

• GammaRethetaResScale: Scales residuals for consistency with the flow solver:

– Iterates over interior points.
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– Scales the residuals by reference cell volume and applies masking:

dw(i, j, k) = –volRef(i, j, k) · scratch(i, j, k) · iblank(i, j, k)

– This ensures residuals are consistent in magnitude and structure with the rest of the
solver.

6.3.2 Implementation Notes

• The secant method used avoids the need for analytical derivatives while retaining fast conver-
gence (in less than ten iterations).

• All routines are tightly coupled to local flow conditions, enabling accurate modeling of transi-
tional behavior.

• Numerical stability is maintained through limiting, clipping, and ghost-cell treatment.

• The module integrates seamlessly into the turbulence framework to modulate source terms
during transition.

6.4 SST_block_residuals Subroutines with Transition Model
Support in the module SST

These subroutines compute the residuals for the SST turbulence model, optionally coupled with the
gamma-Retheta transition model. The _d variant is the automatically differentiated (AD) version
used to compute derivatives.

6.4.0.1 Overview

• SST_block_residuals: Computes block residuals.

• SST_block_residuals_d: Computes residuals and their derivatives using Automatic Dif-
ferentiation (AD) generated code .

• Both versions follow the same structure: evaluate transition model terms (if enabled), then
compute standard SST turbulence contributions.

6.4.0.2 Transition Model: gamma-Retheta

When transitionModel = gammaRetheta, the following steps are executed:

• strainNorm2 and prodWmag2: Compute local strain rate and vorticity magnitudes squared.

• GammaRethetaSource: Adds source terms for the transition variables based on empirical
correlations and flow quantities.
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• turbAdvection: Adds advection terms for the transition transport equations. Advection
term subroutine is the same for all the models, just attention must be kept for the indices in w
(array of the flow and turbulent variables).

• GammaRethetaViscous: Computes viscous diffusion terms for transition variables using
variable viscosity and mesh metrics.

• GammaRethetaResScale: Scales transition residuals with cell volumes and applies overset
masking.

In the differentiated version, the corresponding AD-aware routines are called:
GammaRethetaSource_d, GammaRethetaViscous_d, GammaRethetaResScale_d, etc.

6.4.0.3 SST Turbulence Model Terms

Always executed regardless of transition model activation:

• kwCDterm: Computes the cross-diffusion term in the ω-equation.

• f1SST: Evaluates the blending function F1 for SST model mixing.

• prodSmag2, prodWmag2, prodKatoLaunder: Compute turbulence production using the
selected production model.

• SSTSource: Adds source terms for the k and ω transport equations.

• turbAdvection: Computes advection terms for k and ω.

• SSTViscous: Computes viscous diffusion terms for k and ω.

• SSTResScale: Scales residuals by cell volume for consistency and stability.

6.4.0.4 Automatic Differentiation (AD) Version

• The _d version mirrors the primal routine but uses AD differentiated subroutines (e.g.,
prodSmag2_d, SSTSource_d).

• Required for AD derivatives when ANK or NK solvers are used.

• The structure is kept consistent to ensure compatibility and correctness of the AD toolchain.

6.4.0.5 Cleanup and Memory Management

• qq: A central array used for temporary Jacobian or flux computations is allocated and
deallocated based on the cleanUp flag.
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6.5 SSTSource Subroutine: SST Source Term Evaluation with
Transition Model Support in the module SST

SSTSource computes the source terms and partial Jacobians for the k–ω SST turbulence model in
each cell of the computational block. The implementation supports both the standard SST model
and its modification via the gamma-Retheta transition model.

6.5.1 Blending Constants

The constants γ1, γ2, β1, β2 are blended using the Menter function f1:

γ = f1γ1 + (1 – f1)γ2, β = f1β1 + (1 – f1)β2

6.5.2 Turbulent Kinetic Energy Production (Pk)

Production is computed using:
Pk = rev · S · 1

ρ

and limited by:
Pk ← min(Pk,pklim ·Dk)

where Dk = β∗kω.

6.5.3 Transition Model Activation

If transitionModel == gammaRetheta, the following steps are added:
- Reynolds number based on wall distance and vorticity are computed.
- Wake and transitional suppression functions:

Fwake = e–(Rew/105)2
, Fθt = min

A
max

A
Fwakee–(y/δ)4

, 1 –
3cγ – 1

c – 1

42B
, 1
B

- Critical Reynolds number Reθc is piecewise evaluated.
- Separation-induced intermittency:

γsep = min
3

s1 max
3

0, ReV
3.235Reθc

– 1
4

Freattach, 2
4

Fθt

- Effective intermittency:
γeff = max(γ, γsep)

The production/destruction terms are then scaled by γeff:

Pk ← γeffPk, Dk ← max(0.1, min(γeff, 1))Dk

40



Results Part 1: Implementation, Calibration and Numerical Aspects

6.5.4 Final Source Terms

Sk = Pk – Dk

Sω = γ
Pk
rev

+ crossDiffusion – βω2

6.5.5 Jacobian Entries (approximate)

Only source terms are differentiated:

∂Sk
∂k = β∗ω, ∂Sω

∂ω
= 2βω

These are stored in the local block Jacobian array qq(i,j,k,*,*).

6.5.6 AD-Compatible Looping

The loop is written to support both forward and reverse automatic differentiation (Tapenade) using
loop macros around the main update block.

6.6 f1SST Subroutine: SST Blending Function f1 Computation
with Transition Model Support in the module SST

f1SST computes the f1 blending function for the Menter SST turbulence model over all owned cells
and first-layer halos in the computational domain. It also calculates the cross-diffusion term, stored
in scratch(:,:,:,icd), used later in the main SST solver.

6.6.1 Computation Range Setup

The update range [iBeg : iEnd, jBeg : jEnd, kBeg : kEnd] is adjusted based on boundary conditions.
For each boundary face, the owned domain range is restricted to exclude halo layers.

6.6.2 Cross-Diffusion Term and f1 Evaluation

Let:

t1 =


√

k
0.09ωy if k > 0

0 otherwise
, t2 = 500ν

ρωy2

Then the maximum value is computed via:

t1 ← max(t1, t2)

Next, the cross-diffusion based term is:

t2 = 2k
max(ϵ, CD) · y2
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where CD = scratch(:,:,:,icd), and ϵ is either a small constant or a function of density
depending on use2003SST.

A smooth minimum is applied:
arg1 = min(t1, t2)

f1 = tanh(arg14)

6.6.3 Transition Model Modification

If transitionModel == gammaRetheta, the value of f1 is further modified by:

Rey = ρy
√

k
ν

, f3 = exp
A

–
3Rey

120

48B

f1 ← max(f1, f3)

6.6.4 Halo Cell Update (Neumann BC)

The halo values for f1 are set by copying interior values using Neumann-type extrapolation:

f1|halo = f1|adjacent interior

This applies for all domain boundaries (iMin, iMax, etc.).

6.6.5 Automatic Differentiation Support

The subroutine is compatible with Tapenade reverse mode via loop macros, supporting vectorized
loop traversal over the 3D domain:

#ifdef TAPENADE_REVERSE uses 1D indexing over the full 3D range

6.6.6 Output

The computed values of f1 are stored in:

scratch(i,j,k,if1SST) = f1

to be used in the SST source term evaluation (SSTSource) and coefficient blending.

6.7 Wall Boundary Condition Treatment for gamma-Retheta Tran-
sition Model in the module TurbBCRoutines

This section in the module TurbBCRoutines imposes Neumann (zero normal derivative) boundary
conditions on the transition model variables γ and Reθt at solid wall boundaries. These conditions are
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essential for ensuring that no artificial fluxes enter or exit the domain through the wall, maintaining
physical consistency for transition onset prediction.

The implementation is activated only when the transition model is set to gammaRetheta. For
each block boundary face, identified by BCFaceID(nn), the solver selects the appropriate direction
(iMin, iMax, jMin, jMax, kMin, or kMax). For each face, the solver loops over the corresponding
face-aligned index ranges (icBeg:icEnd and jcBeg:jcEnd) defined in BCData(nn).

For a given face direction, the ghost-cell values of γ and Reθt (indexed by iTransition1 and
iTransition2, respectively) are set equal to the adjacent interior cell values. This is implemented
using the appropriate face-normal derivative Jacobian arrays:

• bmti1, bmti2 for iMin, iMax (streamwise faces)

• bmtj1, bmtj2 for jMin, jMax (spanwise faces)

• bmtk1, bmtk2 for kMin, kMax (normal/vertical faces in 3D)

For example, on the iMin face, the boundary values are set as:

bmti1(i, j, iTransition1, iTransition1) = &

bmti1(i+1, j, iTransition1, iTransition1)

bmti1(i, j, iTransition2, iTransition2) = &

bmti1(i+1, j, iTransition2, iTransition2)

This enforces ∂γ/∂n = 0 and ∂Reθt/∂n = 0 by reflecting the adjacent interior value across the wall.
This pattern is repeated for each face direction:

• Copy from i+1 on iMin, from i-1 on iMax

• Copy from j+1 on jMin, from j-1 on jMax

• Copy from k+1 on kMin, from k-1 on kMax

This logic is essential for correctly applying wall boundary conditions to the transition model and
must be kept in sync with both the residual computation and any automatic differentiation routines.

6.8 Freestream Boundary Conditions for Transition Model in the
module initializeFlow

When the gammaRetheta transition model is active, initializeFlow sets the appropriate
freestream values for the transition variables at inflow and freestream boundaries. These values are
initialized using empirical correlations based on the freestream turbulence intensity.

6.8.1 Activation Condition

The logic is triggered when:

transitionModel = gammaRetheta
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6.8.2 Turbulence Intensity Conversion

turbIntensityInf is given as a ratio (e.g., 0.02 for 2%). It is converted to percentage form for
use in empirical correlations:

Tu_inf = turbIntensityInf× 100

6.8.3 Transition Variable Initialization

The transition-related freestream values are stored in the array wInf:
- Intermittency is set to unity:

w_inf[iTransition1] = 1.0

- Transition onset momentum thickness Reynolds number, Reθt, is computed using an empirical
fit:

w_inf[iTransition2] =

331.50 · (Tu∞ – 0.5658)–0.671, if TI∞ > 1.3

1173.51 – 589.428 · Tu∞ + 0.2196 · Tu–2
∞, otherwise

6.9 Solution Verification and Numerical Modeling Considerations

This transition model implementation is still under development and may contain errors that can
propagate to the automatic differentiation (AD) process.

ADflow can handle approximately 40000 cells per gigabyte of main memory [100]. This limitation
has influenced the present work, as all simulations were conducted on a machine with only 3 GB
of RAM. Consequently, the finest grid that could be employed contained approximately 120000
cells. To avoid machine overheating, runtime issues and MPI communication errors [76], simulations
were run using only two processors in parallel. As a result, each simulation required a considerable
amount of time to complete.

The transition model employed in this study utilizes the calibration constants listed in Table 3.2,
following the default values proposed by Langtry and Menter [22]. However, these constants are
not universally transferable across different CFD solvers. Consequently, significant effort has been
devoted to adapting and calibrating the model to suit the present implementation.

Compared to the fully turbulent SST model, the transition model exhibits reduced numerical
robustness. It tends to produce stiffer linear systems and demonstrates slower convergence behavior,
highlighting the importance of careful numerical treatment and model tuning [101, 51, 80].

One prominent numerical issue encountered involves the initial magnitude of the residuals. At
startup, residuals for ω and γ can reach values as high as 1016, while those for Reθt are around
1022. The encouraging residuals are the ones of k starting at 10–3. Despite these extreme initial
values, the solver typically achieves a reduction of approximately five orders of magnitude for the
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continuity equation residual (initially around 103), and reductions between six and fifteen orders
of magnitude for the turbulence-related variables as seen in Figure 6.1. These levels of residual
decrease generally precede the stabilization of the aerodynamic coefficients—namely, the lift (Cl),
drag (Cd), and pitching moment (Cmz) coefficients.

To improve convergence, several numerical strategies were investigated:

• Applying explicit under-relaxation to the effective intermittency variable, γeff, as done in [58],
using the update formula:

γ
(n+1)
eff = γ

(n)
eff + ω

3
γnew

eff – γ(n)
eff

4

where ω ∈ (0, 1] is the relaxation factor, γ(n)
eff is the current value, and γnew

eff is the value
computed from the transition source terms.

• Testing an alternative formulation for the separation transition function, γsep, given by:

γsep = min
A

s1 max
C
0, Reν

2.193Reθc
– 1
D

exp
C
–
3RT

15

44D
, 5
B

Fθt (6.1)

Here, the constant 2.193 represents the maximum ratio between ReV and Reθc for a Blasius
boundary layer, as introduced in the original model [101], and s1 = 2.

• Increasing the scaling factor in Eq. (6.1) to s1 = 6.

• Applying the modified γsep expression from Eq. (3.50) with s1 = 6, following the approach
used by Carreño Ruiz [102] to reduce excessive turbulence production in separated regions at
high angles of attack, and consistent with the transition control strategy proposed by Suluksna
and Juntasaro [103].

• Employing central differencing schemes for the convective terms, combined with either matrix
dissipation or scalar dissipation formulations.

• Increasing artificial viscosity in the central scheme to enhance numerical stability.

• Raising the production term coefficient in the k-equation from 10 to 15, consistent with the
strategy in [58], to prevent premature activation of the Pk limiter in turbulent regions.

• To improve the robustness and accuracy of forward-mode automatic differentiation (AD), the
transition onset function Fonset is reformulated to be smooth, meaning infinitely differentiable.
Discontinuities in differentiability have been shown to impair both flow and adjoint solver
performance [104, 32, 80, 19].

To enforce a steep ramp-up while maintaining differentiability, the nested max and min

operations are approximated using smooth exponential functions. Let λ = 20 denote a
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smoothness parameter, where larger values of λ produce sharper transitions:

Fonset1,softmax = 1
λ

log
3

eλFonset1 + eλF4
onset1

4
, (6.2)

Fonset2 = – 1
λ

log
1
e–λFonset1,softmax + e–λ·2.0

2
. (6.3)

To model the damping effect due to increasing turbulence, a smooth approximation of the
ReLU (Rectified Liner Unit) function [105] is applied:

Fonset3 = 1
λ

log

1 + e
λ

3
1–
1

RT
2.5

23
4 . (6.4)

The final smooth expression for the onset function is then given by:

Fonset = 1
λ

log
1
1 + eλ(Fonset2–Fonset3)

2
. (6.5)

The version of this code can be found in [106]. Further investigation is warranted to improve
convergence behavior and numerical stability. It is likely that other empirical correlation
functions in the transition model may also benefit from similar smoothing strategies, and
corresponding differentiable formulations should be developed.

Despite these efforts, none of the tested strategies yielded satisfactory convergence. As a result,
the original formulation of the model—described in Chapter 3.4—was retained without modification.

The simulation was halted after a considerable number of iterations, and a restart-based approach
was adopted. This involved overwriting the solution at each step using restart files. Consequently, a
complete convergence history is not available.
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Figure 6.1: Residuals (normalized with respect to the mean over the first five iterations) for the
finest mesh level (L0) used in the simulation of the SD7003 airfoil at Re = 60000 and α = 4◦.

A reference simulation by Carreño Ruiz, using the empirical correlations from [102], was performed
with the commercial CFD solver STAR-CCM+ [107]. The simulation employed the finest mesh level
(L0) for the SD7003 airfoil at Re = 60000 and α = 4◦. The results were compared with numerical
data from CIRA (Centro Italiano Ricerche Aerospaziali) to aid in the calibration and validation of
the implemented transition model.

While the mesh used may be sufficient for simulations and sensitivity analysis based on finite
differences (FD), automatic differentiation (AD) introduces stricter requirements on smoothness and
numerical consistency [19, 80]. Even though non-differentiable expressions such as min and max

are replaced with alternatives (if-else logic) in the Tapenade-generated code, the AD-generated
derivatives can still be more sensitive to local solution irregularities, particularly in transitional
flow regions. Therefore, to ensure consistency between FD and AD results and to obtain accurate
derivative information, finer grids may be necessary when using AD with transition models [104, 32,
80].

6.10 Jacobian - Vector Product Verification, Forward Mode AD

Once the model is fully implemented—or when major modifications are introduced—certain Fortran
routines (such as those in the turbulence or transition model modules) must be differentiated using
Tapenade to obtain forward-mode automatic derivatives (AD). The resulting differentiated code
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is required by the ANK and NK solvers used for the flow analysis. While finite-difference (FD)
derivatives are generally sufficient for post-converged sensitivity analysis, they are not reliable
within the flow solver for achieving convergence in complex models like transition models. However,
they ensure convergence for simpler models like Spalart–Allmaras (SA). Therefore, verifying the
correctness of the AD-generated derivatives is critical for solver stability and accuracy.

A Python script for verifying Jacobian–vector products using forward mode automatic differen-
tiation (AD) has been developed and is available in the author’s associated repository [108]. The
verification procedure applies perturbations to individual input parameters following the simulation
and computes the corresponding sensitivities. This process was conducted for the SD7003 airfoil at
a Reynolds number of Re = 60000 and an angle of attack of α = 4◦.

The following table compares derivatives computed using Automatic Differentiation (AD) against
Finite Difference (FD) methods for various perturbations and design variables.

Perturbations include:

• ẇ: perturbation of mean flow and turbulent variables,

• ẋV: perturbation of volume mesh,

• α,β, Mach, P, T, xref , yref : perturbation of geometric and flow design variables (DV).

The table shows norms of residual derivatives (∥∂R/∂ · ∥) and surface force derivatives (∥∂F/∂ · ∥),
derivatives of functions such as drag (Cd), lift (Cl) and moment coefficients (CMz) along with their
relative errors. The relative error between results obtained using automatic differentiation (AD) and
those computed via finite difference (FD) is defined as:

rel_error(a, b) = ∥a – b∥
max(∥a∥, ε) , (6.6)

where a denotes the vector of derivatives obtained from AD, and b represents the corresponding vector
from FD. The norm ∥·∥ refers to the Euclidean norm (also known as the L2 norm), which provides a
scalar measure of vector magnitude. The small constant ε (typically set to 10–16) ensures numerical
stability by preventing division by zero when ∥a∥ is very small or vanishes. This formulation ensures
a robust comparison even when derivative magnitudes are close to machine precision.

Table 6.1: Comparison of AD and FD derivatives across perturbations and design variables.

Quantity Value (AD) Value (FD) Relative Error

Perturbation: ẇ
∥∂R/∂w · ẇ∥ 1.77× 1019 4.00× 1023 0.99999998
∂Cd/∂w · ẇ 629.3754 629.3754 7.10× 10–10

∂Cl/∂w · ẇ 723.0253 723.0253 6.18× 10–9

dCMz/dw · ẇ 385.8471 385.8471 4.97× 10–9

Continued on next page
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Table 6.1 – continued from previous page

Quantity Value (AD) Value (FD) Relative Error

∥∂F/∂w · ẇ∥ 2.88× 105 2.88× 105 2.61× 10–8

Perturbation: ẋV
∥∂R/∂xV · ẋV∥ 1.38× 1025 1.38× 1025 1.37× 10–3

∂Cd/∂xV · ẋV –90.2438 –90.0360 2.30× 10–3

∂Cl/∂xV · ẋV –164.7931 –164.6824 6.72× 10–4

∂CMz/∂xV · ẋV 14.0310 14.0586 1.96× 10–3

∥∂F/∂xV · ẋV∥ 3.18× 106 3.18× 106 5.02× 10–4

Perturbation on DV: α
∥dR/dα∥ 0.04915 0.04915 3.27× 10–5

dCd/dα 1.44× 10–6 1.44× 10–6 1.01× 10–8

dCl/dα –4.53× 10–8 –4.53× 10–8 1.68× 10–5

dCMz/dα 0 0 0
∥dF/dα∥ 0 0 0

Perturbation on DV: β
∥dR/dβ∥ 1.29× 10–7 1.88× 10–6 0.9977
dCd/dβ –7.37× 10–18 0 7.37× 10–4

dCl/dβ 7.75× 10–19 0 7.75× 10–5

dCMz/dβ 0 0 0
∥dF/dβ∥ 0 0 0

Perturbation on DV: Mach
∥dR/dMach∥ 10.0428 10.0428 1.85× 10–6

dCd/dMach –5.19× 10–6 –5.19× 10–6 4.06× 10–7

dCl/dMach –1.65× 10–4 –1.65× 10–4 1.41× 10–7

dCMz/dMach –4.86× 10–5 –4.86× 10–5 1.68× 10–7

∥dF/dMach∥ 0 0 0

Perturbation on DV: P
∥dR/dP∥ 1.21× 1014 1.21× 1014 2.21× 10–6

dCd/dP 7.04× 10–8 7.04× 10–8 2.77× 10–6

dCl/dP 1.83× 10–8 1.83× 10–8 3.00× 10–6

dCMz/dP 2.48× 10–9 2.48× 10–9 3.16× 10–6

∥dF/dP∥ 6.96× 10–3 6.96× 10–3 2.00× 10–8

Perturbation on DV: T
∥dR/dT∥ 1.12× 10–3 5.91× 107 1.00
dCd/dT 2.05× 10–25 0 2.05× 10–11

Continued on next page
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Table 6.1 – continued from previous page

Quantity Value (AD) Value (FD) Relative Error

dCl/dT 6.55× 10–26 0 6.55× 10–12

dCMz/dT 7.04× 10–27 0 7.04× 10–13

∥dF/dT∥ 5.91× 10–22 5.20× 10–11 1.00

Perturbation on DV: xref
∥dR/dxref∥ 0 0 0
dCd/dxref 0 0 0
dCl/dxref 0 0 0
dCMz/dxref –8.22× 10–6 –8.22× 10–6 3.06× 10–6

∥dF/dxref∥ 0 0 0

Perturbation on DV: yref
∥dR/dyref∥ 0 0 0
dCd/dyref 0 0 0
dCl/dyref 0 0 0
dCMz/dyref –6.03× 10–7 –6.03× 10–7 1.04× 10–5

∥dF/dyref∥ 0 0 0

The AD-derived derivatives exhibit excellent agreement with finite difference (FD) results for
aerodynamic coefficients (Cd, Cl, CMz) and force-related quantities across most perturbations and
design variables. Relative errors for these quantities are generally on the order of 10–8 to 10–5,
indicating that AD correctly captures the sensitivities.

However, the residual norm sensitivities computed by AD show significant deviations from FD,
with relative errors approaching unity in some cases (e.g., perturbation ẇ and variable β). This
discrepancy suggests potential issues in the implementation or numerical stability of the AD forward
mode for residuals, possibly due to scale differences or nonlinearities in the solver.

Furthermore, derivatives with respect to certain variables, such as freestream temperature (T),
reveal large relative errors or near-zero FD values, implying that AD gradients for these variables
are currently unreliable.

Overall, while AD demonstrates strong performance for aerodynamic function derivatives, caution
is warranted for residual sensitivities and specific design variables. Further investigation and
refinement of the AD implementation are necessary to ensure consistent and robust gradient
computation across all components of the solver.

After verifying forward-mode AD derivatives, selected routines—particularly those not supported
by Tapenade [68, 70]—will be manually differentiated in reverse mode to enable efficient gradient-
based aerodynamic shape optimization within the existing framework.
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6.11 Parametric study

To align transition model predictions with results from Large Eddy Simulations (LES), a parametric
study involving the freestream turbulence intensity (TI∞) and the freestream eddy viscosity ratio
(µt/µ)∞ is essential. Due to the inherent differences in modeling fidelity between Reynolds-Averaged
Navier–Stokes (RANS) methods and LES—particularly in capturing surface pressure coefficients
(Cp) and skin friction coefficients (Cf)—significant discrepancies can arise. These differences are
well-documented in the literature [109, 110, 111, 112], and are observed even among RANS-based
transition models [102, 113], particularly in flows involving laminar-to-turbulent transition and flow
separation.

In ADflow, the SST turbulence model uses a default value of (µt/µ)∞ = 0.009. However, Rumsey
and Spalart [114] suggest setting this parameter as 2 × 10–7 × Re, a recommendation aimed at
simulating transition in the absence of an explicit transition model. This approach manipulates
the freestream turbulence characteristics such that turbulence production remains inactive near the
leading edge and becomes effective downstream, thereby emulating transitional flow behavior. In
light of this, a parametric sweep over (µt/µ)∞ values is warranted to assess the model’s sensitivity
to this parameter.

Regarding TI∞, Schlichting and Gersten [33] report that values below 0.1% have negligible effects
on boundary layer development, based on experimental findings. Conversely, a minimum threshold
of TI∞ = 0.027% ensures numerical stability in transition model simulations (see Section 3.4.7).
Therefore, selecting TI∞ within the range of 0.027% to 0.1% is justified, particularly for comparison
with LES studies. Although the empirical transition onset correlation Reθt = f(Tu,λθ) is known to
be sensitive within this interval, fixing TI∞ does not undermine the model’s general validity, given
that the correlation was calibrated on a broad set of experimental data with varying turbulence
levels [22].

Initial simulations using TI∞ = 0.1%—prior to the implementation of input control for this
parameter, as discussed in Section 6.1—produced elevated lift coefficients, while drag coefficients
remained consistent with reference data. Based on these outcomes, a further parametric investigation
over the interval TI∞ ∈ [0.03%, 0.08%] will be conducted. The goal is to determine a representative
fixed value for TI∞ to be used in subsequent simulations.

Figure 6.2 shows the pressure and skin-friction distributions from the parametric study. In the
Cp plot, flow instabilities appear near the typical transition points of the validated models, with
an overshoot followed by an undershoot just downstream of the transition predicted by the present
model. All ADflow simulations predict a delayed transition onset compared to fully validated results
from STAR-CCM+ [107] and the CIRA LES and k–ω–γ models [113].
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Figure 6.2: Distributions of pressure coefficient (Cp) and skin friction coefficient (Cf) over the
SD7003 airfoil at Re = 60000, α = 4◦, comparing experimental measurements with numerical model
predictions.
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Table 6.2: Reference aerodynamic coefficients at α = 4◦

Source Cl Cd

LES (CIRA) 0.6273 0.0233
k–ω–γ (CIRA) 0.5993 0.0214
k–ω–γ–Reθt (STAR-CCM+) 0.5940 0.0228

Table 6.3: Parametric study at Re = 60000, α = 4◦

Case Cl Cd

TI∞ = 0.0003, (µt/µ)∞ = 0.0001 0.6342 0.0196
TI∞ = 0.0003, (µt/µ)∞ = 0.001 0.6139 0.0190
TI∞ = 0.0003, (µt/µ)∞ = 0.01 0.6371 0.0196
TI∞ = 0.0003, (µt/µ)∞ = 1.0 0.6529 0.0258
TI∞ = 0.0003, (µt/µ)∞ = 10.0 0.6398 0.0195
TI∞ = 0.0005, (µt/µ)∞ = 0.0001 0.6256 0.0191
TI∞ = 0.0005, (µt/µ)∞ = 0.001 0.6185 0.0229
TI∞ = 0.0005, (µt/µ)∞ = 0.01 0.6245 0.0188
TI∞ = 0.0005, (µt/µ)∞ = 1.0 0.6328 0.0193
TI∞ = 0.0005, (µt/µ)∞ = 10.0 0.6375 0.0196
TI∞ = 0.0008, (µt/µ)∞ = 0.0001 0.6366 0.0246
TI∞ = 0.0008, (µt/µ)∞ = 0.001 0.6223 0.0232
TI∞ = 0.0008, (µt/µ)∞ = 0.01 0.6084 0.0190
TI∞ = 0.0008, (µt/µ)∞ = 1.0 0.6045 0.0203
TI∞ = 0.0008, (µt/µ)∞ = 10.0 0.6091 0.0191

Figure 6.3: Cl variation with freestream eddy
viscosity ratio for different turbulence intensities
for SD7003 at Re = 60000, α = 4◦

Figure 6.4: Cd variation with freestream eddy
viscosity ratio for different turbulence intensities
for SD7003 at Re = 60000, α = 4◦
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A clear trend emerges from the parametric study: increasing the free-stream eddy viscosity ratio
(µt/µ)∞ generally leads to an increase in the lift coefficient Cl, particularly at the lowest turbulence
intensity TI∞ = 0.0003. This behavior aligns with established transition physics, where elevated
ambient turbulence or eddy viscosity accelerates transition, reduces laminar separation, and enhances
lift production [22]. However, the trend is not strictly monotonic. For example, at (µt/µ)∞ = 1.0,
Cl peaks at 0.6529, but further increasing the eddy viscosity ratio to 10.0 leads to a plateau or slight
reduction in lift, indicating diminishing returns due to increased skin-friction drag from premature
transition.

The drag coefficient Cd shows a more complex, non-monotonic trend due to the competing
effects of reduced pressure drag (via earlier transition) and increased skin-friction drag. For several
cases, modest increases in (µt/µ)∞ reduce drag, but excessive values can reverse this benefit. At
TI∞ = 0.0008, for example, drag is minimized at (µt/µ)∞ = 0.01, but this comes at the cost of
reduced lift. In contrast, the combination TI∞ = 0.0008 and (µt/µ)∞ = 0.001 offers a strong
aerodynamic balance, achieving:

Cl = 0.6223, Cd = 0.0232,

which represents high lift and moderate drag. These values closely match both LES benchmarks
and results from the CIRA k–ω–γ model—within 0.8% and 0.5% of the LES values, respectively—and
are in good agreement with STAR-CCM+ predictions. Therefore, this parameter combination is
adopted for all subsequent simulations to ensure consistency and reliable model validation.

6.12 Mesh convergence analysis

The mesh convergence study for the SD7003 airfoil at Re = 60000 and α = 4◦ reveals contrasting
sensitivities between the aerodynamic coefficients. As shown in Figure 6.5 and Tables 6.4 and 6.5, the
drag coefficient Cd shows good grid convergence, with a relatively high estimated order of accuracy
(the theoretical value is 2) and low GCI values. In contrast, the lift coefficient Cl exhibits poor
convergence behavior, with large variations across mesh levels and high GCI values. This suggests
that Cl is significantly more sensitive to mesh resolution, likely due to its stronger dependence on
accurately capturing boundary-layer and separation features. For this reason, all computations are
performed using the finest grid that is computationally feasible.
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Figure 6.5: Drag and lift coefficients computed on three grids with different refinement levels — L0
(finest), L1, and L2 (coarsest) — along with the Richardson extrapolated value.

Table 6.4: Grid convergence for drag coefficient
(Cd).

Quantity Value

Cells (L0/L1/L2) 119201 / 66901 / 44551
Grid refinement ratio (r) 1.6357
Cd (L0/L1/L2) 0.0232 / 0.0243 / 0.0270
Achieved order (p) 1.8248
Richardson extrapolated Cd 0.0224
GCI L0–L1 3.11%
GCI L1–L2 6.88%

Table 6.5: Grid convergence for lift coefficient
(Cl).

Quantity Value

Cells (L0/L1/L2) 119201 / 66901 / 44551
Grid refinement ratio (r) 1.6357
Cl (L0/L1/L2) 0.6223 / 0.6653 / 0.7165
Achieved order (p) 0.3547
Richardson extrapolated Cl 0.3968
GCI L0–L1 33.89%
GCI L1–L2 37.47%

As illustrated in Figure 6.6, while the model is not yet fully verified (the AD gradients are not
fully verified), the use of coarser grid resolutions results in a noticeable delay in transition onset,
accompanied by a broader transition region that shifts downstream toward the trailing edge. This
trend aligns with the findings reported by Langtry and Menter [22]. Further evidence is provided in
Figures 6.7 and 6.8, which show a more diffuse distribution of turbulent kinetic energy, consistent
with a larger and more delayed laminar separation bubble.
For the other cases analyzed, the isocontours can be found in Appendix A.
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Figure 6.6: Distributions of pressure coefficient (Cp) and skin friction coefficient (Cf) over the
SD7003 airfoil at Re = 60000, α = 4◦, comparing experimental measurements with numerical model
predictions.

Figure 6.7: SD7003 — M = 0.1, Re = 6× 104, α = 4◦, medium grid (SD7003_L1): k/U2
∞ (left),

U/U∞ (right).

Figure 6.8: SD7003 — M = 0.1, Re = 6 × 104, α = 4◦, coarse grid (SD7003_L2): k/U2
∞ (left),

U/U∞ (right).
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Chapter 7

Results Part 2: Model Validation

The airfoil simulations are carried out under the conditions specified in Section 5.6. A reference
temperature of 288 K is used for all cases to ensure consistent flow conditions. For each configuration,
an additional simulation in ADflow is performed using the SST turbulence model to clearly highlight
differences in transition location when a fully turbulent model is considered.

7.1 SD7003
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Figure 7.1: Distributions of pressure coefficient (Cp) and skin friction coefficient (Cf) over the
SD7003 airfoil at Re = 60000, α = 4◦, comparing the developed k–ω–γ–Reθt model with numerical
model predictions [113, 107].
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Reference Cl Cd εCl (%) εCd (%) xseparation/c xtransition/c xreattachment/c

LES (CIRA [113]) 0.6273 0.0233 - - 0.21 0.59 0.64
k–ω–γ (CIRA [113]) 0.5993 0.0214 4.46 8.15 0.19 0.56 0.65
k–ω–γ–Reθt (STAR-CCM+ [107]) 0.5940 0.0228 5.31 2.15 0.20 0.60 0.70
k–ω–γ–Reθt (this work) 0.6223 0.0232 0.80 0.43 0.22 0.72 0.78

Table 7.1: Comparison and relative error (with respect to LES) for the SD7003 airfoil at Re = 60000,
α = 4◦.

The LES data provide a high-fidelity benchmark for assessing the transitional flow behavior over the
SD7003 airfoil at Re = 60000,α = 4◦. The reference case reveals a typical laminar separation bubble
with separation, transition, and reattachment occurring in close succession along the aft portion of
the airfoil.

The k–ω–γ model underpredicts both lift and drag when compared to LES. This discrepancy is
linked to its tendency to anticipate separation and transition earlier than observed in the reference,
resulting in a compressed separation bubble. Although reattachment occurs in a comparable region,
the premature transition limits the model’s ability to capture the laminar flow regime accurately,
particularly in the presence of mild adverse pressure gradients.

The STAR-CCM+ implementation of the k–ω–γ–Reθt model improves drag prediction but
still yields an underprediction in lift. Transition onset is predicted close to the LES location, but
reattachment is delayed, leading to an over-extended bubble. This suggests a more gradual transition
process, which may diffuse the instability growth and lead to a less abrupt reattachment. The overall
aerodynamic performance is somewhat improved compared to the simpler transition model but still
deviates from the LES reference.

In contrast, the k–ω–γ–Reθt model developed in this work produces aerodynamic coefficients
that closely match those of the LES, with minimal error in both lift and drag. It predicts a slightly
delayed separation point and a transition onset that occurs noticeably further downstream. This
results in a longer laminar separation bubble and a reattachment point significantly aft of the
reference. This behavior is further reflected in the surface pressure coefficient (Cp) distribution; in
the present work, the onset of flow instabilities is observed near the transition locations predicted by
the other models; however, the response is notably less smooth. A distinct overshoot in Cp appears
just upstream of the transition onset, followed by a localized undershoot near reattachment. While
this non-monotonic pattern may suggest the rapid growth and breakdown of instabilities within the
laminar shear layer, it is likely influenced by incomplete convergence of the simulation. Such artifacts
can emerge near regions of strong gradients, particularly in transitional flows where resolving sharp
changes in pressure recovery is numerically challenging. Nevertheless, the presence of these features
indicates the model’s heightened sensitivity to transitional dynamics—capturing localized behaviors
that are often suppressed or overly diffused in traditional formulations.
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Figure 7.2: Distributions of pressure coefficient (Cp) and skin friction coefficient (Cf) over the
SD7003 airfoil at Re = 60000, α = 6◦, comparing the developed k–ω–γ–Reθt model with numerical
model predictions [113].

Table 7.2: Comparison of aerodynamic coefficients and relative errors with respect to LES for the
SD7003 airfoil at Re = 60000, α = 6◦.

Reference Cl Cd εCl (%) εCd (%) xseparation/c xtransition/c xreattachment/c

LES (CIRA [113]) 0.8078 0.0292 – – 0.10 0.34 0.39
k–ω–γ (CIRA [113]) 0.7828 0.0263 5.21 9.93 0.10 0.37 0.50
k–ω–γ–Reθt (this work) 0.8236 0.0260 1.96 10.96 0.11 0.34 0.40

For the case at α = 6◦, the LES reference again provides a detailed representation of the transi-
tional flow structure, characterized by early separation, rapid transition, and prompt reattachment.
The k–ω–γ model predicts similar separation but delays transition slightly and significantly overesti-
mates the reattachment length, resulting in a longer laminar separation bubble. This discrepancy
contributes to a noticeable underprediction of both lift and drag.

The transition model developed in this work yields aerodynamic coefficients that more closely
align with the LES values, particularly for lift. Separation occurs slightly later, which further
supports the improved alignment with the physical flow topology. The predicted transition onset
coincides with the reference, and the reattachment location is only marginally shifted, suggesting a
more accurate reproduction of the laminar separation bubble dynamics.

In the surface pressure coefficient (Cp) distribution, as in the previous case, the onset of flow
instabilities is observed near the transition point identified by the LES and the other models. However,
the pressure response in the present simulation is noticeably less smooth. A distinct overshoot in Cp
appears just upstream of the transition onset, followed by a localized undershoot in the vicinity of
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the predicted reattachment. While this non-monotonic profile could be interpreted as a physical
manifestation of instability amplification and shear-layer breakdown, it is more plausibly associated
again with incomplete convergence of the simulation. Such features often arise in transitional regions
with strong pressure gradients, where even small residual errors can produce local anomalies in the
pressure field.

7.2 NACA 0015
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Figure 7.3: Distributions of pressure coefficient (Cp) and skin friction coefficient (Cf) over the NACA
0015 airfoil at Re = 180000, α = 3◦, comparing the developed k–ω–γ–Reθt model with experimental
measurements [115] and numerical model predictions [113].

Table 7.3: Comparison of aerodynamic coefficients and flow features for the NACA 0015 airfoil at
Re = 180000, α = 3◦.

Reference Cl Cd εCl (%) εCd (%) xseparation/c xtransition/c xreattachment/c

LES (CIRA [113]) - - – – 0.28 0.54 0.57
k–ω–γ (CIRA [113]) - - - - 0.30 0.63 0.71
Experiment from Miozzi et al. [115] - - - - 0.27 0.31 0.35
k–ω–γ–Reθt (this work) 0.3499 0.0159 – – 0.48 0.98 1.0
XFOIL, Ncrit = 9 (Airfoil Tools [116]) 0.3803 0.0128 8.68 -19.50 - 0.55 -

For the NACA 0015 airfoil at Re = 180000 and a low angle of attack of 3◦, the LES results from
CIRA provide a reliable reference for transitional flow development. They capture a moderately
sized laminar separation bubble, with separation occurring around mid-chord and transition and
reattachment taking place shortly thereafter. This behavior reflects the expected flow structure for
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lightly loaded airfoils at moderate Reynolds numbers.
The k–ω–γ model predicts a slightly delayed separation point relative to LES and substantially

later transition and reattachment locations. This results in an elongated laminar separation bubble,
suggesting that the model underpredicts instability amplification and delays turbulence onset. Such
behavior is characteristic of two-equation models that may lack sufficient sensitivity to shear-layer
transition without additional transition correlations.

Experimental measurements from Miozzi et al. [115] indicate a markedly shorter bubble, with
transition and reattachment occurring much earlier than in the LES or RANS-based predictions.
This discrepancy can be attributed to differences in freestream turbulence levels and experimental
boundary conditions, both of which strongly influence transition onset in separated flows.

The k–ω–γ–Reθt model developed in this work predicts substantially delayed separation, transi-
tion, and reattachment. The entire bubble is displaced downstream, nearly reaching the trailing edge,
implying a strongly suppressed instability growth. Although the predicted lift and drag coefficients
remain consistent with expectations for weakly separated, low-incidence flow, the extended bubble
length suggests a conservative transition trigger, potentially limiting the model’s ability to respond
to mild adverse pressure gradients. Notably, the pressure coefficient (Cp) distribution shows no
overshoot or undershoot, indicating a smooth and gradual transition. This absence of non-monotonic
features suggests a less abrupt laminar–turbulent breakdown, although partial convergence effects
cannot be ruled out.

The XFOIL prediction with a critical amplification factor of Ncrit = 9 shows earlier transition
and significantly more optimistic aerodynamic performance, with higher lift and lower drag. However,
given XFOIL’s inviscid outer flow assumption and limited treatment of separation, these predictions
tend to overestimate performance in regimes where separation-induced transition plays a dominant
role.
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Figure 7.4: Distributions of pressure coefficient (Cp) and skin friction coefficient (Cf) over the NACA
0015 airfoil at Re = 180000, α = 10◦, comparing the developed k–ω–γ–Reθt model with experimental
measurements [115] and numerical simulations [113].

Table 7.4: Comparison of aerodynamic coefficients and flow features for the NACA 0015 airfoil at
Re = 180000, α = 10◦.

Reference Cl Cd εCl (%) εCd (%) xseparation/c xtransition/c xreattachment/c

LES (CIRA [113]) – – – – 0.02 0.09 0.10
k–ω–γ (CIRA [113]) – – – – 0.04 0.11 0.14
Experiment (Miozzi et al. [115]) – – – – 0.02 0.09 0.10
k–ω–γ–Reθt (this work) 0.9670 0.0307 – – 0.03 0.10 0.13
XFOIL, Ncrit = 9 [116] 0.9987 0.0245 3.28 -20.19 – 0.09 –

At α = 10◦, the NACA 0015 airfoil operates in a regime dominated by early separation and rapid
transition. Both LES and experimental data from Miozzi et al. indicate a laminar separation very
close to the leading edge, followed by swift transition and reattachment, forming a short separation
bubble confined to the front portion of the chord. This behavior is typical of moderately loaded
airfoils at high angles of attack where strong adverse pressure gradients rapidly destabilize the
boundary layer.

The k–ω–γ model from CIRA predicts a slightly delayed separation and transition compared to
LES and experiments, leading to a marginally longer laminar separation bubble. The reattachment
point is also shifted downstream, although the overall structure remains consistent with reference
data. This delay is likely due to the model’s more diffused response to instability amplification in
steep pressure gradients.

The k–ω–γ–Reθt model developed in this work provides predictions in very close agreement with
the LES and experimental data. Separation and transition occur just slightly downstream of the

62



Results Part 2: Model Validation

reference locations, while the reattachment point is also within a narrow margin of deviation. The
predicted lift and drag coefficients fall within a realistic range, reinforcing the consistency of the
modeled flow features. Importantly, the pressure coefficient distribution for this case exhibits a
minimal spurious overshoot followed by an undershoot near transition, suggesting that the simulation
has achieved partial convergence.

XFOIL predictions, based on an Ncrit = 9 setting, estimate an earlier transition onset that
matches the reference quite closely. However, the drag is significantly underpredicted, and no
reattachment location is available. As XFOIL lacks a robust treatment of separated turbulent flow,
especially in regions of rapid transition and reattachment, its applicability under these conditions is
limited. While the lift coefficient is reasonably close to the value predicted by the present model, the
optimistic drag prediction reflects the limitations of the boundary-layer formulation used in XFOIL.

Overall, the results confirm that the k–ω–γ–Reθt model developed in this work performs well
under high-incidence, early-transition conditions. The accurate capture of key transitional locations,
combined with smooth pressure recovery and convergence behavior, supports the model’s capability
to handle strong adverse pressure gradients and rapid laminar-turbulent breakdown near the leading
edge.

7.3 Eppler 387
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Figure 7.5: Distributions of pressure coefficient (Cp) over the Eppler 387 airfoil at Re = 200000
and α = 0◦, comparing the present k–ω–γ–Reθt model with experimental data [117] and numerical
predictions from [113].
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Table 7.5: Comparison of aerodynamic coefficients, relative errors, and transition-related flow features
for the Eppler 387 airfoil at Re = 200000, α = 0◦.

Reference Cl Cd εCl (%) εCd (%) xseparation/c xtransition/c xreattachment/c

Experiment (McGhee [117]) 0.3603 0.0108 – – 0.55 0.70 0.75
k–ω–γ–Reθt (University of Strasbourg [113]) 0.3661 0.0119 1.61 10.19 0.53 0.67 0.76
k–ω–γ–Reθt (this work) 0.3786 0.0110 8.17 1.85 0.63 0.65 0.82

For the Eppler 387 airfoil at Re = 200000 and zero angle of attack, the experimental data from
McGhee [117] provide a solid benchmark, showing a laminar separation bubble that initiates just
beyond mid-chord, with transition and reattachment occurring further downstream. The measured
lift and drag coefficients reflect the moderate loading and relatively gentle separation characteristics
typical of this configuration.

The k–ω–γ–Reθt model from the University of Strasbourg [113] closely reproduces the experi-
mental separation and transition locations, with a slightly earlier onset of transition and a somewhat
extended separation bubble. The lift and drag predictions are in good agreement, although drag
tends to be overestimated, possibly due to model sensitivity in the separated shear layer.

The k–ω–γ–Reθt model developed in this work predicts delayed separation and transition com-
pared to both experiment and Strasbourg results, with reattachment occurring further downstream.
The lift coefficient is marginally overpredicted, while the drag is notably closer to experimental
values, suggesting improved capture of viscous effects in the separation region.

Notably, an undershoot in the surface pressure coefficient Cp is observed near the separation
point when compared to the other model and experimental data. This localized pressure dip
may be indicative of sharper gradients and flow deceleration at separation, and could reflect the
model’s heightened sensitivity to shear-layer dynamics or minor numerical artifacts arising from flow
detachment. Despite this, the overall flow topology and aerodynamic performance remain consistent
with the expected physical behavior.
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Figure 7.6: Distributions of pressure coefficient (Cp) over the Eppler 387 airfoil at Re = 200000,
α = 4◦, comparing the developed k–ω–γ–Reθt model with experimental measurements [117] and
numerical model predictions [113].

Table 7.6: Comparison of aerodynamic coefficients, relative errors, and flow features for the Eppler
387 airfoil at Re = 200000, α = 4◦.

Reference Cl Cd εCl (%) εCd (%) xseparation/c xtransition/c xreattachment/c

Experiment (McGhee [117]) 0.7988 0.0139 – – 0.45 0.61 0.65
k–ω–γ–Reθt (University of Strasbourg [113]) 0.8060 0.0152 0.90 9.35 0.45 0.60 0.67
k–ω–γ–Reθt (this work) 0.8036 0.0155 0.60 11.51 0.40 0.50 0.56

For the Eppler 387 airfoil at Re = 200000 and an angle of attack of 4◦, the experimental data
from McGhee [117] provide a robust baseline, indicating a laminar separation bubble initiating near
mid-chord, followed by transition and reattachment downstream. The lift and drag coefficients
measured reflect moderate aerodynamic loading and well-behaved boundary-layer behavior.

The k–ω–γ–Reθt model from the University of Strasbourg [113] closely matches the experimental
separation and transition locations, predicting a slightly extended separation bubble with minor
overprediction of drag. The aerodynamic coefficients remain within reasonable agreement with the
experiment, confirming the model’s capability in capturing transitional flow physics.

The present k–ω–γ–Reθt model predicts separation and transition locations somewhat upstream
of the reference values, resulting in a shorter separation bubble. Lift and drag coefficients remain
consistent with expectations, indicating the model’s robustness in this flow regime. Importantly, the
pressure coefficient distribution exhibits no overshoot or undershoot near transition or reattachment,
indicating a smooth and stable laminar-to-turbulent breakdown, despite incomplete convergence.

65



Chapter 8

Results Part 3: Optimization

Optimization involving transition models remains particularly challenging [118, 32, 80]. Since
forward- and reverse-mode derivatives have not yet been fully verified in the developed transition
model, only a limited demonstration of airfoil optimization is presented using a fully turbulent
model. A comprehensive multipoint, multi-objective optimization will follow. As a preliminary step,
single-point and multipoint optimizations with drag coefficient Cd as the objective were performed
to gain familiarity with the optimization framework.

8.1 Optimization Process Description

Figure 8.1: Workflow of the MACH-Aero framework for aerodynamic shape optimization [119].

The MACH-Aero [119] framework enables high-fidelity aerodynamic shape optimization by integrating
modular tools into an automated and scalable design loop. The end-to-end process is outlined below:

1. Mesh Generation (Pre-processing): A structured multiblock volume mesh is generated
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around the baseline geometry using the tool pyHyp [93]. This mesh is later used by the CFD solver
(Step 5). Simultaneously, Free-Form Deformation (FFD) [120] control points are defined to enable
shape parameterization in Step 3.

2. Design Variable Initialization: Design variables are initialized and passed to a gradient-
based optimizer via the pyOptSparse [121] interface. Typical choices include SNOPT [122] and
SLSQP [123], which are based on Sequential Quadratic Programming (SQP). The optimizer returns
updated design variables to the geometry module.

3. Geometry Parameterization (pyGeo): pyGeo [124] performs geometry deformation
using the current design variables and predefined FFD control points. It also evaluates geometric
constraints and their derivatives. The deformed surface is then passed to the mesh deformation
module (IDWarp, Step 4).

4. Mesh Deformation (IDWarp): IDWarp [93] updates the volume mesh to conform to the
deformed geometry, preserving mesh quality. The resulting mesh is then used in the CFD analysis.

5. Flow Solution (ADflow The updated geometry and mesh are used to compute the
aerodynamic flow field using a high-fidelity CFD solver. For compressible and transonic flows,
ADflow [75] is commonly used, evaluating aerodynamic objectives (e.g., drag) and constraints (e.g.,
lift, moment).

6. Adjoint Derivative Computation: The adjoint solvers in ADflow [125] efficiently compute
gradients of the objectives and constraints with respect to all design variables. This method is highly
scalable, as the computational cost is largely independent of the number of design variables.

7. Optimization Update: The optimizer uses the function evaluations and gradients to update
the design variables. This loop iterates until convergence is achieved, resulting in an optimized
configuration.

8.2 Solvers and Discretization Details

The flow solver parameters were carefully tuned for accuracy and robustness. The additive Schwarz
method was used as a global preconditioner, with incomplete LU (ILU) factorization applied locally
at a fill level of two. The CFL number was capped at 100000.0 to ensure numerical stability during
iterations. Nonlinear convergence was controlled using a maximum of 40 nonlinear iterations and a
relative L2 norm convergence criterion of 1× 10–16. The linear systems arising within each nonlinear
step were solved to a tolerance of 0.05.

For adjoint-based sensitivity analysis and optimization, the discrete adjoint solver is configured to
use the GMRES (Generalized Minimal Residual) algorithm [126]. A tight convergence threshold of
1× 10–12 ensures that the adjoint residuals are minimized effectively. The automatic differentiation
(AD) preconditioner is enabled for the adjoint solver to enhance precision and stability, particularly
in the presence of turbulent flow features. The adjoint solver is allowed to run up to 5000 iterations
per design cycle.

The Spalart–Allmaras (SA) turbulence model is used for all RANS simulations. The total number
of allowed solution cycles is set to 20000, providing sufficient room for full convergence even in
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complex flow regimes. The SLSQP (Sequential Least Squares Programming) algorithm [123] is
employed as the optimizer in the design loop.

8.3 Grid Convergence Analysis for the NASA SC(2)-0714 Airfoil

The geometry selected is the NASA SC(2)-0714 a supercritical airfoil designed for transonic flight
regimes, optimized to delay shock wave formation and minimize wave drag. Featuring a 14%
thickness-to-chord ratio and carefully tailored camber, it achieves efficient aerodynamic performance
near Mach 0.7–0.8, making it well-suited for high-speed subsonic and transonic applications [127].

A comprehensive grid convergence study was conducted to ensure numerical robustness and to
minimize discretization errors. The study considered two representative flight conditions:

• FC0: Mach M = 0.70, altitude h = 36000 ft, angle of attack α = 1◦

• FC1: Mach M = 0.75, altitude h = 40000 ft, angle of attack α = 4◦

For each condition, three successively refined meshes containing 3978, 16195, and 31240 cells
respectively were used. The lift (Cl) and drag (Cd) coefficients were tracked to evaluate sensitivity
to mesh resolution.

Richardson extrapolation was employed to estimate the asymptotic drag coefficient, and the
Grid Convergence Index (GCI) quantified the discretization uncertainty. Results, summarized in
Table 8.1, indicate slightly reduced convergence orders relative to the ideal second order. This
deviation is attributed to the airfoil’s geometric complexity, mesh stretching strategies, and the
influence of turbulence modeling in regions near shock waves.

Case Refinement Levels Achieved Order p Richardson Extrapolation GCI L0–L1 (%) GCI L1–L2 (%)

FC0 [1.39, 1.0, 0.5]
1.6454 Cd = 0.02579 0.3429 1.7250
1.8634 Cl = 0.55041 0.0280 0.1892

FC1 [1.39, 1.0, 0.5]
1.5049 Cd = 0.07401 0.0680 0.3167
0.5511 Cl = 0.58679 1.2586 2.1838

Table 8.1: Grid convergence and GCI analysis for the NASA SC(2)-0714 airfoil under two flight
conditions with three mesh refinement levels.

Since the achieved order of convergence of Cl for FC1 was very low, the finest mesh level was
selected for all subsequent studies, offering a sound compromise between solution accuracy and
computational cost. All simulations were performed in steady-state conditions.

8.4 Optimization Problem Definition

This section and relative subsections present a reformulation of the airfoil optimization problem
following the framework outlined in the MACH-Aero tutorial [128]. The formulation specifies the
objective, design variables, constraints, and governing parameters essential for aerodynamic shape
optimization, providing a structured approach to improve airfoil performance systematically.
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8.4.1 Design Variables

The aerodynamic optimization framework in this study employs Free-Form Deformation (FFD) [120]
for shape parameterization. This approach allows smooth and flexible adjustments of the airfoil
geometry by embedding it within a lattice of control points. During optimization, selected control
points move along the surface-normal direction, serving as the primary design variables that enable
shape modifications while maintaining geometric continuity and smoothness.

Besides geometric parameters, the angle of attack α is also treated as a design variable. Varying
α within set bounds allows the optimizer to modify flow incidence, ensuring aerodynamic objectives
are met. This joint manipulation of shape and angle guarantees that the airfoil sustains favorable
aerodynamic performance and required lift throughout the optimization.

Figure 8.2: Design variables used in the optimization: FFD control points displacements and angle
of attack α.

8.4.2 Constraints

To ensure that the resulting optimized shapes are physically meaningful and aerodynamically viable,
a set of constraints is imposed on the optimization problem. Geometric constraints are applied to
maintain the structural feasibility of the airfoil. A volume constraint ensures that the airfoil does
not become unrealistically thin, while a minimum local thickness is enforced to preserve structural
integrity and manufacturability. The geometry near the leading and trailing edges is held fixed
by constraining the motion of points in these regions. Finally, symmetry about the mid-span is
enforced through a set of linear constraints, requiring mirrored control point displacements across the
spanwise direction. This maintains aerodynamic balance and simplifies the manufacturing process
for symmetric configurations.
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Figure 8.3: Constraints: selected points of each type are shown for clarity [128].

These constraints are implemented using a projection-based method, where a regularly spaced
2D grid of constraint points is projected onto the airfoil surface using surface normals derived from
a ruled surface defined by the bounding corner points (from leList and teList). In non-planar
regions, particularly near open edges, this projection may encounter difficulties due to geometric
misalignments, potentially leading to failed intersection or constraint enforcement errors.

Figure 8.4: Geometric constraints in 3D: blue points enforce spanwise symmetry; red points enforce
volume and thickness constraints
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8.4.3 Objective Function

The objective of the optimization is to minimize aerodynamic drag while maximizing the lift. The
scalar objective function is formulated as:

minx (Cd – Cl)(x)

Here, x denotes the full set of design variables, including the FFD-based shape parameters and
the angle of attack. Both drag (Cd) and lift (Cl) coefficients are computed using a Reynolds-Averaged
Navier–Stokes (RANS) solver coupled with the Spalart–Allmaras turbulence model. The objective
function promotes drag reduction while maximizing lift, and its gradient is evaluated efficiently using
an adjoint method, allowing the optimization to scale to high-dimensional design spaces introduced
by FFD.

8.5 Optimization Problem Formulation

The aerodynamic shape optimization problem aims to identify a design vector

x =
è
α, δFFD,1, δFFD,2, . . .

é
,

where α is the angle of attack and δFFD,i are the free-form deformation (FFD) control point
displacements. The goal is to minimize the drag coefficient Cd(x) while maximizing the lift coefficient
Cl(x), subject to relevant physical and geometric constraints.

Formally, the problem is expressed as:

Algorithm 1 Aerodynamic Optimization Problem
1: Given: Initial geometry, reference volume V0, and design variable bounds.
2: Find: Design vector x.
3: Objectives: Minimize Cd(x), maximize Cl(x).
4: Subject to:

α ∈ [0.0, 10.0] °,
δFFD,i ∈ [–0.05, 0.05] m, ∀i,
V(x) ≥ V0,
tmin(x) ∈ [0.1, 3.0] t0,
Lspan(x) = 0 m

The constraints ensure the search remains within physically meaningful and manufacturable
limits. Table 8.2 summarizes the variables and their bounds.
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Symbol Description Quantity Lower Bound Upper Bound Units
α Angle of attack 1 0.0 10.0 °
δFFD FFD control point displacements 40 -0.05 0.05 m
Venc Volume constraint 1 1.0 — —
tmin Minimum thickness 200 0.1 t0 3.0 t0 —
LE/TE Leading/trailing edge constraints 2 — — —
Lspan Spanwise linear deformation 20 0.0 0.0 m

Table 8.2: Design Variables and Constraints

8.6 Multi-Objective and Multi-Point Optimization Results for the
NASA SC(2)-0714 Airfoil

Figures 8.5 and 8.6 display the airfoil geometry and performance data before and after optimization,
respectively. The results demonstrate the optimizer’s ability to enhance aerodynamic efficiency by
trading off drag and lift across multiple operating conditions.

Figure 8.5: Initial airfoil geometry and performance data. The Step refers to the optimization
iteration.
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Figure 8.6: Optimized airfoil geometry and performance data. The Step refers to the optimization
iteration.

Figure 8.7: Comparison between the initial and optimized airfoil geometries.

Table 8.3 summarizes the initial and final values of key aerodynamic metrics and computational
effort.
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Table 8.3: Key optimization metrics at initial and final design points for the NASA SC(2)-0714
airfoil.

Quantity Initial Final

αFC0 1.00 ° 7.01 °
αFC1 4.00 ° 9.49 °
Cd,FC0 0.0259 0.1055
Cd,FC1 0.0742 0.1852
Cl,FC0 0.5624 1.3781
Cl,FC1 0.5976 1.2451
Objective value -0.5299 -1.1663
Elapsed time 30.49 s 2128.72 s

Throughout the optimization process, the angle of attack was adjusted within the prescribed
bounds, leading to more favorable lift and drag characteristics. Notably, the optimized design exhibits
increased lift coefficients at multiple flight conditions, which indicates enhanced lift generation
capabilities.

Conversely, while the drag coefficients at these conditions show a moderate increase, this trade-off
is typical in multi-objective aerodynamic optimizations where improvements in lift often come
at the expense of some drag penalty. However, the overall objective function, which balances
these competing criteria, shows a marked improvement, validating the effectiveness of the chosen
optimization approach.

The elapsed computational time reflects the complexity of the problem, including the multi-point
evaluation and the high dimensionality of the design space. The results confirm that the optimization
framework efficiently navigated the feasible design space to identify superior airfoil shapes that
satisfy all constraints.

Visual inspection of the airfoil shapes before and after optimization reveals noticeable geometric
modifications, which align with the observed aerodynamic performance changes. These modifications
are consistent with the deformation allowed by the Free-Form Deformation (FFD) control points,
illustrating the design flexibility embedded in the optimization process.

Overall, the results underscore the capability of the employed multi-objective and multi-point
optimization methodology to achieve improved aerodynamic efficiency for the NASA SC(2)-0714
airfoil within the specified design constraints.
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Chapter 9

Conclusions

The primary objective of this work was the implementation and integration of a transitional
turbulence model—specifically, the Langtry-Menter k–ω–γ–Reθt transition model—within the ADflow
framework. This implementation was achieved, allowing for the simulation of laminar-to-turbulent
transition phenomena in a high-fidelity environment.

However, a complete verification of the gradients produced via forward-mode automatic differen-
tiation (AD) has not yet been accomplished. The current forward-mode AD implementation still
requires careful verification, and the observed inconsistencies in gradient-based quantities reflect this
limitation. These challenges have also impacted the model validation process, where deviations were
observed when comparing simulation results with experimental data, LES reference solutions, and
other transition modeling approaches.

Nevertheless, as a standalone example, the framework was used to conduct aerodynamic shape
optimization of a supercritical airfoil with the Spalart-Allmaras turbulence model. Although the
optimization primarily served as a demonstration of ADflow’s capability to integrate and solve
gradient-based design problems, the results indicate the solver’s ability to converge to improved
shapes even under constraints.

Aerodynamic shape optimization continues to be a subject of significant interest, particularly in
aerospace and marine sectors. A notable recent example is the February 2025 study by Ng et al. [129],
which applied high-fidelity optimization using ADflow and the Spalart-Allmaras model for the design
of America’s Cup AC75 hydrofoil sections with flaps. This work highlights the growing application of
gradient-based optimization in real-world, performance-critical contexts such as competitive sailing
and aerospace engineering.

9.1 Future Work

While the optimization of the airfoil shape using steady-state simulations was successful, there are
several avenues for further improvement:
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9.1.1 Integration of Transitional Modeling in Optimization

Following the verification of the flow solver’s gradients using forward-mode automatic differentiation
(AD), the next critical step is to verify the derivatives obtained via reverse-mode AD. This is essential
for enabling consistent and efficient adjoint-based optimization with the transitional turbulence model.
Achieving this integration requires that all components of the transition model be differentiable, and
that derivative computations—both in forward and reverse modes—remain accurate, stable, and
consistent.

To ensure the reliability of this integration, comprehensive validation strategies must be employed.
These should include comparisons against experimental measurements, high-fidelity numerical data
such as large-eddy simulation (LES) results, and cross-validation with established transition modeling
approaches. Such validation is vital to build confidence in both the physical accuracy of the model
and the correctness of the computed sensitivities.

A robust, fully verified and validated transitional modeling capability, integrated with gradient-
based optimization, would significantly expand the applicability of the framework. It would enable
high-fidelity design optimization in a wide range of engineering scenarios, particularly those involving
low-Reynolds-number flows, transitional behavior, and complex geometry constraints.

9.1.2 Unsteady Optimization

The current optimization approach focuses on steady-state flow conditions. However, real-world
aerodynamic performance often involves unsteady effects, especially at higher speeds or during
transient maneuvers. Future work could explore unsteady optimization to account for time-varying
aerodynamic forces and to improve performance under more dynamic conditions.

9.1.3 Use of Advanced Turbulence Models for Optimization

The Spalart-Allmaras (SA) turbulence model used in this aerodynamic optimization provides a good
approximation for many aerodynamic applications. However, for higher accuracy, particularly in
complex flow regimes, advanced turbulence models such as Large Eddy Simulation (LES) could be
employed.
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Appendix A

Field Functions from the Simulations

This chapter presents isocontours of nondimensional turbulent kinetic energy (k/U2
∞) and nondimen-

sional velocity magnitude (U/U∞) obtained from simulations of various airfoils under different flow
conditions. These fields provide valuable insight into laminar–turbulent transition, flow separation,
and reattachment.

A.1 SD7003 Airfoil

Figure A.1: SD7003 — M = 0.1, Re = 6× 104, α = 4◦, fine grid (SD7003_L0): k/U2
∞ (left), U/U∞

(right).

Figure A.2: SD7003 — M = 0.1, Re = 6× 104, α = 6◦: k/U2
∞ (left), U/U∞ (right).
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A.2 NACA 0015 Airfoil

Figure A.3: NACA0015 — M = 0.1, Re = 1.8× 105, α = 3◦: k/U2
∞ (left), U/U∞ (right).

Figure A.4: NACA0015 — M = 0.1, Re = 1.8× 105, α = 10◦: k/U2
∞ (left), U/U∞ (right).

A.3 Eppler 387 Airfoil

Figure A.5: Eppler 387 — M = 0.1, Re = 2× 105, α = 0◦: k/U2
∞ (left), U/U∞ (right).
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Figure A.6: Eppler 387 — M = 0.1, Re = 2× 105, α = 4◦: k/U2
∞ (left), U/U∞ (right).
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Appendix B

Minor Code Modification
Documentation

This document summarizes the minor modifications for the Langtry-Menter SST transitional
turbulence model in ADflow, detailing the affected modules and key subroutines with code excerpts.
The major model implementation is documented discursively in Section 6.2.

B.1 Subroutine turbSolveDDADI in module TurbAPI

Handling for langtryMenterSST added:

Listing B.1: Excerpt from turbSolveDDADI

1 s e l e c t case ( turbModel )
2 . . .
3 case ( komegaWilcox , komegaModified , menterSST , langtryMenterSST , ktau )
4 c a l l unsteadyTurbSpectral ( i tu1 , i tu2 ) ! Compute unsteady turbu lence s p e c t r a l

terms
5

6 case ( menterSST , langtryMenterSST )
7 c a l l SST_block_residuals ( . f a l s e . ) ! D i sab le SST r e s i d u a l b locks f o r i n i t i a l

s o l v e
8 c a l l SSTSolve ! Ca l l SST s o l v e r f o r turbu lence v a r i a b l e s
9 end s e l e c t

B.2 Subroutine turbResidual in module TurbAPI

Included langtryMenterSST case:

Listing B.2: Excerpt from turbResidual

1 s e l e c t case ( turbModel )
2 . . .
3 case ( menterSST , langtryMenterSST )
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4 c a l l SST_block_residuals ( . True . ) ! Enable SST r e s i d u a l b locks to compute
turbu lence r e s i d u a l s

5 end s e l e c t

B.3 Subroutine computeEddyViscosity in module
turbUtils

Added langtryMenterSST to call SST eddy viscosity calculation:

Listing B.3: Excerpt from computeEddyViscosity

1 s e l e c t case ( turbModel )
2 . . .
3 case ( menterSST , langtryMenterSST )
4 c a l l SSTEddyViscosity ( iBeg , iEnd , jBeg , jEnd , kBeg , kEnd) ! Compute eddy

v i s c o s i t y f o r SST
5 ! o ther c a s e s . . .
6 end s e l e c t

B.4 Subroutine setBCVarNamesTurb in module BCData

Added BC variable names for transition variables:

Listing B.4: Excerpt from setBCVarNamesTurb

1 s e l e c t case ( turbModel )
2 . . .
3 case ( langtryMenterSST )
4 bcVarNames ( o f f s e t + 1) = cgnsTurbK ! Turbulent k i n e t i c energy
5 bcVarNames ( o f f s e t + 2) = cgnsTurbOmega ! S p e c i f i c d i s s i p a t i o n ra t e
6 bcVarNames ( o f f s e t + 3) = cgnsTransitionGamma ! Trans i t i on onset parameter
7 bcVarNames ( o f f s e t + 4) = cgnsTrans it ionReThetat ! Trans i t i on Reynolds number

parameter
8 end s e l e c t

B.5 Logical Function setBCVarTurb in module BCData

Freestream initialization for transition variables:

Listing B.5: Excerpt from setBCVarTurb

1 s e l e c t case ( turbModel )
2 . . .
3 case ( langtryMenterSST )
4 r e f ( i tu1 ) = pRef / rhoRef ! I n i t i a l i z e turbu l ent k i n e t i c energy r e f e r e n c e
5 r e f ( i tu2 ) = r e f ( i tu1 ) / nuRef ! I n i t i a l i z e omega r e f e r e n c e from k and v i s c o s i t y
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6 r e f ( i T r a n s i t i o n 1 ) = 0
7 r e f ( i T r a n s i t i o n 2 ) = 0
8 end s e l e c t

B.6 Main residual loop for RANS equations in module
masterRoutines

Listing B.6: Excerpt from main residual loop
1 i f ( equat ions == RANSEquations ) then
2 . . .
3 s e l e c t case ( turbModel )
4 case ( menterSST , langtryMenterSST )
5 c a l l SST_block_residuals ( . True . ) ! Inc lude SST r e s i d u a l s f o r turbu lence model

s o l v e
6 end s e l e c t
7 end i f

B.7 Subroutine volSolNames in module outputMod

Added volume solution variable names for Langtry-Menter SST model:

Listing B.7: Excerpt from volSolNames

1 case ( langtryMenterSST )
2 . . .
3 solNames ( i tu1 ) = cgnsTurbK ! Name f o r turbu l ent k i n e t i c energy

s o l u t i o n v a r i a b l e
4 solNames ( i tu2 ) = cgnsTurbOmega ! Name f o r omega s o l u t i o n v a r i a b l e
5 solNames ( i T r a n s i t i o n 1 ) = cgnsTransitionGamma ! Name f o r t r a n s i t i o n gamma

s o l u t i o n v a r i a b l e
6 solNames ( i T r a n s i t i o n 2 ) = cgnsTrans it ionReThetat ! Name f o r t r a n s i t i o n ReTheta

s o l u t i o n v a r i a b l e
7

8 . . .
9

10 i f ( volWriteResTurb ) then
11

12 s e l e c t case ( turbModel )
13 . . .
14 case ( langtryMenterSST )
15 nn = nn + 1
16 solNames (nn) = cgnsResK
17

18 nn = nn + 1
19 solNames (nn) = cgnsResOmega
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20

21 nn = nn + 1
22 solNames (nn) = cgnsTransitionGamma
23

24 nn = nn + 1
25 solNames (nn) = cgnsTrans it ionReThetat

B.8 Subroutine isoSurfNames in module outputMod

Added iso-surface solution variable names for Langtry-Menter SST model:

Listing B.8: Excerpt from isoSurfNames

1 . . .
2 i f ( isoWriteTurb ) then
3

4 s e l e c t case ( turbModel )
5 . . .
6 case ( langtryMenterSST )
7 nn = nn + 1
8 solNames (nn) = cgnsResK
9

10 nn = nn + 1
11 solNames (nn) = cgnsResOmega
12

13 nn = nn + 1
14 solNames (nn) = cgnsTransitionGamma
15

16 nn = nn + 1
17 solNames (nn) = cgnsTrans it ionReThetat
18

19 . . .
20

21 i f ( isoWriteResTurb ) then
22

23 s e l e c t case ( turbModel )
24 . . .
25 case ( langtryMenterSST )
26 nn = nn + 1
27 solNames (nn) = cgnsResK
28

29 nn = nn + 1
30 solNames (nn) = cgnsResOmega
31

32 nn = nn + 1
33 solNames (nn) = cgnsTransitionGamma
34

35 nn = nn + 1
36 solNames (nn) = cgnsTrans it ionReThetat
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B.9 Subroutine writeCGNSHeader in module outputMod

Added support for Langtry-Menter SST in CGNS metadata output:

Listing B.9: Excerpt from writeCGNSHeader

1 turbu lentTest : i f ( equat ions == RANSEquations ) then
2 . . .
3 case ( menterSST , langtryMenterSST )
4 c a l l writeCGNSMenterSSTInfo ( cgnsInd , base )

B.10 Subroutine blockResCore in module blockette

Enabled residual block computation for Langtry-Menter SST in RANS mode:

Listing B.10: Excerpt from blockResCore

1 i f ( equat ions == RANSEquations . and . turbRes ) then
2 . . .
3 case ( menterSST , langtryMenterSST )
4 c a l l SST_block_residuals ( . True . )

B.11 Subroutine referenceState in module
initializeFlow

Freestream turbulent variables initialization:

Listing B.11: Excerpt from referenceState

1 s e l e c t case ( turbModel )
2 . . . .
3 case ( komegaWilcox , komegaModified , menterSST , langtryMenterSST )
4 wInf ( i tu1 ) = 1 .5 _realType ∗ uInf2 ∗ t u r b I n t e n s i t y I n f ∗∗2 ! Ca l cu la te f r e e s t r eam

turbu l ent k i n e t i c energy
5 wInf ( i tu2 ) = wInf ( i tu1 ) / ( eddyVisIn fRat io ∗ nuInf ) ! Ca l cu la t e f r e e s t r eam

omega from k
6 end s e l e c t

B.12 Subroutine checkMonitor in module
inputParamRoutines

Added monitors for new turbulence variables:
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Listing B.12: Excerpt from checkMonitor

1 . . .
2 case ( langtryMenterSST )
3 nMon = nMon + 4 ; nMonSum = nMonSum + 4
4 monNames(nMon − 3) = cgnsL2ResK ! Monitor r e s i d u a l o f k
5 monNames(nMon − 2) = cgnsL2ResOmega ! Monitor r e s i d u a l o f omega
6 monNames(nMon − 1) = cgnsL2ResGamma ! Monitor r e s i d u a l o f t r a n s i t i o n gamma
7 monNames(nMon) = cgnsL2ResRethetat ! Monitor r e s i d u a l o f t r a n s i t i o n ReTheta

B.13 Subroutine setEquationParameters in module
inputParamRoutines

Listing B.13: Excerpt from setEquationParameters

1 . . .
2 case ( langtryMenterSST )
3 nw = 9 ! Number o f v a r i a b l e s i n c l u d i n g t r a n s i t i o n s c a l a r s
4 nt2 = 9 ! Total turbu lence v a r i a b l e count
5 i T r a n s i t i o n 1 = 8 ! Index f o r t r a n s i t i o n gamma v a r i a b l e
6 i T r a n s i t i o n 2 = 9 ! Index f o r t r a n s i t i o n ReTheta v a r i a b l e
7 kPresent = . t rue . ! Turbulence k i n e t i c energy pre sent
8 eddyModel = . t rue . ! Eddy v i s c o s i t y model a c t i v e
9 t rans i t i onMode l = GammaRetheta ! Use Gamma−ReTheta t r a n s i t i o n model

B.14 Subroutine readTurbvar in module variableReading

Added langtryMenterSST to support reading turbulence variables using readTurbKwType:

Listing B.14: Excerpt from readTurbvar

1 . . .
2 case ( menterSST , langtryMenterSST )
3 c a l l readTurbKwType ( nTypeMismatch )

B.15 transitionModel in module inputPhysics

Added transitionModel to support transition model:

Listing B.15: Excerpt from constants

1 ! t r ans i t i onMode l Which t r a n s i t i o n Model to use
2 . . . .
3 i n t e g e r ( kind=intType ) : : turbModel , cpModel , turbProd , t rans i t i onMode l
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B.16 gammaretheta in module constants

Added gammaretheta as a transition model:

Listing B.16: Excerpt from constants

1 i n t e g e r ( kind=intType ) , parameter : : &
2 noTransit ionModel = 0 , &
3 gammaretheta = 1

B.17 C Interface (libadflowmodule.c)

Listing B.17: Excerpt from libadflowmodule.c

1 . . .
2

3 { " l angt rymente r s s t " ,0 ,{{ −1}} ,NPY_INT} ,
4 . . .
5 s t a t i c void f2py_setup_constants ( char ∗ maxstr inglen , . . . . . ∗ langtrymenter s s t , char ∗ v2f

, char . . . . .
6 . . .
7 f2py_constants_def [ i_f2py ++]. data = langt rymente r s s t ;
8 . . .
9 " Fortran 90/95 modules : \ n " " cons tant s −−− maxstr inglen , maxcgnsnamelen , . . ,

l angtrymenter s s t , . . . . .

B.18 Python Interface (pyADflow.py)

Listing B.18: Excerpt from pyADflow.py

1 " turbulencemodel " : {
2 . . .
3 " sa " : s e l f . adf low . cons tant s . sp a l a r t a l lm ara s , # Spalart −Allmaras model
4 " menter s s t " : s e l f . adf low . cons tant s . mentersst , # Menter SST model
5 " l ang t ry menter s s t " : s e l f . adf low . cons tant s . l angtrymenter s s t , # Langtry−Menter

SST model
6 . . .
7

8 " eddyVisInfRat io " : [ f l o a t , 0 . 0 0 9 ] , # Defau l t f r e e s t r eam eddy v i s c o s i t y ra t i o , but
can be changed in run s c r i p t

9 " t u r b I n t e n s i t y I n f " : [ f l o a t , 0 . 0 0 1 ] , # Defau l t f r e e s t r eam turbu lence i n t e n s i t y , but
can be changed in run s c r i p t
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